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Review of Euler-Bernoulli Beam

m Physical beam model

AT I "

thickness § |poo========----coocoooocoooo oo g

L1

midline

m Beam domain in three-dimensions

Q= {(331,332,333) € R?)lﬂi'g € [_%7 %]7332 € [—%a %]7371 cQC R}

m Midline, also called the neutral axis, has the coordinate z3 = 0
m Key assumptions: beam axis is in its unloaded configuration straight
m Loads are normal to the beam axis
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Kinematics of Euler-Bernoulli Beam -1-
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Assumed displacements during loading

L3

Kinematic assumption: Material points on the normal to the midline remain on the normal during
the deformation

= Slope of midline: 3 = % = u3z,1

z
The kinematic assumption determines the axial displacement of the material points across
thickness
up = —fz3 With—i<:c3<£
2 -2

= Note this is valid only for small deflections, else u1 = Sin(—3)x3
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Kinematics of Euler-Bernoulli Beam -2-

m Introducing the displacements into the strain equations of three-

dimensional elasticity leads to
m Axial strains

€11 =u11 = —B123 = —u3 1123 = KT3 (with curvature Kk = —u3 11)
m Axial strains vary linearly across thickness
m All other strain components are zero

m Shearstraininthe 1 — x3 plane

1 1
€13 = 5 (w13 —uz1) = 5 (=B+p)=0
m Through-the-thickness strain (no stretching of the midline normal during deformation)
ous
€3z = —— =20
33 B3

m Nodeformationsin x1 — xo and T2 — 3 planes so that the corresponding strains are zero
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Weak Form of Euler-Bernoulli Beam

m [he beam strains introduced into the internal virtual work expression
of three-dimensional elasticity

£/2 £/2
/Q /—t/2 ojj€ij dradry = /Q /—t/2 o11€11(v) dzzdzq

t/2
= /Q /—Z/Q o11x23k(v) dezdr] = /Q mr(v) drq
t/2
m with the standard definition of bending moment. m = /_ /2 01123 dx3

m External virtual work

dx
i

m Weak work of beam equation

/Q mr(v) dry = /Q qu dx1 + boundary terms

m Boundary terms only present if force/moment boundary conditions present
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Stress-Strain Law

m The only non-zero stress component is given by Hooke’s law

11 — E€11 —_ EK::Bg

m This leads to the usual relationship between the moment and curvature

= 2 drz = /2 Exz3drs = EI
m = 011x304r3 = RT3 dr3 = K
/t/2 1143 443 /t/2 3 &L3

tj2
= Wwith the second moment of area [ = / x5 dx3

—t/2

m \Weak form work as will be used for FE discretization

EI /Q k(uz)k(v) dry = /Q qu dr1+boundary terms

m El assumed to be constant
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Finite Element Method

m Beam is represented as a (disjoint) collection of finite elements

3
= U Qe Elemente ‘ 1
§2:€52 e ® ® ® o

Qe

m On each element displacements and the test function are interpolated using
shape functions and the corresponding nodal values

NP
uz = Z NK’LL3 = Kk(u3z) = —uz 11 = — Z N 1U3
K=1 K=1
NP
v= ) NEWE = k(v) = —v11 = — Z Nllv
K=1 K=1
m  Number of nodes per element NP
m Shape function of node K NE
m Nodal values of displacements u%, . u]3V P
m Nodal values of test functions vl, ce o NP

m 1o obtain the FE equations the preceding interpolation equations are
introduced into the weak form
m Note that the integrals in the weak form depend on the second order derivatives of u; and v
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Aside: Smoothness of Functions

m A function f: Q—R is of class Ck=CKk(Q) if its derivatives of order j, where

0 <j £k, exist and are continuous functions

m Forexample, a C? function is simply a continuous function
m Forexample, a C= function is a function with all the derivatives continuous

CO-continuous function C'-continuous function
f(af)T f(z)a
[
o
©
—> L > =
@} @} :
dx dx =
| // o
> —»
#14 #14
dx? dx2
? —
> | —> v

m [he shape functions for the Euler-Bernoulli beam have to be Cl-continuous
so that their second order derivatives in the weak form can be integrated
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Hermite Interpolation -1-

m To achieve C'-smoothness Hermite shape functions can be used
m Hermite shape functions for an element of length e

L3
9 >

|< >
,‘ Ll

|
le !

m Shape functions of node 1

slope =0
T
slope=0 slope=1 slope =0

e . ® ®

d=-1  T¢T 2o e
1 le
NYE) = 2(1-6%(2+8) MY (€)= Z(1 -9 (149
. with e=2%1_1

le
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Hermite Interpolation -2-

m Shape functions of Node 2

™~ slope =0
slope =0 slope =0 slope =1
[ = 2
=1 T =1 ¢h=-1 — £=1
1 le
NZ(©) = (1+6%(2-¢) M2(€) = S(1+9%E-1)

221
le

m with £ = 1
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Element Stiffness Matrix

m According to Hermite interpolation the degrees of freedom for each element are the
displacements u3 and slopes 3 at the two nodes
m Interpolation of the displacements

ul uk
1 a1 A2 g2 /5’% 1 1 2 2 ﬁ?
uz = [N* M* N* M~] 2| = r(ug) = —[Ni3 M3j, N1 M4l 2
,63 "B” -Fﬁatrix ﬁ%
= k(uz) = — > BEwK
K—1

m Test functions are interpolated in the same way like displacements

4
r(v) =— > BloyL
L=1

m Introducing the displacement and test functions interpolations into weak form gives the element stiffness matris

EI /Q k(uz)r(v) dzy =) ZvaL EI

BE Bl dzq
K L y

Qe

v~

ke
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Element Load Vector

m Load vector computation analogous to the stiffness matrix derivation

K K
qudx1 = ) v / gN"dxq
fe

m The global stiffness matrix and the global load vector are obtained by assembling the
individual element contributions
m The assembly procedure is identical to usual finite elements

Ku=F
m  Global stiffness matrix K
= Global load vector F

= All nodal displacements and rotations w
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Stiffness Matrix of Euler-Bernoulli Beam

m Element stiffness matrix of an element with length I,

12 6 _12 6 -
31z 3 12
4 _6 2
T2 I
ke:EI
12 _ 6
13 12
sym. %_
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Kinematics of Timoshenko Beam -1-
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Assumed displacements during loading

L3

Kinematic assumption: a plane section originally normal to the centroid remains plane, but in

addition also shear deformations occur
= Rotation angle of the normal: 3
m Angle of shearing: Y
= Slope of midline: uzl1 =7v7+08

The kinematic assumption determines the axial displacement of the material points across
thickness

up = —Br3z = (—uz,1 +7)z3

= Note that this is only valid for small rotations, else w1 = sin(—3)z3
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Kinematics of Timoshenko Beam -2-

m Introducing the displacements into the strain equations of three-
dimensional elasticity leads to
m Axial strain

€11 = —B173 = KI3
m Axial strain varies linearly across thickness

m Shear strain

1

1
€13 = 5(—6 +u3z1) = 57

m Shear strain is constant across thickness

m All the other strain components are zero
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Weak Form of Timoshenko Beam

m [he beam strains introduced into the internal virtual work expression
of three-dimensional elasticity give

t/2
/Q /—t/z [011611('0) + 2013613(?))] drzdzrq

m Hookesslaw , . — ge;; and o3 = Gny

m Introducing the expressions for strain and Hooke’s law into the weak form gives

EI /Q B1¢,1dx+GAE /Q (U3,1 - ﬁ) (03,1 - ¢> dx
m virtual displacements and rotations: v3, @

m shear correction factor g necessary because across thickness shear stresses are parabolic
according to elasticity theory but constant according to Timoshenko beam theory

. , 5
m shear correction factor for a rectangular cross section k& = G

m shearmodulus @& :g

m External virtual work similar to Euler-Bernoulli beam
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Euler-Bernoulli vs. Timoshenko -1-

m Comparison of the displacements of a cantilever beam analytically
computed with the Euler-Bernoulli and Timoshenko beam theories

" |

T

§

|< >
l

]
D SN

L
|
m Bernoulli beam

= Governing equation:  Eluz 1111 =0

= Boundary condiions: u3(0) =0 w3 1]|z;=0 =0
M(L) = —Eluz11|y;=1, =0 QL) = —Eluz111|p=1, = F

m Timoshenko beam
= Goveming equations: ET317 =0 GA (u3,11 + 5,1) =0
= Boundary conditions:  43(0) =0 B(0) =0

GA(uz 1 + Bley=r. = F EIB1ly,—1, =0
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Euler-Bernoulli vs. Timoshenko -2-

m  Maximum tip deflection computed by integrating the differential equations
AFL3
Et3
AFL3
Et3

s Bernoulli beam

m [imoshenko beam

m Ratio

1.6

m Forslender beams (L/t > 20) both theories give the same result
m Forstocky beams (Lt <10) Timoshenko beam is physically more realistic because it includes the shear

deformations
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Finite Element Discretization

m The weak form essentially contains 8, 81, and uz ;1 and the corresponding
test functions
m Clinterpolation appears to be sufficient, e.g. linear interpolation

§1=-1 3 =1 & =-1 ¢ £ =1

MO = (1-8) N2(&) = (1 +8)

m Interpolation of displacements and rotation angle

uz = [N1 0 N2 0] B=[0N!0N?

) NWN l—'()Jb—ll

e ™ e

e e
ll\XA)f\)l—'(}O!—*l
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Element Stiffness Matrix

m Shear angle

’U,l-
3 4
Y =u3;1 —ﬁ=IN,11 - N' N3 —Nzl iz =y=uz1-B= Yy Bfwh
Bg—matrix 53 K=1
S
m Curvature
e
7 4
r=-B1=-[0NjO0Nj] 52 =r=-B1=- Y Biuwt
By —matrix /6% K=1

m Test functions are interpolated in the same way like displacements and rotations

m Introducing the interpolations into the weak form leads to the element stiffness matrices
m Shear component of the stiffness matrix

G Ak /Qe (U,3,1 — ﬁ) (1)3,1 - ¢> dri = ; zL:wKUL\G’Ak /Qe BSKBg da;l/
Kes

m Bending component of the stiffness matrix

EI[ B1g1der =YY wol I [ BfBldoy
Qe K L NIy )

keb
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Review: Numerical Integration

m Gaussian Quadrature

m The locations of the quadrature points and weights are determined for maximum accuracy

Nint

[ r@de =Y s
1=0
G =0w =2 =1 e
1
u nmt-2 f - ,§ w1=1,w2=1

V3

2 =
5
Miy=3 \/>€2—0 53—\ﬁ 1= g w2 =

m Note that polynomials with order (2n, -1) or less are exactly integrated

m The element domain is usually different from [-1,+1) and an isoparametric

mapping can be used
[ @iz = [ ) ede
Q ~1 £
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Stiffness Matrix of the Timoshenko Beam -1-

m Necessary number of quadrature points for linear shape functions

m Bending stiffness: one integration point sufficient because B is constant
m Shear stiffness: two integration points necessary because B¢ is linear

m Element bending stiffness matrix of an element with length |, and one integration

point
0] O O O
k _g 1 0 -1
eb — le 0 0
sym. 1

m Element shear stiffness matrix of an element with length |, and two integration points

1 e 1 Lk

l l l

5GA .
I
. _le

iz

Y- 3
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Limitations of the Timoshenko Beam FE

m Recap: Degrees of freedom for the Timoshenko beam

uj u3
sl 52\§1

m Physics dictates that for t—0 (so-called Euler-Bernoulli limit) the shear angle
has to go to zero
m Iflinear shape functions are used for u; and 3

u3z 1 — constant B — linear

m Adding a constant and a linear function will never give zero!
m Hence, since the shear strains cannot be arbitrarily small everywhere, an erroneous shear strain

energy will be included in the energy balance
m In practice, the computed finite element displacements will be much smaller than the exact solution
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Shear Locking: Example -1-

m Displacements of a cantilever beam TWO integration points

\ P '

‘ :

L -1 —0.577 0.577 1

< -] |
1

m Influence of the beam thickness on the normalized tip displacement

Thick beam Thin beam
# elem. | 2 point # elem. | 2 point
1 0.0416 1 0.0002
2 0.445 2 0.0008
4 0.762 4 0.0003
8 0.927 8 0.0013

from TJR Hughes, The finite element method.
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Stiffness Matrix of the Timoshenko Beam -2-

The beam element with only linear shape functions appears not to be ideal for very
thin beams

m The problem is caused by non-matching u; and 3 interpolation
m  Forvery thin beams it is not possible to reproduce v = 0O

vy =uz31— 0B

m How can we fix this problem?
Lets try with using only one integration point for integrating the element shear stiffness matrix

|
Element shear stiffness matrix of an element with length |, and one integration points

I(?:
I
et
&~

1

(6
)
s
-blm“'
|
NI
P |®N

i

cuTM

sym.

|
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Shear Locking: Example -2-

m Displacements of a cantilever beam

ONE integration point
| '

——

L —1 0 1

- . s
! 6]

\

(N

m Influence of the beam thickness on the normalized displacement

Thick beam Thin beam
# elem. | 1 point # elem. |1 point
1 0.762 1 0.750
2 0.940 2 0.938
4 0.985 4 0.984
8 0.996 8 0.996

from TJR Hughes, The finite element method.
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Reduced Integration Beam Elements

m If the displacements and rotations are interpolated with the same shape
functions, there is tendency to lock (too stiff numerical behavior)

m Reduced integration is the most basic “engineering” approach to resolve

this problem
® o _ @ o ® L L o
Shape function Linear Quadratic Cubic
order
Quadrature rule One-point Two-point Three-point

m Mathematically more rigorous approaches: Mixed variational principles
based e.g. on the Hellinger-Reissner functional
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