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Abstract

A stochastic model for the evolution of DO and BOD components along a river with independent BOD point inputs has been
developed. The model examines the case in which the initial conditions and the concentrations of the inputs are affected by uncer-
tainty. The uncertain quantities are modelled as random variables, for which any kind of probability distribution can be adopted.
The possibility of separately analysing the different components of BOD (e.g., CBOD and NBOD) is included. A semi-analytical
expression for the joint probability density function (pdf) of the concentrations is derived. The application of this relationship
greatly reduces the computation efforts compared to Monte-Carlo methods. A procedure for the analytical determination of the

concentration moments is also described.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most important anthropogenic impacts on
the environment is the disposal of wastes that originate
from human activities. Among liquid wastes, wastewa-
ters contaminated by biodegradable pollutants consti-
tute a common by-product of both civil settlements
and industrial facilities. This class of substances is
known as biochemical oxygen demand (BOD), as it is
made up of carbonaceous and nitrogenous matter that
is oxidized by aerobic microorganisms, resulting in a
deficit in the concentration of dissolved oxygen (DO)
in the water body. Since small quantities of such
contaminants are often present even in pristine environ-
ments, the discharge of BOD contaminated wastewaters
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into natural rivers has become a consolidated habit.
However, excessive BOD loads are detrimental for the
quality of river water, as the resulting low DO concen-
tration makes the river unsuitable for the life of flora
and fauna. Consequently, a number of models for the
prediction of water quality modifications due to BOD
discharges have been formulated.

The first models, starting from the basic work by
Streeter and Phelps [1], adopted a deterministic
approach. The main feature of deterministic models is
that all the characteristics of the system are considered
to be known, that is, boundary and initial conditions
and model parameters are assigned a unique value,
which is considered to be exact. The value of contami-
nant concentration C along the river at any time can
then be computed. However, it is commonly recognized
that there are many sources of uncertainty that affect
contaminant dynamics. This uncertainty is mainly due
to three aspects: firstly, the natural heterogeneity of real
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rivers is often difficult to synthesize in a single value of a
parameter, and uncertainty on the values of initial and
boundary conditions (e.g., source terms) is often pres-
ent. Secondly, calibration measurements that are used
for the estimation of the values of parameters are always
affected by experimental errors. Finally, simple models
can be inadequate to describe the complexity of the
actual physical phenomena that occur in rivers.

In order to consider these approximations, probabi-
listic methods have been developed over the last two
decades, that describe the uncertain initial and boundary
conditions and parameters as random variables or sto-
chastic processes. These kinds of models can be grouped
into three main typologies: first-order error analysis,
Monte-Carlo methods, and stochastic differential equa-
tions. First-order error analysis is a simple approach
that gives an estimate of the variance of the concentra-
tion as a function of the moments of the uncertain
parameters (e.g., [2-4]). The limit of this approach is
that its results are not valid for non-linear models and
that only the concentration variance is provided. The
Monte-Carlo method is a popular numerical technique
that is often used to evaluate the probability density
function (pdf) of the concentration C (e.g., [2,5-7]);
however, it often requires great computational efforts,
and its results are generally valid only for the specific
simulated case. Stochastic differential equations derive
from deterministic models in which model parameters,
initial and boundary conditions are described by ran-
dom variables or stochastic processes [8,9]. Even though
this approach implies greater analytical difficulties than
the previous methods, it allows—at least for simple
models—analytic expressions to be obtained for the
pdf and moments of the concentrations (e.g., [10-19]).
A review on the various applications of stochastic mod-
els to contaminant fate problems can be found in [20].

This paper describes a stochastic model for the study
of the evolution of DO and BOD components in a river
with BOD point inputs. Such inputs can represent dis-
charges from wastewater treatment plants or industrial
facilities, as well as small, polluted tributaries. The case
in which the main sources of uncertainty are the BOD
concentration of the inputs and the concentrations of
both BOD and DO at the initial section of the modelled
reach is addressed. The uncertainties due to oversimpli-
fications of the actual physical processes are not
addressed. This model represents the extension of a pre-
vious work [20] in which only the total BOD evolution
was described, and it is based on a system of stochastic
differential equations with random boundary condi-
tions. The model allows (i) any kind of probabilistic
distribution of the random inputs to be chosen, (ii)
semi-analytical expressions of the pdf of the BOD and
DO concentrations to be obtained, and (iii) different
types of BOD components (e.g., carbonaceous and
nitrogenous BOD) to be considered. The possibility of

choosing any statistical distribution for the random con-
centrations is important because greater flexibility—
with respect to the often adopted Gaussian distribu-
tion—is thus obtained. The semi-analytical solution
consists of a multiple integral, which can be evaluated
through numerical methods (when the analytical resolu-
tion is not attainable) in a very fast way. Finally, it can
be important to separately analyse the different classes
of substances (e.g., carbonaceous and nitrogenous) that
BOD is composed of, since they play different roles as
nutrients in the river ecosystem [21,22].

2. Description of the model

The river is approximated as a uniform, steady, tur-
bulent open channel flow with constant discharge, Q,
and mean velocity, U. A reference axis, x, that coincides
with the stream direction, is defined. It is assumed that
the effects of dispersion are negligible compared with
those of advection and reactions, so that the river can
be modelled as a plug-flow system [21]. If a Lagrangian
point of view is adopted, it is possible to follow a generic
slice 2 of infinitesimal width as it moves along the
stream; let = x/U be the travel time of Q, and C(7)
and O(¢) its section-averaged concentrations of BOD
and DO, respectively. Position, x, is therefore replaced
by travel time, ¢. It should be noted that, since disper-
sion is neglected, each flow element can be regarded as
independent of the other elements.

Let us assume that n independent point inputs of
BOD are located at x;, i =1,...,n; for the sake of sim-
plicity, let x; = 0. The BOD concentration of the generic
ith input is assumed to be uncertain, and is therefore
described as a random variable with known pdf p{C)).
In fact, in several cases the concentration of an input
varies in time in a non-deterministic way. This can be
the case, for instance, of a sewer as well as an industrial
discharge. The concentration pdf should be determined
on the basis of the specific production cycle and technol-
ogies. It should be noticed that no restriction is set to the
shape of the pdfs p(C;), and non-Gaussian distributions
can thus be chosen to describe skewed and/or non-neg-
ative valued pdfs.

The initial river concentrations of BOD and DO at
x =0, namely Cy and O,, are also treated as random
variables, with joint pdf p(C, O,t = 0) = po(Cy, Op). The
inputs pA{C;) are considered to be independent, i.e., no
correlation exists among the random variables C;
i=1,...,n. On the contrary, some degree of correlation
generally exists between the initial concentrations Cy and
0Oy. The water discharge Q; of each input is assumed to be
much smaller than the river discharge Q, so that the river
discharge remains constant along the examined reach.

When the element Q passes the ith input, at time
t;=x;/U, it receives a random amount of BOD that
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Fig. 1. Qualitative evolution of BOD (a) and DO (b) concentration
along the stream.

causes an increment A in the river BOD concentration.
This random increment can therefore be related to the
BOD concentration of the input C;

A = %c,- (1)
as long as Q; < Q, and the corresponding pdf p,(4S) of
the random increment can be defined. In this work, the
concentrations C; have therefore been replaced by the
corresponding random jumps AS.

The resulting situation is sketched in Fig. la: when-
ever the element Q passes an input, it “samples” a value
from the pdf p,(4), and eventually undergoes a series of
random jumps.

It is assumed that the river receives no DO from the
inputs. This simplification is acceptable because the DO
concentration is limited by the saturation concentration
Oga¢ (Which is a function of the water temperature, and is
assumed to be constant); as shown by Eq. (1), the DO
input concentration would be further reduced by the
dilution factor Q,/Q < 1. As a result, the river would
receive a very small amount of DO, which can therefore
be neglected. This assumption also leads to a prudential
underestimation of the river DO concentration.

Let us now define the ith subreach as the river seg-
ment between two consecutive inputs located at x; and
Xi+1, that is, x € [x;,x;11]. As the element Q moves along
the ith subreach, BOD and DO undergo a series of bio-
logical reactions and reaeration phenomena that are
described by the well-known model proposed by [1]

dc
o —ki C, (2)
dD
<, =~ ki C—KD, (3)

where the DO is replaced by the river DO deficit
D(t) = Og, — O(2), C(1) is the river BOD concentration,
t is the travel time, k¢ is the first-order decay constant
for the ith subreach, and k! is the reaeration constant
for the ith subreach. Even though simple, the Streeter-
Phelps model is recognized as being able to describe
the main features of BOD and DO dynamics in rivers.
More complex versions of the model have been pro-
posed to consider other possible sources, sinks and
chemical components. An extension of the model that
is considered in this paper (see, e.g., [21,23-25]) is

ac .

5 = kG (4)
dN

CL—Zt):kl.CCJrkﬁVN—lc,."D, (6)

where C(7) and N(¢) are now the carbonaceous (CBOD)
and nitrogenous (NBOD) components of BOD, respec-
tively, and klc and kfv the respective decay constants for
the ith subreach. It should be understood that the total
BOD concentration is now given by the sum of C and N,
whereas in Egs. (2) and (3), the total BOD concentration
is simply given by C. This subdivision can be of interest
because the two species are important as macronutrients
in the stream ecology [21,22]. The extension of the mod-
el to subdivisions into more components—e.g., fast- and
slow-decaying BOD—is straightforward, and is not
shown here.

The qualitative behaviour of DO along a subreach is
shown in Fig. 1b. While the BOD concentration under-
goes a monotonic decay (compare Fig. 1b with a), after
an initial phase of decay the concentration of DO
reaches a minimum (provided that the subreach is long
enough), after which the reaeration process leads to an
asymptotic increase towards the saturation concentra-
tion Ogyy.

The overall dynamics of BOD and DO (i.e., model
(2)—(3)), with the addition of the random source term
(1), can be described by the system of stochastic differen-
tial equations

d);(’) —RXW)+ P, >0 (7)
in which

— . C(t) - —kIC 0
LS l i —k“f]’

Fo = [zi&(; —1)4, ]

where 0(+) is the Dirac delta function, and ?(t) repre-
sents the point source term corresponding to the inputs
att=1t,i=1,...,n. In this paper, it is assumed that the
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input pdfs p,(4€),i=1,...,n and the joint pdf of the ini-
tial concentratlons p(Co, Do) =po(C,D) at t=0 are
known. It should be noticed that the initial concentra-
tions Cy and D, can be correlated. The aim of the paper
is to solve Eq. (7) for the joint probability density func-
tion p(X t) = p(C,D,t) at a generic travel time .

For the case of three chemical components (i.e.,
model (4)—(6)), Eq. (7) holds together with

[C(t) S
X=|No)|, K=| 0 =& o [,
(1) KoK K
[ ST 0(t — 1) A7
Pt) = St —t)aN |,
0

where AS and 4Y are, respectively, the random incre-
ments in CBOD and NBOD due to the ith input,
i=1,...,n. In this case, the input pdfs p,(4S, 4Y) and
the initial pdf p(Cy, No, Do) = po(C, N, D) are assumed
to be known. Since each input discharges both CBOD
and NBOD, the random jumps 4 and 4 are expected
to be correlated.

3. Solutions

The steps to determine the pdf p()_(> ,t) and the
moments of the concentration distribution are presented
in this section. Since, from a mathematical point of view,
model (4)—(6) is similar to the simpler model (2)—(3),
with only the addition of the independent equation (95),
the solutions are derived for the simpler case of two
components. The results for three components are given
more briefly.

3.1. Probability density functions
3.1.1. Two component model
Let us consider the generic point downstream to the

nth input. The formal solution of the linear stochastic
differential Eq. (7) can be written as

= e+ 3 e, ®

D(t) = Dye "+t +CO¢1W+ZAC(/)_]V[’ (9)

j=1

where ¢ > t,, and with

i2
= Zkf(lfﬂ — 1)
=

+5Ln+1kic,](t7 ti71)7 (10)

+ (1 = )k (1 — ti1)

I\)

i—

ij(té-%—l_tf)"’_( — Sk (1 — 1)
l=j
+5i,n+1k;'471(t_ti—l); (11)
quCj — Z q[g'(eﬂ’/.m*dul.m — e i+ )7 (12)
l=j
kC
=y 1)

where §,; is the Kronecker delta function. It should be
noticed that y;; = o; ;= 0.

In order to derive the concentration pdf at a generic
travel time, it is more straightforward to split Egs. (8)
and (9) into two parts, that correspond to two distinct
phases of the travelling of an element Q along the river:
(1) the movement in the subreaches between two consec-
utive inputs and (ii) the passages in correspondence to
the inputs.

Let us first consider the generic ith subreach between
the 7th and the (i + 1)th inputs and define p(C, D, t;) and
p(C,D,tf) as the joint pdf of the BOD and DO deficit
immediately upstream and downstream to the ith input.
In this subreach, the dynamics of C(¢) and D(¢) is deter-
ministic and is governed by Egs. (2) and (3), whose solu-
tion is

—

Y(t) = A(¢) - 70, telth ], (14)
where

t C(th
—>(t) = ) —>0 = ( ' 9

t D(t])
— e*kﬂf*fi) 0 (15)
4 (t) = g (e KE (1) _ e—kfl(tfti)) e—k;’(r—n)

Eq. (14) establishes a determmlstlc link between the up-
strear&> concentration vector, X 0, and the downstream
one, X (¢). It is then possible to write [8]

p(Tz =4

q. (16) can be applied to derive the concentration pdf
at a generic r € [t/,t;,,], given the pdf at # . For
t=1t,, 1n particular, 1t provides the relatlonshlp be-
tween p(X t7) and p(X t;,1), that is, the overall effect
on the concentration pdf of the travelling of Q through
the ith subreach. The introduction of (15) into (16) leads
to

1 — —-1—
|'p(Xo=4 X). (16)

p(C,D,t;,) = el i
. p[cevml , De%it! qu_C (g7 — g%+t tﬂv
(17)
where y;,, o;; and ql.C have been defined by (10), (11),
and (13), respectively.

Eq. (17) provides the desired link between the concen-
tration pdfs at the upstream and downstream ends of the
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ith subreach. A relationship between the two concentra-
tion pdfs at ¢, and 7 is now sought for the second step.
When the element Q passes the ith input, its BOD con-
centration increases by a random quantity 4 which is
extracted from the corresponding distribution p;(4°),
while the DO concentration remains unchanged:

X()=X()+ 4, (18)

in which

A[: ! .
0

The resulting downstream joint pdf is given by the con-
volution of all the possible upstream concentrations to-
gether with all the possible random jumps, that is,

p(c,D,tj)z/OC (C — AS, Dt )p,(AS)dAE. (19)

It is now possible to recursively apply (for i=1,...,n)
Egs. (17) and (19), thus obtaining the analytical solution
at a generic travel time. The solution at the generic ¢ > ¢,
is

Jn Si
p(C,D,t) = gl oinii / - / polfi — A5, i
0 0

pi(A7)d4T - p,(47)d 4], (20)
where
Celii+t j=n,
ﬁ:{(fjHAfH)CV’J”, j=n—1,..1 @)
CqS (et — e%in) + Deliint,  j=n,
hy = Ui = 45,0)g5 (€t — ) + erihyy, - (22)

j=n—1,...,1,

and v;; o;; and ¢¢ are given by (10), (11), and (13),
respectively.

The convolution integrals in Eq. (20) can only be ana-
lytically solved for certain distributions (see [20]). When
analytical resolution is not possible, the numerical reso-
lution of Eq. (20) is very fast, and is generally consider-
ably quicker than the application of a Monte-Carlo
method. This happens because the contribution of the
n inputs is simply evaluated by n convolutions, while
the number of required Monte-Carlo samples would
be equal to ¢”, where ¢ is the number of samples for each
input pdf. Moreover, FFT-based algorithms exist that
are extremely efficient in solving convolution integrals
[26].

3.1.2. Three component model
The case of three substances is analogous: the formal
solution of Eq. (7) at the generic ¢ > ¢, is

C(t) = Coe 1t 4y~ Afeim, (23)
j=1

N(t) = Noe "+ AYe i, (24)
J=1

D(t) = Doye™"' + Cogf, + Noo},
Cc _C N _N
+Y Aor, + Y Aol (25)
J=1 j=1

where 7;, 2, ¢f,, and g are still given by (10)(13), and

i—2

kY (teer — to) + (1 = 8 e (4 — ti1)

=

+ 5Ln+1kf-v_1(t - t,',l), (26)
qu‘\ji - Z quV (e*"f.ul*iul,m — e VT )7 (27)
t=j
@
@ (28)

where 6;; is the Kronecker delta function. It should be
noticed that v;; = 0.

For the ith subreach, the solution of (4)—(6) is still
given by Eq. (14) with

C(7) c(th)
X(0)=|N@ |, Xo=|N@) |,
| D(7) D(t})
[ e Vit 0 0
Z)(t) = 0 e Vit 0 ,
_qlc(e—r,-m _e—%’.m) qﬁv(e_vuiﬁ»l _e—%’.m) e i+l
(29)
where ¢ € [t/,1;,]. The introduction of (29) into (16)
gives
p (X Jlyy) = el e plCeliin Ne'iit,| De%iitt
+ CgE (e — ) 4 Nl (e — &), 1],
(30)

which is analogous to (17).
At the ith input, Eq. (18) still holds with

Z)i = Afv
0

The pdf immediately downstream of the ith input is
therefore given by

p(X .t = // (C— AN —AY.D, )

P47, A7) dA7 d4]. (31)
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Finally, from (30) and (31), the analytical solution for
the joint pdf of the concentrations at ¢ > 7, can be found
as

p(C,N7D,I) — e/t PV et Tt

fo [&n i r& c v
X/ / / / pO[fl_Alagl_Alle]
0 0 0 0

(32)
where f; is still given by Eq. (21), and
Nelit j=n,
gj{(ng—AjYH)e"f-f“, j=n—1,...,1, (33)
quc(e""/lf+1 — e%stl) 4 qu.v (et — e%itl)
+De%i | j=n,
hy =3 (fi1 — 45,,)q5 (el — e) (34)
+ (g — AN ) (e — )
+euthy, j=n—1,... 1

3.2. Moment analysis

3.2.1. Two component model

The linearity of Eq. (7) allows the moments of the
concentration distribution to be obtained. The ‘moments
provide less information than the joint pdf p(X,¢), but
they synthesize the main features of the concentration
distributions and can thus be useful for practical pur-
poses. The method herein described allows the moments
to be analytically derived in a straightforward way.

Egs. (8) and (9) show how each input Al.c and the ini-
tial concentrations Cy and D, give independent contri-
butions to the final concentrations C(¢) and D(¢). In
order to explicit these contributions, Egs. (8) and (9)
can be rewritten as

Clt)y=Ye, + ) Y e, (35)
=1
D(t) :ZDO +ZCO +ZZAJ¢7 (36)
Jj=1
where

_y C .
YCO — C()e H.n+l, YA/( — Aj e Vintl
and

—o C c_C
ZDO = Dye "t ZC() = Co(pl,n’ ZA/C = Aj (pj,n‘

The terms in Egs. (35) and (36) are independent random
variables whose distributions can be evaluated as

p(Yc,) = € py(Coe’t ), (37)
p(Yue) = elmip (ASelnt),  j=1,...,n, (38)

p(ZDO) — eﬂtl.u+1po(Doeofl,nu)7 (39)
1 Co
PZe) =—=ro| — | 40
( Co) Qch,n 0 <§01C,n> ( )
Z —1 —A"C =1 41
p( Af)_¢fnp] (chn y J=L..an, ( )

where  py(C) = [ po(C,D)dD and py(D) = [~
p(C,D)dC are the marginal distributions of C, and
Dy, respectively, and y;,, o and ¢f, are still defined
by (10)—(12).

Since C(¢) and D(¢) are given by the sum of indepen-
dent random variables, their distributions can be found
as the convolution integral of the pdfs defined in (37)—
(41). Let us now define the Laplace transform

LIp(C)) = Pels) = [ plO)e e
0
and recall the well-known theorem [27]
1 s
ZIplaC)) =—Pc(2), (42)
where a is a real number. The application of the Laplace

transform to Egs. (35) and (36), together with (37)—(42),
gives

Pe(s) = Pey(se 1ot) - [ Pclse o), (43)
=1

Jj=

Pp(s) = Pp,(se” ") 'PCO(S(P1C_,,) : HPA/C(S(P,-C,")’ (44)
=1

where y;,, o;;, and (ijJ. are still given by (10)—(12).

Even though the Laplace antitransform of Eqgs. (43)
and (44) can seldom be evaluated, the moments of the
marginal pdfs of C(¢) and D(¢) can be derived, provided
the involved distributions can be Laplace transformed.
First, we recall that

= [ cwnenac =g o )
W= [ Dopo.dn = (-1 69

where uf (¢) and uf(¢) are the jth order non-central mo-
ments of C(7) and D(¢), respectively, at the generic travel
time ?.

It is also possible to derive the corresponding central
moments, m(t), as (e.g., [28])

my = o’ = 1, — i, (47)
my = pty — 3ty + 2483, (48)
my = py — 4y s + 611 — 3pf, (49)
and so on.



F. Boano et al. | Advances in Water Resources 29 (2006) 1341-1350 1347

3.2.2. Three component model

The same passages can be repeated for the case of
three components, thus obtaining the Laplace trans-
forms of the three concentration pdfs. The equation
for P(s) is formally identical to (43), while the other
expressions are
Py(s) = Py, (se™") - [ [ Py (se™), (50)

=1
PD(S) = PDo (Seial'nﬂ) : PCo (SQDIC:H) 'PNU (swjlv,n)
THiPac 505 )Py (s, (51)

J=1
where w;;, ¢, v;;, and @}, are still defined as in (11),
(12), (26), and (27), respectively.
The non-central moments of the concentrations can
be derived according to (45), (46), and

d'P
N _(_1V N
w0 =03

: (52)
5s=0

and the central moments can be evaluated with (47)-
(49).

4. Examples

In this section, the proposed solution has been
applied to a hypothetical stream with a cross-sectionally
averaged velocity U=0.2m/s. The three-component
model was used, and the total BOD was split into its car-
bonaceous and nitrogenous components C and N,
respectively. Two different situations were considered:
first, the case of three independent BOD inputs was ana-
lyzed. The inputs were separated by a constant distance
of 30 km, with the first input located at x; = 0 km. Sec-
ondly, a fourth input was added at 40 km. Each input
was assumed to have a bivariate lognormal distribution
p (A, AN, i=1,...,n, for the random increments [29].
A correlation coefficient p = 0.9 was chosen to consider
the simultaneous discharge of CBOD and NBOD. For
both cases, a trivariate lognormal distribution
po(C, N, D) has been adopted for the in-stream concen-
trations at x=0. Again, a correlation coefficient
p =0.9 between CBOD and NBOD was assumed. The
mean values for each distribution have been summarized
in Table 1, while the same coefficient of variation
CV =0.2 was adopted for all the components of each
distribution. The value Oy, = 11 mg/L for the DO satu-
ration concentration was used; it approximately corre-
sponds to a water temperature of 10 °C. Finally, the
decay rates K =35x10"°s"" and k¥ =2x10"°s"
were chosen for the CBOD and the NBOD, respectively,
while the reaeration rate &' = 10~ s~' was adopted. For
the sake of simplicity, k*, k" and k; were considered to
be constant along the whole examined length of the

Table 1
Locations and mean values of the initial concentrations (po) and of the
random jumps (p1,p2,p3.pa)

x (km) e (mg/L) v (mg/L) tp (mg/L)
Do 0 2 1 2
P 0 4 2 -
D2 30 3 2.5 -
P 40 2 3 -
Pa 60 2 3 -

stream. It should be worth noting that the described
problem could also be solved using a Monte-Carlo
approach, but not without great computational efforts;
for instance, if each component is sampled 10* times
(which is the minimum for a significant statistical anal-
ysis), then a total of 10'® simulations would be required.

Egs. (30) and (31) were recursively applied to find the
pdf of the concentrations of the three chemical compo-
nents along the stream. The joint pdf p(C,N, D) was
evaluated every 1.5 km, and it was used to derive the
marginal distributions and the values of the moments.
The marginal pdfs of the three concentrations at
x = 50 km have been reported in Fig. 2a and b, for the
three and four inputs cases, respectively. These pdfs
can be useful to evaluate the uncertainty in the in-stream
concentration due to the ensemble of all the possible
inputs. The effects of the introduction of the fourth
input at x =40 km can be observed from a comparison
of the two figures: at the considered location, both the
CBOD and, to a greater extent, the NBOD pdfs shifted
towards higher mean concentrations and have increased
their variances, while the DO pdf has shifted towards
lower concentrations without any appreciable modifica-
tion of its variance.

The CBOD evolution along the river is shown in
Fig. 3a and b; the series of jumps and decays described
in the previous sections can be appreciated. The overall
uncertainty in the CBOD concentration is represented
by the 80% confidence interval, that is given by the 0.1
and 0.9 quantiles. It should be noticed that the inputs
act as sources of uncertainty for the CBOD concentra-
tion, since the width of the confidence interval suddenly
increases in correspondence to them. On the other hand,
the uncertainty gradually decreases along each subreach,
since the concentration asymptotically tends to the (cer-
tain) zero value. A comparison of the two figures shows
that the CBOD concentration increased in the central
part of the examined reach, while only small differences
can be observed between the two cases at the end of the
reach, where most of the CBOD had already been oxi-
dized by the microorganisms. It should also be noticed
that the uncertainty was not substantially modified by
the presence of the new input at 40 km.

Fig. 4a and b shows the evolution of NBOD concen-
tration along the stream. The qualitative behaviour is
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Fig. 2. Marginal probability density functions of CBOD (continuous
line), NBOD (dashed line), and DO (dash-dotted line) concentrations
at x = 50 km. Case of three (a) and four (b) point inputs.

similar to that of the CBOD, but the impact of the
added input on the water quality is greater than in the
CBOD case, due to the combined effect of the higher dis-
charged mass and of the slower decay reactions.

The mean DO concentration along the river, with its
confidence interval, has been represented in Fig. 5a and
b. The sequence of DO microbial consumption and rea-
eration is evident; both the mean concentration and the
width of the confidence interval are continuous, but
their spatial derivatives are discontinuous in correspon-
dence to the inputs. It should be noticed how the addi-
tion of the fourth input at x =40 km affects the DO
concentration to a great extent, increasing the overall
mass of nutrients and thus the rate of oxygen consump-
tion by the microorganisms. It should also be observed
that the non-monotonic behaviour of the width of the
confidence interval leads to high uncertainty levels in
correspondence to the local minima, which represent
the most critical points for the water quality.

CBOD (mg/L)

0 20 40 60 80 100 120

(b)

CBOD (mg/L)

1 L L L L L
0 20 40 60 80 100 120

x (km)

Fig. 3. CBOD mean value (continuous line), 0.1 and 0.9 quantiles
(dashed lines) along the stream. Case of three (a) and four (b) point
inputs.

Since the availability of dissolved oxygen is of crucial
importance for an ecosystem, a useful tool for the anal-
ysis of river water quality is the probability Py, that the
DO goes below a critical threshold Oy, or, equivalently,
the probability that the DO deficit exceeds the threshold
value Dy, = (Osar — On)

Pu(t) = /D+0Cp(D, t)dD. (53)

th

This probability can easily be evaluated from the mar-
ginal DO pdf, and it has been represented in Fig. 6 for
the investigated cases. The threshold value Oy, = 8 mg/
L was chosen. The particular, non-trivial shape of these
functions is due to the combined effect of the oxygen
consumption and of the reaeration process. Fig. 6 shows
that the introduction of the fourth input would lead a
long segment of the river to have lower DO concentra-
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Fig. 4. NBOD mean value (continuous line), 0.1 and 0.9 quantiles
(dashed lines) along the stream. Case of three (a) and four (b) point
inputs.

tions than 8 mg/L with Py, ~ 1. The probability Py, can
thus be a useful instrument to support decisions on
water management.

5. Conclusions

A stochastic model for the analysis of the evolution
of the concentrations of DO and BOD components
along a stream has been presented in this paper. Of
the many possible sources of uncertainty that can be
encountered in river water quality problems, the pres-
ence of multiple independent BOD point inputs with
uncertain concentrations has been considered. While
some previous works only considered the Gaussian dis-
tribution for the uncertain parameters, in this work no
restriction about the probability density functions of
the input concentrations was made. This can be useful
when the input concentration pdfs are best described
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Fig. 5. DO mean value (continuous line), 0.1 and 0.9 quantiles (dashed
lines) along the stream. Case of three (a) and four (b) point inputs.
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Fig. 6. Probability for the DO concentration to go below the threshold
concentration Oy, = 8 mg/L. Case of three (continuous line) and four
(dashed line) point inputs.



1350 F. Boano et al. | Advances in Water Resources 29 (2006) 13411350

by skewed distributions. Moreover, non-negative valued
pdfs can be chosen, thus avoiding the problem of the
negative tails of Gaussian distributions with high coeffi-
cients of variation. Correlations among the different
BOD components that are released by each input were
also included.

The joint DO and BOD concentration pdf can be
derived from the proposed semi-analytical expressions.
This joint pdf provides complete knowledge about the
evolution of the concentrations. For instance, the prob-
ability of having a DO concentration below a threshold
level can be inferred, thus determining the actual risk of
critical conditions for the river ecosystem. When the
semi-analytic relationships cannot be analytically evalu-
ated and a numerical resolution is needed, our model
allows to take advantage of the properties of convolu-
tion, which can be quickly solved using FFT-based algo-
rithms. Since each input requires a convolution integral,
the computation time grows linearly with the number of
inputs. When the number of inputs is great, the present
method may be preferred to a Monte-Carlo approach,
for which the computation time exponentially increases
with the number of inputs to be sampled.

A procedure for the evaluation of the moments of
any order has also been presented. This procedure per-
mits analytical expressions to be obtained for the
moments of the concentration pdf, provided the latter
can be Laplace transformed. Even though the moments
provide less information than the joint pdf, the use of
these analytical relationships provides an adequate
description of the problem in a straightforward way.

The proposed examples have shown a possible appli-
cation of the model as a support tool for the analysis of
the overall effect of several point inputs on water qual-
ity. The evaluation of both the concentrations and the
corresponding uncertainty of the DO and BOD compo-
nents was attained. The adoption of a stochastic
approach thus provides a practical method to derive
information on the overall uncertainty, which is partic-
ularly useful to foresee possible events with low DO
concentrations.
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