
Cloud Computing
Virtualization

Zeinab Zali

References: (1) Mastering KVM Virtualization, Vedran Dakic, 2020
(2) Linux Containers and Virtualization A Kernel Perspective, Shashank Mohan Jain, 2020

(3) Core Kubernetes, Jay Vyas, 2022
(4) Cloud Computing Theory and Practice, second edition

(5) Kubernetes in Action, Marko Luksa, 2020
(6) Slides: Docker and Kubernetes: The Practical Guide, Maximilian schuvarzmuller

ECE Department, Isfahan University of Technology

Isfahan University of Technology 1

Virtualization What is? and Why?

Resource Sharing in clouds

Economics of Clouds requires sharing resources How do we share a
physical computer among multiple users?

Answer: Abstraction

Abstraction: what a generic computing resource should look
like, Then providing this abstract model to many users

Abstraction enables virtualization

Isfahan University of Technology 2

Virtualization What is? and Why?

What is virtualization?

Virtualization is a concept that creates virtualized resources and
maps them to physical resources

Virtualization can be done using speci�c software functionality
(hypervisor)

Isfahan University of Technology 3

Virtualization What is? and Why?

Virtualization terms?

Virtual Machine(M): an isolated environment with access to a
subset of physical resources of the computer system

Host OS: The OS that we are running on base physial system

Guest OS: The OS that we are running in a virtual machine

Isfahan University of Technology 4

Virtualization What is? and Why?

Virtualization in Clouds

Clouds are based on Virtualization

They o�er services based mainly on virtual machines, remote
procedure calls, and client/servers

The instantaneous demands for resources of the applications
running concurrently are likely to be di�erent and complement
each other

Isfahan University of Technology 5

Virtualization What is? and Why?

Virtualization bene�ts

supporting portability, improve e�ciency, increase reliability,
and shield the user from the complexity of the system

providing more freedom for the system resource management
because VMs can be easily migrated

allowing a good isolation of applications from one another

Isfahan University of Technology 6

Virtualization Virtualization Concepts

Types of Virtualization

If we are talking about how we’re virtualizing a virtual machine as an
object, there are di�erent types of virtualization:

Full Virtualization: a virtual machine is used to simulate regular
hardware while not being aware of the fact that it’s virtualized
(we don’t have to modify the guest OS)

Software-based: using binary translation to virtualize the
execution of sensitive instruction sets while emulating
hardware using software

Hardware-based: removing binary translation from the
equation while interfacing with a CPU’s virtualization features
(AMD-V, Intel VT)

Isfahan University of Technology 7

Virtualization Virtualization Concepts

Types of Virtualization

Paravirtualization: the guest OS understands the fact that it’s
being virtualized and needs to be modi�ed, along with its
drivers, so that it can run on top of the virtualization solution.

Hybrid virtualization: the guest OS can be run unmodi�ed
(full), and the fact that we can insert additional paravirtualized
drivers into the virtual machine to work with some speci�c
aspects of virtual machine work (most often, I/O-intensive
memory workloads)

Container-based virtualization: a type of application
virtualization that uses containers. A container is an object that
packages an application and all its dependencies

Isfahan University of Technology 8

Virtualization Virtualization Concepts

Hipervisor (Virtual Machine Manager)

Virtual Machine Manager (VMM) or hypervisor is a piece of software
that is responsible for monitoring and controlling virtual machines or
guest OSes.

providing virtual hardware

virtual machine life cycle management

migrating virtual machines

allocating resources in real time

responsible for e�ciently controlling physical platform
resources, such as memory translation and I/O mapping.

Isfahan University of Technology 9

Virtualization Virtualization Concepts

Hipervisor Types

Type 1: If the VMM/hypervisor runs directly on top of the
hardware, its generally considered to be a type 1 hypervisor
Type 2: If there is an OS present, and if the VMM/hypervisor
operates as a separate layer, it will be considered as a type 2
hypervisor

Isfahan University of Technology 10

Virtualization Virtualization Methods

Hardware facilities for virtualization

Second-Level Address Translation (SLAT) (EPT intel or RVI
AMD): a CPU feature for adding a translation lookaside bu�er
(TLB) that contains a real-time updated cache of virtualized
memory addresses and their corresponding physical addresses

Intel VT or AMD-V support: supporting hardware virtualization
extensions and full virtualization

Long mode support: 64-bit CPU

Input/Output Memory Management Unit (IOMMU)
virtualization (Intel VT-d or AMD-Vi): allowing virtual machines
to access peripheral hardware directly (graphics cards, storage
controllers, network devices, and so on)

others: Single Root Input Output Virtualization (SR/IOV), PCI
passthrough, Trusted Platform Module (TPM) support

Isfahan University of Technology 11

Virtualization Virtualization Methods

Protection Rings

All the applications run in ring 3 (user mode)
The kernels run in ring 0 ,i.e. the privileged mode(kernel mode)
1 and 2 are mostly unused

Isfahan University of Technology 12

Virtualization Virtualization Methods

Trap and Emulate

Most of the time, the software runs exactly as it would on a real
machine, but if the operating system (OS) attempts to perform a
privileged operation, a hardware trap will occur

Since the VMM executes in supervisor mode, it can catch this
hardware exception, inspect the state of the OS that caused it

Then VMM emulate the behavior that would have occurred on
real hardware

problem: executing some sensitive instructions may not causes
a trap in nonprotected mode

Isfahan University of Technology 13

Virtualization Virtualization Methods

Binary Translation

If guest vCPU is in user mode, guest can run instructions
natively, whereas if guest vCPU is in kernel mode, VMM checks
every instruction (and does not wait for a trap!)

Non-sensitive instructions run normally but sensitive
instructions are translated appropriately

Performance of this method is worse than trap-and-emulate
since all codes of the guest kernel is inspected by the VMM

Isfahan University of Technology 14

Virtualization Virtualization Methods

Dynamic Binary Translation

For each block of codes, dynamic BT translates critical instructions,
if any, into some privilege instructions, which will trap to VMM for
further emulation

To improve performance, the equivalent set of instruction is
cached so that translation is no longer necessary for further
occurrences of the same instructions

Isfahan University of Technology 15

Virtualization Virtualization Methods

Full virtualization with Dynamic Binary Translation

In full virtualization, privileged instructions are emulated to
overcome the limitations that arise from the guest OS running in ring
1 and the VMM (or host OS) running in ring 0

It relies on techniques such as dynamic binary translation to
trap and virtualize the execution of certain sensitive instructions

Isfahan University of Technology 16

Virtualization Virtualization Methods

ParaVirtualization

In para virtualization, the guest OS is modi�ed or patched for
virtualization

The modi�ed kernel of the guest OS is able to communicate
with the underlying hypervisor via special calls (hypercall)

These special calls are equivalent to system calls generated by
an application to a non virtualized OS

Isfahan University of Technology 17

Virtualization Virtualization Methods

Hardware-assisted Virtualization (Native Virtualization)

Hardware-assisted virtualization is a platform virtualization method
designed to e�ciently use full virtualization with the hardware
capabilities.

These extensions allow the VMM/hypervisor to run a guest OS
that expects to run in kernel mode, in lower privileged rings
Hardware-assisted virtualization not only proposes new
instructions but also introduces a new privileged access level,
called ring -1, where the hypervisor/VMM can run

guest virtual machines can run in ring 0

With hardware-assisted virtualization, the OS has direct access
to resources without any emulation or OS modi�cation

Isfahan University of Technology 18

Virtualization Virtualization Methods

Hardware-assisted Virtualization (Native Virtualization)

With hardware-assisted virtualization, the OS has direct access to
resources without any emulation or OS modi�cation

Isfahan University of Technology 19

Virtualization Virtualization Methods

libvirt-QEUME-KVM

QEUME: it has two modes:
Emulator: QEMU emulates CPUs through dynamic binary
translation techniques and provides a set of device models
Virtualizer: This is the mode where QEMU executes the guest
code directly on the host CPU, thus achieving native
performance

KVM : a common kernel module called kvm.ko and also
hardware-based kernel modules such as kvm-intel.ko
(Intel-based systems)

KVM turns the Linux kernel into a hypervisor, thus achieving
virtualization
KVM exposes a device �le called /dev/kvm to applications to
create, initialize, and manage the kernel-mode context of virtual
machines.

libvirt: It is a library to provide a common and stable layer for
managing virtual machines running on a hypervisor through
KVM

Isfahan University of Technology 20

Virtualization Xen case study

Xen

Xen is a free and open source type 1 hypervisor widely employed in
virtualization environment.

This hypervisor adopts paravirtualization and
Hardware-assisted full virtualization

Xen can scale up to 4095 host CPUs with 16Tb of RAM

Using paravirtualization, Xen supports maximum of 512 VCPU
with 512GB RAM per guest

Using hardware Virtualization, Xen supports a maximum of 128
VCPUs with 1TB RAM per guest.

Isfahan University of Technology 21

Virtualization Xen case study

Xen Architecture

The whole environment is divided into domains or virtual machines:
Dom 0 hosts the most important OS and is a privileged domain
responsible for the creation of other new domains
All other virtual machines are Dom U which is the guest
operating system

Isfahan University of Technology 22

Virtualization Xen case study

Xen Architecture

domain0 is created at boot time which is permitted to use the
control interface

Guest VMs are totally isolated from the hardware: in other
words, they have no privilege to access hardware or I/O
functionality. Thus, they are also called unprivileged domain (or
DomU).

Linux distributions that are based on Linux kernels newer than
Linux 3.0 are Xen Project-enabled and usually include
packages that contain the hypervisor and Tools

Isfahan University of Technology 23

Virtualization Xen case study

Dom0 Functions

System Services: such as XenStore/XenBus (XS) for managing
settings, the Toolstack (TS) exposing a user interface to a Xen
based system, Device Emulation (DE) which is based on QEMU
in Xen based systems

Isfahan University of Technology 24

Virtualization Xen case study

Dom0 Functions

Native Device Drivers: Dom0 is the source of physical device
drivers and thus native hardware support for a Xen system

Virtual Device Drivers: Dom0 contains virtual device drivers
(also called backends).

Toolstack: allows a user to manage virtual machine creation,
destruction, and con�guration. The toolstack exposes an
interface that is either driven by a command line console, by a
graphical interface or by a cloud orchestration stack such as
OpenStack or CloudStack.

Isfahan University of Technology 25

Virtualization Xen case study

Xen Control Interactions

synchronous calls from a domain to Xen may be made using a
hypercall

A software trap into the hypervisor to perform a privileged
operation

noti�cations are delivered to domains from Xen using an
asynchronous event mechanism

similar to traditional Unix signals, there are only a small number
of events, each acting to �ag a particular type of occurrence
Examples: events are used to indicate that new data has been
received over the network, or that a virtual disk request has
completed.

Isfahan University of Technology 26

Virtualization Xen case study

Xen Memory Management

Each time a guest OS requires a new page table it allocates and
initializes a page from its own memory reservation and registers
it with Xen

At this point the OS must relinquish direct write privileges to the
page-table memory

all subsequent updates must be validated by Xen

Isfahan University of Technology 27

Virtualization Xen case study

Xen CPU Management

the insertion of a hypervisor below the operating system
violates the usual assumption that the OS is the most privileged
entity in the system.

In order to protect the hypervisor from OS misbehavior (and
domains from one another) guest OSes must be modi�ed to run
at a lower privilege level.

E�cient virtualizion of privilege levels is possible on x86
because it supports four distinct privilege levels in hardware

Isfahan University of Technology 28

Virtualization Xen case study

Xen CPU Management

4 distinct privilege levels
0 for most privileged, 3 for least privileged

Any guest OS can be ported to Xen by modifying it to execute
in ring 1

This prevents the guest OS from directly executing privileged
instructions, yet it remains safely isolated from applications
running in ring 3

Isfahan University of Technology 29

Virtualization Xen case study

Xen IO Management

I/O data is transferred to and from each domain via Xen, using
shared-memory and asynchronous bu�er descriptor rings.

an event-delivery mechanism instead of hardware interrupts for
sending asynchronous noti�cations to a domain.

Isfahan University of Technology 30

Virtualization Xen case study

Other VMMs

hyper-v

VMware’s ESXi Server

proxmox

Isfahan University of Technology 31

Virtualization Xen case study

Containers

Isfahan University of Technology 32

Containers Containers Concepts

What is a Container

A standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one
computing environment to another

solving the “it works on my machine” headache

Isfahan University of Technology 33

Containers Containers Concepts

A Brief History of Containers

- (1979) chroot systemcall: the beginning of process isolation

- (2000) FreeBSD Jails

- (2001) Linux VServer

- (2004) Solaris Containers

- (2005) Open VZ

- (2006) Process Containers

- (2007) cgroups: merged to Linux kernel 2.6.24

- (2008) LXC (LinuX Containers): The �rst, most complete
implementation of Linux container manager

- (2013) Docker

Isfahan University of Technology 34

Containers Containers Concepts

Basic blocks provided by kernel

- namespaces

- cgroups

- Copy-On-Write �lesystem

- bind mounts (docker)

Isfahan University of Technology 35

Containers Containers Concepts

Isfahan University of Technology 36

Containers Containers Concepts

Container vs Virtual Machine

Isfahan University of Technology 37

Containers Containers Concepts

Namespaces

A namespace is a logical isolation within the Linux kernel.
A namespace controls visibility within the kernel.

All the controls are de�ned at the process level, that means a
namespace controls which resources within the kernel a process
can see

By isolation, we mean that there should be a kind of sandboxing
of the individual application, so that certain resources in the
application are con�ned to that sandbox

The technique to achieve such sandboxing is done by a speci�c
data structure in the Linux kernel, called the namespace

related system calls: clone, unshare, setns, netns

Isfahan University of Technology 38

Containers Containers Concepts

Namespace types

UTS: This namespace allows a process to see a separate host
name

PID: The processes within the PID namespace have a di�erent
process tree (/proc)
Mount: It controls which mount points a process should see

Apart from mount, there is a bind mount, which allows a
directory (instead of a device) to be mounted at a mount point

Network: the process within the network namespace will see
di�erent network interfaces, routes, and iptables

Isfahan University of Technology 39

Containers Containers Concepts

Namespace types

IPC: This namespace scopes IPC constructs such as POSIX
message queues

Between two processes within the same namespace, IPC is
enabled, but it will be restricted if two processes in two di�erent
namespaces try to communicate over IPC

Cgroup: Without this restriction, a process could peek at the
global cgroups via the /proc/self/cgroup hierarchy.

This namespace e�ectively virtualizes the cgroup itself

Time: The time namespace has two main use cases:
Changes the date and time inside a container Adjusts the clocks
for a container restored from a checkpoint

Isfahan University of Technology 40

Containers Containers Concepts

cgroups

We need a way to introduce resource controls for processes within
the namespace; this is achieved using a mechanism called control
groups (cgroups), that provides:

Resource limiting: groups can be set to not exceed a con�gured
limit for CPU, memory, I/O, network

Prioritization: some groups may get a larger share of CPU
utilization[14] or disk I/O throughput

Accounting: measures a group’s resource usage, which may be
used, for example, for billing purposes

Control freezing groups of processes, their checkpointing and
restarting

Isfahan University of Technology 41

Containers Containers Concepts

Linux Isolation Demo

Isfahan University of Technology 42

Containers Docker

What is Docker?

- Docker is a human-friendly container implementation
developed and popularized by Docker Inc. in 2013

Isfahan University of Technology 43

Containers Docker

Interest over Time

https://trends.google.com

Isfahan University of Technology 44

Containers Docker

Install on Ubuntu

Install from here: https://docs.docker.com/engine/install/ubuntu/

Isfahan University of Technology 45

 https://docs.docker.com/engine/install/ubuntu/

Containers Docker

A closer look

Isfahan University of Technology 46

Containers Docker

Docker Components

Docker daemon (dockerd): It listens for Docker API requests
and manages Docker objects such as images, containers,
networks, and volumes

Docker API: APIs specify interfaces that programs can use to
talk to and instruct the Docker daemon (a RESTful API accessed
by an HTTP client)

Docker client (docker): It uses Docker APIs to control or
interact with the Docker daemon through scripting or direct CLI
commands

Isfahan University of Technology 47

Containers Docker

Docker Container

What is a docker container? It’s a running instance of the image

- Isolated namespace

- (Possibly) Limited resources

- Could share resources with host

Isfahan University of Technology 48

Containers Docker Image

Docker Image

What is a docker image? It is a read-only template with instructions
for creating a Docker container

Each container is a running OCI (OpenContainers/Image-spec)
image

The OCI speci�cation is a standard way to de�ne an image that
can be executed by a program such as Docker

It is ultimately a tarball with various layers

Each of the tarballs inside an image contains such things as
Linux binaries and application �les.

When we run a container, the container runtime (such as
Docker, containerd, or CRI-O) takes the image, unpacks it, and
starts a process on the host system that runs the image
contents.

Isfahan University of Technology 49

Containers Docker Image

Docker Image Layers

Isfahan University of Technology 50

Containers Docker Image

Container vs Images

Isfahan University of Technology 51

Containers Docker Image

Multiple Container from One Images

Isfahan University of Technology 52

Containers Docker Image

Docker�le

Docker�le describes the application and tells Docker how to build it
into an image

- FROM: To specify the base image
All Docker�les start with the FROM instruction. This will be the
base layer of the image, and the rest of the app will be added on
top as additional layers

- COPY: To copy a �le/folder into the image

- RUN: To run a command during image build proccess

- CMD: The command that runs the container

Isfahan University of Technology 53

Containers Docker Image

Docker Architecture

Isfahan University of Technology 54

Containers Docker Commands

Docker commands

Some useful docker commands:

> docker build

> docker run

> docker images

> docker ps

> docker rmi/rm

Isfahan University of Technology 55

Containers Docker Image Repository

IR repository

Add
- "registry-mirrors": ["https://registry.docker.ir"]

Restart:
- sudo systemctl daemon reload
- sudo systemctl restart docker

Isfahan University of Technology 56

Containers Docker Image Repository

Demo

Isfahan University of Technology 57

Containers Docker Environment Variables

What is Environment Variables

An environment variable is a named object that contains data used
by one or more applications

- a simple way to share con�guration settings between multiple
applications and processes

- useful commands:
echo $VAR_NAME
export VAR_NAME="value"
VAR_NAME="value"

Isfahan University of Technology 58

Containers Docker Environment Variables

Environment Variables Example

The PATH variable is an environment variable containing a list of
paths that Linux search for executable when running a command

Isfahan University of Technology 59

Containers Docker Environment Variables

Environment variables in docker

Environment variables are a convenient way to externalize
application con�guration in building Docker containers

- Two kinds of environment variables in docker:

build-time
run-time

Isfahan University of Technology 60

Containers Docker Environment Variables

Build Time Variables in Docker

These variables are used in docker �le, so it will be con�gured
di�erently depending on the environment that was used to build a
container

- in Docker�le:

- in build time:

Isfahan University of Technology 61

Containers Docker Environment Variables

Runtime Variables in Docker

Setting variables for Docker containers can be done in three main
ways:

- CLI arguments

- .env con�g �les

- through docker-compose

Isfahan University of Technology 62

Containers Docker Environment Variables

Runtime variables in docker

Setting variables for Docker containers through CLI arguments:

- CLI arguments

Isfahan University of Technology 63

Containers Docker Environment Variables

Runtime variables in docker

Setting variables for Docker containers through .env �les:

- .env con�g �les
creating .env �le

pass it to docker run with the –env-�le �ag

Isfahan University of Technology 64

Containers Docker Volumes

Persisting data in docker

The container’s writable layer does not persist after the container is
removed (but is persist after restarting a container, i.e. stop ans start
again)

Isfahan University of Technology 65

Containers Docker Volumes

Persisting data in docker

Di�erent methods for persisting data of containers
- bind mount: managed by OS (in anywhere)
- volumes: managed by docker (in /var/lib/docker/volumes/)

anonymous volumes
named volumes

Isfahan University of Technology 66

Containers Docker Volumes

bind mount

Isfahan University of Technology 67

Containers Docker Volumes

Anonymous Volumes

Anonymous Volumes persist data temporarily; the data will be
visible after restarting the container, but not after removing it

Note: Each anonymouse volume has an ID (’docker volume ls’
to see it) through which it is accessible by other containers like
named volumes)

Isfahan University of Technology 68

Containers Docker Volumes

Named Volumes

Named Volumes can persist data after we restart or remove a
container and it’s accessible by other containers.

Isfahan University of Technology 69

Containers Docker Volumes

Usefull Commands

- docker volume create

- docker volume rm

- docker volume prune

- docker volume ls

- docker volume inspect

Isfahan University of Technology 70

Containers Docker Networking

Possible communications in a dockerized application

Container to www and container to host are achived without extra
work

Isfahan University of Technology 71

Containers Docker Networking

Di�erent methods

How to connect containers together, or connect them to
non-Docker workloads?

- Bridge: when you need multiple containers to communicate on
the same Docker host

- Host: when the network stack should not be isolated from the
Docker host

- Overlay: when you need containers running on di�erent Docker
hosts to communicate

- Macvlan: when you need your containers to look like physical
hosts on your network, each with a unique MAC address

- Network plugins

Isfahan University of Technology 72

Containers Docker Networking

Bridge

The bridge network creates a private internal isolated network to
the host so containers on this network can communicate

Isfahan University of Technology 73

Containers Docker Networking

Bridge

Bridge mode is the default mode of networking when the –net
option is not speci�ed.

Communication with other containers in the network is open

Within a Docker network, all containers can communicate with
each other and IPs are automatically resolved (through
containers’ names)

Communication with services outside the host goes through
NAT

Isfahan University of Technology 74

Containers Docker Networking

User-de�ned Bridge

Isfahan University of Technology 75

Containers Docker Networking

Useful commands

docker network ls

docker network inspect bridge

ip address show dev docker0

brctl show

Isfahan University of Technology 76

Containers Docker Networking

Host Networking

Host mode networking can be useful to optimize performance, and
in situations where a container needs to handle a large range of
ports

The container shares the same IP address and the network
namespace as that of the host

Processes running inside this container have the same network
capabilities as services running directly on the host

Isfahan University of Technology 77

Containers Docker Networking

Overlay Networking

Isfahan University of Technology 78

Containers Docker Networking

Macvlan Networking

Isfahan University of Technology 79

Containers Docker Docker Compose

Docker Compose

Isfahan University of Technology 80

Containers Docker Docker Compose

multi-container Docker applications

We can write a shell script for building all the images, creating
required networks, exporting required variables, running containers
and making the connections, ...

Isfahan University of Technology 81

Containers Docker Docker Compose

Introducing Docker Compose

Compose is a tool for de�ning and running multi-container Docker
applications in an easy way

Compose is an external Python binary that we have to install on
a host running the Docker Engine.
We de�ne multi-container (multi-service) apps in a YAML �le,
pass the YAML �le to the docker-compose binary, and
Compose deploys it via the Docker Engine API.

Manage multiple services
Easy volumes and networking
Alternative controlling commands

Isfahan University of Technology 82

Containers Docker Docker Compose

docker-compose.yml

Isfahan University of Technology 83

Containers Docker Docker Compose

top-level keys in compose.yaml (docker-compose.yml)

version: This de�nes the version of the Compose �le format
(basically the API)

It is always the �rst line at the root of the �le.

services: Each container represents as a service

networks

volumes

con�gs: Allow you to store non-sensitive information, such as
con�guration �les, outside a service’s image or running
containers.

secrets: A secret is a blob of data, such as a password, SSH
private key, SSL certi�cate, or another piece of data that should
not be transmitted over a network or stored unencrypted in a
Docker�le or in your application’s source code

Isfahan University of Technology 84

Containers Docker Docker Compose

Some other Options

Ordering deployment of services (through depends on)

Environment variables for each service (env_�le or key/values
through environment)

building an image from a docker �le (through build)

Isfahan University of Technology 85

Containers Docker Docker Compose

docker-compose Commands

docker-compose –version

docker-compose up (running the project according to the
service speci�cations in yaml �le)

docker-compose down

Isfahan University of Technology 86

Containers Kubernetes

Kubernetes

Isfahan University of Technology 87

Containers Kubernetes Why and What?

What is the problem?

Isfahan University of Technology 88

Containers Kubernetes Why and What?

What is Kubernetes?

Kubernetes is a Greek word meaning the helmsman of a ship. The
name is �tting since the entire container ecosystem is following the

shipping naming convention.

Isfahan University of Technology 89

Containers Kubernetes Why and What?

Infrustructure Abstraction

Isfahan University of Technology 90

Containers Kubernetes Why and What?

Standardizing the Application

Isfahan University of Technology 91

Containers Kubernetes Why and What?

Microservices vs Monolithic

Isfahan University of Technology 92

Containers Kubernetes Why and What?

Uniform Deployment Area

Isfahan University of Technology 93

Containers Kubernetes Why and What?

Health Checking and automatic re-deployment

Isfahan University of Technology 94

Containers Kubernetes Why and What?

Recon�ging the Running Application

Isfahan University of Technology 95

Containers Kubernetes Why and What?

Cluster Management

Isfahan University of Technology 96

Containers Kubernetes Why and What?

What Kubernetes can do?

In a production environment, you need to manage the containers
that run the applications and ensure that there is no downtime

Service discovery and load balancing

Storage orchestration

Automated rollouts and rollbacks

Automatic bin packing

Self-healing

Secret and con�guration management

Isfahan University of Technology 97

Containers Kubernetes Architecture

Kubernetes Architecture

Isfahan University of Technology 98

Containers Kubernetes Architecture

Kubernetes Components

Isfahan University of Technology 99

Containers Kubernetes Architecture

Kubernetes Architecture

A Kubernetes cluster consists of a set of worker machines (called
nodes), controlled by a control plane (called master node(s))

The worker node(s) host the Pods that are the components of
the containerized application workload.

The control plane manages the worker nodes and the Pods in
the cluster.

Isfahan University of Technology 100

Containers Kubernetes Architecture

A Closer look

Isfahan University of Technology 101

Containers Kubernetes Architecture

A Running Application on Kubernetes

Isfahan University of Technology 102

Containers Kubernetes Architecture

Control plane components

The control plane’s components make global decisions about the
cluster (for example, scheduling), as well as detecting and
responding to cluster events.

API server

Cluster store (etcd)

kube-scheduler

kube-controller-manager

cloud-controller-manager

Isfahan University of Technology 103

Containers Kubernetes Architecture

API server

The API server is the front end for the Kubernetes control plane

the gateway to Kubernetes

All requests to list, create, modify, or delete any resources in
the cluster must go through this service

It exposes a REST interface that tools such as kubectl use to
manage the cluster and applications in the cluster

Isfahan University of Technology 104

Containers Kubernetes Architecture

etcd

Consistent and highly-available key value store used as Kubernetes’
backing store for all cluster state.

Isfahan University of Technology 105

Containers Kubernetes Architecture

etcd

It stores all the information on the topology of the cluster:
nodes, pods, controllers, con�gs, secrets, accounts, and others

Everything information we see from running kubectl get
command

does not necessarily have to be installed on the same node as
the other Kubernetes services

we need more than one etcd server in a production
environment or any environment that needs to be highly
available.

Isfahan University of Technology 106

Containers Kubernetes Architecture

kube scheduler

Control plane component that watches for newly created Pods with
no assigned node, and selects a node for them to run on based on:

individual and collective resource requirements,
hardware/software/policy constraints

a�nity and anti-a�nity speci�cations

quality of service requirements

data locality

Isfahan University of Technology 107

Containers Kubernetes Architecture

kube controller manager

It watches and controls worker nodes, correct number of Pods and
more. It includes some di�erent modules:

Node controller: Responsible for noticing and responding when
nodes go down

Replication Controllers: monitors replication controllers
(replicaset, deployment, job , ...) and the number of alive and
healthy pods, then creates Pods if required to run those tasks to
completion.

Endpoints controller: Populates the Endpoints object (that is,
joins Services and Pods).

Service Account and Token controllers: Create default accounts
and API access tokens for new namespaces.

Isfahan University of Technology 108

Containers Kubernetes Architecture

cloud controller manager

Kubernetes control plane component that embeds cloud-speci�c
control logic, So knows how to interact with cloud provider
resources

If you are running Kubernetes on your own premises, or in a
learning environment inside your own PC, the cluster does not
have a cloud controller manager.

The cloud controller manager lets you link your cluster into
your cloud provider’s API, and separates out the components
that interact with that cloud platform from components that
only interact with your cluster

Isfahan University of Technology 109

Containers Kubernetes Architecture

Node components

kubelet
kubeproxy
container runtime

Isfahan University of Technology 110

Containers Kubernetes Architecture

kubelet

This is responsible for the communication between Master and
worker nodes

Pod Specs are provided to kubelet primarily through the API
server.

This is the �rst and foremost service which uses pod
speci�cations to make sure all of the containers of the
corresponding pods are running and healthy

Isfahan University of Technology 111

Containers Kubernetes Architecture

kubeproxy

It runs as a daemon and is a simple network proxy and load
balancer for all application services running on that particular node.

kube-proxy maintains network rules which allow network
communication to your Pods from network sessions inside or
outside of your cluster.

If the host OS has a network stack that includes packet �ltering
rules, in that case, kube-proxy utilizes them to perform packet
�ltering and routing.
In the absence of these rules, it relies on itself to accomplish
�ltering and routing of packets.

Isfahan University of Technology 112

Containers Kubernetes Architecture

container run-time

The container runtime is responsible for managing and running the
individual containers of a pod.

variouse options: containerd since version 1.9 (by default),
Docker daemon, Other container runtimes, such as rkt or CRI-O

Isfahan University of Technology 113

Containers Kubernetes Architecture

kubectl

A command line tool for communicating with a Kubernetes cluster’s
control plane, using the Kubernetes API.

kubectl run hello-minikube

kubectl cluster-info

kubectl get nodes

Isfahan University of Technology 114

Containers Kubernetes Architecture

Cluster

A set of node machines which are running the containerized
application (worker nodes) or control other nodes (master nodes)

Nodes are physical or virtual machines
Setting up a full-�edged, multi-node Kubernetes cluster isn’t a
simple task, some tools for creating a kubernetes cluster are:

minikube, kubeadm, kind, rancher, Google kubernetes engine,
Amazon Elastic Kubernetes Service

Isfahan University of Technology 115

Containers Kubernetes Architecture

Kind

Kind is an open-source tool for running a Kubernetes cluster locally,
using Docker containers as cluster nodes.

kind create cluster –name=iut-cluster –con�g=iut_cluster.yaml

Isfahan University of Technology 116

Containers Kubernetes Work with Kubernetes

Pods

Pods are the smallest deployable units of computing that you can
create and manage in Kubernetes.

a group of one or more containers, with shared storage and
network resources, and a speci�cation for how to run the
containers

A Pod’s contents are always co-located and co-scheduled, and
run in a shared context

A Pod is similar to a set of containers with shared namespaces
and shared �lesystem volumes.

A Pod has a cluster internal IP by default and the containers in a
Pod can communicate via localhost

Isfahan University of Technology 117

Containers Kubernetes Work with Kubernetes

Creating Pods

Directly: create the pod from its yaml �le
kubectl create -f kubia-manual.yaml

Isfahan University of Technology 118

Containers Kubernetes Work with Kubernetes

Creating Pods

Directly (rarely)
Kubernetes Controllers: Creates pods from templates and
ensures the pods are always kept running.

ReplicaSet, Deployment, Job, DaemonSet, StatefulSet

Isfahan University of Technology 119

Containers Kubernetes Work with Kubernetes

Di�erent containers in a single pod?

Isfahan University of Technology 120

Containers Kubernetes Work with Kubernetes

How to decide wether to split containers into multiple
pods?

Always place containers in separate pods unless a speci�c reason
requires them to be part of the same pod:

Do these containers have to run on the same host?

Do I want to manage them as a single unit?

Do they form a uni�ed whole instead of being independent
components?

Do they have to be scaled together?

Can a single node meet their combined resource needs?

Isfahan University of Technology 121

Containers Kubernetes Kubernetes Controllers

Controllers Operation

Isfahan University of Technology 122

Containers Kubernetes Kubernetes Controllers

Three key parts of Controllers

Label selector: It determines what pods are in the controller’s
scope

replica count: It speci�es the desired number of pods that
should be running

Pod template: It is used when creating new pod replicas

Isfahan University of Technology 123

Containers Kubernetes Kubernetes Controllers

ReplicaSet

A ReplicaSet ensures that a speci�ed number of pod replicas are
running at any given time in the cluster

Isfahan University of Technology 124

Containers Kubernetes Kubernetes Controllers

ReplicaSet yaml �le

Create an object with type replicaset and set the pod speci�cation
from metadata below the template section

Isfahan University of Technology 125

Containers Kubernetes Kubernetes Controllers

Usefull commands

- kubectl create -f replicaset-de�nition.yaml

- kubectl apply -f replicaset-de�nition.yaml

- kubectl replace -f replicaset-de�nition.yaml

- kubectl get replicaset

- kubectl delete replicaset iut-replicaset

- kubectl scale replicas=6 -f replicaset-de�nition.yaml

Isfahan University of Technology 126

Containers Kubernetes Kubernetes Controllers

DaemonSet

A DaemonSet makes sure it creates as many pods as there are
nodes and deploys each one on its own node

DaemonSets run only a single pod replica on each node,
whereas ReplicaSets scatter them around the whole cluster
randomly

Isfahan University of Technology 127

Containers Kubernetes Kubernetes Controllers

Job

You’ll have cases where you only want to run a task that terminates
after completing its work. Job allows you to run a pod whose
container isn’t restarted when the process running inside �nishes
successfully

In the event of a node failure, the pods on that node that are
managed by a Job will be rescheduled to other nodes the way
ReplicaSet pods are.

In the event of a failure of the process itself (when the process
returns an error exit code), the Job can be con�gured to either
restart the container or not.

Isfahan University of Technology 128

Containers Kubernetes Kubernetes Controllers

Job

Isfahan University of Technology 129

Containers Kubernetes Kubernetes Controllers

Deployement

a Deployment is a higher-level concept that manages ReplicaSets
and provides declarative updates to Pods along with a lot of other
useful features.

Create a Deployment to rollout a ReplicaSet

Rollback to an earlier Deployment revision

Scale up the Deployment to facilitate more load

Isfahan University of Technology 130

Containers Kubernetes Kubernetes Controllers

Deployment maxSurge

Determines how many pod instances you allow to exist above the
desired replica count con�gured on the Deploymen

Isfahan University of Technology 131

Containers Kubernetes Kubernetes Controllers

Deployment maxUnavailable

Determines how many pod instances can be unavailable relative to
the desired replica count during the update

Isfahan University of Technology 132

Containers Kubernetes Kubernetes Controllers

StatefulSets

How does one run multiple replicas of a pod and have each pod use
its own storage volume? ReplicaSets create exact copies (replicas)
of a pod; therefore you can’t use them for these types of pods. What
can you use?

The Answer is using StatefulSets

A StatefulSet replaces a lost pod with a new one with the same
identity, whereas a ReplicaSet replaces it with a completely
new unrelated pod

Isfahan University of Technology 133

Containers Kubernetes Kubernetes Controllers

StatefulSets vs Replicaset

Isfahan University of Technology 134

Containers Kubernetes Kubernetes Controllers

Service

When your application is running, so the next question to answer is
how to access it.

each pod gets its own IP address, but this address is internal to
the cluster and not accessible from the outside

To make the pod accessible externally, you’ll expose it by
creating a Service object.

Several types of Service objects exist such as LoadBalancer

Isfahan University of Technology 135

Containers Kubernetes Kubernetes Controllers

Load Balancer Service

Isfahan University of Technology 136

Containers Kubernetes Lifecycle

Init Containers

Init containers are a list of containers to run when the pod starts and
before the pod’s normal containers are started.

When a pod contains more than one container, all the
containers are started in parallel

Init containers run one after the other and must all �nish
successfully before the main containers of the pod are started

Isfahan University of Technology 137

Containers Kubernetes Lifecycle

Init Containers Yaml File

Isfahan University of Technology 138

Containers Kubernetes Lifecycle

Lifecyle hooks

These lifecycle hooks are speci�ed per container, unlike init
containers, which apply to the whole pod. As their names suggest,
they’re executed when the container starts and before it stops.

Post-start hooks: A post-start hook is executed immediately
after the container’s main process is started. The hook is run in
parallel with the main process.

Pre-start hooks: A pre-stop hook is executed immediately
before a container is terminated

Isfahan University of Technology 139

Containers Kubernetes Dashboard

Web Dashboard

A graphical web user interface that its functionality may lag
signi�cantly behind kubectl, which is the primary tool for interacting
with Kubernetes.

Isfahan University of Technology 140

OpenStack Introduction

OpenStack

Isfahan University of Technology 141

OpenStack Introduction

Introduction

OpenStack is a cloud operating system that controls large pools of
compute, storage, and networking resources throughout a
datacenter

Isfahan University of Technology 142

OpenStack Introduction

Introduction

OpenStack is an open source software project originally created by
NASA and Rackspace (now RedHat, IBM, and HP as well as
companies which are dedicated entirely to OpenStack such as
Mirantis, and CloudBase)

It is written in the Python programming language and is usually
deployed on the Linux operating system
Management and provisioning methods:

through APIs: SDK
through dashboard: giving administrators control while
empowering their users to provision resources through a web
interface

Isfahan University of Technology 143

OpenStack Introduction

Architecture

OpenStack is a modular system and is broken up into services (plug
and play components).

Isfahan University of Technology 144

OpenStack Components

Compute

Nova: It provides a way to provision compute instances (aka
virtual servers).

Zun: It provides an OpenStack API for launching and managing
containers backed by di�erent container technologies

Isfahan University of Technology 145

OpenStack Components

Compute Service: Nova

Nova supports creating virtual machines, baremetal servers
(through the use of ironic), and has limited support for system
containers.

Nova runs as a set of daemons on top of existing Linux servers
to provide that service.

we refer to provisioned compute nodes as instances and not
virtual machines

Isfahan University of Technology 146

OpenStack Components

Availability Zones

Availability Zones are an end-user visible logical abstraction for
partitioning a cloud without knowing the physical infrastructure

Availability zones can be used to partition a cloud on arbitrary
factors, such as location (country, datacenter, rack), network
layout and/or power source

Availability zones can only be created and con�gured by an
admin but they can be used by an end-user when creating an
instance

Isfahan University of Technology 147

OpenStack Components

Persistent Storages

Object storage (SWIFT): It is a highly available, distributed,
eventually consistent object store based on the S3 service
available in the Amazon Web Service environment.
Block storage (CINDER): It virtualizes the management of block
storage devices and provides end users with a self service API
to request and consume those resources without requiring any
knowledge of where their storage is actually deployed or on
what type of device

The life cycle of Cinder volumes is maintained independent of
compute instances
volumes may be attached or detached to one or more compute
instances to provide a backing store for �lesystem-based
storage.

Isfahan University of Technology 148

OpenStack Components

Block vs File vs Object Storage

Isfahan University of Technology 149

OpenStack Components

Networking

Networking (Neutron): Neutron is an SDN networking project
that provides an API for creating ports, subnets, networks, and
routers

Load Balancer (Octavia)

DNS Service (Designate)

Isfahan University of Technology 150

OpenStack Components

Shared Services

Keystone (Idendity Service)

Placement (Placement Service): The Compute scheduler
service uses the Placement service to �lter the set of candidate
Compute nodes based on speci�c attributes

Glance: Image Service

Isfahan University of Technology 151

OpenStack Components

Horizon

Horizon is the canonical implementation of OpenStack’s dashboard,
which is extensible and provides a web based user interface to
OpenStack services.

Isfahan University of Technology 152

OpenStack Components

Heat

A Heat template describes the infrastructure for a cloud application
in a text �le that is readable and writable by humans, and can be
checked into version control, di�ed.

Infrastructure resources that can be described include: servers,
�oating ips, volumes, security groups, users, etc.

Isfahan University of Technology 153

OpenStack Components

Flavor

The �avor describes the characteristics of the instantiated image-it
normally represents a number of cores of compute with a given
amount of memory and storage.

all compute in OpenStack is the instantiation of a Glance image
with a speci�ed hardware template, the �avor

Isfahan University of Technology 154

	Virtualization
	What is? and Why?
	Virtualization Concepts
	Virtualization Methods
	Xen case study

	Containers
	Containers Concepts
	Docker
	Kubernetes

	OpenStack
	Introduction
	Components

