
Advanced Programming

Zeinab Zali

References: (1) "C++ How to program" Deitel&Deitel, (2) "A Tour of C++" Bjarne Stroustrup,
(3) Other useful learning pages such as geeksforgeeks and tutorialpoints

ECE Department, Isfahan University of Technology

Isfahan University of Technology 1

Migration from C to C++ C++ Language

The inventor

C++, an extension of C, was developed by Bjarne Stroustrup in 1979
at Bell Laboratories. Originally called “C with Classes,” it was
renamed to C++ in the early 1980s.

Isfahan University of Technology 2

Migration from C to C++ C++ Language

The inventor

Stroustrup, when he was young and created C++

Isfahan University of Technology 3

Migration from C to C++ C++ Language

C++ versions

C++03 or C++98: The C++ programming language was initially
standardized in 1998 as ISO/IEC 14882:1998

C++11: It makes C++ a better language for systems programming
and library building and makes C++ easier to teach and learn.

c++14: It was deliberately a minor release aiming at "completing
C++11"

C++17: It added several language features and C++ Standard
Library enhancements, and fixed bugs from C++11

C++20: It adds more new major features than C++14 or C++17

Isfahan University of Technology 4

Migration from C to C++ C++ Language

Configuring C++ version

g++ source_file.cpp -o executable_name -std=c++11 for C++11

g++ source_file.cpp -o executable_name -std=c++14 for C++14

g++ source_file.cpp -o executable_name -std=c++17 for C++17

g++ source_file.cpp -o executable_name -std=c++2a for C++20

Isfahan University of Technology 5

Migration from C to C++ C++ Language

The Features

C++ provides a number of features that “spruce up” the C
language, but more importantly, it provides capabilities for
object-oriented programming.
Two parts to learn the C++ “world”:

The C++ language itself (often referred to as the “core language”)
Classes and functions in the C++ Standard Library

Isfahan University of Technology 6

Migration from C to C++ C++ Language

C++ Standard Library

The C++ Standard Library can be categorized into two parts:

The Standard Function Library: This library consists of
general-purpose,stand-alone functions that are not part of any
class. The function library is inherited from C.

The Object Oriented Class Library: This is a collection of classes
and associated functions.

Isfahan University of Technology 7

Migration from C to C++ Welcome to c++

first program

iostream header in C++ is a replacement of stdio header in C

header file inclusion directive does not need .h for C++ libraries

The std:: before cout is required when we use names that
we’ve brought into the program from iostream

1 // Text - printing program .
2 # include <iostream >
3 // enables program to output data to the screen
4

5 // function main begins program execution
6 int main () {
7 std :: cout << " Welcome to C ++!\ n"; // display message
8 return 0; // indicate that program ended successfully
9 }
10 // end function main
11

Isfahan University of Technology 8

Migration from C to C++ Welcome to c++

Standard Input/Output streams

cin: The standard input stream which is normally the keyboard,
but cin can be redirected to another device
cout: The standard output stream which is normally the
computer screen, but cout can be redirected to another device
cerr: The standard error stream which is normally connected to
the screen for playing error messages

1 // Text - printing program .
2 # include <iostream >
3 // enables program to output data to the screen
4

5 // function main begins program execution
6 int main () {
7 std :: cout << " Welcome to C ++!\ n"; // display message
8 return 0; // indicate that program ended successfully
9 }
10 // end function main
11

Isfahan University of Technology 9

Migration from C to C++ Welcome to c++

I/O Operators

In the context of an output statement, the « operator is referred
to as the stream insertion operator.

In the context of an Input statement, the » operator is referred
to as the stream reader operator.

1 // Printing a line of text with multiple statements .
2 # include <iostream >
3

4 int main () {
5 int num ;
6 std :: cout << " Welcome ";
7 std :: cout << "to C ++!\ n";
8 std :: cout << " Good luck \ nEnter a random number :";
9 std :: cin >> num ;
10 std :: cout <<" You number is " <<num << std :: endl ;
11 } // end function main

Isfahan University of Technology 10

Migration from C to C++ Welcome to c++

Variable Declaration

1 # include <iostream >
2 int main () {
3 // declaring and initializing variables (new in C ++11)
4 int number1 {0}; // first integer to add
5 int number2 {0}; // second integer to add
6 int sum {1000}; // sum with a non - zero initial value
7

8 std :: cout << " Enter two numbers : "; // prompt user for
data

9 std :: cin >> number1 ; // read first integer into number1
10 std :: cin >> number2 ; // read second integer into

number2
11 sum += number1 + number2 ;
12 std :: cout << " New sum is " << sum << std :: endl ;
13 // display sum ; end line
14 }

Isfahan University of Technology 11

Migration from C to C++ Welcome to c++

Using Declaration

We can use "using std::cout"/"using std::cin" declaration to
eliminate the need to repeat the std:: prefix before cout/cin

1 # include <iostream >
2 using std :: cin ;
3 int main () {
4 int number {0};
5 cin >> number ;
6 std :: cout << number << std :: endl ;
7 }

Also We can use "using namespace std" which enables a
program to use all the names in any standard C++ header (such
as <iostream>) that a program might include

1 # include <iostream >
2 using namespace std ;
3 int main () {
4 int number {0};
5 cin >> number ;
6 cout << number << endl ;
7 }

Isfahan University of Technology 12

Migration from C to C++ New terms and features in C++

Object Oriented

With C, we can write structured programs using functions and
multiple source files.

With C++, we can write Object-Oriented programs using classes
including functions.

Isfahan University of Technology 13

Migration from C to C++ New terms and features in C++

Object Oriented Programming

Objects, or more precisely the classes objects come from, are
essentially reusable software components.

There are date objects, time objects, audio objects, video
objects, automobile objects, people objects, etc.

Almost any noun can be reasonably represented as a software
object in terms of attributes (e.g., name, color and size) and
behaviors (e.g., calculating, moving and communicating).

Software developers have discovered that using a modular,
object-oriented design-and-implementation approach can
make software development groups much more productive
than was possible with earlier techniques

object-oriented programs are often easier to understand,
correct and modify

Isfahan University of Technology 14

Migration from C to C++ New terms and features in C++

Object Oriented Terms

Classes: user-defined data types that act as the blueprint for
individual objects, attributes and methods

Objects: instances of a class created with specifically defined
data

Methods: functions that are defined inside a class that describe
the behaviors of an object.
Attributes: defined in the class template and represent the
state of an object.

Objects will have data stored in the attributes field.
Class attributes belong to the class itself.

Isfahan University of Technology 15

Migration from C to C++ New terms and features in C++

Namespaces

Namespace is a mechanism for expressing that some declarations
belong together and their names shouldn’t clash with other names

1 # include <iostream >
2 # include <cmath >
3 using namespace std ;
4 namespace my_namespace {
5 const int Mega = 1000000;
6 const int Kilo = 1000;
7 float sqrt (float);
8 void f();
9 }
10 float my_namespace :: sqrt (float a){
11 return std :: sqrt ((int)a);
12 }
13 using namespace my_namespace ;
14 int main (){
15 cout << " sqrt (16.8) in cmath :" << sqrt (16.8) <<

endl ;
16 cout << " sqrt (16.8) in my_namespace :" ;
17 cout << my_namespace :: sqrt (16.8) << endl ;
18 cout << Kilo << endl ;
19 }Isfahan University of Technology 16

Migration from C to C++ New terms and features in C++

Function Overloading

Function Overloading is having more than one function of the same
name, but with arguments of different types or different numbers of
arguments.

When an overloaded function is called, the C++ compiler
selects the proper function by examining the number, types
and order of the arguments in the call.

Isfahan University of Technology 17

Migration from C to C++ New terms and features in C++

Function Overloading

1 # include <iostream >
2 using namespace std ;
3

4 void display (int x, int y){
5 cout << "x = " << x << ", y = " << y << endl ;
6 }
7 void display (char *s1 , char *s2){
8 cout << "s1 = " << s1 << ", s2 = " << s2 << endl ;
9 }
10 void display (float x, float y){
11 cout << "x = " << x << ", y = " << y << endl ;
12 }
13 void display (float x){
14 cout << "x = " << x << endl ;
15 }

Isfahan University of Technology 18

Migration from C to C++ New terms and features in C++

Function Overloading

16 int display (char *s){
17 int len = 0;
18 while (*s !=0) {
19 cout << *s ++;
20 len ++;
21 }
22 cout << endl ;
23 return len ;
24 }
25 int main (){
26 display (10 ,20) ;
27 display (10.7) ;
28 display (" Hello ", " C++");
29 display (" Hello C++");
30 }

Isfahan University of Technology 19

Migration from C to C++ New terms and features in C++

Default function parameters

In C++, it is possible to assigne default value for some parameters of
a function.

When calling function, if we don’t pass those arguments, their
default values are considered
When a parameter has a default value, all the parameters after
that must have a default value too.

1 # include < iostream >
2 using namespace std ;
3

4 // compile error , c must have a default value too
5 int f1(int a, int b=10 , int c){
6 return a+b+c;
7 }
8 int f2(int a, int b =20) {
9 return a+b;
10 }
11 int main (){
12 cout << f2 (1) << endl ;
13 }

Isfahan University of Technology 20

Migration from C to C++ New terms and features in C++

Default function parameters

Isfahan University of Technology 21

Migration from C to C++ New terms and features in C++

Reference (&) vs Pointer ()

If we want different objects to refer to the same (shared) value,
we could use pointers.
A reference is similar to a pointer, except that:

you don’t need to use a prefix to access the value referred to by
the reference.
a reference cannot be made to refer to a different object after its
initialization.

Isfahan University of Technology 22

Migration from C to C++ New terms and features in C++

Pointer

1 # include <iostream >
2 using namespace std ;
3 int main (){
4 int a = 2, b = 3;
5 int *p, *q; // p and q are pointer to int
6 p = &a; //p
7 cout << "p=" << p << " ,*p=" << *p << ", a=" << a <<

endl ;
8 q = &b;
9 cout << "q=" << q << " ,*q=" << *q << ", b=" << b <<

endl ;
10 p = q;
11 cout << "p=" << p << " ,*p=" << *p << ", a=" << a <<

endl ;
12 cout << "q=" << q << " ,*q=" << *q << ", b=" << b <<

endl ;
13 }

Isfahan University of Technology 23

Migration from C to C++ New terms and features in C++

Reference

1 # include <iostream >
2 using namespace std ;
3 int main (){
4 int x = 0;
5 int y = 3;
6 int & r1 {x}; // bind r1 to x (r1 refers to x)
7 cout << "r1=" << r1 << ", x=" << x << endl ;
8 r1 = 2; // assign to whatever r1 refers to
9 cout << "r1=" << r1 << ", x=" << x << endl ;
10 // int &r2; // error : uninitialized reference
11 int &r2 = y; // bind r2 to y (r2 refers to y)
12 cout << "r1=" << r1 << ", x=" << x << endl ;
13 cout << "r2=" << r2 << ", y=" << y << endl ;
14 r1 = r2;
15 cout << "r1=" << r1 << ", x=" << x << endl ;
16 cout << "r2=" << r2 << ", y=" << y << endl ;
17 }

Isfahan University of Technology 24

Migration from C to C++ New terms and features in C++

Reference (&) vs Pointer (*)

The assigned-to pointer gets the value from the assigned pointer,
yielding two independent pointers with a same address.

Assignment to a reference does not change what the reference
refers to but assigns to the referenced object

Isfahan University of Technology 25

Migration from C to C++ New terms and features in C++

Reference in function parameter

We can use references for call by reference
1 # include <iostream >
2 using namespace std ;
3 void swap (float &x, float &y){
4 float tmp = x;
5 x = y;
6 y = tmp ;
7 }
8 int main (){
9 float x {19.9};
10 float y {20};
11 swap (x,y);
12 cout << "x=" << x << ",y=" << y << endl ;
13 }

We can use const reference if wa use reference only for decreasing
the cost of copy

print(const struct &std)

Isfahan University of Technology 26

Migration from C to C++ New terms and features in C++

Reference in function return

1 # include < iostream >
2 using namespace std ;
3 int vals []={10 ,20 ,30 ,40};
4

5 int & value (int i){
6 if (i >=0 && i <=4)
7 return vals [i];
8 }
9 int main (){
10 cout << value (1) << endl ;
11 value (1) = 7;
12 cout << value (1) << endl ;
13 cin >> value (0) ;
14 cout << value (0) << endl ;
15 }

Isfahan University of Technology 27

Migration from C to C++ Some new syntaxes in C++

new/delete instead of malloc/free

new operator is used to allocate memory dynamically

delete operator is used to free allocated memory

1 # include <iostream >
2 int main (){
3 int *a = new int [10];
4 int *b = new int ;
5 *b = 100;
6 for (int i =0;i <10; i ++)
7 a[i] = i;
8 delete [] a;
9 delete b;
10 }

Isfahan University of Technology 28

Migration from C to C++ Some new syntaxes in C++

auto

C++11 auto keyword tells the compiler to infer (determine) a
variable’s data type based on the variable’s initializer value.

1 # include <iostream >
2 # include <cmath >
3 int main (){
4 auto b = true ;
5 auto ch = ’x’;
6 auto i = 123;
7 auto d = 1.2;
8 auto z = sqrt (10) ;
9 auto bb { true };
10 }

Isfahan University of Technology 29

Migration from C to C++ Some new syntaxes in C++

auto in for syntax

1 # include <iostream >
2 using namespace std ;
3 int main (){
4 float v [5]={2 ,3.4 ,6.4 ,3 ,99};
5 for (auto &x:v) // add 1 to each x in v
6 x ++;
7 for (auto x:v) // add 1 to each x in v
8 cout << x << endl ;
9 }

Isfahan University of Technology 30

Migration from C to C++ Some new syntaxes in C++

new nullptr and bool

Pointers should be initialized to nullptr (added in C++11) or to a
memory address either when they are declared or in an
assignment.

a pointer with the value nullptr "points to nothing" and is known
as a null pointer

C++ has bool type with two values true and false
zero is evaluated as false and other numbers are true

1 # include <iostream >
2 using namespace std ;
3 int main (){
4 bool pass = true ;
5 int *p1 = nullptr ; //ok , it assignes 0 address
6 int *p2 = NULL ; //ok , it assignes 0 address
7 int x = NULL ; //ok , it assignes 0 value
8 // int y = nullptr ; // error
9 cout << pass << endl ;
10 cout << p1 << endl << p2 << endl << x << endl ;
11 }

Isfahan University of Technology 31

Migration from C to C++ Some new syntaxes in C++

useful string type

We can use string in C++ instead of char arrays in C

A string is actually an object of the C++ Standard Library class
string, which is defined in the header <string>

There are many useful operators and function on strings in
<string>

1 # include <iostream >
2 # include <string >
3 using namespace std ;
4 int main (){
5 string s1 = " Welcom to";
6 string s2 = " C++";
7 string s = s1 + s2;
8 cout << s << endl ;
9 cout <<s. substr (1 ,3) << endl ;// substring from index

1 with the size of 3
10 }

Isfahan University of Technology 32

	Migration from C to C++
	C++ Language
	Welcome to c++
	New terms and features in C++
	Some new syntaxes in C++

