Finding approximate solutions for a class of third-order non-linear boundary value problems via the decomposition method of Adomian
|
#
|
1389 - 02
|
|
The solution of the Falkner-Skan equation arising in the modelling of boundary-layer problems via variational iteration method
|
#
|
1389 - 01
|
|
A method for solving partial differential equations via radial basis functions Application to the heat equation
|
#
|
1388 - 12
|
|
On the Reconstruction of the First Term in the Variational Iteration Method for Solving Differential Equations
|
#
|
1388 - 10
|
|
Improvement of He s variational iteration method for solving systems of differential equations
|
#
|
1388 - 02
|
|
On the solution of the non-local parabolic partial differential equations via radial basis functions
|
#
|
1387 - 12
|
|
Use of radial basis functions for solving the second order parabolic equation with nonlocal boundary conditions
|
#
|
1386 - 10
|
|
He s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation
|
#
|
1385 - 11
|
|
On the convergence of He s variational iteration method
|
#
|
1385 - 10
|
|
Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions
|
#
|
1384 - 12
|
|
Numerical solution of Laplace equation in a disk using the Adomian decomposition method
|
#
|
1384 - 01
|
|