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Abstract

The physical laws governing the interaction of biochemical oxygen demand (BOD), and dissolved oxygen (DO) in a water body

are expressed as coupled one-dimensional, transient partial di�erential equations and solved by the Green element method (GEM).

The GEM has been developed as a ¯exible, hybrid numerical approach, that utilizes the ®nite element methodology to achieve

optimum, inter-nodal connectivity in the problem domain, while at the same time retaining the elegant second order accurate

formulation of the boundary element method (BEM). While overcoming some of the limitations of classical boundary element

approach, GEM guarantees a sparsely populated coe�cient matrix, which is easy to handle numerically. We test the reliability of

GEM by solving a one-dimensional mass transport model that simulates BOD±DO dynamics in a stream. The results compare

favorably with those obtained analytically, and by the ®nite element method (FEM) Galerkin procedure. Ó 2000 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

As the environment becomes further degraded be-
cause of pollution arising from industrial and commer-
cial activities, a lot of interest is being devoted to the
solution of mass transport equations. As most of these
equations are too complex to be solved analytically,
mathematical models have been used as predictive tools
in evaluating the causes of pollution, and possible cures.
The rapid advance of the science and art of mathemat-
ical modelling, has led to the development of more
comprehensive and sophisticated numerical models for
the study of environmental pollution. Yet, many of
these attempts are still either of a preliminary nature or
not su�ciently comprehensive. In some simulations,
some of the factors that in¯uence mass transport are
totally omitted, while in orders essential phenomena are
lumped together and represented by a simpli®ed math-
ematical relationship.

Following the work of Guymon [1], Price et al. [2], a
lot of e�ort has been devoted to the numerical solution

of the convection±dispersion equation (C±D equation).
This interest has been sustained by the advantage of
applying one-dimensional C±D equation to study mass
transfer in natural aquatic systems. In comparison to
their multi-dimensional counterparts, one-dimensional
C±D equations have an obvious advantage of math-
ematical tractability. In addition, they can be used to
supply information that is related to accessible or ob-
servational ®eld data. This is especially true when
modelling mass transfer equations for water quality
parameters involving source and sink terms, such as
BOD and DO.

One of the earliest attempts to numerically solve the
C±D equation, was done with the ®nite di�erence tech-
nique (Price et al. [2], Book et al. [3]). Tucci and Chen [4]
later used ®nite di�erence techniques to solve BOD±DO
dynamics in an aquatic system. The ®nite element
method (FEM) was later introduced as an alternative to
deal with the spatial independent variable in the C±D
equation, while the time was left to the conventional
®nite di�erence technique (Gray and Pinder [5]). The
work by Taigbenu and Ligget [6] should rank as one of
earliest e�orts to solve the C±D equation with the
boundary element method (BEM). Subsequent work to
improve on the performance of the BEM can be found
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in Cheng [7] and Brebbia et al. [8]. In a later attempt to
overcome some of the de®ciencies of the BEM, Taig-
benu and Onyejekwe [9] applied the Green element
method (GEM) to solve the C±D equation, and came up
with very accurate results even for high Peclet numbers.

The relative success registered by the FEM in the
solution of the C±D equation, is often times attributed
to its formulation robustness, which ensures inter-nodal
connectivity, and species transport along the nodal links
in any direction. The GEM not only acquires this ad-
vantage because of its hybrid formulation, in addition, it
is also able to handle in®nite domain, point and dis-
tributed sources in a manner that is typical of the BEM.

In the work reported herein, the GEM is used to solve
BOD±DO coupled mass transport problem involving
such key features as: (i) axial convective transport of
mass; (ii) axial dispersion of mass; (iii) interaction be-
tween BOD and DO; (iv) re-aeration and decay.

GEM numerical results are then compared with those
obtained analytically, and with the Galerkin FEM.

2. Governing equations

The BOD±DO dynamics in a stream is described by a
set of coupled one-dimensional C±D equations, and
considers the e�ects of: (i) advection; (ii) dispersion; (iii)
internal sources and sinks including point and non-point
sources of pollution. These equations are given by
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where B is the BOD concentration, DO the DO con-
centration, DOSAT the saturation DO concentration, EB

the BOD dispersion coe�cient, ED the DO dispersion
coe�cient, KB the BOD decay rate, KD the BOD de-
oxygenation rate, LB the BOD distributed source, KR the
re-aeration rate, RD the DO distributed source, Qj the
volumetric ¯ow rate of load at point j, Bj the BOD
concentration at point j, DOj the DO concentration at
point j, Aj the cross-sectional area of stream at point of
load discharge, and Np is the number of point loads.

Eqs. (1a) and (1b) come from averaging of the point
C±D equation over the stream cross-sectional area.

3. Green element formulations

The GEM implementation of governing equations is
motivated by a hybrid BEM±FEM procedure, which
basically consists of a BEM formulation and a FEM
implementation. Details of this procedure have earlier
been reported in Taigbenu and Onyejekwe [9] and
Onyejekwe [10]. However, for the sake of clarity, we
shall give a brief and axiomatic account of certain as-
pects of GEM formulation that pertain to this problem.
We start by obtaining the integral replication of the
governing partial di�erential equations (since the same
steps apply to both Eqs. (1a) and (1b), we shall con-
centrate on only one of the equations). This is achieved
by utilizing a suitable complementary equation of the
di�erential operator and its fundamental solution. These
are given by
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where xi identi®es the position of the source node, k is
an arbitrary constant, whose value is chosen so that
GEM should always provide physically meaningful re-
sults. For example k should never be zero because it
results in a singular matrix for the ¯ux terms. We have
therefore judiciously set k as the longest spatial element
in the problem domain. The Dirac delta �d�xÿ xi��
forcing function or the response function of the problem
statement originates from the boundary integral theory
and guarantees the schemeÕs second order accuracy over
an in®nite domain.

The key to achieve an integral replication of the
governing partial di�erential equation lies in the Green's
second identity. Within a generic element �x�e�1 ; x
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substituting Eqs. (2a) and (2b) into Eq. (2c) yields
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where e refers to a typical element of the problem do-
main. fj represents point or distributed source, and u
represents the spatial di�erentiation of the dependent
variable. k is a parameter, which takes into account the
location of the source point within an element. It makes
use of the properties of the dirac delta function. k � 1
when xi is within the problem domain �x1; x2� and k� 0.5
when xi is located at the end points of x1 and x2.

dG
dx
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2
H�x� ÿ xi� ÿ H�xi ÿ x��; �3b�

where H�xÿ xi� is the Heaviside function. Eqs. (3a) and
(3b), the so called weak statement of the governing
partial di�erential equation belongs to the Fredholm
integral equation of the second kind. Up to this level of
formulation, the GEM is identical to BEM. We further
observe that the absence of any form of a residual or any
overt attempt to minimize it implies that no approxi-
mation has so far been introduced. It is this accurate and
elegant formulation that contributes to both the BEM
and Green element second order convergence.

GEMs hybrid approach starts with the solution of
Eq. (3a) on each element of the problem domain. With
this step, the evolution of BEM from a technique limited
to the boundaries of the problem domain to a more
general method that deals with both the domain and the
boundaries along the lines of boundary integral theory is
guaranteed. In order to evaluate the line integral over an
element, the dependent variables are interpolated in line
with a typical ®nite element procedure. For example
using linear element shape functions, both the primary
dependent variable, and its spatial derivative are given
by

B�x; t� � Xi�f�B1�t� � X2fB2�t�;
u�x; t� � X1�f�u1�t� � X2�f�u2�t�;

�4�

where X1 and X2 are linear shape functions and are
represented as

X1 � 1ÿ f; X2 � f: �5�
Eq. (4) guarantees that dependent variables are rep-

resented within each element by using interpolation
functions to describe the variables in terms of nodal
unknowns. We mention in passing that it is only at this
stage, that any approximation is introduced into GEM
formulation. So far the process of converting the gov-
erning di�erential equation into its integral form has
involved a response function and not a residual to be
minimized.

Solution of the integral equation on the elements of
the problem domain results in a set of equations for each
element in which there are as many equations as there
are nodal unknowns. This set of equations are then as-
sembled to give a set of global equations in which the
unknowns are the nodal values of each dependent
variable. Eq. (3a) can therefore be expressed as a sum-

mation of the integral contribution from each element,
and is given asXM
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where M is the number of elements in the problem do-
main. The time derivative in Eq. (6) can be handled by a
®nite di�erence approximation
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where m� 1, m represents the current and previous
times, respectively. Substituting Eq. (7) into Eq. (6), the
element discrete equation for a two-level time scheme is
given as
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where the coe�cient matrices Lij, Tij, and Rij are the
same as speci®ed in Taigbenu and Onyejekwe [9], Ony-
ejekwe [10].

Many water quality problems deal with an ingress of
contaminated discharge form a point source into a water
body. This can either occur as an accidental spillage,
leakage, or as an e�uent discharge from an industry.
Given the overall e�ect of such an occurrence on water
quality, it is necessary that reliable methods be devel-
oped to quantify the level of contamination. We there-
fore turn out attention to point or concentrated sources
or sinks and demonstrate how they can be e�ciently
handled by the Green element numerical technique.

We note that in Eqs. (1a) and (1b) that the recharge
contains both point and distributed components, and
can be represented by

fj � fpj
� fdj : �9�
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The point source in Eq. (9) can be written as
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�
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where Zj is the strength of the jth source or sink located
at xj. Inserting Eq. (10a) into the line integral of Eq. (3a)
we obtain
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when the source node is at x1. The integral value when
the source node is at x2 is
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The distributed sources are handled more straightfor-
wardly. Following the same steps as above, their values
at the nodes of an element [x1, x2] are
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Using the Gaussian quadrature technique, Eqs. (10d)
and (10e) are evaluated as
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where Nd is the number of distributed sources or sinks,
l�e� is the length of an element.

GEMs hybrid formulation facilitates the analytical
implementation of all the terms within the integral sign of
Eq. (3a) as well as the coe�cient matrices of Eq. (8). This
advantage is principally due to the fact that both the ®eld
and the source nodes are always situated within the same
element. On the contrary, BEM technique requires that
the line integral be split into two parts in order to take
care of the discontinuity resulting from both the dirac
delta and the Heaviside functions at the source node.
Integration is no longer straightforward as the resulting
singularity oftentimes demands rigorous or ad-hoc inte-
gration procedures. The level of rigor thus introduced

even for relatively simple problems has limited the scope
of BEM application, especially for those problems,
where the problem domain must be encountered.

4. Finite element approach

We observe that the governing equations are not self-
adjoint, and hence cannot be solved by the minimization
of variational forms. Therefore, we cannot apply the
numerical machinery associated with the Ritz method.
This has prompted the use of the ®nite element Galer-
kinÕs technique based on the method of weighted resid-
ual. Invoking the GreenÕs theorem, and applying the
GalerkinÕs technique, we can divide Eq. (1a) into seg-
ments over the whole problem domain. If the total
number of segments is M, then the resulting residual Ri

is given by
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where N is the node at the end of an element. Details of
how to proceed from Eqs. (13a)±(13c) can be found in
standard ®nite element text books and are not repeated
here. The ®nal matrix equation can be written as

Aij

� � dDOj

dt
ÿ Bij

� �
DOj � xj

� � � 0: �12�
Eq. (12) is a linear, transient, GalerkinÕs ®nite element
model equation, which together with the Green element
model is applied to solve a BOD±DO dynamics prob-
lem.

5. Model veri®cation and discussions

5.1. Case 1

In order to verify the validity and reliability of the
GEM model developed herein and to compare our re-
sults with another method, we shall purposely choose a
problem, which has a closed form solution. We shall
consider an in®nite domain ÿ56 x6 15 km. The prob-
lem parameters are U� 1.0 km/day, for BOD LB� 0.5/
day, KB� 2.0/day, EB� 1.0 m2/day, the concentrated
load for dissolved oxygen at x� 0.0 is (Q1B1/A1)� 1.0
mg/m/day. For DO, RD�)0.2 mg/l/day, KR� 1.5 m/
day, DOSAT� 3.0 mg/l, and DO concentrated load at
x� 0 is (Q1DO1/A1)� 0.5 mg/m/day. The initial and
boundary conditions for the coupled system are

B�x; 0� � DO�x � ÿ5; t� � 1:0 mg=l; �13a�
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B�x � ÿ5� � DO�x � ÿ5� � 1:0 mg=l; �13b�

dB
dx
�x � ÿ15 km� � dDO

dx
�x � ÿ15 km� � 0: �13c�

The steady-state analytical solution to this problem can
be determined. It is

B � 0:005053eÿx � 1

3
e2x � 0:25; ÿ5 km6 x6 0;

B � 0:33839eÿx � 0:25; 06 x6 15 km

DO � ÿ1:3228e1:8229x ÿ 0:0740 eÿ0:8229x � 1:3333e2x �14�
� 0:020212eÿx � 2:533; ÿ5 km6 x6 0;

DO � ÿ1:3968eÿ0:8229x � 1:3536eÿx

� 2:533; 06 x6 15 km:

Both FEM and GEM numerical models are solved
with 41 grid points spaced evenly until steady-state, and
their results compared with the solution of Eq. (14). Eqs.
(8) and (12) represent a time-marching procedure, which
will generate the concentration pro®les for both BOD
and DO with respect to time and space. Since, BOD
appears as a variable in both Eqs. (1a) and (1b), Eq. (1a)
is solved ®rst, and once B�x; t� is determined, then KBB is
fed into the computation of Eq. (1b) as a source term in
order to achieve numerical coupling. Since, linear shape
functions are used for the interpolation of the dependent
variables, the arithmetic mean of B (BOD) is used to
evaluate the DO source term, which is used in the nu-
merical solution of Eq. (1b). The varying source term is
calculated by

SDO � ÿKm�1
B

�Bm�1 � Bm�
2

� Rm�1
D

� Km�1
R DO�SAT�m�1: �15�

Fig. 1 shows steady-state GEM numerical results
compared with steady-state closed form solutions. Both

are very close. We note that GEM has performed ex-
cellently in representing point sources. This is primarily
due to the second order associated with the boundary
integral evaluation of the point source. Particularly
suited for point singularities, GEM accurately captures
the point load without the need to resort to ®ner griding
in the vicinity of discharge. As shown in Fig. 2, the same
level of accuracy cannot be attributed to the GalerkinÕs
®nite element solutions. Without employing ®ner grids
around the point of discharge, ®nite element does not
yield faithful results. While the pro®le does not show
excellent agreement for the DO distribution in the
vicinity of the point load (at x� 0), the method also did
not perform satisfactorily in modelling point discharge
for BOD. The results are not only out of phase at x� 0,
but registers the maximum deviation from the analytical
results.

5.2. Case 2

This example tests the e�ects of variable inputs at the
upstream boundary. In order to compare the numerical
results obtained herein with those in literature, the fol-
lowing problem parameters given by Dresnack and
Dobbins [11] are used: B�0; t� BOD at x� 0 is
37� 13cos�2pt� mg/l (t� 0 at noon and it is in hours),
DO�0; t� DO at x� 0 is 8:5� 3:5cos�2pt� mg/l,
EB�ED� 4.65 m2/s (50 ft2/s), LB� 5.0 mg/l/day,
KB�KD� 0.25/day, KR� 2.0/day, DOSAT� 9.5 mg/l,
U� 25.7 km/day (16 miles per day). The analytical
solutions for the equilibrium values are given by the
authors as �BOD�1 � LB=�KB � KD� � 10 ppm, and for
�DO�1 � DOSAT ÿ �KB=KR��BOD�1 � 8:25 mg/l. Their
results show that equilibrium results are almost attained
at 154.5 km (96 miles) downstream after 144 h of sim-
ulation. Figs. 3 and 4 show the numerical GEM and
FEM results of BOD and DO computed at the end ofFig. 1. Comparison of GEM and analytic BOD±DO concentrations.

Fig. 2. Comparison of FEM and analytic BOD±DO concentrations.
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144 h of simulation as can be seen from these ®gures,
both of them converge to the analytical results given
above.

Next, we compare the DO de®cit �DOSAT ÿ DO� an-
alytical model results of Adrian and Alshawabkeh [12]
with the numerical results obtained in this study, and the

Fig. 5. Comparison of GEM and published results for DO de®cit

(mg/l).

Fig. 6. Comparison of GEM, FEM and published BOD results after

216 h (steady input).

Fig. 7. Comparison of GEM, FEM and published DO results after

216 h (steady input).

Fig. 8. BOD pro®les at di�erent locations.

Fig. 3. GEM and FEM numerical results for BOD concentrations

after 144 h (harmonic input).

Fig. 4. GEM and FEM numerical results for DO concentrations after

144 h (harmonic input).

130 O.O. Onyejekwe, S. Toolsi / Advances in Water Resources 24 (2001) 125±131



®nite di�erence solutions of Dresnack and Dobbins [11].
The same problem parameters as before are applied.
Fig. 5 shows a comparison of di�erent solutions of
dissolved oxygen de®cit as a function of time. Both
FEM and GEM results are indistinguishable, so only
those of GEM are plotted. As can be observed, the
numerical results compared excellently with analytical.

5.3. Case 3

We test the ability of GEM to handle constant inputs
of BOD and DO at the upstream boundary. In order to
enable us compare numerical and closed form results,
the same problem parameters as those of Hann and
Young [12] are utilized; B�0; t� BOD at x� 0 is 8.817 mg/
l, DO�0; t� DO at x� 0 is 7.56 mg/l. EB�EDO� 37.16
m2/s (400 ft2/s), U� 0.061 m/s (0.2 fps), KD� 0.23/day,
KR� 0.1/day, KB� 0.0, DOSAT� 8.0 mg/l, Dx� 0. 805
km (0.5 miles) and Dt� 0.05 days. Figs. 6 and 7 show
BOD and DO results obtained at the end of 216 h of
simulation. All the results agree excellently with the
analytical solution given by Hann and Young [13].

5.4. Case 4

In order to verify the reliability of GEM in describing
the physics of time-dependent point discharge, the
magnitude of the point loads given in Case 1, are in-
troduced at t� 0.1 days. The e�ects on the BOD and
DO pro®les at various sections of the problem domain
(x� 0, x�)4 km, x� 5 km) are shown in Figs. 8 and 9.
The results are well represented from a qualitative point
of view. We note that at t� 0.1 days and x� 0, the
impact of the point load is very noticeable. In addition,

the results approach the expected steady state solutions
in both cases.

6. Conclusion

The reliability of GEM in simulating BOD±DO dy-
namics in a river has been demonstrated. It has been
shown that GEM is capable of handling point dis-
charges because the resulting singularity can be accom-
modated by its singular integral formulation. In
addition it has also been demonstrated, that GEM does
keep commitments in dealing with time-dependent point
loads. From the examples treated herein, we observe
that GEM performed as good as FEM. We, however,
reiterate that the whole idea about GEM is not to dis-
place the older and more entrenched domain-based
numerical techniques, but to show that with some
modi®cations, the boundary integral method can handle
those problems, which may seem intractable or very
tasking to solve by relying solely on the classical ap-
proach.
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