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Problem statement
● Goal:

– for a set of processes to coordinate their actions 
or to agree on one or more value

– The computers must be able to do so even where 
there is no fixed master-slave relationship 
between the components

● Example:

– Synchronizing hadoop cluster nodes for doing a 
single task

– leader/master election 

– Use barriers to block processing of a set of nodes 
until a condition is met
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 Failure assumptions and failure 
detectors

● Each pair of processes is connected by reliable 
channels
– although the underlying network components may 

suffer failures, the processes use a reliable 
communication protocol that masks these failures –
for example, by re-transmitting missing or corrupted 
messages

● No process failure implies a threat to the other 
processes’ ability to communicate. 

– This means that none of the processes depends 
upon another to forward messages.

● Processes may fail only by crashing
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Distributed Mutual 
Exclusion
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Critical section problem

● If a collection of processes share a resource 
or collection of resources, then often mutual 
exclusion is required to prevent interference 
and ensure consistency when accessing the 
resources

● In a distributed system, however, neither 
shared variables nor facilities supplied by a 
single local kernel can be used to solve it, in 
general. 

● We require a solution to distributed mutual 
exclusion: one that is based solely on message 
passing



  6 / 73
 

Cloud Computing, Zeinab Zali                                    ECE Department, Isfahan University of Technology 

executing a critical section
● The application-level protocol for executing a 

critical section is as follows:

enter()             // enter critical section – block if necessary

ResourceAccesses()   // access shared resources in critical section

exit() // leave critical section – other processes        
                                  // may now enter
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Essential requirements for 
mutual exclusion
● ME1 (safety): At most one process may execute 

in the critical section (CS) at a time.

● ME2 (liveness): Requests to enter and exit the 
critical section eventually succeed

– Deadlock: involve two or more of the processes 
becoming stuck indefinitely while attempting to enter 
or exit the critical section

– Starvation: the indefinite postponement of entry 
for a process that has requested it  (→ no fairness)

● ME3: ( → ordering): If one request to enter the CS 
happened-before another, then entry to the CS is 
granted in that order (no ME3 → no fairness)
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 Evaluating the performance of 
ME algorithms

● The bandwidth consumed:  it is proportional to 
the number of messages sent in each entry and 
exit operation;

● Delay: the client delay incurred by a process at 
each entry and exit operation;

● Algorithm’s throughput: This is the rate at which 
the collection of processes as a whole can access 
the critical section

– We measure the effect using the synchronization 
delay between one process exiting the critical 
section and the next process entering it; the 
throughput is greater when the synchronization 
delay is shorter.
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Multicast synchronization

● Basic idea: processes that require entry to a 
critical section multicast a request message, 
and can enter it only when all the other 
processes have replied to this message
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Maekawa’s voting algorithm

● A ‘candidate’ process must collect sufficient 
votes to enter (but not all the votes like 
previous multicast method)



Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5   
©  Pearson Education 2012 

Figure 15.6
Maekawa’s algorithm 

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi;
Wait until (number of replies received = K);
state := HELD;

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)
then 

queue request from pi without replying; 
else 

send reply to pi;
voted := TRUE;

end if

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi;

On receipt of a release from pi at pj

if (queue of requests is non-empty)
then 

remove head of queue – from pk, say; 
send reply to pk;
voted := TRUE;

else 
voted := FALSE;

end if
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Maekawa’s voting algorithm

● What is the optimal solution?
– We should minimize K 

–

● It is non-trivial to calculate the optimal sets Ri

– approximation:  place the processes in a           
matrix and let Ri be the union of the row and 
column containing pi .
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Maekawa’s voting properties

✔ This algorithm achieves the safety property, 
ME1

– If it were possible for two processes pi and pj to 
enter the critical section at the same time, then the 
processes in                 would have to have voted 
for both i and j

✗ Unfortunately, the algorithm is deadlock-prone

– Consider three processes, p1 , p2, p3 , with 
V1={p1,p2} , V2 ={p2, p3} and V3 = {p3, p1},  If the 
three processes concurrently request entry to the 
critical section

● p1 replies to itself and hold off p2 , p2 reply to itself 
and hold off p3 , and p3 reply to itself and hold off p1



  14 / 73
 

Cloud Computing, Zeinab Zali                                    ECE Department, Isfahan University of Technology 

Maekawa’s voting properties

✔ We can achieve ME2 and ME3 through 
ordering the requests
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Maekawa’s voting performance

● bandwidth utilization is         messages per 
entry to the critical section

●      messages per exit 
● The total        is less than the 2(N – 1) 

messages required by Ricart and Agrawala’s 
(if N > 4)

● The client delay is the same as that of Ricart 
and Agrawala’s algorithm

– but the synchronization delay is worse: a 
round-trip time instead of a single message 
transmission time.
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Election
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Election in DS

● An algorithm for choosing a unique process 
to play a particular role is called an election 
algorithm

● Examples:
– In central-server algorithm for mutual exclusion, 

the ‘server’ is elected from among the processes 
that need to use the critical section

– Selecting a master between some replica in 
Google File System
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Election applications

● Leader is useful for coordination among 
distributed servers

● Apache Zookeeper
– a centralized service for maintaining configuration 

information, naming, providing distributed 
synchronization, and providing group services

● Google’s Chubby

– Providing lock service for loosely-coupled 
distributed systems
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Election problem
● In a group of processes, elect a Leader to 

undertake special tasks

– And let everyone know in the group about this 
Leader

● What happens when a leader fails (crashes)

– Some process detects this (using a Failure 
Detector!) Then what?

● Election algorithm goal:

– 1. Elect one leader only among the non-faulty 
processes

– 2. All non-faulty processes agree on who is the 
leader
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System Model

● N processes.
● Each process has a unique id.
● Messages are eventually delivered.
● Failures may occur during the election 

protocol.
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Calling election
● Any process can call for an election
● A process can call for at most one election at 

a time.
● Multiple processes are allowed to call an 

election simultaneously.

– All of them together must yield only a 
single leader

● The result of an election should not depend 
on which process calls for it.
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Election algorithm requirements

● A run of the election algorithm must always 
guarantee at the end:

– Safety: For all non-faulty processes p: (p’s 
elected = (q: a particular non-faulty 
process with the best attribute value) or 
Null)

– Liveness: For all election runs: (election run 
terminates) and for all non-faulty 
processes p: p’s elected is not Null
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Election algorithm requirements

● At the end of the election protocol, the non-
faulty process with the best (highest) election 
attribute value is elected.

– Common attribute: leader has highest id
– Other attribute examples: leader has 

highest IP address, or fastest computation 
(lowest computational load), or most disk 
space, or most number of files, etc
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Bully algorithm

● Allows processes to crash during an election, 
although it assumes that message delivery 
between processes is reliable

● The algorithm assumes that the system is 
synchronous

– it uses timeouts to detect a process failure
● The bully algorithm, assumes that each 

process knows which processes have higher 
identifiers, and that it can communicate with 
all such processes
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Bully algorithm
● All processes know other process’ ids
● When a process finds the coordinator has 

failed (via the failure detector):

– if it knows its id is the highest, it elects 
itself as coordinator, then sends a 
Coordinator message to all processes with 
lower identifiers. Election is completed.

– else it initiates an election by sending an 
Election message
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Bully algorithm

– else it initiates an election by sending 
an Election message

● Sends it to only processes that have a 
higher id than itself.

● if receives no answer within timeout, calls 
itself leader and sends Coordinator 
message to all lower id processes. Election 
completed.

● if an answer received however, then there 
is some non-faulty higher process => so, 
wait for coordinator message. If none 
received after another timeout, start a new 
election run.
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Bully algorithm

● A process that receives an Election message 
replies with OK message, and starts its own 
leader election protocol (unless it has already 
done so)
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Bully algorithm Example
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Bully algorithm Example
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Bully algorithm Example
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Bully algorithm Example
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Bully algorithm Example
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Failure during election run
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Failure during election run
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Failure during election run
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Failures and Timeouts
● If failures stop, eventually will elect a leader

● How do you set the timeouts?

● Based on Worst-case time to complete election

– 5 message transmission times if there are no 
failures during the run:

1. Election from lowest id server in group

2. Answer to lowest id server from 2nd highest id 
process

3. Election from 2nd highest id server to highest id

4. Timeout for answers @ 2nd highest id server

5. Coordinator from 2nd highest id server
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Analysis
● Worst-case completion time: 5 message 

transmission times
– When the process with the lowest id in the 

system detects the failure.
● (N-1) processes altogether begin elections, 

each sending messages to processes with 
higher ids.

● i-th highest id process sends (i-1) election 
messages

– Number of Election messages

= N-1 + N-2 + ... + 1 = (N-1)*N/2 = O(N2)
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Analysis

● Best-case
– Second-highest id detects leader failure

– Sends (N-2) Coordinator messages

– Completion time: 1 message transmission time
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impossibility
● Since timeouts built into protocol, in 

asynchronous system model:

– Protocol may never terminate => Liveness 
not guaranteed

– But satisfies liveness in synchronous 
system model where

● Worst-case latency can be calculated = 
worst-case process time + worst-case 
message latency
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Why is Election so Hard?

● Because it is related to the consensus 
problem!

● If we could solve election, then we could 
solve consensus!

● Elect a process, use its id’s last bit as the 
consensus decision

● But since consensus is impossible in 
asynchronous systems, so is election
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Consensus
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What is the problem

● problems of agreement:
– the problem is for processes to agree on a 

value after one or more of the processes has 
proposed what that value should be.
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Three classic problem

● C: Consensus
● BG: Byzantine general problem
● IC: Interactive consistency
● Once we solve one of these problems, 

another ones can be solved through the first 
one
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Solving one of 3 problems 
from one another’s solution 

● IC from BG
● BG from IC
● C from IC
● IC from C
● BG from C
● C from BG
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Consensus Problem 
definition
● every process pi begins in the undecided 

state and proposes a single value vi , drawn 
from a set D ( i = 1, 2, …, N ).

● The processes communicate with one 
another, exchanging values.

● Each process then sets the value of a 
decision variable, di 

● In doing so it enters the decided state, in 
which it may no longer change di( i = 1, 2,.., 
N )
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Consensus solution 
requirement

● Termination: Eventually each correct process 
sets its decision variable.

● Agreement: The decision value of all correct 
processes is the same: if pi and pj are correct 
and have entered the decided state, then di 
= dj ( i, j = 1, 2,..,N ).

● Integrity: If the processes (correct or not) all 
proposed the same value, then any correct 
process in the decided state has chosen that 
value.
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Consensus in a system with 
failure

● Consensus is possible to solve in a 
synchronous system where message delays 
and processing delays are bounded

● Consensus is impossible to solve in an 
asynchronous system where these delays are 
unbounded
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Consensus in a 
synchronous system
● The algorithm uses only a basic multicast 

protocol. 
● It assumes that up to f of the N processes 

exhibit crash failures.
● To reach consensus, each correct process 

collects proposed values from the other 
processes.

● The algorithm proceeds in f + 1 rounds, in 
each of which the correct processes multicast 
the values between themselves
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Consensus in a 
synchronous system
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Proof (agreement and 
integrity after f+1 rounds)

● The duration of a round is limited by setting a 
timeout based on the maximum time for a 
correct process to multicast a message.
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Paxos
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Paxos

● Paxos is an algorithm that is used to achieve 
consensus among a distributed set of 
computers that communicate via an 
asynchronous network. 

● One or more clients proposes a value to 
Paxos and we have consensus when a 
majority of systems running Paxos agrees on 
one of the proposed values
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Paxos liveness

● Paxos won’t try to specify precise liveness 
requirements. 

● However, the goal is to ensure that some 
proposed value is eventually chosen and, if a 
value has been chosen, then a process can 
eventually learn the value
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Paxos application
● The most common use of Paxos is in 

implementing replicated machines, such as 
chunk servers in GFS
– To ensure that replicas are consistent, 

incoming operations must be processed in the 
same order on all systems.

– Each of the servers will maintain a log that is 
sequenced identically to the logs on the other 
servers. 

– A consensus algorithm will decide the next 
value that goes on the log. 

– Then, each server simply processes the log in 
order and applies the requested operations.
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Paxos roles

● The nodes in paxos have three roles

– Proposers
– Acceptors
– Learners

● Paxos nodes may take multiple roles, even all 
of them

● Paxos is a two phase algorithm
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Phase Promise

● Proposer wants to propose a certain value

– It sends prepare (IDp) to a majority or all of the 
acceptors (IDs must be unique)

● If timeout, retry with a new one (a greater one)

ID = timestamp+pid;   

send PREPARE(ID)

● Acceptor recieves a prepare message for IDp

             Is this ID bigger than any round I have previously received?
             If yes
                    store the ID number, max_id = ID
                    respond with a PROMISE message
             If no
                    do not respond (or respond with a "fail" message)
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Phase Accept

● If a proposer received a PROMISE message from 
the majority of acceptors, it now has to tell the 
acceptors to accept that proposal. If not, it has to 
start over with another round of Paxos.

PROPOSE(ID, VALUE)

● The acceptor accepts the proposal if the ID 
number of the proposal is still the largest one 
that it has seen.

      Is the ID the largest I have seen so far, max_id == N?
      if yes
           reply with an ACCEPTED message & send ACCEPTED(ID,    
           VALUE) to all learners
      if no
           do not respond (or respond with a "fail" message)



  58 / 73
 

Cloud Computing, Zeinab Zali                                    ECE Department, Isfahan University of Technology 

Contention

proposer

acceptor

acceptor

acceptor

proposer

time
prepare(5)

prepare(6)

promise(5)

promise(6)

propose(5)

Fail 5

Prepare(7)

propose(6)

Fail 5

acc 6

Fail 6

promise(7)

prepare(8)
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Fixing the protocol (I)

● acceptor receives a PREPARE(ID) message:

   is this ID bigger than any round I have previously received?
    if yes
        store the ID number, max_id = ID
        respond with a PROMISE(ID) message
    if no
            did I already accept a proposal?
            if yes
                respond with a PROMISE(ID, accepted_ID,  
                accepted_VALUE) message
            if no
                do not respond (or respond with a "fail" message)
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Fixing the protocol (II)

● proposer receives PROMISE(ID, [VALUE]) 
messages:

     do I have PROMISE responses from a majority of acceptors?
     if yes
          do any responses contain accepted values (from other 
          proposals)?
    if yes
        pick the value with the highest accepted ID
        send PROPOSE(ID, accepted_VALUE) to at least a majority of 
        acceptors
    if no
        we can use our proposed value
        send PROPOSE(ID, VALUE) to at least a majority of acceptors
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Failure analysis

● Suppose failure of each of the players in 
different phases and analyze how the 
algorithm handle it
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Chubby
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Chubby Goals

● Main Intention: Chubby is a distributed lock 
service intended for advisory coarse-grained 
synchronization of activities within Google’s 
distributed systems;

● The primary goals: reliability, availability to a 
moderately large set of clients, and easy-to-
understand semantics;

● The secondary goals: throughput and storage 
capacity
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applications

● Google File System uses a Chubby lock to 
appoint a GFS master server

● Bigtable uses Chubby in several ways: 
– to elect a master
– to allow the master to discover the servers it 

controls
– to permit clients to find the master

● both GFS and Bigtable use Chubby as a well-
known and available location to store a small 
amount of meta-data; 
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Chubby Design
● A Chubby cell consisting of some replicas 

(standard is 5), one of them is elected as the 
master. Clients c1 , c2 , . . . , cn communicate 
with the master using RPCs
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Chubby Design

● Chubby replicas use asynchronous Paxos algorithm 
to elect a new master (master lease) when the 
current one fails

● Clients find the master by sending master 
location requests to the replicas listed in the 
DNS.
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Chubby Design

● Clients use RPCs to request services from the 
master. 

– When a master receives a write request, it 
propagates the request to all replicas and 
waits for a reply from a majority of replicas 
before responding. 

– The master responds without consulting the 
replicas when receiving a read request.
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Chubby components

● Locks and Sequencers: Each Chubby file and 
directory can act as a reader-writer lock
– either one client handle may hold the lock in 

exclusive (writer) mode, or any number of 
client handles may hold the lock in shared 
(reader) mode. 

● API: Clients see a Chubby handle as a pointer 
to an opaque structure that supports various 
operations. Handles are created only by 
Open(), and destroyed with Close()
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Zookeeper
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Zookeeper Goals

● ZooKeeper is a distributed coordination 
service with this goals:
– Simplicity: With the help of a shared 

hierarchical namespace, it coordinates.  it is 
organized as same as the standard file system 
with znodes.

– Reliability: The system keeps performing, even 
if more than one node fails.

– Speed: In the cases where ‘Reads’ are more 
common, it runs with the ratio of 10:1.

– Scalability: By deploying more machines, the 
performance can be enhanced.
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Zookeeper Goals
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Zookeeper Architecture
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Companies Using 
ZooKeeper

● Yahoo
● Hadoop and HBase
● Facebook
● eBay
● Twitter
● Netflix
● Zynga
● Nutanix


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Figure 15.6 Maekawa’s algorithm – part 1
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

