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ME 555 Intermediate Dynamics 
Lagrange's Equations Examples 
 
 
Example #1 
 
 The system at the right consists of two 
bodies, a slender bar B and a disk D, moving 
together in a vertical plane.  As B rotates 
about O, D rolls without slipping on the fixed 
circular outer surface.  The length of B is , 
the radius of D is r , and the radius of the 
outer surface is R .  The mass of the bar and 
disk are both m .  The system is driven by the 
torque ( )M t . 
 
Equation of Motion 
 
 Using θ  as the single generalized coordinate, the equation of motion of the system 
may be found from Lagrange's equation 
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To express L  in terms of θ  and θ  only, we can use the concept of instantaneous centers to 
write Pv rθ φ= = − .  Using this equation to remove φ  from the Lagrangian gives 
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The generalized active force Fθ  and the derivatives of the Lagrangian can then be 
calculated as 
 

 ( ) ( )BF M k M k k M tθ ω
θ
∂

= ⋅ = ⋅ =
∂

 

 211
6

L m θ
θ
∂

=
∂

 211
6

d L m
dt

θ
θ
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

 

 3
2

L mg Sθθ
∂

= −
∂

 

 
Substituting into Lagrange's equation (1.1) gives the equation of motion 
 
 2 311

6 2 ( )m mg S M tθθ + =  
 
 
Example #2 – Double Pendulum 
 
 The figure to the right shows a double 
pendulum in a vertical plane with driving 
torques at the joints.  The two uniform 
slender links are assumed to be identical 
with mass m  and length .  The system has 
two degrees of freedom described by the 
generalized coordinate set 1 2( , )θ θ . 
 
 
Equation of Motion 
 
 Using 1θ  and 2θ  as the two generalized coordinates, the equations of motion of the 
system may be found from Lagrange's equations 
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Kinematics 
 
 Using the concept of relative velocity, the velocities and squares of velocities of the 
mass centers of the two links may be written as 
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Kinetic Energy 
 
 The kinetic energy of the system may then be written 
 
 1 2K K K= +  
 
where 
 ( )2 2 2 2 21 1 1 1

1 1 1 12 2 3 6OK I m mθ θ θ= = =  (fixed axis rotation)  
  (general plane motion) 
 
 
 
 
Potential Energy 
 
 Assuming the datum is level with the point O, the potential energy of the system can 
be written 
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Lagrangian  L K V= −  
 
 2 2 2 2 2 32 1 1 1
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Generalized Forces 
 
 The generalized forces associated with the driving torques are 
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Derivatives of Lagrangian 
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Substituting into Lagrange's equations gives the following equations of motion 
 
 ( ) ( ) ( )2 2 2 2 34 1 1

1 2 1 2 2 1 2 1 1 23 2 2 2 ( ) ( )m m C m S mg S M t M tθ θ θ− −+ − + = −  (1.2) 

 ( ) ( ) ( )2 2 2 21 1 1 1
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This is a coupled set of nonlinear differential equations of motion for the double 
pendulum. 
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Example – Double Pendulum with Springs and Dampers 
 
 The figure at the right shows a double 
pendulum as in the above example with the 
driving torques replaced with a set of springs 
and dampers.  The equations of motion of this 
system is easily derived using the results from 
the previous example given that 
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Substituting these results into the equations (1.2) and (1.3) gives 
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This is a set of two simultaneous nonlinear differential equations of motion of the double 
pendulum with springs and dampers at the connecting joints. 
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