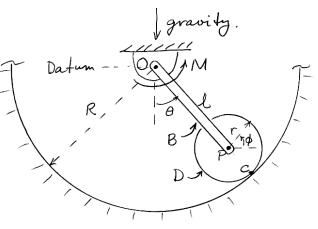
ME 555 Intermediate Dynamics Lagrange's Equations Examples

Example #1

The system at the right consists of two bodies, a slender bar *B* and a disk *D*, moving \leq together in a vertical plane. As *B* rotates about *O*, *D* rolls without slipping on the fixed circular outer surface. The length of *B* is ℓ , the radius of *D* is *r*, and the radius of the outer surface is *R*. The mass of the bar and disk are both *m*. The system is driven by the torque M(t).



Equation of Motion

Using θ as the single generalized coordinate, the equation of motion of the system may be found from Lagrange's equation

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = F_{\theta}$$
(1.1)

where

$$L = K - V = K_B + K_D - V_B - V_D$$

$$K_{D} = \frac{1}{2} \mathcal{Q}_{D} \cdot \mathcal{H}_{C} = \frac{1}{2} I_{C} \dot{\phi}^{2} \qquad \text{(fixed axis rotation)}$$
$$= \frac{1}{2} (\frac{1}{2} m r^{2} + m r^{2}) \dot{\phi}^{2}$$
$$= \left[\frac{3}{4} m r^{2} \dot{\phi}^{2} \right]$$
$$K_{B} = \frac{1}{2} \mathcal{Q}_{B} \cdot \mathcal{H}_{O} = \frac{1}{2} I_{O} \dot{\theta}^{2} \qquad \text{(fixed axis rotation)}$$
$$= \frac{1}{2} (\frac{1}{3} m \ell^{2}) \dot{\theta}^{2}$$
$$= \left[\frac{1}{6} m \ell^{2} \dot{\theta}^{2} \right]$$

$$V = V_D + V_B = -mg\ell C_\theta - \frac{1}{2}mg\ell C_\theta = \boxed{-\frac{3}{2}mg\ell C_\theta}$$

To express *L* in terms of θ and $\dot{\theta}$ only, we can use the concept of instantaneous centers to write $v_P = \ell \dot{\theta} = -r\dot{\phi}$. Using this equation to remove $\dot{\phi}$ from the Lagrangian gives

$$L = \frac{11}{12}m\ell^2\dot{\theta}^2 + \frac{3}{2}mg\ell C_{\theta}$$

The generalized active force F_{θ} and the derivatives of the Lagrangian can then be calculated as

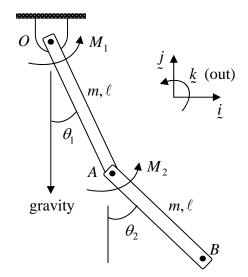
$$F_{\theta} = M \, \underline{k} \cdot \frac{\partial}{\partial \dot{\theta}} (\omega_{B}) = M \, \underline{k} \cdot \underline{k} = M(t)$$
$$\frac{\partial L}{\partial \dot{\theta}} = \frac{11}{6} m \ell^{2} \dot{\theta} \qquad \qquad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \frac{11}{6} m \ell^{2} \ddot{\theta}$$
$$\frac{\partial L}{\partial \theta} = -\frac{3}{2} m g \, \ell S_{\theta}$$

Substituting into Lagrange's equation (1.1) gives the equation of motion

 $\frac{11}{6}m\ell^2\ddot{\theta} + \frac{3}{2}mg\ell S_{\theta} = M(t)$

Example #2 – Double Pendulum

The figure to the right shows a double pendulum in a vertical plane with driving torques at the joints. The two uniform slender links are assumed to be identical with mass *m* and length ℓ . The system has two degrees of freedom described by the generalized coordinate set (θ_1, θ_2) .



Equation of Motion

Using θ_1 and θ_2 as the two generalized coordinates, the equations of motion of the system may be found from Lagrange's equations

Kinematics

Using the concept of relative velocity, the velocities and squares of velocities of the mass centers of the two links may be written as

$$\begin{aligned} y_{G_1} &= y_O + y_{G_1/O} = \frac{1}{2} \ell \dot{\theta}_1 \, \underline{e}_{\theta_1} \\ y_{G_2} &= y_A + y_{G_2/A} = y_O + y_{A/O} + y_{G_2/A} = \ell \dot{\theta}_1 \, \underline{e}_{\theta_1} + \frac{1}{2} \ell \dot{\theta}_2 \, \underline{e}_{\theta_2} \\ v_{G_1}^2 &= y_{G_1} \cdot y_{G_1} = \frac{1}{4} \ell^2 \dot{\theta}_1^2 \\ v_{G_2}^2 &= y_{G_2} \cdot y_{G_2} = \ell^2 \dot{\theta}_1^2 + \frac{1}{4} \ell^2 \dot{\theta}_2^2 + 2 \left(\frac{1}{2} \ell^2 \dot{\theta}_1 \dot{\theta}_2 \right) \left(\underline{e}_{\theta_1} \cdot \underline{e}_{\theta_2} \right) = \ell^2 \dot{\theta}_1^2 + \frac{1}{4} \ell^2 \dot{\theta}_2^2 + \ell^2 \dot{\theta}_1 \dot{\theta}_2 C_{2-1} \end{aligned}$$

Kinetic Energy

The kinetic energy of the system may then be written

$$K = K_1 + K_2$$

where

$$\begin{split} K_{1} &= \frac{1}{2} I_{O} \dot{\theta}_{1}^{2} = \frac{1}{2} \left(\frac{1}{3} m \ell^{2} \right) \dot{\theta}_{1}^{2} = \frac{1}{6} m \ell^{2} \dot{\theta}_{1}^{2} & \text{(fixed axis rotation)} \\ K_{2} &= \frac{1}{2} m \nu_{G_{2}}^{2} + \frac{1}{2} I_{G_{2}} \dot{\theta}_{2}^{2} & \text{(general plane motion)} \\ &= \frac{1}{2} m \ell^{2} \dot{\theta}_{1}^{2} + \frac{1}{8} m \ell^{2} \dot{\theta}_{2}^{2} + \frac{1}{2} m \ell^{2} \dot{\theta}_{1} \dot{\theta}_{2} C_{2-1} + \frac{1}{24} m \ell^{2} \dot{\theta}_{2}^{2} \\ &= \frac{1}{2} m \ell^{2} \dot{\theta}_{1}^{2} + \frac{1}{6} m \ell^{2} \dot{\theta}_{2}^{2} + \frac{1}{2} m \ell^{2} \dot{\theta}_{1} \dot{\theta}_{2} C_{2-1} \end{split}$$

Potential Energy

Assuming the datum is level with the point O, the potential energy of the system can be written

$$V = V_1 + V_2 = -\frac{1}{2}mg\ell C_1 - mg\left(\ell C_1 + \frac{1}{2}\ell C_2\right) = -\frac{3}{2}mg\ell C_1 - \frac{1}{2}mg\ell C_2$$

<u>Lagrangian</u> L = K - V

$$L = \frac{2}{3}m\ell^2\dot{\theta}_1^2 + \frac{1}{6}m\ell^2\dot{\theta}_2^2 + \frac{1}{2}m\ell^2\dot{\theta}_1\dot{\theta}_2C_{2-1} + \frac{3}{2}mg\ell C_1 + \frac{1}{2}mg\ell C_2$$

Generalized Forces

The generalized forces associated with the driving torques are

$$\begin{split} F_{\theta_1} = & \left(M_1 \, \underbrace{k} \cdot \frac{\partial \underline{\omega}_1}{\partial \dot{\theta}_1} \right) + \left(-M_2 \, \underbrace{k} \cdot \frac{\partial \underline{\omega}_1}{\partial \dot{\theta}_1} \right) + \left(M_2 \, \underbrace{k} \cdot \frac{\partial \underline{\omega}_2}{\partial \dot{\theta}_1} \right) = \underbrace{M_1 - M_2}_{F_{\theta_2}} \\ F_{\theta_2} = & \left(M_1 \, \underbrace{k} \cdot \frac{\partial \underline{\omega}_1}{\partial \dot{\theta}_2} \right) + \left(-M_2 \, \underbrace{k} \cdot \frac{\partial \underline{\omega}_1}{\partial \dot{\theta}_2} \right) + \left(M_2 \, \underbrace{k} \cdot \frac{\partial \underline{\omega}_2}{\partial \dot{\theta}_2} \right) = \underbrace{M_2}_{I_1} \end{split}$$

Derivatives of Lagrangian

$$\begin{aligned} \frac{\partial L}{\partial \dot{\theta}_{1}} &= \frac{4}{3}m\ell^{2}\dot{\theta}_{1} + \frac{1}{2}m\ell^{2}\dot{\theta}_{2}C_{2-1} \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}_{1}}\right) &= \frac{4}{3}m\ell^{2}\ddot{\theta}_{1} + \frac{1}{2}m\ell^{2}C_{2-1}\ddot{\theta}_{2} - \frac{1}{2}m\ell^{2}\dot{\theta}_{2}\left(\dot{\theta}_{2} - \dot{\theta}_{1}\right)S_{2-1} \\ \frac{\partial L}{\partial \dot{\theta}_{2}} &= \frac{1}{2}m\ell^{2}C_{2-1}\dot{\theta}_{1} + \frac{1}{3}m\ell^{2}\dot{\theta}_{2} \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}_{2}}\right) &= \frac{1}{2}m\ell^{2}C_{2-1}\ddot{\theta}_{1} + \frac{1}{3}m\ell^{2}\ddot{\theta}_{2} - \frac{1}{2}m\ell^{2}\dot{\theta}_{1}\left(\dot{\theta}_{2} - \dot{\theta}_{1}\right)S_{2-1} \\ \frac{\partial L}{\partial \theta_{1}} &= \frac{1}{2}m\ell^{2}\dot{\theta}_{1}\dot{\theta}_{2}S_{2-1} - \frac{3}{2}mg\ell S_{1} \\ \hline \frac{\partial L}{\partial \theta_{2}} &= -\frac{1}{2}m\ell^{2}\dot{\theta}_{1}\dot{\theta}_{2}S_{2-1} - \frac{1}{2}mg\ell S_{2} \end{aligned}$$

Substituting into Lagrange's equations gives the following equations of motion

$$\left(\frac{4}{3}m\ell^{2}\right)\ddot{\theta}_{1} + \left(\frac{1}{2}m\ell^{2}C_{2-1}\right)\ddot{\theta}_{2} - \left(\frac{1}{2}m\ell^{2}S_{2-1}\right)\dot{\theta}_{2}^{2} + \frac{3}{2}mg\ell S_{1} = M_{1}(t) - M_{2}(t)$$
(1.2)

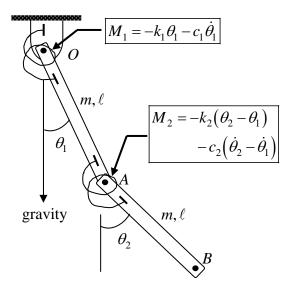
$$\left(\frac{1}{2}m\ell^2 C_{2-1}\right)\ddot{\theta}_1 + \left(\frac{1}{3}m\ell^2\right)\ddot{\theta}_2 + \left(\frac{1}{2}m\ell^2 S_{2-1}\right)\dot{\theta}_1^2 + \frac{1}{2}mg\ell S_2 = M_2(t)$$
(1.3)

This is a *coupled* set of nonlinear differential equations of motion for the double pendulum.

Example – Double Pendulum with Springs and Dampers

The figure at the right shows a double pendulum as in the above example with the driving torques replaced with a set of springs and dampers. The equations of motion of this system is easily derived using the results from the previous example given that

$$M_1 = -k_1\theta_1 - c_1\dot{\theta}_1$$
$$M_2 = -k_2(\theta_2 - \theta_1) - c_2(\dot{\theta}_2 - \dot{\theta}_1)$$



Substituting these results into the equations (1.2) and (1.3) gives

$$\begin{split} \left(\frac{4}{3}m\ell^{2}\right)\ddot{\theta}_{1} + \left(\frac{1}{2}m\ell^{2}C_{2-1}\right)\ddot{\theta}_{2} - \left(\frac{1}{2}m\ell^{2}S_{2-1}\right)\dot{\theta}_{2}^{2} + \frac{3}{2}mg\ell S_{1} \\ &= -k_{1}\theta_{1} - c_{1}\dot{\theta}_{1} + k_{2}\left(\theta_{2} - \theta_{1}\right) + c_{2}\left(\dot{\theta}_{2} - \dot{\theta}_{1}\right) \\ \left(\frac{1}{2}m\ell^{2}C_{2-1}\right)\ddot{\theta}_{1} + \left(\frac{1}{3}m\ell^{2}\right)\ddot{\theta}_{2} + \left(\frac{1}{2}m\ell^{2}S_{2-1}\right)\dot{\theta}_{1}^{2} + \frac{1}{2}mg\ell S_{2} = -k_{2}\left(\theta_{2} - \theta_{1}\right) - c_{2}\left(\dot{\theta}_{2} - \dot{\theta}_{1}\right) \end{split}$$

or

$$\frac{\left(\frac{4}{3}m\ell^{2}\right)\ddot{\theta}_{1}+\left(\frac{1}{2}m\ell^{2}C_{2-1}\right)\ddot{\theta}_{2}-\left(\frac{1}{2}m\ell^{2}S_{2-1}\right)\dot{\theta}_{2}^{2}+\frac{3}{2}mg\ell S_{1} + \left(c_{1}+c_{2}\right)\dot{\theta}_{1}-c_{2}\dot{\theta}_{2}+\left(k_{1}+k_{2}\right)\theta_{1}-k_{2}\theta_{2}=0}$$

$$\frac{\left(\frac{1}{2}m\ell^{2}C_{2-1}\right)\ddot{\theta}_{1}+\left(\frac{1}{3}m\ell^{2}\right)\ddot{\theta}_{2}+\left(\frac{1}{2}m\ell^{2}S_{2-1}\right)\dot{\theta}_{1}^{2}+\frac{1}{2}mg\ell S_{2} + c_{2}\left(\dot{\theta}_{2}-\dot{\theta}_{1}\right)+k_{2}\left(\theta_{2}-\theta_{1}\right)=0$$
(1.4)
$$(1.4)$$

This is a set of *two simultaneous nonlinear differential equations of motion* of the double pendulum with springs and dampers at the connecting joints.