
Advanced Programming

Zeinab Zali

References: (1) "C++ How to program" Deitel&Deitel, (2) "A Tour of C++" Bjarne Stroustrup,
(3) Other useful learning pages such as geeksforgeeks and tutorialpoints

ECE Department, Isfahan University of Technology

Isfahan University of Technology 1



Memories from C Binary Number System

Multiple bits units

Isfahan University of Technology 2



Memories from C Binary Number System

Decimal to Binary Conversion

Isfahan University of Technology 3



Memories from C Binary Number System

Decimal to Hex Conversion

Convert each four bits of the binary number to its equavalent hex
digit (from right)

Isfahan University of Technology 4



Memories from C Binary Number System

Decimal to Hex Conversion

Isfahan University of Technology 5



Memories from C Binary Number System

Signed Binary Numbers

Signed Binary Numbers use the Most Significant Bit as a sign bit to
display a range of either positive numbers or negative numbers, So:

an 8 bits unsigned number can have a value ranging from 0 to
255

an 8 bits signed number can have a value ranging from -128 to
127

Isfahan University of Technology 6



Memories from C Binary Number System

Binary Representation of Numbers in C++

Isfahan University of Technology 7



Memories from C C Programming Language

The Creator

C is a general-purpose computer programming language created in
the 1970s by Dennis Ritchie.

Isfahan University of Technology 8



Memories from C C Programming Language

C Language Features

Isfahan University of Technology 9



Memories from C C Programming Language

From Code to Runnable Program

Isfahan University of Technology 10



Memories from C C Programming Language

C Preprocessor

C provides certain language facilities by means of a preprocessor,
which is conceptually a separate first step in compilation. The two
most frequently used features are

#include: it is used to include the contents of a file during
compilation

#define: it is used to replace a token by an arbitrary sequence
of characters (Macros)

Other features include conditional compilation

Isfahan University of Technology 11



Memories from C C Programming Language

C Compiler

There are four phases for a C program to become an executable

Pre-processing(.i), Compilation(.s), Assembly(.o),
Linking(executable binary)

Run this command to see all intermediate files during compile
time: gcc -Wall -save-temps filename.c –o filename

Isfahan University of Technology 12



Memories from C C Programming Language

Others terms

Object file (.o): They are produced by the compiler and consist
of function definitions in binary form, but they are not
executable by themselves.

Linker: It is a program in a system which helps to link object
modules of a program (and all used library functions) into a
single object file

Loader: It is the program of the operating system which loads
the executable from the disk into the primary memory(RAM) for
execution

Isfahan University of Technology 13



Memories from C C Programming Language

Static Library (.lib or .a)

A collection of object files implementing some useful functions
which are introduced (as some prototypes) in the header files.

We include their header files in our programs and then we can
use their functions and definitions.
They are copied and linked to our program in linking phase, so
our executable program containes a copy of them.

Isfahan University of Technology 14



Memories from C C Programming Language

Dynamic Library (.so or .dll)

A collection of object files implementing some useful functions
which are introduced (as some prototypes) in the header files.

We include their header files in our programs and then we can
use their functions and definitions.
They are not copied for every program and are shared between
all the programs that use them. So they exist as separate files
outside of our executable files.

Isfahan University of Technology 15



Memories from C Multiple files C program

What Multiple files?

Isfahan University of Technology 16



Memories from C Multiple files C program

How Multiple files?

Header files: Put the definitions and the prototypes of functions
in the header file

Source files: Include the header file and implement all their
fuctions in the source file

Usage: When you require to call a function or use a type, it is
sufficient to include the header file containing its definition or
prototype.

Compiling: Compile all the source files besides their header
files

Isfahan University of Technology 17



Memories from C Multiple files C program

Why Multiple files?

Reusability: Implement once and use in different projects

Structured Programming: Write clean, nice, not dirty and not
messy codes

TeamWorking: Partition a project related to its functionalities
and operations

Isfahan University of Technology 18



Memories from C Multiple files C program

Code Selectively

It is possible to control preprocessing itself with conditional
statements that are evaluated during preprocessing.

This provides a way to include code selectively, depending on
the value of conditions evaluated during compilation.

For example, to make sure that the contents of a header file are
included only once:

Isfahan University of Technology 19



Memories from C Multiple files C program

Code Selectively

The special operator defined is used in ‘#if’ and ‘#elif’ expressions to
test whether a certain name is defined as a macro

Isfahan University of Technology 20



Memories from C C Variable Types

Variables and Basic Types

Variables and constants are the basic data objects manipulated in a
program.

Declarations list the variables to be used, and state what type
they have and perhaps what their initial values are.

The type of an object determines the set of values it can have
and what operations can be performed on it.

Basic Types: char, int, float, double
some qualifiers can be applied to these basic types

Examples: short int, long int, signed, unsigned

useful fuctions and headerfiles: sizeof(), limits.h

Isfahan University of Technology 21



Memories from C C Variable Types

User-Defined Data Types

typedef

struct

union

enum

Isfahan University of Technology 22



Memories from C C Variable Types

typedef

typedef is a facility called typedef for creating new data type names.

Isfahan University of Technology 23



Memories from C C Variable Types

struct

A structure is a collection of one or more variables, possibly of
different types, grouped together under a single name.

Isfahan University of Technology 24



Memories from C C Variable Types

union

A union is a variable that may hold (at different times) objects of
different types and sizes

It provides a way to manipulate different kinds of data in a
single area of storage

You can define a union with many members (maybe of different
types), but only one member can contain a value at any given
time

Isfahan University of Technology 25



Memories from C C Variable Types

union

Isfahan University of Technology 26



Memories from C C Variable Types

enum

An enumeration is a list of constant integer values.

Isfahan University of Technology 27



Memories from C C Variable Types

Lets remember C with an example

Implementing a linked list

Isfahan University of Technology 28



Memories from C Scope, Type, Value, Address

Storage Classes in C

A storage class represents the visibility and a location of a variable.
It tells from what part of code we can access a variable.

Isfahan University of Technology 29



Memories from C Scope, Type, Value, Address

Storage Classes in C

auto: Auto variables can be only accessed within the
block/function they have been declared and not outside them.

all variables created there are already autohardly ever used

extern: An extern variable is nothing but a global variable
initialized with a legal value where it is declared in order to be
used elsewhere

The main purpose of using extern variables is that they can be
accessed between two different files which are part of a large
program.

Isfahan University of Technology 30



Memories from C Scope, Type, Value, Address

Storage Classes in C

static: Static variables have the property of preserving their
value even after they are out of their scope!
register: the compiler tries to store these variables in the
register of the microprocessor if a free registration is available.

This makes the use of register variables to be much faster than
that of the variables stored in the memory during the runtime of
the program.

Isfahan University of Technology 31



Memories from C Scope, Type, Value, Address

Declaring a Variable as Constant

A constant value should be determined when defined and can
not be changed after.
A constant pointer cannot change the address of the variable
to which it is pointing
A pointer to constant is a pointer through which the value of
the variable that the pointer points cannot be changed.

Isfahan University of Technology 32



Memories from C Scope, Type, Value, Address

constant in fuction arguments

in Call by reference there is only a copy of an address
(maximum 64 bytes)

in Call by value, there is a copy of an argument (may be more
than 64 bytes)
So Call by reference speeds up the fuction call

We can use call by referece even if the value of an argument will
not be changed in the function
Declaring function arguments const indicates that the function
promises not to change these values

Isfahan University of Technology 33



Memories from C Scope, Type, Value, Address

const in fuction arguments

Isfahan University of Technology 34



Memories from C Pointer to function

Pointer to function

A function pointer points to code, not data. Typically a function
pointer stores the start of executable code.

Isfahan University of Technology 35



Memories from C Pointer to function

Pointer to function

Isfahan University of Technology 36



Memories from C Pointer to function

Pointer to function

A simple C program to show function pointers as parameter

Isfahan University of Technology 37


	Memories from C
	Binary Number System
	C Programming Language
	Multiple files C program
	C Variable Types
	Scope, Type, Value, Address
	Pointer to function


