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Memories from C Binary Number System

Multiple bits units
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Memories from C Binary Number System

Decimal to Binary Conversion
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Memories from C Binary Number System

Decimal to Hex Conversion

Convert each four bits of the binary number to its equavalent hex
digit (from right)
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Memories from C Binary Number System

Decimal to Hex Conversion
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Memories from C Binary Number System

Signed Binary Numbers

Signed Binary Numbers use the Most Significant Bit as a sign bit to
display a range of either positive numbers or negative numbers, So:

an 8 bits unsigned number can have a value ranging from 0 to
255

an 8 bits signed number can have a value ranging from -128 to
127
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Memories from C Binary Number System

Binary Representation of Numbers in C++
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Memories from C C Programming Language

The Creator

C is a general-purpose computer programming language created in
the 1970s by Dennis Ritchie.
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Memories from C C Programming Language

C Language Features
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Memories from C C Programming Language

From Code to Runnable Program
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Memories from C C Programming Language

C Preprocessor

C provides certain language facilities by means of a preprocessor,
which is conceptually a separate first step in compilation. The two
most frequently used features are

#include: it is used to include the contents of a file during
compilation

#define: it is used to replace a token by an arbitrary sequence
of characters (Macros)

Other features include conditional compilation
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Memories from C C Programming Language

C Compiler

There are four phases for a C program to become an executable

Pre-processing(.i), Compilation(.s), Assembly(.o),
Linking(executable binary)

Run this command to see all intermediate files during compile
time: gcc -Wall -save-temps filename.c –o filename
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Memories from C C Programming Language

Others terms

Object file (.o): They are produced by the compiler and consist
of function definitions in binary form, but they are not
executable by themselves.

Linker: It is a program in a system which helps to link object
modules of a program (and all used library functions) into a
single object file

Loader: It is the program of the operating system which loads
the executable from the disk into the primary memory(RAM) for
execution
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Memories from C C Programming Language

Static Library (.lib or .a)

A collection of object files implementing some useful functions
which are introduced (as some prototypes) in the header files.

We include their header files in our programs and then we can
use their functions and definitions.
They are copied and linked to our program in linking phase, so
our executable program containes a copy of them.
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Memories from C C Programming Language

Dynamic Library (.so or .dll)

A collection of object files implementing some useful functions
which are introduced (as some prototypes) in the header files.

We include their header files in our programs and then we can
use their functions and definitions.
They are not copied for every program and are shared between
all the programs that use them. So they exist as separate files
outside of our executable files.
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Memories from C Multiple files C program

What Multiple files?
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Memories from C Multiple files C program

How Multiple files?

Header files: Put the definitions and the prototypes of functions
in the header file

Source files: Include the header file and implement all their
fuctions in the source file

Usage: When you require to call a function or use a type, it is
sufficient to include the header file containing its definition or
prototype.

Compiling: Compile all the source files besides their header
files
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Memories from C Multiple files C program

Why Multiple files?

Reusability: Implement once and use in different projects

Structured Programming: Write clean, nice, not dirty and not
messy codes

TeamWorking: Partition a project related to its functionalities
and operations
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Memories from C Multiple files C program

Code Selectively

It is possible to control preprocessing itself with conditional
statements that are evaluated during preprocessing.

This provides a way to include code selectively, depending on
the value of conditions evaluated during compilation.

For example, to make sure that the contents of a header file are
included only once:
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Memories from C Multiple files C program

Code Selectively

The special operator defined is used in ‘#if’ and ‘#elif’ expressions to
test whether a certain name is defined as a macro
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Memories from C C Variable Types

Variables and Basic Types

Variables and constants are the basic data objects manipulated in a
program.

Declarations list the variables to be used, and state what type
they have and perhaps what their initial values are.

The type of an object determines the set of values it can have
and what operations can be performed on it.

Basic Types: char, int, float, double
some qualifiers can be applied to these basic types

Examples: short int, long int, signed, unsigned

useful fuctions and headerfiles: sizeof(), limits.h
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Memories from C C Variable Types

User-Defined Data Types

typedef

struct

union

enum
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Memories from C C Variable Types

typedef

typedef is a facility called typedef for creating new data type names.
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Memories from C C Variable Types

struct

A structure is a collection of one or more variables, possibly of
different types, grouped together under a single name.
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Memories from C C Variable Types

union

A union is a variable that may hold (at different times) objects of
different types and sizes

It provides a way to manipulate different kinds of data in a
single area of storage

You can define a union with many members (maybe of different
types), but only one member can contain a value at any given
time
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Memories from C C Variable Types

union

Isfahan University of Technology 26



Memories from C C Variable Types

enum

An enumeration is a list of constant integer values.
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Memories from C C Variable Types

Lets remember C with an example

Implementing a linked list
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Memories from C Scope, Type, Value, Address

Storage Classes in C

A storage class represents the visibility and a location of a variable.
It tells from what part of code we can access a variable.
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Memories from C Scope, Type, Value, Address

Storage Classes in C

auto: Auto variables can be only accessed within the
block/function they have been declared and not outside them.

all variables created there are already autohardly ever used

extern: An extern variable is nothing but a global variable
initialized with a legal value where it is declared in order to be
used elsewhere

The main purpose of using extern variables is that they can be
accessed between two different files which are part of a large
program.

Isfahan University of Technology 30



Memories from C Scope, Type, Value, Address

Storage Classes in C

static: Static variables have the property of preserving their
value even after they are out of their scope!
register: the compiler tries to store these variables in the
register of the microprocessor if a free registration is available.

This makes the use of register variables to be much faster than
that of the variables stored in the memory during the runtime of
the program.
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Memories from C Scope, Type, Value, Address

Declaring a Variable as Constant

A constant value should be determined when defined and can
not be changed after.
A constant pointer cannot change the address of the variable
to which it is pointing
A pointer to constant is a pointer through which the value of
the variable that the pointer points cannot be changed.
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Memories from C Scope, Type, Value, Address

constant in fuction arguments

in Call by reference there is only a copy of an address
(maximum 64 bytes)

in Call by value, there is a copy of an argument (may be more
than 64 bytes)
So Call by reference speeds up the fuction call

We can use call by referece even if the value of an argument will
not be changed in the function
Declaring function arguments const indicates that the function
promises not to change these values
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Memories from C Scope, Type, Value, Address

const in fuction arguments
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Memories from C Pointer to function

Pointer to function

A function pointer points to code, not data. Typically a function
pointer stores the start of executable code.
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Memories from C Pointer to function

Pointer to function
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Memories from C Pointer to function

Pointer to function

A simple C program to show function pointers as parameter
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