Chapter 6

Shear | ocki ng

In the preceding chapter, we saw a Ritz approximation of the Tinoshenko beam
problem and noted that it was necessary to ensure a certain consistent
rel ati onship between the trial functions to obtain accurate results. W shall
now take up the finite element representation of this problem which is
essentially a piecewise Rtz approximtion. Qur conclusions from the preceding
chapter would therefore apply to this as well.

6.1 The linear Ti noshenko beam el ement

An el erent based on el enmentary theory needs two nodes with 2 degrees of freedom
at each node, the transverse deflection w and slope dw dx and uses cubic
interpolation functions to neet the ct conti nui ty requirenents of this theory
(Fig. 6.1). A sinlar two-noded beam elenent based on the shear flexible
Ti nroshenko beam theory will need only ® conti nui ty and can be based on sinple
linear interpolations. It was therefore very attractive for general purpose
applications. However, the elenment was beset wth problens, as we shall

presently see.

6.1.1 The conventional fornulation of the |linear beam el enent

The strain energy of a Tinpbshenko beam el enent of length 21 can be witten as
the sumof its bending and shear conponents as,

fl2e &T x+1/2kcA yTy)dx (6. 1)

wher e
X =06y (6. 2a)
y=60-wy (6. 2b)

In Equations (6.2a) and (6.2b), w is the transverse displacement and @ the
section rotation. E and G are the Young's and shear nmoduli and the shear
correction factor used in Tinobshenko's theory. | and A are the nmonment of inertia
and the area of cross-section, respectively.
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Fig. 6.1 (a) dassical thin beamand (b) Ti noshenko beam el enents.
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In the conventional procedure, linear interpolations are chosen for the
di spl acenment field variabl es as,

(L-¢)/2 (6. 3a)
(L+&)2 (6. 3b)

Ny
No

where the di nensionless coordinate &x/| varies from-1 to +1 for an el enent of
length 2. This ensures that the elenent is capable of strain free rigid body
nmoti on and can recover a constant state of strain (conpleteness requirenment) and
that the displacenents are continuous within the el ement and across the el enent
boundaries (continuity requirement). W can conpute the bending and shear
strains directly fromthese interpolations using the strain gradient operators
given in Equations (6.2a) and (6.2b). These are then introduced into the strain
energy computation in Equation (6.1), and the elenment stiffness matrix is
calculated in an analytically or numerically exact (a 2 point Gauss Legendre
integration rule) way.

For the beam elenent shown in Fig. 6.1, for a length h the stiffness
matrix can be split into two parts, a bending related part and a shear related
part, as,

0 0 0 0] 1 h/2 -1 h/2]
010 -1 h/2 h2/3 -h/2 h?f6
k, =El /h ks =kG& /h
0 00 O -1 -h/2 1 -h/2
0 -10 1] 'h/2 h2%/ -h/2 h?/3 |
W shall now nodel a cantilever beam under a tip load using this elenent,

considering the case of a "thin" beamw th E=1000, G=37500000, t=1, L=4, using a
fictitiously large value of Gto sinmulate the "thin" beam condition. Table 6.1
shows that the normalized tip displacenents are dramatically in error. In fact
with a cl assical beam el enent nodel, exact answers woul d have been obtained with
one elenent for this case. W can carefully exanmine Table 6.1 to see the trend
as the nunber of elenents is increased. The tip deflections obtained, which are
several orders of nmagnitude |ower than the correct answer, are directly related
to the square of the nunber of elenents used for the idealization. In other
words, the discretization process has introduced an error so large that the
resulting answer has a stiffness related to the inverse of h?, This is clearly
unrelated to the physics of the Tinboshenko beam and al so not the usual sort of
di scretization errors encountered in the finite element nethod. It is this very
phenonenon that is known as shear | ocking.

Table 6.1 - Nornmlized tip deflections

No. of el ements “Thin” beam
1 0.200 x 10°°
2 0.800 x 10°°
4 0.320 x 104
8 0.128 x 1073
16 0.512 x 1073
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The error in each elenment nust be related to the elenent length, and
t herefore when a beam of overall length L is divided into N elenents of equal
length h, the additional stiffening introduced in each elenment due to shear

| ocking is seen to be proportional to h%. In fact, nunerical experinents showed
that the locking stiffness progresses without limt as the elenment depth t
decreases. Thus, we now have to look for a nechanism that can explain how this

spurious stiffness of (h/t)2 can be accounted for by considering the mathematics
of the discretization process.

The mamgic fornula proposed to overcone this locking is the reduced
i ntegration nethod. The bendi ng conponent of the strain energy of a Tinobshenko
beam el ement of length 21 shown in Equation (6.1) is integrated with a one-point
Gaussian rule as this is the mninmum order of integration required for exact
eval uation of this strain energy. However, a mathematically exact eval uation of
the shear strain energy will denmand a two-point Gaussian integration rule. It is
this rule that resulted in the shear stiffness matrix of rank two that | ocked.
An experinent with a one-point integration of the shear strain energy conponent
causes the shear related stiffness matrix to change as shown below The
performance of this elenent was extrenely good, showi ng no signs of |ocking at
all (see Table 4.1 for a typical convergence trend with this elenent).

0 0 0 0] 1 h/2 -1 h/2_

010 -1 h/2 h2/4a —-h/2 h2/4
kp =El /h ks =k@& /h

0000 -1 -h/2 1 -h/2

0 -1 0 1] 'h/2 h2/a  -nj2 n?/a |

6.1.2 The fiel d-consistency paradi gm

It is clear from the forrmulation of the |inear Tinoshenko beam el ement using
exact integration (we shall <call it the field-inconsistent elenent) that
ensuring the conpleteness and continuity conditions are not enough in sone
problens. W shall propose a requirenment for a consistent interpolation of the
constrained strain fields as the necessary paradigmto make our understandi ng of
t he phenonena conpl ete.

If we start with linear trial functions for w and 6 as we had done in
Equati on 6.3 above, we can associate two generalized di spl acement constants with
each of the interpolations in the follow ng manner

w=ag +a; (x/I') (6. 4a)

6=by +by (x/I') (6. 4b)

W can relate such constants to the field-variables obtaining in this
element in a discretized sense; thus, ai/l=w,x at x=0, bg=86 and b1/l =6« at x=0.
This denotation would becone wuseful when we try to explain how the

di scretization process can alter the infinitesinml description of the problemif
the strain fields are not consistently defined.
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If the strain-fields are now derived fromthe displacenment fields given in
Equation (6.4), we get

x=(oy/1') (6. 5a)
y=(bp —as/l )+ by (x/1) (6. 5b)

An exact evaluation of the strain energies for an elenent of length h=2l will
now yi el d the bending and shear strain energy as

Ug =1/2 (B1) (21) {(ba1 }* (6. 6a)
Us =1/2 (kGA) (21) {(bO —a, I P +1/3 bf} (6. 6b)
It is possible to see fromthis that in the constraining physical limt of a

very thin beam nodel ed by elements of length 2 and depth t, the shear strain
energy in Equation (6.6b) must vani sh. An examination of the conditions produced
by these requirenments shows that the follow ng constraints would energe in such
alimt

bo —al/l -0 (6 7a)
by -0 (6. 7b)

In the new term nology that we had cursorily introduced in Section 5.4,
constraint (6.7a) is field-consistent as it contains constants from both the
contributing displacenent interpolations relevant to the description of the
shear strain field. These constraints can then accommobdate the true Kirchhoff

constraints in a physically neaningful way, i.e. in an infinitesiml sense, this
is equal to the condition (&wyx) -0 at the elenment centroid. |In direct
contrast, constraint (6.7b) contains only a termfromthe section rotation 8 A
constraint inposed on this will lead to an undesired restriction on 6 1In an

infinitesimal sense, this is equal to the condition 6 yx-0 at the elenment
centroid (i.e. no bending is allowed to develop in the element region). This is
the “spurious constraint' that leads to shear |ocking and violent disturbances
in the shear force prediction over the elenment, as we shall see presently.

6.1.3 An error nodel for the field-consistency paradi gm

W nust now determine that this field-consistency paradigm leads us to an
accurate error prediction. W know that the discretized finite elenment nodel
will contain an error which can be recognized when digital conmputations made
with these el enments are conpared with anal ytical solutions where avail able. The
consi stency requirement has been offered as the mssing paradigmfor the error-
free formulation of the constrained nmedia problenms. W mnust now devise an
operational procedure that wll trace the errors due to an inconsistent
representation of the constrained strain field and obtain precise a priori
nmeasures for these. W nust then show by actual nunerical experinments with the
original elements that the errors are as projected by these a priori error
nodel s. Only such an exercise will conplete the scientific validation of the
consi stency paradigm Fortunately, a procedure we shall call the functional re-
constitution technique makes it possible to do this verification.
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6.1.4 Functional re-constitution

W have postulated that the error of shear |ocking originates fromthe spurious
shear constraint in Equation (6.7b). W nust now devise an error nodel for the
case where the inconsistent element is used to nodel a beam of length L and
depth t. The strain energy for such a beamcan be set up as,

= f{l/z El 9,§+1/2kGA(9—w,X)2}dx (6.8)
0

If an elenent of length 21 is isolated, the discretization process produces
energy for the elenent of the form given in Equation (6.6). In this equation,
the constants, which were introduced due to the discretization process, can be
replaced by the continuum (i.e. the infinitesimal) description. Thus, we note
that in each elenent, the constants in Equations (6.6a) and (6.6b) can be traced
to the constants in Equations (6.4a) and (6.4b) and can be replaced by the
values of the field variations 8 6 x and w,x at the centroid of the elenent
Thus, the strain energy of defornmation in an elenent is,

e =1/2 (1) (@1 ) (6.4 +1/2 (kaa) (21 ) (0-wx ) +1/6 (kGAl ) (6.4 ) (6.9)

Thus the constants in the discretized strain energy functional have been re-
constituted into an equivalent continuum or infinitesimal form Fromthis re-
constituted functional, we can argue that an idealization of a beam regi on of
length 21 into a linear displacenent type finite elenent would produce a
nodi fied strain energy density within that region of,

T, =1/2 (EI +KGAl 2/3) (6,4 ? +1/2 (kGA) (6-w, 4 )? (6. 10)

This strain energy density indicates that the original physical system has been
altered due to the presence of the inconsistent termin the shear strain field.
Thus, we can postulate that a beam of length L nodeled by equal elenents of
length 2 will have a re-constituted functiona

7= JL {1/2 (EI +kGAl 2/3)((9,X)2 +1/2 (kaA) (9—vv,x)2} dx (6.11)

W now understand that the discretized beam is stiffer in bending (i.e. its

flexural rigidity) by the factor kGAIZ/SEI. For a thin beam this can be very
| arge, and produces the additional stiffening effect described as shear | ocking.

6.1.5 Numerical experinents to verify error prediction

Qur functional re-constitution procedure (note that this is an auxiliary
procedure, distinct from the direct finite elenent procedure that yields the
stiffness matrix) allows us to critically exanm ne the consistency paradigm It
i ndi cates that an exactly-integrated or field-inconsistent finite el ement nodel
tends to behave as a shear flexible beamw th a nuch stiffened flexural rigidity
I". This can be related to the original rigidity I of the system by conparing
t he expressions in Equations (6.8) and (6.11) as,

'l =1+kGAL?/3El (6.12)
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We nust now show through a nunerical experinent that this estimate for the

error, which has been established entirely a priori, starting from the
consi stency paradigm and introducing the functional re-constitution technique
anticipates very accurately, the behavior of a field-inconsistent I|inearly

interpolated shear flexible element in an actual digital conputation. Exact
solutions are available for the static deflection Wof a Tinoshenko cantil ever
beam of length L and depth t under a vertical tip load. If Wg, is the result
froma nunerical experinent involving a finite elenent digital conputation using
el ements of length 2I, the additional stiffening can be described by a paraneter
as,

erem =WWem -1 (6.13)

From Equation (6.12), we already have an a priori prediction for this factor as,
e=I"/l —1=KkGAl 2/3El (6. 14)

We can now re-interpret the results shown in Table 6.1 for the thin beam
case. Using Equations (6.13) and (6.14), we can argue a priori that the
inconsi stent elenment will produce normalized tip deflections @Vem/mb=1/@s+ef

Since e>>1, we have
wem/W:(NZ/s)x10‘5 (6. 15)

for the thin beam Table 6.2 shows how the predictions made thus conpare with
the results obtained froman actual finite el enent computation using the field-
i nconsi stent el enent.

Thi s has shown us that the consistency paradigmcan be scientifically verified.
Tradi tional procedures such as counting constraint indices, or computing the
rank or condition nunber of the stiffness matrices could offer only a heuristic
pi cture of how and why | ocking sets in.

It will be instructive to note here that conventional error analysis norns in
the finite elenent nethod are based on the percentage error or equivalent in
some conputed value as conpared to the theoretically predicted value. W have
seen now that the error of shear |ocking can be exaggerated without linmt, as
the structural paraneter that acts as a penalty nultiplier beconmes indefinitely

Table 6.2 - Normalized tip deflections for the thin beam (Case 2) conmputed from
fem nodel and predicted fromerror nodel (Equation (6.15)).

N Conputed (fen) Predi ct ed

1 0.200 x 1074 0.200 x 10°%
2 0.800 x 1074 0.800 x 1074
4 0.320 x 1073 0.320 x 1073
8 0.128 x 103 0.128 x 103
16 0.512 x 103 0.512 x 103
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|arge. The percentage error norns therefore saturate quickly to a value
approachi ng 100% and do not sensibly reflect the relationship between error and
the structural paraneter even on a logarithnmic plot. A new error normcalled the
additional stiffening paraneter, e can be introduced to recognize the nanner in
which the errors of locking kind can be blown out of proportion by a |arge
variation in the structural paraneter. Essentially, this takes into account, the
fact that the spurious constraints give rise to a spurious energy term and
consequently alters the rigidity of the system being nodeled. In many other
exanples (e.g. Mndlin plates, curved beans etc.) it was seen that the rigidity,
I, of the field consistent system and the rigidity, |’, of the inconsistent
system were related to the structural paraneters in the form 1'/1 = a(l/t)2
where | is an elenent dinmension and t is the elenent thickness. Thus, if wis
the deflection of a reference point as predicted by an analytical solution to
the theoretical description of the problem and wem is the fem deflection
predicted by a field inconsistent finite element nodel, we would expect the
rel ati onship described by Equation 6.14. A logarithmc plot of the new error

norm agai nst the parameter (l/t) will show a quadratic relationship that wll
continue indefinitely as (lI/t) is increased. This was found to be true of the
many constrai ned media problenms. By way of illustration of the distinction nade
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Fig. 6.2 Variation of error norns e, E with structural paraneter kGL%/ Et? for a
cantil ever beam under tip shear force.
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by this definition, we shall anticipate again, the results above. If we
represent the conventional error normin the form E==@N—VVeWJAN, and plot both
E and the new error norm e from the results for the sanme problem using 4 FlI
el ements against the penalty multiplier (I/t)2 on a logarithmc scale, the
dependence is as shown in Fig. 6.2. It can be seen that E saturates quickly to a
val ue approachi ng 100% and cannot show neani ngfully how the error propagates as
the penalty nmultiplier increases indefinitely. On the other hand, e captures
this relationship, very accurately.

6.1.6 Shear Force Gscill ations

A feature of inconsistently nodeled constrained nmedia problenms is the presence
of spurious violently oscillating strains and stresses. It was not understood
for a very long time that in many cases, stress oscillations originated fromthe
i nconsi stent constraints. For a cantilever beam under constant bending nonent

nodel ed wusing linear Tinoshenko beam elenments, the shear force (stresses)
di splays a sawtooth pattern (we shall see later that a plane stress nodel using
4-node elenents will also give an identical pattern on the neutral bending

surface). W can arrive at a prediction for these oscillations by applying the
functional re-constitution technique.

If V is the shear force predicted by a field-consistent shear strain
field (we shall see soon how the field-consistent el enent can be designed) and V
the shear force obtained fromthe original shear strain field, we can wite from
Equati on (6.5b),

V =kGA (bg —a; /I') (6. 16a)
V=V +kGAb; (x/I) (6. 16b)

W see that V has a linear termthat relates directly to the constant that
appeared in the spurious constraint, Equation (6.7b). W shall see below from

Equation (6.17) that by will not be zero, in fact it is a neasure of the bending
monent at the centroid of the elenent. Thus, in a field-inconsistent
formulation, this constant will activate a violent linear shear force variation
when the shear forces are evaluated directly from the shear strain field given
in Equation (6.5b). The oscillation is self-equilibrating and does not
contribute to the force equilibriumover the elenent. However, it contributes a
finite energy in Equation (6.9) and in the nodeling of very slender beans, this
spurious energy is so large as to conpletely dominate the behavior of the beam
and cause a |l ocking effect.

Figure 6.3 shows the shear force oscillations in a typical problem - a
straight cantilever beamwith a concentrated noment at the tip. One to ten equa
length field-inconsistent elenents were used and shear forces were conputed at
the nodes of each element. In each case, only the variation within the el enent
at the fixed end is shown, as the pattern repeats itself in a sawtooth nmanner
over all other elenents. At elenment mid-nodes, the correct shear force i.e. V=0
is reproduced. Over the length of the element, the oscillations are seen to be
linear functions corresponding to the KGA b; (x/l) term Also indicated by the
solid lines, is the prediction made by the functional re-constitution exercise.
We shall explore this now
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Fig. 6.3 Shear force oscillations in elenent nearest the root, for N el enent
nodel s of a cantilever of length L = 60.

Consider a straight cantilever beamwith a tip shear force Q at the free
end. This should produce a linearly varying bending noment M and a constant
shear force Q in the beam An element of length 21 at any station on the beam

will now respond in the follow ng manner. Since, a linear elenment is used, only
the average of the linearly varying bending noment is expected in each finite
element. If the elenent is field-consistent, the constant b; can be associ ated

after accounting for discretization, to relate to the constant bendi ng noment M
at the elenent centroid as,

My =El by/l  or
by = Ml /EI (6.17)
In a field-inconsistent problem due to shear locking, it is necessary to

consider the nodified flexural rigidity |I' (see Equation 6.17) that nodifies bj
to by, that is,

bi =Myl /EI '’

={myl /EI (1+e}
=ty /(L ve) (619

where e =kGAl 2/3EI .

Thus, in a field-inconsistent formulation, the constant b; gets stiffened
by the factor e; the constant bending nonent My is also underestimated by the
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sane factor. Also, for a very thin beam where e>>1, the centroidal monment M

predicted by a field-consistent elenent dininishes in a t2 rate for a beam of
rectangul ar cross-section. These observations have been confirmed through
digital computation.

The field-consistent element will respond with V=V, =Q over the entire

element length 2. The field-inconsistent shear force V from Equations (6.16)
and (6.18) can be witten for a very thin beam (e>>1) as,

V=Q+@BM /1) (X)) (6.19)

These are the violent shear force linear oscillations within each el enent, which
originate directly fromthe field-inconsistency in the shear strain definition.

These oscillations are also seen if field-consistency had been achi eved in
the el ement by using reduced integration for the shear strain energy. Unless the
shear force is sanpled at the elenent centroid (i.e. Gaussian point, x/I=0),
these disturbances will be nmuch nore violent than in the exactly integrated
ver si on.

6.1.7 The consistent fornul ati on of the |inear el enment

We can see that reduced integration ensures that the inconsistent constraint
does not appear and so is effective in producing a consistent elenent, at |east
in this instance. W nust now satisfy ourselves that such a nodification did not
viol ate any variational theorem

The field-consistent elenent, as we now shall call an el enent version free
of spurious (i.e. inconsistent) constraints, can and has been fornulated in

various other ways as well. The “trick' is to evaluate the shear strain energy,
in this instance, in such a way that only the consistent termw Il contribute to
the shear strain energy. Techniques like addition of bubble nodes, hybrid

nmet hods etc. can produce the same results, but in all cases, the need for
consi stency of the constrained strain field nust be absolutely net.

W explain now why the use of a trick like the reduced integration
techni que, or the use of assuned strain nethods allows the | ocking problemto be
overcone. It is obvious that it is not possible to reconcile this within the
anbit of the mininumtotal potential principle only, which had been the starting
poi nt of the conventional fornulation.

W saw in Chapter 2, an excellent exanple of a situation where it was
necessary to proceed to a nore general theorem (one of the so-called nxed
theorens) to explain why the finite elenent nethod conputed strain and stress
fields in a “best-fit' sense. W can now see that in the case of constrained
nmedi a probl ens, the mxed theorem such as the Hu-Washizu or Hellinger-Reissner
theorem can play a crucial role in proving that by nodifying the mninum total
potential based finite elenent formulation by using an assuned strain field to
replace the kinematically derived constrained field, no energy, or work
principle or variational norns have been viol at ed.
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To elimnate problens such as locking, we |look for a consistent
constrained strain field to replace the inconsistent kinematically derived
strain field in the mininumtotal potential principle. By closely exanining the
strain gradient operators, it is possible to identify the order up to which the
consistent strain field nust be interpolated. In this case, for the linear
di spl acenent interpolations, Equations (6.5b), (6.7a) and (6.7b) tell us that
the consistent interpolation should be a constant. At this point we shall still
not presune what this constant should be, although past experience suggests it
is the sanme constant term seen in Equation (6.7a). Instead, we bring in the
Hel I i nger - Rei ssner theorem in the following form to see the identity of the
consistent strain field clearly. For now, it is sufficient to note that the
Hel I i nger- Rei ssner theorem is a restricted case of the Hu-Washizu theorem In
this theorem the functional is stated in the follow ng form

j(—l/z El Y' X+El X' x-1/2 kGA7T7+kGA;7Ty)dx (6. 20)

where XY and y are the new strain variables introduced into this nulti-field

principle. Since we have difficulty only with the kinematically derived ywe can
have Y = x and recommend the use of a y which is of consistent order to replace

¥ A variation of the functional in Equation (6.20) with respect to the as yet
undet erm ned coefficients in the interpolation for y vyields

[or" (7-v)ax =0 (6.21)

This orthogonality condition now offers a neans to constitute the coefficients
of the consistent strain field from the already known coefficients of the

ki nematically derived strain field. Thus, for y given by Equation (6.5b), it is
possi ble to show that ;7=(b0—al/l). In this sinple instance, the sane result is

obt ai ned by sanmpling the shear strain at the centroid, or by the use of one-
poi nt Gaussian integration. What is inportant is that, deriving the consistent
strain-field using this orthogonality relation and then using this to conpute
the corresponding strain energy will yield a field-consistent el enent which does
not violate any of the variational nornms, i.e. an exact equivalence to the nixed
el ement exists w thout having to go through the additional operations in a nixed
or hybrid finite elenent formulation, at least in this sinple instance. W say
that the variational correctness of the procedure is assured. The substitute
strain interpolations derived thus can therefore be easily coded in the form of
strain function subroutines and used directly in the displacenent type el enent
stiffness derivations.

6.1.8 Sonme concluding remarks on the |inear beam el enent

So far we have seen the |linear beam elenment as an exanple to denonstrate the
principles involved in the finite elenment nobdeling of a constrained nedia
problem W have been able to denobnstrate that a conceptual framework that
includes a condition that specifies that the strain fields which are to be
constrai ned nust satisfy a consistency criterion is able to provide a conplete
scientific basis for the locking problens encountered in conventional
di spl acenment type nodeling. W have also shown that a correctness criterion
(which Iinks the assuned strain variation of the displacenment type fornulation
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to the mixed variational theorens) allows us to determne the consistent strain
field interpolation in a unique and mathematically satisfying manner.

It will be useful now to see how these concepts work if a quadratic beam
element is to be designed. This is a valuable exercise as later, the quadratic
beam el ement shall be used to examine problens such as encountered in curved
beam and shell elements and in quadrilateral plate elenents due to non-uniform

mappi ng.
6.2 The quadratic Ti nbshenko beam el enent

W shall now very quickly see how the field-consistency rules explain the
behavi or of a higher order element. W saw in Chapter 5 that the conventional
formulation wth Jlowest order interpolation functions led to spurious
constraints and a non-singular assenbled stiffness matrix, which result in
| ocking. In a higher order formulation, the natrix was singular but the spurious
constraints resulted in a system that had a higher rank than was felt to be
desirable. This resulted in sub-optinmal perfornmance of the approximtion. W can
now use the quadratic beam elenment to denonstrate that this is true in finite
el ement approxi mati ons as well.

6.2.1 The conventional fornulation

Consi der a quadratic beam el ement designed according to conventional principles,
i.e. exact integration of all energy terns arising from a mnimm total
potential principle. As the beam becones very thin, the elenment does not [ ock;
in fact it produces reasonably neaningful results. Fig. 6.4 shows a typical
conpari son between the linear and quadratic beam elenments in its application to
a sinmple problem A uniform cantilever beam of length 1.0 m width 0.01 m and
depth 0.01 m has a vertical tip load of 100 N applied at the tip. For E=10%°

N nf and 1=0.3, the engineering theory of beans predicts a tip deflection of
w=4.0 m We shall consider three finite elenent idealizations of this problem -

with the linear 2-node field-consistent element considered earlier in this
section (2C, on the Figure), the quadratic 3-node field-inconsistent elenent
being discussed now (3, on the Figure) and the quadratic 3-node field-

consi stent element which we shall derive later (3C). It is seen that for this
sinple problem the 3C el enent produces exact results, as it is able to sinulate
the constant shear and |inear bending noment variation along the beam | ength.
The 31 and 2C el enents show identical convergence trends and behave as if they
are exactly alike. The curious aspects that call for further investigation are:
the quadratic element (31) behaves in exactly the same way as the field-
consistent linear elenent (2C), giving exactly the sane accuracy for the sane
nunber of elenents although the system assenbled from the forner had nearly
twi ce as many nodes. It al so produced nonent predictions, which were identical,
i.e., the quadratic beam elenment, instead of being able to produce Iinear-
accurate bending nonents could now yield only a constant bending nonment within
each element, as in the field-consistent linear elenent. Further, there were now
quadratic oscillations in the shear force predictions for such an el ement. Note
now that these curious features cannot be explained from the old argunents,
which linked locking to the non-singularity or the large rank or the spectral
condition nunber of the stiffness nmatrix. W shall now proceed to explain these
features using the field-consistency paradi gm
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Fig. 6.4 Auniformcantilever beamwth tip shear force -
convergence trends of linear and quadratic el enents.

If quadratic isoparametric functions are used for the field-variables w
and 8in the foll ow ng manner

w=ag +ay (x/I )+ap (x/I )?
0 =bg +by (x/I)+by(x/1 J

the shear strain interpolation will be,

y=(bg +by/3-ay /I )+(by ~2a, /1 )¢ ~b; /3 (1—352) (6.22)

Agai n, we enphasi ze the useful ness of expanding the strain field in terns of the
Legendre polynom als. Wen the strain energies are integrated, because of the
orthogonal nature of the Legendre polynonmials the discretized energy expression
becomes the sum of the squares of the coefficients nmultiplying the Legendre
pol ynom al s. Indeed, the strain energy due to transverse shear strain is,

Us =1/2 (kGA) (21) {(b0 +by/3-a /1 2 +1/3 (by —2a, /I ? +4b3 /45} (6. 23)

Therefore, when we introduce the penalty linmt condition that for a thin
beam t he shear strain energies nust vanish, we can argue that the coefficients
of the strain field expanded in terns of the Legendre polynom als nust vanish
separately. In this case, three constraints energe:

(bg +by/3-24 /1) -0 (6. 24a)
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(b, —2a,/1) -0 (6. 24b)
b, -0 (6. 24c)

Equations (6.24a) and (6.24b) represent constraints having contributions

fromthe field interpolations for both wand 6 They can therefore reproduce, in
a consistent manner, true constraints that reflect a physically neaningfu
i mposition of the thin beam Kirchhoff constraint. This is therefore the field-
consi stent part of the shear strain interpolation

Equation (6.24c) however contains a constant only from the interpolation
for 6 This constraint, when enforced, is an unnecessary restriction on the
freedom of the interpolation for 6 constraining it in fact to behave only as a

linear interpolation as the constraint inplies that 6 4xx—0 in a discretized
sense over each beam elenent region. The spurious energy inplied by such a
constraint does not contribute directly to the discretized bending energy,
unli ke the linear beam el enent seen earlier. Therefore, field-inconsistency in
this el enent would not cause the element to |ock. However, it will dininish the
rate of convergence of the el enent and woul d i nduce disturbances in the form of
violent quadratic oscillations in the shear force predictions, as we shall see
in the next section.

6. 2.2 Functional reconstitution

W can use the functional re-constitution technique to see how the
inconsistent terns in the shear strain interpolation alter the description of
the physics of the original problem (we shall skip nost of the details, as the
material is available in greater detail in Ref. 6.1).

The by termthat appears in the bending energy al so makes an appearance in
the shear strain energy, reflecting its origin through the spurious constraint.
We can argue that this accounts for the poor behavior of the field-inconsistent
quadratic beam elenent (the 31 of Fig. 6.4). Ref. 6.1 derives the effect nore
preci sely, denonstrating that the follow ng features can be fully accounted for

i) the displacenent predictions of the 31 elenent are identical to that nade by
the 2C el ement on an el enent by el enent basis although it has an additional md-
node and has been provided with the nore accurate quadratic interpolation
functions.

ii) the 31 elenent can predict only a constant noment within each elenent,
exactly as the 2C el ement does.

iii) there are quadratic oscillations in the shear force field within each
el ement .

W have already discussed earlier that the 31 element (the field-
i nconsi stent 3-noded quadratic) converges in exactly the sane manner as the 2C

element (the field-consistent linear). This has been explained by show ng using
the functional re-constitution technique, that the by, term which describes the
linear variation in the bending strain and bending nonent interpolation, is

"l ocked" to a vanishingly small value. The 31 elenment then effectively behaves
as a 2C element in being able to sinulate only a constant bendi ng-nmonent in each
regi on of a beam which it replaces.
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6.2.3 The consistent fornul ati on of the quadratic el ement

As in the linear element earlier, the field-consistent elenent (3C) can be
formulated in various ways. Reduced integration of the shear strain energy using
a 2-point Gauss-Legendre fornula was the nost popular nmethod of deriving the
element so far. Let us now derive this elenent using the “assuned strain
approach. We use the inverted comas to denote that the strain is not assumed in
an arbitrary fashion but is actually uniquely determ ned by the consistency and
the variational correctness requirenents. The re-constitution of the field is to
be done in a variationally correct way, i.e. we are required to replace y in
Equation (6.22) which had been derived from the Kkinematically admssible
di splacement field interpolations using the strain-di splacenent operators wth
an “assuned' strain field y which contains terns only upto and including the

linear Legendre polynonmial in keeping with the consistency requirement. Let us
wite this in the form

y=cp tc1é (6.25)

The orthogonality condition in Equation (6.21) dictates how y should replace y

over the length of the elenment. This determines how cg and ci1 should be

constituted from bg, by and by. Fortunately, the orthogonal nature of the
Legendre polynomals allows this to be done for this exanple in a very trivial
fashion. The quadratic Legendre polynonial and its coefficient are sinply

truncated and co=bg and ci=b; represent the variationally correct field-
consi stent “assuned' strain field. The use of such an interpol ation subsequently
in the integration of the shear strain energy is identical to the use of reduced
integration or the use of a hybrid assumed strain approach. In a hybrid assuned
strain approach, such a consistent re-constitution is automatically inplied in
the choice of assuned strain functions and the operations leading to the
derivation of the flexibility matrix and its inversion leading to the final
stiffness matrix.

6.3 The Mndlin plate elenments

A very large part of structural analysis deals with the estimation of stresses
and di splacenents in thin flexible structures under |lateral |oads using what is
called plate theory. Thus, plate elenents are the nost conmonly used el enents in
general purpose structural analysis. At first, npst General Purpose Packages
(GPPs) for structural analysis used plate elenments based on what are called the

c* theories. Such theories had difficulties and limtations and also attention
turned to what are called the © theori es.

The Mndlin plate theory [6.2] is now the nost commonly used basis for the
devel opnent of plate elenments, especially as they can cover applications to
noderately thick and laminated plate and shell constructions. It has been
estimated that in |large scale production runs using finite el enent packages, the
sinple four-node quadrilateral plate elenment (the QUAD4 el enent) may account for
as nuch as 80% of all usage. It is therefore inportant to understand that the
evol ution of the current generation of QUAD4 el ements fromthose of yester-year,
over a span of nearly three decades was made difficult by the presence of shear
| ocki ng. W shall now see how this takes place.
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The history behind the discovery of shear locking in plate elenents is
quite interesting. It was first recognized when an attenpt was made to represent
t he behavior of shells using what is called the degenerate shell approach [6.3].
In this the shell behavior is nodeled directly after a slight nodification of
the 3D equations and shell geonetry and donmain are represented by a 3D brick
el ement but its degrees of freedom are condensed to three displacenents and two
section rotations at each node. Unlike classical plate or shell theory, the
transverse shear strain and its energy is therefore accounted for in this
formulation. Such an approach was therefore equivalent to a Mndlin theory
formul ati on. These el enents behaved very poorly in representing even the trivial
exanple of a plate in bending and the errors progressed without limt, as the
pl ates became thinner. The difficulty was attributed to shear locking. This is
in fact the two-dinensional nanifestation of the same problem that we
encountered for the Tinoshenko beam elenent; ironically it was noticed first in
the degenerate shell elenment and was only later related to the problens in
desi gni ng Ti noshenko beam and M ndlin plate elenents [6.4]. The remedy proposed
at once was the reduced integration of the shear strain energy [6.5,6.6]. This
was only partially successful and nmany issues remmi ned unresol ved. Some of these
wer e,

i) the 2x2 rule failed to renove shear locking in the 8-node serendipity plate
el ement ,

ii) the 2x2 rule in the 9-node Lagrangi an el enent renoved | ocking but introduced
zero energy nodes,

iii) the selective 2x3 and 3x2 rule for the transverse shear strain energies

from K; and K; recommended for a 8-node elenent also failed to renove shear
| ocki ng,

iv) the sane selective 2xX3 and 3x2 rule when applied to a 9-noded elenment is
optimal for a rectangular form of the elenment but not when the elenent was
distorted into a general quadrilateral form

v) even after reduced integration of the shear energy terms, the degenerate
shell elenents performed poorly when trying to represent the bending of curved
shells, due to an additional factor, identified as nenbrane |ocking [6.7],
originating now from the need for consistency of the nenbrane strain
i nterpolations. W shall consider the nmenbrane-Ilocking phenonenon in another
section.

We shall confine our study now to plate elenents without going into the
conplexities of the curved shell elenents.

In Kirchhoff-Love thin plate theory, the deformation is conmpletely
described by the transverse displacemrent w of the md-surface. In such a
description, the transverse shear deformation is ignored. To account for
transverse shear effects, it is necessary to introduce additional degrees of
freedom W shall now consider Mndlin's approximations, which have pernitted
such an inproved description of plate behavior. The degenerate shell elements
that we discussed briefly at the beginning of this section can be considered to
correspond to a Mndlin type representation of the transverse shear effects.

In Mndlin's theory [6.2], deformation is described by three quantities,

the section rotations & and & (i.e. rotations of Ilines normal to the
m dsurface of the undeforned plate) and the mid-surface deflection w. The
bendi ng strains are now derived fromthe section rotations and do not cause any
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difficulty when a finite elenent nodel is nmde. The shear strains are now
conputed as the difference between the section rotations and the slopes of the
neutral surfaces, thus,

Yxz =6 —Wix

Vyz =6y —W,y (6.26)
The stiffness matrix of a Mndlin plate element will now have terns from the
bending strain energy and the shear strain energy. It is the inconsistent

representation of the latter that causes shear | ocking.
6.3.1 The 4-node pl ate el enent

The 4-node bi-linear elenment is the sinplest elenent based on Mndlin theory
that could be devised. W shall first investigate the rectangular form of the
element [6.4] as it is in this configuration that the consistency requirements
can be easily understood and enforced. In fact, an optinumintegration rule can
be found which ensures consistency if the elenent is rectangular. It was
established in Ref. 6.4 that an exactly integrated Mndlin plate el enent would
lock even in its rectangular form Locking was seen to vanish for the
rectangular element if the bending energy was conmputed with a 2x2 Gaussian
integration rule while a reduced 1l-point rule was used for the shear strain
energy. This rectangul ar el enent behaved very well if the plate was thin but the
results deteriorated as the plate became thicker. Al so, after distortion to a
quadrilateral form |ocking re-appeared. A spectral analysis of the elenent
stiffness matrix revealed a rank deficiency - there were two zero energy
mechani snms in addition to the usual three rigid body nbodes required for such an
element. It was the formation of these nechanisns that led to the deterioration
of elenent performance if the plate was too thick or if it was very |oosely
constrained. It was not clear why the quadrilateral form |ocked even after
reduced integration. W can now denonstrate from our consistency view point why
the 1-point integration of the shear strain energy is inadequate to retain all
the true Kirchhoff constraints in a rectangular thin plate el ement. However, we
shal I postpone the di scussion on why such a strategy cannot preserve consistency
if the elenent was distorted to a | ater section.

Following Ref. [6.4], the strain energy for an isotropic, linear elastic
pl ate element according to Mndlin theory can be constituted from its bending
and shear energies as,

U =Ug +Usg

- B liflez ez, vov e, 0
‘;(1_7) [16. x +65, y +2v 6 x By .y

+1-v)2 (6, +eyyx)2de dy (6.27)
+WH[(® _W’x)2 +(Hy _W’y)z]dx dy }

73



el S S

2h L-_____»}‘;

[
»
X

Fig. 6.5 Cartesian and natural coordinate system for a four-node rectangul ar
pl ate el emrent.

where X, y are Cartesian co-ordinates (see Fig. 6.5), w is the transverse
di spl acenent, & and & are the section rotations, E is the Young's nodulus, v
is the Poisson's ratio, k is the shear correction factor and t is the plate
thi ckness. The factor k 1is introduced to conpensate for the error in
approxi mating the shear strain as a constant over the thickness direction of a
M ndlin plate.

Let us now exami ne the field-consistency requirenents for one of the shear
strains, Kz, in the Cartesian system The admissible displacement field

interpolations required for a 4-node elenment can be witten in terns of the
Cartesian co-ordinates itself as,

W =ag +ayX +apy +agxy (6. 28a)
o= bo +b1X +b2y + b3Xy (6 28b)

The shear strain field derived from these kinematically admi ssible shape
functions is,

Yxz =(0g —a7)+(by —az )y +byx +bsxy (6.29)

As the plate thickness is reduced to zero, the shear strains nust vanish. The
di scretized constraints that are seen, to be enforced as Jy,, -0 in Equation
(6.29) are,

by —a; -0 (6.30a)
b, —a3 -0 (6. 30b)
b; -0 (6.30c)
b; -0 (6.30d)
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The constraints shown in Equations (6.30a) and (6.30b) are physically neaningful
and represent the Kirchhoff condition in a discretized form Constraints (6.30c)
and (6.30d) are the cause for concern here - these are the spurious or
“inconsistent' constraints which lead to shear locking. Thus, in a rectangul ar
el ement, the requirenment for consistency of the interpolations for the shear
strains in the Cartesian co-ordinate system is easily recognized as the
pol ynomi als use only Cartesian co-ordinates. Let us now try to derive the
optimal elenment and al so understand why the sinple 1-point strategy of Ref. 6.4
led to zero energy nechani sns.

It is clear from Equations (6.29) and (6.30) that the terms bjix and baxy
are the inconsistent terns which will contribute to locking in the form of
spurious constraints. Let us now look for optinmal integration strategies for
renovi ng shear |ocking wi thout introducing any zero energy nechanisns. W shall

consider first, the part of the shear strain energy contributed by Kk;. W nust
integrate exactly, terns such as (bp-a1), (bz-az)y, bix, and b3xy. W now
identify terms such as (bg-a1), (bz-a3), bi, and b3z as being equivalent to the
quantities (&-w x)o, (&-Wx),yo, (& x)o, and (&, xy)o where the subscript ‘0

denotes the values at the centroid of the element (for sinplicity, we let the
centroid of the element lie at the origin of the Cartesian co-ordinate system.

An exact integration, that is a 2xX2 Gaussian integration of the shear
strain energy leads to

J-J-szdx dy =4l h l(ex _W!x)cz) +h2/3 (gx _W’x)ziyo +l 2/3(‘9x'x)(2) +h?| 2/9 (Hx’xy )g] (6.31)

In the penalty Iimt of a thin plate, these four quantities act as constraints.
The first two reproduce the true Kirchhoff constraints and the renmining two act

as spurious constraints that cause shear |ocking by enforcing &, x—-0 and & xy-0
in the el enent.

If a 1x2 Gaussian integration is used, we have,

”y)%zdx dy =4l h [(ex ~w,y R +h?/3 (6, —wi )2 ,yOJ (6. 32)

Thus, only the true constraints are retained and all spurious constraints are
renoved. This strategy can also be seen to be variationally correct in this
case; we shall see later that in a quadrilateral case, it is not possible to
ensure variational correctness exactly. By a very simlar argunent, we can show
that the part of the shear strain energy from kg, will require a 2x1 Gaussian
integration rule. This elenent would be the optimal rectangular bi-linear
M ndlin plate el enent.

Let us now | ook at the 1-point integration strategy used in Ref. 6.4. This
wi |l give shear energy terns such as,

nyzz dx dy =4l h [(ex -W,X)gj (6.33)
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W have now only one true constraint each for the shear energy from K,
and K, respectively while the other Kirchhoff constraints (@<—m4X)y0.+0 and

&@ —may)X0_+0 are lost. This introduces two zero energy nodes and accounts for

the consequent deterioration in performance of the element when the plates are
thick or are very loosely constrained, as shown in Ref. 6.4.

W have seen now that it is a very sinple procedure to re-constitute
field-consistent assuned strain fields from the kinematically derived fields
such as shown in Equation (6.29) so that they are also variationally correct.
This is not so sinple in a general quadrilateral where the conplication arising
fromthe isoparanetric napping froma natural co-ordinate systemto a Cartesian
system makes it very difficult to see the consistent formclearly. W shall see
the difficulties associated with this formin a |ater section

6.3.2 The quadratic 8-node and 9-node plate el enments

The 4-node plate elenment described above is based on bi-linear functions. It
woul d seem that an higher order elenent based on quadratic functions would be
far nmore accurate. There are now two possibilities, an 8-node el enent based on
what are called the serendipity functions and a 9-node elenent based on the
Lagrangi an bi-quadratic functions. There has been a protracted debate on which
version is nore useful, both versions having fiercely conmtted protagonists

By now, it is well known that the 9-node elenent in its rectangular formis free
of shear |ocking even with exact integration of shear energy terns and that its
performance is vastly inproved when its shear strain energies are integrated in

a selective sense (2x3 and 3x2 rules for ), and y,, terms respectively). It is

in fact analogous to the quadratic Tinmshenko beam elenent, the field-
i nconsi stenci es not being severe enough to cause locking. This is however not
true for the 8-node el enent which was derived fromthe Ahnmad shell el enent [6. 3]
and which actually pre-dates the 4-node Mndlin el enent. An exact integration of
bendi ng and shear strain energies resulted in an elenent that |ocked for nost
practical boundary suppressions even in its rectangular form Mny ad-hoc
techniques e.g. the reduced and selective integration techniques, hybrid and
m xed nethods, etc. failed or succeeded only partially. It was therefore
regarded for sone tinme as an unreliable elenent as no quadrature rule seened to
be able to elimnate | ocking entirely wi thout introducing other deficiencies. It
seens possible to attribute this noticeable difference in the performance of the
8- and 9-node el enents to the missing central node in the forner. This nmakes it
nore difficult to restore consistency in a sinple manner.

6.3.3 Stress recovery fromMndlin plate el enents

The nost inmportant information a structural analyst looks for in a typical
finite elenent static analysis is the state of stress in the structure. It is
therefore very inportant for one to know points of optinmal stresses in the
Mndlin plate elenents. It is known that the stress recovery at nodes from
di spl acenment elenments is unreliable, as the nodes are usually the points where
the strains and stresses are | east accurate. It is possible however to determ ne
points of optinmal stress recovery using an interpretation of the displacenent
met hod as a procedure that obtains strains over the finite elenent donmain in a
| east-squares accurate sense. |In Chapter 2, we saw a basis for this
interpretation. W can apply this rule to determ ne points of accurate stress
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recovery in the Mndlin plate elenents. For a field-consistent rectangular 4-
node el enment, the points are very easy to deternmne [6.8] (note that in a field-
i nconsi stent 4-node elenent, there will be violent linear oscillations in the
shear stress resultants corresponding to the inconsistent ternms). Thus, Ref. 6.8

shows that bending noments and shear stress resultants Q; and Q,; are accurate

at the centroid and at the 1x2 and 2x1 Gauss points in a rectangular el enent for
isotropic or orthotropic material. It is coincidental, and therefore fortuitous,
that the shear stress resultants are nobst accurate at the sane points at which
they nust be sanpled in a selective integration strategy to renove the field-
i nconsi stencies! For anisotropic cases, it is safest to sanple all stress
resultants (bending and shear) at the centroid.

Such rul es can be extended directly to the 9-node rectangul ar el ement. The
bendi ng nmonents are now accurate at the 2x2 Gauss points and the shear stress
resultants in an isotropic or orthotropic problem are optimal at the same 2x3

and 3x2 Gauss points which were used to renpve the inconsistencies from the
strain definitions. However, accurate recovery of stresses from the 8-node
element is still a very challenging task because of the difficulty in
formulating a robust element. The nobst efficient elenents known today are
variationally incorrect even after being made field-consistent and need speci al
filtering techni ques before the shear stress resultants can be reliably sanpled.

So far, discussion on stress sanpling has been confined to rectangul ar
el ements. When the elenents are distorted, it is no sinple matter to determ ne
the optimal points for stress recovery - the stress analyst must then exercise
care in applying these rules to seek reliable points for recovering stresses.

6.4 Concl udi ng remarks

We can conclude this section on shear |locking by noting that the available
understanding was unable to resolve the phenonena convincingly. The proposed
i mprovenent, which was the consistency paradigm together with the functional
re-constitution procedure, allowed us to derive an error estimte for a case
under locking and we could show through nunerical (digital) experinments that
these estinmates were accurate. In this way we are convinced that a theory with
the consistency paradigm is nore successful from the falsifiability point of
vi ew t han one without.
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