دانشگاه صنعتی اصفهان ، دانشکده مهندسی مواد

تمرین سری چهارم شکل دادن فلزات، تاریخ تحویل: ----۹۹

1. Consider a **12**-cm diameter thin wall tube with **2** mm thick wall with closed ends made from steel with a tensile yield strength of **280** MPa. Apply a compressive load of **48** kN and a torque of **5.2** N.m to the ends. What internal pressure is required to cause yielding according to (a) the Tresca criterion and (b) the von Mises criterion? What is the percentage of difference?

- 2. A thin-wall tube is subjected to combined tensile and torsional loading. Find the relationship between the axial stress σ , the shear stress τ , and the tensile yield stress Y to cause yielding according to (a) the Tresca criterion, (b) the von Mises criterion.
- 3. Consider a plane-strain compression test with a compressive load **Fy**, a strip width **W**, an indenter width **b**, and a strip thickness **t**. Using the von Mises criterion, find
 - a) $\bar{\epsilon}$ as a function of ϵ_y ,
 - **b**) $\overline{\sigma}$ as a function of σ_y ,
 - c) an expression for the work per volume in terms of ε_y and σ_y ,
 - **d**) an expression in the form of $\sigma_y = f(K, \epsilon_y, n)$ assuming $\overline{\sigma} = K \overline{\epsilon}^n$.

- 4. A material yields under a biaxial stress state, $\sigma_1 = -(1/2)\sigma_2$, $\sigma_3 = 0$.
 - a) Assuming the von Mises criterion, find $d\varepsilon_2/d\varepsilon_3$.
 - **b)** What is the ratio of $\tau_{\text{max}}/\sigma_{\text{Y}}$ at yielding?
- 5. A material is subjected to stresses in the ratio σ_1 , $\sigma_2 = 0.4 \sigma_1$, and $\sigma_3 = -0.7 \sigma_1$. Find the ratio of σ_1/Y , $(Y = \sigma_Y)$ at yielding using (a) the Tresca criterion and (b) the von Mises criterion.

 2 - برای حالات تنشی زیر نسبت تنش موثر $\overline{\sigma}$) را به تنش برشی ماکزیمم $\overline{\tau}$) با فرض اینکه ماده در شرایط تسلیم فن میزز قرار دارد بدست آورید. (با استفاده از حالت تنشهای اصلی در هر حالت) الف- کشش تک محوری ب کشش کرنش صفحه ای ب کشش کرنش صفحه ای ج- برش خالص ج- برش خالص دد تنش ۲ بعدی بصورت $\sigma_{2}=0$ و $\sigma_{3}=1/4$ σ_{1} و $\sigma_{3}=1/2$ $\sigma_{1}=0$ $\sigma_{3}=1/2$ $\sigma_{1}=0$ $\sigma_{2}=0$ و $\sigma_{3}=1/2$ $\sigma_{1}=0$ $\sigma_{3}=1/2$ $\sigma_{3}=0$ $\sigma_{4}=0$ $\sigma_{5}=0$ $\sigma_{5}=0$ $\sigma_{5}=0$ $\sigma_{5}=0$ $\sigma_{5}=0$