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Review of Euler-Bernoulli Beam

■ Physical beam model

■ Beam domain in three-dimensions

■ Midline, also called the neutral axis, has the coordinate
■ Key assumptions: beam axis is in its unloaded configuration straight
■ Loads are normal to the beam axis

midline 
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Kinematics of Euler-Bernoulli Beam -1-

■ Assumed displacements during loading

■ Kinematic assumption: Material points on the normal to the midline remain on the normal during
the deformation

■ Slope of midline:

■ The kinematic assumption determines the axial displacement of the material points across
thickness

■ Note this is valid only for small deflections, else

 reference 
configuration

 deformed 
configuration
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Kinematics of Euler-Bernoulli Beam -2-

■ Introducing the displacements into the strain equations of three-
dimensional elasticity leads to
■ Axial strains

■ Axial strains vary linearly across thickness

■ All other strain components are zero

■ Shear strain in the

■ Through-the-thickness strain (no stretching of the midline normal during deformation)

■ No deformations in                     and                     planes so that the corresponding strains are zero
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Weak Form of Euler-Bernoulli Beam

■ The beam strains introduced into the internal virtual work expression
of three-dimensional elasticity

■ with the standard definition of bending moment:

■ External virtual work

■ Weak work of beam equation

■ Boundary terms only present if force/moment boundary conditions present
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Stress-Strain Law

■ The only non-zero stress component is given by Hooke’s law

■ This leads to the usual relationship between the moment and curvature

■ with the second moment of area

■ Weak form work as will be used for FE discretization

■ EI assumed to be constant
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■ Beam is represented as a (disjoint) collection of finite elements

■ On each element displacements and the test function are interpolated using
shape functions and the corresponding nodal values

■ Number of nodes per element

■ Shape function of node K

■ Nodal values of displacements

■ Nodal values of test functions

■ To obtain the FE equations the preceding interpolation equations are
introduced into the weak form
■ Note that the integrals in the weak form depend on the second order derivatives of u3 and v

Finite Element Method
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■ A function f: Ω→ℜ is of class Ck=Ck(Ω) if its derivatives of order j, where
0 ≤ j ≤ k, exist and are continuous functions 
■ For example, a C0 function is simply a continuous function
■ For example, a C∝ function is a function with all the derivatives continuous

■ The shape functions for the Euler-Bernoulli beam have to be C1-continuous
so that their second order derivatives in the weak form can be integrated

Aside: Smoothness of Functions

C1-continuous functionC0-continuous function
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■ To achieve C1-smoothness Hermite shape functions can be used
■ Hermite shape functions for an element of length

■ Shape functions of node 1

■ with

Hermite Interpolation -1-
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■ Shape functions of Node 2

■ with

Hermite Interpolation -2-
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■ According to Hermite interpolation the degrees of freedom for each element are the
displacements      and slopes      at the two nodes

■ Interpolation of the displacements

■ Test functions are interpolated in the same way like displacements

■ Introducing the displacement and test functions interpolations into weak form gives the element stiffness matris

Element Stiffness Matrix
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■ Load vector computation analogous to the stiffness matrix derivation

■ The global stiffness matrix and the global load vector are obtained by assembling the
individual element contributions

■ The assembly procedure is identical to usual finite elements

■ Global stiffness matrix

■ Global load vector

■ All nodal displacements and rotations

Element Load Vector
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■ Element stiffness matrix of an element with length le

Stiffness Matrix of Euler-Bernoulli Beam
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■ Assumed displacements during loading

■ Kinematic assumption: a plane section originally normal to the centroid remains plane, but in
addition also shear deformations occur

■ Rotation angle of the normal:
■ Angle of shearing:
■ Slope of midline:

■ The kinematic assumption determines the axial displacement of the material points across
thickness

■ Note that this is only valid for small rotations, else

Kinematics of Timoshenko Beam -1-

 reference 
configuration

 deformed 
configuration



F CirakPage 38

■ Introducing the displacements into the strain equations of three-
dimensional elasticity leads to
■ Axial strain

■ Axial strain varies linearly across thickness

■ Shear strain

■ Shear strain is constant across thickness

■ All the other strain components are zero

Kinematics of Timoshenko Beam -2-
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■ The beam strains introduced into the internal virtual work expression
of three-dimensional elasticity give

■ Hookes’s law

■ Introducing the expressions for strain and Hooke’s law into the weak form gives

■ virtual displacements and rotations:

■ shear correction factor      necessary because across thickness shear stresses are parabolic
according to elasticity theory but constant according to Timoshenko beam theory

■ shear correction factor for a rectangular cross section

■ shear modulus

■ External virtual work similar to Euler-Bernoulli beam

Weak Form of Timoshenko Beam
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■ Comparison of the displacements of a cantilever beam analytically
computed with the Euler-Bernoulli and Timoshenko beam theories

■ Bernoulli beam
■ Governing equation:

■ Boundary conditions:

■ Timoshenko beam
■ Governing equations:

■ Boundary conditions:

Euler-Bernoulli vs. Timoshenko -1-
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■ Maximum tip deflection computed by integrating the differential equations

■ Bernoulli beam

■ Timoshenko beam

■ Ratio

■ For slender beams (L/t > 20) both theories give the same result
■ For stocky beams   (Lt < 10) Timoshenko beam is physically more realistic because it includes the shear

deformations

Euler-Bernoulli vs. Timoshenko -2-
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■ The weak form essentially contains                          and the corresponding
test functions
■ C0 interpolation appears to be sufficient, e.g. linear interpolation

■ Interpolation of displacements and rotation angle

Finite Element Discretization
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■ Shear angle

■ Curvature

■ Test functions are interpolated in the same way like displacements and rotations
■ Introducing the interpolations into the weak form leads to the element stiffness matrices

■ Shear component of the stiffness matrix

■ Bending component of the stiffness matrix

Element Stiffness Matrix
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■ Gaussian Quadrature
■ The locations of the quadrature points and weights are determined for maximum accuracy

■ nint=1

■ nint=2

■ nint=3

■ Note that polynomials with order (2nint-1) or less are exactly integrated

■ The element domain is usually different from [-1,+1) and an isoparametric
mapping can be used

Review: Numerical Integration
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■ Necessary number of quadrature points for linear shape functions
■ Bending stiffness: one integration point sufficient because          is constant
■ Shear stiffness: two integration points necessary because         is linear

■ Element bending stiffness matrix of an element with length le and one integration
point

■ Element shear stiffness matrix of an element with length le and two integration points

Stiffness Matrix of the Timoshenko Beam -1-
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Limitations of the Timoshenko Beam FE

■ Recap: Degrees of freedom for the Timoshenko beam

■ Physics dictates that for t→0 (so-called Euler-Bernoulli limit) the shear angle
has to go to zero (                          )
■ If linear shape functions are used for u3 and β

■ Adding a constant and a linear function will never give zero!
■ Hence, since the shear strains cannot be arbitrarily small everywhere, an erroneous shear strain

energy will be included in the energy balance
■ In practice, the computed finite element displacements will be much smaller than the exact solution
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Shear Locking: Example -1-

■ Displacements of a cantilever beam

■ Influence of the beam thickness on the normalized tip displacement

2 point
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# elem.

0.0416
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0.445

0.762

0.927

Thick beam

0.00021
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8
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0.0003

0.0013

# elem. 2 point

Thin beam

from TJR Hughes, The finite element method.

TWO integration points
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■ The beam element with only linear shape functions appears not to be ideal for very
thin beams

■ The problem is caused by non-matching u3 and β interpolation
■ For very thin beams it is not possible to reproduce

■ How can we fix this problem?
■ Lets try with using only one integration point for integrating the element shear stiffness matrix
■ Element shear stiffness matrix of an element with length le and one integration points

Stiffness Matrix of the Timoshenko Beam -2-
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Shear Locking: Example -2-

■ Displacements of a cantilever beam

■ Influence of the beam thickness on the normalized displacement

ONE integration point
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from TJR Hughes, The finite element method.
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■ If the displacements and rotations are interpolated with the same shape
functions, there is tendency to lock (too stiff numerical behavior)

■ Reduced integration is the most basic “engineering” approach to resolve
this problem

■ Mathematically more rigorous approaches: Mixed variational principles
based e.g. on the  Hellinger-Reissner functional

Reduced Integration Beam Elements

CubicShape function
order

Quadrature rule

Linear

One-point

Quadratic

Two-point Three-point


