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Introduction

SUMMARY

Infiltration and deep flow on sloping surfaces were studied by combining controlled laboratory experi-
ments with mathematical models. Experimental variables included soil types, rainfall intensities, and
surface slopes. Preliminary analyses of the data indicated that increased slope has a positive influence
on surface flow, and that this influence increases relatively with decreasing rainfall rate. However, cur-
rent theories could not adequately explain the observed behavior of deep and surface flows for varying
slopes. Three mathematical models of varying complexity were employed to supplement the experimen-
tal results. These models were (i) the 2-D Hydrus numerical model, (ii) numerical solution of 1-D satu-
rated-unsaturated flow equation on sloping surfaces, and (iii) a simplified 1-D sharp-front model for
sloping surfaces. For the latter two models, a surface flow component based on the kinematic wave
approximation for shallow flows was externally coupled to the subsurface flows to route water over
the soil surface. For each soil, one experiment at the lowest slope and rainfall rate was utilized for esti-
mation of model parameters that could not be measured independently, while all the other results were
used for model corroboration. The Hydrus model indicated that a 1-D analysis would be adequate as the
water front moves essentially parallel to the slope. To account for the influence of slope and soil-type on
experimental results, an effective saturated conductivity was proposed. Model results were found to be in
reasonable agreement with observations of surface flow, deep flow, and water contents in the soil profile
with the use of the proposed effective saturated conductivity. Limitations on the applicability of the
sharp-front model in this context were discussed.

© 2009 Elsevier B.V. All rights reserved.

for the 2% than 15% slope. The results indicated a positive relation-
ship between slope and infiltration rate, especially for soils with

Infiltration plays a pivotal role in the hydrologic cycle by parti-
tioning rainfall into surface and subsurface components. Soil
hydraulic properties, rainfall rate, and the initial (antecedent) water
content of the soil are some of the factors that govern infiltration
into the soil. One factor that has received little attention is the effect
of slope on the relationship between runoff and infiltration.

Past studies have provided conflicting conclusions as to
whether infiltration and deep flow increase or decrease with
increasing slope. Among the early studies on infiltration on sloping
surfaces, Poesen (1984) observed a decrease in runoff with an in-
crease in slope for soils susceptible to surface crust formation (in-
creased infiltration for increased slopes). Poesen’s experiments
showed that runoff coefficients were higher for a 2% slope than a
15% slope, and that the mean percolation coefficient was lower
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water content at field capacity or greater. Poesen attributed the de-
creased runoff to either a thinner soil crust or increased rill erosion
on the steeper slopes. It was concluded that surface sealing is in-
versely related to slope, so steeper slopes would have a thinner
compacted soil layer than flatter slopes, and would be more prone
to infiltration. Steeper slopes also erode more quickly, and in-
creased erosion forms deeper rills, and therefore increases the sur-
face area over which infiltration can occur. Thus, if erosion and
surface sealing do not occur, then slope would not be expected
to affect infiltration rate. Poesen did not go into detail on non-filled
soils, or to soils that are resistant to soil crust formation, but be-
lieves that infiltration would decrease with slope for these soils be-
cause ponding and small depressions are not present on sloped
surfaces as they are on flat surfaces. Therefore, further studies
are needed on non-surface sealing soils with no depression stor-
age-related erosion to isolate the effects of slope on infiltration
behavior.

Philip (1991) conducted a mathematical study on the effects of
surface slope on the dynamics of infiltration. By applying Richards’


mailto:EESSIG@PURDUE.EDU
mailto:CORRADO@UNIPG.IT
mailto:RENATO@UNIPG.IT
mailto:GOVIND@PURDUE.EDU
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol

E.T. Essig et al./Journal of Hydrology 374 (2009) 30-42 31

equation to a sloping surface, he showed that infiltration decreases
as slope increases by a factor of cosy, where 7y is the angle of the
surface slope with the horizontal. The theory assumes that initial
water content is uniform and that the flat surface has infinite ex-
tent. It does not take into account initial soil conditions of hydro-
static equilibrium (variable water content), nor is it directly
applicable to experiments where wall effects and bottom boundary
condition are important.

Richards’ equation is highly nonlinear, and does not admit ana-
lytical solutions. A simplified sharp-front model (Green and Ampt,
1911; Mein and Larson, 1973) is often used to estimate infiltration
over flat surfaces. Chen and Young (2006) extended the Green-
Ampt approach to sloping surfaces. Numerical results elucidated
the role of gravity and capillary forces, rainfall intensities, and
slope angle on infiltration-both at small and large times. For very
large times, large rainfall intensities, or slopes less than 10°, the
differences became insignificant. Because the effective slope length
(area) increased for the steeper experiments, capillary forces alone
would cause an apparent increased infiltration rate, as they are
independent of slope angle for homogenous and isotropic soils.
The dominating gravitational effects would be reduced by a factor
of cos v, but the effect would cancel by increasing the slope length,
and the slope effect would disappear with time. The study focused
on infiltration, and did not describe how the moisture front moves
in the soil column, or how redistribution occurs after rain stops.
Both Philip (1991) and Chen and Young (2006) assumed infinitely
deep soils, and their analyses are not valid for a finite laboratory
soil box study.

Smith and Woolhiser (1971) focused on overland flow over
sloping infiltrating surfaces. The kinematic wave approximation
was used to describe unsteady overland flow and was linked
dynamically to an infiltration model by using boundary conditions
at the soil surface. The model was tested by comparisons to data
from a laboratory experiment and a field plot. The study found
good agreement between measured and predicted hydrographs,
but differences in the recession limb were noted. The influence of
slope was not examined in this study.

Dagan and Bresler (1983) derived models of infiltration and
redistribution for unsaturated flow in spatially variable fields using
a sharp-front approximation. They combined Richards’ equation
with hydraulic properties described by the Brooks-Corey model
to solve for vertical flow in a field whose saturated conductivity
varies in space according to a log-normal distribution. In determin-
ing the applicability of sharp-front models, Govindaraju et al.
(1992, 1996) determined that the approximate (sharp-front)
model leads to reasonably accurate values of expected flow
variables over the entire field because model errors cancel in the
averaging process, and local-scale dispersion of the water front is
much smaller than the dispersion from field-scale variability in
hydraulic properties. However, the models in these studies were
restricted to non-sloping surfaces, and resulting surface flows were
not modeled.

A preliminary analysis of laboratory experiments concerning
the hydrological response of a slope to synthetic rainfall conducted
at the University of Perugia, Italy, showed that observations devi-
ated from theoretical expectations. These controlled laboratory
experiments suggest that a better understanding of the role of

Table 1
Size classification for the three experimental soils.

surface slope is needed to improve our ability to accurately calcu-
late the surface runoff and deep flow hydrographs on sloping sur-
faces. The main goal of this study is to shed some light on these
discrepancies using numerical solutions, and to propose a new def-
inition of effective hydraulic conductivity that accounts for the
influence of slope on infiltration process. Section ‘“Laboratory
experiments and preliminary analysis” describes the laboratory
experiments and highlights these discrepancies. Section “Mathe-
matical development and numerical models” presents the mathe-
matical development, including that of the sharp-front
approximation on sloping surfaces which is additional new mate-
rial in this paper. Section “Comparisons of numerical results and
observations” presents comparisons of experimental and numeri-
cal results, while Section “Summarizing remarks” summarizes
the work and states the conclusions from this study.

Laboratory experiments and preliminary analysis

A soil box 152 cm long, 122 cm wide, and 78 cm deep with
adjustable slope (from 1° to 15°) was utilized in the laboratory
experiments. The sides are impermeable and transparent. The top
and bottom surfaces are open to the atmosphere.

For the experiments of interest to this study, surface runoff and
deep flow were measured using calibrated tipping-bucket sensors
at the downstream end of the soil surface and the bottom. An over-
head pressurized water sprinkler system was adjusted to generate
specific rainfall rates. The soil was uniformly packed to a depth of
67 cm in the box. A 7 cm gravel layer separated by a textile mesh
below the soil speeds the drainage of the percolated water from
the soil (details in Morbidelli et al., 2008; Essig, 2008).

Three different soils types were used in three separate sets of
experiments. The set with the first soil type (Soil-1) comprised of
24 experiments ranging in slopes from 1° to 15° and average rain-
fall rates ranging from 10 mm/h to 20 mm/h. The set with the sec-
ond soil type (Soil-2) comprised of eight experiments with slopes
ranging from 1° to 15° and average rainfall rates of 10 and
15 mm/h. Only for Soil-2, the water content profile was continu-
ously monitored using the TDR method (TRASE-BE, Soil Moisture
Equipment Corp., Goleta, CA). Two vertical profiles were observed,
with measurements made at 10, 20, 30, 45 and 60 cm depths for
each profile. Each probe provided an average measurement of the
volumetric water content at the corresponding depth. The set with
the third soil type (Soil-3) comprised of 18 experiments where
slopes ranged from 1° to 10° and average rainfall rates of 20-
30 mm/h were applied.

The United States Department of Agriculture (USDA) classifies
soils based on particle size. Table 1 summarizes the distribution
of soil particles based on the USDA classification for Soil-1, Soil-2
and Soil-3. Bin sizes were interpolated from the soil grain size dis-
tribution. As shown in Table 1, Soil-1 is mostly silt and clay, Soil-2
is primarily sand and silt, and Soil-3 is mostly sand with silt as
well, but has the greatest fraction with particles sizes greater than
2 mm. We label Soil-1 as a clay loam, Soil-2 a loam, and Soil-3 a
sandy loam (when grouping the gravel with sand and accounting
for the larger gravel fraction in Soil-3).

For each experiment, rainfall was applied to achieve soil satura-
tion throughout the box. There was a short time period between

Soil type Size (mm) Percent of Soil-1 Percent of Soil-2 Percent of Soil-3
Gravel >2 0.74 1.22 4.00
Sand .05-2 25.12 40.99 37.97
Silt .002-.05 41.91 34.95 35.11
Clay <.002 32.23 22.84 22.92
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bringing the soil to saturation and the beginning of each experi-
ment. There was no deep flow at the start of the experiment, so
the initial water content could be approximated by a hydrostatic
pressure distribution. Each experiment run composed of 8 h of ap-
plied rainfall. Surface runoff and deep flow were collected for up to
24 h using calibrated tipping-bucket sensors with variable collec-
tion intervals. A detailed description of the laboratory experimen-
tal setup can be obtained from Morbidelli et al. (2008).

A summary of the observed results for Soil-1, Soil-2 and Soil-3
are included in Tables 2-4, respectively. As expected, it was ob-
served that the time to ponding increased as rainfall intensities de-
creased. Surface flowrate (normalized by the average rainfall rate)
versus time were used to compare runoff rates for different slopes,
soil types, and rainfall rates. Although the rainfall was set to a spe-
cific reference rainfall, the actual average rainfall rate deviated
slightly from the reference rainfall. Fig. 1 shows surface and deep
flow hydrographs for Soil-1 with a reference rainfall of 10 mm/h.
For Soil-1, the slope has a positive influence on the steady state
surface flow, i.e. greater slopes show larger normalized surface
flow and smaller normalized deep flow.

Based on kinematic wave theory, the time of concentration for
Soil-1 should be under 1 h. However, a longer than expected reced-
ing limb of surface flow was observed after the rainfall was turned

Table 2
Summary of observed data for Soil-1.

off (Fig. 1). This tail is more prominent for steeper slopes. This tailing
surface runoff is less noticeable for Soil-2 (Fig. 2), and is barely pres-
ent for the Soil-3 (Fig. 3) for all slopes considered here. The normal-
ized graphs of Soil-1 suggest the presence of soil water outflow near
saturation (i.e. a seepage face), but this is not as apparent for Soil-2
and Soil-3 for the 10 and 20 mm/h reference rainfalls, respectively.

Conceptually, one would expect that that the normalized steady
deep flow should only vary with cosy (Chow et al., 1988; Philip,
1991; Chen and Young, 2006), but our results did not conform to this
expectation because the steady deep flow normalized by cos y versus
the slope did not result in a horizontal line in Fig. 4. The deep flow de-
creased by more than a cos ) factor. Analysis of the observed results
indicates that relationships between rainfall and surface runoff (and
deep flow) are being influenced by other factors. The following fac-
tors could be hypothesized as playing a role:

e The walls of the sand box enforce a condition of zero flux normal
to the boundary. This may be distorting the flow pattern suffi-
ciently so that the flow is strongly influenced by wall effects.

e Alonger recession tail, especially for the steeper slopes in Soil-1
suggests the presence of return flow from saturated areas. This
return flow, if it exists, would be more prominent for steep
slopes and for fine-textured soils.

Experiment number Slope (°) Average rainfall (mm/h) Time to ponding (h, min) Steady surface flow (mm/h)
Reference rainfall rate 10 mm/h
1 1 9.86 0.58 6.73
3 5 9.74 0.52 7.69
5 10 10.07 039 8.83
7 15 9.85 0.40 8.94
9 10 9.11 0.50 7.73
11 15 8.85 043 8.37
13 5 9.55 0.50 7.09
15 1 9.49 0.49 6.50
Reference rainfall rate 15 mm/h
2 1 15.02 0.27 12.44
4 5 15.16 0.23 13.11
6 10 14.62 0.27 13.1
8 15 14.3 0.24 13.53
10 10 14.56 0.25 13.32
12 15 13.18 023 12.76
14 5 13.81 0.28 11.49
16 1 14.74 0.25 11.89
Reference rainfall rate 20 mm/h
17 1 20.84 0.19 18.12
18 1 215 0.15 19.11
19 5 20.49 0.15 18.25
20 5 20.28 0.16 18.17
21 10 20.04 0.14 18.25
22 10 20.02 0.13 18.23
23 15 20.49 0.13 19.36
24 15 19.84 0.12 19.07
Table 3

Summary of observed data for Soil-2.

Experiment number Slope (°) Average rainfall (mm/h) Time to ponding (h, min) Steady surface flow (mm/h)
Reference rainfall rate 10 mm/h

1 1 9.81 0.33 6.73
3 5 9.77 0.23 7.04
5 10 9.91 0.22 7.43
7 15 9.63 0.09 8.11
Reference rainfall rate 15 mm/h

2 1 15.69 0.18 12.7
4 5 15.92 0.14 13.38
6 10 15.02 0.1 12.75
8 15 13.9 0.04 12.44
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Table 4
Summary of observed data for Soil-3.

Experiment number Slope (°) Average rainfall (mm/h) Time to ponding (h, min) Steady surface flow (mm/h)
Reference rainfall rate 20 mm/h
13 1 18.08 0.43 8.02
14 1 19.32 0.37 8.76
15 5 18.82 0.30 8.53
16 5 18.29 0.30 8.66
17 10 18.61 0.14 9.07
18 10 18.36 0.17 8.9
Reference rainfall rate 25 mm/h
1 1 25.49 0.17 15.39
2 1 25.95 0.15 15.74
5 5 25.86 0.17 15.45
6 5 25.83 0.16 15.5
9 10 25.82 0.1 15.73
10 10 25.87 0.1 16.33
Reference rainfall rate 30 mm/h
3 1 31.43 0.11 21.02
4 1 324 0.12 22.19
7 5 32.12 0.08 2191
8 5 32.31 0.1 22.06
11 10 30.37 0.15 20.55
12 10 31.34 0.06 21.29

e The infiltration of water moving on the soil surface is different
from the case of infiltration over a flat surface where the ponded
water has no momentum in the direction tangential to the slope.

To investigate these hypotheses, numerical models were used
to interpolate and interpret the experimental results.

Mathematical development and numerical models

Three different numerical models were used to analyze the lab-
oratory experiments: (i) the Hydrus numerical model, (ii) numeri-
cal solution of 1-D saturated-unsaturated flow equation on sloping
surfaces, and (iii) a simplified 1-D sharp-front model for sloping
surfaces. The last two models were combined with a kinematic
approximation to simulate surface flow hydrographs and to pro-
vide a time-space varying boundary condition for the soil surface.
These models are described below.
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Fig. 1. Normalized surface and deep flow for Soil-1 under reference rain-
fall = 10 mm/h. The flow was normalized by the average rainfall rate. See Table 2
for average rainfall rates.

Hydrus model

Hydrus is a software package for simulating water, heat and sol-
ute movement in 2-D or 3-D variably saturated media (Simunek
et al., 2007a,b). The program uses the finite element method to ob-
tain a numerical solution to Richards’ equation for unsaturated
water flow. The numerical model does not accommodate surface
flow, but it serves two important purposes. First, it helps to inves-
tigate two of the possibilities listed before, i.e. whether wall effects
are prominent, and if there is sufficient build up of pressure within
the soil profile to support an argument for return flow. Secondly, it
allows us to assess whether a 1-D representation for subsurface
flow process is justified, thus paving the way for the second and
third simplified model approaches. Hydrus also computes the
water fluxes leaving the top and bottom boundary layer, and the
predominant water movement direction within the soil column.
Soil-1, Soil-2, and Soil-3 were simulated in 2-D at the highest
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Fig. 2. Normalized surface and deep flow for Soil-2 under reference rain-
fall = 10 mm/h. The flow was normalized by the average rainfall rate. See Table 3
for average rainfall rates.
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fall = 20 mm/h. The flow was normalized by the average rainfall rate. See Table 4
for average rainfall rates.
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Fig. 4. Variation of normalized steady deep flow with slope.

reference rainfall rate for each slope tested. Initial conditions were
designated using hydrostatic pressure head.

Brooks and Corey parameterization of soil hydraulic properties

Similar to Dagan and Bresler (1983), the Brooks and Corey
model was used to describe soil properties for unsaturated flow.
The soil water characteristic curve and the conductivity
relationship take the form of a power-law to relate saturation,
pressure head and conductivity,

K(¥) _ (“)MZ:(%)"; n=2+34 ¥< ¥,

Ks ‘17 Y>>y, v
so () =(3) === () vem
1, >V,

where K( %) is the hydraulic conductivity that is a function of the
pressure head, ¥, and depends on the saturated hydraulic conduc-
tivity K, air entry capillary pressure head, ¥, and the pore size dis-
tribution index, 4. Here, 0 is the volumetric water content, and 0
and 6, are the saturated and residual water contents, respectively.
When ¥ > ¥y, the hydraulic conductivity is equal to the saturated
hydraulic conductivity, K;. The Brooks and Corey relationships allow
for the hydraulic conductivity to be related to water content
through K(0). Hysteresis was neglected, and Eqgs. (1) and (2) were
treated as single-valued functions.

Saturated-unsaturated equation for sloping surfaces

Combining the momentum (Darcy-Buckingham law) and conti-
nuity equation and rearranging in terms of pressure head results in
the general saturated-unsaturated flow equation for 1-D flow per-
pendicular to the slope

oy 0 W K

W oz oz

K() (¥)cosy| =0 3)

where C(y) =S, +g—$ Ss relates to the specific storativity of the
soil. A centered implicit finite-difference model was developed
for the numerical solution of Eq. (3). The model utilizes a New-
ton-Raphson iterative procedure for solving the system of nonlin-
ear equations at each time step. The code developed by
Govindaraju and Kavvas (1993) was modified for this study to
handle arbitrary initial conditions and time-dependant boundary
conditions.

With a rainfall application, a time-dependent boundary condi-
tion was imposed on the soil surface. The lower boundary was
open to the atmosphere and was assigned a pressure head of zero.
While impermeable sides exist, the Hydrus program demonstrated
that the sides had very little effect, and a 1-D flow perpendicular to
the soil surface would be a valid approximation. It was assumed
that there is no lateral movement within the soil, and the imper-
meable sides would have no effect on the soil water movement.
As described earlier, a short time passed between soil saturation
and the beginning of each experiment and there was initially no
bottom flux, so hydrostatic pressure distribution was prescribed
as the initial pressure distribution.

Following Dagan and Bresler (1983), integrating the continuity
equation from the soil surface to the front at z* = L yields:

L
q(Ls,t) —q(0,t) = —% /0 ' {0(z",t) — 6;}dz" (4)

where q(z', t) is the Darcian flux, and Ly is the distance to the front,
and 0; is the uniform initial water content for the sharp-front model
(Fig. 5). From the mean value theorem, the average value for q over
the front depth, g, is based on an average hydraulic conductivity, K.
Specifically, using the Brooks and Corey relationship in combination
with Darcy’s law and rearranging results in:

ALy = cos )KLy —g—7 [K()S; " K (0.0 (5)

¥y
1-n
Egs. (4) and (5) are the integrated forms of the continuity and
momentum equations and do not represent any approximation.

Modified sharp-front model

From Eq. (4), the continuity equation for the sharp-front model
(see Fig. 5) simplifies to

AL - q0.0) =~ S L@ -0)]: =L )
where L" is the location of the equivalent front in the z direction,
q(L", t) is the Darcy flux in the z* direction, q(0, t) is the flow rate
at the surface (infiltration), 0, is the time-varying uniform water
content over 0<z <L', and 6; is the initial water content. The
cumulative infiltration depth into the soil is equivalent to the
cumulative flux, V;:

a0 -90,0 =~ Sw: V=160 )

Similarly, the integrated Darcy’s law in Eq. (5) reduces to

gL = cosyKL" — ]l"%"n K:S Y —KSV* (8)
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Richards’ Equation

Sharp Front Approximation

Fig. 5. Conceptualization of the spatial water content profile for the saturated-
unsaturated flow equation and the sharp-front model at a given time.

where K; is the initial hydraulic conductivity K(6;), S; is the initial soil
saturation, and S is time-varying uniform soil saturation. With the
continuity equation and Darcy’s Law for the sharp-front model,
three surface boundary conditions are considered here to cover
the entire range of conditions experienced in the laboratory exper-
iments. These include (i) infiltration with constant water content, 0,
at the soil surface, (ii) infiltration with a constant flux at the soil sur-
face, and (iii) redistribution in the soil.

Infiltration with constant water content at the soil surface

In this scenario, it is assumed that there is a constant water
content maintained at the soil surface. For a sharp-front model,
surface values apply from the soil surface to the front. Substitut-
ing the water fluxes at the front and soil surface and the depth-
averaged hydraulic conductivity into Eq. (6) and simplifying re-
sults in:

Ay, dI
A1C05/+F—E (9)
where
K; — K, b4 ; ;
Aj=——imB0 a Th [k KS
! -0 7 (1—n)(0—0i){ i 0% }
Assuming L'(t =0) =0, and integrating results in:
- LA ln{1+L 'Alcosy] (10)
A1 Cosy  Afcos?y A

where the first term is due to the gravitational flow and the second
term is flow due to the suction forces at the front. The above inte-
gration can be carried out under the general initial conditions of
L'(t)=L;.

Infiltration with constant flux at the soil surface

An alternate boundary condition at the soil surface is infiltra-
tion under prescribed flux conditions. If q(0,t) = g, cosy is con-
stant, then combining Egs. (6) and (8) and simplifying further
results in an implicit expression for K, the average hydraulic con-
ductivity applicable from the soil surface to the front

¥y (0s — Oo)
(1 —n)(qo — Ki)tcos?y

gocosy =Kcosy —

=1

KSV4_ T A :
X | ==L . K" — <l> K+ f; K+ —KS
K" Ks K,

N

(11)

Eq. (11) is an algebraic equation to be solved for K. 0 is then
obtained from Egs. (1) and (2). Time to ponding, t,, is obtained
by setting K = K, in Eq. (11), so that for 6; = 6, S; = K;=0, and qo > K;.

_ Yp(0s — 00)(—Ks)
= ) (q0) (g — Ke) 052 (12

Eq. (11) is only valid for t <t, For t>t, the constant head
boundary condition is used.

Redistribution

Let W be the amount (depth) of water that has infiltrated into
the soil when rain ends, the continuity equation simplifies to Eq.
(13). The amount W remains constant, but redistributes with time.
We have

W= (0-0)L (13)

In Eq. (13), 0 is the current water content while 0; is the initial
water content and L is the perpendicular distance from the soil
surface to the front. Using Darcy’s law results in the following
when the front is within the soil column

do  (0— Bi)cosyK
de w

Eq. (14) is an ordinary differential equation that is easily solved
numerically for 0(t) with K(0) given by the Brooks-Corey relation-
ship. The initial condition for 0 in Eq. (14) is determined by know-
ing the soil water content when rain stops. The distance to the
front is obtained from Eq. (13). The flux at the soil surface is zero,
while at the bottom of the soil column it is K(6;) cos y. Since 0; is
generally very small, the flux out of the soil column is essentially
zero until the front reaches the plane.

After the front reaches the bottom of the soil column, the water
does not redistribute but the water content keeps reducing as
water leaves the soil column at the bottom. Darcy’s law takes the
form (Govindaraju and Kavvas, 1993)

(0) (14)

do

K(0)cosy = _L‘E

(15)

where L. is the length of the soil column. Using Eqgs. (1) and (2), the
solution is

0 =00+ {(6s — 00)' ™" — &(1 —n/2)(t — )y (16)

where 0, is the water content in the soil column when the front
reaches the bottom of the column at time t, and &=
Kscosy / L(0s — 60)"/ *_The water flux leaving the bottom of the col-
umn is again given by K(0) cos y. Thus there is a sudden discontinu-
ity in the flux leaving the soil column at time t, Essig (2008)
describes the extension to time-varying rainfall as well.

Surface flow and the kinematic approximation

Movement of water on the soil surface is modeled using the
kinematic approximation (Singh, 1992)
q, = oh™ (17)
where 1 is the flow depth, gy is the flow discharge per unit-width of
the surface along the slope, and « and m are exponents. If Manning’s
equation is adopted, then m =5/3 and a = c\/Sp/n where Sy is the
surface slope, n is Manning’s roughness coefficient, and c is a con-
stant to account for units. For 1-D flow, the continuity equation is
oh aq,
5 + " r(t) (18)
where r is the infiltration excess. The process of run-on (Morbidelli,
et al., 2008) has not been incorporated as only homogenous soils
with spatially uniform rainfall events were considered here. Egs.
(17) and (18) were solved numerically over each cell as a kinematic
cascade. Surface flow was coupled to the numerical solution of both
Richards’ equation and the sharp-front model over sloped surfaces.
These numerical solutions yielded surface and deep flow hydro-
graphs, infiltration rates at the soil surface, as well as distributions
of water content 0 and pressure head ¥ in the subsurface region.
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Comparisons of numerical results and observations
Effective saturated hydraulic conductivity

From previous studies (Philip, 1991; Chow et al., 1988), we ex-
pect the infiltration rate to vary as cos ) over sloping surfaces. In
order to examine the behavior of saturated hydraulic conductivity,
the relation between the observed steady deep flows and slope
(siny) from all experiments listed in Tables 2-4 was examined.
Fig. 4 indicates that a linear relation would fit the data reasonably
well. Extrapolating from this graph, Table 5 lists the saturated
hydraulic conductivity for the three soils for zero slope.

Normalizing the observed steady deep flow with the theoretical
steady deep flow (K; cosy) using K; values from Table 5, as shown
in Fig. 6, still does not result in the expected horizontal straight
line. The effect of slope was accounted for by the cosy term, but
the different non-zero slopes for the different soils on the graph
suggest that a further correction is needed to account for different
soils. The observed flow data do not vary with K cos y, but rather
an “effective hydraulic conductivity”, K;, defined as follows:

Ks =K1 —a-siny] (19)

where K is obtained for a zero slope (Table 5). The effective satu-
rated hydraulic conductivity, K;, incorporates all the experimental
variations observed in the results. Studies have known that the val-
ues of K obtained from standard infiltrometer studies are rarely
reflective of field conditions. Rawls et al. (1993) for instance, sug-
gested an effective conductivity of K/2 for field applications. Eq.
(19) is formulated on the belief that K; is influenced by both the
slope (siny) and the soil type through a correction factor a, as sug-
gested by Fig. 6.

A statistical test using the sampling theory of regression was
conducted to confirm that the linear slope fits in Fig. 6 are signifi-
cantly different from zero, suggesting that the correction factor in
Equation (19) is necessary. The 95% confidence limits for the
regression coefficient (slope of the normalized steady deep flow)
were found to be significantly different from zero.

Table 5 shows the value of a in (19) for the three soils. Fig. 7
shows the normalized steady deep flow, normalized by K cosy

Table 5
Parameters for the Brooks-Corey model to describe the hydraulic properties of the
three soils.

Soil-1 Soil-2 Soil-3
Hydraulic conductivity, K; (mm/h) 2.93 3.20 10.37
Correction factor, a -2.86 -1.90 -0.32
Saturated water content, 0 0.407 0.472 0.485
Residual water content, 0, 0.034 0.041 0.043
Air entry pressure head, ¥}, (mm) -330 —250 —200
Lambda, 4 0.35 0.20 0.10
Specific storativity, Sg 0.00002 0.00003 0.00003
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Fig. 6. Ratio of observed and theoretical deep flows versus slope.

versus sin . As expected, all three soils are centered on a one-to-
one ratio of observed steady deep flows to a theoretical steady
deep flow of K, cosy. It may be observed that while data for Soil-
2 and Soil-3 lie very close to the expected horizontal line, data
for Soil-1 exhibit a greater spread as slope increases. Soil-1 is sim-
ilar to a clayey soil with finer pores, but with a greater spread in
pore sizes. Soil-3 is representative of a soil with a narrower distri-
bution of pore sizes centered about larger pores. It is concluded
that the soil pore size distribution plays a very prominent role in
determining the K; and hence the dependence on soil type through
the parameter a in (19).

The rationale behind an effective saturated conductivity K, (Eq.
(19)) is as follows. Infiltration tests are typically conducted under
conditions where there is no horizontal water movement, and all
the water moves essentially downward. In fact, infiltration tests
with double ring infiltrometers, Guelph permeameters, and
CSIRO’s disc permeameters yielded saturated hydraulic conductiv-
ities that were one to two orders of magnitude greater than those
indicated in Table 5.

When water moves on an infiltrating surface in response to
slope it is postulated that two phenomena will act in conjunction
to effectively alter the hydrodynamics of soil water. Firstly, water
moving on the soil surface will exert a small pull on infiltrating
water by applying an upward suction force that is proportional
to V2/2g, where V is the average surface water velocity which is
several orders of magnitude larger than the pore water velocity.
Thus, the small pore water velocity is likely to be reduced even
by the small upward pull of V2/2g. Further, it may be observed that
V2 is proportional to the slope, sin y, according to typical friction
relationships (Manning’s equation or Chezy’s law). This explains
the linear relationship between K; and sin v in Fig. 6 and the for-
mulation in Eq. (19). If there is the existence of this upward pull,
then the hydrostatic assumption employed for most surface water
equations over infiltrating surfaces is not valid. Nevertheless, Fig. 9
does show a non-negligible influence of slope.

Fig. 6 suggests that a second factor, depending on soil type,
must also be playing a role since the effect is clearly different for
the three soils. This second factor is hypothesized as being the pore
size distribution which is known to play a key role in soil physics.
For simplicity, a single large pore may be considered first. For a gi-
ven set of upstream conditions of flow depth and velocity, the
momentum will be such that all the water will enter a large pore
and the amount of infiltrated water is less affected by given up-
stream conditions. As the pore diameter becomes smaller, the
momentum of water on the surface will be such that part of it will
“jump” across the opening allowing only a part of the upstream
flux to “infiltrate” into the soil. Thus, soils with finer pores (such
as Soil-1) are likely to be more affected by surface water velocity
as observed in Fig. 6. It may be noted that this effect is solely
due to the presence of a momentum component that is normal
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Fig. 7. Behavior of ratio of observed and theoretical flow after incorporating the
correction factor for slopes and soil type.
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to the direction of infiltrating water, and thus would not be mani-
fested in infiltrometer experiments. The parameter a in Eq. (19)
represents this effect.

These two factors may explain why surface runoff is observed
over hillslopes even when the rainfall intensity is less than the sat-
urated hydraulic conductivity as determined from in situ infiltrom-
eter experiments. Two other factors that may affect infiltration
include anisotropy and surface sealing. While the soil box was
packed as carefully as possible specifically to avoid anisotropy, it
is impossible to confirm uniform hydraulic conductivities within
the soil column once the box is packed. Surface sealing may also
affect the infiltration rate of the soil because it may also induce lay-
ering at the soil surface.

Hydraulic properties and parameter estimation results

In order to use the three numerical models, the input hydraulic
parameters must be defined. The effective hydraulic conductivity
was described in the previous section. The saturated and residual
water contents were estimated during the laboratory experiments
(see Table 5). However, ¥p, 4 and Ss were estimated by matching
the saturated-unsaturated equation solution to the experimental
results for the lowest rainfall rate at the 1° slope. For Soil-2, this
was experiment 1 in Table 3. Matching the hydrostatic distribution
to the initial water content was first considered, then the deep
flow, and finally the surface flow. Using Eqgs. (1) and (2), the initial
water content distribution was obtained. As shown in Fig. 8a, the
initial water content distribution for Soil-2 matches observations
at most depths, with the exception of sensor 5 at the 10 cm depth.
The initial water content is the saturated value between the 67 and
45 cm depths and reduces at higher elevations. The initial distribu-
tion provides an estimate of ¥, for this soil (—250 mm for Soil-2).

For the sharp-front model, the initial water content distribution
was assigned a saturated water content below the capillary fringe
and an averaged water content above the capillary fringe as indi-
cated in Fig. 8a to replicate hydrostatic conditions. The average
water content above the capillary fringe for the sharp-front model
was chosen so as to have the same initial soil water storage in the
profile. The sharp-front infiltration calculations are based on the
effective soil column length above the capillary fringe, the alge-
braic sum of the soil column length (67 cm) and the air entry pres-
sure head (—25 cm for Soil-2). Deep flow is not initiated until the
front reaches the depth of the effective soil column length, i.e.
the top of the capillary fringe. Fig. 8b shows the deep flow hydro-
graph and Fig. 8c shows the surface flow hydrograph for experi-
ment 1 in Table 3. Overall, by estimating the three parameters,
¥, 4 and S, a reasonable match was found between the satu-
rated-unsaturated equation solution and experimental results for
Soil-2. Fig. 8a-c shows results for the sharp-front model using
the parameters estimated for the saturated-unsaturated flow
model, i.e. no fitting experiments were carried out for the sharp-
front model
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Fig. 8a. Observed and modeled initial water contents for Soil-2.
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Fig. 8b. Fitted Soil-2 results for deep flow.

Observed soil water content distributions were not available for
Soil-1 and Soil-3 experiments. As with Soil-2, the deep flow and
surface flow results of saturated-unsaturated equation solution
for Soil-1 and Soil-2 were matched to the experimental results at
the lowest rainfall rate with 1° slope. Experiment 15 of Soil-1 in Ta-
ble 2 and experiment 13 of Soil-3 in Table 4 were used for this pur-
pose (Essig, 2008). Similar to Soil-2, more emphasis was given to
matching the deep flow results than the surface flow values. In
general, experimental results were better reproduced for Soil-3
by the saturated-unsaturated flow model. There are significant
discrepancies between the saturated-unsaturated equation and
sharp-front models, especially for deep flow results. These discrep-
ancies are discussed later along with validation results. Table 5
summarizes the parameters for the three soils.

Hydrus simulations

Hydrus was selected to examine the subsurface pressure heads
and flow patters in a qualitative manner only. Fig. 9 shows the
water content distribution at selected times during the simulation
for the highest rainfall rate at the 15° slope for Soil-1 i.e. the most
critical case. As shown in the figure, the soil is saturated at the sur-
face by 1 h, but a band of unsaturated zone exists in the middle of
the soil column. The contours are curved at the impervious edges,
but the flow is essentially 1-D over most of the profile. By 2 h, the
soil is completely saturated, and remains so until 8 h when the
rainfall stops. The drainage pattern is revealed more strongly at
10 h where one can see that the 15° slope shows more curvature
in water content contours at the impermeable soil box edges, but
flow is primarily moving in a 1-D fashion perpendicular to the soil
surface. This 1-D flow pattern is essentially maintained for 24 h.
These results do not indicate the development of a seepage face.

The uniform nature of the water content perpendicular to the
slope (Fig. 9) indicates that return flow is not likely. Hydrus results
for the other slopes and soils support the findings of the Soil-1
experiment at 15° slopes for a 20 mm/h rainfall rate (Essig, 2008).
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Fig. 9. Simulated water content contours at different times using the Hydrus model for Soil-1 under a 15° slope and 20 mm/h rainfall rate.

Saturated-unsaturated equation and sharp-front model results

Deep flow and surface flow were collected for the duration of all
soil experiments. Soil water contents at various locations were also
collected for Soil-2 experiments. Fig. 10 shows the deep flow
hydrographs at the 10 mm/h reference rainfall for Soil-1. The satu-
rated-unsaturated equation numerical solution performed very
well for most slopes. However, the peak flowrate for the 15° slope
was higher than the experimental data. This may be because ob-
served deep flows have very small magnitudes, and measurement
errors are likely to be relatively larger in this range. Also for the 15°
slope, the experimental data showed that deep flow started before
that predicted by saturated-unsaturated equation. Perhaps the ini-
tial condition was wetter than indicated by a hydrostatic initial
condition in this case.

Deep flow is not initiated in the sharp-front model unless the
front reaches the top of the capillary fringe. This causes a systemic
delay in onset of deep flow as shown in Fig. 10, with the discrep-
ancy being particularly large for the 15° slope. If the front reaches

the top of the capillary fringe before the rainfall duration of 8 h (1°
and 5° slopes), then it is maintained at a steady rate until rain
stops. During recession, the sharp-front solution predicts a slower
receding hydrograph than either the observations or results from
saturated-unsaturated equation. For the 10° and 15° slopes in
Fig. 10, the rainfall rate is low enough that the front does not reach
the top of the capillary fringe during rainfall (i.e. >8 h). In these
cases, the deep flow hydrograph for the sharp-front model does
not possess a flat peak, and immediately recedes from that time
on. However, the recession limb is far more prolonged than indi-
cated by observations.

The saturated-unsaturated equation model results for Soil-2
and Soil-3 match experimental data more closely than for Soil-1
as shown in Figs. 11 and 12, respectively. In Figs. 10-12, the satu-
rated-unsaturated equation model is better for the milder slopes,
perhaps because the 1-D approximation is more suitable for mild
slopes. The sharp-front model results for Soil-2 are similar to
Soil-1, even though there is an improved representation of the
receding limb when compared to observations. The deep flow re-
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Fig. 10. Deep flow results for Soil-1under 10 mm/h reference rainfall.

sults for Soil-3 are quite encouraging for both models as all aspects
of the observed hydrograph are replicated well. The better perfor-
mance of the sharp-front model for Soil-3 is expected because it is
a coarse grained soil where the sharp-front approximation is more
appropriate.

Representative cases of surface flow hydrographs include
10 mm/h reference rainfall for Soil-1 in Fig. 13 and 10 mm/h refer-
ence rainfall for Soil-2 in Fig. 14, and 20 mm/h reference rainfall for
Soil-3 in Fig. 15. In Fig. 13, the rising limb of the sharp-front model
exhibits a sudden jump in the 1° and 5° slopes. This occurs because
as soon as the front reaches the top of the capillary fringe, the infil-
tration model changes. The front is not allowed to grow any fur-
ther, according to Eq. (9), and the infiltration rate is equal to
K, cos 7. This abrupt reduction in infiltration rate causes a corre-
sponding rise in surface flow.

Similar to results of deep flow hydrographs, the surface flow re-
sults for Soil-2 and Soil-3 match experimental data more closely
than Soil-1 as shown in Figs. 14 and 15, respectively. Curiously,
the rising limb of the observed hydrograph lies between the earlier
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sharp-front model hydrograph and that of the saturated-unsatu-
rated equation results. A more gradual rise to peak is predicted
by the saturated-unsaturated model, especially for Soil-2 in
Fig. 14. The peak value of the observations is rarely reproduced
accurately by either model, but this may be attributed to the vari-
ability in the estimation of K. Overall, the agreement between the
deep and surface flow hydrographs from the two models to exper-
imental results indicates that using an effective hydraulic conduc-
tivity is a reasonable approach to represent the influence of surface
water movement on sloping surfaces.

It is also beneficial to see how water content behaves with time
at various depths. The Soil-2 water content distributions at 10, 30
and 60 cm depths through time for the 1° slope at 10 mm/h refer-
ence rainfall are included in Fig. 16. The saturated-unsaturated
equation and sharp-front model water contents matched the
experimental water contents fairly closely at 10 and 30 cm depths.
At the 60 cm depth, the saturated-unsaturated equation estimated
water content closely, but the sharp-front model diverged from
experimental results because the model calculates uniform water
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Fig. 11. Deep flow results for Soil-2 at 10 mm/h reference rainfall rate.
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Fig. 12. Deep flow results for Soil-3 at 20 mm/h reference rainfall rate.

content throughout the front once it reaches the bottom of the soil
column. The sharp-front model will be unable to match experi-
mental results below the capillary fringe unless the entire soil col-
umn is saturated.

An interesting situation occurred for the sharp-front approxi-
mation at some of the steeper slopes for Soil-1 and Soil-2 if the
front did not reach the capillary fringe at the time the rainfall
stopped. To replicate experimental conditions, initial water con-
tent was maintained below the front until the redistribution
front reached that elevation. At that time, the water content
would reset to the redistribution front water content. This causes
a small jump in the saturated water content. Redistribution was
not a problem for the other Soil-1 10 mm/h reference rainfall
slopes shown. The wetting fronts for all Soil-3 experiments
reached the soil column bottom before rainfall ended. The wet-
ting front did not reach the capillary fringe before rainfall ended
for all Soil-1 and Soil-2 15° slopes and for some of the 10°
slopes.
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Summarizing remarks

This study was an effort at improving our understanding of
infiltration and deep flow on sloping surfaces by comparing
numerical model results to observations from controlled labora-
tory experiments. Out of numerous laboratory studies conducted
at University of Perugia, Italy, three sets of experiments dealing
with artificial rainfall on homogeneous soils were identified for
this analysis. A preliminary analysis of the data indicated that in-
creased slope had a positive influence on surface flow. Further, it
was hypothesized that return flow of soil water may contribute
to surface flow as the slope increased.

Three mathematical models were employed to understand and
extrapolate from these experimental results. These models were:
(i) the Hydrus numerical model, (ii) numerical solution of 1-D sat-
urated-unsaturated flow on sloping surfaces, and (iii) a simplified
1-D sharp-front model for sloping surfaces. The Hydrus program
was used only for a qualitative analysis to assess wall effects and
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Fig. 13. Surface flow results for Soil-1 at 10 mm/h reference rainfall rate.
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return flow. For the latter two models, a surface flow component
based on the kinematic wave approximation for shallow flows
was externally coupled to the subsurface flows to route water over
the soil surface.

For each soil, one experiment at the lowest slope and rainfall
rate was utilized for estimation of model parameters that could
not be measured independently. The hydraulic conductivity for
each soil was calculated by normalizing the observed deep flow
with the slope, cosy. It was discovered that cosy was not ade-
quate to describe the variation in infiltration rate and deep flow.
As slope increased, model results were found to diverge from
experimental results. The following conclusions were drawn from
this analysis:

e The simple correction, cos 7, for sloping surfaces is not sufficient
to account for slope effects in determining infiltration. An effec-
tive hydraulic conductivity, K,, should be included to account for
slope and soil type.

e The steady deep flow equals the effective hydraulic conductivity
multiplied by the slope, K; cos y.

e The steady surface flow equals Ryy — K cosy. As shown by the
surface flow figures, this adequately describes the experimental
results.

On sloping surfaces, an effective saturated hydraulic conductiv-
ity is required to account for decreased infiltration with increasing
slopes. The pore size distribution of the soil plays an important role
in determining the influence of slope and moving water on infiltra-
tion process.

A new sharp-front model was also developed to supplement the
numerical solutions. As indicated by Dagan and Bresler (1983) and
Govindaraju et al. (1992), the sharp-front model is expected to per-
form well at the field scale, where heterogeneity in soil properties
dominates average behavior and local model errors are cancelled
out during the averaging process. In this study, the sharp-front
model was utilized for single realizations, and further, no parame-
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Fig. 14. Surface flow results for Soil-2 under 10 mm/h reference rainfall rate.
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Soil 2, Exp. 1 Water Content versus Time at 10 cm
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Soil 2, Exp. 1 Water Content versus Time at 30 cm

0.6
05
Bo4 E
-E 4 Depth 10cm; g 4 Depth 30cm;
303 tdr5 8 tdr3
= &  Depth10cm; 5 2 Depth 30cm;
§ 02 tdr10 g tdr8
Depth 10cm; Depth 30cm;
01 Richards' Richards'
0 . . ----=---Depth 10cm; 0.41 ----=--- Depth 30cm;
0 10 20 30 Sharp Front - 0 1'0 2‘0 0 Sharp Front
Time, hrs Time, hrs
Soil 2, Exp. 1 Water Content versus Time at 60 cm
05
0.49 455
048
E
a 047 4 Depth80cm;
G 046 tdr1
H 4 Depth80cm;
§ 045 tdre
0.44 —=— Depth 60cm;
0.43 Richards'
-------- Depth 60cm;
0.42 0 1;3 2'0 3'0 Sharp Front

Time, hrs

Fig. 16. Observed and simulated water content versus time at different depths for Soil-2 under 1° surface slope.

ter estimation was conducted explicitly for this model. Neverthe-
less, the sharp-front model was shown to perform well for coarser
soils (Soil-3) where model assumptions are better met. The sharp-
front model was better for simulating surface flow hydrographs
than for the deep flow hydrographs. The deep flow hydrographs
were particularly off when the front did not reach the top of the
capillary fringe before rainfall stopped. Another challenge for the
sharp-front model was posed by the hydrostatic initial conditions
with a capillary fringe and the requirement of a constant atmo-
spheric pressure head at the bottom - neither of which were rep-
resented by the sharp-front model. Thus, even though the sharp-
front model is very attractive in terms of simplicity and insight it
provides (analytical expressions for infiltration rate, deep flows,
time to ponding, etc.), its applicability is limited to coarser soils
and more care must be exercised when adopting this simpler
model.
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