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Preface

This third edition continues the author’s efforts to present linear elasticity with complete yet concise
theoretical development, numerous and contemporary applications, and enriching numerics to aid in
understanding solutions. In addition to making small corrections, several new items have been added.
New material on stress distributions and contour lines that are commonly used in the literature have
been included in Chapter 3. A new section devoted to the formulation and solution of contact stress
problems has also been added in Chapter 8. Discussion of anisotropic problems with spherical
orthotropy has been added in Chapter 11. Finally, MATLAB� codes in Appendix C have been
re-written and a new code for determining and plotting contact stresses has been included.

Over 50 new exercises have been added to the third edition producing a text with 410 total
exercises. These problems should provide instructors with many new and previous options for
homework, exams, or material for in-class presentations or discussions. The online solutions manual
has been updated and corrected and includes solutions to all exercises in the new edition.

Edition three follows the original lineage as an outgrowth of lecture notes that I have used in
teaching a two-course sequence in the theory of elasticity. Part I is designed primarily for the first
course, normally taken by beginning graduate students from a variety of engineering disciplines. The
purpose of the first course is to introduce students to theory and formulation, and to present solutions to
some basic problems. In this fashion students see how and why the more fundamental elasticity model
of deformation should replace elementary strength of materials analysis. The first course also provides
a foundation for more advanced study in related areas of solid mechanics. Although the more advanced
material included in Part II has normally been used for a second course, I often borrow some selected
topics for presentation and use in the first course.

What is the justification for my entry of another text in the elasticity field? For many years, I have
taught this material at several US engineering schools, related industries, and a government agency.
During this time, basic theory has remained much the same; however, changes in problem-solving
emphasis, elasticity applications, numerical/computational methods, and engineering education have
created the need for new approaches to the subject. I have found that many elasticity texts often lack
one or more of the following: a concise and organized presentation of theory, proper format for
educational use, significant applications in contemporary areas, and a numerical interface to help
develop and present solutions and understand the results.

The elasticity presentation in this book reflects the words used in the title - theory, applications, and
numerics. Because theory provides the fundamental cornerstone of this field, it is important to first
provide a sound theoretical development of elasticity with sufficient rigor to give students a good
foundation for the development of solutions to a broad class of problems. The theoretical development
is carried out in an organized and concise manner in order to not lose the attention of the less math-
ematically inclined students or the focus of applications. With a primary goal of solving problems of
engineering interest, the text offers numerous applications in contemporary areas, including aniso-
tropic composite and functionally graded materials, fracture mechanics, micromechanics modeling,
thermoelastic problems, and computational finite and boundary element methods. Numerous solved
example problems and exercises are included in all chapters.

What is perhaps the most unique aspect of this book is its integrated use of numerics. By taking the
approach that applications of theory need to be observed through calculation and graphical display,
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numerics is accomplished through the use of MATLAB�, one of the most popular engineering soft-
ware packages. This software is used throughout the text for applications such as stress and strain
transformation, evaluation and plotting of stress and displacement distributions, finite element cal-
culations, and comparisons between strength of materials and analytical and numerical elasticity
solutions. With numerical and graphical evaluations, application problems become more interesting
and useful for student learning.

Contents summary
Part I of the book emphasizes formulation details and elementary applications. Chapter 1 provides a
mathematical background for the formulation of elasticity through a review of scalar, vector, and
tensor field theory. Cartesian tensor notation is introduced and is used throughout the book’s formu-
lation sections. Chapter 2 covers the analysis of strain and displacement within the context of small
deformation theory. The concept of strain compatibility is also presented in this chapter. Forces,
stresses, the equilibrium concept, and various stress contour lines are developed in Chapter 3. Linear
elastic material behavior leading to the generalized Hooke’s law is discussed in Chapter 4, which also
briefly presents nonhomogeneous, anisotropic, and thermoelastic constitutive forms. Later chapters
more fully investigate these types of applications.

Chapter 5 collects the previously derived equations and formulates the basic boundary value
problems of elasticity theory. The important topic of proper boundary conditions used in elasticity are
discussed in detail. Displacement and stress formulations are generated and general solution strategies
are identified. This is an important chapter for students to put the theory together. Chapter 6 presents
strain energy and related principles, including the reciprocal theorem, virtual work, and minimum
potential and complementary energy. Two-dimensional formulations of plane strain, plane stress, and
antiplane strain are given in Chapter 7. An extensive set of solutions for specific two- dimensional
problems is then presented in Chapter 8, and many applications employing MATLAB� are used to
demonstrate the results. Analytical solutions are continued in Chapter 9 for the Saint-Venant extension,
torsion, and flexure problems.

The material in Part I provides a logical and orderly basis for a sound one-semester beginning course
in elasticity. Selected portions of the text’s second part could also be incorporated into such a course.

Part II delves into more advanced topics normally covered in a second elasticity course. The
powerful method of complex variables for the plane problem is presented in Chapter 10, and several
applications to fracture mechanics are given. Chapter 11 extends the previous isotropic theory into the
behavior of anisotropic solids with emphasis on composite materials. This is an important application
and, again, examples related to fracture mechanics are provided. Curvilinear anisotropy including both
cylindrical and spherical orthotropy are now included in this chapter to explore some basic solutions to
problems with this type of material structure.

An introduction to thermoelasticity is developed in Chapter 12, and several specific application
problems are discussed, including stress concentration and crack problems. Potential methods,
including both displacement potentials and stress functions, are presented in Chapter 13. These
methods are used to develop several three-dimensional elasticity solutions.

Chapter 14 covers nonhomogeneous elasticity, and this material is unique among current standard
elasticity texts. After briefly covering theoretical formulations, several two-dimensional solutions are
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generated along with comparison field plots with the corresponding homogeneous cases. Chapter 15
presents a distinctive collection of elasticity applications to problems involving micromechanics
modeling. Included in it are applications for dislocation modeling, singular stress states, solids with
distributed cracks, micropolar, distributed voids, and doublet mechanics theories.

Chapter 16 provides a brief introduction to the powerful numerical methods of finite and boundary
element techniques. Although only two-dimensional theory is developed, the numerical results in the
example problems provide interesting comparisons with previously generated analytical solutions
from earlier chapters.

This third edition of Elasticity concludes with four appendices that contain a concise summary
listing of basic field equations; transformation relations between Cartesian, cylindrical, and spherical
coordinate systems; a MATLAB� primer; and a self-contained review of mechanics of materials.

The subject
Elasticity is an elegant and fascinating subject that deals with determination of the stress, strain, and
displacement distribution in an elastic solid under the influence of external forces. Following the usual
assumptions of linear, small-deformation theory, the formulation establishes a mathematical model
that allows solutions to problems that have applications in many engineering and scientific fields.

• Civil engineering applications include important contributions to stress and deflection analysis of
structures, such as rods, beams, plates, and shells. Additional applications lie in geomechanics
involving the stresses in materials such as soil, rock, concrete, and asphalt.

• Mechanical engineering uses elasticity in numerous problems in analysis and design of machine
elements. Such applications include general stress analysis, contact stresses, thermal stress
analysis, fracture mechanics, and fatigue.

• Materials engineering uses elasticity to determine the stress fields in crystalline solids, around
dislocations, and in materials with microstructure.

• Applications in aeronautical and aerospace engineering include stress, fracture, and fatigue
analysis in aerostructures.

The subject also provides the basis for more advanced work in inelastic material behavior, including
plasticity and viscoelasticity, and the study of computational stress analysis employing finite and
boundary element methods.

Elasticity theory establishes a mathematical model of the deformation problem, and this requires
mathematical knowledge to understand formulation and solution procedures. Governing partial dif-
ferential field equations are developed using basic principles of continuum mechanics commonly
formulated in vector and tensor language. Techniques used to solve these field equations can
encompass Fourier methods, variational calculus, integral transforms, complex variables, potential
theory, finite differences, finite elements, and so forth. To prepare students for this subject, the text
provides reviews of many mathematical topics, and additional references are given for further study. It
is important for students to be adequately prepared for the theoretical developments, or else they will
not be able to understand necessary formulation details. Of course, with emphasis on applications, we
will concentrate on theory that is most useful for problem solution.
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The concept of the elastic force–deformation relation was first proposed by Robert Hooke in 1678.
However, the major formulation of the mathematical theory of elasticity was not developed until the
nineteenth century. In 1821 Navier presented his investigations on the general equations of equilib-
rium; he was quickly followed by Cauchy, who studied the basic elasticity equations and developed the
notation of stress at a point. A long list of prominent scientists and mathematicians continued
development of the theory, including the Bernoullis, Lord Kelvin, Poisson, Lamé, Green, Saint-
Venant, Betti, Airy, Kirchhoff, Rayleigh, Love, Timoshenko, Kolosoff, Muskhelishvilli, and others.

During the two decades after World War II, elasticity research produced a large number of
analytical solutions to specific problems of engineering interest. The 1970s and 1980s included
considerable work on numerical methods using finite and boundary element theory. Also during this
period, elasticity applications were directed at anisotropic materials for applications to composites.
More recently, elasticity has been used in modeling of materials with internal microstructures or
heterogeneity and in inhomogeneous, graded materials.

The rebirth of modern continuum mechanics in the 1960s led to a review of the foundations of
elasticity and established a rational place for the theory within the general framework. Historical
details can be found in the texts by Todhunter and Pearson, History of the Theory of Elasticity; Love, A
Treatise on the Mathematical Theory of Elasticity; and Timoshenko, A History of Strength of
Materials.

Exercises and web support
Of special note in regard to this text is the use of exercises and the publisher’s website, www.textbooks.
elsevier.com. Numerous exercises are provided at the end of each chapter for homework assignments
to engage students with the subject matter. The exercises also provide an ideal tool for the instructor to
present additional application examples during class lectures. Many places in the text make reference
to specific exercises that work out details to a particular problem. Exercises marked with an asterisk (*)
indicate problems that require numerical and plotting methods using the suggested MATLAB�

software. Note however, that other software packages can also be used to do the require numerical
analysis and plotting. Solutions to all exercises are provided online at the publisher’s website, thereby
providing instructors with considerable help in using this material. In addition, downloadable
MATLAB� software is available to aid both students and instructors in developing codes for their own
particular use to allow easy integration of the numerics. New for the third edition is an online
collection of PowerPoint slides for Chapters 1-9. This material includes graphical figures and sum-
maries of basic equations that have proven to be useful during class presentations.

Feedback
The author is strongly interested in continual improvement of engineering education and welcomes
feedback from users of this book. Please feel free to send comments concerning suggested im-
provements or corrections via email (sadd@egr.uri.edu). It is likely that such feedback will be shared
with the text’s user community through the publisher’s website.
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Mathematical Preliminaries 1
Similar to other field theories such as fluid mechanics, heat conduction, and electromagnetics, the
study and application of elasticity theory requires knowledge of several areas of applied mathematics.
The theory is formulated in terms of a variety of variables including scalar, vector, and tensor fields,
and this calls for the use of tensor notation along with tensor algebra and calculus. Through the use of
particular principles from continuum mechanics, the theory is developed as a system of partial dif-
ferential field equations that are to be solved in a region of space coinciding with the body under study.
Solution techniques used on these field equations commonly employ Fourier methods, variational
techniques, integral transforms, complex variables, potential theory, finite differences, and finite and
boundary elements. Therefore, to develop proper formulation methods and solution techniques for
elasticity problems, it is necessary to have an appropriate mathematical background. The purpose of
this initial chapter is to provide a background primarily for the formulation part of our study. Addi-
tional review of other mathematical topics related to problem solution technique is provided in later
chapters where they are to be applied.

1.1 Scalar, vector, matrix, and tensor definitions
Elasticity theory is formulated in terms of many different types of variables that are either specified or
sought at spatial points in the body under study. Some of these variables are scalar quantities, rep-
resenting a single magnitude at each point in space. Common examples include the material density
r and temperature T. Other variables of interest are vector quantities that are expressible in terms of
components in a two- or three-dimensional coordinate system. Examples of vector variables are the
displacement and rotation of material points in the elastic continuum. Formulations within the theory
also require the need for matrix variables, which commonly require more than three components to
quantify. Examples of such variables include stress and strain. As shown in subsequent chapters, a
three-dimensional formulation requires nine components (only six are independent) to quantify the
stress or strain at a point. For this case, the variable is normally expressed in a matrix format with three
rows and three columns. To summarize this discussion, in a three-dimensional Cartesian coordinate
system, scalar, vector, and matrix variables can thus be written as follows

mass density scalar ¼ r

displacement vector ¼ u ¼ ue1 þ ve2 þ we3

stress matrix ¼ ½s� ¼
2
4 sx sxy sxz
syx sy syz
szx szy sz

3
5
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where e1, e2, e3 are the usual unit basis vectors in the coordinate directions. Thus, scalars, vectors, and
matrices are specified by one, three, and nine components respectively.

The formulation of elasticity problems not only involves these types of variables, but also
incorporates additional quantities that require even more components to characterize. Because of this,
most field theories such as elasticity make use of a tensor formalism using index notation. This enables
efficient representation of all variables and governing equations using a single standardized scheme.
The tensor concept is defined more precisely in a later section, but for now we can simply say that
scalars, vectors, matrices, and other higher-order variables can all be represented by tensors of various
orders. We now proceed to a discussion on the notational rules of order for the tensor formalism.
Additional information on tensors and index notation can be found in many texts such as Goodbody
(1982) or Chandrasekharaiah and Debnath (1994).

1.2 Index notation
Index notation is a shorthand scheme whereby a whole set of numbers (elements or components) is
represented by a single symbol with subscripts. For example, the three numbers a1, a2, a3 are denoted
by the symbol ai, where index i will normally have the range 1, 2, 3. In a similar fashion, aij represents
the nine numbers a11, a12, a13, a21, a22, a23, a31, a32, a33. Although these representations can be written
in any manner, it is common to use a scheme related to vector and matrix formats such that

ai ¼
2
4 a1
a2
a3

3
5; aij ¼

2
4 a11 a12 a13
a21 a22 a23
a31 a32 a33

3
5 (1.2.1)

In the matrix format, a1j represents the first row, while ai1 indicates the first column. Other columns and
rows are indicated in similar fashion, and thus the first index represents the row, while the second index
denotes the column.

In general a symbol aij.k with N distinct indices represents 3N distinct numbers. It should be
apparent that ai and aj represent the same three numbers, and likewise aij and amn signify the same
matrix. Addition, subtraction, multiplication, and equality of index symbols are defined in the normal
fashion. For example, addition and subtraction are given by

ai � bi ¼
2
4 a1 � b1
a2 � b2
a3 � b3

3
5; aij � bij ¼

2
4 a11 � b11 a12 � b12 a13 � b13
a21 � b21 a22 � b22 a23 � b23
a31 � b31 a32 � b32 a33 � b33

3
5 (1.2.2)

and scalar multiplication is specified as

lai ¼
2
4 la1
la2
la3

3
5; laij ¼

2
4 la11 la12 la13
la21 la22 la23
la31 la32 la33

3
5 (1.2.3)

The multiplication of two symbols with different indices is called outer multiplication, and a simple
example is given by

aibj ¼
2
4 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

3
5 (1.2.4)
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The previous operations obey usual commutative, associative, and distributive laws, for example

ai þ bi ¼ bi þ ai

aijbk ¼ bkaij

ai þ ðbi þ ciÞ ¼ ðai þ biÞ þ ci

ai
�
bjkcl

� ¼ �aibjk�cl
aijðbk þ ckÞ ¼ aijbk þ aijck

(1.2.5)

Note that the simple relations ai ¼ bi and aij ¼ bij imply that a1 ¼ b1, a2 ¼ b2, . and
a11 ¼ b11, a12 ¼ b12, . However, relations of the form ai ¼ bj or aij ¼ bkl have ambiguous meaning
because the distinct indices on each term are not the same, and these types of expressions are to be
avoided in this notational scheme. In general, the distinct subscripts on all individual terms in an
equation should match.

It is convenient to adopt the convention that if a subscript appears twice in the same term, then
summation over that subscript from one to three is implied, for example

aii ¼
X3
i¼1

aii ¼ a11 þ a22 þ a33

aijbj ¼
X3
j¼1

aijbj ¼ ai1b1 þ ai2b2 þ ai3b3

(1.2.6)

It should be apparent that aii ¼ ajj ¼ akk ¼ ., and therefore the repeated subscripts or indices are
sometimes called dummy subscripts. Unspecified indices that are not repeated are called free or distinct
subscripts. The summation convention may be suspended by underlining one of the repeated indices or
by writing no sum. The use of three or more repeated indices in the same term (e.g., aiii or aiijbij) has
ambiguous meaning and is to be avoided. On a given symbol, the process of setting two free indices
equal is called contraction. For example, aii is obtained from aij by contraction on i and j. The
operation of outer multiplication of two indexed symbols followed by contraction with respect to one
index from each symbol generates an inner multiplication; for example, aijbjk is an inner product
obtained from the outer product aijbmk by contraction on indices j and m.

A symbol aij.m.n.k is said to be symmetric with respect to index pair mn if

aij.m.n.k ¼ aij.n.m.k (1.2.7)

while it is antisymmetric or skewsymmetric if

aij.m.n.k ¼ �aij.n.m.k (1.2.8)

Note that if aij.m.n.k is symmetric in mn while bpq.m.n.r is antisymmetric in mn, then the product
is zero

aij.m.n.kbpq.m.n.r ¼ 0 (1.2.9)

A useful identity may be written as

aij ¼ 1

2
ðaij þ ajiÞ þ 1

2
ðaij � ajiÞ ¼ aðijÞ þ a½ij� (1.2.10)

The first term a(ij) ¼ 1/2(aij þ aji) is symmetric, while the second term a[ij] ¼ 1/2(aij � aji) is anti-
symmetric, and thus an arbitrary symbol aij can be expressed as the sum of symmetric and
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antisymmetric pieces. Note that if aij is symmetric, it has only six independent components. On the
other hand, if aij is antisymmetric, its diagonal terms aii (no sum on i) must be zero, and it has only
three independent components. Since a[ij] has only three independent components, it can be related to
a quantity with a single index, for example ai (see Exercise 1.15).

EXAMPLE 1.1: INDEX NOTATION EXAMPLES
The matrix aij and vector bi are specified by

aij ¼
2
4 1 2 0
0 4 3
2 1 2

3
5; bi ¼

2
4 2
4
0

3
5

Determine the following quantities: aii, aijaij, aijajk, aijbj, aijbibj, bibi, bibj, a(ij), a[ij], and indicate
whether they are a scalar, vector, or matrix.

Following the standard definitions given in Section 1.2

aii ¼ a11 þ a22 þ a33 ¼ 7 ðscalarÞ
aijaij ¼ a11a11 þ a12a12 þ a13a13 þ a21a21 þ a22a22 þ a23a23 þ a31a31 þ a32a32 þ a33a33

¼ 1þ 4þ 0þ 0þ 16þ 9þ 4þ 1þ 4 ¼ 39 ðscalarÞ

aijajk ¼ ai1a1k þ ai2a2k þ ai3a3k ¼
2
4 1 10 6
6 19 18
6 10 7

3
5 ðmatrixÞ

aijbj ¼ ai1b1 þ ai2b2 þ ai3b3 ¼
2
4 10
16
8

3
5 ðvectorÞ

aijbibj ¼ a11b1b1 þ a12b1b2 þ a13b1b3 þ a21b2b1 þ. ¼ 84 ðscalarÞ
bibi ¼ b1b1 þ b2b2 þ b3b3 ¼ 4þ 16þ 0 ¼ 20 ðscalarÞ

bibj ¼
2
4 4 8 0
8 16 0
0 0 0

3
5 ðmatrixÞ

aðijÞ ¼
1

2

�
aij þ aji

� ¼ 1

2

2
4 1 2 0
0 4 3
2 1 2

3
5 þ 1

2

2
4 1 0 2
2 4 1
0 3 2

3
5 ¼

2
4 1 1 1
1 4 2
1 2 2

3
5 ðmatrixÞ

a½ij� ¼
1

2

�
aij � aji

� ¼ 1

2

2
4 1 2 0
0 4 3
2 1 2

3
5 � 1

2

2
4 1 0 2
2 4 1
0 3 2

3
5 ¼

2
4 0 1 �1
�1 0 1
1 �1 0

3
5 ðmatrixÞ
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1.3 Kronecker delta and alternating symbol
A useful special symbol commonly used in index notational schemes is the Kronecker delta defined by

dij ¼
8<
: 1; if i ¼ j ðno sumÞ

0; if isj
¼
2
4 1 0 0
0 1 0
0 0 1

3
5 (1.3.1)

Within usual matrix theory, it is observed that this symbol is simply the unit matrix. Note that the
Kronecker delta is a symmetric symbol. Particularly useful properties of the Kronecker delta include
the following

dij ¼ dji

dii ¼ 3; dii ¼ 1

dijaj ¼ ai; dijai ¼ aj

dijajk ¼ aik; djkaik ¼ aij

dijaij ¼ aii; dijdij ¼ 3

(1.3.2)

Another useful special symbol is the alternating or permutation symbol defined by

εijk ¼
8<
:

þ1; if ijk is an even permutation of 1; 2; 3
�1; if ijk is an odd permutation of 1; 2; 3
0; otherwise

(1.3.3)

Consequently, ε123¼ ε231¼ ε312¼ 1, ε321¼ ε132¼ ε213¼�1, ε112¼ ε131¼ ε222¼.¼ 0. Therefore,
of the 27 possible terms for the alternating symbol, three are equal toþ1, three are equal to�1, and all
others are 0. The alternating symbol is antisymmetric with respect to any pair of its indices.

This particular symbol is useful in evaluating determinants and vector cross products, and the
determinant of an array aij can be written in two equivalent forms

det
�
aij
� ¼ ��aij�� ¼

������
a11 a12 a13
a21 a22 a23
a31 a32 a33

������ ¼ εijka1ia2ja3k ¼ εijkai1aj2ak3 (1.3.4)

where the first index expression represents the row expansion, while the second form is the column
expansion. Using the property

εijkεpqr ¼
������
dip diq dir
djp djq djr
dkp dkq dkr

������ (1.3.5)

another form of the determinant of a matrix can be written as

det
�
aij
� ¼ 1

6
εijkεpqraipajqakr (1.3.6)

1.3 Kronecker delta and alternating symbol 7



1.4 Coordinate transformations
It is convenient and in fact necessary to express elasticity variables and field equations in several
different coordinate systems (see Appendix A). This situation requires the development of particular
transformation rules for scalar, vector, matrix, and higher-order variables. This concept is funda-
mentally connected with the basic definitions of tensor variables and their related tensor transformation
laws. We restrict our discussion to transformations only between Cartesian coordinate systems, and
thus consider the two systems shown in Figure 1.1. The two Cartesian frames (x1, x2, x3) and ðx01; x02; x03Þ
differ only by orientation, and the unit basis vectors for each frame are {ei} ¼ {e1, e2, e3} and fe0ig ¼
fe01; e02; e03g.

Let Qij denote the cosine of the angle between the x0i-axis and the xj-axis

Qij ¼ cos
�
x0i; xj

�
(1.4.1)

Using this definition, the basis vectors in the primed coordinate frame can be easily expressed in terms
of those in the unprimed frame by the relations

e01 ¼ Q11e1 þ Q12e2 þ Q13e3

e02 ¼ Q21e1 þ Q22e2 þ Q23e3

e03 ¼ Q31e1 þ Q32e2 þ Q33e3

(1.4.2)

or in index notation

e0i ¼ Qijej (1.4.3)

v

e3
e2

e1

e3

e2e1

x3

x2

x1

x3

x2

x1

FIGURE 1.1 Change of Cartesian Coordinate Frames.
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Likewise, the opposite transformation can be written using the same format as

ei ¼ Qjie
0
j (1.4.4)

Now an arbitrary vector v can be written in either of the two coordinate systems as

v ¼ v1e1 þ v2e2 þ v3e3 ¼ viei

¼ v01e
0
1 þ v02e

0
2 þ v03e

0
3 ¼ v0ie0i

(1.4.5)

Substituting form (1.4.4) into (1.4.5)1 gives

v ¼ viQjie
0
j

but from (1.4.5)2, v ¼ v0je0j; and so we find that

v0i ¼ Qijvj (1.4.6)

In similar fashion, using (1.4.3) in (1.4.5)2 gives

vi ¼ Qjiv
0
j (1.4.7)

Relations (1.4.6) and (1.4.7) constitute the transformation laws for the Cartesian components of a
vector under a change of rectangular Cartesian coordinate frame. It should be understood that under
such transformations, the vector is unaltered (retaining original length and orientation), and only its
components are changed. Consequently, if we know the components of a vector in one frame, relation
(1.4.6) and/or relation (1.4.7) can be used to calculate components in any other frame.

The fact that transformations are being made only between orthogonal coordinate systems places
some particular restrictions on the transformation or direction cosine matrix Qij. These can be
determined by using (1.4.6) and (1.4.7) together to get

vi ¼ Qjiv
0
j ¼ QjiQjkvk (1.4.8)

From the properties of the Kronecker delta, this expression can be written as

dikvk ¼ QjiQjkvk or
�
QjiQjk � dik

�
vk ¼ 0

and since this relation is true for all vectors vk, the expression in parentheses must be zero, giving the
result

QjiQjk ¼ dik (1.4.9)

In similar fashion, relations (1.4.6) and (1.4.7) can be used to eliminate vi (instead of v0i) to get

QijQkj ¼ dik (1.4.10)

Relations (1.4.9) and (1.4.10) comprise the orthogonality conditions that Qij must satisfy. Taking the
determinant of either relation gives another related result

det
�
Qij

� ¼ �1 (1.4.11)

Matrices that satisfy these relations are called orthogonal, and the transformations given by (1.4.6) and
(1.4.7) are therefore referred to as orthogonal transformations.
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1.5 Cartesian tensors
Scalars, vectors, matrices, and higher-order quantities can be represented by a general index notational
scheme. Using this approach, all quantities may then be referred to as tensors of different orders. The
previously presented transformation properties of a vector can be used to establish the general
transformation properties of these tensors. Restricting the transformations to those only between
Cartesian coordinate systems, the general set of transformation relations for various orders can be
written as

a0 ¼ a; zero order ðscalarÞ
a0i ¼ Qipap; first order ðvectorÞ
a0ij ¼ QipQjqapq; second order ðmatrixÞ
a0ijk ¼ QipQjpQkrapqr; third order

a0ijkl ¼ QipQjqQkrQlsapqrs; fourth order

«

a0ijk.m ¼ QipQjqQkr /Qmtapqr.t; general order

(1.5.1)

Note that, according to these definitions, a scalar is a zero-order tensor, a vector is a tensor of order one,
and a matrix is a tensor of order two. Relations (1.5.1) then specify the transformation rules for the
components of Cartesian tensors of any order under the rotation Qij. This transformation theory proves
to be very valuable in determining the displacement, stress, and strain in different coordinate di-
rections. Some tensors are of a special form in which their components remain the same under all
transformations, and these are referred to as isotropic tensors. It can be easily verified (see Exercise
1.8) that the Kronecker delta dij has such a property and is therefore a second-order isotropic tensor.
The alternating symbol εijk is found to be the third-order isotropic form. The fourth-order case
(Exercise 1.9) can be expressed in terms of products of Kronecker deltas, and this has important
applications in formulating isotropic elastic constitutive relations in Section 4.2.

The distinction between the components and the tensor should be understood. Recall that a vector v
can be expressed as

v ¼ v1e1 þ v2e2 þ v3e3 ¼ viei

¼ v01e
0
1 þ v02e

0
2 þ v03e

0
3 ¼ v0ie

0
i

(1.5.2)

In a similar fashion, a second-order tensor A can be written

A ¼ A11e1e1 þ A12e1e2 þ A13e1e3

þ A21e2e1 þ A22e2e2 þ A23e2e3

þ A31e3e1 þ A32e3e2 þ A33e3e3

¼ Aijeiej ¼ A0
ije

0
ie
0
j

(1.5.3)

and similar schemes can be used to represent tensors of higher order. The representation used in
equation (1.5.3) is commonly called dyadic notation, and some authors write the dyadic products eiej
using a tensor product notation ei5ej. Additional information on dyadic notation can be found in
Weatherburn (1948) and Chou and Pagano (1967).
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Relations (1.5.2) and (1.5.3) indicate that any tensor can be expressed in terms of components in
any coordinate system, and it is only the components that change under coordinate transformation. For
example, the state of stress at a point in an elastic solid depends on the problem geometry and applied
loadings. As is shown later, these stress components are those of a second-order tensor and therefore
obey transformation law (1.5.1)3. Although the components of the stress tensor change with choice of
coordinates, the stress tensor (representing the state of stress) does not.

An important property of a tensor is that if we know its components in one coordinate system, we
can find them in any other coordinate frame by using the appropriate transformation law. Because the
components of Cartesian tensors are representable by indexed symbols, the operations of equality,
addition, subtraction, multiplication, and so forth are defined in a manner consistent with the indicial
notation procedures previously discussed. The terminology tensor without the adjective Cartesian
usually refers to a more general scheme in which the coordinates are not necessarily rectangular
Cartesian and the transformations between coordinates are not always orthogonal. Such general tensor
theory is not discussed or used in this text.

EXAMPLE 1.2: TRANSFORMATION EXAMPLES
The components of a first- and second-order tensor in a particular coordinate frame are given by

ai ¼
2
4 1
4
2

3
5; aij ¼

2
4 1 0 3
0 2 2
3 2 4

3
5

Determine the components of each tensor in a new coordinate system found through a rotation of
60� (p/3 radians) about the x3-axis. Choose a counterclockwise rotation when viewing down the
negative x3-axis (see Figure 1.2).

The original and primed coordinate systems shown in Figure 1.2 establish the angles between
the various axes. The solution starts by determining the rotation matrix for this case

Qij ¼
2
4 cos 60� cos 30� cos 90�
cos 150� cos 60� cos 90�
cos 90� cos 90� cos 0�

3
5 ¼

2
4 1=2

ffiffiffi
3

p
=2 0

� ffiffiffi
3

p
=2 1=2 0

0 0 1

3
5

The transformation for the vector quantity follows from equation (1.5.1)2

a0i ¼ Qijaj ¼
2
4 1=2

ffiffiffi
3

p
=2 0

� ffiffiffi
3

p
=2 1=2 0

0 0 1

3
5
2
4 1
4
2

3
5 ¼

2
4 1=2þ 2

ffiffiffi
3

p
2� ffiffiffi

3
p

=2
2

3
5

and the second-order tensor (matrix) transforms according to (1.5.1)3

a0ij ¼ QipQjqapq ¼

2
64 1=2

ffiffiffi
3

p
=2 0

� ffiffiffi
3

p
=2 1=2 0

0 0 1

3
75
2
4 1 0 3

0 2 2

3 2 4

3
5
2
64 1=2

ffiffiffi
3

p
=2 0

� ffiffiffi
3

p
=2 1=2 0

0 0 1

3
75
T

¼

2
64 7=4

ffiffiffi
3

p
=4 3=2þ ffiffiffi

3
pffiffiffi

3
p

=4 5=4 1� 3
ffiffiffi
3

p
=2

3=2þ ffiffiffi
3

p
1� 3

ffiffiffi
3

p
=2 4

3
75
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where [ ]T indicates transpose (defined in Section 1.7). Although simple transformations can be
worked out by hand, for more general cases it is more convenient to use a computational scheme
to evaluate the necessary matrix multiplications required in the transformation laws (1.5.1).
MATLAB� software is ideally suited to carry out such calculations, and an example program to
evaluate the transformation of second-order tensors is given in Example C.1 in Appendix C.

1.6 Principal values and directions for symmetric second-order
tensors

Considering the tensor transformation concept previously discussed, it should be apparent that there
might exist particular coordinate systems in which the components of a tensor take on maximum or
minimum values. This concept is easily visualized when we consider the components of a vector as
shown in Figure 1.1. If we choose a particular coordinate system that has been rotated so that the
x3-axis lies along the direction of the vector, then the vector will have components v ¼ {0, 0, jvj}. For
this case, two of the components have been reduced to zero, while the remaining component becomes
the largest possible (the total magnitude).

This situation is most useful for symmetric second-order tensors that eventually represent the stress
and/or strain at a point in an elastic solid. The direction determined by the unit vector n is said to be a
principal direction or eigenvector of the symmetric second-order tensor aij if there exists a parameter l
such that

aijnj ¼ lni (1.6.1)

x3

x2

x1

60

x3

x2

x1

FIGURE 1.2 Coordinate Transformation.
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where l is called the principal value or eigenvalue of the tensor. Relation (1.6.1) can be
rewritten as �

aij � ldij
�
nj ¼ 0

and this expression is simply a homogeneous system of three linear algebraic equations in the un-
knowns n1, n2, n3. The system possesses a nontrivial solution if and only if the determinant of its
coefficient matrix vanishes

det
�
aij � ldij

� ¼ 0

Expanding the determinant produces a cubic equation in terms of l

det
�
aij � ldij

� ¼ �l3 þ Ial
2 � IIalþ IIIa ¼ 0 (1.6.2)

where

Ia ¼ aii ¼ a11 þ a22 þ a33

IIa ¼ 1

2

�
aiiajj � aijaij

� ¼ ���� a11 a12
a21 a22

����þ
���� a22 a23
a32 a33

����þ
���� a11 a13
a31 a33

����
IIIa ¼ det

�
aij
�

(1.6.3)

The scalars Ia, IIa, and IIIa are called the fundamental invariants of the tensor aij, and relation (1.6.2) is
known as the characteristic equation. As indicated by their name, the three invariants do not change
value under coordinate transformation. The roots of the characteristic equation determine the allow-
able values for l, and each of these may be back-substituted into relation (1.6.1) to solve for the
associated principal direction n.

Under the condition that the components aij are real, it can be shown that all three roots l1, l2, l3
of the cubic equation (1.6.2) must be real. Furthermore, if these roots are distinct, the principal di-
rections associated with each principal value are orthogonal. Thus, we can conclude that every
symmetric second-order tensor has at least three mutually perpendicular principal directions and at
most three distinct principal values that are the roots of the characteristic equation. By denoting the
principal directions n(1), n(2), n(3) corresponding to the principal values l1, l2, l3, three possibilities
arise:

1. All three principal values are distinct; the three corresponding principal directions are unique
(except for sense).

2. Two principal values are equal (l1 s l2 ¼ l3); the principal direction n(1) is unique (except for
sense), and every direction perpendicular to n(1) is a principal direction associated with l2, l3.

3. All three principal values are equal; every direction is principal, and the tensor is isotropic, as per
discussion in the previous section.

Therefore, according to what we have presented, it is always possible to identify a right-handed
Cartesian coordinate system such that each axis lies along the principal directions of any given

1.6 Principal values and directions for symmetric second-order tensors 13



symmetric second-order tensor. Such axes are called the principal axes of the tensor. For this case, the
basis vectors are actually the unit principal directions {n(1), n(2), n(3)}, and it can be shown that with
respect to principal axes the tensor reduces to the diagonal form

a0ij ¼
2
4 l1 0 0

0 l2 0
0 0 l3

3
5 (1.6.4)

Note that the fundamental invariants defined by relations (1.6.3) can be expressed in terms of the
principal values as

Ia ¼ l1 þ l2 þ l3

IIa ¼ l1l2 þ l2l3 þ l3l1

IIIa ¼ l1l2l3

(1.6.5)

The eigenvalues have important extremal properties. If we arbitrarily rank the principal values such
that l1 > l2 > l3, then l1 will be the largest of all possible diagonal elements, while l3 will be the
smallest diagonal element possible. This theory is applied in elasticity as we seek the largest stress or
strain components in an elastic solid.

EXAMPLE 1.3: PRINCIPAL VALUE PROBLEM
Determine the invariants and principal values and directions of the following symmetric second-
order tensor

aij ¼
2
4 2 0 0
0 3 4
0 4 �3

3
5

The invariants follow from relations (1.6.3)

Ia ¼ aii ¼ 2þ 3� 3 ¼ 2

IIa ¼
���� 2 0

0 3

����þ
���� 3 4

4 �3

����þ
���� 2 0

0 �3

���� ¼ 6� 25� 6 ¼ �25

IIIa ¼
������
2 0 0

0 3 4

0 4 �3

������ ¼ 2ð�9� 16Þ ¼ �50

The characteristic equation then becomes

det
�
aij � ldij

� ¼ �l3 þ 2l2 þ 25l� 50 ¼ 0

0ðl� 2Þ�l2 � 25
� ¼ 0

rl1 ¼ 5; l2 ¼ 2; l3 ¼ �5

Thus, for this case all principal values are distinct.
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For the l1 ¼ 5 root, equation (1.6.1) gives the system

�3n
ð1Þ
1 ¼ 0

�2n
ð1Þ
2 þ 4n

ð1Þ
3 ¼ 0

4n
ð1Þ
2 � 8n

ð1Þ
3 ¼ 0

which gives a normalized solution n(1) ¼ � (2e2 þ e3)=
ffiffiffi
5

p
. In similar fashion, the other two prin-

cipal directions are found to be n(2) ¼ �e1, n
(3) ¼ � (e2 � 2e3)=

ffiffiffi
5

p
. It is easily verified that these

directions are mutually orthogonal. Figure 1.3 illustrates their directions with respect to the given
coordinate system, and this establishes the right-handed principal coordinate axes ðx01; x02; x03Þ: For
this case, the transformation matrix Qij defined by (1.4.1) becomes

Qij ¼
2
4 0 2=

ffiffiffi
5

p
1=

ffiffiffi
5

p
1 0 0
0 1=

ffiffiffi
5

p �2=
ffiffiffi
5

p

3
5

Notice the eigenvectors actually form the rows of the Q matrix.
Using this in the transformation law (1.5.1)3, the components of the given second-order tensor

become

a0ij ¼
2
4 5 0 0
0 2 0
0 0 �5

3
5

This result then validates the general theory given by relation (1.6.4), indicating that the tensor
should take on diagonal form with the principal values as the elements.

Only simple second-order tensors lead to a characteristic equation that is factorable, thus allow-
ing solution by hand calculation. Most other cases normally develop a general cubic equation and a
more complicated system to solve for the principal directions. Again, particular routines within the
MATLAB� package offer convenient tools to solve these more general problems. Example C.2 in
Appendix C provides a simple code to determine the principal values and directions for symmetric
second-order tensors.

x3

x1

x2

x1
n(1)

n(3)

n(2)

′

x3′

x2′

FIGURE 1.3 Principal Axes for Example 1.3.
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1.7 Vector, matrix, and tensor algebra
Elasticity theory requires the use of many standard algebraic operations among vector, matrix, and
tensor variables. These operations include dot and cross products of vectors and numerous matrix/
tensor products. All of these operations can be expressed efficiently using compact tensor index no-
tation. First, consider some particular vector products. Given two vectors a and b, with Cartesian
components ai and bi, the scalar or dot product is defined by

a$b ¼ a1b1 þ a2b2 þ a3b3 ¼ aibi (1.7.1)

Because all indices in this expression are repeated, the quantity must be a scalar, that is, a tensor of
order zero. The magnitude of a vector can then be expressed as

jaj ¼ ða$aÞ1=2 ¼ ðaiaiÞ1=2 (1.7.2)

The vector or cross product between two vectors a and b can be written as

a� b ¼
������
e1 e2 e3
a1 a2 a3
b1 b2 b3

������ ¼ εijkajbkei (1.7.3)

where ei are the unit basis vectors for the coordinate system. Note that the cross product gives a vector
resultant whose components are εijkajbk. Another common vector product is the scalar triple product
defined by

a$b� c ¼
������
a1 a2 a3
b1 b2 b3
c1 c2 c3

������ ¼ εijkaibjck (1.7.4)

Next consider some common matrix products. Using the usual direct notation for matrices and vectors,
common products between a matrix A ¼ [A] with a vector a can be written as

Aa ¼ ½A�fag ¼ Aijaj ¼ ajAij

aTA ¼ fagT ½A� ¼ aiAij ¼ Aijai
(1.7.5)

where aT denotes the transpose, and for a vector quantity this simply changes the columnmatrix (3� 1)
into a row matrix (1� 3). Note that each of these products results in a vector resultant. These types of
expressions generally involve various inner products within the index notational scheme and, as
noted, once the summation index is properly specified, the order of listing the product terms does not
change the result. We will encounter several different combinations of products between two matrices
A and B

AB ¼ ½A�½B� ¼ AijBjk

ABT ¼ AijBkj

ATB ¼ AjiBjk

trðABÞ ¼ AijBji

tr
�
ABT

� ¼ tr
�
ATB

� ¼ AijBij

(1.7.6)
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where AT indicates the transpose and trA is the trace of the matrix defined by

AT
ij ¼ Aji

trA ¼ Aii ¼ A11 þ A22 þ A33

(1.7.7)

Similar to vector products, once the summation index is properly specified, the results in (1.7.6) do not
depend on the order of listing the product terms. Note that this does not imply that AB ¼ BA, which is
certainly not true.

1.8 Calculus of Cartesian tensors
Most variables within elasticity theory are field variables, that is, functions depending on the spatial
coordinates used to formulate the problem under study. For time-dependent problems, these variables
could also have temporal variation. Thus, our scalar, vector, matrix, and general tensor variables are
functions of the spatial coordinates (x1, x2, x3). Because many elasticity equations involve differential
and integral operations, it is necessary to have an understanding of the calculus of Cartesian tensor
fields. Further information on vector differential and integral calculus can be found in Hildebrand
(1976) and Kreyszig (2010).

The field concept for tensor components can be expressed as

a ¼ aðx1; x2; x3Þ ¼ aðxiÞ ¼ aðxÞ
ai ¼ aiðx1; x2; x3Þ ¼ aiðxiÞ ¼ aiðxÞ
aij ¼ aijðx1; x2; x3Þ ¼ aijðxiÞ ¼ aijðxÞ
«

It is convenient to introduce the comma notation for partial differentiation

a;i ¼ v

vxi
a; ai; j ¼ v

vxj
ai; aij;k ¼ v

vxk
aij; /

It can be shown that if the differentiation index is distinct, the order of the tensor is increased by
one. For example, the derivative operation on a vector ai, j produces a second-order tensor or matrix
given by

ai; j ¼

va1
vx1

va1
vx2

va1
vx3

va2
vx1

va2
vx2

va2
vx3

va3
vx1

va3
vx2

va3
vx3

3
7777775

2
6666664

Using Cartesian coordinates (x, y, z), consider the directional derivative of a scalar field function fwith
respect to a direction s

df

ds
¼ vf

vx

dx

ds
þ vf

vy

dy

ds
þ vf

vz

dz

ds
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Note that the unit vector in the direction of s can be written as

n ¼ dx

ds
e1 þ dy

ds
e2 þ dz

ds
e3

Therefore, the directional derivative can be expressed as the following scalar product

df

ds
¼ n$Vf (1.8.1)

where Vf is called the gradient of the scalar function f and is defined by

Vf ¼ grad f ¼ e1
vf

vx
þ e2

vf

vy
þ e3

vf

vz
(1.8.2)

and the symbolic vector operator V is called the del operator

V ¼ e1
v

vx
þ e2

v

vy
þ e3

v

vz
(1.8.3)

These and other useful operations can be expressed in Cartesian tensor notation. Given the scalar field
f and vector field u, the following common differential operations can be written in index notation

Gradient of a Scalar Vf ¼ f;iei

Gradient of a Vector Vu ¼ ui; jeiej

Laplacian of a Scalar V2f ¼ V$Vf ¼ f;ii

Divergence of a Vector V$u ¼ ui;i

Curl of a Vector V� u ¼ εijkuk; jei

Laplacian of a Vector V2u ¼ ui;kkei

(1.8.4)

If f and j are scalar fields and u and v are vector fields, several useful identities exist

VðfjÞ ¼ ðVfÞjþ fðVjÞ
72ðfjÞ ¼ �72f

�
jþ f

�
72j

�þ 2Vf$Vj

V$ðfuÞ ¼ Vf$uþ fðV$uÞ
V� ðfuÞ ¼ Vf� uþ fðV� uÞ
V$ðu� vÞ ¼ v$ðV� uÞ � u$ðV� vÞ
V� Vf ¼ 0

V$Vf ¼ 72f

V$V� u ¼ 0

V� ðV� uÞ ¼ VðV$uÞ �72u

u� ðV� uÞ ¼ 1

2
Vðu$uÞ � u$Vu

(1.8.5)

Each of these identities can be easily justified by using index notation from definition relations (1.8.4).
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EXAMPLE 1.4: SCALAR AND VECTOR FIELD EXAMPLES
Scalar and vector field functions are given by f ¼ x2 � y2 and u ¼ 2xe1 þ 3yze2 þ xye3. Calculate
the following expressions, Vf;V2f;V$u;Vu;V� u:

Using the basic relations (1.8.4)

Vf ¼ 2xe1 � 2ye2

V2f ¼ 2� 2 ¼ 0

V$u ¼ 2þ 3zþ 0 ¼ 2þ 3z

Vu ¼ ui; j ¼
2
4 2 0 0
0 3z 3y
y x 0

3
5

V� u ¼
e1 e2 e3

v=vx v=vy v=vz

2x 3yz xy

������ ¼ ðx� 3yÞe1 � ye2

������
Using numerical methods, some of these variables can be conveniently computed and plotted in
order to visualize the nature of the field distribution. For example, contours of f ¼ constant can
easily be plotted using MATLAB� software, and vector distributions of Vf can be shown as plots
of vectors properly scaled in magnitude and orientation. Figure 1.4 shows these two types of plots,
and it is observed that the vector field Vf is orthogonal to the f-contours, a result that is true in
general for all scalar fields. Numerically generated plots such as these will prove to be useful in un-
derstanding displacement, strain, and/or stress distributions found in the solution to a variety of
problems in elasticity.

x

y

FIGURE 1.4 Contours of f [ Constant and Vector Distributions of Vf.
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Next consider some results from vector/tensor integral calculus. We simply list some theorems that
have later use in the development of elasticity theory.

1.8.1 Divergence or Gauss theorem
Let S be a piecewise continuous surface bounding the region of space V. If a vector field u is continuous
and has continuous first derivatives in V, thenðð

S
u$n dS ¼

ððð
V
V$u dV (1.8.6)

where n is the outer unit normal vector to surface S. This result is also true for tensors of any order

ðð
S
aij.knk dS ¼

ððð
V
aij.k; k dV (1.8.7)

1.8.2 Stokes theorem
Let S be an open two-sided surface bounded by a piecewise continuous simple closed curve C. If u is
continuous and has continuous first derivatives on S, thenþ

C
u$dr ¼

ðð
S
ðV� uÞ$n dS (1.8.8)

where the positive sense for the line integral is for the region S to lie to the left as one traverses
curve C and n is the unit normal vector to S. Again, this result is also valid for tensors of arbitrary
order, and so þ

C
aij.kdxt ¼

ðð
S
εrstaij.k;snr dS (1.8.9)

It can be shown that both divergence and Stokes theorems can be generalized so that the dot product in
(1.8.6) and/or (1.8.8) can be replaced with a cross product.

1.8.3 Green’s theorem in the plane
Applying Stokes theorem to a planar domain S with the vector field selected as u¼ fe1 þ ge2 gives the
result

ðð
S

�
vg

vx
� vf

vy

	
dxdy ¼

ð
C
ðfdxþ gdyÞ (1.8.10)

Further, special choices with either f ¼ 0 or g ¼ 0 implyðð
S

vg

vx
dxdy ¼

ð
C
gnxds;

ðð
S

vf

vy
dxdy ¼

ð
C
fnyds (1.8.11)
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1.8.4 Zero-value theorem
Let fij.k be a continuous tensor field of any order defined in an arbitrary region V. If the integral of fij.k

over V vanishes, then fij.k must vanish in Vððð
V
fij.kdV ¼ 0 0 fij.k ¼ 0˛V (1.8.12)

1.9 Orthogonal curvilinear coordinates
Many applications in elasticity theory involve domains that have curved boundary surfaces, commonly
including circular, cylindrical, and spherical surfaces. To formulate and develop solutions for such
problems, it is necessary to use curvilinear coordinate systems. This requires redevelopment of some
previous results in orthogonal curvilinear coordinates. Before pursuing these general steps, we review
the two most common curvilinear systems, cylindrical and spherical coordinates. The cylindrical
coordinate system shown in Figure 1.5 uses (r, q, z) coordinates to describe spatial geometry. Relations
between the Cartesian and cylindrical systems are given by

x1 ¼ r cos q; x2 ¼ r sin q; x3 ¼ z

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
; q ¼ tan�1 x2

x1
; z ¼ x3

(1.9.1)

The spherical coordinate system is shown in Figure 1.6 and uses (R, f, q) coordinates to describe
geometry. The relations between Cartesian and spherical coordinates are

x1 ¼ R cos q sin f; x2 ¼ R sin q sin f; x3 ¼ R cos f

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

q
; f ¼ cos�1 x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22 þ x23

q ; q ¼ tan�1x2
x1

(1.9.2)

e2

e3

e1

x3

x1

x2

r

θ

z
êz

êr

êθ

FIGURE 1.5 Cylindrical Coordinate System.
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The unit basis vectors for each of these curvilinear systems are illustrated in Figures 1.5 and 1.6. These
represent unit tangent vectors along each of the three orthogonal coordinate curves.

Although primary use of curvilinear systems employs cylindrical and spherical coordinates, we
briefly present a discussion valid for arbitrary coordinate systems. Consider the general case in which
three orthogonal curvilinear coordinates are denoted by x1, x2, x3, while the Cartesian coordinates are
defined by x1, x2, x3 (see Figure 1.7). We assume invertible coordinate transformations exist between
these systems specified by

xm ¼ xm
�
x1; x2; x3

�
; xm ¼ xm

�
x1; x2; x3

�
(1.9.3)

In the curvilinear system, an arbitrary differential length in space can be expressed by

ðdsÞ2 ¼ �h1dx1�2 þ �h2dx2�2 þ �h3dx3�2 (1.9.4)

where h1, h2, h3 are called scale factors that are in general non-negative functions of position. Let ek be
the fixed Cartesian basis vectors and êk the curvilinear basis (see Figure 1.7). By using similar concepts
from the transformations discussed in Section 1.4, the curvilinear basis can be expressed in terms of
the Cartesian basis as

ê1 ¼ dxk

ds1
ek ¼ 1

h1

vxk

vx1
ek

ê2 ¼ dxk

ds2
ek ¼ 1

h2

vxk

vx2
ek

ê3 ¼ dxk

ds3
ek ¼ 1

h3

vxk

vx3
ek

(1.9.5)

e3

e2e1

x3

x1

x2

R

êR

êθ

êφ

θ

φ

FIGURE 1.6 Spherical Coordinate System.
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where we have used (1.9.4). By using the fact that êi$êj ¼ dij; relation (1.9.5) gives

ðh1Þ2 ¼ vxk

vx1
vxk

vx1

ðh2Þ2 ¼ vxk

vx2
vxk

vx2

ðh3Þ2 ¼ vxk

vx3
vxk

vx3

(1.9.6)

It follows from (1.9.5) that the quantity

Qk
r ¼

1

hr

vxk

vxr
ðno sum on rÞ (1.9.7)

represents the transformation tensor giving the curvilinear basis in terms of the Cartesian basis. This
concept is similar to the transformation tensor Qij defined by (1.4.1) that is used between Cartesian
systems.

The physical components of a vector or tensor are simply the components in a local set of Cartesian
axes tangent to the curvilinear coordinate curves at any point in space. Thus, by using transformation
relation (1.9.7), the physical components of a tensor a in a general curvilinear system are given by

a<ij.k> ¼ Q
p
i Q

q
j /Qs

kapq.s (1.9.8)

where apq.s are the components in a fixed Cartesian frame. Note that the tensor can be expressed in
either system as

a ¼ aij.keiej / ek

¼ a<ij.k>êiêj / êk
(1.9.9)

e2

e3

e1

x3

x2

x1

ξ3

ξ2

ξ1

ê3

ê2

ê1

FIGURE 1.7 Curvilinear Coordinates.
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Because many applications involve differentiation of tensors, we must consider the differentiation of the
curvilinear basis vectors. The Cartesian basis system ek is fixed in orientation and therefore vek /vx

i ¼
vek / vx

j ¼ 0. However, derivatives of the curvilinear basis do not in general vanish, and differentiation
of relations (1.9.5) gives the following results

vêm
vxm

¼ � 1

hn

vhm
vxn

ên � 1

hr

vhm
vxr

êr; msnsr

vêm
vxn

¼ 1

hm

vhn
vxm

ên; msn; no sum on repeated indices

(1.9.10)

Using these results, the derivative of any tensor can be evaluated. Consider the first derivative of a
vector u

v

vxn
u ¼ v

vxn
ðu<m>êmÞ ¼ vu<m>

vxn
êm þ u<m>

vêm
vxn

(1.9.11)

The last term can be evaluated using (1.9.10), and thus the derivative of u can be expressed in terms of
curvilinear components. Similar patterns follow for derivatives of higher-order tensors.

All vector differential operators of gradient, divergence, curl, and so forth can be expressed in any
general curvilinear system by using these techniques. For example, the vector differential operator
previously defined in Cartesian coordinates in (1.8.3) is given by

V ¼ ê1
1

h1

v

vx1
þ ê2

1

h2

v

vx2
þ ê3

1

h3

v

vx3
¼
X
i

êi
1

hi

v

vxi
(1.9.12)

and this leads to the construction of the other common forms

Gradient of a Scalar Vf ¼ ê1
1

h1

vf

vx1
þ ê2

1

h2

vf

vx2
þ ê3

1

h3

vf

vx3
¼
X
i

êi
1

hi

vf

vxi
(1.9.13)

Divergence of a Vector V$u ¼ 1

h1h2h3

X
i

v

vxi

�
h1h2h3

hi
u<i>

	
(1.9.14)

Laplacian of a Scalar V2f ¼ 1

h1h2h3

X
i

v

vxi

 
h1h2h3

ðhiÞ2
vf

vxi

!
(1.9.15)

Curl of a Vector V� u ¼
X
i

X
j

X
k

εijk

hjhk

v

vxj
ðu<k>hkÞêi (1.9.16)

Gradient of a Vector Vu ¼
X
i

X
j

êi
hi

�
vu<j>

vxi
êj þ u<j>

vêj

vxi

	
(1.9.17)

Laplacian of a Vector V2u ¼
 X

i

êi
hi

v

vxi

!
:

 X
j

X
k

êk
hk



vu<j>

vxk
êj þ u<j>

vêj

vxk

�!
(1.9.18)

It should be noted that these forms are significantly different from those previously given in relations
(1.8.4) for Cartesian coordinates. Curvilinear systems add additional terms not found in rectangular
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coordinates. Other operations on higher-order tensors can be developed in a similar fashion (see
Malvern, 1969, app. II). Specific transformation relations and field equations in cylindrical and
spherical coordinate systems are given in Appendices A and B. Further discussion of these results is
taken up in later chapters.

EXAMPLE 1.5: POLAR COORDINATES
Consider the two-dimensional case of a polar coordinate system as shown in Figure 1.8. The dif-
ferential length relation (1.9.4) for this case can be written as

ðdsÞ2 ¼ ðdrÞ2 þ ðrdqÞ2

and thus h1 ¼ 1 and h2 ¼ r. By using relations (1.9.5) or simply by using the geometry shown in
Figure 1.8

êr ¼ cos qe1 þ sin qe2
êq ¼ � sin qe1 þ cos qe2

(1.9.19)

and so

vêr
vq

¼ êq;
vêq
vq

¼ �êr;
vêr
vr

¼ vêq
vr

¼ 0 (1.9.20)

The basic vector differential operations then follow to be

V ¼ êr
v

vr
þ êq

1

r

v

vq

Vf ¼ êr
vf

vr
þ êq

1

r

vf

vq

V$u ¼ 1

r

v

vr
ðrurÞ þ 1

r

vuq
vq

V2f ¼ 1

r

v

vr

�
r
vf

vr

	
þ 1

r2
v2f

vq2

V� u ¼
�
1

r

v

vr
ðruqÞ � 1

r

vur
vq

	
êz

Vu ¼ vur
vr

êr êr þ vuq
vr

êr êq þ 1

r

�
vur
vq

� uq

	
êqêr þ 1

r

�
vuq
vq

� ur

	
êqêq

V2u ¼
�
V2ur � 2

r2
vuq
vq

� ur
r2

	
êr þ

�
V2uq þ 2

r2
vur
vq

� uq
r2

	
êq

(1.9.21)

where u ¼ ur êr þ uq êq, êz ¼ êr � êq. Notice that the Laplacian of a vector does not simply pass
through and operate on each of the individual components as in the Cartesian case. Additional terms
are generated because of the curvature of the particular coordinate system. Similar relations can be
developed for cylindrical and spherical coordinate systems (see Exercises 1.17 and 1.18).
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The material reviewed in this chapter is used in many places for formulation development of elasticity
theory. Throughout the text, notation uses scalar, vector, and tensor formats depending on the
appropriateness to the topic under discussion. Most of the general formulation procedures in Chapters
2–5 use tensor index notation, while later chapters commonly use vector and scalar notation. Addi-
tional review of mathematical procedures for problem solution is supplied in chapter locations where
they are applied.
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EXERCISES

1.1 For the given matrix/vector pairs, compute the following quantities: aii, aijaij, aijajk, aijbj,
aijbibj, bibj, bibi. For each case, point out whether the result is a scalar, vector or matrix. Note
that aijbj is actually the matrix product [a]{b}, while aijajk is the product [a][a].
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r
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θ

FIGURE 1.8 Polar Coordinate System.
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ðaÞ aij ¼
2
4 1 1 1
0 4 2
0 1 1

3
5; bi ¼

2
4 1
0
2

3
5 ðbÞ aij ¼

2
4 1 2 0
0 2 1
0 4 2

3
5; bi ¼

2
4 21
1

3
5

ðcÞ aij ¼
2
4 1 1 1
1 0 2
0 1 4

3
5; bi ¼

2
4 1
1
0

3
5 ðdÞ aij ¼

2
4 1 0 0
0 2 1
0 3 0

3
5; bi ¼

2
4 10
1

3
5

1.2 Use the decomposition result (1.2.10) to express aij from Exercise 1.1 in terms of the sum of
symmetric and antisymmetric matrices. Verify that a(ij) and a[ij] satisfy the conditions given
in the last paragraph of Section 1.2.

1.3 If aij is symmetric and bij is antisymmetric, prove in general that the product aijbij is zero.
Verify this result for the specific case by using the symmetric and antisymmetric terms from
Exercise 1.2.

1.4 Explicitly verify the following properties of the Kronecker delta

dijaj ¼ ai
dijajk ¼ aik

1.5 Formally expand the expression (1.3.4) for the determinant and justify that either index
notation form yields a result that matches the traditional form for det[aij].

1.6 Determine the components of the vector bi and matrix aij given in Exercise 1.1 in a new
coordinate system found through a rotation of 45� (p/4 radians) about the x1-axis. The
rotation direction follows the positive sense presented in Example 1.2.

1.7 Consider the two-dimensional coordinate transformation shown in Figure 1.7. Through the
counterclockwise rotation q, a new polar coordinate system is created. Show that the
transformation matrix for this case is given by

Qij ¼



cos q sin q

�sin q cos q

�

If bi ¼


b1
b2

�
; aij ¼



a11 a21
a12 a22

�
are the components of a first- and second-order tensor in the

x1, x2 system, calculate their components in the rotated polar coordinate system.

1.8 Show that the second-order tensor adij, where a is an arbitrary constant, retains its form under
any transformation Qij. This form is then an isotropic second-order tensor.

1.9 The most general form of a fourth-order isotropic tensor can be expressed by

adijdkl þ bdikdjl þ gdildjk

where a, b, and g are arbitrary constants. Verify that this form remains the same under the
general transformation given by (1.5.1)5.

1.10 For the fourth-order isotropic tensor given in Exercise 1.9, show that if b¼ g, then the tensor
will have the following symmetry Cijkl ¼ Cklij.
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1.11 Show that the fundamental invariants can be expressed in terms of the principal values as
given by relations (1.6.5).

1.12 Determine the invariants, and principal values and directions of the following matrices. Use
the determined principal directions to establish a principal coordinate system, and following
the procedures in Example 1.3, formally transform (rotate) the given matrix into the principal
system to arrive at the appropriate diagonal form.

ðaÞ

2
64
�1 1 0

1 �1 0

0 0 1

3
75 ðAnswer : li ¼ �2; 0; 1Þ ðbÞ

2
64
�2 1 0

1 �2 0

0 0 0

3
75 ðAnswer : li ¼ �3; �1; 0Þ

ðcÞ

2
64
�1 1 0

1 �1 0

0 0 0

3
75 ðAnswer : li ¼ �2; 0; 0Þ ðdÞ

2
64

6 �3 0

�3 6 0

0 0 6

3
75 ðAnswer : li ¼ 3; 6; 9Þ

1.13* A second-order symmetric tensor field is given by

aij ¼
2
4 2x1 x1 0
x1 �6x21 0
0 0 5x1

3
5

Using MATLAB� (or similar software), investigate the nature of the variation of the principal
values and directions over the interval 1 � x1 � 2. Formally plot the variation of the absolute
value of each principal value over the range 1 � x1 � 2.

1.14 Calculate the quantitiesV$u; V� u; V2u; Vu; trðVuÞ for the following Cartesian vector
fields:
(a) u ¼ x1e1 þ x1x2e2 þ 2x1x2x3e3

(b) u ¼ x21e1 þ 2x1x2e2 þ x33e3

(c) u ¼ x22e1 þ 2x2x3e2 þ 4x21e3

1.15 The dual vector ai of an antisymmetric second-order tensor aij is defined by ai ¼ �1/2εijkajk.
Show that this expression can be inverted to get ajk ¼ �εijkai.

1.16 Using index notation, explicitly verify the vector identities:
(a) (1.8.5)1,2,3

(b) (1.8.5)4,5,6,7

(c) (1.8.5)8,9,10

1.17 Extend the results found in Example 1.5, and determine the forms ofVf ;V$u;V2f ; andV� u
for a three-dimensional cylindrical coordinate system (see Figure 1.5).
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1.18 For the spherical coordinate system (R, f, q) in Figure 1.6, show that

h1 ¼ 1; h2 ¼ R; h3 ¼ R sin f

and the standard vector operations are given by

Vf ¼ êR
vf

vR
þ êf

1

R

vf

vf
þ êq

1

R sin f

vf

vq

V$u ¼ 1

R2

v

vR

�
R2uR

�þ 1

R sin f

v

vf

�
sin fuf

� 1

R sin f

vuq
vq

V2f ¼ 1

R2

v

vR

�
R2vf

vR

	
þ 1

R2sin f

v

vf

�
sin f

vf

vf

	
þ 1

R2sin2f

v2f

vq2

V� u ¼ êR



1

R sin f

�
v

vf
ðsin fuqÞ � vuf

vq

	�
þ êf



1

R sin f

vuR
vq

� 1

R

v

vR
ðRuqÞ

�

þ êq



1

R

�
v

vR

�
Ruf

�� vuR
vf

	�
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Deformation: Displacements
and Strains 2
We begin development of the basic field equations of elasticity theory by first investigating the
kinematics of material deformation. As a result of applied loadings, elastic solids will change
shape or deform, and these deformations can be quantified by knowing the displacements of
material points in the body. The continuum hypothesis establishes a displacement field at all points
within the elastic solid. Using appropriate geometry, particular measures of deformation can be
constructed leading to the development of the strain tensor. As expected, the strain components are
related to the displacement field. The purpose of this chapter is to introduce the basic definitions of
displacement and strain, establish relations between these two field quantities, and finally inves-
tigate requirements to ensure single-valued, continuous displacement fields. As appropriate for
linear elasticity, these kinematical results are developed under the conditions of small deformation
theory. Developments in this chapter lead to two fundamental sets of field equations: the
strain–displacement relations and the compatibility equations. Further field equation development,
including internal force and stress distribution, equilibrium, and elastic constitutive behavior,
occurs in subsequent chapters.

2.1 General deformations
Under the application of external loading, elastic solids deform. A simple two-dimensional cantilever
beam example is shown in Figure 2.1. The undeformed configuration is taken with the rectangular
beam in the vertical position, and the end loading displaces material points to the deformed shape as
shown. As is typical in most problems, the deformation varies from point to point and is thus said to be
nonhomogeneous. A superimposed square mesh is shown in the two configurations, and this indicates
how elements within the material deform locally. It is apparent that elements within the mesh undergo
extensional and shearing deformation. An elastic solid is said to be deformed or strained when the
relative displacements between points in the body are changed. This is in contrast to rigid-body motion
where the distance between points remains the same.

In order to quantify deformation, consider the general example shown in Figure 2.2. In the
undeformed configuration, we identify two neighboring material points Po and P connected with
the relative position vector r as shown. Through a general deformation, these points are mapped to
locations P0

o and P0 in the deformed configuration. For finite or large deformation theory, the unde-
formed and deformed configurations can be significantly different, and a distinction between these two
configurations must be maintained leading to Lagrangian and Eulerian descriptions; see, for example,
Malvern (1969) or Chandrasekharaiah and Debnath (1994). However, since we are developing linear
elasticity, which uses only small deformation theory, the distinction between undeformed and
deformed configurations can be dropped.

CHAPTER

Elasticity. http://dx.doi.org/10.1016/B978-0-12-408136-9.00002-7

Copyright © 2014 Elsevier Inc. All rights reserved.
31

http://dx.doi.org/10.1016/B978-0-12-408136-9.00002-7


Using Cartesian coordinates, define the displacement vectors of points Po and P to be uo and u
respectively. Since P and Po are neighboring points, we can use a Taylor series expansion around point
Po to express the components of u as

u ¼ uo þ vu

vx
rx þ vu

vy
ry þ vu

vz
rz

v ¼ vo þ vv

vx
rx þ vv

vy
ry þ vv

vz
rz

w ¼ wo þ vw

vx
rx þ vw

vy
ry þ vw

vz
rz

(2.1.1)

where u, v, w are the Cartesian components of the displacement vector.

P

Po

P

Po

r
r

(Undeformed) (Deformed)

′

′

′

FIGURE 2.2 General Deformation Between Two Neighboring Points.

(Undeformed) (Deformed)

FIGURE 2.1 Two-Dimensional Deformation Example.
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Note that the higher-order terms of the expansion have been dropped since the components of r are
small. The change in the relative position vector r can be written as

6r ¼ r0 � r ¼ u� uo (2.1.2)

and using (2.1.1) gives

Drx ¼ vu

vx
rx þ vu

vy
ry þ vu

vz
rz

Dry ¼ vv

vx
rx þ vv

vy
ry þ vv

vz
rz

Drz ¼ vw

vx
rx þ vw

vy
ry þ vw

vz
rz

(2.1.3)

or in index notation

Dri ¼ ui; jrj (2.1.4)

The tensor ui, j is called the displacement gradient tensor, and may be written out as

ui; j ¼

vu

vx

vu

vy

vu

vz
vv

vx

vy

vy

vv

vz
vw

vx

vw

vy

vw

vz

3
7777775

2
6666664

(2.1.5)

From relation (1.2.10), this tensor can be decomposed into symmetric and antisymmetric
parts as

ui; j ¼ eij þ uij (2.1.6)

where

eij ¼ 1

2

�
ui; j þ uj; i

�
uij ¼ 1

2

�
ui; j � uj; i

� (2.1.7)

The tensor eij is called the strain tensor, while uij is referred to as the rotation tensor. Relations (2.1.4)
and (2.1.6) thus imply that for small deformation theory, the change in the relative position vector
between neighboring points can be expressed in terms of a sum of strain and rotation components.
Combining relations (2.1.2), (2.1.4), and (2.1.6), and choosing ri ¼ dxi, we can also write the general
result in the form

ui ¼ uoi þ eijdxj þ uijdxj (2.1.8)
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Because we are considering a general displacement field, these results include both strain deformation
and rigid-body motion. Recall from Exercise 1.15 that a dual vector ui can be associated with the
rotation tensor such that ui ¼ �1/2εijkujk. Using this definition, it is found that

u1 ¼ u32 ¼ 1

2

�
vu3
vx2

� vu2
vx3

�

u2 ¼ u13 ¼ 1

2

�
vu1
vx3

� vu3
vx1

�

u3 ¼ u21 ¼ 1

2

�
vu2
vx1

� vu1
vx2

�
(2.1.9)

which can be expressed collectively in vector format as u ¼ ð1=2ÞðV� uÞ: As is shown in the next
section, these components represent rigid-body rotation of material elements about the coordinate
axes. These general results indicate that the strain deformation is related to the strain tensor eij, which
in turn is related to the displacement gradients. We next pursue a more geometric approach and
determine specific connections between the strain tensor components and geometric deformation of
material elements.

2.2 Geometric construction of small deformation theory
Although the previous section developed general relations for small deformation theory, we now wish
to establish a more geometrical interpretation of these results. Typically, elasticity variables and
equations are field quantities defined at each point in the material continuum. However, particular field
equations are often developed by first investigating the behavior of infinitesimal elements (with co-
ordinate boundaries), and then a limiting process is invoked that allows the element to shrink to a point.
Thus, consider the common deformational behavior of a rectangular element as shown in Figure 2.3.
The usual types of motion include rigid-body rotation and extensional and shearing deformations as

(Rigid-Body Rotation)(Undeformed Element)

(Horizontal Extension) (Vertical Extension) (Shearing Deformation)

FIGURE 2.3 Typical Deformations of a Rectangular Element.
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illustrated. Rigid-body motion does not contribute to the strain field, and thus also does not affect the
stresses. We therefore focus our study primarily on the extensional and shearing deformation.

Figure 2.4 illustrates the two-dimensional deformation of a rectangular element with original
dimensions dx by dy. After deformation, the element takes a parallelogram form as shown in the
dotted outline. The displacements of various corner reference points are indicated in the figure.
Reference point A is taken at location (x,y), and the displacement components of this point are thus
u(x,y) and v(x,y). The corresponding displacements of point B are u(xþ dx,y) and v(xþ dx,y), and the
displacements of the other corner points are defined in an analogous manner. According to
small deformation theory, u(xþ dx,y) z u(x,y)þ (vu/vx)dx, with similar expansions for all
other terms.

The normal or extensional strain component in a direction n is defined as the change in length per
unit length of fibers oriented in the n-direction. Normal strain is positive if fibers increase in length
and negative if the fiber is shortened. In Figure 2.4, the normal strain in the x-direction can thus be
defined by

εx ¼ A0B0 � AB

AB

From the geometry in Figure 2.4

A0B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dxþ vu

vx
dx

�2

þ
�
vv

vx
dx

�2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

vu

vx
þ
�
vu

vx

�2

þ
�
vv

vx

�2
s

dxz

�
1þ vu

vx

�
dx

where, consistent with small deformation theory, we have dropped the higher-order terms. Using these
results and the fact that AB ¼ dx, the normal strain in the x-direction reduces to

εx ¼ vu

vx
(2.2.1)

u(x,y)

u(x+dx,y)
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FIGURE 2.4 Two-Dimensional Geometric Strain Deformation.
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In similar fashion, the normal strain in the y-direction becomes

εy ¼ vv

vy
(2.2.2)

A second type of strain is shearing deformation, which involves angle changes (see Figure 2.3). Shear
strain is defined as the change in angle between two originally orthogonal directions in the continuum
material. This definition is actually referred to as the engineering shear strain. Theory of elasticity
applications generally use a tensor formalism that requires a shear strain definition corresponding to
one-half the angle change between orthogonal axes; see previous relation (2.1.7)1. Measured in
radians, shear strain is positive if the right angle between the positive directions of the two axes
decreases. Thus, the sign of the shear strain depends on the coordinate system. In Figure 2.4, the
engineering shear strain with respect to the x- and y-directions can be defined as

gxy ¼
p

2
�:C0A0B0 ¼ aþ b

For small deformations, a z tan a and b z tan b, and the shear strain can then be expressed as

gxy ¼
vv

vx
dx

dxþ vu

dx
dx

þ
vu

vy
dy

dyþ vv

vy
dy

¼ vu

vy
þ vv

vx
(2.2.3)

where we have again neglected higher-order terms in the displacement gradients. Note that each
derivative term is positive if lines AB and AC rotate inward as shown in the figure. By simple inter-
change of x and y and u and v, it is apparent that gxy ¼ gyx.

By considering similar behaviors in the y-z and x-z planes, these results can be easily extended to
the general three-dimensional case, giving the results

εx ¼ vu

vx
; εy ¼ vv

vy
; εz ¼ vw

vz

gxy ¼
vu

vy
þ vv

vx
; gyz ¼

vv

vz
þ vw

vy
; gzx ¼

vw

vx
þ vu

vz

(2.2.4)

Thus, we define three normal and three shearing strain components, leading to a total of six independent
components that completely describe small deformation theory. This set of equations is normally
referred to as the strain–displacement relations. However, these results are written in terms of the
engineering strain components, and tensorial elasticity theory prefers to use the strain tensor eij defined
by (2.1.7)1. This represents only a minor change because the normal strains are identical and shearing
strains differ by a factor of one-half; for example, e11 ¼ ex ¼ εx and e12 ¼ exy ¼ 1/2gxy, and so forth.

Therefore, using the strain tensor eij, the strain–displacement relations can be expressed in
component form as

ex ¼ vu

vx
; ey ¼ vv

vy
; ez ¼ vw

vz

exy ¼ 1

2

�
vu

vy
þ vv

vx

�
; eyz ¼ 1

2

�
vv

vz
þ vw

vy

�
; ezx ¼ 1

2

�
vw

vx
þ vu

vz

� (2.2.5)
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Using the more compact tensor notation, these relations are written as

eij ¼ 1

2

�
ui; j þ uj; i

�
(2.2.6)

while in direct vector/matrix notation the form reads

e ¼ 1

2

h
Vuþ ðVuÞT

i
(2.2.7)

where e is the strain matrix, Vu is the displacement gradient matrix, and ðVuÞT is its transpose.
The strain is a symmetric second-order tensor (eij ¼ eji) and is commonly written in matrix format

e ¼ ½e� ¼
2
4 ex exy exz
exy ey eyz
exz eyz ez

3
5 (2.2.8)

Before we conclude this geometric presentation, consider the rigid-body rotation of our two-
dimensional element in the x-y plane, as shown in Figure 2.5. If the element is rotated through a
small rigid-body angular displacement about the z-axis, using the bottom element edge, the rotation
angle is determined as vv/vx, while using the left edge, the angle is given by �vu/vy. These two
expressions are of course the same; that is, vv/vx¼�vu/vy and note that this would imply exy¼ 0. The
rotation can then be expressed as uz ¼ [(vv/vx)� (vu/vy)]/2, which matches with the expression given
earlier in (2.1.9)3. The other components of rotation follow in an analogous manner.

Relations for the constant rotation uz can be integrated to give the result

u� ¼ uo � uzy

v� ¼ vo þ uzx
(2.2.9)

where uo and vo are arbitrary constant translations in the x- and y-directions. This result then specifies
the general form of the displacement field for two-dimensional rigid-body motion. We can easily

x

dx

dy

y− u

v
x

y

FIGURE 2.5 Two-Dimensional Rigid-Body Rotation.
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verify that the displacement field given by (2.2.9) yields zero strain. For the three-dimensional case,
the most general form of rigid-body displacement can be expressed as

u� ¼ uo � uzyþ uyz

v� ¼ vo � uxzþ uzx

w� ¼ wo � uyxþ uxy

(2.2.10)

As shown later, integrating the strain–displacement relations to determine the displacement field
produces arbitrary constants and functions of integration, which are equivalent to rigid-body motion
terms of the form given by (2.2.9) or (2.2.10). Thus, it is important to recognize such terms because
we normally want to drop them from the analysis since they do not contribute to the strain or stress
fields.

EXAMPLE 2.1: STRAIN AND ROTATION EXAMPLES
Determine the displacement gradient, strain, and rotation tensors for the following displacement
field: u ¼ Ax2y, v ¼ Byz, w ¼ Cxz3, where A, B, and C are arbitrary constants. Also calculate the
dual rotation vector u ¼ ð1=2ÞðV� uÞ:

ui;j ¼

2
664
2Axy Ax2 0

0 Bz By

Cz3 0 3Cxz2

3
775

eij ¼ 1

2

�
ui; j þ uj;i

� ¼
2
664

2Axy Ax2=2 Cz3=2

Ax2=2 Bz By=2

Cz3=2 By=2 3Cxz2

3
775

uij ¼ 1

2

�
ui; j � uj;i

� ¼
2
664

0 Ax2=2 �Cz3=2

�Ax2=2 0 By=2

Cz3=2 �By=2 0

3
775

u ¼ 1

2
ðV� uÞ ¼ 1

2

��������
e1 e2 e3

v=vx v=vy v=vz

Ax2y Byz Cxz3

��������
¼ 1

2

��Bye1 � Cz3e2 � Ax2e3
�
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2.3 Strain transformation
Because the strains are components of a second-order tensor, the transformation theory discussed in
Section 1.5 can be applied. Transformation relation (1.5.1)3 is applicable for second-order tensors, and
applying this to the strain gives

e0ij ¼ QipQjqepq (2.3.1)

where the rotation matrix Qij ¼ cosðx0i; xjÞ: Thus, given the strain in one coordinate system, we can
determine the new components in any other rotated system. For the general three-dimensional case,
define the rotation matrix as

Qij ¼
2
4 l1 m1 n1
l2 m2 n2
l3 m3 n3

3
5 (2.3.2)

Using this notational scheme, the specific transformation relations from equation (2.3.1)
become

e0x ¼ exl
2
1 þ eym

2
1 þ ezn

2
1 þ 2

�
exyl1m1 þ eyzm1n1 þ ezxn1l1

�
e0y ¼ exl

2
2 þ eym

2
2 þ ezn

2
2 þ 2

�
exyl2m2 þ eyzm2n2 þ ezxn2l2

�
e0z ¼ exl

2
3 þ eym

2
3 þ ezn

2
3 þ 2

�
exyl3m3 þ eyzm3n3 þ ezxn3l3

�
e0xy ¼ exl1l2 þ eym1m2 þ ezn1n2 þ exyðl1m2 þ m1l2Þ þ eyzðm1n2 þ n1m2Þ þ ezxðn1l2 þ l1n2Þ
e0yz ¼ exl2l3 þ eym2m3 þ ezn2n3 þ exyðl2m3 þ m2l3Þ þ eyzðm2n3 þ n2m3Þ þ ezxðn2l3 þ l2n3Þ
e0zx ¼ exl3l1 þ eym3m1 þ ezn3n1 þ exyðl3m1 þ m3l1Þ þ eyzðm3n1 þ n3m1Þ þ ezxðn3l1 þ l3n1Þ

(2.3.3)

For the two-dimensional case shown in Figure 2.6, the transformation matrix can be expressed as

Qij ¼
2
4 cos q sin q 0
�sin q cos q 0
0 0 1

3
5 (2.3.4)

Under this transformation, the in-plane strain components transform according to

e0x ¼ ex cos
2 qþ ey sin

2 qþ 2exy sin q cos q

e0y ¼ ex sin
2 qþ ey cos

2 q� 2exy sin q cos q

e0xy ¼ �ex sin q cos qþ ey sin q cos qþ exy
�
cos2 q� sin2 q

� (2.3.5)
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which is commonly rewritten in terms of the double angle

e0x ¼
ex þ ey

2
þ ex � ey

2
cos 2qþ exy sin 2q

e0y ¼
ex þ ey

2
� ex � ey

2
cos 2q� exy sin 2q

e0xy ¼
ey � ex

2
sin 2qþ exy cos 2q

(2.3.6)

Transformation relations (2.3.6) can be directly applied to establish transformations between
Cartesian and polar coordinate systems (see Exercise 2.6). Additional applications of these results
can be found when dealing with experimental strain gage measurement systems. For example,
standard experimental methods using a rosette strain gage allow the determination of extensional
strains in three different directions on the surface of a structure. Using this type of data, relation
(2.3.6)1 can be repeatedly used to establish three independent equations that can be solved for the
state of strain (ex,ey,exy) at the surface point under study (see Exercise 2.7).

Both two- and three-dimensional transformation equations can be easily incorporated in MATLAB�

to provide numerical solutions to problems of interest. Such examples are given in Exercises 2.8 and 2.9.

2.4 Principal strains
From the previous discussion in Section 1.6, it follows that because the strain is a symmetric second-
order tensor, we can identify and determine its principal axes and values. According to this theory, for
any given strain tensor we can establish the principal value problem and solve the characteristic
equation to explicitly determine the principal values and directions. The general characteristic
equation for the strain tensor can be written as

det
�
eij � edij

	 ¼ �e3 þ w1e
2 � w2eþ w3 ¼ 0 (2.4.1)

x

y

x

y

θ

θ

′

′

FIGURE 2.6 Two-Dimensional Rotational Transformation.
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where e is the principal strain and the fundamental invariants of the strain tensor can be expressed in
terms of the three principal strains e1, e2, e3 as

w1 ¼ e1 þ e2 þ e3

w2 ¼ e1e2 þ e2e3 þ e3e1

w3 ¼ e1e2e3

(2.4.2)

The first invariant w1 ¼ w is normally called the cubical dilatation, because it is related to the change
in volume of material elements (see Exercise 2.11).

The strain matrix in the principal coordinate system takes the special diagonal form

eij ¼
2
4 e1 0 0

0 e2 0
0 0 e3

3
5 (2.4.3)

Notice that for this principal coordinate system, the deformation does not produce any shearing and
thus is only extensional. Therefore, a rectangular element oriented along principal axes of strain will
retain its orthogonal shape and undergo only extensional deformation of its sides.

2.5 Spherical and deviatoric strains
In particular applications it is convenient to decompose the strain tensor into two parts called spherical
and deviatoric strain tensors. The spherical strain is defined by

~eij ¼ 1

3
ekkdij ¼ 1

3
wdij (2.5.1)

while the deviatoric strain is specified as

êij ¼ eij � 1

3
ekkdij (2.5.2)

Note that the total strain is then simply the sum

eij ¼ ~eij þ êij (2.5.3)

The spherical strain represents only volumetric deformation and is an isotropic tensor, being the same
in all coordinate systems (as per the discussion in Section 1.5). The deviatoric strain tensor then ac-
counts for changes in shape of material elements. It can be shown that the principal directions of the
deviatoric strain are the same as those of the strain tensor.

2.6 Strain compatibility
Wenow investigate inmore detail the nature of the strain–displacement relations (2.2.5), and thiswill lead
to the development of some additional relations necessary to ensure continuous, single-valued displace-
mentfield solutions.Relations (2.2.5), or the index notation form (2.2.6), represent six equations for the six
strain components in terms of three displacements. If we specify continuous, single-valued displacements
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u, v, w, then through differentiation the resulting strain field will be equally well behaved. However, the
converse is not necessarily true; given the six strain components, integration of the strain–displacement
relations (2.2.5) does not necessarily produce continuous, single-valued displacements. This should not
be totally surprising since we are trying to solve six equations for only three unknown displacement
components. In order to ensure continuous, single-valued displacements, the strains must satisfy addi-
tional relations called integrability or compatibility equations.

Before we proceed with the mathematics to develop these equations, it is instructive to consider a
geometric interpretation of this concept. A two-dimensional example is shown in Figure 2.7 whereby
an elastic solid is first divided into a series of elements in case (a). For simple visualization, consider
only four such elements. In the undeformed configuration shown in case (b), these elements of course
fit together perfectly. Next, let us arbitrarily specify the strain of each of the four elements and attempt
to reconstruct the solid. For case (c), the elements have been carefully strained, taking into consid-
eration neighboring elements so that the system fits together yielding continuous, single-valued dis-
placements. However, for case (d), the elements have been individually deformed without any concern
for neighboring deformations. It is observed for this case that the system will not fit together without
voids and gaps, and this situation produces a discontinuous displacement field. So, we again conclude
that the strain components must be somehow related to yield continuous, single-valued displacements.
We now pursue these particular relations.

2

3

1

4

(b) Undeformed Configuration

2

3

1

4

(c) Deformed Configuration

2

3

1

4

(a) Discretized Elastic Solid

(d) Deformed Configuration
Discontinuous DisplacementsContinuous Displacements

FIGURE 2.7 Physical Interpretation of Strain Compatibility.
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The process to develop these equations is based on eliminating the displacements from the
strain–displacement relations. Working in index notation, we start by differentiating (2.2.6) twice with
respect to xk and xl

eij; kl ¼ 1

2

�
ui; jkl þ uj;ikl

�
Through simple interchange of subscripts, we can generate the following additional relations

ekl;ij ¼ 1

2

�
uk;lij þ ul;kij

�
ejl;ik ¼ 1

2

�
uj;lik þ ul; jik

�
eik; jl ¼ 1

2

�
ui;kjl þ uk;ijl

�
Working under the assumption of continuous displacements, we can interchange the order of differ-
entiation on u, and the displacements can be eliminated from the preceding set to get

eij;kl þ ekl;ij � eik; jl � ejl;ik ¼ 0 (2.6.1)

These are called the Saint-Venant compatibility equations. Although the system would lead to 81
individual equations, most are either simple identities or repetitions, and only six are meaningful.
These six relations may be determined by letting k ¼ l, and in scalar notation they become

v2ex
vy2

þ v2ey
vx2

¼ 2
v2exy
vxvy

v2ey
vz2

þ v2ez
vy2

¼ 2
v2eyz
vyvz

v2ez
vx2

þ v2ex
vz2

¼ 2
v2ezx
vzvx

v2ex
vyvz

¼ v

vx

�
� veyz

vx
þ vezx

vy
þ vexy

vz

�

v2ey
vzvx

¼ v

vy

�
� vezx

vy
þ vexy

vz
þ veyz

vx

�

v2ez
vxvy

¼ v

vz

�
� vexy

vz
þ veyz

vx
þ vezx

vy

�

(2.6.2)

It can be shown that these six equations are not all independent. Exercise 2.15 illustrates that certain
differential relations exist between these compatibility equations, and Exercise 2.16 shows that the six
equations can be reduced to three independent fourth-order relations. Although there has been some
discussion in the literature about trying to reduce the number of equations in (2.6.2), almost all
applications simply use the entire set of six equations.
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In the development of the compatibility relations, we assumed that the displacements were
continuous, and thus the resulting equations (2.6.2) are actually only a necessary condition. In order to
show that they are also sufficient, consider two arbitrary points P and Po in an elastic solid, as shown in
Figure 2.8. Without loss in generality, the origin may be placed at point Po.

The displacements of points P and Po are denoted by u
p
i and u

o
i, and the displacement of point P can

be expressed as

u
p
i ¼ uoi þ

ð
C
dui ¼ uoi þ

ð
C

vui
vxj

dxj (2.6.3)

where C is any continuous curve connecting points Po and P. Using relation (2.1.6) for the
displacement gradient, (2.6.3) becomes

up
i ¼ uoi þ

ð
C

�
eij þ uij

�
dxj (2.6.4)

Integrating the last term by parts givesð
C
uijdxj ¼ u

p
ij x

p
j �

ð
C
xjuij;kdxk (2.6.5)

where u
p
ij is the rotation tensor at point P. Using relation (2.1.7)2

uij;k ¼ 1

2

�
ui; jk � uj;ik

� ¼ 1

2

�
ui; jk � uj;ik

�þ 1

2

�
uk; ji � uk; ji

�
¼ 1

2

v

vxj

�
ui;k þ uk;i

�� 1

2

v

vxi

�
uj; k þ uk; j

� ¼ eik; j � ejk;i

(2.6.6)

Substituting results (2.6.5) and (2.6.6) into (2.6.4) yields

u
p
i ¼ uoi þ uP

ijx
P
j þ

ð
C
Uikdxk (2.6.7)

where Uik ¼ eik � xj(eik, j � ejk,i).

Po

P

C

uo

uP

FIGURE 2.8 Continuity of Displacements.
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Now if the displacements are to be continuous, single-valued functions, the line integral appearing
in (2.6.7) must be the same for any curve C; that is, the integral must be independent of the path of
integration. This implies that the integrand must be an exact differential, so that the value of the in-
tegral depends only on the end points. Invoking Stokes theorem, we can show that if the region is
simply connected (definition of the term simply connected is postponed for the moment), a necessary
and sufficient condition for the integral to be path independent is for Uik,l ¼ Uil,k. Using this result
yields

eik;l � djl
�
eik; j � ejk;i

�� xj
�
eik; jl � ejk;il

� ¼ eil;k � djk
�
eil; j � ejl;i

�� xj
�
eil; jk � eji; ik

�
which reduces to

xj
�
eik; jl � ejk;il � eil; jk þ ejl; ik

� ¼ 0

Because this equation must be true for all values of xj, the terms in parentheses must vanish, and
after some index renaming this gives the identical result previously stated by the compatibility
relations (2.6.1)

eij; kl þ ekl; ij � eik; jl � ejl; ik ¼ 0

Thus, relations (2.6.1) or (2.6.2) are the necessary and sufficient conditions for continuous, single-
valued displacements in simply connected regions.

Now let us get back to the term simply connected. This concept is related to the topology or
geometry of the region under study. There are several places in elasticity theory where the con-
nectivity of the region fundamentally affects the formulation and solution method. The term simply
connected refers to regions of space for which all simple closed curves drawn in the region can be
continuously shrunk to a point without going outside the region. Domains not having this property
are called multiply connected. Several examples of such regions are illustrated in Figure 2.9.
A general simply connected two-dimensional region is shown in case (a), and clearly this case allows
any contour within the region to be shrunk to a point without going out of the domain. However, if
we create a hole in the region as shown in case (b), a closed contour surrounding the hole cannot be
shrunk to a point without going into the hole and thus outside of the region. For two-dimensional
regions, the presence of one or more holes makes the region multiply connected. Note that by
introducing a cut between the outer and inner boundaries in case (b), a new region is created that is
now simply connected. Thus, multiply connected regions can be made simply connected by intro-
ducing one or more cuts between appropriate boundaries. Case (c) illustrates a simply connected
three-dimensional example of a solid circular cylinder. If a spherical cavity is placed inside this
cylinder as shown in case (d), the region is still simply connected because any closed contour can
still be shrunk to a point by sliding around the interior cavity. However, if the cylinder has a through
hole as shown in case (e), then an interior contour encircling the axial through hole cannot be
reduced to a point without going into the hole and outside the body. Thus, case (e) is an example of
the multiply connected three-dimensional region.

It was found that the compatibility equations are necessary and sufficient conditions for contin-
uous, single-valued displacements only for simply connected regions. Thus for multiply connected
domains, relations (2.6.1) or (2.6.2) provide only necessary but not sufficient conditions. For this case,
further relations can be developed and imposed on the problem, and these are found through the
introduction of cuts within the region to make it simply connected as per our earlier discussion. For the
two-dimensional case shown in Figure 2.9(b), this process will lead to a relation commonly called a
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Cesàro integral taken around any closed irreducible curve enclosing the internal cavity. Thus, for
multiply connected domains, strain compatibility is guaranteed if compatibility relations (2.6.2) are
satisfied and all Cesàro integrals vanish. Details on this topic are given by Fung (1965), Fung and Tong
(2001), or Asaro and Lubarda (2006).

Although the compatibility relations guarantee (under appropriate conditions) continuous dis-
placements, they do not ensure uniqueness of the displacement field. At the end of Section 2.2 we
mentioned that, through integration of the strain–displacement relations, the displacements can be
determined only up to an arbitrary rigid-body motion. In some elasticity problems (e.g., thermal stress,
crack problems, and dislocation modeling), it is necessary to use multivalued displacement fields to
properly model the problem. Chapters 10, 12, and 15 contain a few examples of such problems, and a
specific case is given in Exercise 2.18.

2.7 Curvilinear cylindrical and spherical coordinates
The solution to many problems in elasticity requires the use of curvilinear cylindrical and spherical
coordinates. It is therefore necessary to have the field equations expressed in terms of such coordinate
systems. We now pursue the development of the strain–displacement relations in cylindrical and
spherical coordinates. Starting with form (2.2.7)

e ¼ 1

2
¼

h
Vuþ ðVuÞT

i

(a) Two-Dimensional
Simply Connected

(b) Two-Dimensional
Multiply Connected

(e) Three-Dimensional
Multiply Connected

(d) Three-Dimensional
Simply Connected

(c) Three-Dimensional
Simply Connected

FIGURE 2.9 Examples of Domain Connectivity.
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the desired curvilinear relations can be determined using the appropriate forms for the displacement
gradient term Vu:

The cylindrical coordinate system previously defined in Figure 1.5 establishes new components for
the displacement vector and strain tensor

u ¼ urer þ uqeq þ uzez

e ¼

2
664

er erq erz

erq eq eqz

erz eqz ez

3
775 (2.7.1)

Notice that the symmetry of the strain tensor is preserved in this orthogonal curvilinear system. Using
results (1.9.17) and (1.9.10), the derivative operation in cylindrical coordinates can be expressed by

Vu ¼ vur
vr

erer þ vuq
vr

ereq þ vuz
vr

erez

þ 1

r

�
vur
vq

� uq

�
eqer þ 1

r

�
ur þ vuq

vq

�
eqeq þ 1

r

vuz
vq

eqez

þ vur
vz

ezer þ vuq
vz

ezeq þ vuz
vz

ezez

(2.7.2)

Placing this result into the strain–displacement form (2.2.7) gives the desired relations in cylindrical
coordinates. The individual scalar equations are given by

er ¼ vur
vr

; eq ¼ 1

r

�
ur þ vuq

vq

�
; ez ¼ vuz

vz

erq ¼ 1

2

�
1

r

vur
vq

þ vuq
vr

� uq
r

�

eqz ¼ 1

2

�
vuq
vz

þ 1

r

vuz
vq

�

ezr ¼ 1

2

�
vur
vz

þ vuz
vr

�

(2.7.3)

For spherical coordinates defined by Figure 1.6, the displacement vector and strain tensor can be
written as

u ¼ uReR þ ufef þ uqeq

e ¼

2
64

eR eRf eRq

eRf ef efq

eRq efq eq

3
75 (2.7.4)

2.7 Curvilinear cylindrical and spherical coordinates 47



Following identical procedures as used for the cylindrical equation development, the strain–
displacement relations for spherical coordinates become

eR ¼ vuR
vR

; ef ¼ 1

R

�
uR þ vuf

vf

�

eq ¼ 1

R sin f

�
vuq
vq

þ sin fuR þ cos fuf

�

eRf ¼ 1

2

�
1

R

vuR
vf

þ vuf
vR

� uf
R

�

efq ¼ 1

2R

�
1

sin f

vuf
vq

þ vuq
vf

� cot fuq

�

eqR ¼ 1

2

�
1

R sin f

vuR
vq

þ vuq
vR

� uq
R

�

(2.7.5)

We can observe that these relations in curvilinear systems contain additional terms that do not include
derivatives of individual displacement components. For example, in spherical coordinates a simple
uniform radial displacement uR gives rise to transverse extensional strains ef ¼ eq ¼ uR/R. This
deformation can be simulated by blowing up a spherical balloon and observing the separation of points
on the balloon’s surface. Such terms were not found in the Cartesian forms given by (2.2.5), and their
appearance is thus related to the curvature of the spatial coordinate system. A more physical inter-
pretation can be found by redeveloping these equations using the geometric procedures of Section 2.2
on an appropriate differential element. A two-dimensional polar coordinate example of this technique
is given in Exercise 2.19. Clearly, the curvilinear forms (2.7.3) and (2.7.5) appear more complicated
than the corresponding Cartesian relations. However, for particular problems, the curvilinear relations,
when combined with other field equations, allow analytical solutions to be developed that could not be
found using a Cartesian formulation. Many examples of this are demonstrated in later chapters.
Appendix A lists the complete set of elasticity field equations in cylindrical and spherical coordinates.
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EXERCISES

2.1 Determine the strain and rotation tensors eij and uij for the following displacement fields:

ðaÞ u ¼ Axy; v ¼ Bxz2; w ¼ C
�
x2 þ y2

�
ðbÞ u ¼ Ax2; v ¼ Bxy; w ¼ Cxyz
ðcÞ u ¼ Ayz3; v ¼ Bxy2; w ¼ C

�
x2 þ z2

�
where A, B, and C are arbitrary constants.
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2.2 A two-dimensional displacement field is given by u ¼ k(x2 þ y2), v ¼ k(2x � y), w ¼ 0,
where k is a constant. Determine and plot the deformed shape of a differential rectangular
element originally located with its left bottom corner at the origin as shown. Finally, calculate
the rotation component uz.

x

 y

dx

dy

2.3 A two-dimensional problem of a rectangular bar stretched by uniform end loadings results in
the following constant strain field

eij ¼
2
4C1 0 0

0 �C2 0
0 0 0

3
5

where C1 and C2 are constants. Assuming the field depends only on x and y, integrate the
strainedisplacement relations to determine the displacement components and identify any
rigid-body motion terms.

2.4 A three-dimensional elasticity problem of a uniform bar stretched under its own weight gives
the following strain field

eij ¼
2
4Az 0 0

0 Az 0
0 0 Bz

3
5

where A and B are constants. Integrate the strainedisplacement relations to determine the
displacement components and identify all rigid-body motion terms.

2.5 Explicitly verify that the general rigid-body motion displacement field given by (2.2.10)
yields zero strains. Next, assuming that all strains vanish, formally integrate relations (2.2.5)
to develop the general form (2.2.10).

2.6 For polar coordinates defined by Figure 1.8, show that the transformation relations can be
used to determine the normal and shear strain components er, eq, and erq in terms of the
corresponding Cartesian components

er ¼ ex þ ey
2

þ ex � ey
2

cos 2qþ exy sin 2q

eq ¼ ex þ ey
2

� ex � ey
2

cos 2q� exy sin 2q

erq ¼ ey � ex
2

sin 2qþ exy cos 2q
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2.7 A rosette strain gage is an electromechanical device that can measure relative surface
elongations in three directions. Bonding such a device to the surface of a structure allows
determination of elongational strains in particular directions. A schematic of one such gage is
shown in the following figure, and the output of the device will provide data on the strains
along the gage arms a, b, and c. During one application, it is found that ea ¼ 0.001,
eb ¼ 0.002, and ec ¼ 0.004. Using the two-dimensional strain transformation relations,
calculate the surface strain components ex, ey, and exy.

x

a
 y c

b

6060

2.8� A two-dimensional strain field is found to begiven by ex¼ 0.002, ey¼�0.004, and exy¼ 0.001.
Incorporating the transformation relations (2.3.6) into a MATLAB� code, calculate and plot
the new strain components in a rotated coordinate system as a function of the rotation angle q.
Determine the particular angles at which the new components take on maximum values.

2.9� A three-dimensional strain field is specified by

eij ¼
2
4 1 �2 0
�2 �4 0
0 0 5

3
5�10�3

Determine information on the strains in the shaded plane in the following figure that makes equal
angles with the x- and z-axes as shown. Use MATLAB� to calculate and plot the normal and in-
plane shear strain along line AB (in the plane) as a function of angle q in the interval 0� q� p/2.

A

45

x

 y

z

B

θ
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2.10� Using MATLAB�, determine the principal values and directions of the following state of
strain

eij ¼
2
4 2 �2 0
�2 �4 1
0 1 6

3
5�10�3

2.11 A rectangular parallelepiped with original volume Vo is oriented such that its edges are
parallel to the principal directions of strain as shown in the following figure. For small strains,
show that the dilatation is given by

w ¼ ekk ¼ change in volume

original volume
¼ DV

Vo

1

2

3

2.12 Determine the spherical and deviatoric strain tensors for the strain field given in Exercise
2.10. Justify that the first invariant or dilatation of the deviatoric strain tensor is zero. In light
of the results from Exercise 2.11, what does the vanishing of the dilatation imply?

2.13 Using scalar methods, differentiate the individual strainedisplacement relations for ex, ey,
and exy, and independently develop the first compatibility equation of set (2.6.2).

2.14 Using relation (1.3.5), show that the compatibility relations (2.6.1) with l ¼ k can be
expressed by hij ¼ εiklεjmpelp,km ¼ 0, which can also be written in vector notation as
V� e� V ¼ 0:

2.15 In light of Exercise 2.14, the compatibility equations (2.6.2) can be expressed as hij ¼
εiklεjmpelp,km ¼ 0, where hij is sometimes referred to as the incompatibility tensor (Asaro and
Lubarda, 2006). It is observed that hij is symmetric, but its components are not independent
from one another. Since the divergence of a curl vanishes, show that they are related through
the differential Bianchi relations hij, j ¼ 0, which can be expanded to

h11;1 þ h12;2 þ h13;3 ¼ 0

h21;1 þ h22;2 þ h23;3 ¼ 0

h31;1 þ h32;2 þ h33;3 ¼ 0

Thus we see again that the six compatibility relations are not all independent.

Exercises 51



2.16 Show that the six compatibility equations (2.6.2) may also be represented by the three
independent fourth-order equations

v4ex
vy2vz2

¼ v3

vxvyvz

�
� veyz

vx
þ vezx

vy
þ vexy

vz

�

v4ey
vz2vx2

¼ v3

vxvyvz

�
� vezx

vy
þ vexy

vz
þ veyz

vx

�

v4ez
vx2vy2

¼ v3

vxvyvz

�
� vexy

vz
þ veyz

vx
þ vezx

vy

�

2.17 Show that the following strain field

ex ¼ Ay3; ey ¼ Ax3; exy ¼ Bxyðxþ yÞ; ez ¼ exz ¼ eyz ¼ 0

gives continuous, single-valued displacements in a simply connected region only if the
constants are related by A ¼ 2B/3.

2.18 In order to model dislocations in elastic solids, multivalued displacement fields are necessary.
As shown later in Chapter 15, for the particular case of a screw dislocation the displacements
are given by

u ¼ v ¼ 0; w ¼ b

2p
tan�1 y

x

where b is a constant called the Burgers vector. Show that the strains resulting from these
displacements are given by

ex ¼ ey ¼ ez ¼ exy ¼ 0; exz ¼ � b

4p

y

x2 þ y2
; eyz ¼ b

4p

x

x2 þ y2

Although we would expect for such a case that the compatibility relations would not be
satisfied, verify that these strains are in fact compatible. This is an example of a case in
which the compatibility relations are necessary but not sufficient to guarantee single-valued
displacements.

2.19 Consider the plane deformation of the differential element ABCD defined by polar
coordinates r, q as shown in the following figure. Using the geometric methods outlined
in Section 2.2, investigate the changes in line lengths and angles associated with
the deformation to a configuration A0B0C0D0, and develop the strainedisplacement
relations

er ¼ vur
vr

; eq ¼ 1

r

�
ur þ vuq

vq

�
; erq ¼ 1

2

�
1

r

vur
vq

þ vuq
vr

� uq
r

�
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A

C

D

dr

rdθ

dθ

A

B

C

D

B

′

′

′

′

2.20 Using the results from Exercise 2.19, determine the two-dimensional strains er, eq, erq for the
following displacement fields:

ðaÞ ur ¼ A

r
; uq ¼ B cos q

ðbÞ ur ¼ Ar2; uq ¼ Br sin q

ðcÞ ur ¼ A sin qþ B cos q; uq ¼ A cos q� B sin qþ Cr

where A, B, and C are arbitrary constants.
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Stress and Equilibrium 3
The previous chapter investigated the kinematics of deformation without regard to the force or stress
distribution within the elastic solid. We now wish to examine these issues and explore the transmission
of forces through deformable materials. Our study leads to the definition and use of the traction vector
and stress tensor. Each provides a quantitative method to describe both boundary and internal force
distributions within a continuum solid. Because it is commonly accepted that maximum stresses are a
major contributing factor to material failure, primary application of elasticity theory is used to
determine the distribution of stress within a given structure. Related to these force distribution issues is
the concept of equilibrium. Within a deformable solid, the force distribution at each point must be
balanced. For the static case, the summation of forces on an infinitesimal element is required to be
zero, while for a dynamic problem the resultant force must equal the mass times the element’s
acceleration. In this chapter, we establish the definitions and properties of the traction vector and stress
tensor and develop the equilibrium equations, which become another set of field equations necessary in
the overall formulation of elasticity theory. It should be noted that the developments in this chapter do
not require that the material be elastic, and thus in principle these results apply to a broader class of
material behavior.

3.1 Body and surface forces
When a structure is subjected to applied external loadings, internal forces are induced inside the body.
Following the philosophy of continuum mechanics, these internal forces are distributed continuously
within the solid. In order to study such forces, it is convenient to categorize them into two major
groups, commonly referred to as body forces and surface forces.

Body forces are proportional to the body’s mass and are reacted with an agent outside of the body.
Examples of these include gravitational-weight forces, magnetic forces, and inertial forces.
Figure 3.1(a) shows an example body force of an object’s self-weight. By using continuum mechanics
principles, a body force density (force per unit volume) F(x) can be defined such that the total resultant
body force of an entire solid can be written as a volume integral over the body

FR ¼
ð ð ð

V
FðxÞdV (3.1.1)

Surface forces always act on a surface and result from physical contact with another body.
Figure 3.1(b) illustrates surface forces existing in a beam section that has been created by sectioning
the body into two pieces. For this particular case, the surface S is a virtual one in the sense that it was

CHAPTER

Elasticity. http://dx.doi.org/10.1016/B978-0-12-408136-9.00003-9

Copyright © 2014 Elsevier Inc. All rights reserved.
55

http://dx.doi.org/10.1016/B978-0-12-408136-9.00003-9


artificially created to investigate the nature of the internal forces at this location in the body. Again, the
resultant surface force over the entire surface S can be expressed as the integral of a surface force
density function Tn(x)

FS ¼
ð ð

S
TnðxÞdS (3.1.2)

The surface force density is normally referred to as the traction vector and is discussed in more detail in
the next section. In the development of classical elasticity, distributions of body or surface couples are
normally not included. Theories that consider such force distributions have been constructed in an
effort to extend the classical formulation for applications in micromechanical modeling. Such
approaches are normally called micropolar or couple-stress theory (see Eringen, 1968) and are briefly
presented in Chapter 15.

3.2 Traction vector and stress tensor
In order to quantify the nature of the internal distribution of forces within a continuum solid, consider
a general body subject to arbitrary (concentrated and distributed) external loadings, as shown in
Figure 3.2. To investigate the internal forces, a section is made through the body as shown. On this

(b) Sectioned Axially Loaded Beam

Surface Forces: Tn(x)

S

(a) Cantilever Beam Under Self-Weight Loading

Body Forces: F(x)

FIGURE 3.1 Examples of Body and Surface Forces.
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section consider a small area DAwith unit normal vector n. The resultant surface force acting on DA is
defined by DF. Consistent with our earlier discussion, no resultant surface couple is included. The
stress or traction vector is defined by

Tnðx; nÞ ¼ lim
DA/0

DF

DA
(3.2.1)

Notice that the traction vector depends on both the spatial location and the unit normal vector to the
surface under study. Thus, even though we may be investigating the same point, the traction vector still
varies as a function of the orientation of the surface normal. Because the traction is defined as force per
unit area, the total surface force is determined through integration as per relation (3.1.2). Note, also, the
simple action–reaction principle (Newton’s third law)

Tnðx; nÞ ¼ �Tnðx;�nÞ
Consider now the special case in which DA coincides with each of the three coordinate planes with the
unit normal vectors pointing along the positive coordinate axes. This concept is shown in Figure 3.3,
where the three coordinate surfaces for DA partition off a cube of material. For this case, the traction
vector on each face can be written as

Tnðx; n ¼ e1Þ ¼ sxe1 þ sxye2 þ sxze3
Tnðx; n ¼ e2Þ ¼ syxe1 þ sye2 þ syze3
Tnðx; n ¼ e3Þ ¼ szxe1 þ szye2 þ sze3

(3.2.2)

where e1, e2, e3 are the unit vectors along each coordinate direction, and the nine quantities {sx, sy, sz,
sxy, syx , syz , szy, szx , sxz} are the components of the traction vector on each of three coordinate planes as
illustrated. These nine components are called the stress components, with sx, sy, sz referred to as
normal stresses and sxy, syx , syz , szy, szx , sxz called the shearing stresses. The components of stress sij
are commonly written in matrix format

s ¼ ½s� ¼
2
4sx sxy sxz
syx sy syz
szx szy sz

3
5 (3.2.3)

F

A

n

(Sectioned Body)

P3

P

P2

P1
(Externally Loaded Body)

Δ

Δ

FIGURE 3.2 Sectioned Solid Under External Loading.
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and it can be formally shown that the stress is a second-order tensor that obeys the appropriate
transformation law (1.5.3)3.

The positive directions of each stress component are illustrated in Figure 3.3. Regardless of the
coordinate system, positive normal stress always acts in tension out of the face, and only one subscript
is necessary because it always acts normal to the surface. The shear stress, however, requires two
subscripts, the first representing the plane of action and the second designating the direction of the
stress. Similar to shear strain, the sign of the shear stress depends on coordinate system orientation.
For example, on a plane with a normal in the positive x direction, positive sxy acts in the positive y
direction. Similar definitions follow for the other shear stress components. In subsequent chapters,
proper formulation of elasticity problems requires knowledge of these basic definitions, directions, and
sign conventions for particular stress components.

Consider next the traction vector on an oblique plane with arbitrary orientation, as shown in
Figure 3.4. The unit normal to the surface can be expressed by

n ¼ nxe1 þ nye2 þ nze3 (3.2.4)

where nx, ny, nz are the direction cosines of the unit vector n relative to the given coordinate system.We
now consider the equilibrium of the pyramidal element interior to the oblique and coordinate planes.
Invoking the force balance between tractions on the oblique and coordinate faces gives

Tn ¼ nxT
nðn ¼ e1Þ þ nyT

nðn ¼ e2Þ þ nzT
nðn ¼ e3Þ

and by using relations (3.2.2), this can be written as

Tn ¼ �
sxnx þ syxny þ szxnz

�
e1

þ�
sxynx þ syny þ szynz

�
e2

þ�
sxznx þ syzny þ sznz

�
e3

(3.2.5)

FIGURE 3.3 Components of the Stress.

58 CHAPTER 3 Stress and Equilibrium



or in index notation

Tn
i ¼ sjinj (3.2.6)

Relation (3.2.5) or (3.2.6) provides a simple and direct method to calculate the forces on oblique planes
and surfaces. This technique proves to be very useful to specify general boundary conditions during the
formulation and solution of elasticity problems. Based on these previous definitions, the distinction
between the traction vector and stress tensor should be carefully understood. Although each quantity
has the same units of force per unit area, they are fundamentally different since the traction is a vector
while the stress is a second-order tensor (matrix). Components of traction can be defined on any
surface, but particular stress components only exist on coordinate surfaces, as shown in Figure 3.3 for
the Cartesian case. Clearly, equation (3.2.6) establishes the relation between the two variables, thereby
indicating that each traction component can be expressed as a linear combination of particular stress
components. Further discussion on this topic will be given in Section 5.2 when boundary condition
development is presented.

Following the principles of small deformation theory, the previous definitions for the stress tensor
and traction vector do not make a distinction between the deformed and undeformed configurations of
the body. As mentioned in the previous chapter, such a distinction only leads to small modifications
that are considered higher-order effects and are normally neglected. However, for large deformation
theory, sizeable differences exist between these configurations, and the undeformed configuration
(commonly called the reference configuration) is often used in problem formulation. This gives rise to
the definition of an additional stress called the Piola–Kirchhoff stress tensor that represents the force
per unit area in the reference configuration (see Chandrasekharaiah and Debnath, 1994). In the more
general scheme, the stress sij is referred to as the Cauchy stress tensor. Throughout the text only small

FIGURE 3.4 Traction on an Oblique Plane.
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deformation theory is considered, and thus the distinction between these two definitions of stress
disappears, thereby eliminating any need for this additional terminology.

3.3 Stress transformation
Analogous to our previous discussion with the strain tensor, the stress components must also follow the
standard transformation rules for second-order tensors established in Section 1.5. Applying trans-
formation relation (1.5.1)3 for the stress gives

s0ij ¼ QipQjqspq (3.3.1)

where the rotation matrix Qij ¼ cosðxi0; xjÞ: Therefore, given the stress in one coordinate system, we
can determine the new components in any other rotated system. For the general three-dimensional
case, the rotation matrix may be chosen in the form

Qij ¼
2
4 l1 m1 n1
l2 m2 n2
l3 m3 n3

3
5 (3.3.2)

Using this notational scheme, the specific transformation relations for the stress then become

s0x ¼ sxl
2
1 þ sym

2
1 þ szn

2
1 þ 2

�
sxyl1m1 þ syzm1n1 þ szxn1l1

�
s0y ¼ sxl

2
2 þ sym

2
2 þ szn

2
2 þ 2

�
sxyl2m2 þ syzm2n2 þ szxn2l2

�
s0z ¼ sxl

2
3 þ sym

2
3 þ szn

2
3 þ 2

�
sxyl3m3 þ syzm3n3 þ szxn3l3

�
s0xy ¼ sxl1l2 þ sym1m2 þ szn1n2 þ sxyðl1m2 þ m1l2Þ þ syzðm1n2 þ n1m2Þ þ szxðn1l2 þ l1n2Þ
s0yz ¼ sxl2l3 þ sym2m3 þ szn2n3 þ sxyðl2m3 þ m2l3Þ þ syzðm2n3 þ n2m3Þ þ szxðn2l3 þ l2n3Þ
s0zx ¼ sxl3l1 þ sym3m1 þ szn3n1 þ sxyðl3m1 þ m3l1Þ þ syzðm3n1 þ n3m1Þ þ szxðn3l1 þ l3n1Þ

(3.3.3)

For the two-dimensional case originally shown in Figure 2.6, the transformation matrix was given by
relation (2.3.4). Under this transformation, the in-plane stress components transform according to

s0x ¼ sx cos
2 qþ sy sin

2 qþ 2sxy sin q cos q

s0y ¼ sx sin
2 qþ sy cos

2 q� 2sxy sin q cos q

s0xy ¼ �sx sin q cos qþ sy sin q cos qþ sxy
�
cos2 q� sin2 q

� (3.3.4)

which is commonly rewritten in terms of the double angle

s0x ¼
sx þ sy

2
þ sx � sy

2
cos 2qþ sxy sin 2q

s0y ¼
sx þ sy

2
� sx � sy

2
cos 2q� sxy sin 2q

s0xy ¼
sy � sx

2
sin 2qþ sxy cos 2q

(3.3.5)
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Similar to our discussion on strain in the previous chapter, relations (3.3.5) can be directly applied to
establish stress transformations between Cartesian and polar coordinate systems (see Exercise 3.3).
Both two- and three-dimensional stress transformation equations can be easily incorporated in
MATLAB� to provide numerical solutions to problems of interest (see Exercise 3.2).

3.4 Principal stresses
We can again use the previous developments from Section 1.6 to discuss the issues of principal stresses
and directions. It is shown later in the chapter that the stress is a symmetric tensor. Using this fact,
appropriate theory has been developed to identify and determine principal axes and values for the
stress. For any given stress tensor we can establish the principal value problem and solve the char-
acteristic equation to explicitly determine the principal values and directions. The general charac-
teristic equation for the stress tensor becomes

det
�
sij � sdij

� ¼ �s3 þ I1s
2 � I2sþ I3 ¼ 0 (3.4.1)

where s are the principal stresses and the fundamental invariants of the stress tensor can be expressed
in terms of the three principal stresses s1, s2, s3 as

I1 ¼ s1 þ s2 þ s3
I2 ¼ s1s2 þ s2s3 þ s3s1
I3 ¼ s1s2s3

(3.4.2)

In the principal coordinate system, the stress matrix takes the special diagonal form

sij ¼
2
4 s1 0 0

0 s2 0
0 0 s3

3
5 (3.4.3)

A comparison of the general and principal stress states is shown in Figure 3.5. Notice that for the
principal coordinate system, all shearing stresses vanish and thus the state includes only normal

FIGURE 3.5 Comparison of General and Principal Stress States.
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stresses. These issues should be compared to the equivalent comments made for the strain tensor at the
end of Section 2.4.

We now wish to go back to investigate another issue related to stress and traction trans-
formation that makes use of principal stresses. Consider the general traction vector T n that acts on
an arbitrary surface as shown in Figure 3.6. The issue of interest is to determine the traction vector’s
normal and shear components N and S. The normal component is simply the traction’s projection in
the direction of the unit normal vector n, while the shear component is found by Pythagorean
theorem

N ¼ Tn$ n

S ¼ �jTnj2 � N2
�1=2 (3.4.4)

Using the relationship for the traction vector (3.2.5) into (3.4.4)1 gives

N ¼ Tn$ n ¼ Tn
i ni ¼ sjinjni

¼ s1n
2
1 þ s2n

2
2 þ s3n

2
3

(3.4.5)

where, in order to simplify the expressions, we have used the principal axes for the stress tensor. In a
similar manner

jTnj2 ¼ Tn$Tn ¼ Tn
i T

n
i ¼ sjinjskink

¼ s21n
2
1 þ s22n

2
2 þ s23n

2
3

(3.4.6)

Using these results back in relation (3.4.4) yields

N ¼ s1n
2
1 þ s2n

2
2 þ s3n

2
3

S2 þ N2 ¼ s21n
2
1 þ s22n

2
2 þ s23n

2
3

(3.4.7)

In addition, we add the condition that the vector n has unit magnitude

1 ¼ n21 þ n22 þ n23 (3.4.8)

FIGURE 3.6 Traction Vector Decomposition.

62 CHAPTER 3 Stress and Equilibrium



Relations (3.4.7) and (3.4.8) can be viewed as three linear algebraic equations for the unknowns
n21; n22; n23. Solving this system gives the following result:

n21 ¼
S2 þ ðN � s2ÞðN � s3Þ
ðs1 � s2Þðs1 � s3Þ

n22 ¼
S2 þ ðN � s3ÞðN � s1Þ
ðs2 � s3Þðs2 � s1Þ

n23 ¼
S2 þ ðN � s1ÞðN � s2Þ
ðs3 � s1Þðs3 � s2Þ

(3.4.9)

Without loss in generality, we can rank the principal stresses as s1 > s2 > s3. Noting that the
expressions given by (3.4.9) must be greater than or equal to zero, we can conclude the following:

S2 þ ðN � s2ÞðN � s3Þ � 0

S2 þ ðN � s3ÞðN � s1Þ � 0

S2 þ ðN � s1ÞðN � s2Þ � 0

(3.4.10)

For the equality case, equations (3.4.10) represent three circles in an S–N coordinate system, and
Figure 3.7 illustrates the location of each circle. These results were originally generated by Otto Mohr
over a century ago, and the circles are commonly called Mohr’s circles of stress. The three inequalities
given in (3.4.10) imply that all admissible values of N and S lie in the shaded regions bounded by the

FIGURE 3.7 Mohr’s Circles of Stress.
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three circles. Note that, for the ranked principal stresses, the largest shear component is easily deter-
mined as Smax ¼ 1/2js1 � s3j. Although these circles can be effectively used for two-dimensional stress
transformation, the general tensorial-based equations (3.3.1) or (3.3.3) are normally used for general
transformation computations.

EXAMPLE 3.1: STRESS TRANSFORMATION
For the following state of stress, determine the principal stresses and directions and find the traction
vector on a plane with unit normal n ¼ (0, 1, 1)/

ffiffiffi
2

p

sij ¼
2
4 3 1 1
1 0 2
1 2 0

3
5

The principal stress problem is first solved by calculating the three invariants, giving the result
I1 ¼ 3, I2 ¼ �6, I3 ¼ �8. This yields the following characteristic equation

�s3 þ 3s2 þ 6s� 8 ¼ 0

The roots of this equation are found to be s ¼ 4, 1, �2. Back-substituting the first root into the
fundamental system [see (1.6.1)] gives

�n
ð1Þ
1 þ n

ð1Þ
2 þ n

ð1Þ
3 ¼ 0

n
ð1Þ
1 � 4n

ð1Þ
2 þ 2n

ð1Þ
3 ¼ 0

n
ð1Þ
1 þ 2n

ð1Þ
2 � 4n

ð1Þ
3 ¼ 0

Solving this system, the normalized principal direction is found to be n(1) ¼ (2, 1, 1)/
ffiffiffi
6

p
. In

similar fashion the other two principal directions are n(2) ¼ (e1, 1, 1)/
ffiffiffi
3

p
, n(3) ¼ (0, �1, 1)/

ffiffiffi
2

p
.

The traction vector on the specified plane is calculated by using the relation

Tn
i ¼

2
4 3 1 1
1 0 2
1 2 0

3
5
2
4 0
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

3
5 ¼

2
4 2=

ffiffiffi
2

p
2=

ffiffiffi
2

p
2=

ffiffiffi
2

p

3
5

3.5 Spherical, deviatoric, octahedral, and von mises stresses
As mentioned in our previous discussion on strain, it is often convenient to decompose the stress into
two parts called the spherical and deviatoric stress tensors. Analogous to relations (2.5.1) and (2.5.2),
the spherical stress is defined by

~sij ¼ 1

3
skk dij (3.5.1)

while the deviatoric stress becomes

ŝij ¼ sij � 1

3
skk dij (3.5.2)
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Note that the total stress is then simply the sum

sij ¼ ~sij þ ŝij (3.5.3)

The spherical stress is an isotropic tensor, being the same in all coordinate systems (as per the dis-
cussion in Section 1.5). It can be shown that the principal directions of the deviatoric stress are the
same as those of the stress tensor itself (see Exercise 3.14).

We next briefly explore a couple of particular stress components or combinations that have been
defined in the literature and are commonly used in formulating failure theories related to inelastic
deformation. It has been found that ductile materials normally exhibit inelastic yielding failures that
can be characterized by these particular stresses.

Consider first the normal and shear stresses (tractions) that act on a special plane whose normal
makes equal angles with the three principal axes. This plane is commonly referred to as the octahedral
plane. Determination of these normal and shear stresses is straightforward if we use the principal axes
of stress. Since the unit normal vector to the octahedral plane makes equal angles with the principal
axes, its components are given by ni ¼ �(1, 1, 1)/

ffiffiffi
3

p
. Referring to Figure 3.6 and using the results of

the previous section, relations (3.4.7) give the desired normal and shear stresses as

N ¼ soct ¼ 1

3
ðs1 þ s2 þ s3Þ ¼ 1

3
skk ¼ 1

3
I1

S ¼ soct ¼ 1

3

�ðs1 � s2Þ2 þ ðs2 � s3Þ2 þ ðs3 � s1Þ2
�1=2

¼ 1

3

�
2I21 � 6I2

�1=2
(3.5.4)

It can be shown that the octahedral shear stress soct is directly related to the distortional strain energy
[defined by equation (6.1.17)], which is often used in failure theories for ductile materials.

Another specially defined stress also related to the distortional strain energy failure criteria is
known as the effective or von Mises stress and is given by the expression

se ¼ svonMises ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ŝijŝij

r
¼ 1ffiffiffi

2
p

h�
sx � sy

�2 þ �
sy � sz

�2 þ ðsz � sxÞ2

þ 6
�
s2xy þ s2yz þ s2zx

�i1=2
¼ 1ffiffiffi

2
p �ðs1 � s2Þ2 þ ðs2 � s3Þ2 þ ðs3 � s1Þ2

�1=2
(3.5.5)

Note that although the von Mises stress is not really a particular stress or traction component in the
usual sense, it is obviously directly related to the octahedral shear stress by the relation
se ¼ ð3= ffiffiffi

2
p Þsoct. If at some point in the structure the von Mises stress equals the yield stress, then the

material is considered to be at the failure condition. Because of this fact, many finite element computer
codes commonly plot von Mises stress distributions based on the numerically generated stress field. It
should be noted that the von Mises and octahedral shear stresses involve only the differences in the
principal stresses and not the individual values. Thus, increasing each principal stress by the same
amount will not change the value of se or soct. This result also implies that these values are independent
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of the hydrostatic stress. We will not further pursue failure criteria, and the interested reader is referred
to Ugural and Fenster (2003) for details on this topic.

It should be pointed out that the spherical, octahedral, and von Mises stresses are all expressible
in terms of the stress invariants and thus are independent of the coordinate system used to calculate
them.

3.6 Stress distributions and contour lines
Over the years the stress analysis community has developed a large variety of schemes to help visualize
and understand the nature of the stress distribution in elastic solids. Of course these efforts are not
limited solely to stress because such information is also needed for strain and displacement distri-
bution. Much of this effort is aimed at determining the magnitude and location of maximum stresses
within the structure. Simple schemes involve just plotting the distribution of particular stress com-
ponents along chosen directions within the body under study. Other methods focus on constructing
contour plots of principal stress, maximum shear stress, von Mises stress, and other stress variables or
combinations. Some techniques have been constructed to compare with optical experimental methods
that provide photographic data of particular stress variables (Shukla and Dally, 2010). We now will
briefly explore some of these schemes as they relate to two-dimensional plane stress distributions
defined by the field: sx ¼ sxðx; yÞ; sy ¼ syðx; yÞ; sxy ¼ sxyðx; yÞ; sz ¼ sxz ¼ syz ¼ 0. Note for this
case, the principal stresses and maximum shear stress are given in Exercise 3.5.

By passing polarized light through transparent model samples under load, the experimental method
of photoelasticity can provide full field photographic stress data of particular stress combinations. The
method can generate isochromatic fringe patterns that represent lines of constant difference in the
principal stresses, i.e. s1 � s2 ¼ constant, which would also be lines of maximum shearing stress.
Examples of isochromatic fringe patterns are shown in Figures 8.28 and 8.36, and in Exercises 8.40
and 8.46. Photoelasticity can also generate another series of fringe lines called isoclinics, along which
the principal stresses have a constant orientation. Still another set of contour lines often used in optical
experimental stress analysis are isopachic contours, which are lines of sx þ sy ¼ s1 þ s2 ¼ constant.
These contours are related to the out-of-plane strain and displacement; see, for example, relation
(7.2.2)3.

Another useful set of lines are isostatics, sometimes referred to as stress trajectories. Such lines
are oriented along the direction of a particular principal stress. For the two-dimensional plane stress
case, the principal stresses s1 and s2 give rise to two families of stress trajectories that form an
orthogonal network composed of lines free of shear stress. These trajectories have proven to be
useful aids for understanding load paths, i.e. how external loadings move through a structure to
the reaction points (Kelly and Tosh, 2000). Stress trajectories are also related to structural optimi-
zation and Michell structures composed of frameworks of continuous members in tension and
compression.

Considering a particular stress trajectory, the orientation angle qp with respect to the x-axis can be
found using the relation (see Exercise 3.20)

tan 2qp ¼ 2sxy
sx � sy

(3.6.1)
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Now for a given trajectory specified by y(x), tan qp ¼ dy=dx and combining these results with a
standard trigonometric identity gives

tan 2qp ¼ 2 tan qp

1� tan2qp
¼

2
dy

dx

1�
	
dy

dx


2
¼ 2sxy

sx � sy

This relation is easily solved for the trajectory slope

dy

dx
¼ �sx � sy

2sxy
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
sx � sy

2sxy


2
s

(3.6.2)

So given in-plane stress components, the differential equation (3.6.2) can be integrated to generate the
stress trajectories, y(x). Although some special cases can be done analytically (Molleda et al., 2005),
most stress distributions will generate complicated forms that require numerical integration (Breault,
2012). A particular example will now be explored and several of the previously discussed stress
contours and lines will be generated and plotted.

EXAMPLE 3.2: STRESS DISTRIBUTIONS IN DISK UNDER DIAMETRICAL
COMPRESSION
Let us now explore a specific two-dimensional problem of a circular disk loaded by equal
but opposite concentrated forces along a given diameter as shown in Figure 3.8(a). This prob-
lem is solved in Example 8.10, and with respect to the given axes the in-plane stresses are
found to be

sx ¼ � 2P

p

"
ðR� yÞx2

r41
þ ðRþ yÞx2

r42
� 1

2R

#

sy ¼ � 2P

p

"
ðR� yÞ3

r41
þ ðRþ yÞ3

r42
� 1

2R

#

sxy ¼ 2P

p

"
ðR� yÞ2x

r41
� ðRþ yÞ2x

r42

#
(3.6.3)

where r1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðRHyÞ2

q
. Numerical results are presented for the case with unit radius and unit

loading, R ¼ P ¼ 1. For this case, Figure 3.8 illustrates several contour distributions and the stress
trajectories that have been previously discussed. It should be apparent that each of these contour
distributions is in general different from one another, and each will convey particular information
about the nature of the stress field under study. Later chapters in the text will make considerable use
of various distribution plots such as these.
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FIGURE 3.8 Example Stress Contours for Diametrically Loaded Disk Problem.
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3.7 Equilibrium equations
The stress field in an elastic solid is continuously distributed within the body and uniquely determined
from the applied loadings. Because we are dealing primarily with bodies in equilibrium, the applied
loadings satisfy the equations of static equilibrium; the summation of forces and moments is zero. If
the entire body is in equilibrium, then all parts must also be in equilibrium. Thus, we can partition any
solid into an appropriate subdomain and apply the equilibrium principle to that region. Following this
approach, equilibrium equations can be developed that express the vanishing of the resultant force and
moment at a continuum point in the material. These equations can be developed by using either an
arbitrary finite subdomain or a special differential region with boundaries coinciding with coordinate
surfaces. We shall formally use the first method in the text, and the second scheme is included in
Exercises 3.21 and 3.23.

Consider a closed subdomain with volume V and surface Swithin a body in equilibrium. The region
has a general distribution of surface tractions T n and body forces F as shown in Figure 3.9. For static
equilibrium, conservation of linear momentum implies that the forces acting on this region are
balanced and thus the resultant force must vanish. This concept can be easily written in index notation
as follows ð ð

S
Tn
i dSþ

ð ð ð
V
FidV ¼ 0 (3.7.1)

Using relation (3.2.6) for the traction vector, we can express the equilibrium statement in terms of
stress ð ð

S
sjinjdSþ

ð ð ð
V
FidV ¼ 0 (3.7.2)

FIGURE 3.9 Body and Surface Forces Acting on an Arbitrary Portion of a Continuum.
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Applying the divergence theorem (1.8.7) to the surface integral allows the conversion to a volume
integral, and relation (3.7.2) can then be expressed asð ð ð

V

�
sji; j þ Fi

�
dV ¼ 0 (3.7.3)

Because the region V is arbitrary (any part of the medium can be chosen) and the integrand in (3.7.3)
is continuous, then by the zero-value theorem (1.8.12), the integrand must vanish

sji; j þ Fi ¼ 0 (3.7.4)

This result represents three scalar relations called the equilibrium equations. Written in scalar notation,
they are

vsx

vx
þ vsyx

vy
þ vszx

vz
þ Fx ¼ 0

vsxy
vx

þ vsy

vy
þ vszy

vz
þ Fy ¼ 0

vsxz
vx

þ vsyz
vy

þ vsz

vz
þ Fz ¼ 0

(3.7.5)

Thus, all elasticity stress fields must satisfy these relations in order to be in static equilibrium.
Next consider the angular momentum principle that states that the moment of all forces acting on

any portion of the body must vanish. Note that the point about which the moment is calculated can be
chosen arbitrarily. Applying this principle to the region shown in Figure 3.9 results in a statement of
the vanishing of the moments resulting from surface and body forcesð ð

S
εijkxjT

n
k dSþ

ð ð ð
V
εijkxjFkdV ¼ 0 (3.7.6)

Again using relation (3.2.6) for the traction, (3.7.6) can be written asð ð
S
εijkxjslknldSþ

ð ð ð
V
εijkxjFkdV ¼ 0

and application of the divergence theorem givesð ð ð
V

��
εijkxjslk

�
;l þ εijkxjFk

�
dV ¼ 0

This integral can be expanded and simplified asð ð ð
V

�
εijkxj; lslk þ εijkxjslk; l þ εijkxjFk

�
dV ¼

ð ð ð
V

�
εijkdjlslk þ εijkxjslk;l þ εijkxjFk

�
dV ¼

ð ð ð
V

�
εijksjk � εijkxjFk þ εijkxjFk

�
dV ¼

ð ð ð
V
εijksjkdV
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where we have used the equilibrium equations (3.7.4) to simplify the final result. Thus, (3.7.6) now
gives ð ð ð

V
εijksjkdV ¼ 0

As per our earlier arguments, because the region V is arbitrary, the integrand must vanish, giving
εijk sjk ¼ 0. However, because the alternating symbol is antisymmetric in indices jk, the other product
term sjk must be symmetric, implying

sij ¼ sji 0
sxy ¼ syx
syz ¼ szy
szx ¼ sxz

(3.7.7)

We thus find that, similar to the strain, the stress tensor is also symmetric and therefore has only six
independent components in three dimensions. Under these conditions, the equilibrium equations can
then be written as

sij; j þ Fi ¼ 0 (3.7.8)

3.8 Relations in curvilinear cylindrical and spherical coordinates
As mentioned in the previous chapter, in order to solve many elasticity problems, formulation
must be done in curvilinear coordinates typically using cylindrical or spherical systems. Thus,
by following similar methods as used with the strain–displacement relations, we now wish
to develop expressions for the equilibrium equations in curvilinear cylindrical and spherical
coordinates. By using a direct vector/matrix notation, the equilibrium equations can be
expressed as

V$sþ F ¼ 0 (3.8.1)

where s ¼ sijeiej is the stress matrix or dyadic, ei are the unit basis vectors in the curvilinear system,
and F is the body force vector. The desired curvilinear expressions can be obtained from (3.8.1) by
using the appropriate form for V$s from our previous work in Section 1.9.

Cylindrical coordinates were originally presented in Figure 1.5. For such a system, the stress
components are defined on the differential element shown in Figure 3.10, and thus the stress matrix is
given by

s ¼
2
4 sr srq srz
srq sq sqz
srz sqz sz

3
5 (3.8.2)

Now the stress can be expressed in terms of the traction components as

s ¼ erTr þ eqTq þ ezTz (3.8.3)
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where

Tr ¼ srer þ srqeq þ srzez

Tq ¼ srqer þ sqeq þ sqzez

Tz ¼ srzer þ sqzeq þ szez

(3.8.4)

Using relations (1.9.10) and (1.9.14), the divergence operation in the equilibrium equations can be
written as

V$s ¼ vTr

vr
þ 1

r
Tr þ 1

r

vTq

vq
þ vTz

vz

¼ vsr

vr
er þ vsrq

vr
eq þ vsrz

vr
ez þ 1

r
ðsrer þ srqeq þ srzezÞ

þ 1

r

	
vsrq
vq

er þ srqeq þ vsq

vq
eq � sqer þ vsqz

vq
ez




þ vsrz
vz

er þ vsqz
vz

eq þ vsz

vz
ez

(3.8.5)

Combining this result into (3.8.1) gives the vector equilibrium equation in cylindrical coordinates. The
three scalar equations expressing equilibrium in each coordinate direction then become

vsr

vr
þ 1

r

vsrq
vq

þ vsrz
vz

þ 1

r
ðsr � sqÞ þ Fr ¼ 0

vsrq
vr

þ 1

r

vsq

vq
þ vsqz

vz
þ 2

r
srq þ Fq ¼ 0

vsrz
vr

þ 1

r

vsqz
vq

þ vsz

vz
þ 1

r
srz þ Fz ¼ 0

(3.8.6)

FIGURE 3.10 Stress Components in Cylindrical Coordinates.
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We now wish to repeat these developments for the spherical coordinate system, as previously shown in
Figure 1.6. The stress components in spherical coordinates are defined on the differential element
illustrated in Figure 3.11, and the stress matrix for this case is

s ¼
2
4 sR sRf sRq
sRf sf sfq
sRq sfq sq

3
5 (3.8.7)

Following similar procedures as used for the cylindrical equation development, the three scalar
equilibrium equations for spherical coordinates become

vsR

vR
þ 1

R

vsRf
vf

þ 1

R sin f

vsRq
vq

þ 1

R

�
2sR � sf � sq þ sRf cotf

�þ FR ¼ 0

vsrf
vR

þ 1

R

vsf

vf
þ 1

R sin f

vsfq
vq

þ 1

R

��
sf � sq

�
cotfþ 3sRf

�þ Ff ¼ 0

vsrq
vR

þ 1

R

vsfq
vf

þ 1

R sin f

vsq

vq
þ 1

R

�
2sfq cotfþ 3sRq

�þ Fq ¼ 0

(3.8.8)

It is interesting to note that the equilibrium equations in curvilinear coordinates contain additional terms
not involving derivatives of the stress components. The appearance of these terms can be explained
mathematically due to the curvature of the space.However, amore physical interpretation can be found by
redeveloping these equations through a simple force balance analysis on the appropriate differential
element. This analysis is proposed for the less demanding two-dimensional polar coordinate case in

FIGURE 3.11 Stress Components in Spherical Coordinates.
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Exercise3.23. Ingeneral, relations (3.8.6) and (3.8.8) lookmuchmore complicated when compared to the
Cartesian form (3.7.5). However, under particular conditions the curvilinear forms will lead to an
analytical solution that could not be reached using Cartesian coordinates. For easy reference, Appendix
A lists the complete set of elasticity field equations in cylindrical and spherical coordinates.
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EXERCISES

3.1 The state of stress in a rectangular plate under uniform biaxial loading, as shown in the
following figure, is found to be

sij ¼
2
4X 0 0
0 Y 0
0 0 0

3
5

Determine the traction vector and the normal and shearing stresses on the oblique plane S.

y

S

x
θ

3.2* Using suitable units, the stress at a particular point in a solid is found to be

ðaÞ sij ¼
2
4 2 1 �4

1 4 0
�4 0 1

3
5 ðbÞ sij ¼

2
4 4 1 0
1 �6 2
0 2 1

3
5
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Determine the traction vector on a surface with unit normal (cos q, sin q, 0), where q is a
general angle in the range 0 � q � p. Plot the variation of the magnitude of the traction vector
jTnj as a function of q.

3.3 Show that the general two-dimensional stress transformation relations can be used to
generate relations for the normal and shear stresses in a polar coordinate system in terms of
Cartesian components

sr ¼ sx þ sy

2
þ sx � sy

2
cos 2qþ sxy sin 2q

sq ¼ sx þ sy

2
� sx � sy

2
cos 2q� sxy sin 2q

srq ¼ sy � sx

2
sin 2qþ sxy cos 2q

3.4 Verify that the two-dimensional transformation relations giving Cartesian stresses in terms of
polar components are given by

sx ¼ sr cos
2qþ sq sin

2q� 2srq sinq cosq

sy ¼ sr sin
2qþ sq cos

2q� 2srq sinq cosq

sxy ¼ sr sinq cosq� sq sinq cosqþ srq
�
cos2q� sin2q

�
3.5 A two-dimensional state of plane stress in the x, y-plane is defined by sz ¼ syz ¼ szx ¼ 0.

Using general principal value theory, show that for this case the in-plane principal stresses
and maximum shear stress are given by

s1; 2 ¼ sx þ sy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
sx � sy

2


2
þ s2xy

s

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
sx � sy

2


2
þ s2xy

s

3.6 Explicitly verify relations (3.5.4) for the octahedral stress components. Also show that they
can be expressed in terms of the general stress components by

soct ¼ 1

3

�
sx þ sy þ sz

�
soct ¼ 1

3

��
sx � sy

�2 þ �
sy � sz

�2 þ ðsz � sxÞ2 þ 6s2xy þ 6s2yz þ 6s2zx
�1=2

3.7 For the plane stress case in Exercise 3.5, demonstrate the invariant nature of the principal
stresses and maximum shear stresses by showing that

s1;2 ¼ 1

2
I1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
I21 � I2

r
and smax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
I21 � I2

r
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Thus, conclude that

s1; 2 ¼ sx þ sy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
sx � sy

2


2

þ s2xy

s
¼ sr þ sq

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
sr � sq

2


2

þ s2rq

s

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
sx � sy

2


2
þ s2xy

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
sr � sq

2


2
þ s2rq

s

3.8 Exercise 8.2 provides the plane stress (see Exercise 3.5) solution for a cantilever beam of unit
thickness, with depth 2c, and carrying an end load of P with stresses given by

sx ¼ 3P

2c3
xy; sy ¼ 0; sxy ¼ 3P

4c

�
1� y2

c2

�
Show that the principal stresses are given by

s1; 2 ¼ 3P

4c3

�
xy�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � y2Þ2 þ x2y2

q �

and the principal directions are

nð1; 2Þ ¼
h�

xy�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � y2Þ2 þ x2y2

q �
e1 þ

�
c2 � y2

�
e2

i
� constant

Note that the principal directions do not depend on the loading P.

3.9* Plot contours of the maximum principal stress s1 in Exercise 3.8 in the region
0 � x � L, � c � y � c, with L ¼ 1, c ¼ 0.1, and P ¼ 1.

3.10 We wish to generalize the findings in Exercise 3.8, and thus consider a stress field of the
general form sij¼ Pfij (xk), where P is a loading parameter and the tensor function fij specifies
only the field distribution. Show that the principal stresses will be a linear form in P, that is,
s1,2,3 ¼ Pg1,2,3 (xk). Next demonstrate that the principal directions will not depend on P.

3.11* The plane stress solution for a semi-infinite elastic solid under a concentrated point loading is
developed in Chapter 8. With respect to the axes shown in the following figure, the Cartesian
stress components are found to be

sx ¼ � 2Px2y

pðx2 þ y2Þ2

sy ¼ � 2Py3

pðx2 þ y2Þ2

sxy ¼ � 2Pxy2

pðx2 þ y2Þ2
Using results from Exercise 3.5, calculate the maximum shear stress at any point in the body
and plot contours of smax. You can compare your results with the corresponding photoelastic
contours shown in Figure 8.28.
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3.12 Show that shear stress S acting on a plane defined by the unit normal vector n (see Figure 3.6)
can be written as

S ¼
h
n21n

2
2ðs1 � s2Þ2 þ n22n

2
3ðs2 � s3Þ2 þ n23n

2
1ðs3 � s1Þ2

i1=2
3.13 It was discussed in Section 3.4 that for the case of ranked principal stresses (s1 > s2 > s3),

the maximum shear stress was given by Smax ¼ (s1 � s3)/2, which was the radius of the
largest Mohr circle shown in Figure 3.7. For this case, show that the normal stress acting on
the plane of maximum shear is given by N¼ (s1þ s3)/2. Finally, using relations (3.4.9) show
that the components of the unit normal vector to this plane are ni¼� (1, 0, 1)/

ffiffiffi
2

p
. This result

implies that the maximum shear stress acts on a plane that bisects the angle between the
directions of the largest and the smallest principal stress.

3.14 Explicitly show that the stress state given in Example 3.1 will reduce to the proper diagonal
form under transformation to principal axes.

3.15 Show that the principal directions of the deviatoric stress tensor coincide with the
principal directions of the stress tensor. Also show that the principal values of the deviatoric
stress sd can be expressed in terms of the principal values s of the total stress by the relation
sd ¼ s � 1

3 skk.

3.16 Determine the spherical and deviatoric stress tensors for the stress states given in Exercise
3.2.

3.17 For the stress state given in Example 3.1, determine the von Mises and octahedral stresses
defined in Section 3.5.

3.18 For the case of pure shear, the stress matrix is given by

sij ¼
2
4 0 s 0
s 0 0
0 0 0

3
5

where s is a given constant. Determine the principal stresses and directions, and compute
the normal and shear stress on the octahedral plane.
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3.19* For the stress state in Exercise 3.8, plot contours of the vonMises stress in the region 0� x� L,
�c � y � c, with L ¼ 1, c ¼ 0.1, and P ¼ 1.

3.20 Starting with two-dimensional stress transformation relation (3.3.5)1, set
ds0

x

dq ¼ 0, and thus
show that the relation to determine the angle to the principal stress direction qp is given by
tan 2qp ¼ 2sxy

sx�sy
. Next explicitly develop relation (3.6.2).

3.21 Consider the equilibrium of a two-dimensional differential element in Cartesian coordinates,
as shown in the following figure. Explicitly sum the forces and moments and develop the
two-dimensional equilibrium equations

vsx

vx
þ vsyx

vy
þ Fx ¼ 0

vsxy
vx

þ vsy

vy
þ Fy ¼ 0

sxy ¼ syx

3.22 Consider the two-dimensional case described in Exercise 3.21 with no body forces. Show
that equilibrium equations are identically satisfied if the stresses are expressed in the form

sx ¼ v2f

vy2
; sy ¼ v2f

vx2
; sxy ¼ � v2f

vxvy

where fðx; yÞ is an arbitrary stress function. This stress representation will be used in
Chapter 7 to establish a very useful solution scheme for two-dimensional problems.

dy

dy

dx

dx
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3.23 Following similar procedures as in Exercise 3.21, sum the forces and moments on the two-
dimensional differential element in polar coordinates (see the figures), and explicitly develop
the following two-dimensional equilibrium equations

vsr

vr
þ 1

r

vsqr
vq

þ ðsr � sqÞ
r

þ Fr ¼ 0

vsrq
vr

þ 1

r

vsq

vq
þ 2srq

r
þ Fq ¼ 0

srq ¼ sqr

3.24 For a beam of circular cross-section, analysis from elementary strength of materials theory
yields the following stresses

sx ¼ �My

I
; sxy ¼

V
�
R2 � y2

�
3I

; sy ¼ sz ¼ sxz ¼ syz ¼ 0

where R is the section radius, I¼ pR4/4,M is the bending moment, V is the shear force, and
dM/dx ¼ V. Assuming zero body forces, show that these stresses do not satisfy the equi-
librium equations. This result is one of many that indicate the approximate nature of
strength of materials theory.

3.25 A one-dimensional problem of a prismatic bar (see the following figure) loaded under its own
weight can be modeled by the stress field sx¼ sx(x), sy¼ sz¼ sxy¼ syz¼ szx¼ 0, with body
forces Fx ¼ rg, Fy ¼ Fz ¼ 0, where r is the mass density and g is the local acceleration
of gravity. Using the equilibrium equations, show that the nonzero stress will be given by
sx ¼ rg(l � x), where l is the length of the bar.

d

d

d

dr

dr

dr

rd
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3.26 A hydrostatic stress field is specified by

sij ¼ �pdij ¼
2
4�p 0 0

0 �p 0
0 0 �p

3
5

where p¼ p (x1, x2, x3) and may be called the pressure. Show that the equilibrium equations
imply that the pressure must satisfy the relation Vp ¼ F.

3.27 Verify the curvilinear cylindrical coordinate relations (3.8.5) and (3.8.6).
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Material BehaviordLinear Elastic
Solids 4
The previous two chapters establish elasticity field equations related to the kinematics of small
deformation theory and the equilibrium of the associated internal stress field. Based on these physical
concepts, six strain–displacement relations (2.2.5), six compatibility equations (2.6.2), and three
equilibrium equations (3.7.5) were developed for the general three-dimensional case. Because moment
equilibrium simply results in symmetry of the stress tensor, it is not normally included as a separate
field equation set. Also, recall that the compatibility equations actually represent only three inde-
pendent relations, and these equations are needed only to ensure that a given strain field will produce
single-valued continuous displacements. Because the displacements are included in the general
problem formulation, the solution normally gives continuous displacements, and the compatibility
equations are not formally needed for the general system. Thus, excluding the compatibility relations,
it is found that we have now developed nine field equations. The unknowns in these equations include
three displacement components, six components of strain, and six stress components, yielding a total
of 15 unknowns. Thus, the nine equations are not sufficient to solve for the 15 unknowns, and addi-
tional field equations are needed. This result should not be surprising since up to this point in our
development we have not considered the material response.

We now wish to complete our general formulation by specializing to a particular material model
that provides reasonable characterization of materials under small deformations. The model we will
use is that of a linear elastic material, a name that categorizes the entire theory. This chapter presents
the basics of the elastic model specializing the formulation for isotropic materials. Thermoelastic
relations are briefly presented for later use in Chapter 12. Related theory for anisotropic media is
developed in Chapter 11, and nonhomogeneous materials are examined in Chapter 14.

4.1 Material characterization
Relations that characterize the physical properties ofmaterials are called constitutive equations. Because
of the endless variety of materials and loadings, the study and development of constitutive equations is
perhaps one of the most interesting and challenging fields in mechanics. Although continuum me-
chanics theory has established some principles for systematic development of constitutive equations
(Malvern, 1969), many constitutive laws have been developed through empirical relations based on
experimental evidence. Our interest here is limited to a special class of solid materials with loadings
resulting from mechanical or thermal effects. The mechanical behavior of solids is normally defined
by constitutive stress–strain relations. Commonly, these relations express the stress as a function of
the strain, strain rate, strain history, temperature, and material properties. We choose a rather simple
material model called the elastic solid that does not include rate or history effects. The model may be
described as a deformable continuum that recovers its original configuration when the loadings causing
the deformation are removed. Furthermore, we restrict the constitutive stress–strain law to be linear,
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thus leading to a linear elastic solid. Although these assumptions greatly simplify the model, linear
elasticity predictions have shown good agreement with experimental data and have provided useful
methods to conduct stress analysis. Many structural materials including metals, plastics, ceramics,
wood, rock, concrete, and so forth exhibit linear elastic behavior under small deformations.

As mentioned, experimental testing is commonly employed in order to characterize the mechanical
behavior of real materials. One such technique is the simple tension test in which a specially prepared
cylindrical or flat stock sample is loaded axially in a testing machine. Strain is determined by the
change in length between prescribed reference marks on the sample and is usually measured by a clip
gage. Load data collected from a load cell is divided by the cross-sectional area in the test section to
calculate the stress. Axial stress–strain data is recorded and plotted using standard experimental
techniques. Typical qualitative data for three types of structural metals (mild steel, aluminum, cast
iron) is shown in Figure 4.1. It is observed that each material exhibits an initial stress–strain response
for small deformation that is approximately linear. This is followed by a change to nonlinear behavior
that can lead to large deformation, finally ending with sample failure.

For each material the initial linear response ends at a point normally referred to as the proportional
limit. Another observation in this initial region is that if the loading is removed, the sample returns to its
original shape and the strain disappears. This characteristic is the primary descriptor of elastic behavior.
However, at some point on the stress–strain curve unloading does not bring the sample back to zero strain
and some permanent plastic deformation results. The point at which this nonelastic behavior begins is
called the elastic limit. Although some materials exhibit different elastic and proportional limits, many
times these values are taken to be approximately the same. Another demarcation on the stress–strain
curve is referred to as the yield point, defined by the location where large plastic deformation begins.

Becausemild steel and aluminumare ductilematerials, their stress–strain response indicates extensive
plastic deformation, and during this period the sample dimensions will be changing. In particular the
sample’s cross-sectional area undergoes significant reduction, and the stress calculation using division by
the original areawill now be in error. This accounts for the reduction in the stress at large strain. If wewere
to calculate the load divided by the true area, the true stress would continue to increase until failure.

Steel

Cast Iron

Aluminum

*
*

*

σ

ε

FIGURE 4.1 Typical Uniaxial Stress–Strain Curves for Three Structural Metals.
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On the other hand, cast iron is known to be a brittle material, and thus its stress–strain response does not
show large plastic deformation. For this material, very little nonelastic or nonlinear behavior is observed.
It is therefore concluded from this and many other studies that a large variety of real materials exhibit
linear elastic behavior under small deformations. This would lead to a linear constitutive model for the
one-dimensional axial loading case given by the relation s ¼ Eε, where E is the slope of the uniaxial
stress–strain curve. We now use this simple concept to develop the general three-dimensional forms of
the linear elastic constitutive model.

4.2 Linear elastic materialsdHooke’s law
Based on observations from the previous section, to construct a general three-dimensional constitutive
law for linear elastic materials, we assume that each stress component is linearly related to each strain
component

sx ¼ C11ex þ C12ey þ C13ez þ 2C14exy þ 2C15eyz þ 2C16ezx

sy ¼ C21ex þ C22ey þ C23ez þ 2C24exy þ 2C25eyz þ 2C26ezx

sz ¼ C31ex þ C32ey þ C33ez þ 2C34exy þ 2C35eyz þ 2C36ezx

sxy ¼ C41ex þ C42ey þ C43ez þ 2C44exy þ 2C45eyz þ 2C46ezx

syz ¼ C51ex þ C52ey þ C53ez þ 2C54exy þ 2C55eyz þ 2C56ezx

szx ¼ C61ex þ C62ey þ C63ez þ 2C64exy þ 2C65eyz þ 2C66ezx

(4.2.1)

where the coefficients Cij are material parameters and the factors of 2 arise because of the symmetry of
the strain. Note that this relation could also be expressed by writing the strains as a linear function of
the stress components. These relations can be cast into a matrix format as2

6666664

sx
sy
sz
sxy
syz
szx

3
7777775
¼

2
6666664

C11 C12 : : : C16

C21 : : : : :
: : : : : :
: : : : : :
: : : : : :

C61 : : : : C66

3
7777775

2
6666664

ex
ey
ez
2exy
2eyz
2ezx

3
7777775

(4.2.2)

Relations (4.2.1) can also be expressed in standard tensor notation by writing

sij ¼ Cijklekl (4.2.3)

where Cijkl is a fourth-order elasticity tensor whose components include all the material parameters
necessary to characterize the material. Based on the symmetry of the stress and strain tensors, the
elasticity tensor must have the following properties (see Exercise 4.2)

Cijkl ¼ Cjikl

Cijkl ¼ Cijlk
(4.2.4)

In general, the fourth-order tensorCijkl has 81 components. However, relations (4.2.4) reduce the number
of independent components to 36, and this provides the required match with form (4.2.1) or (4.2.2). Later
in Chapter 6 we introduce the concept of strain energy, and this leads to the relation Cijkl ¼ Cklij or
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equivalently Cij ¼ Cji, which provides further reduction to 21 independent elastic components.
The components of Cijkl or equivalently Cij are called elastic moduli and have units of stress (force/area).
In order to continue further, we must address the issues of material homogeneity and isotropy.

If the material is homogeneous, the elastic behavior does not vary spatially, and thus all elastic
moduli are constant. For this case, the elasticity formulation is straightforward, leading to the
development of many analytical solutions to problems of engineering interest. A homogeneous
assumption is an appropriate model for most structural applications, and thus we primarily choose this
particular case for subsequent formulation and problem solution. However, there are a couple of
important nonhomogeneous applications that warrant further discussion.

Studies in geomechanics have found that the material behavior of soil and rock commonly depends
on distance below the earth’s surface. In order to simulate particular geomechanics problems,
researchers have used nonhomogeneous elastic models applied to semi-infinite domains. Typical
applications have involved modeling the response of a semi-infinite soil mass under surface or sub-
surface loadings with variation in elastic moduli with depth (see the review by Poulos and Davis,
1974). Another more recent application involves the behavior of functionally graded materials
(FGMs) (see Erdogan, 1995; Parameswaran and Shukla, 1999, 2002). FGMs are a new class of
engineered materials developed with spatially varying properties to suit particular applications. The
graded composition of such materials is commonly established and controlled using powder metal-
lurgy, chemical vapor deposition, or centrifugal casting. Typical analytical studies of these materials
have assumed linear, exponential, and power-law variation in elastic moduli of the form

CijðxÞ ¼ Co
ijð1þ axÞ

CijðxÞ ¼ Co
ije

ax

CijðxÞ ¼ Co
ijx

a

(4.2.5)

where Co
ij and a are prescribed constants and x is the spatial coordinate. Further details on the

formulation and solution of nonhomogeneous elasticity problems are given in Chapter 14.
Similar to homogeneity, another fundamental material property is isotropy. This property has to do

with differences in material moduli with respect to orientation. For example, many materials including
crystalline minerals, wood, and fiber-reinforced composites have different elastic moduli in different
directions. Materials such as these are said to be anisotropic. Note that for most real anisotropic
materials there exist particular directions where the properties are the same. These directions indicate
material symmetries. However, for many engineering materials (most structural metals and many
plastics), the orientation of crystalline and grain microstructure is distributed randomly so that
macroscopic elastic properties are found to be essentially the same in all directions. Such materials
with complete symmetry are called isotropic. As expected, an anisotropic model complicates the
formulation and solution of problems. We therefore postpone development of such solutions until
Chapter 11 and continue our current development under the assumption of isotropic material behavior.

The tensorial form (4.2.3) provides a convenient way to establish the desired isotropic stress–strain
relations. If we assume isotropic behavior, the elasticity tensor must be the same under all rotations of
the coordinate system. Using the basic transformation properties from relation (1.5.1)5, the fourth-
order elasticity tensor must satisfy

Cijkl ¼ QimQjnQkpQlqCmnpq
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It can be shown (Chandrasekharaiah and Debnath, 1994) that the most general form that satisfies this
isotropy condition is given by

Cijkl ¼ adijdkl þ bdikdjl þ gdildjk (4.2.6)

where a,b, and g are arbitrary constants. Verification of the isotropic property of form (4.2.6) is given
as Exercise 1.9. Using the general form (4.2.6) in the stress–strain relation (4.2.3) gives

sij ¼ lekkdij þ 2meij (4.2.7)

where we have relabeled particular constants using l and m. The elastic constant l is called Lamé’s
constant, and m is referred to as the shear modulus ormodulus of rigidity. Some texts use the notationG
for the shear modulus. Equation (4.2.7) can be written out in individual scalar equations as

sx ¼ l
�
ex þ ey þ ez

�þ 2mex

sy ¼ l
�
ex þ ey þ ez

�þ 2mey

sz ¼ l
�
ex þ ey þ ez

�þ 2mez

sxy ¼ 2mexy

syz ¼ 2meyz

szx ¼ 2mezx

(4.2.8)

Relations (4.2.7) or (4.2.8) are called the generalized Hooke’s law for linear isotropic elastic solids.
They are named after Robert Hooke, who in 1678 first proposed that the deformation of an elastic
structure is proportional to the applied force. Notice the significant simplicity of the isotropic form
when compared to the general stress–strain law originally given by (4.2.1). It should be noted that only
two independent elastic constants are needed to describe the behavior of isotropic materials. As shown
in Chapter 11, additional numbers of elastic moduli are needed in the corresponding relations for
anisotropic materials.

Stress–strain relations (4.2.7) or (4.2.8) may be inverted to express the strain in terms of the stress.
In order to do this it is convenient to use the index notation form (4.2.7) and set the two free indices the
same (contraction process) to get

skk ¼ ð3lþ 2mÞekk (4.2.9)

This relation can be solved for ekk and substituted back into (4.2.7) to get

eij ¼ 1

2m

�
sij � l

3lþ 2m
skkdij

�

which is more commonly written as

eij ¼ 1þ n

E
sij � n

E
skkdij (4.2.10)

where E ¼ m(3l þ 2m)/(l þ m) and is called the modulus of elasticity or Young’s modulus, and
n ¼ l/[2(l þ m)] is referred to as Poisson’s ratio. The index notation relation (4.2.10) may be written
out in component (scalar) form, giving the six equations
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ex ¼ 1

E

�
sx � n

�
sy þ sz

��

ey ¼ 1

E

�
sy � nðsz þ sxÞ

�

ez ¼ 1

E

�
sz � n

�
sx þ sy

��

exy ¼ 1þ n

E
sxy ¼ 1

2m
sxy

eyz ¼ 1þ n

E
syz ¼ 1

2m
syz

ezx ¼ 1þ n

E
szx ¼ 1

2m
szx

(4.2.11)

Constitutive form (4.2.10) or (4.2.11) again illustrates that only two elastic constants are needed to
formulate Hooke’s law for isotropic materials. By using any of the isotropic forms of Hooke’s law, it can
be shown that the principal axes of stress coincide with the principal axes of strain (see Exercise 4.7).
This result also holds for some but not all anisotropic materials.

4.3 Physical meaning of elastic moduli
For the isotropic case, the previously defined elastic moduli have simple physical meaning. These can
be determined through investigation of particular states of stress commonly realized in laboratory
materials testing as shown in Figure 4.2.

σ

σ

(Simple Tension)

τ
τ

τ
τ

(Pure Shear)

p

p

p

(Hydrostatic Compression)

FIGURE 4.2 Special Characterization States of Stress.
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4.3.1 Simple tension
Consider the simple tension test as discussed previously with a sample subjected to tension in the x
direction (see Figure 4.2). The state of stress is closely represented by the one-dimensional field

sij ¼
2
4 s 0 0
0 0 0
0 0 0

3
5

Using this in relation (4.2.10) gives a corresponding strain field

eij ¼

2
666664

s

E
0 0

0 �n

E
s 0

0 0 �n

E
s

3
777775

Therefore, E ¼ s/ex and is simply the slope of the stress–strain curve, while n ¼ �ey /ex ¼ �ez /ex is
minus the ratio of the transverse strain to the axial strain. Standard measurement systems can easily
collect axial stress and transverse and axial strain data, and thus through this one type of test both
elastic constants can be determined for materials of interest.

4.3.2 Pure shear
If a thin-walled cylinder is subjected to torsional loading (as shown in Figure 4.2), the state of stress on
the surface of the cylindrical sample is given by

sij ¼
2
4 0 s 0
s 0 0
0 0 0

3
5

Again, by using Hooke’s law, the corresponding strain field becomes

eij ¼
2
4 0 s=2m 0
s=2m 0 0
0 0 0

3
5

and thus the shear modulus is given by m ¼ s / 2exy ¼ s / gxy , and this modulus is simply the slope of
the shear stress–shear strain curve.

4.3.3 Hydrostatic compression (or tension)
The final example is associated with the uniform compression (or tension) loading of a cubical
specimen, as previously shown in Figure 4.2. This type of test would be realizable if the sample was
placed in a high-pressure compression chamber. The state of stress for this case is given by

sij ¼
2
4�p 0 0

0 �p 0
0 0 �p

3
5 ¼ �pdij
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This is an isotropic state of stress and the strains follow from Hooke’s law

eij ¼

2
6666664

� 1� 2n

E
p 0 0

0 � 1� 2n

E
p 0

0 0 � 1� 2n

E
p

3
7777775

The dilatation that represents the change in material volume (see Exercise 2.11) is thus given by
w ¼ ekk ¼ �3(1 � 2n)p/E, which can be written as

p ¼ �kw (4.3.1)

where k ¼ E / [3(1 � 2n)] is called the bulk modulus of elasticity. This additional elastic constant
represents the ratio of pressure to the dilatation, which could be referred to as the volumetric stiffness
of the material. Notice that as Poisson’s ratio approaches 0.5, the bulk modulus becomes unbounded;
the material does not undergo any volumetric deformation and hence is incompressible.

Our discussion of elastic moduli for isotropic materials has led to the definition of five constants
l, m, E, n, and k. However, keep in mind that only two of these are needed to characterize the material.
Although we have developed a few relationships between various moduli, many other such relations
can also be found. In fact, it can be shown that all five elastic constants are interrelated, and if any two
are given, the remaining three can be determined by using simple formulae. Results of these relations
are conveniently summarized in Table 4.1. This table should be marked for future reference, because it
will prove to be useful for calculations throughout the text.

Typical nominal values of elastic constants for particular engineering materials are given in
Table 4.2. These moduli represent average values, and some variation will occur for specific materials.
Further information and restrictions on elastic moduli require strain energy concepts, which are
developed in Chapter 6.

Before concluding this section, we wish to discuss the forms of Hooke’s law in curvilinear
coordinates. Previous chapters have mentioned that cylindrical and spherical coordinates (see Figures
1.5 and 1.6) are used in many applications for problem solution. Figures 3.10 and 3.11 defined the
stress components in each curvilinear system. In regard to these figures, it follows that the orthogonal
curvilinear coordinate directions can be obtained from a base Cartesian system through a simple
rotation of the coordinate frame. For isotropic materials, the elasticity tensor Cijkl is the same in all
coordinate frames, and thus the structure of Hooke’s law remains the same in any orthogonal curvi-
linear system. Therefore, form (4.2.8) can be expressed in cylindrical and spherical coordinates as

sr ¼ lðer þ eq þ ezÞ þ 2mer sR ¼ lðeR þ ef þ eqÞ þ 2meR

sq ¼ lðer þ eq þ ezÞ þ 2meq sf ¼ lðeR þ ef þ eqÞ þ 2mef

sz ¼ lðer þ eq þ ezÞ þ 2mez sq ¼ lðeR þ ef þ eqÞ þ 2meq

srq ¼ 2merq sRf ¼ 2meRf

sqz ¼ 2meqz sfq ¼ 2mefq

szr ¼ 2mezr sqR ¼ 2meqR

(4.3.2)

88 CHAPTER 4 Material BehaviordLinear Elastic Solids



Table 4.1 Relations Among Elastic Constants

E n k m l

E,n E n E

3ð1� 2nÞ
E

2ð1þ nÞ
En

ð1þ nÞð1� 2nÞ

E,k E 3k � E

6k

k 3kE

9k � E

3kð3k � EÞ
9k � E

E,m E E � 2m

2m

mE

3ð3m� EÞ
m mðE � 2mÞ

3m� E

E,l E 2l

E þ lþ R

E þ 3lþ R

6

E � 3lþ R

4

l

n,k 3k(1 � 2n) n k 3kð1� 2nÞ
2ð1þ nÞ

3kn

1þ n

n,m 2m(1 þ n) n 2mð1þ nÞ
3ð1� 2nÞ

m 2mn

1� 2n

n,l lð1þ nÞð1� 2nÞ
n

n lð1þ nÞ
3n

lð1� 2nÞ
2n

l

k,m 9km

3k þ m

3k � 2m

6k þ 2m
k m k � 2

3
m

k,l 9kðk � lÞ
3k � l

l

3k � l
k

3

2
ðk � lÞ l

m,l mð3lþ 2mÞ
lþ m

l

2ðlþ mÞ
3lþ 2m

3
m l

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 9l2 þ 2El

p

Table 4.2 Typical Values of Elastic Moduli for Common Engineering Materials

E(GPa) n m(GPa) l(GPa) k(GPa) a(10�6/�C)

Aluminum 68.9 0.34 25.7 54.6 71.8 25.5

Concrete 27.6 0.20 11.5 7.7 15.3 11

Copper 89.6 0.34 33.4 71 93.3 18

Glass 68.9 0.25 27.6 27.6 45.9 8.8

Nylon 28.3 0.40 10.1 4.04 47.2 102

Rubber 0.0019 0.499 0.654 � 10�3 0.326 0.326 200

Steel 207 0.29 80.2 111 164 13.5
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The complete set of elasticity field equations in each of these coordinate systems is given in
Appendix A.

4.4 Thermoelastic constitutive relations
It is well known that a temperature change in an unrestrained elastic solid produces deformation. Thus,
a general strain field results from both mechanical and thermal effects. Within the context of linear
small deformation theory, the total strain can be decomposed into the sum of mechanical and thermal
components as

eij ¼ e
ðMÞ
ij þ e

ðTÞ
ij (4.4.1)

If To is taken as the reference temperature and T as an arbitrary temperature, the thermal strains in an
unrestrained solid can be written in the linear constitutive form

e
ðTÞ
ij ¼ aijðT � ToÞ (4.4.2)

where aij is the coefficient of thermal expansion tensor. Notice that it is the temperature difference that
creates thermal strain. If the material is taken as isotropic, then aij must be an isotropic second-order
tensor, and (4.4.2) simplifies to

e
ðTÞ
ij ¼ aðT � ToÞdij (4.4.3)

where a is a material constant called the coefficient of thermal expansion. Table 4.2 provides typical
values of this constant for some common materials. Notice that for isotropic materials, no shear strains
are created by temperature change. By using (4.4.1), this result can be combined with the mechanical
relation (4.2.10) to give

eij ¼ 1þ n

E
sij � n

E
skkdij þ aðT � ToÞdij (4.4.4)

The corresponding results for the stress in terms of strain can be written as

sij ¼ Cijklekl � bijðT � ToÞ (4.4.5)

where bij is a second-order tensor containing thermoelastic moduli. This result is sometimes referred to
as the Duhamel–Neumann thermoelastic constitutive law. The isotropic case can be found by simply
inverting relation (4.4.4) to get

sij ¼ lekkdij þ 2meij � ð3lþ 2mÞaðT � ToÞdij (4.4.6)

Thermoelastic solutions are developed in Chapter 12, and the current study will now continue under
the assumption of isothermal conditions.

Having developed the necessary six constitutive relations, the elasticity field equation system is
now complete with 15 equations (strain–displacement, equilibrium, Hooke’s law) for 15 unknowns
(displacements, strains, stresses). Obviously, further simplification is necessary in order to solve
specific problems of engineering interest, and these processes are the subject of the next chapter.
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EXERCISES

4.1 Show that the components of the Cij matrix in equation (4.2.2) are related to the components
of Cijkl by the relation

Cij ¼

2
6666664

C1111 C1122 C1133 C1112 C1123 C1131

C2211 C2222 C2233 C2212 C2223 C2231

C3311 C3322 C3333 C3312 C3323 C3331

C1211 C1222 C1233 C1212 C1223 C1231

C2311 C2322 C2333 C2312 C2323 C2331

C3111 C3122 C3133 C3112 C3123 C3131

3
7777775

4.2 Explicitly justify the symmetry relations (4.2.4). Note that the first relation follows directly
from the symmetry of the stress, while the second condition requires a simple expansion into
the form sij ¼ 1

2 (Cijkl þ Cijlk)elk to arrive at the required conclusion.

4.3 Substituting the general isotropic fourth-order form (4.2.6) into (4.2.3), explicitly develop the
stressestrain relation (4.2.7).

4.4 For isotropic materials, show that the fourth-order elasticity tensor can be expressed in the
following forms

Cijkl ¼ ldij dkl þ m
�
dil djk þ dik djl

�

Cijkl ¼ m
�
dil djk þ dik djl

�þ 	
k � 2

3
m


dij dkl

Cijkl ¼ Ev

ð1þ nÞð1� 2nÞ dij dkl þ
E

2ð1þ nÞ
�
dil djk þ dik djl

�

4.5 Following the steps outlined in the text, invert the form of Hooke’s law given by (4.2.7) and
develop form (4.2.10). Explicitly show that E ¼ m(3l þ 2m)/(l þ m) and n ¼ l/[2(l þ m)].

4.6 Using the results of Exercise 4.5, show that m ¼ E/[2(1 þ n)] and l ¼ En/[(1 þ n)(1 � 2n)].
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4.7 For isotropic materials show that the principal axes of strain coincide with the principal axes
of stress. Further, show that the principal stresses can be expressed in terms of the principal
strains as si ¼ 2mei þ lekk .

4.8 A rosette strain gage (see Exercise 2.7) is mounted on the surface of a stress-free elastic solid
at point O as shown in the following figure. The three gage readings give surface extensional
strains ea ¼ 300 � 10�6, eb ¼ 400 � 10�6, ec ¼ 100 � 10�6. Assuming that the material is
steel with nominal properties given by Table 4.2, determine all stress components at O for the
given coordinate system.

x
 y

z

30o

30o

a
b

c
O

4.9 The displacements in an elastic material are given by

u ¼ � M
�
1� n2

�
EI

xy; v ¼ Mð1þ nÞn
2EI

y2 þM
�
1þ n2

�
2EI

�
x2 � l2

4

�
; w ¼ 0

whereM, E, I, and l are constant parameters. Determine the corresponding strain and stress
fields and show that this problem represents the pure bending of a rectangular beam in the
x,y plane.

4.10 If the elastic constants E, k, and m are required to be positive, show that Poisson’s ratio must
satisfy the inequality �1 < n < 1

2. For most real materials it has been found that 0 < n < 1
2.

Show that this more restrictive inequality in this problem implies that l > 0.

4.11 Under the condition that E is positive and bounded, determine the elastic moduli l, m, and k
for the special cases of Poisson’s ratio: n ¼ 0, 14;

1
2. Discuss the special circumstances for the

case with n ¼ 1
2.

4.12 Consider the case of incompressible elastic materials. For such materials, there will be a
constraint on all deformations such that the change in volume must be zero, thus implying
(see Exercise 2.11) that ekk ¼ 0. First show that, under this constraint, Poisson’s ratio will
become 1

2 and the bulk modulus and Lamé’s constant will become unbounded. Next show
that the usual form of Hooke’s law sij ¼ lekkdij þ 2meij will now contain an indeterminate
term. For such cases, Hooke’s law is commonly rewritten in the form sij ¼ �pdij þ 2meij,
where p is referred to as the hydrostatic pressure, which cannot be determined directly from
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the strain field but is normally found by solving the boundary-value problem. Finally justify
that p ¼ skk=3.

4.13 Consider the three deformation cases of simple tension, pure shear, and hydrostatic
compression as discussed in Section 4.3. Using the nominal values from Table 4.2, calculate
the resulting strains in each of these cases for:

(a) Aluminum: with loadings (s ¼ 150 MPa, s ¼ 75 MPa, p ¼ 500 MPa)

(b) Steel: with loadings (s ¼ 300 MPa, s ¼ 150 MPa, p ¼ 500 MPa)

(c) Rubber: with loadings (s ¼ 15 MPa, s ¼ 7 MPa, p ¼ 500 MPa)

Note that for aluminum and steel, these tensile and shear loadings are close to the yield
values of the material.

4.14 Show that Hooke’s law for an isotropic material may be expressed in terms of spherical and
deviatoric tensors by the two relations

~sij ¼ 3k~eij; ŝij ¼ 2mêij

4.15 A sample is subjected to a test under plane stress conditions (specified by sz ¼ szx ¼ szy ¼ 0)
using a special loading frame that maintains an in-plane loading constraint sx ¼ 2sy .
Determine the slope of the stressestrain response sx vs. ex for this sample.

4.16� Using cylindrical coordinates, we wish to determine and compare the uniaxial stresse
strain response of both an unconfined and confined isotropic homogeneous elastic
cylindrical sample as shown. For both cases we will assume that the shear stresses and
strains will vanish. For the unconfined sample, the stresses sr ¼ sq ¼ 0, while for the
confined sample, the strains er ¼ eq ¼ 0. Using Hooke’s law in cylindrical coordinates
(A.8), show that the uniaxial response for the unconfined case is given by the expected
relation sz ¼ Eez, while the corresponding relation for the confined situation is
sz ¼ E�ez; where E� ¼ ½ð1� nÞE= ð1þ nÞð1� 2nÞ�. Finally make a plot of E�/E versus
n over the range 0 � n � 0.5 and discuss the results.

0r θσ σ

(Unconfined) 
zσzσ

zσ zσ

(Confined) 

re eθ= = = = 0
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4.17 A rectangular steel plate (thickness 4 mm) is subjected to a uniform biaxial stress field as
shown in the following figure. Assuming all fields are uniform, determine changes in the
dimensions of the plate under this loading.

x

y

300 mm

200 mm 20 MPa 

30 MPa

4.18 Redo Exercise 4.17 for the case where the vertical loading is 50 MPa in tension and the
horizontal loading is 50 MPa in compression.

4.19 Consider the one-dimensional thermoelastic problem of a uniform bar constrained in the
axial x direction but allowed to expand freely in the y and z directions, as shown in the
following figure. Taking the reference temperature to be zero, show that the only nonzero
stress and strain components are given by

sx ¼ �EaT

ey ¼ ez ¼ að1þ vÞT

x

 y

4.20 Verify that Hooke’s law for isotropic thermoelastic materials can be expressed in the form

sx ¼ E

ð1þ nÞð1� 2nÞ
�ð1� nÞex þ n

�
ey þ ez

��� E

1� 2n
aðT � ToÞ

sy ¼ E

ð1þ nÞð1� 2nÞ
�ð1� nÞey þ nðez þ exÞ

�� E

1� 2n
aðT � ToÞ

sz ¼ E

ð1þ nÞð1� 2nÞ
�ð1� nÞez þ n

�
ex þ ey

��� E

1� 2n
aðT � ToÞ

sxy ¼ E

1þ n
exy; syz ¼ E

1þ n
eyz; szx ¼ E

1þ n
ezx
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Formulation and Solution
Strategies 5
The previous chapters developed the basic field equations of elasticity theory. These results comprise a
system of differential and algebraic relations among the stresses, strains, and displacements that express
particular physics at all points within the body under investigation. In this chapter we now wish to
complete the general formulation by first developing boundary conditions appropriate for use with the
field equations. These conditions specify the physics that occur on the boundary of the body, and
generally provide the loading inputs that physically create the interior stress, strain, and displacement
fields. Although the field equations are the same for all problems, boundary conditions are different for
each problem. Therefore, proper development of boundary conditions is essential for problem solution,
and thus it is important to acquire a good understanding of such development procedures. Combining
field equations with boundary conditions establishes the fundamental boundary-value problems of the
theory. This eventually leads us into two different formulations: one in terms of displacements and the
other in terms of stresses. Because boundary-value problems are difficult to solve, many different
strategies have been developed to aid in problem solution. We review in a general way several of these
strategies, and later chapters incorporate many of them into the solution of specific problems.

5.1 Review of field equations
We list here the basic field equations for linear isotropic elasticity before beginning our discussion on
boundary conditions. Appendix A includes a more comprehensive listing of all field equations in
Cartesian, cylindrical, and spherical coordinate systems. Because of its ease of use and compact
properties, our formulation uses index notation.
Strain–displacement relations

eij ¼ 1

2

�
ui; j þ uj; i

�
(5.1.1)

Compatibility relations

eij; kl þ ekl; ij � eik; jl � ejl; ik ¼ 0 (5.1.2)

Equilibrium equations

sij; j þ Fi ¼ 0 (5.1.3)

Elastic constitutive law (Hooke’s law)

sij ¼ lekkdij þ 2meij

eij ¼ 1þ n

E
sij � n

E
skkdij

(5.1.4)
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As mentioned in Section 2.6, the compatibility relations ensure that the displacements are continuous
and single-valued, and are necessary only when the strains are arbitrarily specified. If, however, the
displacements are included in the problem formulation, the solution normally generates single-valued
displacements and strain compatibility is automatically satisfied. Thus, in discussing the general
system of equations of elasticity, the compatibility relations (5.1.2) are normally set aside, to be used
only with the stress formulation that we discuss shortly. Therefore, the general system of elasticity field
equations refers to the 15 relations (5.1.1), (5.1.3), and (5.1.4). It is convenient to define this entire
system using a generalized operator notation as

J
�
ui; eij; sij; l;m;Fi

� ¼ 0 (5.1.5)

This system involves 15 unknowns including three displacements ui, six strains eij, and six stresses sij to
be determined. The terms after the semicolon indicate that the system is also dependent on two elastic
material constants (for isotropic materials) and on the body force density, and these are to be given a
priori with the problem formulation. It is reassuring that the number of equations matches the number of
unknowns to be determined. However, for a general three-dimensional problem, this general system of
equations is of such complexity that solutions using analytical methods are normally impossible and
further simplification is required to solve problems of interest. Before proceeding with the development
of such simplifications, it is useful to discuss typical boundary conditions connected with the elasticity
model, and this leads us to the classification of the fundamental problems.

5.2 Boundary conditions and fundamental problem classifications
Similar to other field problems in engineering science (e.g., fluid mechanics, heat conduction, diffu-
sion, electromagnetics), the solution of system (5.1.5) requires appropriate boundary conditions on the
body under study. The common types of boundary conditions for elasticity applications normally
include specification of how the body is being supported or loaded. This concept is mathematically
formulated by specifying either the displacements or tractions at boundary points. Figure 5.1 illus-
trates this general idea for three typical cases including tractions, displacements, and a mixed case for
which tractions are specified on boundary St and displacements are given on the remaining portion Su
such that the total boundary is given by S ¼ St þ Su.

Displacement Conditions Mixed ConditionsTraction Conditions

R R R

S
Su

St

T(n)

S

u

FIGURE 5.1 Typical Boundary Conditions.
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Another type of mixed boundary condition can also occur. Although it is generally not possible to
specify completely both the displacements and tractions at the same boundary point, it is possible to
prescribe part of the displacement and part of the traction. Typically, this type of mixed condition in-
volves the specification of a traction and displacement in two different orthogonal directions. A common
example of this situation is shown in Figure 5.2 for a case involving a surface of problem symmetry
where the condition is one of a rigid-smooth boundary with zero normal displacement and zero
tangential traction. Notice that in this example the body under study was subdivided along the symmetry
line, thus creating a new boundary surface and resulting in a smaller region to analyze. Minimizing the
size of the domain under study is commonly useful in computational modeling. However, determining
expected symmetry properties in the solution can often be useful to simplify analytical analyses as well.

Because boundary conditions play a very essential role in properly formulating and solving
elasticity problems, it is important to acquire a clear understanding of their specification and use.
Improper specification results in either no solution or a solution to a different problem than what was
originally sought. Boundary conditions are normally specified using the coordinate system describing
the problem, and thus particular components of the displacements and tractions are set equal to pre-
scribed values. For displacement-type conditions, such a specification is straightforward, and a
common example includes fixed boundaries where the displacements are to be zero. For traction
boundary conditions, the specification can be a bit more complex.

Figure 5.3 illustrates particular cases in which the boundaries coincide with Cartesian or polar
coordinate surfaces. By using results from Section 3.2, the traction specification can be reduced to a
stress specification. For the Cartesian example in which y ¼ constant, the normal traction becomes
simply the stress component sy, while the tangential traction reduces to sxy. For this case, sx exists only
inside the region; thus, this component of stress cannot be specified on the boundary surface y ¼
constant. A similar situation exists on the vertical boundary x ¼ constant, where the normal traction is
now sx, the tangential traction is sxy, and the stress component sy exists inside the domain. Similar
arguments can be made for polar coordinate boundary surfaces as shown. Drawing the appropriate
element along the boundary as illustrated allows a clear visualization of the particular stress com-
ponents that act on the surface in question. Such a sketch also allows determination of the positive
directions of these boundary stresses, and this is useful to properly match with boundary loadings that

Symmetry Line

Ty
(n) = 0

u = 0

x

y

Rigid-Smooth
Boundary Condition

FIGURE 5.2 Line of Symmetry Boundary Condition.
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might be prescribed. It is recommended that sketches similar to Figure 5.3 be used to aid in the proper
development of boundary conditions during problem formulation in later chapters.

Consider the pair of two-dimensional example problems with mixed conditions as shown in
Figure 5.4. For the rectangular plate problem, all four boundaries are coordinate surfaces, and this
simplifies specification of particular boundary conditions. The fixed conditions on the left edge simply
require that x and y displacement components vanish on x¼ 0, and this specification would not change
even if this were not a coordinate surface. However, as per our previous discussion, the traction
conditions on the other three boundaries simplify because they are coordinate surfaces. These sim-
plifications are shown in the figure for each of the traction specified surfaces.

The second problem of a tapered cantilever beam has an inclined face that is not a coordinate
surface. For this problem, the fixed end and top surface follow similar procedures as in the first

FIGURE 5.3 Boundary Stress Components on Coordinate Surfaces.

Fixed Condition
u = v = 0

Traction-Free Condition
00)()( =τ=σ⇒== xyy

n
y

n
x TT

x

 y

a

b S

Traction Condition
( ) ( ),  0n n

x x y xyT S Tσ τ= = = =

0)( =n
yT

x

y

l

0)( =n
xT

Fixed Condition
u = v = 0

(Coordinate Surface Boundaries) (Noncoordinate Surface Boundary)

Traction-Free Condition

S

Traction Condition
( ) ( )0,  n n

x xy y yT T Sτ σ= − = = − =

FIGURE 5.4 Example Boundary Conditions.
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example and are specified in the figure. However, on the inclined face, the traction is to be zero and this
will not reduce to a simple specification of the vanishing of individual stress components. On this face
each traction component is set to zero, giving the result

T
ðnÞ
x ¼ sxnx þ sxyny ¼ 0

T
ðnÞ
y ¼ sxynx þ syny ¼ 0

where nx and ny are the components of the unit normal vector to the inclined face. This is the more
general type of specification, and it should be clearly noted that none of the individual stress components
in the x,y systemwill vanish along this surface. It should also be pointed out for this problem that the unit
normal vector components will be constants for all points on the inclined face. However, for curved
boundaries the normal vector will change with surface position. Note that using strain–displacement
relations in Hooke’s law allows the stresses and hence tractions to be expressed in terms of displacement
gradients. Thus, traction boundary conditions can actually be expressed in terms of displacements if so
desired (see Exercise 5.4).

Another type of boundary condition formulation occurs for composite bodies that are composed of
two or more pieces of different material with different elastic moduli. Examples of such situations are
common and include many types of composite materials and structures as shown in Figure 5.5. For such
problems, the elasticity solution must be developed independently for each material body, thus requiring
specification of external boundary conditions and internal interface conditions that exist between each
material phase (see Figure 5.6). These interface conditions specify how the various composite pieces are
joined together. Common simple examples include the perfectly bonded interface where both the dis-
placements and tractions are continuous at the interface. With respect to the case shown in Figure 5.6, a
two-dimensional perfectly bonded model would specify the following interface conditions

s
ð1Þ
n ¼ s

ð2Þ
n ; sð1Þs ¼ sð2Þs

u
ð1Þ
n ¼ u

ð2Þ
n ; u

ð1Þ
s ¼ u

ð2Þ
s

Another common interface model is the slip interface that prescribes continuity of normal components
of displacement and traction, vanishing of the tangential traction, and allows for a discontinuity in the
tangential displacement. Other more complicated interface conditions have been proposed in the
literature in an effort to model more sophisticated contact behavior between real material systems.
Exercise 5.5 further explores interface formulations for some specific problems.

Embedded Fiber or Rod Layered Composite Plate Composite Cylinder or Disk 

FIGURE 5.5 Typical Composite Bodies.
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Interface Conditions: 
Perfectly Bonded,
Slip Interface, etc.

n

s

Material (2): σij , ui
(2) (2)

Material (1): σij , ui
(1) (1)

FIGURE 5.6 Composite Elastic Continuum.

Although these examples provide some background on typical boundary conditions, many other
types will be encountered throughout the text. Several exercises at the end of this chapter provide
additional examples that will prove to be useful for students new to the elasticity formulation.

We are now in the position to formulate and classify the three fundamental boundary-value
problems in the theory of elasticity that are related to solving the general system of field equations
(5.1.5). Our presentation is limited to the static case.

Problem 1: Traction problem. Determine the distribution of displacements, strains, and stresses
in the interior of an elastic body in equilibrium when body forces are given and the distribution of
tractions is prescribed over the surface of the body

T
ðnÞ
i ðxðsÞi Þ ¼ fiðxðsÞi Þ (5.2.1)

where x
ðsÞ
i denotes boundary points and fiðxðsÞi Þ are the prescribed traction values.

Problem 2: Displacement problem. Determine the distribution of displacements, strains, and
stresses in the interior of an elastic body in equilibrium when body forces are given and the distribution
of displacements is prescribed over the surface of the body

uiðxðsÞi Þ ¼ giðxðsÞi Þ (5.2.2)

where x
ðsÞ
i denotes boundary points and giðxðsÞi Þ are the prescribed displacement values.

Problem 3: Mixed problem. Determine the distribution of displacements, strains, and stresses in
the interior of an elastic body in equilibrium when body forces are given and the distribution of
tractions is prescribed as per (5.2.1) over the surface St and the distribution of displacements is pre-
scribed as per (5.2.2) over the surface Su of the body (see Figure 5.1).

As mentioned previously, the solution to any of these types of problems is formidable, and further
reduction and simplification of (5.1.5) is required for the development of analytical solution methods.
Based on the description of Problem 1 with only traction boundary conditions, it would appear to be
desirable to express the fundamental system solely in terms of stress, that is, J(t){sij; l, m, Fi}, thereby
reducing the number of unknowns in the system. Likewise for Problem 2, a displacement-only
formulation of the form J(u){ui; l, m, Fi} would appear to simplify the problem. We now pursue such
specialized formulations and explicitly determine these reduced field equation systems.
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5.3 Stress formulation
For the first fundamental problem in elasticity, the boundary conditions are to be given only in terms of
the tractions or stress components. In order to develop solution methods for this case, it is very helpful
to reformulate the general system (5.1.5) by eliminating the displacements and strains and thereby
casting a new system solely in terms of the stresses. We now develop this reformulated system. By
eliminating the displacements, we must now include the compatibility equations in the fundamental
system of field equations. We start by using Hooke’s law (5.1.4)2 and eliminating the strains in the
compatibility relations (5.1.2) to get

sij; kk þ skk ; ij � sik; jk þ sjk; ik ¼
n

1þ n

�
smm; kkdij þ smm; ijdkk � smm; jkdik � smm; ikdjk

� (5.3.1)

where we have used the arguments of Section 2.6, that the six meaningful compatibility relations are
found by setting k ¼ l in (5.1.2). Although equations (5.3.1) represent the compatibility in terms of
stress, a more useful result is found by incorporating the equilibrium equations into the system. Recall
that from (5.1.3), sij, j ¼ �Fi, and also note that dkk ¼ 3. Substituting these results into (5.3.1) gives

sij; kk þ 1

1þ n
skk; ij ¼ n

1þ n
smm; kkdij � Fi; j � Fj; i (5.3.2)

For the case i ¼ j, relation (5.3.2) reduces to sii; kk ¼ �1þ n

1� n
Fi;i. Substituting this result back into

(5.3.2) gives the desired relation

sij; kk þ 1

1þ n
skk; ij ¼ � n

1� n
dijFk; k � Fi; j � Fj; i (5.3.3)

This result gives the compatibility relations in terms of the stress; these relations are commonly called
the Beltrami–Michell compatibility equations. For the case with no body forces, these relations can be
expressed as the following six scalar equations

ð1þ nÞV2sx þ v2

vx2
�
sx þ sy þ sz

� ¼ 0

ð1þ nÞV2sy þ v2

vy2
�
sx þ sy þ sz

� ¼ 0

ð1þ nÞV2sz þ v2

vz2
�
sx þ sy þ sz

� ¼ 0

ð1þ nÞV2sxy þ v2

vxvy

�
sx þ sy þ sz

� ¼ 0

ð1þ nÞV2syz þ v2

vyvz

�
sx þ sy þ sz

� ¼ 0

ð1þ nÞV2szx þ v2

vzvx

�
sx þ sy þ sz

� ¼ 0

(5.3.4)
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Recall that the six developed relations (5.3.3) or (5.3.4) actually represent three independent results as
per our discussion in Section 2.6. Thus, combining these results with the three equilibrium equations
(5.1.3) provides the necessary six relations to solve for the six unknown stress components for the
general three-dimensional case.

This system constitutes the stress formulation for elasticity theory and is appropriate for use with
traction boundary condition problems. Once the stresses have been determined, the strains may be
found from Hooke’s law (5.1.4)2, and the displacements can be then be computed through integration
of (5.1.1). As per our previous discussion in Section 2.2, such an integration process determines the
displacements only up to an arbitrary rigid-body motion, and the displacements obtained are single-
valued only if the region under study is simply connected.

The system of equations for the stress formulation is still rather complex, and analytical solutions
are commonly determined for this case by making use of stress functions. This concept establishes a
representation for the stresses that automatically satisfies the equilibrium equations. For the two-
dimensional case, this concept represents the in-plane stresses in terms of a single function. The
representation satisfies equilibrium, and the remaining compatibility equations yield a single partial
differential equation (biharmonic equation) in terms of the stress function. Having reduced the system
to a single equation we can employ many analytical methods to find solutions of interest. Further
discussion on these techniques is presented in subsequent chapters.

5.4 Displacement formulation
We now wish to develop the reduced set of field equations solely in terms of the displacements. This
system is referred to as the displacement formulation and is most useful when combined with
displacement-only boundary conditions found in the Problem 2 statement. This development is
somewhat more straightforward than our previous discussion for the stress formulation. For this case,
we wish to eliminate the strains and stresses from the fundamental system (5.1.5). This is easily
accomplished by using the strain–displacement relations in Hooke’s law to give

sij ¼ luk; kdij þ m
�
ui; j þ uj; i

�
(5.4.1)

which can be expressed as six scalar equations

sx ¼ l

�
vu

vx
þ vv

vy
þ vw

vz

�
þ 2m

vu

vx

sy ¼ l

�
vu

vx
þ vv

vy
þ vw

vz

�
þ 2m

vv

vy

sz ¼ l

�
vu

vx
þ vv

vy
þ vw

vz

�
þ 2m

vw

vz

sxy ¼ m

�
vu

vy
þ vv

vx

�
; syz ¼ m

�
vv

vz
þ vw

vy

�
; szx ¼ m

�
vw

vx
þ vu

vz

�

(5.4.2)
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Using these relations in the equilibrium equations gives the result

mui; kk þ ðlþ mÞuk; ki þ Fi ¼ 0 (5.4.3)

which is the equilibrium equations in terms of the displacements and is referred to as Navier’s or
Lamé ’s equations. This system can be expressed in vector form as

mV2uþ ðlþ mÞVðV $ uÞ þ F ¼ 0 (5.4.4)

or written out in terms of three scalar equations

mV2uþ ðlþ mÞ v

vx

�
vu

vx
þ vv

vy
þ vw

vz

�
þ Fx ¼ 0

mV2vþ ðlþ mÞ v

vy

�
vu

vx
þ vv

vy
þ vw

vz

�
þ Fy ¼ 0

mV2wþ ðlþ mÞ v
vz

�
vu

vx
þ vv

vy
þ vw

vz

�
þ Fz ¼ 0

(5.4.5)

where the Laplacian is given by V2¼ (v2/vx2)þ (v2/vy2)þ (v2/vz2). It should be noted that for the case
with no body forces, Navier’s equations are expressible in terms of a single elastic constant (Poisson’s
ratio)dsee Exercise 5.10.

Navier’s equations are the desired formulation for the displacement problem, and the system
represents three equations for the three unknown displacement components. Similar to the stress
formulation, this system is still difficult to solve, and additional mathematical techniques have been
developed to further simplify these equations for problem solution. Common methods normally
employ the use of displacement potential functions. It is shown in Chapter 13 that several such
schemes can be developed that allow the displacement vector to be expressed in terms of particular
potentials. These schemes generally simplify the problem by yielding uncoupled governing equa-
tions in terms of the displacement potentials. This then allows several analytical methods to be
employed to solve problems of interest. Several of these techniques are discussed in later sections of
the text.

To help acquire a general understanding of these results, a summary flow chart of the developed
stress and displacement formulations is shown in Figure 5.7. Note that for the stress formulation, the
resulting system J(t){sij; l, m, Fi} is actually dependent on only the single material constant Poisson’s
ratio, and thus it could be expressed as J(t){sij; n, Fi}.

5.5 Principle of superposition
A very useful tool for the solution to many problems in engineering science is the principle of
superposition. This technique applies to any problem that is governed by linear equations. Under the
assumption of small deformations and linear elastic constitutive behavior, all elasticity field equations
(see Figure 5.7) are linear. Furthermore, the usual boundary conditions specified by relations (5.2.1)
and (5.2.2) are also linear. Thus, under these conditions all governing equations are linear, and the
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superposition concept can be applied. It can be easily proved (see Chou and Pagano, 1967) that the
general statement can be expressed as:

Principle of Superposition: For a given problem domain, if the state fsð1Þij ; e
ð1Þ
ij ; u

ð1Þ
i g is a solution

to the fundamental elasticity equations with prescribed body forces F
ð1Þ
i and surface tractions T

ð1Þ
i ,

and the state fsð2Þij ; e
ð2Þ
ij ; u

ð2Þ
i g is a solution to the fundamental equations with prescribed body forces

F
ð2Þ
i and surface tractions T

ð2Þ
i , then the state fsð1Þij þ s

ð2Þ
ij ; e

ð1Þ
ij þ e

ð2Þ
ij ; u

ð1Þ
i þ u

ð2Þ
i g will be a

solution to the problem with body forces F
ð1Þ
i þ F

ð2Þ
i and surface tractions T

ð1Þ
i þ T

ð2Þ
i :

To see a more direct application of this principle, consider a simple two-dimensional case with no body
forces as shown in Figure 5.8. It can be observed that the solution to the more complicated biaxial

FIGURE 5.7 Schematic of Elasticity Field Equations.
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FIGURE 5.8 Two-Dimensional Superposition Example.
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loading case (1)þ (2) is thus found by adding the two simpler problems. This is a common application
of the superposition principle, and we make repeated use of it throughout the text. Thus, once the
solutions to some simple problems are generated, we can combine these results to generate a solution
to a more complicated case with similar geometry.

5.6 Saint-Venant’s principle
Consider the set of three identical rectangular strips under compressive loadings as shown in
Figure 5.9. As indicated, the only difference between each problem is the loading. Because the total
resultant load applied to each problem is identical (statically equivalent loadings), it is expected that
the resulting stress, strain, and displacement fields near the bottom of each strip would be approxi-
mately the same.

This behavior can be generalized by considering an elastic solid with an arbitrary loading T(n) over
a boundary portion S*, as shown in Figure 5.10. Based on experience from other field problems in
engineering science, it seems logical that the particular boundary loading would produce detailed and

S*

T(n)FR

FIGURE 5.10 Saint-Venant’s Principle.

P

(1)

2
P

2
P

3
P

3
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3
P

(2) (3)

FIGURE 5.9 Statically Equivalent Loadings.
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characteristic effects only in the vicinity of S*. In other words, we expect that at points far away from
S* the stresses generally depend more on the resultant FR of the tractions rather than on the exact
distribution. Thus, the characteristic signature of the generated stress, strain, and displacement fields
from a given boundary loading tend to disappear as we move away from the boundary loading points.
These concepts form the principle of Saint-Venant, which can be stated as follows:

Saint-Venant’s Principle: The stress, strain, and displacement fields caused by two different stati-

cally equivalent force distributions on parts of the body far away from the loading points are approx-

imately the same.

This statement of the principle includes qualitative terms such as far away and approximately the
same, and thus does not provide quantitative estimates of the differences between the two elastic fields
in question. Quantitative results have been developed by von Mises (1945), Sternberg (1954), and
Toupin (1965), while Horgan (1989) has presented a recent review of related work. Some of this work
is summarized in Boresi and Chong (2010).

If we restrict our solution to points away from the boundary loading, Saint-Venant’s principle will
allows us to change the given boundary conditions to a simpler statically equivalent statement and not
affect the resulting solution. For example, the fixed boundary condition in the tapered beam problem
shown in Figure 5.4 could be replaced by a statically equivalent resultant force system of a zero
horizontal load, a vertical force equal to Sl, and a resultant counterclockwise moment of Sl2/2. Such
simplifications of boundary conditions will greatly increase our chances of finding analytical solutions
to problems. This concept proves to be very useful for many beam and rod problems presented in
Chapters 8 and 9, and some additional discussion will be given in the next section.

We close with a few comments of warning on using Saint-Venant’s principle for structures that are
not isotropic and homogeneous. Studies investigating elastic behaviors of anisotropic and inhomo-
geneous materials have found that for certain cases routine application of Saint-Venant’s principle is
not justified. For example, Horgan (1982) has shown that rates of decay of end effects in anisotropic
materials were found to be much slower when compared to isotropic solids. Thus, for anisotropic
materials the characteristic decay length over which end effects are significant can be several times
larger than for isotropic solids. The example problems shown in Section 11.7 illustrate some of these
behaviors. Similar findings have also been presented for nonhomogeneous materials; see, for example,
Chan and Horgan (1998).

5.7 General solution strategies
Having completed our formulation and related solution principles, we now wish to examine some
general solution strategies commonly used to solve elasticity problems. At this stage we categorize
particular methods and outline only typical techniques that are commonly used. As we move further
along in the text, many of these methods are developed in detail and are applied in specific problem
solution. We first distinguish three general methods of solution called direct, inverse, and semi-inverse.
Then we briefly discuss analytical, approximate, and numerical solution procedures.

5.7.1 Direct method
This method seeks to determine the solution by direct integration of the field equations (5.1.5) or
equivalently the stress and/or displacement formulations given in Figure 5.7. Boundary conditions are
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to be satisfied exactly. This method normally encounters significant mathematical difficulties, thus
limiting its application to problems with simple geometry.

EXAMPLE 5.1: DIRECT INTEGRATIONdSTRETCHING OF PRISMATIC BAR UNDER ITS
OWN WEIGHT
As an example of a simple direct integration problem, consider the case of a uniform prismatic
bar stretched by its own weight, as shown in Figure 5.11. The body forces for this problem are
Fx ¼ Fy ¼ 0, Fz ¼ �rg, where r is the material mass density and g is the acceleration of gravity.

Assuming that on each cross-section we have uniform tension produced by the weight of the
lower portion of the bar, the stress field would take the form

sx ¼ sy ¼ sxy ¼ syz ¼ szx ¼ 0 (5.7.1)

The equilibrium equations reduce to the simple result

vsz

vz
¼ �Fz ¼ rg (5.7.2)

This equation can be integrated directly, and applying the boundary condition sz¼ 0 at z¼ 0 gives
the result sz(z) ¼ rgz. Next, by using Hooke’s law, the strains are easily calculated as

ez ¼ rgz

E
; ex ¼ ey ¼ � nrgz

E

exy ¼ eyz ¼ exz ¼ 0
(5.7.3)

The displacements follow from integrating the strainedisplacement relations (5.1.1), and for the
case with boundary conditions of zero displacement and rotation at point A (x ¼ y ¼ 0, z ¼ l), the
final result is

u ¼ � nrgxz

E
; v ¼ � nrgyz

E

w ¼ rg

2E

�
z2 þ n

�
x2 þ y2

�� l2
	 (5.7.4)

z

A

l

y

FIGURE 5.11 Prismatic Bar under Self-Weight.
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5.7.2 Inverse method
For this technique, particular displacements or stresses are selected that satisfy the basic field equa-
tions. A search is then conducted to identify a specific problem that would be solved by this solution
field. This amounts to determining appropriate problem geometry, boundary conditions, and body
forces that would enable the solution to satisfy all conditions on the problem. Using this scheme it is
sometimes difficult to construct solutions to a specific problem of practical interest.

EXAMPLE 5.2: INVERSEdPURE BEAM BENDING
Consider the case of an elasticity problem under zero body forces with the following stress field

sx ¼ Ay; sy ¼ sz ¼ sxy ¼ syz ¼ szx ¼ 0 (5.7.5)

where A is a constant. It is easily shown that this simple linear stress field satisfies the equations of
equilibrium and compatibility, and thus the field is a solution to an elasticity problem.

The question is, what problem would be solved by such a field? A common scheme to answer
this question is to consider some trial domains and investigate the nature of the boundary conditions
that would occur using the given stress field. Therefore, consider the two-dimensional rectangular
domain shown in Figure 5.12. Using the field (5.7.5), the tractions (stresses) on each boundary face
give rise to zero loadings on the top and bottom and a linear distribution of normal stresses on the
right and left sides as shown. Clearly, this type of boundary loading is related to a pure bending
problem, whereby the loadings on the right and left sides produce no net force and only a pure
bending moment.

5.7.3 Semi-inverse method
In this scheme part of the displacement and/or stress field is specified, and the other remaining portion
is determined by the fundamental field equations (normally using direct integration) and the boundary
conditions. It is often the case that constructing appropriate displacement and/or stress solution fields
can be guided by approximate strength of materials theory. The usefulness of this approach is greatly
enhanced by employing Saint-Venant’s principle, whereby a complicated boundary condition can be
replaced by a simpler statically equivalent distribution.

x

 y

FIGURE 5.12 Pure Bending Problem.
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EXAMPLE 5.3: SEMI-INVERSEdTORSION OF PRISMATIC BARS
A simple semi-inverse example may be borrowed from the torsion problem that is discussed in
detail in Chapter 9. Skipping for now the developmental details, we propose the following displace-
ment field

u ¼ �ayz; v ¼ axz; w ¼ wðx; yÞ (5.7.6)

where a is a constant. The assumed field specifies the x and y components of displacement, while
the z component is left to be determined as a function of the indicated spatial variables. By using the
strainedisplacement relations and Hooke’s law, the stress field corresponding to (5.7.6) is given by

sx ¼ sy ¼ sz ¼ sxy ¼ 0

sxz ¼ m

�
vw

vx
� ay

�

syz ¼ m

�
vw

vy
þ ax

� (5.7.7)

Using these stresses in the equations of equilibrium gives the following result

v2w

vx2
þ v2w

vy2
¼ 0 (5.7.8)

which is actually the form of Navier’s equations for this case. This result represents a single equa-
tion (Laplace’s equation) to determine the unknown part of the assumed solution form. It should be
apparent that by assuming part of the solution field, the remaining equations to be solved are greatly
simplified. A specific domain in the x, y plane along with appropriate boundary conditions is needed
to complete the solution to a particular problem. Once this has been accomplished, the assumed
solution form (5.7.6) has been shown to satisfy all the field equations of elasticity.

There are numerous mathematical techniques used to solve the elasticity field equations. Many
techniques involve the development of exact analytical solutions, while others involve the construction
of approximate solution schemes. A third procedure involves the establishment of numerical solution
methods. We now briefly provide an overview of each of these techniques.

5.7.4 Analytical solution procedures
A variety of analytical solution methods are used to solve the elasticity field equations. The following
sections outline some of the more common methods.

Power series method
For many two-dimensional elasticity problems, the stress formulation leads to the use of a stress
function f(x, y). It is shown that the entire set of field equations reduces to a single partial differential
equation (biharmonic equation) in terms of this stress function. A general mathematical scheme to
solve this equation is to look for solutions in terms of a power series in the independent variables, that
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is, f(x, y) ¼P
Cmnx

myn (see Neou, 1957). Use of the boundary conditions determines the coefficients
and number of terms to be used in the series. This method is employed to develop two-dimensional
solutions in Section 8.1.

Fourier method
A general scheme to solve a large variety of elasticity problems employs the Fourier method. This
procedure is normally applied to the governing partial differential equations by using separation of
variables, superposition, and Fourier series or Fourier integral theory. Although this is an ad hoc
method, it has been shown to provide solutions to a large class of problems (see, for example, Pickett,
1944; Little, 1973). We make use of this scheme for two-dimensional problem solution in Chapter 8,
for a torsion problem in Chapter 9, and for several three-dimensional solutions in Chapter 13.

Integral transform method
A very useful mathematical technique to solve partial differential equations is the use of integral
transforms. By applying a particular linear integral transformation to the governing equations, certain
differential forms can be simplified or eliminated, thus allowing simple solution for the unknown
transformed variables. Through appropriate inverse transformation, the original unknowns are
retrieved, giving the required solution. Typical transforms that have been successfully applied to
elasticity problems include Laplace, Fourier, and Hankel transforms. We do not make specific use of
this technique in the text, but example applications can be found in Sneddon (1978) and Sneddon and
Lowengrub (1969).

Complex variable method
Several classes of problems in elasticity can be formulated in terms of functions of a complex variable.
These include two-dimensional plane problems, the torsion problem, and some particular thermoelastic
cases. The complex variable formulation is very powerful and useful because many solutions can be
found that would be intractable by other techniques. Most of the original development of this method
was done by a series of Russian elasticians and is summarized in the classic work of Muskhelishvili
(1963). Chapter 10 formally develops this technique and employs the method to construct several
solutions for plane isotropic elasticity problems. We also use the method in Chapter 11 to determine
solutions of plane anisotropic problems and in Chapter 12 for some thermoelastic applications.

5.7.5 Approximate solution procedures
With the recognized difficulty in finding exact analytical solutions, considerable work has been done to
develop approximate solutions to elasticity problems. Much of this work has been in the area of
variational methods, which are related to energy theorems (see Chapter 6). The principal idea of this
approach is the connection of the elasticity field equations with a variational problem of finding an
extremum of a particular integral functional. One specific technique is outlined in the following
section.

Ritz method
This scheme employs a set of approximating functions to solve elasticity problems by determining
stationary values of a particular energy integral. The set of approximating functions is chosen to satisfy
the boundary conditions on the problem, but only approximately make the energy integral take on an
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extremum. By including more terms in the approximating solution set, accuracy of the scheme is
improved. Specific examples of this and related methods can be found in Reismann and Pawlik (1980),
Reddy (1984), and Mura and Koya (1992). Because of the difficulty in finding proper approximating
functions for problems of complex geometry, variational techniques have made only limited contri-
butions to the solution of general problems. However, they have made very important applications in
the finite element method.

5.7.6 Numerical solution procedures
Over the past several decades numerical methods have played a primary role in developing solutions to
elasticity problems of complex geometry. Various schemes have been theoretically developed, and
numerous private and commercial codes have been written for implementation on a variety of com-
puter platforms. Several of the more important methods are briefly discussed here.

Finite difference method
The finite difference method (FDM) replaces derivatives in the governing field equations by difference
quotients, which involve values of the solution at discrete mesh points in the domain under study.
Repeated applications of this representation set up algebraic systems of equations in terms of unknown
mesh point values. The method is a classical one, having been established almost a century ago, and
Timoshenko and Goodier (1970) provide some details on its applications in elasticity. The major
difficulty with this scheme lies in the inaccuracies in dealing with regions of complex shape, although
this problem can be eliminated through the use of coordinate transformation techniques.

Finite element method
The fundamental concept of the finite element method (FEM) lies in dividing the body under study into
a finite number of pieces (subdomains) called elements. Particular assumptions are then made on the
variation of the unknown dependent variable(s) across each element using so-called interpolation or
shape functions. This approximated variation is quantified in terms of solution values at special
locations within the element called nodes. Through this discretization process, the method sets up an
algebraic system of equations for unknown nodal values that approximates the continuous solution.
Because element size and shape are variable, the finite element method can handle problem domains of
complicated shape, and thus it has become a very useful and practical tool (see Reddy, 2006). We
briefly present an introduction to finite element methods in Chapter 16.

Boundary element method
The boundary element method (BEM) is based upon an integral statement of the governing equations
of elasticity. The integral statement may be cast into a form that contains unknowns only over the
boundary of the body domain. This boundary integral equation may then be solved by using concepts
from the finite element method; that is, the boundary may be discretized into a number of elements and
the interpolation approximation concept can then be applied. This method again produces an algebraic
system of equations to solve for the unknown boundary nodal values, and the system is generally much
smaller than that generated by internal discretization such as the finite element method. By avoiding
interior discretization, the boundary element method has significant advantages over finite element
schemes for infinite or very large domains and for cases in which only boundary information is sought
(see Brebbia and Dominguez, 1992). A brief discussion of this technique is given in Chapter 16.
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The previously mentioned numerical schemes are generally based on various discretization and
approximation concepts, and ultimately require computers to carry out the very extensive computa-
tions necessary for problem solution. With the rapid development of computational methods involving
symbolic manipulation, there has been a new trend in engineering analysis that has included elasticity.
Using such computer tools, many analytical schemes and evaluations that had been previously
abandoned because of their impractical algebraic complexity are now being evaluated using symbolic
codes such asMaple orMathematica. Such an approach is especially interesting, since it incorporates
the fundamentals connected with exact closed-form analytical solutions and allows direct determi-
nation of solution details without having to resort to any further approximations or special limiting
cases as was often done. Examples of such work can be found in Rand and Rovenski (2005), Con-
stantinescu and Korsunsky (2007), and Barber (2010). Currently we will not pursue these solution
techniques in the text.

Elasticity is a mature field and thus analytical solutions have been developed for a large number of
problems. Kachanov, Shafiro, and Tsukrov (2003) have published an interesting compilation handbook
of elasticity solutions collected from textbooks and journal articles.
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EXERCISES

5.1 Using Cartesian coordinates, express all boundary conditions for each of the illustrated
problems.
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5.2 Using polar coordinates, express all boundary conditions for each of the illustrated problems.

5.3 The tapered cantilever beam shown in the following figure is to have zero tractions on the
bottom inclined surface. As discussed in the text (see Figure 5.4), this may be specified by
requiring T

ðnÞ
x ¼ T

ðnÞ
y ¼ 0: This condition can also be expressed in terms of components

normal and tangential to the boundary surface as T
ðnÞ
n ¼ T

ðnÞ
s ¼ 0; thus implying that the

normal and shearing stress on this surface should vanish. Show that these two specifications
are equivalent.
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5.4 The following two-dimensional problems all have mixed boundary conditions involving both
traction and displacement specifications. Using various field equations, formulate all
boundary conditions for each problem solely in terms of displacements.

5.5 For problems involving composite bodies composed of two or more materials, the elasticity
solution requires both boundary conditions and interface conditions between each material
system. The solution process is then developed independently for each material by satisfying
how the various material parts are held together. The composite bodies shown are composed
of two different materials, (1) and (2), that are perfectly bonded thereby requiring
displacement and stress continuity across the interface. Establish the required boundary and
interface conditions for each problem.

r1

r2

(1)

p

(2) 

(b)

S

(a)

h1
x

y

h2

(1)

a(2)

5.6 Solve Exercise 5.5 using slip interface conditions, where the normal components of
displacement and traction are continuous, the tangential traction vanishes, and the tangential
displacement can be discontinuous.

5.7 As mentioned in Section 5.6, Saint-Venant’s principle will allow particular boundary con-
ditions to be replaced by their statically equivalent resultant. For problems (b), (c), (d), and (f)
in Exercise 5.1, the support boundaries that had fixed displacement conditions can be
modified to specify the statically equivalent reaction force and moment loadings. For each
case, determine these reaction loadings and then relate them to particular integrals of the
tractions over the appropriate boundary.
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5.8 Go through the details and explicitly develop the BeltramieMichell compatibility equations
(5.3.3).

5.9 For the displacement formulation, use relations (5.4.1) in the equilibrium equations and
develop the Navier equations (5.4.3).

5.10 For the general displacement formulation with no body forces, show that Navier’s equations
(5.4.3) reduce to the form

ui;kk þ 1

1� 2n
uk;ki ¼ 0

and thus the field equation formulation will now only depend on the single elastic constant,
Poisson’s ratio. For the case with only displacement boundary conditions, this fact would
imply that the solution would also only depend on Poisson’s ratio.

5.11 Carry out the integration details to develop the displacements (5.7.4) in Example 5.1.

5.12 Using the inverse method, investigate which problem can be solved by the two-dimensional
stress distribution sx ¼ Axy, sxy ¼ B þ Cy2, sy ¼ 0, where A, B, and C are constants. First
show that the proposed stress field (with zero body force) satisfies the stress formulation field
equations under the condition that C ¼ �A/2. Note that for this two-dimensional plane stress
case, the BeltramieMichell compatibility equations reduce to the form given by (7.2.7). Next
choose a rectangular domain 0 � x � l and �h � y � h, with l [ h, and investigate the
interior and boundary stresses. Finally use strength of materials theory to show that these
stresses could represent the solution to a cantilever beam under end loading. Explicitly
determine the required constants A, B, and C to solve the beam problem.

5.13 Show that the following stress components satisfy the equations of equilibrium with zero
body forces, but are not the solution to a problem in elasticity

sx ¼ c
�
y2 þ n

�
x2 � y2

�	
sy ¼ c

�
x2 þ n

�
y2 � x2

�	
sz ¼ cn

�
x2 þ y2

�
sxy ¼ �2cnxy

syz ¼ szx ¼ 0; c ¼ constants 0

5.14* Consider the problem of a concentrated force acting normal to the free surface of a semi-
infinite solid as shown in case (a) of the following figure. The two-dimensional stress field for
this problem is given by equations (8.4.36) as

sx ¼ � 2Px2y

pðx2 þ y2Þ2

sy ¼ � 2Py3

pðx2 þ y2Þ2

sxy ¼ � 2Pxy2

pðx2 þ y2Þ2
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Using this solution with the method of superposition, solve the problem with two concentrated
forces as shown in case (b). Because problems (a) and (b) have the same resultant boundary
loading, explicitly show that at distances far away from the loading points the stress fields for
each case give approximately the same values. Explicitly plot and compare sy and sxy for each
problem on the surface y ¼ 10a and y ¼ 100a (see Figure 8.20).

x

y

P
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x

y

P/ 2 P/ 2

a

(b)

Exercises 117



Strain Energy and Related
Principles 6
Before proceeding to the solution of specific elasticity problems, we wish to explore the associated
concepts of work and energy. Boundary tractions and body forces will do work on an elastic solid, and
this work will be stored inside the material in the form of strain energy. For the elastic case, removal of
these loadings results in complete recovery of the stored energy within the body. Development of strain
energy concepts can yield new and useful information not found by other methods. This study also
leads to some new energy methods or principles that provide additional techniques to solve elasticity
problems. In some sense these methods may be thought of as replacements of particular field equations
that have been previously derived. For problems in structural mechanics involving rods, beams, plates,
and shells, energy methods have proved to be very useful in developing the governing equations and
associated boundary conditions. These schemes have also provided a method to generate approximate
solutions to elasticity problems. More recently, particular energy and variational techniques have been
used extensively in the development of finite and boundary element analysis. Our presentation here
will only be a brief study on this extensive subject, and the interested reader is recommended to review
Langhaar (1962), Washizu (1968), Reddy (1984), Mura and Koya (1992), or Fung and Tong (2001) for
additional details and applications.

6.1 Strain energy
As mentioned, the work done by surface and body forces on an elastic solid is stored inside the body in
the form of strain energy. For an idealized elastic body, this stored energy is completely recoverable
when the solid is returned to its original unstrained configuration. In order to quantify this behavior, we
now wish to determine the strain energy in terms of the resulting stress and strain fields within the
elastic solid. Consider first the simple uniform uniaxial deformation case with no body forces, as
shown in Figure 6.1. The cubical element of dimensions dx, dy, dz is under the action of a uniform
normal stress s in the x direction as shown.

During this deformation process, we assume that the stress increases slowly from zero to sx, such
that inertia effects can be neglected. The strain energy stored is equal to the net work done on the
element, and this is given by the following equation

dU ¼
ðsx

0
sd

�
uþ vu

vx
dx

�
dydz�

ðsx

0
sdudydz ¼

ðsx

0
sd

�
vu

vx

�
dxdydz (6.1.1)

Using the strain displacement relations and Hooke’s law

vu

vx
¼ ex ¼ sx

E
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and thus (6.1.1) can be reduced to

dU ¼
ðsx

0
s
ds

E
dxdydz ¼ s2x

2E
dxdydz (6.1.2)

The strain energy per unit volume, or strain energy density, is specified by

U ¼ dU

dxdydz
(6.1.3)

and thus for this case we find

U ¼ s2x
2E

¼ Ee2x
2

¼ 1

2
sxex (6.1.4)

This result can be interpreted from the stress–strain curve shown in Figure 6.2. Because the material is
linear elastic, the strain energy for the uniaxial case is simply the shaded area under the stress–strain
curve.

We next investigate the strain energy caused by the action of uniform shear stress. Choosing the
same cubical element as previously analyzed, consider the case under uniform sxy and syx loading, as
shown in Figure 6.3. Following similar analyses, the strain energy is found to be

dU ¼ 1

2
sxydydz

�
vv

vx
dx

�
þ 1

2
syxdxdz

�
vu

vy
dy

�
¼ 1

2
sxy

�
vu

vy
þ vv

vx

�
dxdydz (6.1.5)

and thus the strain energy density can be expressed by

U ¼ 1

2
sxygxy ¼

s2xy
2m

¼ mg2
xy

2
(6.1.6)

dx

u

dz

dxu +

dy

x

 y

z

∂x
∂u

σ
σ

FIGURE 6.1 Deformation Under Uniform Uniaxial Stress.
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Results from the previous two cases (6.1.4) and (6.1.6) indicate that the strain energy is not a linear
function of the stresses or strains, and thus the principle of superposition cannot be directly applied to
develop the strain energy for a multidimensional state of stress. However, from conservation of energy,
the work done does not depend on the order of loading application, but only on the final magnitudes of

dx

dy

x

y

yx

xy

∂u
∂y

dx∂v
∂x

dy

τ

τ

FIGURE 6.3 Shear Deformation.

e
ex

U

σ

σx

FIGURE 6.2 Strain Energy for Uniaxial Deformation.
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the stresses and strains. This concept then allows normal and shear loadings to be applied one at a time
and produces an additive total strain energy for a general three-dimensional state of stress and strain, as
follows

U ¼ 1

2

�
sxex þ syey þ szez þ sxygxy þ syzgyz þ szxgzx

� ¼ 1

2
sijeij (6.1.7)

Although the preceding results were developed for the case of uniform stress with no body forces, it
can be shown (see Exercise 6.1) that identical results are found if body forces are included and the
stresses are allowed to vary continuously. The total strain energy stored in an elastic solid occupying a
region V is then given by the integral over the domain

UT ¼
ð ð ð

V
Udxdydz (6.1.8)

Using Hooke’s law, the stresses can be eliminated from relation (6.1.7) and the strain energy can be
expressed solely in terms of strain. For the isotropic case, this result becomes

UðeÞ ¼ 1

2
lejjekk þ meijeij

¼ 1

2
l
�
ex þ ey þ ez

�2 þ m

�
e2x þ e2y þ e2z þ

1

2
g2
xy þ

1

2
g2
yz þ

1

2
g2
zx

� (6.1.9)

Likewise, the strains can be eliminated and the strain energy can be written in terms of stress

UðsÞ ¼ 1þ n

2E
sijsij � n

2E
sjjskk

¼ 1þ n

2E

�
s2x þ s2y þ s2z þ 2s2xy þ 2s2yz þ 2s2zx

�
� n

2E

�
sx þ sy þ sz

�2 (6.1.10)

After reviewing the various developed forms in terms of the stresses or strains, it is observed that
the strain energy is a positive definite quadratic form with the property

U � 0 (6.1.11)

for all values of sij and eij, with equality only for the case with sij ¼ 0 or eij ¼ 0. Actually, relation
(6.1.11) is valid for all elastic materials, including both isotropic and anisotropic solids.

For the uniaxial deformation case, by using relation (6.1.4) note that the derivative of the strain
energy in terms of strain yields

vUðeÞ
vex

¼ v

vex

�
Ee2x
2

�
¼ Eex ¼ sx

and likewise

vUðsÞ
vsx

¼ v

vsx

�
s2x
2E

�
¼ sx

E
¼ ex
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These specific uniaxial results can be generalized (see Exercise 6.4) for the three-dimensional case,
giving the relations

sij ¼ vUðeÞ
veij

; eij ¼ vUðsÞ
vsij

(6.1.12)

These results are again true for all elastic materials (isotropic and anisotropic); see Langhaar (1962) or
Boresi and Chang (2000) for a general derivation. Thus, the strain energy function can be interpreted as
playing a fundamental constitutive role in establishing general stress–strain relations for elastic ma-
terials. Such an approach in which the stresses are derivable from a strain energy function, that is,
relation (6.1.12), is referred to as hyperelasticity. Note that this approach does not necessarily require
that the relations between stress and strain be linear, and thus this scheme is commonly used in the
development of constitutive relations for nonlinear elastic solids. Only linear relations given by
Hooke’s law (4.2.1) are incorporated in the text.

Using equations (6.1.12), the following symmetry relations can be developed (Exercise 6.6)

vsij

vekl
¼ vskl

veij

veij
vskl

¼ vekl
vsij

(6.1.13)

Going back to the general constitutive form sij ¼ Cijklekl, relations (6.1.13) can be used to develop the
additional symmetry relations

Cijkl ¼ Cklij (6.1.14)

Using constitutive form (4.2.2), result (6.1.14) implies that Cij ¼ Cji, and thus there are only 21
independent elastic constants for general anisotropic elastic materials.

The strain energy in an elastic solid may be decomposed into two parts, one associated with
volumetric change Uv and the other caused by distortional (change in shape) deformation Ud

U ¼ Uv þ Ud (6.1.15)

The development of this decomposition is accomplished by using the definitions of spherical and
deviatoric strain and stress tensors presented previously in Sections 2.5 and 3.5. For isotropic mate-
rials, the spherical stress produces only volumetric deformation, while the deviatoric stress causes only
distortional changes. The volumetric strain energy is found by considering the spherical or hydrostatic
components of stress and strain

Uv ¼ 1

2
~sij~eij ¼ 1

6
sjjekk ¼ 1� 2n

6E
sjjskk ¼ 1� 2n

6E

�
sx þ sy þ sz

�2
(6.1.16)

The distortional strain energy results from the deviatoric components or can be easily determined
using relations (6.1.10), (6.1.15), and (6.1.16) to get

Ud ¼ 1

12m

h
ðsx � syÞ2 þ ðsy � szÞ2 þ ðsz � sxÞ2 þ 6

�
s2xy þ s2yz þ s2zx

�i
(6.1.17)
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Particular failure theories of solids incorporate the strain energy of distortion by proposing that material
failure or yieldingwill initiatewhenUd reaches a critical value. It can be shown that the distortional strain
energy is related to the octahedral shear stress previously discussed in Section 3.5 (see Exercise 6.10).

6.2 Uniqueness of the elasticity boundary-value problem
Although it would seem that the question of uniqueness of the elasticity boundary-value problem
should have been covered in Chapter 5, the proof normally makes use of strain energy concepts and
is therefore presented here. Consider the general mixed boundary-value problem in which tractions
are specified over the boundary St and displacements are prescribed over the remaining part Su.
Assume that there are two different solutions fsð1Þij ; e

ð1Þ
ij ; u

ð1Þ
i g and fsð2Þij ; e

ð2Þ
ij ; u

ð2Þ
i g to the same

problem with identical body forces and boundary conditions. Next define the difference solution

sij ¼ s
ð1Þ
ij � s

ð2Þ
ij

eij ¼ e
ð1Þ
ij � e

ð2Þ
ij

ui ¼ u
ð1Þ
i � u

ð2Þ
i

(6.2.1)

Because the solutions s
ð1Þ
ij and s

ð2Þ
ij have the same body force, the difference solution must satisfy

the equilibrium equation
sij; j ¼ 0 (6.2.2)

Likewise, the boundary conditions satisfied by the difference solution are given by

Tn
i ¼ sijnj ¼ 0 on St

ui ¼ 0 on Su
(6.2.3)

Starting with the definition of strain energy, we may write

2

ð
V
UdV ¼

ð
V
sijeijdV ¼

ð
V
sij
�
ui; j � uij

�
dV

¼
ð
V
sijui; jdV ¼

ð
V

�
sijui

�
; j
dV �

ð
V
sij; juidV

¼
ð
S
sijnjuidS�

ð
V
sij; juidV

(6.2.4)

where we have used the fact that sijuij ¼ 0 (symmetric times antisymmetric ¼ 0) and have utilized the
divergence theorem to convert the volume integral into a surface integral. Incorporating relations
(6.2.2) and (6.2.3) and noting that the total surface S ¼ St þ Su, (6.2.4) gives the result

2

ð
V
UdV ¼ 0 (6.2.5)

Relation (6.2.5) implies that U must vanish in the region V, and since the strain energy is a positive
definite quadratic form, the associated strains and stresses also vanish; that is, eij ¼ sij ¼ 0. If the strain
field vanishes, then the corresponding displacements ui can be at most rigid-body motion. However, if
ui ¼ 0 on Su, then the displacement field must vanish everywhere. Thus, we have shown that

s
ð1Þ
ij ¼ s

ð2Þ
ij ; e

ð1Þ
ij ¼ e

ð2Þ
ij ; u

ð1Þ
i ¼ u

ð2Þ
i and therefore the problem solution is unique. Note that if tractions

are prescribed over the entire boundary, then u
ð1Þ
i and u

ð2Þ
i may differ by rigid-body motion.
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6.3 Bounds on the elastic constants
Strain energy concepts allow us to generate particular bounds on elastic constants. For the isotropic
case, consider the following three stress states previously investigated in Section 4.3 (see
Figure 4.2).

6.3.1 Uniaxial tension
Uniform uniaxial deformation in the x direction is given by the stress state

sij ¼
2
4 s 0 0
0 0 0
0 0 0

3
5 (6.3.1)

For this case, the strain energy reduces to

U ¼ 1þ n

2E
s2 � n

2E
s2 ¼ s2

2E
(6.3.2)

Because the strain energy is positive definite, relation (6.3.2) implies that the modulus of elasticity
must be positive

E > 0 (6.3.3)

6.3.2 Simple shear
Consider next the case of uniform simple shear defined by the stress tensor

sij ¼
2
4 0 s 0
s 0 0
0 0 0

3
5 (6.3.4)

The strain energy becomes

U ¼ 1þ n

2E

�
2s2
� ¼ s2

E
ð1þ nÞ (6.3.5)

Again, invoking the positive definite property of the strain energy and using the previous result
of E > 0 gives

1þ v > 00v > �1 (6.3.6)

6.3.3 Hydrostatic compression
The final example is chosen as uniform hydrostatic compression specified by

sij ¼
2
4�p 0 0

0 �p 0
0 0 �p

3
5 (6.3.7)
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Note that hydrostatic tension could also be used for this example. Evaluating the strain energy yields

U ¼ 1þ n

2E
3p2 � n

2E
ð� 3pÞ2 ¼ 3p2

2E
ð1� 2nÞ (6.3.8)

Using the positive definite property with E > 0 gives the result

1� 2n > 00 n <
1

2
(6.3.9)

Combining relations (6.3.6) and (6.3.9) places the following bounds on Poisson’s ratio

�1 < n <
1

2
(6.3.10)

Using relations between the elastic constants given in Table 4.1, the previous results also imply that

k > 0; m > 0 (6.3.11)

Experimental evidence indicates that most real materials have positive values of Poisson’s ratio, and
thus 0< n< 1/2. This further implies that l > 0. Bounds on elastic moduli for the anisotropic case are
more involved and are discussed in Chapter 11.

6.4 Related integral theorems
Within the context of linear elasticity, several integral relations based on work and energy can be
developed. We now wish to investigate three particular results referred to as Clapeyron’s theorem,
Betti’s reciprocal theorem, and Somigliana’s identity.

6.4.1 Clapeyron’s theorem
The strain energy of an elastic solid in static equilibrium is equal to one-half the work done by the
external body forces Fi and surface tractions Tn

i

2

ð
V
UdV ¼

ð
S
Tn
i uidSþ

ð
V
FiuidV (6.4.1)

The proof of this theorem follows directly from results in relation (6.2.4).

6.4.2 Betti/Rayleigh reciprocal theorem
If an elastic body is subject to two body and surface force systems, then the work done by the first
system of forces {T(1), F(1)} acting through the displacements u(2) of the second system is equal to the
work done by the second system of forces {T(2), F(2)} acting through the displacements u(1) of the first
system ð

S
T
ð1Þ
i u

ð2Þ
i dSþ

ð
V
F
ð1Þ
i u

ð2Þ
i dV ¼

ð
S
T
ð2Þ
i u

ð1Þ
i dSþ

ð
V
F
ð2Þ
i u

ð1Þ
i dV (6.4.2)

The proof of this theorem starts by using the result from (6.2.4)ð
V
s
ð1Þ
ij e

ð2Þ
ij dV ¼

ð
S
T
ð1Þ
i u

ð2Þ
i dSþ

ð
V
F
ð1Þ
i u

ð2Þ
i dV
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Interchanging states (1) and (2) givesð
V
s
ð2Þ
ij e

ð1Þ
ij dV ¼

ð
S
T
ð2Þ
i u

ð1Þ
i dSþ

ð
V
F
ð2Þ
i u

ð1Þ
i dV

Now s
ð1Þ
ij e

ð2Þ
ij ¼ Cijkle

ð1Þ
kl e

ð2Þ
ij ¼ Cklije

ð1Þ
kl e

ð2Þ
ij ¼ Cklije

ð2Þ
ij e

ð1Þ
kl ¼ s

ð2Þ
kl e

ð1Þ
kl ; therefore

s
ð1Þ
ij e

ð2Þ
ij ¼ s

ð2Þ
ij e

ð1Þ
ij (6.4.3)

Combining these results proves the theorem. The reciprocal theorem can yield useful applications by
special selection of the two systems. One such application follows.

6.4.3 Integral formulation of elasticitydSomigliana’s identity
Using the reciprocal theorem (6.4.2), select the first system to be the desired solution to a particular
problem {T, F, u}. The second system is chosen as the fundamental solution to the elasticity equations,
and this corresponds to the solution of the displacement field at point x produced by a unit concentrated
body force e located at point x. The fundamental solution is actually related to Kelvin’s problem
(concentrated force in an infinite domain) and is solved in Examples 13.1, 15.3, and 15.4. Using this
concept, the displacement may be expressed as

u
ð2Þ
i ðxÞ ¼ Gijðx; xÞejðxÞ (6.4.4)

where Gij represents the displacement Green’s function to the elasticity equations. This function has
been previously developed, and forms for both two- and three-dimensional domains have been given
(Banerjee and Butterfield, 1981). The three-dimensional isotropic case, for example, is given by

Gijðx; xÞ ¼ 1

16pmð1� nÞr
�ð3� 4nÞdij þ r;ir; j

	
(6.4.5)

where ri ¼ xi � xi and r ¼ jrj. The stresses and tractions associated with this fundamental solution
follow from the basic field equations and can be written in the form

s
ð2Þ
ij ¼ Tijkðx; xÞekðxÞ

T
ð2Þ
i ¼ Tijkðx; xÞnjekðxÞ

Tijkðx; xÞ ¼ lGlk; ldij þ m
�
Gik; j þ Gjk;i

� (6.4.6)

After some manipulation using these results in the reciprocal theorem (6.4.2) gives

cujðxÞ ¼
ð
S

�
TiðxÞGijðx; xÞ � uiTikjðx; xÞnk

	
dSþ

ð
V
FiGijðx; xÞdV (6.4.7)

where the coefficient c is given by

c ¼

8>>><
>>>:

1; x in V

1

2
; x on S

0; x outside V
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Relation (6.4.7) is known as Somigliana’s identity and represents an integral statement of the elasticity
problem. This result is used in the development of boundary integral equation (BIE) methods in
elasticity and leads to the computational technique of boundary element methods (BEM). A brief
presentation of this numerical method is given in Chapter 16.

6.5 Principle of virtual work
Based on work and energy principles, several additional solution methods can be developed. These
represent alternatives to the analytical methods based on differential equations outlined in Section
5.7. The principle of virtual work provides the foundation for many of these methods, and thus we
begin our study by establishing this principle. The virtual displacement of a material point is a
fictitious displacement such that the forces acting on the point remain unchanged. The work done by
these forces during the virtual displacement is called the virtual work. For an object in static
equilibrium, the virtual work is zero because the resultant force vanishes on every portion of an
equilibrated body. The converse is also true that if the virtual work is zero, then the material point
must be in equilibrium.

Let us introduce the following notational scheme. The virtual displacements of an elastic solid
are denoted by dui ¼ {du, dv, dw}, and the corresponding virtual strains are then expressible as
deij¼ 1/2(dui, jþ duj,i). Consider the standard elasticity boundary-value problem of a solid in equilibrium
under the action of surface tractions over the boundary St with displacement conditions over the
remaining boundary Su (see Figure 5.1). Now imagine that the body undergoes a virtual displacement dui
from its equilibrium configuration. The virtual displacement is arbitrary except that it must not violate
the kinematic displacement boundary condition, and thus dui ¼ 0 on Su.

The virtual work done by the surface and body forces can be written as

dW ¼
ð
St

Tn
i duidSþ

ð
V
FiduidV (6.5.1)

Now, because the virtual displacement vanishes on Su, the integration domain of the first integral can
be changed to S. Following standard procedures, this surface integral can be changed to a volume
integral and combined with the body force term. These steps are summarized as

dW ¼
ð
S
Tn
i duidSþ

ð
V
FiduidV

¼
ð
S
sijnjduidSþ

ð
V
FiduidV

¼
ð
V

�
sijdui

�
; j
dV þ

ð
V
FiduidV

¼
ð
V

�
sij; jdui þ sijdui; j

�
dV þ

ð
V
FiduidV

¼
ð
V

�� Fidui þ sijdeij
�
dV þ

ð
V
FiduidV

¼
ð
V
sijdeijdV

(6.5.2)
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Now the last line in relation (6.5.2) is actually the virtual strain energy within the solidð
V
sijdeijdV ¼

ð
V

�
sxdex þ sydey þ szdez þ sxydgxy þ syzdgyz þ szxdgzx

�
dV (6.5.3)

Notice that the virtual strain energy does not contain the factor of 1/2 found in the general expression
(6.1.7). This fact occurs because the stresses are constant during the virtual displacement.

Under the assumption of the existence of a strain energy function expressed in terms of the strains

sij ¼ vUðeÞ
veij

(6.5.4)

and thus relation (6.5.3) can be written asð
V
sijdeijdV ¼

ð
V

vU

veij
deijdV ¼ d

ð
V
UdV (6.5.5)

Because the external forces are unchanged during the virtual displacements and the region V is fixed,
the operator d can be placed before the integrals in (6.5.1). Combining this with relation (6.5.5) allows
(6.5.2) to be written as

d

 ð
V
UdV �

ð
St

Tn
i uidS�

ð
V
FiuidV

!
¼ dðUT �WÞ ¼ 0 (6.5.6)

This is one of the statements of the principle of virtual work for an elastic solid. The quantity (UT�W)
actually represents the total potential energy of the elastic solid, and thus relation (6.5.6) states that the
change in potential energy during a virtual displacement from equilibrium is zero. It should be noted
that this principle is valid for all elastic materials including both linear and nonlinear stress–strain
behavior. The principle of virtual work provides a convenient method for deriving equilibrium
equations and associated boundary conditions for various special theories of elastic bodies, including
rods, beams, plates, and shells. Several such examples are given by Reismann and Pawlik (1980). In
fact, even the continuum equations previously developed can be re-established using this method.

To illustrate the process of using the principle of virtual work to re-derive the basic equilibrium
equations and related boundary conditions for the general elasticity problem, we can start with
relations (6.5.1) and (6.5.2) to writeð

V
sijdeijdV �

ð
S
Tn
i duidS�

ð
V
FiduidV ¼ 0 (6.5.7)

The integrand of the first term can be reduced as

sijdeij ¼ 1

2
sij
�
dui; j þ duj;i

� ¼ sijdui; j ¼
�
sijdui

�
; j � sij; jdui

and thus (6.5.7) can be expressed as

ð
V

��
sijdui

�
; j � sij; jdui

	
dV �

ð
S
Tn
i duidS�

ð
V
FiduidV ¼ 0ð

V

�
sij; j þ Fi

�
duidV þ

ð
S

�
Tn
i � sijnj

�
duidS ¼ 0

(6.5.8)
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where we have used the divergence theorem to convert the volume integral

ð
V
ðsijduiÞ; jdV to a surface

integral over S. For arbitrary dui, relation (6.5.8) is satisfied if

sij; j þ Fi ¼ 0 ˛V
and either

dui ¼ 0 ˛Su or Tn
i ¼ sijnj ˛St

(6.5.9)

Conditions on Su are commonly referred to as essential boundary conditions while those on St are
called natural boundary conditions. Thus, we have demonstrated that the principle of virtual work can
be used to generate equilibrium equations and associated boundary conditions for the general elasticity
problem.

6.6 Principles of minimum potential and complementary energy
We now wish to use the results of the previous section to develop principles of minimum potential and
complementary energy. Denoting the potential energy by P ¼ UT � W, the virtual work statement
indicated that the variation in potential energy from an equilibrium configuration was zero. Another
way this is commonly stated is that potential energy is stationary in an equilibrium configuration. Such
a condition implies that the potential energy will take on a local extremum (maximum or minimum)
value for this configuration. It can be shown (proof given by Sokolnikoff, 1956; or Reismann and
Pawlik, 1980) that the potential energy has a local minimum in the equilibrium configuration, and this
leads to the following principle:

Principle of Minimum Potential Energy: Of all displacements satisfying the given boundary condi-

tions of an elastic solid, those that satisfy the equilibrium equations make the potential energy a local

minimum.

An additional minimum principle can be developed by reversing the nature of the variation. Consider
the variation of the stresses while holding the displacements constant. Let sij be the actual stresses that
satisfy the equilibrium equations and boundary conditions. Now consider a system of stress variations
or virtual stresses dsij that also satisfies the stress boundary conditions (with dTn

i ¼ dsijnj on St) and
equilibrium equations with body force dFi. In contrast to the previous development, we now investigate
the complementary virtual work

dWc ¼
ð
S
uidT

n
i dSþ

ð
V
uidFidV (6.6.1)

Employing the usual reduction steps as given in relations (6.5.2), the complementary virtual work
statement is found to reduce toð

S
uidT

n
i dSþ

ð
V
uidFidV ¼

ð
V
eijdsijdV (6.6.2)

and the integral on the right-hand side is referred to as the complementary virtual strain energy.
Introducing the complementary strain energy density function U c, which is taken as a function of

the stresses

eij ¼ vUcðsÞ
vsij

(6.6.3)
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Using this result, the right-hand side of (6.6.2) can be expressed asð
V
eijdsijdV ¼

ð
V

vUc

vsij
dsijdV ¼ d

ð
V
UcdV (6.6.4)

Because the displacements do not vary and the region V is fixed, the operator d can be placed before the
integrals in (6.6.1). Combining this with relation (6.6.4) allows (6.6.2) to be written as

d

 ð
V
U cdV�

ð
St

uiT
n
i dS�

ð
V
uiFidV

!
¼ d
�
Uc
T �Wc

� ¼ 0 (6.6.5)

and thus the variation in total complementary energy Pc ¼ UT
c � W c is also zero in an equilibrium

configuration. As before, it can be shown that this extremum in the complementary energy corresponds
to a local minimum, thus leading to the following principle:

Principle of Minimum Complementary Energy: Of all elastic stress states satisfying the given

boundary conditions, those that satisfy the equilibrium equations make the complementary energy

a local minimum.

Each of the previously developed minimum principles used general constitutive relations, either
(6.5.4) or (6.6.3), and thus both principles are valid for all elastic materials regardless of whether the
stress–strain law is linear or nonlinear. Fundamentally, the strain energy is expressed in terms of strain,
while the complementary energy is functionally written in terms of stress. As shown in Figure 6.2,
the strain energy for uniaxial deformation is equal to the area under the stress–strain curve, and thus
dU¼ sde. On the other hand, the complementary energy may be expressed by dU c¼ eds, and thusU c

will be the area above the uniaxial stress–strain curve, as shown in Figure 6.4. For the uniaxial case
with linear elastic behavior

Uc ¼ sxex � U ¼ s2x
E

� s2x
2E

¼ s2x
2E

¼ 1

2
sxex ¼ U (6.6.6)

ex

e

(Nonlinear Elastic, U Uc)

ex

e

(Linear Elastic, U = Uc)

dUc=eδσ

dU=σδe

Uc

U

Uc

U

σx

σ

x

σ

σ

FIGURE 6.4 Strain and Complementary Energy for Linear and Nonlinear Elastic Materials.
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This result is true for all deformations, and thus for linear elastic materials the complementary energy
is equal to the strain energy. Note also for this case

vUc

vsx
¼ v

vsx

�
s2x
2E

�
¼ sx

E
¼ ex (6.6.7)

which verifies the general relation (6.6.3). For the nonlinear elastic case, as shown in Figure 6.4, it is
apparent that the strain energy and complementary energy will not be the same; that is, U c s U.
However, using the fact that U c ¼ sxex � U, it follows that

vUc

vsx
¼ ex þ sx

vex
vsx

� vU

vex

vex
vsx

¼ ex þ sx
vex
vsx

� sx
vex
vsx

¼ ex

(6.6.8)

which again verifies the general relation (6.6.3) for the nonlinear case.
Additional related principles can be developed, including Castigiliano’s theorems and a mixed

formulation called Reissner’s principle (see Reismann and Pawlik, 1980 or Fung and Tong, 2001).

EXAMPLE 6.1: EULEReBERNOULLI BEAM THEORY
In order to demonstrate the utility of energy principles, consider an application dealing with the
bending of an elastic beam, as shown in Figure 6.5. The external distributed loading q will induce
internal bending moments M and shear forces V at each section of the beam. According to classical
EulereBernoulli theory, the bending stress sx and momentecurvature and momenteshear relations
are given by

sx ¼ �My

I
; M ¼ EI

d2w

dx2
; V ¼ dM

dx
(6.6.9)

where I ¼ Ð ÐAy2dA is the area moment of inertia of the cross-section about the neutral axis, and w is

the beam deflection (positive in y direction).

Considering only the strain energy caused by the bending stresses

U ¼ s2x
2E

¼ M2y2

2EI2
¼ E

2

�
d2w

dx2

�2
y2

x

y
q

Mo(0)

Vo(0) Vo(l )

Mo(l )

l

FIGURE 6.5 Euler–Bernoulli Beam Geometry.
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and thus the total strain energy in a beam of length l is

UT ¼
ðl
0


 ð ð
A

E

2

�
d2w

dx2

�2
y2dA

�
dx ¼

ðl
0

EI

2

�
d2w

dx2

�2
dx (6.6.10)

Now the work done by the external forces (tractions) includes contributions from the distributed
loading q and the loadings at the ends x ¼ 0 and l

W ¼
ðl
0
qwdx�



Vow�Mo

dw

dx

�l
0

(6.6.11)

Therefore, the total potential energy for this beam case is given by

P ¼ UT �W ¼
ðl
0



EI

2

�
d2w

dx2

�2

� qw

�
dxþ



Vow�Mo

dw

dx

�l
0

(6.6.12)

The first variation of this quantity must vanish

dP ¼ d

ðl
0



EI

2

�
d2w

dx2

�2

� qw

�
dxþ d



Vow�Mo

dw

dx

�l
0

¼
ðl
0
d



EI

2

�
d2w

dx2

�2

� qw

�
dxþ



Vodw�Mo

ddw

dx

�l
0

¼ EI

2

ðl
0
2
d2w

dx2
d2dw

dx2
dx�

ðl
0
qdwdxþ



Vodw�Mo

ddw

dx

�l
0

¼ 0

(6.6.13)

Now the first integral term can be integrated by parts twice to get

ðl
0

�
EI

d4w

dx4
� q

�
dwdxþ



ddw

dx
ðM �MoÞ � dwðV � VoÞ

�l
0

¼ 0 (6.6.14)

The integral and boundary terms must all vanish, thus implying

ðl
0

�
EI

d4w

dx4
� q

�
dwdx ¼ 0

V ¼ Vo or dw ¼ 0; x ¼ 0; l

M ¼ Mo or d

�
dw

dx

�
¼ 0; x ¼ 0; l

(6.6.15)

6.6 Principles of minimum potential and complementary energy 133



For this integral to vanish for all variations dw, the fundamental lemma in the calculus of var-
iations implies that the integrand must be zero, giving

EI
d4w

dx4
� q ¼ 0 (6.6.16)

This result is simply the differential equilibrium equation for the beam, and thus the stationary
value for the potential energy leads directly to the governing equilibrium equation in terms of
displacement and the associated boundary conditions. Of course, this entire formulation is based
on the simplifying assumptions found in EulereBernoulli beam theory, and resulting solutions
would not match with the more exact theory of elasticity results.

6.7 Rayleigh–Ritz method
The previous beam example indicates a correspondence between the governing differential equation(s)
and a variational problem of minimizing the potential energy of the system. Such a correspondence
exists for many other types of problems in structural mechanics and elasticity. For problems of
complicated shape or loading geometry, the solution to the governing differential equation cannot be
found by analytical methods. For such cases, approximate solution schemes have been developed
based on the variational form of the problem. Several such approximate schemes have been con-
structed, and one of the more important techniques is the Rayleigh–Ritz method.

This particular technique is based on the idea of constructing a series of trial approximating
functions that satisfy the boundary conditions but not the differential equation(s). For the
elasticity displacement formulation (Section 5.4), this concept would express the displacements
in the form

u ¼ uo þ a1u1 þ a2u2 þ a3u3 þ. ¼ uo þ
PN
j¼1

ajuj

v ¼ vo þ b1v1 þ b2v2 þ b3v3 þ. ¼ vo þ
PN
j¼1

bjvj

w ¼ wo þ c1w1 þ c2w2 þ c3w3 þ. ¼ wo þ
PN
j¼1

cjwj

(6.7.1)

where the functions uo, vo, wo are chosen to satisfy any nonhomogeneous displacement boundary
conditions and uj, vj, wj satisfy the corresponding homogeneous boundary conditions. Note that these
forms are not required to satisfy the traction boundary conditions. Normally, these trial functions are
chosen from some combination of elementary functions such as polynomial, trigonometric, or
hyperbolic forms. The unknown constant coefficients aj, bj, cj are to be determined so as to minimize
the potential energy of the problem, thus approximately satisfying the variational formulation of the
problem under study. Using this type of approximation, the total potential energy will thus be a
function of these unknown coefficients

P ¼ P
�
aj; bj; cj

�
(6.7.2)
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and the minimizing condition can be expressed as a series of expressions

vP

vaj
¼ 0;

vP

vbj
¼ 0;

vP

vcj
¼ 0 (6.7.3)

This set forms a system of 3N algebraic equations that can be solved to obtain the parameters aj, bj, cj.
Under suitable conditions on the choice of trial functions (completeness property), the approximation
will improve as the number of included terms is increased.

Commonly, this technique is applied to a reduced elasticity problem involving only one or two
components of displacement typically found in rods, beams, plates, and shells. Once the approximate
displacement solution is obtained, the strains and stresses can be calculated from the appropriate field
equations. However, since the strains and stresses are derivable through differentiation, the accuracy
in these variables will in general not be as good as that obtained for the displacements themselves
(see Exercises 6.16 and 6.17). In order to demonstrate the Ritz technique, consider again the
Euler–Bernoulli beam problem from Example 6.1.

EXAMPLE 6.2: RAYLEIGHeRITZ SOLUTION OF A SIMPLY SUPPORTED
EULEReBERNOULLI BEAM
Consider a simply supported Euler-Bernoulli beam of length l carrying a uniform loading qo. This
one-dimensional problem has displacement boundary conditions

w ¼ 0 at x ¼ 0; l (6.7.4)

and tractions or moment conditions

EI
d2w

dx2
¼ 0 at x ¼ 0; l (6.7.5)

The Ritz approximation for this problem is of the form

w ¼ wo þ
XN
j¼1

cjwj (6.7.6)

With no nonhomogeneous boundary conditions, wo ¼ 0. For this example, we choose a polyno-
mial form for the trial solution. An appropriate choice that satisfies the homogeneous conditions
(6.7.4) is wj ¼ x j(l � x). Note this form does not satisfy the traction conditions (6.7.5). Using
the previously developed relation for the potential energy (6.6.12), we get

P ¼
ðl
0



EI

2

�
d2w

dx2

�2

� qow

�
dx

¼
ðl
0

"
EI

2

 XN
j¼1

cj
�
jð j� 1Þlx j�2 � jð jþ 1Þx j�1

	!2 � qo
XN
j¼1

cjx
jðl� xÞ

#
dx

(6.7.7)
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Retaining only a two-term approximation (N ¼ 2), the coefficients are found to be

c1 ¼ qol
2

24EI
; c2 ¼ 0

and this gives the following approximate solution

w ¼ qol
2

24EI
xðl� xÞ (6.7.8)

Note that the approximate solution predicts a parabolic displacement distribution, while the
exact solution to this problem is given by the cubic relation

w ¼ qox

24EI

�
l3 þ x3 � 2lx2

�
(6.7.9)

Actually, for this special case, the exact solution can be obtained from a Ritz scheme by
including polynomials of degree three.

Other similar approximate techniques have been developed based on variational principles of com-
plementary energy or the Reissner mixed formulation. A more generalized approximating scheme
called the weighted residual method includes Ritz and several other techniques within the general
approach. Although these approximate variational methods offer the potential to solve complex
problems of engineering interest, they suffer a very important drawback involved with the selection of
the approximating functions. Apart from the general properties the functions are required to satisfy,
there exists no systematic procedure of constructing them. The selection process becomes more
difficult when the domain is geometrically complex and/or the boundary conditions are complicated.
Thus, these schemes have had limited success in solving such complicated problems. However,
because these methods can easily provide approximate solutions over domains of simple shape with
predetermined boundary conditions, they are ideally suited for finite element techniques, whereby a
geometrically complex domain is divided into subdomains of simple geometry. Over each subdomain
or element the governing differential equation may be formulated using variational methods, and the
approximation functions can then be systematically generated for each typical element (Reddy, 2006).
More details on these techniques are given in Chapter 16.
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EXERCISES

6.1 The uniaxial deformation case as shown in Figure 6.1 was used to determine the strain energy
under uniform stress with zero body force. Determine this strain energy for the case in which
the stress varies continuously as a function of x and also include the effect of a body force Fx.
Neglecting higher-order terms, show that the result is the same as previously given by (6.1.4).

6.2 Since the strain energy has physical meaning that is independent of the choice of coordinate
axes, it must be invariant to all coordinate transformations. Because U is a quadratic form in
the strains or stresses, it cannot depend on the third invariants IIIe or I3, and so it must depend
only on the first two invariants of the strain or stress tensors. Show that the strain energy can be
written in the following forms

U ¼
�
1

2
lþ m

�
I2e � 2mIIe

¼ 1

2E

�
I21 � 2ð1þ nÞI2

�
6.3 Starting with the general expression (6.1.7), explicitly develop forms (6.1.9) and (6.1.10) for

the strain energy density.

6.4 Differentiate the general three-dimensional isotropic strain energy form (6.1.9) to show that

sij ¼ vUðeÞ
veij

6.5 For the isotropic case, express the strain energy function in terms of the principal strains, and
then by direct differentiation show that

s1 ¼ vU

ve1
; s2 ¼ vU

ve2
; s3 ¼ vU

ve3

6.6 Using equations (6.1.12), develop the symmetry relations (6.1.13), and use these to prove the
symmetry in the elasticity tensor Cijkl ¼ Cklij .

6.7 For the general anisotropic case assuming that Cijkl ¼ Cklij, show that sij ¼ vUðeÞ=veij.
6.8 Verify the decomposition of the strain energy into volumetric and deviatoric parts as given by

equations (6.1.16) and (6.1.17).

6.9 Starting with relations (6.1.16) and (6.1.17), show that the volumetric and distortional strain
energies can be expressed in terms of the invariants of the stress matrix as

Uv ¼ 1� 2n

6E
I21

Ud ¼ 1

6m

�
I21 � 3I2

�
Results from Exercise 6.8 may be helpful.
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6.10 Show that the distortional strain energy given by (6.1.17) is related to the octahedral shear
stress (3.5.4)2 by the relation

Ud ¼ 3

2

1þ n

E
s2oct ¼

3

4m
s2oct

Results from Exercise 3.5 may be helpful.

6.11 A two-dimensional state of plane stress in the x,y-plane is defined by the stress matrix

sij ¼
2
4 sx sxy 0
sxy sy 0
0 0 0

3
5

Determine the strain energy density for this case in terms of these nonzero stress components.

6.12 The stress field for a beam of length 2l and depth 2c under end bending moments M (see
Figure 8.2) is given by

sx ¼ � 3M

2c3
y; sy ¼ sz ¼ sxy ¼ syz ¼ szx ¼ 0

Determine the strain energy density and show that the total strain energy in the beam is given by

UT ¼ 3M2l

2Ec3
¼ M2l

EI

where I is the section moment of inertia. Assume unit thickness in the z-direction.

6.13 The stress field for the torsion of a rod of circular cross-section is given by

sx ¼ sy ¼ sz ¼ sxy ¼ 0; sxz ¼ �may; syz ¼ max

where a is a constant and the z-axis coincides with the axis of the rod. Evaluate the strain
energy density for this case, and determine the total strain energy in a rod with section radius
R and length L .

6.14 From Chapter 9 using the Saint-Venant formulation, the stress field for the torsion of rod of
general cross-section R can be expressed by

sx ¼ sy ¼ sz ¼ sxy ¼ 0 ; sxz ¼ vf

vy
; syz ¼ �vf

vx

where f ¼ fðx; yÞ is the Prandtl stress function. Show that the total strain energy in a bar of
length L is given by

U ¼ L

2m

ð ð
R


�
vf

vx

�2
þ
�
vf

vy

�2�
dxdy

Next show that the total potential energy per unit length can be expressed by

P ¼
ð ð

R

�
1

2m


�
vf

vx

�2
þ
�
vf

vy

�2�
� 2af


dxdy
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6.15 Using the reciprocal theorem, choose the first state as u
ð1Þ
i ¼ Axi; F

ð1Þ
i ¼ 0; T

ð1Þ
i ¼ 3kAni,

and take the second state as ui, Fi, Ti to show that the change in volume of the body is given by

DV ¼
ð
V
eiidV ¼ 1

3k

�ð
V
FixidV þ

ð
S
TixidS

)

where A is an arbitrary constant and k is the bulk modulus.

6.16 Rework Example 6.2 using the trigonometric Ritz approximation wj ¼ sin jpx
l . Develop a

two-term approximate solution, and compare it with the displacement solution developed in
the text. Also compare each of these approximations with the exact solution (6.7.9) at midspan
x ¼ l/2.

6.17 Using the bending formulae (6.6.9), compare the maximum bending stresses from the cases
presented in Example 6.2 and Exercise 6.16. Numerically compare these results with the exact
solution; see (6.7.9) at midspan x ¼ l/2.
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Two-Dimensional Formulation 7
Because of the complexity of the elasticity field equations, analytical closed-form solutions to fully
three-dimensional problems are very difficult to accomplish. Thus, most solutions are developed for
reduced problems that typically include axisymmetry or two-dimensionality to simplify particular
aspects of the formulation and solution. We now wish to examine in detail the formulation of two-
dimensional problems in elasticity. Our initial formulation will result in a boundary-value problem
cast within a two-dimensional domain in the x,y-plane using Cartesian coordinates. This work will
then be reformulated in polar coordinates to allow for the development of important solutions in that
coordinate system. Because all real elastic structures are three-dimensional, the theories set forth here
will be approximate models. The nature and accuracy of the approximation depends on problem and
loading geometry. Although four different formulations are developed, the two basic theories of plane
strain and plane stress represent the fundamental plane problem in elasticity. These two theories apply
to significantly different types of two-dimensional bodies; however, their formulations yield very
similar field equations. It will be shown that these two theories can be reduced to one governing
equation in terms of a single unknown stress function. This reduction then allows many solutions to be
generated to problems of engineering interest, and such solutions are presented in the following
chapter. A detailed account of the history and development of plane elasticity theory has been given by
Teodorescu (1964).

7.1 Plane strain
Consider an infinitely long cylindrical (prismatic) body shown in Figure 7.1. If the body forces and
tractions on the lateral boundaries are independent of the z-coordinate and have no z component, then
the deformation field within the body can be taken in the reduced form

u ¼ uðx; yÞ; v ¼ vðx; yÞ; w ¼ 0 (7.1.1)

This deformation is referred to as a state of plane strain in the x,y-plane. It should be obvious that for
such a case all cross-sections R will have identical displacements, and thus the three-dimensional
problem is reduced to a two-dimensional formulation in region R in the x,y-plane.

Using the strain–displacement relations (2.2.5), the strains corresponding to this plane problem
become

ex ¼ vu

vx
; ey ¼ vv

vy
; exy ¼ 1

2

�
vu

vy
þ vv

vx

�

ez ¼ exz ¼ eyz ¼ 0

(7.1.2)
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FIGURE 7.1 Long Cylindrical Body Representing Plane Strain Conditions.

From the isotropic form of Hooke’s law (4.2.8), the allowable stresses reduce to

sx ¼ l
�
ex þ ey

�þ 2mex

sy ¼ l
�
ex þ ey

�þ 2mey

sz ¼ l
�
ex þ ey

� ¼ v
�
sx þ sy

�
sxy ¼ 2mexy; sxz ¼ syz ¼ 0

(7.1.3)

Note that the second expression for sz has used the first two relations of (7.1.3) to write sz in terms of
the in-plane stress components. Thus, once sx and sy are determined, sz is easily found from Hooke’s
law. For this case, although ez ¼ 0, the corresponding normal stress sz will not in general vanish. It
should be recognized that all strain and stress components will be functions of only the in-plane
coordinates x and y.

For plane strain, the equilibrium equations (3.6.5) reduce to

vsx

vx
þ vsxy

vy
þ Fx ¼ 0

vsxy
vx

þ vsy

vy
þ Fy ¼ 0

(7.1.4)

where the third equation will vanish identically. Using relations (7.1.2) and (7.1.3), the equilibrium
relations can be expressed in terms of displacement, yielding Navier equations

mV2uþ ðlþ mÞ v

vx

�
vu

vx
þ vv

vy

�
þ Fx ¼ 0

mV2vþ ðlþ mÞ v

vy

�
vu

vx
þ vv

vy

�
þ Fy ¼ 0

(7.1.5)

where V2 is the two-dimensional Laplacian operator V2 ¼ (v2/vx2) þ (v2/vy2).
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With regard to strain compatibility for plane strain, the Saint-Venant relations (2.6.2) reduce to

v2ex
vy2

þ v2ey
vx2

¼ 2
v2exy
vxvy

(7.1.6)

Expressing this relation in terms of stress gives the corresponding Beltrami–Michell equation

V2
�
sx þ sy

� ¼ � 1

1� n

�
vFx

vx
þ vFy

vy

�
(7.1.7)

Thus, the plane strain problem is formulated in the two-dimensional region R with boundary S as
shown in Figure 7.2. The displacement formulation is given by relations (7.1.5) with boundary
conditions

u ¼ ubðx; yÞ; v ¼ vbðx; yÞ on S (7.1.8)

while the stress or traction formulation includes field relations (7.1.4) and (7.1.7) with boundary
conditions

Tn
x ¼ T

ðbÞ
x ðx; yÞ ¼ s

ðbÞ
x nx þ sðbÞxy ny

Tn
y ¼ T

ðbÞ
y ðx; yÞ ¼ sðbÞxy nx þ s

ðbÞ
y ny on S

(7.1.9)

Note that from our initial assumptions for plane strain, Tn
z ¼ 0. The solution to the plane strain

problem involves the determination of the in-plane displacements, strains, and stresses {u, v, ex, ey , exy,
sx, sy, sxy} in R. The out-of-plane stress sz can be determined from the in-plane stresses by using
relation (7.1.3)3. This then completes our formulation of plane strain.

Before moving on to another case, let us consider the situation in which the cylindrical body in
Figure 7.1 is now of finite length. First consider the situation in which the body has fixed and fric-
tionless ends at say (z ¼ �l ). This case leads to end conditions

wðx; y;�lÞ ¼ 0; sxzðx; y;�lÞ ¼ syzðx; y;�lÞ ¼ 0

But these conditions are identically satisfied by the original plane strain formulation, and thus the
original formulation also satisfies this finite length problem. Note that the restraining forces at the ends

R

So
Si

S = Si + So

x

y

FIGURE 7.2 Typical Domain for the Plane Elasticity Problem.

7.1 Plane strain 143



can be determined by integrating sz over the cross-section R. Although this specific problem has
limited practical applications, the solution can be applied in an approximate sense for a long cylinder
with any end conditions using Saint-Venant’s principle.

If we wish to find the solution to a long but finite cylindrical body with no end tractions, a corrective
solution must be added to the usual plane strain solution to remove the unwanted end loadings. Such a
corrective solution must have zero tractions on the lateral sides of the body and prescribed end
tractions equal but opposite to that obtained from the plane strain solution. Finding such a corrective
solution to satisfy exact pointwise traction conditions on the ends is normally quite difficult.
Commonly the Saint-Venant principle is invoked and the exact conditions are replaced by a simpler,
statically equivalent distribution. Exercise 7.4 considers a specific problem of this type.

7.2 Plane stress
The second type of two-dimensional theory applies to domains bounded by two parallel planes separated
by a distance that is small in comparison to other dimensions in the problem. Again, choosing the x,
y-plane to describe the problem, the domain is bounded by two planes z ¼ �h, as shown in Figure 7.3.
The theory further assumes that these planes are stress free, and thus sz ¼ sxz ¼ syz ¼ 0 on each
face. Because the region is thin in the z direction, there can be little variation in these stress com-
ponents through the thickness, and thus they will be approximately zero throughout the entire domain.
Finally, because the region is thin in the z direction it can be argued that the other nonzero stress
components will have little variation with z. These arguments can then be summarized by the stress
state

sx ¼ sxðx; yÞ; sy ¼ syðx; yÞ; sxy ¼ sxyðx; yÞ; sz ¼ sxz ¼ syz ¼ 0 (7.2.1)

and this form constitutes a state of plane stress in an elastic solid. In order to maintain a stress field
independent of z, there can be no body forces or surface tractions in the z direction. Furthermore, the
nonzero body forces and tractions must be independent of z or distributed symmetrically about the
midplane through the thickness, thus allowing average values to be used. Therefore, plane stress
problems may be thought of as in-plane deformation of thin elastic plates.

x

y

z
R

2h

FIGURE 7.3 Thin Elastic Plate Representing Plane Stress Conditions.
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Using the simplified plane stress state, the corresponding strain field follows from Hooke’s law

ex ¼ 1

E

�
sx � nsy

�

ey ¼ 1

E

�
sy � nsx

�

ez ¼ � n

E

�
sx þ sy

� ¼ � n

1� n

�
ex þ ey

�

exy ¼ 1þ v

E
sxy; exz ¼ eyz ¼ 0

(7.2.2)

Similar to the previous plane strain theory, the second expression for ez has used the first two relations
of (7.2.2) to write the out-of-plane strain in terms of in-plane components. Note that although ez¼ 0 for
plane strain, it will not in general vanish for plane stress. It should be apparent from (7.2.2) that all
strains will be independent of z. Relations (7.2.2) can be inverted to express the stresses in terms of the
strains (see Exercise 7.6).

The strain–displacement equations for plane stress reduce to

ex ¼ vu

vx
; ey ¼ vv

vy
; ez ¼ vw

vz

exy ¼ 1

2

�
vu

vy
þ vv

vx

�

eyz ¼ 1

2

�
vv

vz
þ vw

vy

�
¼ 0

exz ¼ 1

2

�
vu

vz
þ vw

vx

�
¼ 0

(7.2.3)

The relations involving the three out-of-plane strains ez, exz, and eyz produce some unwanted
results. For example, the last two relations of (7.2.3) imply that the in-plane displacements u and v
are functions of z, thus making the theory three-dimensional. Likewise, the relation for ez when
viewed with equation (7.2.2)3 implies that w is a linear function of z. Exercise 7.8 investigates these
issues in more detail, and further discussion is given in Timoshenko and Goodier (1970), Article 98.
Normally, these results are not used in the theory and this leads to an approximation in the
formulation.

Under plane stress conditions, the equilibrium equations reduce to the identical form as in plane
strain theory

vsx

vx
þ vsxy

vy
þ Fx ¼ 0

vsxy
vx

þ vsy

vy
þ Fy ¼ 0

(7.2.4)
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where Fx and Fy are functions of x and y and Fz¼ 0. Expressing these equilibrium equations in terms of
the displacements yields the Navier equations for plane stress

mV2uþ E

2ð1� nÞ
v

vx

�
vu

vx
þ vv

vy

�
þ Fx ¼ 0

mV2nþ E

2ð1� nÞ
v

vy

�
vu

vx
þ vv

vy

�
þ Fy ¼ 0

(7.2.5)

Notice that the corresponding system for plane strain (7.1.5) is similar but not identical to this plane
stress result.

To develop the plane stress reduction in the compatibility relations (2.6.2), the three relations
involving the out-of-plane strain component ez are commonly neglected. This again brings out the
approximate nature of the plane stress formulation. The neglected compatibility relations are further
examined in Exercise 7.9. Under these conditions, the only remaining compatibility relation for plane
stress is identical to that found in plane strain

v2ex
vy2

þ v2ey
vx2

¼ 2
v2exy
vxvy

(7.2.6)

Expressing this relation in terms of stress gives the corresponding Beltrami–Michell equation

V2
�
sx þ sy

� ¼ �ð1þ nÞ
�
vFx

vx
þ vFy

vy

�
(7.2.7)

Notice that this result is again similar but not identical to the corresponding plane strain relation.
Similar to plane strain, the plane stress problem is formulated in the two-dimensional region R with

boundary S (see Figure 7.2). The displacement formulation is specified by the governing Navier
relations (7.2.5) with boundary conditions of the form given by equations (7.1.8). The stress or traction
formulation includes the governing equations (7.2.4) and (7.2.7) with boundary conditions of the form
(7.1.9). The solution to the plane stress problem then involves the determination of the in-plane dis-
placements, strains, and stresses {u, v, ex, ey , exy , sx, sy , sxy} in R. The out-of-plane strain ez can be
determined from the in-plane strains by using relation (7.2.2)3. This completes our formulation of
plane stress.

In following the formulation developments of plane strain and plane stress, it should be
apparent that although unfortunately the two theories do not have identical governing equations,
many relations are quite similar. Note that each theory has identical equilibrium equations (7.1.4)
and (7.2.4) and boundary condition specifications. Furthermore, each theory has similar Navier
equations (7.1.5) and (7.2.5) and compatibility relations (7.1.7) and (7.2.7). Focusing attention on
these similar relations, it is observed that the basic difference between these equations is simply
some coefficients involving the elastic material constants. This leads to the idea that perhaps a
simple change in elastic moduli would bring one set of relations into an exact match with the
corresponding result from the other plane theory. This in fact is the case, and it is easily shown that
through transformation of the elastic moduli E and n, as specified in Table 7.1, all plane stress
problems can be transformed into the corresponding plane strain model and vice versa. Thus, solving
one type of plane problem automatically gives the other solution through a simple transformation of
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elastic moduli in the final answer. It should be noted that for the particular value of Poisson’s ratio
n ¼ 0, plane strain and plane stress solutions will be identical.

7.3 Generalized plane stress
Recall that the approximate nature of the plane stress formulation produced some inconsistencies, in
particular out-of-plane behavior, and this resulted in some three-dimensional effects in which the in-
plane displacements were functions of z. In order to avoid this situation, elasticians have developed an
alternate approach commonly referred to as generalized plane stress. This theory is based on aver-
aging the field quantities through the thickness of the domain shown in Figure 7.3. The averaging
operator is defined by

4ðx; yÞ ¼ 1

2h

ðh
�h

4ðx; y; zÞdz (7.3.1)

and it is noted that this operation removes the z dependency from the function. We again assume that h
is much smaller than other dimensions associated with the problem.

The tractions on surfaces z ¼ �h are again taken to be zero, while the loadings on the edge of the
plate have no z component and are either independent of z or are symmetrically distributed through the
thickness. Likewise, any body forces cannot have a z component and they must also be either inde-
pendent of z or symmetrically distributed through the thickness. Under these assumptions, the out-of-
plane displacement will be an odd function of z, implying w(x,y,z) ¼ �w(x,y,�z), and points on the
middle plane will have no z displacement; that is, w(x,y,0)¼ 0. These conditions imply that the average
value of w will be zero

w ¼ 1

2h

ðh
�h

wðx; y; zÞdz ¼ 0 (7.3.2)

The assumed tractions on z ¼ �h can be expressed as

szðx; y;�hÞ ¼ sxzðx; y;�hÞ ¼ syzðx; y;�hÞ ¼ 0 (7.3.3)

Table 7.1 Elastic Moduli Transformation Relations for Conversion

Between Plane Stress and Plane Strain Problems

E n

Plane stress to plane strain E

1� n2

n

1� n

Plane strain to plane stress Eð1þ 2nÞ
ð1þ nÞ2

n

1þ n
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The equilibrium equation in the z direction becomes

vsxz
vx

þ vsyz
vy

þ vsz

vz
¼ 0

Evaluating this relation at z ¼ �h and using (7.3.3) drops the first two derivatives and gives

vszðx; y;�hÞ
vz

¼ 0

Thus, both sz and its normal derivative vanish at z ¼ �h. A simple Taylor series expansion of sz
through the thickness would then imply that this stress is of order h2, and this further justifies the
assumption that sz vanishes throughout the interior of the thin plate.

If we now take the average value of all remaining field equations, the resulting system is given by

u ¼ uðx; yÞ; v ¼ vðx; yÞ; w ¼ 0

sz ¼ sxz ¼ syz ¼ 0

sx ¼ l�
�
ex þ ey

�þ 2mex

sy ¼ l�
�
ex þ ey

�þ 2mey

sxy ¼ 2mexy

ez ¼ � l

lþ 2m

�
ex þ ey

�

(7.3.4)

where l� ¼ 2lm

ðlþ 2mÞ: The equilibrium equations become

vsx

vx
þ vsxy

vy
þ Fx ¼ 0

vsxy
vx

þ vsy

vy
þ Fy ¼ 0

(7.3.5)

and written in terms of displacements

mV2uþ ðl� þ mÞ v

vx

�
vu

vx
þ vv

vy

�
þ Fx ¼ 0

mV2vþ ðl� þ mÞ v

vy

�
vu

vx
þ vv

vy

�
þ Fy ¼ 0

(7.3.6)

Note the coefficient l�þ m ¼ E/2(1 � n). Finally, in terms of the averaged variables, all compatibility
relations reduce to the single statement

V2
�
sx þ sy

� ¼ � 2ðl� þ mÞ
l� þ 2m

�
vFx

vx
þ vFy

vy

�
(7.3.7)

and again the coefficient reduces as 2(l� þ m)/(l� þ 2m) ¼ 1 þ n. It is then evident that generalized
plane stress relations (7.3.4)–(7.3.7) in terms of the averaged values are the same as the original plane
stress results in terms of the actual values.
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The only advantage of pursuing the generalized plane stress formulation lies in the fact that all
equations are satisfied exactly by these average variables, thereby eliminating the inconsistencies
found in the previous plane stress formulation. However, this gain in rigor does not generally
contribute much to applications, and thus we normally use only the plane strain and plane stress
formulations from Sections 7.1 and 7.2.

7.4 Antiplane strain
One additional plane theory of elasticity involves a formulation based on the existence of only out-of-
plane deformation. This theory is sometimes used in geomechanics applications to model de-
formations of portions of the earth’s interior. The formulation begins with the assumed displacement
field

u ¼ v ¼ 0; w ¼ wðx; yÞ (7.4.1)

For such a system of displacements, the strain field becomes

ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

vw

vx
; eyz ¼ 1

2

vw

vy

(7.4.2)

and from Hooke’s law the stresses reduce to

sx ¼ sy ¼ sz ¼ sxy ¼ 0

sxz ¼ 2mexz ¼ m
vw

vx
; syz ¼ 2meyz ¼ m

vw

vy

(7.4.3)

The equilibrium equations imply that

Fx ¼ Fy ¼ 0

vsxz
vx

þ vsyz
vy

þ Fz ¼ 0
(7.4.4)

and written out in terms of the single displacement component, the equilibrium statement becomes

mV2wþ Fz ¼ 0 (7.4.5)

where again V2 is the two-dimensional Laplacian operator. It is observed that for zero body forces, the
single displacement component satisfies Laplace’s equation. Because many solution schemes can be
applied to this equation, the displacement formulation provides a convenient method to solve this type
of problem.

Similar to the other plane problems, antiplane strain is formulated in the two-dimensional region R
with boundary S (see Figure 7.2). The boundary conditions associated with the problem would take
either the displacement form

w ¼ wbðx; yÞ on S (7.4.6)
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or traction form:

Tn
z ¼ T

ðbÞ
z ðx; yÞ ¼ sðbÞxz nx þ sðbÞyz ny

¼ m

�
vw

vx
nx þ vw

vy
ny

�ðbÞ
on S

(7.4.7)

The solution to the antiplane strain problem then involves the determination of the out-of-plane
displacement, strains, and stresses {w, exz, eyz, sxz, syz} in R.

7.5 Airy stress function
Numerous solutions to plane strain and plane stress problems can be determined through the use of
a particular stress function technique. The method employs the Airy stress function and will reduce
the general formulation to a single governing equation in terms of a single unknown. The resulting
governing equation is then solvable by several methods of applied mathematics, and thus many
analytical solutions to problems of interest can be generated. The stress function formulation is based
on the general idea of developing a representation for the stress field that satisfies equilibrium and
yields a single governing equation from the compatibility statement.

The method is started by reviewing the equilibrium equations for the plane problem, either re-
lations (7.1.4) or (7.2.4). For now, we retain the body forces but assume that they are derivable from a
potential function V such that

Fx ¼ �vV

vx
; Fy ¼ �vV

vy
(7.5.1)

This assumption is not very restrictive because many body forces found in applications (e.g.,
gravity loading) fall into this category. Under form (7.5.1), the plane equilibrium equations can be
written as

vðsx � VÞ
vx

þ vsxy
vy

¼ 0

vsxy
vx

þ v
�
sy � V

�
vy

¼ 0

(7.5.2)

It is observed that these equations will be identically satisfied by choosing a representation

sx ¼ v2f

vy2
þ V

sy ¼ v2f

vx2
þ V

sxy ¼ � v2f

vxvy

(7.5.3)

where f ¼ f(x,y) is an arbitrary form called the Airy stress function.
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With equilibrium now satisfied, we focus attention on the remaining field equations in the stress
formulation, that is, the compatibility relations in terms of stress. These equations were given by
(7.1.7) for plane strain and (7.2.7) for plane stress, and it is noted that they differ only by the coefficient
in front of the body force terms. Substituting the stress function form (7.5.3) into these compatibility
relations gives the following pair

v4f

vx4
þ 2

v4f

vx2vy2
þ v4f

vy4
¼ �1� 2n

1� n

�
v2V

vx2
þ v2V

vy2

�
/ plane strain

v4f

vx4
þ 2

v4f

vx2vy2
þ v4f

vy4
¼ �ð1� nÞ

�
v2V

vx2
þ v2V

vy2

�
/ plane stress

(7.5.4)

which can also be written as

V4f ¼ �1� 2n

1� n
V2V / plane strain

V4f ¼ �ð1� nÞV2V / plane stress

(7.5.5)

The form V4 ¼ V2V2 is called the biharmonic operator. If the body force vanishes or the potential
function satisfies Laplace’s equation V2V ¼ 0, then both the plane strain and plane stress forms reduce
to

v4f

vx4
þ 2

v4f

vx2vy2
þ v4f

vy4
¼ V4f ¼ 0 (7.5.6)

This relation is called the biharmonic equation, and its solutions are known as biharmonic functions.
Thus, the plane problem of elasticity has been reduced to a single equation in terms of the Airy stress
function f. This function is to be determined in the two-dimensional region R bounded by the
boundary S, as shown in Figure 7.2. Appropriate boundary conditions over S are necessary to complete
a solution. Using relations (7.5.3), traction boundary conditions would involve the specification of
second derivatives of the stress function. However, this general traction condition can be reformulated
to relate the resultant boundary loadings to first-order derivatives; see Section 11.5 or Sokolnikoff
(1956) for details. An interesting review article by Meleshko (2003) gives a detailed historical
overview of the formulation and solution methods for the two-dimensional biharmonic equation.
Applications to specific boundary-value problems are demonstrated in the next chapter. Displacement
boundary conditions require more development and are postponed until Chapter 10. Further general
details on stress functions are given in Chapter 13.

It is interesting to observe that for the case of zero body forces, the governing Airy stress function
equation (7.5.6) is the same for both plane strain and plane stress and is independent of elastic con-
stants. Therefore, if the region is simply connected (see Figure 2.9) and the boundary conditions
specify only tractions, the stress fields for plane strain and plane stress will be identical and inde-
pendent of elastic constants. Note, however, that the resulting strains and displacements calculated
from these common stresses would not be the same for each plane theory. This occurs because plane
strain and plane stress have different forms for Hooke’s law and strain–displacement relations. Of
course, because the two plane elasticity problems represent significantly different models, we would
not expect that all parts of the solution field would be identical. Problems with multiply connected
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regions or displacement boundary conditions bring additional displacement relations into the
formulation, and thus we can no longer make the argument that the stress fields will be the same and
remain independent of elastic moduli.

7.6 Polar coordinate formulation
Because we will make use of polar coordinates in the solution of many plane problems in elasticity, the
previous governing equations will now be developed in this curvilinear system. Polar coordinates were
originally presented in Figure 1.8, and Example 1.5 developed the basic vector differential operations.
For such a coordinate system, the solution to plane strain and plane stress problems involves the
determination of the in-plane displacements, strains, and stresses {ur , uq, er , eq, erq, sr , sq, srq} in R
subject to prescribed boundary conditions on S (see Figure 7.2).

The polar coordinate form of the strain–displacement relations can be extracted from developments
of Section 2.7 or results of Exercise 2.19. Dropping the z dependency in the cylindrical coordinate
forms (2.7.3) directly gives the following desired results

er ¼ vur
vr

eq ¼ 1

r

�
ur þ vuq

vq

�

erq ¼ 1

2

�
1

r

vur
vq

þ vuq
vr

� uq
r

�
(7.6.1)

These relations can also be developed using displacement and strain transformation laws (see
Exercise 7.16). As per the discussion in Section 4.3, the basic form of Hooke’s law will not change
when moving to an orthogonal curvilinear system, and the cylindrical form given by relation (4.3.2)
can be applied to the plane problem in polar coordinates. Thus, the original plane strain and plane
stress forms for Hooke’s law do not change other than a simple transformation of the subscripts from x
and y to r and q

Plane strain Plane stress

sr ¼ lðer þ eqÞ þ 2mer er ¼ 1

E
ðsr � nsqÞ

sq ¼ lðer þ eqÞ þ 2meq eq ¼ 1

E
ðsq � nsrÞ

sz ¼ lðer þ eqÞ ¼ nðsr þ sqÞ ez ¼ �n

E
ðsr þ sqÞ ¼ � n

1� n
ðer þ eqÞ

srq ¼ 2merq; sqz ¼ srz ¼ 0 erq ¼ 1þ n

E
srq; eqz ¼ erz ¼ 0

(7.6.2)

Likewise, the results of Section 3.7 or Exercise 3.23 provide the appropriate forms for the equilibrium
equations
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vsr

vr
þ 1

r

vsrq
vq

þ ðsr � sqÞ
r

þ Fr ¼ 0

vsrq
vr

þ 1

r

vsq

vq
þ 2srq

r
þ Fq ¼ 0

(7.6.3)

Expressing the preceding relations in terms of displacements gives the following set of Navier
equations

Plane strain

m

�
V2ur � 2

r2
vuq
vq

� ur
r2

�
þ ðlþ mÞ v

vr

�
vur
vr

þ ur
r
þ 1

r

vuq
vq

�
þ Fr ¼ 0

m

�
V2uq þ 2

r2
vur
vq

� uq
r2

�
þ ðlþ mÞ 1

r

v

vq

�
vur
vr

þ ur
r
þ 1

r

vuq
vq

�
þ Fq ¼ 0

Plane stress

m

�
V2ur � 2

r2
vuq
vq

� ur
r2

�
þ E

2ð1� nÞ
v

vr

�
vur
vr

þ ur
r
þ 1

r

vuq
vq

�
þ Fr ¼ 0

m

�
V2uq þ 2

r2
vur
vq

� uq
r2

�
q

þ E

2ð1� nÞ
1

r

v

vq

�
vur
vr

þ ur
r
þ 1

r

vuq
vq

�
þ Fq ¼ 0

(7.6.4)

where we have used results from Example 1.5, and the two-dimensional Laplacian is given by

V2 ¼ v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

vq2
(7.6.5)

Again using results from Example 1.5 and the fact that sx þ sy ¼ sr þ sq, the compatibility equations
(7.1.7) and (7.2.7) can be expressed as

V2ðsr þ sqÞ ¼ � 1

1� n

�
vFr

vr
þ Fr

r
þ 1

r

vFq

vq

�
. plane strain

V2ðsr þ sqÞ ¼ �ð1þ nÞ
�
vFr

vr
þ Fr

r
þ 1

r

vFq

vq

�
. plane stress

(7.6.6)

Relations (7.5.3) between the stress components and Airy function can be easily transformed to polar
form using results from Exercise 3.3 and the chain rule to convert spatial derivatives. For the case of
zero body forces, this yields

sr ¼ 1

r

vf

vr
þ 1

r2
v2f

vq2

sq ¼ v2f

vr2

srq ¼ � v

vr

�
1

r

vf

vq

�
(7.6.7)
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It can be verified that this form will satisfy the equilibrium equations (7.6.3) identically, and in the
absence of body forces the compatibility relations (7.6.6) reduce to the biharmonic equation in polar
coordinates

V4f ¼
�
v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

vq2

��
v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

vq2

�
f ¼ 0 (7.6.8)

Again, the plane problem is then formulated in terms of an Airy function f(r, q) with a single governing
biharmonic equation. Referring to Figure 7.2, this function is to be determined in the two-dimensional
region R bounded by the boundary S. Appropriate boundary conditions over S are necessary to
complete a solution. Several example solutions in polar coordinates are given in the next chapter.
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EXERCISES

7.1 Invert the plane strain form of Hooke’s law (7.1.3) and express the strains in terms of the
stresses as

ex ¼ 1þ n

E

�ð1� nÞsx � nsy
�

ey ¼ 1þ n

E

�ð1� nÞsy � nsx
�

exy ¼ 1þ n

E
sxy

7.2 For the plane strain case, develop Navier equations (7.1.5) and the BeltramieMichell
compatibility relation (7.1.7).

7.3 Verify the following relations for the case of plane strain with constant body forces

v

vy
V2u ¼ v

vx
V2n

v

vx
V2u ¼ � v

vy
V2n

V4u ¼ V4n ¼ 0

7.4 At the end of Section 7.1, it was pointed out that the plane strain solution to a cylindrical
body of finite length with zero end tractions could be found by adding a corrective
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solution to remove the unwanted end loadings being generated from the axial stress relation
sz ¼ n(sx þ sy). Using Saint-Venant’s principle, show that such a corrective solution may
be generated using a simple strength of materials approximation incorporating axial
and bending stresses of the form s

ðcÞ
z ¼ Ax þ By þ C, where A, B, and C are constants.

Using principal centroidal x,y-axes, show how these constants could be determined.

7.5 In the absence of body forces, show that the following stresses

sx ¼ kxy; sy ¼ kx; sz ¼ nkxð1þ yÞ

sxy ¼ � 1

2
ky2; sxz ¼ syz ¼ 0; k ¼ constant

satisfy the plane strain stress formulation relations.

7.6 Invert the plane stress form of Hooke’s law (7.2.2) and express the stresses in terms of the
strain components

sx ¼ E

1� n2

�
ex þ ney

�

sy ¼ E

1� n2

�
ey þ nex

�

sxy ¼ E

1þ n
exy

7.7 Using the results from Exercise 7.6, eliminate the stresses from the plane stress
equilibrium equations and develop Navier equations (7.2.5). Also, formally establish the
BeltramieMichell equation (7.2.7).

7.8 For plane stress, investigate the unwanted three-dimensional results coming from integration
of the strainedisplacement relations involving the out-of-plane strains ez, exz, and eyz.

7.9 For the plane stress problem, show that the neglected nonzero compatibility relations
involving the out-of-plane component ez are

v2ez
vx2

¼ 0;
v2ez
vy2

¼ 0;
v2ez
vxvy

¼ 0

Next integrate these relations to show that the most general form for this component is given by

ez ¼ axþ byþ c

where a, b, and c are arbitrary constants. In light of relation (7.2.2)3, will this result for ez be
satisfied in general? Explain your reasoning.

7.10 Using the transformation results shown in Table 7.1, determine the required corresponding
changes in Lamé’s constant l and the shear modulus m.

7.11 Verify the validity of the transformation relations given in Table 7.1 by:
(a) Transforming the plane strain equations (7.1.5) and (7.1.7) into the corresponding plane

stress results.

(b) Transforming the plane stress equations (7.2.5) and (7.2.7) into the corresponding plane
strain results.
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7.12 Verify the validity of the transformation relations given in Table 7.1 by:
(a) Transforming the plane strain Hooke’s law (7.1.3) into the corresponding plane stress

results given in Exercise 7.6.

(b) Transforming the plane stress Hooke’s law (7.2.2) into the corresponding plane strain
results given in Exercise 7.1.

7.13* For the pure bending problem shown in Example 8.2, the plane stress displacement field was
determined and given by relations (8.1.22)2 as

u ¼ �Mxy

EI
; v ¼ M

2EI

�
vy2 þ x2 � l2

�
; � l � x � l

Using the appropriate transformation relations from Table 7.1, determine the corresponding
displacements for the plane strain case. Next develop a comparison plot for each case of the
y-displacement along the x-axis (y ¼ 0) with Poisson’s ratio n ¼ 0.4. Use dimensionless
variables and plot n(x, 0)/(Ml2/EI) versus x/l. Which displacement is larger and what happens
as Poisson’s ratio goes to zero?

7.14* Consider the problem of a stress-free hole in an infinite domain under equal and uniform far-
field loading T, as shown in Figure 8.11. The plane strain radial displacement solution for this
problem is found to be

ur ¼ Tð1þ nÞ
E

�
ð1� 2nÞr þ r21

r

	

where r1 is the hole radius. Using the appropriate transformation relations from Table 7.1,
determine the corresponding displacement for the plane stress case. Next develop a com-
parison plot for each case of the radial displacement versus radial distance r with Poisson’s
ratio n ¼ 0.4. Use dimensionless variables and plot ur / (Tr1/E) versus r/r1 over the range
0 � r/r1 � 10. Which displacement is larger and what happens as Poisson’s ratio goes to
zero? Finally plot the dimensionless radial displacement on the hole boundary r¼ r1 versus
Poisson’s ratio over the range 0 � n � 0.5.

7.15 Explicitly develop the governing equations (7.5.4) in terms of the Airy function for plane
strain and plane stress.

7.16 Derive the polar coordinate strainedisplacement relations (7.6.1) by using the transformation
equations

u ¼ ur cos q� uq sin q

v ¼ ur sin qþ uq cos q

er ¼ ex cos
2 qþ ey sin

2 qþ 2exy sin q cos q

eq ¼ ex sin
2 qþ ey cos

2 q� 2exy sin q cos q

erq ¼ �ex sin q cos qþ ey sin q cos qþ exy
�
cos2 q� sin2 q

�
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7.17 Using the polar strainedisplacement relations (7.6.1), derive the strainecompatibility
relation

v

vr

�
2r

verq
vq

� r2
veq

vr

�
þ r

ver
vr

� v2er

vq2
¼ 0

7.18 For the axisymmetric polar case where all field functions depend only on the radial coor-
dinate r, show that a strain compatibility statement can expressed as

er ¼ d

dr
ðreqÞ

while the shear strain-displacement relation becomes

erq ¼ 1

2
r
d

dr


uq
r

�

7.19 For the plane strain case, starting with the equilibrium equations (7.6.3), develop Navier
equations (7.6.4)1,2. Also verify the compatibility relation (7.6.6)1.

7.20 For the plane stress case, starting with the equilibrium equations (7.6.3), develop Navier
equations (7.6.4)3,4. Also verify the compatibility relation (7.6.6)2.

7.21 Using the chain rule and stress transformation theory, develop the stresseAiry function
relations (7.6.7). Verify that this form satisfies equilibrium identically.

7.22 For rigid-body motion, the strains will vanish. Under these conditions, integrate the
strainedisplacement relations (7.6.1) to show that the most general form of a rigid-body
motion displacement field in polar coordinates is given by

ur� ¼ a sin qþ b cos q
uq� ¼ a cos q� b sin qþ cr

where a, b, c are constants. Also show that this result is consistent with the Cartesian form
given by relation (2.2.9).

7.23 Consider the antiplane strain problem of a distributed loading F (per unit length) along the
entire z-axis of an infinite medium. This will produce an axisymmetric deformation field.
Using cylindrical coordinates, show that in the absence of body forces, governing equation
(7.4.5) will reduce to

d2w

dr2
þ 1

r

dw

dr
¼ 0

Solve this equation to determine the form of the displacement and then show that the stresses
are given by srz ¼ �F=2pr; sqz ¼ 0.
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Two-Dimensional Problem Solution 8
The previous chapter developed the general formulation for the plane problem in elasticity. This
formulation results in two types of in-plane problemsdplane strain and plane stress. It was
further shown that solution to each of these problem types could be conveniently handled using
the Airy stress function approach. This scheme reduces the field equations to a single partial
differential equation, and for the case of zero body forces, this result was the biharmonic
equation. Thus, the plane elasticity problem was reduced to finding the solution to the bihar-
monic equation in a particular domain of interest. Such a solution must also satisfy the given
boundary conditions associated with the particular problem under study. Several general solution
techniques were briefly discussed in Section 5.7. These include the use of power series or
polynomials and Fourier methods. We now pursue the solution to several two-dimensional
problems using these methods. Our formulation and solution are conducted using both Carte-
sian and polar coordinate systems. In many cases we use MATLAB� software to plot the stress
and displacement field distributions in order to better understand the nature of the solution.
Plane problems can also be solved using complex variable theory, and this powerful method is
discussed in Chapter 10.

8.1 Cartesian coordinate solutions using polynomials
We begin the solution to plane elasticity problems with no body forces by considering
problems formulated in Cartesian coordinates. When taking boundary conditions into account,
this formulation is most useful for problems with rectangular domains. The method is based
on the inverse solution concept where we assume a form of the solution to the biharmonic
equation

v4f

vx4
þ 2

v4f

vx2vy2
þ v4f

vy4
¼ 0 (8.1.1)

and then try to determine which problem may be solved by this solution. The assumed solution form
for the Airy stress function is taken to be a general polynomial of the in-plane coordinates, and this
form can be conveniently expressed in the power series

fðx;yÞ ¼
XN
m¼0

XN
n¼0

Amnx
myn (8.1.2)

where Amn are constant coefficients to be determined. This representation was given by Neou (1957),
who proposed a systematic scheme to solve such plane problems.
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Using the stress–stress function relations (7.5.3) with zero body forces

sx ¼ v2f

vy2
; sy ¼ v2f

vx2
; sxy ¼ � v2f

vxvy
(8.1.3)

Note that in the Airy function form the three lowest-order terms with m þ n � 1 do not contribute
to the stresses and therefore are dropped. It is observed that second-order terms produce a constant
stress field, third-order terms give a linear distribution of stress, and so on for higher-order
polynomials.

Terms with m þ n � 3 automatically satisfy the biharmonic equation (8.1.1) for any choice of
constants Amn. However, for higher-order terms with m þ n > 3, the constants Amn must be related in
order to have the polynomial satisfy the biharmonic equation. For example, the fourth-order poly-
nomial terms A40x

4 þ A22x
2y2 þ A04y

4 will not satisfy the biharmonic equation unless 3A40 þ A22 þ
3A04 ¼ 0. This condition specifies one constant in terms of the other two, thus leaving two constants to
be determined by the boundary conditions.

Considering the general case, substituting the series form (8.1.2) into the governing biharmonic
equation (8.1.1) yields

XN
m¼4

XN
n¼0

mðm� 1Þðm� 2Þðm� 3ÞAmnx
m�4yn

þ2
XN
m¼2

XN
n¼2

mðm� 1Þnðn� 1ÞAmnx
m�2yn�2

þ
XN
m¼0

XN
n¼4

nðn� 1Þðn� 2Þðn� 3ÞAmnx
myn�4 ¼ 0

(8.1.4)

Collecting like powers of x and y, the preceding equation may be written as

XN
m¼2

XN
n¼2

�ðmþ 2Þðmþ 1Þmðm� 1ÞAmþ2; n�2 þ 2mðm� 1Þnðn� 1ÞAmn

þ ðnþ 2Þðnþ 1Þnðn� 1ÞAm�2; nþ2

�
xm�2yn�2 ¼ 0

(8.1.5)

Because this relation must be satisfied for all values of x and y, the coefficient in brackets must vanish,
giving the result

ðmþ 2Þðmþ 1Þmðm� 1ÞAmþ2; n�2 þ 2mðm� 1Þnðn� 1ÞAmn

þðnþ 2Þðnþ 1Þnðn� 1ÞAm�2; nþ2 ¼ 0
(8.1.6)

For each m,n pair, (8.1.6) is the general relation that must be satisfied to ensure that the polynomial
grouping is biharmonic. Note that the fourth-order case (m ¼ n ¼ 2) was discussed previously.

Because this method produces polynomial stress distributions, we would not expect the scheme to
satisfy general boundary conditions. However, this limitation can be circumvented by modifying
boundary conditions on the problem using the Saint-Venant principle. This is accomplished by
replacing a complicated nonpolynomial boundary condition with a statically equivalent polynomial
condition. The solution to the modified problem would then be accurate at points sufficiently far away
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from the boundary where adjustments were made. Normally, this method has applications to problems
of rectangular shape in which one dimension is much larger than the other. This would include a
variety of beam problems, and we shall now consider three such examples. Solutions to each of these
problems are made under plane stress conditions. The corresponding plane strain solutions can easily
be determined by using the simple change in elastic constants given in Table 7.1. Of course, for the
case with zero body forces and traction boundary conditions, the stress fields will be identical in either
theory.

EXAMPLE 8.1: UNIAXIAL TENSION OF A BEAM
As a simple example, consider the two-dimensional plane stress case of a long rectangular beam
under uniform tension T at each end, as shown in Figure 8.1. This problem could be considered
the SainteVenant approximation to the more general case with nonuniformly distributed tensile
forces at the ends x ¼ �l. For such an interpretation, the actual boundary conditions are replaced
by the statically equivalent uniform distribution, and the solution to be developed will be valid at
points away from these ends.

The boundary conditions on this problem may be written as

sxð� l; yÞ ¼ T; syðx;�cÞ ¼ 0

sxyð� l; yÞ ¼ sxyðx;�cÞ ¼ 0
(8.1.7)

These conditions should be carefully verified by making reference to Figure 5.3. Because the
boundary conditions specify constant stresses on each of the beam’s boundaries, we are motivated
to try a second-order stress function of the form

f ¼ A02y
2 (8.1.8)

and this gives the following constant stress field

sx ¼ 2A02; sy ¼ sxy ¼ 0 (8.1.9)

The first boundary condition (8.1.7) implies that A02¼ T/2 and all other boundary conditions are
identically satisfied. Therefore, the stress field solution to this problem is given by

sx ¼ T ; sy ¼ sxy ¼ 0 (8.1.10)

Next we wish to determine the displacement field associated with this stress distribution. This is
accomplished by a standard procedural technique. First, the strain field is calculated using Hooke’s

x

y

TT

2l

2c

FIGURE 8.1 Uniaxial Tension Problem.
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law. Then the strainedisplacement relations are used to determine various displacement gradients,
and these expressions are integrated to find the individual displacements. Using this scheme, the
in-plane displacement gradients are found to be

vu

vx
¼ ex ¼ 1

E

�
sx � nsy

� ¼ T

E

vv

vy
¼ ey ¼ 1

E

�
sy � nsx

� ¼ �n
T

E

(8.1.11)

These results are easily integrated to get

u ¼ T

E
xþ f ðyÞ

v ¼ �n
T

E
yþ gðxÞ

(8.1.12)

where f(y) and g(x) are arbitrary functions of the indicated variable coming from the integration
process. To complete the problem solution, these functions must be determined, and this is accom-
plished using the remaining Hooke’s law and the strainedisplacement relation for the shear stress
and strain

vu

vy
þ vv

vx
¼ 2exy ¼ sxy

m
¼ 00f 0ðyÞ þ g0ðxÞ ¼ 0 (8.1.13)

This result can be separated into two independent relations g0(x) ¼ �f 0(y) ¼ constant and
integrated to get

f ðyÞ ¼ �uoyþ uo

gðxÞ ¼ uoxþ vo
(8.1.14)

where uo, uo, vo are arbitrary constants of integration. The expressions given by relation (8.1.14)
represent rigid-body motion terms where uo is the rotation about the z-axis and uo and vo are the
translations in the x and y directions. Such terms will always result from the integration of the
strainedisplacement relations, and it is noted that they do not contribute to the strain or stress
fields. Thus, the displacements are determined from the strain field only up to an arbitrary
rigid-body motion. Additional displacement boundary conditions, referred to here as fixity
conditions, are needed to explicitly determine these rigid-body motion terms. For two-
dimensional problems, fixity conditions would require three independent statements commonly
involving specification of the x- and y-displacements and rotation at a particular point. The choice
of such conditions is normally made based on the expected deformation of the physical problem.
For example, if we agree that the center of the beam does not move and the x-axis does not rotate,
all rigid-body terms will vanish and f ¼ g ¼ 0.
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EXAMPLE 8.2: PURE BENDING OF A BEAM
As a second plane stress example, consider the case of a straight beam subjected to end moments as
shown in Figure 8.2. The exact pointwise loading on the ends is not considered, and only the stat-
ically equivalent effect is modeled. Hence, the boundary conditions on this problem are written as

syðx;�cÞ ¼ 0; sxyðx;�cÞ ¼ sxyð�l;yÞ ¼ 0ðc
�c

sxð�l;yÞdy ¼ 0;

ðc
�c

sxð�l;yÞydy ¼ �M
(8.1.15)

Thus, the boundary conditions on the ends of the beam have been relaxed, and only the statically
equivalent condition will be satisfied. This fact leads to a solution that is not necessarily valid near
the ends of the beam.

The choice of stress function is based on the fact that a third-order function will give rise to a
linear stress field, and a particular linear boundary loading on the ends x ¼ �l will reduce to a pure
moment. Based on these two concepts, we choose

f ¼ A03y
3 (8.1.16)

and the resulting stress field takes the form

sx ¼ 6A03y; sy ¼ sxy ¼ 0 (8.1.17)

This field automatically satisfies the boundary conditions on y ¼ �c and gives zero net forces at
the ends of the beam. The remaining moment conditions at x ¼ �l are satisfied if A03 ¼ �M/4c3,
and thus the stress field is determined as

sx ¼ �3M

2c3
y; sy ¼ sxy ¼ 0 (8.1.18)

The displacements are again calculated in the same fashion as in the previous example.
Assuming plane stress, Hooke’s law will give the strain field, which is then substituted into the
strainedisplacement relations and integrated, yielding the result

vu

vx
¼ � 3M

2Ec3
y0u ¼ � 3M

2Ec3
xyþ f ðyÞ

vv

vy
¼ n

3M

2Ec3
y0v ¼ 3Mv

2Ec3
y2 þ gðxÞ

(8.1.19)

x

y

M
M

2l

2c

FIGURE 8.2 Beam Under End Moments.
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where f and g are arbitrary functions of integration. Using the shear stressestrain relations

vu

vy
þ vv

vx
¼ 00� 3M

2Ec3
xþ f 0ðyÞ þ g0ðxÞ ¼ 0 (8.1.20)

this result can again be separated into two independent relations in x and y, and upon integration the
arbitrary functions f and g are determined as

f ðyÞ ¼ �uoyþ uo

gðxÞ ¼ 3M

4Ec3
x2 þ uoxþ vo

(8.1.21)

Again, rigid-body motion terms are brought out during the integration process. For this problem,
the beam would normally be simply supported, and thus the fixity displacement boundary condi-
tions could be specified as v(�l,0) ¼ 0 and u(�l,0) ¼ 0. This specification leads to determination
of the rigid-body terms as uo ¼ uo ¼ 0, vo ¼ �3Ml2/4Ec3.

We now wish to compare this elasticity solution with that developed by elementary
strength of materials (often called mechanics of materials). Appendix D, Section D.3, conve-
niently provides a brief review of this undergraduate theory. Introducing the cross-sectional
area moment of inertia I ¼ 2c3/3 (assuming unit thickness), our stress and displacement field
can be written as

sx ¼ �M

I
y; sy ¼ sxy ¼ 0

u ¼ �Mxy

EI
; v ¼ M

2EI

�
ny2 þ x2 � l2

� (8.1.22)

Note that for this simple moment-loading case, we have verified the classic assumption
from elementary beam theory that plane sections remain plane. Note, however, that this will
not be the case for more complicated loadings. The elementary strength of materials solution is ob-
tained using EulereBernoulli beam theory and gives the bending stress and deflection of the beam
centerline as

sx ¼ �M

I
y; sy ¼ sxy ¼ 0

v ¼ vðx;0Þ ¼ M

2EI

�
x2 � l2

� (8.1.23)

Comparing these two solutions, it is observed that they are identical, with the exception
of the x displacements. In general, however, the two theories will not match for other beam
problems with more complicated loadings, and we investigate such a problem in the next
example.
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EXAMPLE 8.3: BENDING OF A BEAM BY UNIFORM TRANSVERSE LOADING
Our final example in this section is that of a beam carrying a uniformly distributed transverse
loading w along its top surface, as shown in Figure 8.3. Again, plane stress conditions are chosen,
and we relax the boundary conditions on the ends and consider only statically equivalent effects.
Exact pointwise boundary conditions will be specified on the top and bottom surfaces, while at
the ends the resultant horizontal force and moment are set to zero and the resultant vertical force
will be specified to satisfy overall equilibrium. Thus, the boundary conditions on this problem
can be written as

sxyðx;�cÞ ¼ 0

syðx;cÞ ¼ 0

syðx;�cÞ ¼ �w

ðc
�c

sxð�l;yÞdy ¼ 0

ðc
�c

sxð�l;yÞydy ¼ 0

ðc
�c

sxyð�l;yÞdy ¼ Hwl

(8.1.24)

Again, it is suggested that these conditions be verified, especially the last statement.
Using the polynomial solution format, we choose a trial Airy stress function including second-,

third-, and fifth-order terms

f ¼ A20x
2 þ A21x

2yþ A03y
3 þ A23x

2y3 � A23

5
y5 (8.1.25)

x

y

w

2c

2l

wl wl

FIGURE 8.3 Beam Carrying Uniformly Transverse Loading.
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It is noted that the fifth-order term has been generated to satisfy the biharmonic equation. The
resulting stress field from this stress function is given by

sx ¼ 6A03yþ 6A23

�
x2y� 2

3
y3
�

sy ¼ 2A20 þ 2A21yþ 2A23y
3

sxy ¼ �2A21x� 6A23xy
2

(8.1.26)

Applying the first three boundary conditions in the set (8.1.24) gives three equations among
the unknown coefficients A20, A21, and A23. Solving this system determines these constants, giving
the result

A20 ¼ �w

4
; A21 ¼ 3w

8c
; A23 ¼ � w

8c3
(8.1.27)

Using these results, it is found that the stress field will now also satisfy the fourth and sixth con-
ditions in (8.1.24). The remaining condition of vanishing end moments gives the following

A03 ¼ �A23

�
l2 � 2

5
c2
�

¼ w

8c

�
l2

c2
� 2

5

�
(8.1.28)

This completes determination of the four constants in the trial Airy stress function, and the
resulting stress field is now given by

sx ¼ 3w

4c

�
l2

c2
� 2

5

�
y� 3w

4c3

�
x2y� 2

3
y3
�

sy ¼ �w

2
þ 3w

4c
y� w

4c3
y3

sxy ¼ �3w

4c
xþ 3w

4c3
xy2

(8.1.29)

We again wish to compare this elasticity solution with that developed by elementary strength of
materials, and thus the elasticity stress field is rewritten in terms of the cross-sectional area moment
of inertia I ¼ 2c3/3, as

sx ¼ w

2I

�
l2 � x2

�
yþ w

I

�
y3

3
� c2y

5

�

sy ¼ �w

2I

�
y3

3
� c2yþ 2

3
c3
�

sxy ¼ �w

2I
x
�
c2 � y2

�
(8.1.30)
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The corresponding results from strength of materials for this case (see Appendix D, Section D.3)
are given by

sx ¼ My

I
¼ w

2I

�
l2 � x2

�
y

sy ¼ 0

sxy ¼ VQ

It
¼ �w

2I
x
�
c2 � y2

� (8.1.31)

where the bending moment M ¼ w(l2 � x2)/2, the shear force V ¼ �wx, the first moment of a
sectioned cross-sectional area is Q ¼ (c2 � y2)/2, and the thickness t is taken as unity.

Comparing the two theories, we see that the shear stresses are identical, while the two normal
stresses are not. The two normal stress distributions are plotted in Figures 8.4 and 8.5. The normal-
ized bending stress sx for the case x ¼ 0 is shown in Figure 8.4. Note that the elementary theory
predicts linear variation, while the elasticity solution indicates nonlinear behavior. The maximum
difference between the two theories exists at the outer fibers (top and bottom) of the beam, and the
actual difference in the stress values is simply w/5, a result independent of the beam dimensions. For
most common beam problems where l >> c, the bending stresses will be much greater than w, and
thus the differences between elasticity theory and strength of materials will be relatively small. For
example, the set of curves in Figure 8.4 for l/c ¼ 4 gives a maximum difference of about only 1%.
Figure 8.5 illustrates the behavior of the stress sy; the maximum difference between the two theories
is given by w and this occurs at the top of the beam. Again, this difference will be negligibly small
for most beam problems where l >> c. These results are generally true for beam problems with
other transverse loadings. That is, for the case with l >> c, approximate bending stresses deter-
mined from strength of materials will generally closely match those developed from theory of
elasticity.

σx/w - Elasticity

σx/w - Strength of Materials
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FIGURE 8.4 Comparison of Bending Stress in the Beam.
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Next let us determine the displacement field for this problem. As in the previous examples, the
displacements are developed through integration of the strainedisplacement relations. Integrating
the first two normal strainedisplacement relations gives the result

u ¼ w

2EI

��
l2x� x3

3

�
yþ x

�
2y3

3
� 2c2y

5

�
þ nx

�
y3

3
� c2yþ 2c3

3

�	
þ f ðyÞ

v ¼ � w

2EI

��
y4

12
� c2y2

2
þ 2c3y

3

�
þ n
�
l2 � x2

� y2
2
þ n

�
y4

6
� c2y2

5

�	
þ gðxÞ

(8.1.32)

where f(y) and g(x) are arbitrary functions of integration. Using these results in the shear
strainedisplacement equation gives the relation

w

2EI

�
l2x� x3

3
þ x

�
2y2 � 2c2

5

�
þ nx

�
y2 � c2

�	þ f 0ðyÞ

þ w

2EI
nxy2 þ g0ðxÞ ¼ � w

2mI
x
�
c2 � y2

� (8.1.33)

This result can again be rewritten in a separable form and integrated to determine the arbitrary
functions

f ðyÞ ¼ uoyþ uo

gðxÞ ¼ w

24EI
x4 � w

4EI

�
l2 �

�
8

5
þ n

�
c2
	
x2 � uoxþ vo

(8.1.34)

y/w - Strength of Materials
y/w - Elasticity
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Choosing the fixity conditions u(0,y)¼ v(�l,0) ¼ 0, the rigid-body motion terms are found to be

uo ¼ uo ¼ 0; vo ¼ 5wl 4

24EI

�
1þ 12

5

�
4

5
þ n

2

�
c3

l2

	
(8.1.35)

Using these results, the final form of the displacements is given by

u ¼ w

2EI

��
l2x� x3

3

�
yþ x

�
2y3

3
� 2c2y

5

�
þ vx

�
y3

3
� c2yþ 2c3

3

�	

v ¼ � w

2EI

�
y4

12
� c2y2

2
þ 2c3y

3
þ v

��
l2 � x2

� y2
2
þ y4

6
� c2y2

5

	
� x4

12
þ
�
l2

2
þ
�
4

5
þ n

2

�
c2
	
x2
�

þ 5wl4

24EI

�
1þ 12

5

�
4

5
þ n

2

�
c2

l2

	
(8.1.36)

The maximum deflection of the beam axis is given by

vð0;0Þ ¼ vmax ¼ 5wl4

24EI

�
1þ 12

5

�
4

5
þ n

2

�
c2

l2

	
(8.1.37)

while the corresponding value calculated from strength of materials is

vmax ¼ 5wl4

24EI
(8.1.38)

The difference between the two theories given by relations (8.1.37) and (8.1.38) is specified by

wl4

2EI

�
4

5
þ n

2

�
c2

l2
, and this term is caused by the presence of the shear force. For beams where l>> c,

this difference is very small. Thus, we again find that for long beams, strength of materials predic-
tions match closely to theory of elasticity results. Note from equation (8.1.36) that the x component
of displacement indicates that plane sections undergo nonlinear deformation and do not remain

plane. It can also be shown that the EulereBernoulli relation M ¼ EI
d2vðx;0Þ

dx2
used in strength

of materials theory is not satisfied by this elasticity solution. Timoshenko and Goodier (1970) pro-
vide additional discussion on such differences.

Additional rectangular beam problems of this type with different support and loading conditions can be
solved using various polynomial combinations. Several of these are given in the exercises.

8.2 Cartesian coordinate solutions using Fourier methods
A more general solution scheme for the biharmonic equation may be found by using Fourier methods.
Such techniques generally use separation of variables along with Fourier series or Fourier integrals.
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Use of this method began over a century ago, and the work of Pickett (1944), Timoshenko and Goodier
(1970), and Little (1973) provides details on the technique.

In Cartesian coordinates, the method may be initiated by looking for an Airy stress function of the
separable form

fðx;yÞ ¼ XðxÞYðyÞ (8.2.1)

Although the functions X and Y could be left somewhat general, the solution is obtained more directly
if exponential forms are chosen as X ¼ eax, Y ¼ ebg. Substituting these results into the biharmonic
equation (8.1.1) gives �

a4 þ 2a2b2 þ b4
�
eaxeby ¼ 0

and this result implies that the term in parentheses must be zero, giving the auxiliary or characteristic
equation �

a2 þ b2
�2 ¼ 0 (8.2.2)

The solution to this equation gives double roots of the form

a ¼ �ib (8.2.3)

The general solution to the problem then includes the superposition of the zero root cases plus the
general roots. For the zero root condition with b ¼ 0, there is a fourfold multiplicity of the roots,
yielding a general solution of the form

fb¼0 ¼ C0 þ C1xþ C2x
2 þ C3x

3 (8.2.4)

while for the case with a ¼ 0, the solution is given by

fa¼0 ¼ C4yþ C5y
2 þ C6y

3 þ C7xyþ C8x
2yþ C9xy

2 (8.2.5)

Expressions (8.2.4) and (8.2.5) represent polynomial solution terms satisfying the biharmonic equa-
tion. For the general case given by equation (8.2.3), the solution becomes

f ¼ eibx
�
Aeby þ Be�by þ Cyeby þ Dye�by

�
þe�ibx

�
A0eby þ B0e�by þ C0yeby þ D0ye�by

� (8.2.6)

The parameters Ci, A, B, C, D, A
0, B0, C0, and D0 represent arbitrary constants to be determined from

boundary conditions. The complete solution is found by the superposition of solutions (8.2.4), (8.2.5),
and (8.2.6). Realizing that the final solution must be real, the exponentials are replaced by equivalent
trigonometric and hyperbolic forms, thus giving

f ¼ sin bx½ðAþ CbyÞ sinh byþ ðBþ DbyÞ cosh by�
þ cos bx½ðA0 þ C0byÞ sinh byþ ðB0 þ D0byÞ cosh by�
þ sin ay½ðE þ Gax� sinh axþ ðF þ HaxÞ cosh ax�
þ cos ay½ðE0 þ G0ax� sinh axþ ðF0 þ H0axÞ cosh ax�
þfa¼0 þ fb¼0

(8.2.7)
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Using this solution form along with superposition and Fourier series concepts, many problems with
complex boundary loadings can be solved. Two particular problems are now presented.

EXAMPLE 8.4: BEAM SUBJECT TO TRANSVERSE SINUSOIDAL LOADING
Consider the simply supported beam carrying a sinusoidal loading along its top edge as shown in
Figure 8.6.

The boundary conditions for this problem can be written as

sxð0;yÞ ¼ sxðl; yÞ ¼ 0

sxyðx;�cÞ ¼ 0

syðx;�cÞ ¼ 0

syðx;cÞ ¼ �qo sinðpx=lÞðc
�c

sxyð0;yÞdy ¼ �qol=pðc
�c

sxyðl;yÞdy ¼ qol=p

(8.2.8)

Note that these conditions do not specify the pointwise distribution of shear stress on the ends of
the beam, but rather stipulate the resultant condition based on overall problem equilibrium. Thus,
we again are generating a solution valid away from the ends that would be most useful for the case
where l >> c. Because the vertical normal stress has a sinusoidal variation in x along y ¼ c, an
appropriate trial solution from the general case is

f ¼ sin bx½ðAþ CbyÞ sinh byþ ðBþ DbyÞ cosh by� (8.2.9)

The stresses from this trial form are

sx ¼ b2 sin bx½A sinh byþ Cðby sinh byþ 2 cosh byÞ þ B cosh byþ Dðby cosh byþ 2 sinh byÞ�
sy ¼ �b2 sin bx½ðAþ CbyÞ sinh byþ ðBþ DbyÞ cosh by�
sxy ¼ �b2 cos bx½Aþ cosh byþ Cðby cosh byþ sinh byÞ þ B sinh byþ Dðby sinh byþ cosh byÞ�

(8.2.10)

x

y qo sin   x/lπ

qol/πqol/π

l

2c

FIGURE 8.6 Beam Carrying Sinusoidal Transverse Loading.
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Condition (8.2.8)2 implies that

½A cosh byþ Cðby cosh byþ sinh byÞ þ B sinh byþ Dðby sinh byþ cosh byÞ�y¼�c ¼ 0 (8.2.11)

This condition can be equivalently stated by requiring that the even and odd functions of y inde-
pendently vanish at the boundary, thus giving the result

A cosh bcþ Dðbc sinh bcþ cosh bcÞ ¼ 0

B sinh bcþ Cðbc cosh bcþ sinh bcÞ ¼ 0
(8.2.12)

Solving for the constants A and B gives

A ¼ �Dðbc tanh bcþ 1Þ
B ¼ �Cðbc coth bcþ 1Þ

(8.2.13)

and thus the vertical normal stress becomes

sy ¼� b2 sin bxfD½by cosh by� ðbc tanh bcþ 1Þ sinh by�
þ C½by sinh by� ðbc coth bcþ 1Þ cosh by�g

(8.2.14)

Applying boundary condition (8.2.8)3 to this result gives the relation between C and D

C ¼ �tanh bc

�
bc� sinh bc cosh bc

bcþ sinh bc cosh bc

	
D (8.2.15)

while condition (8.2.8)4 gives

qo sin
px

l
¼ 2b2 sin bx

�
bc� sinh bc cosh bc

cosh bc

	
D (8.2.16)

In order for relation (8.2.16) to be true for all x, b ¼ p/l, and so the constant D is thus
determined as

D ¼
qo cosh

pc

l

2
p2

l2

hpc
l
� sinh

pc

l
cosh

pc

l

i (8.2.17)

This result can be substituted into (8.2.15) to give the remaining constant C

C ¼
�qo sinh

pc

l

2
p2

l2

hpc
l
þ sinh

pc

l
cosh

pc

l

i (8.2.18)

Using these results, the remaining boundary conditions (8.2.8)1 and (8.2.8)5,6 will now be satis-
fied. Thus, we have completed the determination of the stress field for this problem. Following our
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usual solution steps, we now wish to determine the displacements, and these are again developed
through integration of the plane stress strainedisplacement relations. Skipping the details, the final
results are given by

u ¼� b

E
cos bxfAð1þ vÞ sinh byþ Bð1þ vÞ cosh by

þ C½ð1þ vÞby sinh byþ 2 cosh by�
þ D½ð1þ vÞby cosh byþ 2 sinh by�g � uoyþ uo

v ¼ �b

E
sin bxfAð1þ vÞ cosh byþ Bð1þ vÞ sinh by

þ C½ð1þ vÞby cosh by� ð1þ vÞ sinh by�
þ D½ð1þ vÞby sinh by� ð1� vÞ cosh by�g þ uoyþ vo

(8.2.19)

To model a simply supported beam, we choose displacement fixity conditions as

uð0;0Þ ¼ vð0;0Þ ¼ vðl;0Þ ¼ 0 (8.2.20)

These conditions determine the rigid-body terms, giving the result

uo ¼ vo ¼ 0; uo ¼ b

E
½Bð1þ nÞ þ 2C� (8.2.21)

To compare with strength of materials theory, the vertical centerline displacement is determined.
Using (8.2.19)2 and (8.2.13)1, the deflection of the beam axis reduces to

vðx;0Þ ¼ Db

E
sin bx½2þ ð1þ nÞbc tanh bc� (8.2.22)

For the case l >> c, D z �3qol
5/4c3p5, and so the previous relation becomes

vðx;0Þ ¼ � 3qol
4

2c3p4E
sin

px

l

�
1þ 1þ n

2

pc

l
tanh

pc

l

	
(8.2.23)

The corresponding deflection from strength of materials theory is given by

vðx;0Þ ¼ � 3qol
4

2c3p4E
sin

px

l
(8.2.24)

Considering again the case l >> c, the second term in brackets in relation (8.2.23) can be
neglected, and thus the elasticity result matches with that found from strength of materials.

8.2.1 Applications involving Fourier series
More sophisticated applications of the Fourier solution method commonly incorporate Fourier
series theory. This is normally done by using superposition of solution forms to enable more
general boundary conditions to be satisfied. For example, in the previous problem the solution was
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obtained for a single sinusoidal loading. However, this solution form could be used to generate a
series of solutions with sinusoidal loadings having different periods; that is, b ¼ bn ¼ np/l, (n ¼
1, 2, 3,/). Invoking the principle of superposition, we can form a linear combination of these
sinusoidal solutions, thus leading to a Fourier series representation for a general transverse boundary
loading on the beam.

In order to use such a technique, we shall briefly review some basic concepts of Fourier
series theory. Further details may be found in Kreyszig (2011) or Churchill (1963). A function
f (x) periodic with period 2l can be represented on the interval (�l, l) by the Fourier trigonometric
series

f ðxÞ ¼ 1

2
ao þ

XN
n¼1



an cos

npx

l
þ bnsin

npx

l

�
(8.2.25)

where

an ¼ 1

l

ðl
�l

f ðxÞ cos npx
l

dx; n ¼ 0; 1; 2; /

bn ¼ 1

l

ðl
�l

f ðxÞ sin npx
l

dx; n ¼ 1; 2; 3; /

(8.2.26)

This representation simplifies for some special cases that often arise in applications. For
example, if f (x) is an even function, f (x) ¼ f (�x), then representation (8.2.25) reduces to the Fourier
cosine series

f ðxÞ ¼ 1

2
ao þ

XN
n¼1

an cos
npx

l

an ¼ 2

l

ðl
0
f ðxÞ cos npx

l
dx; n ¼ 0; 1; 2; /

(8.2.27)

on the interval (0, l). If f (x) is an odd function, f (x) ¼ �f (�x), then representation (8.2.25) reduces to
the Fourier sine series

f ðxÞ ¼
XN
n¼1

bn sin
npx

l

bn ¼ 2

l

ðl
0
f ðxÞ sin npx

l
dx; n ¼ 1; 2; 3; /

(8.2.28)

on interval (0,l). We now develop the solution to a specific elasticity problem using these tools.
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EXAMPLE 8.5: RECTANGULAR DOMAIN WITH ARBITRARY BOUNDARY LOADING
Consider again a rectangular domain with arbitrary compressive boundary loading on the top and
bottom of the body, as shown in Figure 8.7. Although a more general boundary loading could be
considered on all four sides, the present case will sufficiently demonstrate the use of Fourier series
theory for problem solution. For this problem, dimensions a and b are to be of the same order, and
thus we cannot use the Saint-Venant principle to develop an approximate solution valid away from a
particular boundary. Thus, the solution is developed using the exact pointwise boundary conditions

sxð�a;yÞ ¼ 0
sxyð�a;yÞ ¼ 0
sxyðx;�bÞ ¼ 0
syðx;�bÞ ¼ �pðxÞ

(8.2.29)

To ease the solution details, we shall assume that the boundary loading p(x) is an even function;
that is, p(x)¼ p(�x). Normal stresses are expected to be symmetric about the x- and y-axes, and this
leads to a proposed stress function of the form

f ¼
XN
n¼1

cos bnx½Bn cosh bnyþ Cnbny sinh bny�

þ
XN
m¼1

cosamy½Fmcoshamxþ Gmamx sinhamx� þ C0x
2

(8.2.30)

The stresses derived from this Airy stress function become

sx ¼
XN
n¼1

b2n cos bnx½Bn cosh bnyþ Cnðbny sinh bnyþ 2 cosh bnyÞ�

�
XN
m¼1

a2m cosamy½Fm coshamxþ Gmamx sinhamx�

sy ¼ �
XN
n¼1

b2n cos bnx½bn cosh bnyþ Cnbny sinh bny� þ 2C0

þ
XN
m¼1

a2mcosamy½Fm coshamxþ Gmðamx sinhamxþ 2 coshamxÞ�

sxy ¼
XN
n¼1

b2n sin bnx½bnsinh bnyþ Cnðbny cosh bnyþ sinh bnyÞ�

þ
XN
m¼1

a2m sinamy½Fm sinhamxþ Gmðamx cosh amxþ sinhamxÞ�

(8.2.31)

To satisfy the homogeneous boundary conditions (8.2.29)1,2,3,

am ¼ mp=b and bn ¼ np=a

Condition (8.2.29)2 implies that

Fm ¼ �Gmð1þ ama cothamaÞ (8.2.32)
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FIGURE 8.7 General Boundary Loading on a Rectangular Elastic Plate.

while (8.3.29)3 gives

Bn ¼ �Cnð1þ bnb coth bnbÞ (8.2.33)

Boundary condition (8.2.29)1 gives

XN
n¼1

b2n cos bna½Bn cosh bnyþ Cnðbny sinh bnyþ 2 cosh bnyÞ�

¼
XN
m¼1

a2m cosamy½Fm coshamaþ Gmama sinhama�

which can be written as

XN
m¼1

Am cosamy ¼
XN
n¼1

b2nð�1Þnþ1½Bn cosh bnyþ Cnðbny sinh bnyþ 2 cosh bnyÞ� (8.2.34)

where

Am ¼ a2m
sinhama

ðamaþ sinhama coshamaÞGm (8.2.35)

The expression given by (8.2.34) can be recognized as the Fourier cosine series for the terms on
the right-hand side of the equation. Thus, using Fourier series theory from relations (8.2.27), the
coefficients may be expressed as

Am ¼ 2

b

XN
n¼1

b2nð�1Þnþ1
ðb
0
½Bn cosh bnxþ Cnðbnx sinh bnxþ 2 cosh bnxÞ� cosamxdx (8.2.36)

Carrying out the integrals and using (8.2.35) gives

Gm ¼ �4 sinhama

bðamaþ sinhama coshamaÞ
XN
n¼1

Cn
b3nð�1Þmþn sinh bnb�

a2m þ b2n
�2 (8.2.37)
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The final boundary condition (8.2.29)4 involves the specification of the nonzero loading p(x) and
implies

�
XN
n¼1

b2n cos bnx½Bn cosh bnbþ Cnbnb sinh bnb� þ 2C0

þ
XN
m¼1

a2m cosamb½Fm coshamxþ Gmðamx sinhamxþ 2 cosh amxÞ� ¼ �pðxÞ

and this can be written in more compact form as

XN
n¼0

A�
n cos bnx ¼ �pðxÞ

þ
XN
m¼1

a2mð�1Þmþ1½Fm coshamxþ Gmðamx sinhamxþ 2 cosh amxÞ�
(8.2.38)

where

A�
n ¼

b2n
sinh bnb

ðbnbþ sinh bnb cosh bnbÞCn

A�
0 ¼ 2C0

(8.2.39)

As before, (8.2.38) is a Fourier cosine series form, and so the series coefficients A�
n can be easily

determined from the theory given in relations (8.2.27). This then determines the coefficients Cn

to be

Cn ¼ �4 sinh bnb

aðbnbþ sinh bnb cosh bnbÞ
XN
m¼1

Gm
a3mð�1Þmþn sinhama�

a2m þ b2n
�2

� 2 sinh bnb

ab2nðbnbþ sinh bnb cosh bnbÞ
ða
0
pðxÞ cos bnxdx; n ¼ 1; 2; 3; /

C0 ¼ � 1

2a

ða
0
pðxÞdx

(8.2.40)

The rather formidable systems of equations given by (8.2.37) and (8.2.40)1 can be written in
compact form as

Gm þ
XN
n¼1

RmnCn ¼ 0

Cn þ
XN
m¼1

SnmGm ¼ Tn

(8.2.41)

with appropriate definitions of Rmn, Snm, and Tn. The system (8.2.41) then represents a doubly
infinite set of equations in the doubly infinite set of unknowns Cn and Gm. An approximate
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solution may be found by truncating the system to a finite number of equations, which can be
solved for the remaining unknowns. Improved accuracy in the solution is achieved by including
more equations in the truncated system. Thus, all unknown coefficients in the solution (8.2.30) are
now determined, and the problem solution is completed. Little (1973) provides additional details
on this solution.

8.3 General solutions in polar coordinates
As discussed in Section 7.6, the geometry of many two-dimensional problems requires the use of polar
coordinates to develop a solution. We now wish to explore the general solutions to such problems using
the field equations developed in polar coordinates.

8.3.1 General Michell solution
Employing the Airy stress function approach, the governing biharmonic equation was given by

V4f ¼
�
v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

vq2

�2

f ¼ 0 (8.3.1)

We shall first look for a general solution to this equation by assuming a separable form f(r,q)¼ f(r)ebq,
where b is a parameter to be determined. Substituting this form into the biharmonic equation and
canceling the common ebq term yields

f 0000 þ 2

r
f 000 � 1� 2b2

r2
f 00 þ 1� 2b2

r3
f 0 þ b2

�
4þ b2

�
r4

f ¼ 0 (8.3.2)

To solve this equation, we make the change of variable r ¼ ex, and this will transform (8.3.2) into the
differential equation with constant coefficients

f 0000 � 4f 000 þ �4þ 2b2
�
f 00 � 4b2f 0 þ b2

�
4þ b2

�
f ¼ 0 (8.3.3)

where primes now denote d/dx. The solution to this equation is found by employing the usual scheme
of substituting in f ¼ eax, and this generates the following characteristic equation�

a2 þ b2
��
a2 � 4aþ 4þ b2

� ¼ 0 (8.3.4)

The roots to this equation may be written as

a ¼ �ib; a ¼ 2� ib
or

b ¼ �ia; b ¼ �iða� 2Þ
(8.3.5)

We shall consider only periodic solutions in q, and these are obtained by choosing b¼ in, where n is an
integer. Note this choice also implies that a is an integer. For particular values of n, repeated roots
occur, and these require special consideration in the development of the solution. Details of the
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complete solution have been given by Little (1973), although the original development is credited to
Michell (1899). The final form (commonly called the Michell solution) can be written as

f ¼ a0 þ a1 log r þ a2r
2 þ a3r

2 log r

þ �a4 þ a5 log r þ a6r
2 þ a7r

2 log r
�
q

þ


a11r þ a12r log r þ a13

r
þ a14r

3 þ a15rqþ a16rq log r
�
cosq

þ


b11r þ b12r log r þ b13

r
þ b14r

3 þ b15rqþ b16rq log r
�
sinq

þ
XN
n¼2

�
an1r

n þ an2r
2þn þ an3r

�n þ an4r
2�n
�
cosnq

þ
XN
n¼2

�
bn1r

n þ bn2r
2þn þ bn3r

�n þ bn4r
2�n
�
sinnq

(8.3.6)

where an, anm, and bnm are constants to be determined. Note that this general solution is restricted to the
periodic case, which has the most practical applications because it allows the Fourier method to be
applied to handle general boundary conditions. Various pieces of the general solution (8.3.6) will now
be used in many of the upcoming example problems. Since any/all pieces of (8.3.6) will automatically
satisfy the governing equation, we will only have to satisfy the boundary conditions on the problem
under study to determine the solution.

8.3.2 Axisymmetric solution
For the axisymmetric case, field quantities are independent of the angular coordinate, and this can be
accomplished by choosing an Airy function solution from (8.3.6) by dropping all q-terms, giving

f ¼ a0 þ a1 log r þ a2r
2 þ a3r

2 log r (8.3.7)

Using relations (7.6.7), the resulting stresses for this case are

sr ¼ 2a3 log r þ a1
r2

þ a3 þ 2a2

sq ¼ 2a3 log r � a1
r2

þ 3a3 þ 2a2

srq ¼ 0

(8.3.8)

The displacements corresponding to these stresses can be determined by the usual methods of inte-
grating the strain–displacement relations. For the case of plane stress, the result is

ur ¼ 1

E

�
� ð1þ nÞ

r
a1 þ 2ð1� nÞa3r log r � ð1þ nÞa3r þ 2a2ð1� nÞr

	

þA sinqþ B cosq

uq ¼ 4rq

E
a3 þ A cosq� B sinqþ Cr

(8.3.9)
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where A, B, and C are arbitrary constants associated with the rigid-body motion terms (see
Exercise 7.22).

Plane strain results follow by simple change of elastic constants as per Table 7.1. If the body in-
cludes the origin, then a3 and a1 must be set to zero for the stresses to remain finite, and thus the stress
field would be constant. Also note that the a3 term in the tangential displacement relation leads to
multivalued behavior if the domain geometry is such that the origin can be encircled by any contour
lying entirely in the body. Exercise 8.24 is concerned with a particular problem that requires such
multivalued behavior in the tangential displacement.

It should be pointed out that not all axisymmetric stress fields come from the Airy stress function
given by (8.3.7). Reviewing the general form (8.3.6) indicates that the a4q term generates the stress field
sr ¼ sq ¼ 0, srq ¼ a4/r

2, which is also axisymmetric. This solution could be used to solve problems
with shear fields that produce tangential displacements that are independent of q. Exercise 8.14
demonstrates such an example.

It has been previously pointed out that for multiply connected regions, the compatibility equations
are not sufficient to guarantee single-valued displacements. With this in mind, we can investigate the
displacement solution directly from the Navier equations. With zero body forces, Navier equations
(5.4.4) or (7.6.4) for the axisymmetric case u ¼ ur(r)er reduce to

d2ur
dr2

þ 1

r

dur
dr

� 1

r2
ur ¼ 0 (8.3.10)

The solution to this equation is given by

ur ¼ C1r þ C2
1

r
(8.3.11)

where C1 and C2 are constants. Notice this solution form is not the same as that given by (8.3.9),
because we have a priori assumed that uq¼ 0. Furthermore, the stresses corresponding to displacement
solution (8.3.11) do not contain the logarithmic terms given in relations (8.3.8). Thus, these terms are
not consistent with single-valued displacements.

8.4 Example polar coordinate solutions
With the general solution forms determined, we now explore the solution to several specific problems
of engineering interest, including cases with both axisymmetric and general geometries.

EXAMPLE 8.6: THICK-WALLED CYLINDER UNDER UNIFORM BOUNDARY PRESSURE
The first example to be investigated involves a hollow thick-walled cylinder under the action of uni-
form internal and external pressure loadings, as shown in Figure 8.8. We shall assume that the cyl-
inder is long and this problem may be modeled under plane strain conditions.

Using the stress solution (8.3.8) without the log terms, the nonzero stresses are given by the form

sr ¼ A

r2
þ B

sq ¼ �A

r2
þ B

(8.4.1)
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Applying the boundary conditions sr(r1) ¼ �p1, sr(r2) ¼ �p2 creates two equations for the two
unknown constants A and B. Solving for these constants gives the result

A ¼ r21r
2
2ðp2 � p1Þ
r22 � r21

B ¼ r21p1 � r22p2

r22 � r21

(8.4.2)

Substituting these values back into relation (8.4.1) gives the final result for the stress field

sr ¼ r21r
2
2ðp2 � p1Þ
r22 � r21

1

r2
þ r21p1 � r22p2

r22 � r21

sq ¼ � r21r
2
2ðp2 � p1Þ
r22 � r21

1

r2
þ r21p1 � r22p2

r22 � r21

(8.4.3)

From plane strain theory, the out-of-plane longitudinal stress is given by

sz ¼ nðsr � sqÞ ¼ 2n
r21p1 � r22p2

r22 � r21
(8.4.4)

Using the strainedisplacement relations (7.6.1) and Hooke’s law (7.6.2), the radial displacement
is easily determined as

ur ¼ 1þ n

E
r

�
ð1� 2nÞB� A

r2

	

¼ 1þ n

E

"
� r21r

2
2ðp2 � p1Þ
r22 � r21

1

r
þ ð1� 2nÞ r

2
1p1 � r22p2

r22 � r21
r

# (8.4.5)

Reviewing this solution, it is noted that for the traction boundary-value problem with no body
forces, the stress field does not depend on the elastic constants. However, the resulting displace-
ments do depend on both E and n.

r1

r2

p1

p2

FIGURE 8.8 Thick-Walled Cylinder Problem.
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For the case of only internal pressure ( p2 ¼ 0 and p1 ¼ p) with r1/r2 ¼ 0.5, the nondimensional
stress distribution through the wall thickness is shown in Figure 8.9. The radial stress decays from
�p to zero, while the hoop stress is always positive with a maximum value at the inner radius
ðsqÞmax ¼ ðr21 þ r22Þ=ðr22 � r21Þp ¼ ð5=3Þp.

For the case of a thin-walled tube, it can be shown that the hoop stress reduces to the well-known
relation found from strength of materials theory (see Appendix D, Section D.5)

sq z
pro
t

(8.4.6)

where t ¼ r2 � r1 is the thickness and r0 ¼ (r1 þ r2)/2 is the mean radius.
The general solution to this example can be used to generate the solution to other problems

through appropriate limiting processes. Two such cases are now presented.

8.4.1 Pressurized hole in an infinite medium
Consider the problem of a hole under uniform pressure in an infinite medium, as shown in Figure 8.10.
The solution to this problem can be easily determined from the general case of Example 8.6 by
choosing p2 ¼ 0 and r2 / N. Taking these limits in relations (8.4.3) and (8.4.4) gives

sr ¼ �p1
r21
r2
; sq ¼ p1

r21
r2
; sz ¼ 0 (8.4.7)

and the displacement field follows from (8.4.5)

ur ¼ 1þ n

E

p1r
2
1

r
(8.4.8)

r1/r2 = 0.5
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FIGURE 8.9 Stress Distribution in the Thick-Walled Cylinder Example.

182 CHAPTER 8 Two-Dimensional Problem Solution



Although both the stress and displacement fields decrease to zero as r / N, there is a fundamental
difference in their rate of decay. The stress field decays at a higher rate, of order O(1/r2), while the
displacement field behaves as O(1/r). Because stresses are proportional to displacement gradients, this
behavior is to be expected.

8.4.2 Stress-free hole in an infinite medium under equal biaxial loading
at infinity

Another example that can be generated from the general thick-walled cylinder problem is that of a
stress-free hole in an unbounded medium with equal and uniform tensile loadings in the horizontal and
vertical directions, as shown in Figure 8.11. This particular case can be found from the general solution

T

T

r1

FIGURE 8.11 Stress-Free Hole Under Uniform Biaxial Far-Field Loading.

r1

 p

FIGURE 8.10 Pressurized Hole in an Infinite Medium.

8.4 Example polar coordinate solutions 183



by letting r2 / N and taking p2 ¼ �T and p1 ¼ 0. Note that the far-field stress in this problem is a
hydrostatic state with sx ¼ sy ¼ T and this is identical to the condition sr ¼ sq ¼ T. Thus, our limiting
case matches with the far conditions shown in Figure 8.11.

Under these conditions, the general stress results (8.4.3) give

sr ¼ T

�
1� r21

r2

�
; sq ¼ T

�
1þ r21

r2

�
(8.4.9)

The maximum stress sq occurs at the boundary of the hole r ¼ r1 and is given by

smax ¼ ðsqÞmax ¼ sqðr1Þ ¼ 2T (8.4.10)

and thus the stress concentration factor smax/T for a stress-free circular hole in an infinite medium
under uniform all-around tension is 2. This result is of course true for plane strain or plane stress.
Because of their importance, we shall next study several other stress concentration problems involving
a stress-free hole under different far-field loading.

EXAMPLE 8.7: INFINITE MEDIUM WITH A STRESS-FREE HOLE UNDER UNIFORM
FAR-FIELD TENSION LOADING
Consider now an infinite medium with a circular stress-free hole subjected to a uniform far-field
tension in a single direction, as shown in Figure 8.12. Note that this problem will not be axisym-
metric; it requires particular q-dependent terms from the general Michell solution.

The boundary conditions on this problem are

srða;qÞ ¼ srqða;qÞ ¼ 0

srðN;qÞ ¼ T

2
ð1þ cos 2qÞ

sqðN;qÞ ¼ T

2
ð1� cos 2qÞ

srqðN;qÞ ¼ T

2
sin 2q

(8.4.11)

TaT

x

y

FIGURE 8.12 Stress-Free Hole in an Infinite Medium Under Uniform Far-Field Tension Loading.
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where the far-field conditions have been determined using the transformation laws established in
Exercise 3.3 (or see Appendix B).

We start the solution to this example by considering the state of stress in the medium if there
were no hole. This stress field is simply sx ¼ T, sy ¼ sxy ¼ 0 and can be derived from the Airy stress
function

f ¼ 1

2
Ty2 ¼ T

2
r2 sin2q ¼ T

4
r2ð1� cos 2qÞ

The presence of the hole acts to disturb this uniform field. We expect that this disturbance will be
local in nature; the disturbed field will decay to zero as we move far away from the hole. Based on
this, we choose a trial solution that includes the axisymmetric and cos 2q terms from the general
Michell solution (8.3.6)

f ¼ a0 þ a1 log r þ a2r
2 þ a3r

2 log r
þ�a21r2 þ a22r

4 þ a23r
�2 þ a24

�
cos 2q

(8.4.12)

The stresses corresponding to this Airy function are

sr ¼ a3ð1þ 2 log rÞ þ 2a2 þ a1
r2

�
�
2a21 þ 6a23

r4
þ 4a24

r2

�
cos 2q

sq ¼ a3ð3þ 2 log rÞ þ 2a2 � a1
r2

þ
�
2a21 þ 12a22r

4 þ 6a23
r4

�
cos 2q

srq ¼
�
2a21 þ 6a22r

2 � 6a23
r4

� 2a24
r2

�
sin 2q

(8.4.13)

For finite stresses at infinity, we must take a3 ¼ a22 ¼ 0. Applying the five boundary conditions
in (8.4.11) gives

2a2 þ a1
a2

¼ 0

2a21 þ 6a23
a4

þ 4a24
a2

¼ 0

2a21 � 6a23
a4

� 2a24
a2

¼ 0

2a21 ¼ �T

2

2a2 ¼ T

2

(8.4.14)

This system is easily solved for the constants, giving

a1 ¼ �a2T

2
; a2 ¼ T

4
; a21 ¼ �T

4
; a23 ¼ �a4T

4
; a24 ¼ a2T

2

Substituting these values back into (8.4.13) gives the stress field
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sr ¼ T

2

�
1� a2

r2

�
þ T

2

�
1þ 3a4

r4
� 4a2

r2

�
cos 2q

sq ¼ T

2

�
1þ a2

r2

�
� T

2

�
1þ 3a4

r4

�
cos 2q

srq ¼ �T

2

�
1� 3a4

r4
þ 2a2

r2

�
sin 2q

(8.4.15)

The strain and displacement field can then be determined using the standard procedures used
previously.

The hoop stress variation around the boundary of the hole is given by

sqða;qÞ ¼ Tð1� 2 cos 2qÞ (8.4.16)

and this is shown in the polar plot in Figure 8.13. This distribution indicates that the stress actually
vanishes at q ¼ 30� and leads to a maximum value at q ¼ 90�

smax ¼ sqða;�p=2Þ ¼ 3T (8.4.17)

Therefore, the stress concentration factor for this problem is 3, a result that is higher than that
found in the previous example shown in Figure 8.11 for uniform tension in two orthogonal direc-
tions. This illustrates an interesting, nonintuitive point that additional vertical loading to the prob-
lem of Figure 8.12 actually reduces the stress concentration.

The effects of the hole in perturbing the uniform stress field can be shown by plotting the vari-
ation of the stress with radial distance. Considering the case of the hoop stress at an angle p/2,
Figure 8.14 shows the distribution of sq(r,p/2)/T versus nondimensional radial distance r/a. It is
seen that the stress concentration around the hole is highly localized and decays very rapidly, essen-
tially disappearing when r > 5a.
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FIGURE 8.13 Variation of Hoop Stress Around Hole Boundary in Example 8.7.
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8.4.3 Biaxial and shear loading cases
Another interesting stress concentration problem is shown in Figure 8.15. For this case, the far-field
stress is biaxial, with tension in the horizontal and compression in the vertical. This far-field loading is
equivalent to a pure shear loading on planes rotated 45� as shown in case (b). Thus, the solution to this
case would apply to either the biaxial or shear-loading problems as shown.

The biaxial problem solution can be easily found from the original solution (8.4.15). This is
done by adding to the original state another stress field with loading replaced by �T and having
coordinate axes rotated 90�. Details of this process are left as an exercise, and the final result is
given by

FIGURE 8.14 Variation in Hoop Stress with Radial Distance from Hole.

TT

T

T

TT

T T

45°

(a) Biaxial Loading (b) Shear Loading

FIGURE 8.15 Stress-Free Hole Under Biaxial and Shear Loading.
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sr ¼ T

�
1þ 3a4

r4
� 4a2

r2

�
cos 2q

sq ¼ �T

�
1þ 3a4

r4

�
cos 2q

srq ¼ �T

�
1� 3a4

r4
þ 2a2

r2

�
sin 2q

(8.4.18)

The maximum stress is found to be the hoop stress on the boundary of the hole given by

sqða;0Þ ¼ sqða;pÞ ¼ �4T ; sqða;p=2Þ ¼ sqða;3p=2Þ ¼ 4T

and thus the stress concentration factor for this case is 4. It is interesting to compare this case with our
previous examples shown in Figures 8.11 and 8.12. The equal biaxial tension in Figure 8.11 gives a
stress concentration factor of 2, while the uniaxial far-field loading in Figure 8.12 produces a factor of
3. It therefore appears that the equal but opposite biaxial loadings in Figure 8.15(a) enhance the local
stress field, thus giving the highest concentration effect.

Other loading cases of stress concentration around a stress-free hole in an infinite medium can be
developed by these techniques. The problem of determining such stress distributions for the case where
the hole is in a medium of finite size poses a much more difficult boundary-value problem that would
generally require Fourier methods using a series solution; see Little (1973). However, as shown in the
stress plot in Figure 8.14, the localized concentration effects decay rapidly. Thus, these infinite domain
solutions could be used as a good approximation to finite size problems with boundaries located
greater than about five hole radii away from the origin. Numerical techniques employing finite and
boundary element methods are applied to these stress concentration problems in Chapter 16 (see
Examples 16.2 and 16.5).

EXAMPLE 8.8: WEDGE AND SEMI-INFINITE DOMAIN PROBLEMS
In this example, we shall develop the solution to several problems involving the wedge domain
shown in Figure 8.16. The two boundaries are defined by the lines q ¼ a and q ¼ b. By making
special choices for angles a and b and the boundary loadings on each face, many different problems
can be generated.

Using the general Michell solution (8.3.6), we first choose an Airy stress function to include
terms that are bounded at the origin and give uniform stresses on the boundaries

f ¼ r2ða2 þ a6qþ a21 cos 2qþ b21 sin 2qÞ (8.4.19)

The stresses corresponding to this solution are given by

sr ¼ 2a2 þ 2a6q� 2a21 cos 2q� 2b21 sin 2q
sq ¼ 2a2 þ 2a6qþ 2a21 cos 2qþ 2b21 sin 2q
srq ¼ �a6 � 2b21 cos 2qþ 2a21 sin 2q

(8.4.20)

Note that this general stress field is independent of the radial coordinate.
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8.4.4 Quarter-plane example
Consider the specific case of a quarter-plane (a¼ 0 and b¼ p/2) as shown in Figure 8.17. The problem
has a uniform shear loading along one boundary (y-axis) and no loading on the other boundary.

The boundary conditions on this problem are

sqðr;0Þ ¼ srqðr;0Þ ¼ 0
sqðr;p=2Þ ¼ 0; srqðr;p=2Þ ¼ S

(8.4.21)

Using the general stress solution (8.4.20), these boundary conditions give the following four equations

2a2 þ 2a21 ¼ 0
�a6 þ 2b21 ¼ 0
2a2 � 2a21 þ a6p ¼ 0
�a6 þ 2b21 ¼ S

(8.4.22)
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FIGURE 8.16 Wedge Domain Geometry.
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FIGURE 8.17 Quarter-Plane Example.
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These are easily solved for the unknown constants, giving

a2 ¼ Sp

8
; a6 ¼ �S

2
; a21 ¼ �Sp

8
; b21 ¼ S

4
(8.4.23)

Back-substituting these results determines the stress field solution

sr ¼ S

2


p
2
� 2qþ p

2
cos 2q� sin 2q

�

sq ¼ S

2


p
2
� 2q� p

2
cos 2qþ sin 2q

�

srq ¼ S

2



1� cos 2q� p

2
sin 2q

�
(8.4.24)

It has been pointed out that this problem has an apparent inconsistency in the shear stress component at
the origindthat is, sxy s syx at x¼ y¼ 0. To further investigate this, let us reformulate the problem in
Cartesian coordinates. The stress function can be expressed as

f ¼ S

�
p
�
x2 þ y2

�
8

�
�
x2 þ y2

�
2

tan�1 y

x
� p

8

�
x2 � y2

�þ xy

2

�
(8.4.25)

The shear stress is then given by

sxy ¼ � v2f

vxvy
¼ �Sy2

x2 þ y2
(8.4.26)

Excluding the origin, this expression tends to zero for y / 0 and to �S for x / 0, and thus has the
proper limiting behavior for r s 0. However, it has been shown by Barber (2010) that the stress
gradients in the tangential direction are of order O(r�1).

8.4.5 Half-space examples
Let us next consider the solution to several half-space examples with a domain specified by a ¼ 0 and
b¼ p. We shall investigate examples with uniform loadings over portions of the boundary surface and
also cases with concentrated forces.

8.4.6 Half-space under uniform normal stress over x £ 0
The problem of a half-space with uniform normal stress over the negative x-axis is shown in
Figure 8.18. For the particular angles of a and b that create the half-space domain, the general Airy
stress function solution form (8.4.19) can be reduced to

f ¼ a6r
2qþ b21r

2 sin 2q (8.4.27)

The hoop and shear stresses corresponding to this function are

sq ¼ 2a6qþ 2b21 sin 2q
srq ¼ �a6 � 2b21 cos 2q

(8.4.28)
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Applying boundary conditions sq(r,0) ¼ srq(r,0) ¼ srq(r,p)¼ 0, sq(r,p) ¼ �T determines constants a6
¼ �T/2p, b21 ¼ T/4p. Thus, the stress field solution is now determined as

sr ¼ � T

2p
ðsin 2qþ 2qÞ

sq ¼ T

2p
ðsin 2q� 2qÞ

srq ¼ T

2p
ð1� cos 2qÞ

(8.4.29)

It is again noted that this field depends only on the angular coordinate. Because of the discontinuity of
the boundary loading, there is a lack of continuity of the stress at the origin. This can be seen by
considering the behavior of the Cartesian shear stress component. Using the transformation relations in
Appendix B, the Cartesian shear stress for this problem is found to be

sxy ¼ � T

2p
ð1� cos 2qÞ (8.4.30)

Along the positive x-axes (q ¼ 0) sxy ¼ 0, while on the y-axes (q ¼ p/2) sxy ¼ �T/p. Thus, as we
approach the origin along these two different paths, the values will not coincide.

8.4.7 Half-space under concentrated surface force system (Flamant problem)
As another half-space example, consider the case of a concentrated force system acting at the origin, as
shown in Figure 8.19. This example is commonly called the Flamant problem.

Specifying boundary conditions for such problems with only concentrated loadings requires some
modification of our previous methods. For this example, the tractions on any semicircular arc C
enclosing the origin must balance the applied concentrated loadings. Because the area of such an arc is
proportional to the radius r, the stresses must be of order 1/r to allow such an equilibrium statement to
hold on any radius. The appropriate terms in the general Michell solution (8.3.6) that will give stresses
of order 1/r are specified by

x

 y

T

r
θ

FIGURE 8.18 Half-Space Under Uniform Loading Over Half of the Free Surface.
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f ¼ ða12r log r þ a15rqÞ cos qþ ðb12r log r þ b15rqÞ sin q (8.4.31)

The stresses resulting from this stress function are

sr ¼ 1

r
½ða12 þ 2b15Þ cos qþ ðb12 � 2a15Þ sin q�

sq ¼ 1

r
½a12 cos qþ b12 sin q�

srq ¼ 1

r
½a12 sin q� b12 cos q�

(8.4.32)

With zero normal and shear stresses on q ¼ 0 and p, a12 ¼ b12 ¼ 0, and thus sq ¼ srq ¼ 0 everywhere.
Therefore, this state of stress is sometimes called a radial distribution. Note that this result is also true
for the more general case of a wedge domain with arbitrary angles of a and b (see Exercise 8.30). To
determine the remaining constants a15 and b15, we apply the equilibrium statement that the summation
of the tractions over the semicircular arc C of radius a must balance the applied loadings

X ¼ �
ðp
0
srða;qÞa cosqdq ¼ �pb15

Y ¼ �
ðp
0
srða;qÞa sinqdq ¼ pa15

(8.4.33)

Thus, the constants are determined as a15 ¼ Y/p and b15 ¼ �X/p, and the stress field is now given by

sr ¼ � 2

pr
½X cosqþ Y sinq�

sq ¼ srq ¼ 0

(8.4.34)

As expected, the stress field is singular at the origin directly under the point loading. However, what is
not expected is the result that sq and srq vanish even for the case of tangential loading.
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FIGURE 8.19 Flamant Problem.
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To investigate this problem further, we will restrict the case to only normal loading and set X ¼ 0.
For this loading, the stresses are

sr ¼ �2Y

pr
sin q

sq ¼ srq ¼ 0

(8.4.35)

The Cartesian components corresponding to this stress field are determined using the transformation
relations given in Appendix B. The results are found to be

sx ¼ sr cos
2 q ¼ � 2Yx2y

pðx2 þ y2Þ2

sy ¼ srsin
2q ¼ � 2Yy3

pðx2 þ y2Þ2

sxy ¼ srsinq cosq ¼ � 2Yxy2

pðx2 þ y2Þ2

(8.4.36)

The distribution of the normal and shearing stresses on a horizontal line located a distance a below the
free surface of the half-space is shown in Figure 8.20. The maximum normal stress directly under the
load is given by jsyj ¼ 2Y/pa. It is observed that the effects of the concentrated loading are highly
localized, and the stresses are vanishingly small for distances where x > 5a. Stress contours of sr are
shown in Figure 8.21. From solution (8.4.35), lines of constant radial stress are circles tangent to the
half-space surface at the loading point.

We now wish to determine the displacements for the normal concentrated force problem. Assuming
plane stress conditions, Hooke’s law and the strain–displacement relations give
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FIGURE 8.20 Normal and Shear Stress Distributions Below the Free Surface for the Flamant Problem.
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FIGURE 8.21 Radial Stress Contours for the Flamant Problem.

er ¼ vur
vr

¼ 1

E
ðsr � nsqÞ ¼ � 2Y

pEr
sin q

eq ¼ ur
r
þ 1

r

vuq
vq

¼ 1

E
ðsq � nsrÞ ¼ 2nY

pEr
sin q

2erq ¼ 1

r

vur
vq

þ vuq
vr

� uq
r
¼ 1

m
srq ¼ 0

(8.4.37)

Integrating (8.4.37)1 yields the radial displacement

ur ¼ �2Y

pE
sinq log r þ f ðqÞ (8.4.38)

where f is an arbitrary function of the angular coordinate.
Substituting (8.4.38) into (8.4.37)2 allows separation of the derivative of the tangential displace-

ment component

vuq
vq

¼ 2nY

pE
sinqþ 2Y

pE
sinq log r � f ðqÞ

Integrating this equation gives

uq ¼ �2nY

pE
cosq� 2Y

pE
cosq log r �

ð
f ðqÞdqþ gðrÞ (8.4.39)

where g(r) is an arbitrary function of the indicated variable. Determination of the arbitrary functions f
and g is accomplished by substituting equations (8.4.38) and (8.4.39) into (8.4.37)3. Similar to our
previous Cartesian examples, the resulting equation can be separated into the two relations

gðrÞ � rg0ðrÞ ¼ K

�ð1� nÞ 2Y
pE

cosqþ f 0ðqÞ þ
ð
f ðqÞdq ¼ K

(8.4.40)
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where K is an arbitrary constant. The solutions to this system are

gðrÞ ¼ Cr þ K

f ðqÞ ¼ ð1� nÞY
pE

q cosqþ A sinqþ B cosq
(8.4.41)

where A, B, and C are constants of integration.
Collecting these results, the displacements thus can be written as

ur ¼ ð1� nÞY
pE

q cosq� 2Y

pE
log r sinqþ A sinqþ B cosq

uq ¼ �ð1� nÞY
pE

q sinq� 2Y

pE
log r cosq� ð1þ nÞY

pE
cosq

þ A cosq� B sinqþ Cr þ K

(8.4.42)

The terms involving the constants A, B, and C represent rigid-body motion (see Exercise 7.21). These
terms can be set to any arbitrary value without affecting the stress distribution. Rather than setting them
all to zero, they will be selected to satisfy the expected symmetry condition that the horizontal dis-
placements along the y-axis should be zero. This condition can be expressed by uq(r,p/2) ¼ 0, and this
relation requires

C ¼ K ¼ 0; B ¼ �ð1� nÞY
2E

The vertical rigid-body motion may be taken as zero, thus implying that A¼ 0. Values for all constants
are now determined, and the final result for the displacement field is

ur ¼ Y

pE

h
ð1� nÞ



q� p

2

�
cosq� 2 log r sinq

i

uq ¼ Y

pE

h
�ð1� nÞ



q� p

2

�
sinq� 2 log r cosq� ð1þ nÞ cosq

i (8.4.43)

It should be pointed out that these results contain unbounded logarithmic terms that would lead to
unrealistic predictions at infinity. This unpleasant situation is a result of the two-dimensional model.
The corresponding three-dimensional problem (Boussinesq’s problem) is solved in Chapter 13. The
resulting displacement field does not have logarithmic terms and is bounded at infinity; see equations
(13.4.16).

The radial displacement along the free surface is given by

urðr;0Þ ¼ urðr;pÞ ¼ � Y

2E
ð1� nÞ (8.4.44)

Since (1 � n) > 0, we see an unexpected result in that the horizontal displacement of all points on the
half-space surface move an equal amount toward the loading point. The tangential displacement
component on the surface is given by

uqðr;0Þ ¼ �uqðr;pÞ ¼ � Y

pE
½ð1þ nÞ þ 2 log r� (8.4.45)
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FIGURE 8.22 Displacement Field for the Flamant Problem.

which as expected is singular at the origin under the point loading. Again, the corresponding three-
dimensional solution in Chapter 13 predicts quite different surface displacements. For example, the
three-dimensional result corresponding to equation (8.4.45) gives a vertical displacement of orderO(1/r).
A MATLAB� vector distribution plot of the general displacement field resulting from solution (8.4.43)
is shown in Figure 8.22. The total displacement vectors are illustrated using suitable units for the near-
field case (0 < r < 0.5) with a Poisson’s ratio of 0.3, and Y/E ¼ 1. The field pattern would significantly
change for r > 1.

Some authors (for example, Timoshenko and Goodier, 1970) have tried to remove the unpleasant
logarithmic effects by invoking a somewhat arbitrary condition ur(ro,p/2) ¼ 0, where ro is some
arbitrary distance from the loading point. This condition may be used to determine the vertical rigid-
body term, thus determining the constant A ¼ (2Y/pE)log ro. Under this condition, the displacement
solution can then be written as

ur ¼ Y

pE

h
ð1� nÞ



q� p

2

�
cosq� 2 log


ro
r

�
sinq

i

uq ¼ Y

pE

h
�ð1� nÞ



q� p

2

�
sinqþ 2 log


ro
r

�
cosq� ð1þ nÞ cosq

i (8.4.46)

8.4.8 Half-space under a surface concentrated moment
Other half-space problems with concentrated loadings can be generated from the previous single-force
solution. For example, the concentrated moment problem can be found from the superposition of two
equal but opposite forces separated by a distance d, as shown in Figure 8.23. The limit is taken with d/ 0
but with the product Pd/ M. Details are left as an exercise, and the final resulting stress field is given by

sr ¼ �4M

pr2
sin q cos q

sq ¼ 0

srq ¼ �2M

pr2
sin2 q

(8.4.47)
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8.4.9 Half-space under uniform normal loading over La ‡ x ‡ a

As a final half-space example, consider the case of a uniform normal loading acting over a finite
portion (�a� x� a) of the free surface, as shown in Figure 8.24. This problem can be solved by using
the superposition of the single normal force solution developed previously. Using the Cartesian stress
solution (8.4.36) for the single-force problem

sx ¼ sr cos
2 q ¼ �2Y

pr
sinq cos2 q

sy ¼ sr sin
2 q ¼ �2Y

pr
sin3 q

sxy ¼ sr sinq cosq ¼ �2Y

pr
sin2 q cosq

(8.4.48)

For the distributed loading case, a differential load acting on the free surface length dx may be
expressed by dY ¼ pdx. Using the geometry in Figure 8.25, dx ¼ rdq/sinq, and thus the differential
loading is given by dY ¼ prdq/sinq.

P d P

x

y

M
x

y

FIGURE 8.23 Half-Space with a Concentrated Surface Moment Loading.
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 y
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FIGURE 8.24 Half-Space Under Uniform Loading Over La ‡ x ‡ a.
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Using the differential loading in relations (8.4.48) gives the differential stress field

dsx ¼ �2p

p
cos2 q dq

dsy ¼ �2p

p
sin2 q dq

dsxy ¼ �2p

p
sinq cosq dq

(8.4.49)

Integrating this result over the entire load distribution gives the total stress field

sx ¼ �2p

p

ðq2
q1

cos2q dq ¼ � p

2p
½2ðq2 � q1Þ þ ðsin 2q2 � sin 2q1Þ�

sy ¼ �2p

p

ðq2
q1

sin2q dq ¼ � p

2p
½2ðq2 � q1Þ � ðsin 2q2 � sin 2q1Þ�

sxy ¼ �2p

p

ðq2
q1

sin q cosq dq ¼ p

2p
½cos 2q2 � cos 2q1�

(8.4.50)

with q1 and q2 defined in Figure 8.24. The distribution of the normal and shearing stresses on a
horizontal line located a distance a below the free surface is shown in Figure 8.26. This distribution is
similar to that in Figure 8.20 for the single concentrated force, thus again justifying the Saint-Venant
principle. The solution of the corresponding problem of a uniformly distributed shear loading is given
in Exercise 8.37. The more general surface loading case, with arbitrary normal and shear loading over
the free surface (�a � s � a), is included in Exercise 8.38.

Distributed loadings on an elastic half-space are commonly used to simulate contact mechanics
problems, which are concerned with the load transfer and local stress distribution in elastic bodies in
contact. Problems of this type were first investigated by Hertz (1882), and numerous studies have been
conducted over the last century (see text by Johnson, 1985). Because interest in these problems is

FIGURE 8.25 Surface Geometry for the Distributed Loading Example.
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normally restricted to near-field behavior, boundary dimensions and curvatures can often be neglected
and a distributed loading on a half-space can provide an estimate of the local stress distribution. Of
course, the simple uniform normal load distribution in Figure 8.24 would only provide an approxi-
mation to the actual nonuniform loading generated by bodies in contact.

The high local stresses commonly generated in such problems have been found to cause material
failure under repeated loading conditions found in rotating wheels, gears, and bearings. Because
failure of ductile materials can be related to the maximum shear stress, consider the behavior of smax

under the loading in Figure 8.24. Along the y-axis below the loading, sxy¼ 0, thus the x- and y-axes are
principal at these points and the maximum shear stress is given by smax ¼ 1/2jsx � syj. A plot of this
stress versus depth below the surface is shown in Figure 8.27. It is interesting to observe that smax takes
on a maximum value of p/p below the free surface at y¼ a, and thus initial material failure is expected
to start at this subsurface location. The corresponding stress distribution for the concentrated loading
problem of Figure 8.21 is also shown. In contrast, it is seen that the concentrated loading produces
monotonically decreasing behavior from the singular value directly under the load.

To compare these theoretical results with actual material behavior, photoelastic contact examples
(taken from Johnson, 1985) are shown in Figure 8.28. The figure illustrates and compares near-field
photoelastic fringe patterns in a rectangular plate with four different contact loadings. The photoe-
lastic model (plate) is made of a transparent material that exhibits isochromatic fringe patterns when
viewed under polarized light. As mentioned in Section 3.6, these fringes represent lines of constant
maximum shear stress and can be used to determine the nature of the local stress field. Under point
loading, the maximum stress appears to be located directly under the load, while for the uniform
distributed loading case the maximum contour occurs at a small distance below the contact surface.
These results provide qualitative agreement with the theoretical predictions shown in Figure 8.27, and
Exercise 8.36 involves the development and plotting of the maximum shear stress contours.

Figure 8.28 also shows surface loading from a flat punch and circular cylinder. The flat punch
loading generates high local stresses at the edges of the punch, and this is caused by the singularity of
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FIGURE 8.26 Normal and Shear Stress Distributions for the Distributed Loading Example.
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FIGURE 8.28 Isochromatic Photoelastic Fringe Patterns for Several Contact Loadings on a Half-Plane.

(Taken from Contact Mechanics by KL Johnson, reprinted with the permission of Cambridge University Press.)
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the loading at these two points. Although the stress fields of the cylinder and uniform loading cases
look similar, the detailed stresses will not be the same. The cylinder case will create a nonuniform
contact loading profile that decreases to zero at the ends of the contact area. We will explore in more
detail some of these contact mechanics solution behaviors in Section 8.5. Other distributed loading
problems can be solved in a similar superposition fashion, and the solution to several cases have been
given by Timoshenko and Goodier (1970), Poulos and Davis (1974), and Kachanov, Shafiro, and
Tsukrov (2003).

8.4.10 Notch and crack problems
Consider the original wedge problem shown in Figure 8.16 for the case where angle a is small and b is
2p� a. This case generates a thin notch in an infinite medium, as shown in Figure 8.29. We pursue the
case where az 0, and thus the notch becomes a crack. The boundary surfaces of the notch are taken to
be stress free and thus the problem involves only far-field loadings.

Starting with the Michell solution (8.3.6), the Airy stress function is chosen from the generalized
form

f ¼ rl½A sin lqþ B cos lqþ C sinðl� 2Þqþ D cosðl� 2Þq� (8.4.51)

where we are now allowing l to be a noninteger. The boundary stresses corresponding to this stress
function are

sq ¼ lðl� 1Þrl�2½A sin lqþ B cos lqþ C sinðl� 2Þqþ D cosðl� 2Þq�
srq ¼ �ðl� 1Þrl�2½Al cos lq� Bl sin lqþ Cðl� 2Þcosðl� 2Þq� Dðl� 2Þsinðl� 2Þq�

(8.4.52)

The stress-free boundary conditions at q ¼ a z 0 give

Bþ D ¼ 0
lAþ ðl� 2ÞC ¼ 0

(8.4.53)

 y

  = 2   − β απ

r

x

θ
αϑ

FIGURE 8.29 Crack Problem Geometry.
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while the identical conditions at q ¼ b ¼ 2p � a z 2p produce�
sin 2pðl� 2Þ � l� 2

l
sin 2pl

	
C

þ½cos 2pðl� 2Þ � cos 2pl�D ¼ 0

½ðl� 2Þcos 2pðl� 2Þ � ðl� 2Þcos 2pl�C
�½ðl� 2Þsin 2pðl� 2Þ � l sin 2pl�D ¼ 0

(8.4.54)

where we have used relations (8.4.53) to reduce the form of (8.4.54). These relations represent a
system of four homogeneous equations for the four unknowns A, B, C, and D. Thus, the determinant of
the coefficient matrix must vanish, and this gives the result

sin 2pðl� 1Þ ¼ 0

This relation implies that 2p(l � 1) ¼ np, with n ¼ 0, 1, 2, ., thus giving

l ¼ n

2
þ 1; n ¼ 0; 1; 2; . (8.4.55)

Near the tip of the notch r / 0 and the stresses will be of order O(rl�2), while the displacements are
O(rl�1). At this location the displacements are expected to be finite, thus implying l > 1, while the
stresses are expected to be singular, requiring l< 2. Therefore, we find that the allowable range for l is
given by 1< l < 2. In light of relation (8.4.55), we need only consider the case with n¼ 1, giving l ¼
3/2. Thus, for the crack problem the local stresses around the crack tip will be Oð1= ffiffi

r
p Þ and the

displacements Oð ffiffi
r

p Þ:
Using these results, the stress field can then be written as

sr ¼ �3

4

1ffiffi
r

p
�
A

�
sin

3

2
qþ 5 sin

q

2

�
þ B

�
cos

3

2
qþ 5

3
cos

q

2

�	

sq ¼ 3

4

1ffiffi
r

p
�
A

�
sin

3

2
q� 3 sin

q

2

�
þ B

�
cos

3

2
q� cos

q

2

�	

srq ¼ �3

4

1ffiffi
r

p
�
A

�
cos

3

2
q� cos

q

2

�
� B

�
sin

3

2
q� 1

3
sin

q

2

�	
(8.4.56)

Such relations play an important role in fracture mechanics by providing information on the nature of
the singular state of stress near crack tips. In fracture mechanics it is normally more convenient to
express the stress field in terms of the angle w measured from the direction of crack propagation, as
shown in Figure 8.29. Making the change in angular coordinate, the stress field now becomes

sr ¼ �3

2

Affiffi
r

p cos
w

2
ð3� cos wÞ � B

2
ffiffi
r

p sin
w

2
ð1� 3 cos wÞ

sq ¼ �3

2

Affiffi
r

p cos
w

2
ð1þ cos wÞ � 3B

2
ffiffi
r

p sin
w

2
ð1þ cos wÞ

srq ¼ 3

2

Affiffi
r

p sin
w

2
ð1þ cos wÞ þ B

2
ffiffi
r

p cos
w

2
ð1� 3 cos wÞ

(8.4.57)
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The remaining constants A and B are determined from the far-field boundary conditions. However, an
important observation is that the form of this crack-tip stress field is not dependent on such boundary
conditions. With respect to the angle w, it is noted that terms with the A coefficient include symmetric
normal stresses, while the remaining terms containing B have antisymmetric behavior. The symmetric
terms are normally referred to as opening ormode I behavior, while antisymmetric terms correspond to
shear or mode II. Constants A and B can be related to the stress intensity factors commonly used in
fracture mechanics studies. Further information on stress analysis around cracks can be found in the
classic monograph by Tada, Paris, and Irwin (2000). Other cases of notch problems with different
geometry and boundary conditions have been presented by Little (1973). Additional stress analysis
around cracks is investigated in Chapters 10–12 using the powerful method of complex variable theory.

EXAMPLE 8.9: CURVED BEAM PROBLEMS
We shall now investigate the solution to some curved beam problems defined by an annular region
cut by two radial lines. Similar to the previous beam examples, we use resultant force boundary
conditions at the ends and exact pointwise specifications along the lateral curved boundaries. Com-
parisons with strength of materials predictions are made for specific cases.

8.4.11 Pure bending example
The first example is the simple case of a curved beam loaded by end moments, as shown in Figure 8.30.
The solution to such a problem is independent of the angular coordinate. As usual, we satisfy the
pointwise boundary conditions on the sides of the beam but address only the resultant effects at each
cross-sectional end. Thus, the boundary conditions on this problem are formulated as

srðaÞ ¼ srðbÞ ¼ 0

srqðaÞ ¼ srqðbÞ ¼ 0ðb
a
sqdr ¼ 0

ðb
a
sqrdr ¼ �M

(8.4.58)

a

b

r

MM

FIGURE 8.30 Curved Beam with End Moments.
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Using the general axisymmetric stress solution (8.3.8) in boundary relations (8.4.58) gives

2A log aþ C

a2
þ Aþ 2B ¼ 0

2A log bþ C

b2
þ Aþ 2B ¼ 0

b

�
2A log bþ C

b2
þ Aþ 2B

�
� a

�
2A log aþ C

a2
þ Aþ 2B

�
¼ 0

�C log

�
b

a

�
þ A

�
b2 log b� a2 log a

�þ B
�
b2 � a2

� ¼ �M

(8.4.59)

Because the third equation is a linear combination of the first two, only three of these four relations are
independent. Solving these equations for the three constants gives

A ¼ �2M

N

�
b2 � a2

�
B ¼ M

N

�
b2 � a2 þ 2

�
b2 log b� a2 log a

��
C ¼ �4M

N
a2b2 log

�
b

a

� (8.4.60)

where

N ¼ �b2 � a2
�2 � 4a2b2

�
log

�
b

a

�	2
The stresses thus become

sr ¼ �4M

N

�
a2b2

r2
log

�
b

a

�
þ b2 log


r
b

�
þ a2 log


a
r

�	

sq ¼ �4M

N

�
� a2b2

r2
log

�
b

a

�
þ b2 log


r
b

�
þ a2 log


a
r

�
þ b2 � a2

	
srq ¼ 0

(8.4.61)

The bending stress distribution sq through the beam thickness is shown in Figure 8.31 for the case of
b/a ¼ 4. Also shown in the figure is the corresponding result from strength of materials theory (see
Appendix D, Section D.4, and Exercise 8.43). Both theories predict nonlinear stress distributions with
maximum values on the inner fibers. For this problem, differences between elasticity and strength of
materials predictions are very small.

8.4.12 Curved cantilever under end loading
Consider the curved cantilever beam carrying an end loading, as shown in Figure 8.32. For this
problem, the stress field depends on the angular coordinate. The boundary conditions require zero
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FIGURE 8.31 Bending Stress Results of a Curved Beam with End Moments.
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FIGURE 8.32 Curved Cantilever Beam with End Loading.
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stress on r ¼ a and b and a resultant shear load on the end q ¼ 0. These conditions are thus formulated
as follows

srða;qÞ ¼ srðb;qÞ ¼ 0

srqða;qÞ ¼ srqðb;qÞ ¼ 0

ðb
a
srqðr;0Þdr ¼ P

ðb
a
sqðr;0Þdr ¼

ðb
a
sqðr;0Þrdr ¼ 0

ðb
a
sqðr;p=2Þdr ¼ �P

ðb
a
sqðr;p=2Þrdr ¼ Pðaþ bÞ=2

ðb
a
srqðr;p=2Þdr ¼ 0

(8.4.62)

Based on the required angular dependence of the stress field, the Airy stress function for this problem
is selected from the general Michell solution (8.3.6), including only terms with sin q dependence

f ¼
�
Ar3 þ B

r
þ Cr þ Dr log r

�
sinq (8.4.63)

This form gives the following stresses

sr ¼
�
2Ar � 2B

r3
þ D

r

�
sinq

sq ¼
�
6Ar þ 2B

r3
þ D

r

�
sinq

srq ¼ �
�
2Ar � 2B

r3
þ D

r

�
cosq

(8.4.64)

Using these results in the boundary condition relations (8.4.62) generates three equations for the
unknown constants. Solving these equations gives the results

A ¼ P

2N
; B ¼ �Pa2b2

2N
; D ¼ �P

N

�
a2 þ b2

�
where

N ¼ a2 � b2 þ �a2 þ b2
�
log

�
b

a

�
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Substituting these forms into (8.4.64) gives the stress field solution

sr ¼ P

N

�
r þ a2b2

r3
� a2 þ b2

r

�
sinq

sq ¼ P

N

�
3r � a2b2

r3
� a2 þ b2

r

�
sinq

srq ¼ �P

N

�
r þ a2b2

r3
� a2 þ b2

r

�
cosq

(8.4.65)

These elasticity results can again be compared with the corresponding predictions from
strength of materials. Figure 8.33 illustrates the comparison of the hoop stress component through
the beam thickness at q ¼ p/2 (fixed end) for the case of b/a ¼ 4. As in the previous example,
results from the two theories are similar, but for this case differences are more sizeable.
Other problems of end-loaded cantilever beams can be solved using similar methods (see
Exercise 8.44).

EXAMPLE 8.10: DISK UNDER DIAMETRICAL COMPRESSION
Let us now investigate the solution to the plane problem shown in Figure 8.34 of a circular disk or
cylinder loaded by equal but opposite concentrated forces along a given diameter. This particular
problem is of special interest since this geometry is used in standard testing (ASTM D-4123,
1987) of bituminous and other brittle materials such as concrete, asphalt, rock, and ceramics. Nor-
mally referred to as the Brazilian or indirect tension test, the sample and loading geometry create a
tension zone along the loaded diameter, thus allowing determination of the tensile strength of the
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FIGURE 8.34 Disk Under Diametrical CompressiondSuperposition Solution.

specimen material. Standard direct tension testing on such brittle materials has led to difficulty in
establishing a failure region in the sample’s central interior away from the gripping locations (see
the simple tension sample geometry in Figure 4.2).

This problem can be solved by more than one method, but perhaps the most interesting tech-
nique employs a clever superposition scheme, as shown in Figure 8.34. The method uses super-
position of three particular stress fields, including two Flamant solutions along with a uniform
radial tension loading. As will be shown, the Flamant solutions provide the required singular behav-
iors at the top and bottom of an imaginary disk within each half-space, while the radial loading
removes the resulting boundary tractions on the disk that were created by the two point loadings.

To combine the two Flamant solutions, it is more convenient to redefine the angular coordinate
as shown in Figure 8.35. Using the previous results from equation (8.4.36), the stress fields for each
Flamant solution can be written as

s
ð1Þ
x ¼ � 2P

pr1
cos q1 sin

2 q1; s
ð2Þ
x ¼ � 2P

pr2
cos q2 sin

2 q2

s
ð1Þ
y ¼ � 2P

pr1
cos3q1; s

ð2Þ
y ¼ � 2P

pr2
cos3q2

s
ð1Þ
xy ¼ � 2P

pr1
cos2 q1 sin q1; s

ð2Þ
xy ¼ � 2P

pr2
cos2 q2 sin q2

(8.4.66)
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From the general solution (8.4.35), each Flamant solution produces only a constant radial stress
of sr¼�2P/pD on the circular boundary of the disk (see Figure 8.21). The resultant boundary trac-
tion from the two combined Flamant loadings is found to be normal to the disk surface with a
magnitude given by

Tn ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
ð1Þ
r cos q1

�2 þ 
sð2Þr sin q1

�2r

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
� 2P

pD
cos q1

�2

þ
�
� 2P

pD
sin q1

�2
s

¼ �2P

pD

(8.4.67)

Thus, the final superposition of a uniformly loaded disk with the opposite tractions of (8.4.67)
removes the boundary forces and yields the solution to the desired problem. The uniformly loaded
disk problem creates a simple hydrostatic state of stress given by

sð3Þx ¼ sð3Þy ¼ 2P

pD
; sð3Þxy ¼ 0 (8.4.68)

Applying the superposition of states (1), (2), and (3), relations (8.4.66) and (8.4.68) are added,
giving the final stress field solution

sx ¼ �2P

p

"
ðR� yÞx2

r41
þ ðRþ yÞx2

r42
� 1

D

#

sy ¼ �2P

p

"
ðR� yÞ3

r41
þ ðRþ yÞ3

r42
� 1

D

#

sxy ¼ 2P

p

"
ðR� yÞ2x

r41
� ðRþ yÞ2x

r42

#
(8.4.69)
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FIGURE 8.35 Disk Under Diametrical Compression.
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where r1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðRHyÞ2

q
: On the x-axis (y ¼ 0) these results simplify to give

sxðx;0Þ ¼ 2P

pD

�
D2 � 4x2

D2 þ 4x2

	2

syðx;0Þ ¼ �2P

pD

"
4D4

ðD2 þ 4x2Þ2
� 1

#

sxyðx;0Þ ¼ 0

(8.4.70)

while on the y-axis (x ¼ 0) the stresses are

sxð0;yÞ ¼ 2P

pD

syð0;yÞ ¼ �2P

p

�
2

D� 2y
þ 2

Dþ 2y
� 1

D

	

sxyð0;yÞ ¼ 0

(8.4.71)

Thus, along the loaded diameter (x ¼ 0), the body will have a uniform tensile stress of sx ¼
2P/pD, and this result is the primary basis of using the geometry for indirect tension testing.
Knowing the sample size and failure (fracture) loading, the simple stress relation allows the deter-
mination of the failing tensile stress or material strength. Plots of the stress distribution along the x-
axis (y ¼ 0) are left as an exercise. Additional applications of this problem can be found in models
of granular materials in which particles are simulated by circular disks loaded by several contact
forces (see Exercise 8.46).

The maximum shearing stresses in the disk can be calculated by the relation

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ s2xy

s
(8.4.72)

Using the stress results (8.4.69) in this relation, the smax distribution may be determined,
and these results are illustrated in Figure 8.36. The theoretical maximum shear stress contours
are plotted using MATLAB�. The corresponding photoelastic results are also shown in the
figure. In general, the theoretical contours match quite well with the experimental results except
for the regions near the loading points at the top and bottom of the disk. This lack of correspon-
dence is caused by the fact that the photoelastic isochromatics were generated with a loading
distributed over a small but finite contact area, and thus the maximum shear stress occurs slightly
below the contact surface, as per earlier discussions of Figure 8.28. A numerical analysis of this
problem using the finite element method is developed in Chapter 16 (see Example 16.3 and
Figure 16.6).
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EXAMPLE 8.11: ROTATING DISK PROBLEM
As a final example in this section, consider the problem of a thin uniform circular disk subject to
constant rotation u, as shown in Figure 8.37. The rotational motion generates centrifugal acceler-
ation on each particle of the disk, and this then becomes the source of external loading for the prob-
lem. No other additional external loadings are considered.

It is convenient to handle the centrifugal force loading by relating it to a body force density
through the disk. For the case of constant angular velocity, the body force is only in the radial di-
rection given by

Fr ¼ ru2r (8.4.73)

where r is the material mass density. This problem is axisymmetric, and thus the equilibrium equa-
tions reduce to

dsr
dr

þ sr � sq

r
þ ru2r ¼ 0 (8.4.74)

x

 y

a

ω

FIGURE 8.37 Rotating Circular Disk.

(Theoretical Contours) (Photoelastic Contours)
(Courtesy of Dynamic Photomechanics
Laboratory, University of Rhode Island)

FIGURE 8.36 Maximum Shear Stress Contours and Corresponding Photoelastic Isochromatics for a Disk Under

Diametrical Compression.
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The solution can be efficiently handled by using a special stress function that automatically sat-
isfies the equilibrium equation. The particular stressestress function relation with this property is
given by

sr ¼ 4=r

sq ¼ d4

dr
þ ru2r2

(8.4.75)

where 4 ¼ 4(r) is the stress function.
As usual, the governing equation for the stress function is determined from the compatibility

statement. For this axisymmetric case, the displacement field is of the form ur ¼ ur(r) and uq ¼ 0.
Therefore, the strain field is given by

er ¼ dur
dr

; eq ¼ ur
r
; erq ¼ 0

Eliminating ur from these equations develops the simple compatibility statement

d

dr
ðreqÞ � er ¼ 0 (8.4.76)

Recall that the more general polar coordinate case was given as Exercise 7.17. Using Hooke’s
law for plane stress, the strains are given by

er ¼ 1

E
ðsr � nsqÞ ¼ 1

E

�
4

r
� n

d4

dr
� nru2r2

�

eq ¼ 1

E
ðsq � nsrÞ ¼ 1

E

�
d4

dr
þ ru2r2 � n

4

r

� (8.4.77)

Using this result in the compatibility relation (8.4.76) generates the desired governing equation

d24

dr2
þ 1

r

d4

dr
� 4

r2
þ ð3þ nÞru2r ¼ 0

which can be written as

d

dr

�
1

r

d

dr
ðr4Þ

�
¼ �ð3þ nÞru2r (8.4.78)

This equation is easily integrated, giving the result

4 ¼ �ð3þ nÞ
8

ru2r3 þ 1

2
C1r þ C2

1

r
(8.4.79)

where C1 and C2 are constants. The stresses corresponding to this solution are

sr ¼ �ð3þ nÞ
8

ru2r2 þ C1

2
þ C2

r2

sq ¼ �1þ 3n

8
ru2r2 þ C1

2
� C2

r2

(8.4.80)
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FIGURE 8.38 Stresses in a Rotating Disk.

For a solid disk, the stresses must be bounded at the origin and so C2 ¼ 0. The condition that the
disk is stress free at r ¼ a gives the remaining constant C1 ¼ (3 þ n)ru2a2/4. The final form of the
stress field is then

sr ¼ 3þ n

8
ru2

�
a2 � r2

�

sq ¼ ru2

8

�ð3þ nÞa2 � ð1þ 3nÞr2�
(8.4.81)

The stress distribution within the disk is shown in Figure 8.38 for the case n ¼ 0.3. Notice that
even though the body force is largest at the disk’s outer boundary, the maximum stress occurs at the
center of the disk where Fr ¼ 0. The maximum stress is given by

smax ¼ srð0Þ ¼ sqð0Þ ¼ 3þ n

8
ru2a2

For an annular disk with a < r < b, the maximum stress occurs on the inner boundary, and for
the case of a very small inner hole with a << b, the maximum stress is approximately twice that of
the solid disk (see Exercise 8.48).

The solution to this problem could also be obtained by formulation in terms of the radial
displacement, thus generating the Navier equation, which can be easily integrated. The correspond-
ing plane strain solution for a rotating cylinder is found from these results through the usual simple
change in elastic constants, by letting n / n/(1 � n).

8.5 Simple plane contact problems
Asmentioned back in Sections 8.4.7 and 8.4.9, contact mechanics is the study of stress and deformation
of two or more solid bodies that touch each other at one or more points. Such studies have very important
engineering applications in wheel–rail contact, mechanical gears, bearings and other linkages, metal
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working, tribology, etc. Because of this importance we now will look at the problem in more detail. In
general, when two elastic solids are pressed together a contact surface is generated. Predicting details of
the contact area can be very challenging as its behavior will depend on the geometries of the bodies and
loadings, elastic moduli, and interfacial frictional characteristics. The general problem actually becomes
nonlinear, since the size and shape of the contact surface depends on the stress solution to the problem.
In this section we will explore a couple of simple contact problems involving frictionless indentation of
an elastic half-space from rigid indenters of particular shape. Much of the theory needed to explore such
problems basically comes from the Flamant solution previously presented in Sections 8.4.7 and 8.4.9.
Hertz (1882) was the first to study these problems, and numerous other investigations of increasing
complexity have been conducted since. The texts by Johnson (1985) and Jaeger (2005) are especially
useful sources to view more details and recent work, while Asaro and Lubarda (2006) and Barber (2010)
also provide further material on the topic. The handbook by Kachanov, Shafiro, and Tsukrov (2003)
gives a concise set of solution results for many contact problems.

The general class of problems to be presented is illustrated in Figure 8.39 and represents
displacement-based contact. Such problems require specification of the displacement under the
indenter as a boundary condition. Going back to the Flamant problem results in Section 8.4.7, the
stresses were given by

sr ¼ � 2

pr
½X cos qþ Y sin q�

sq ¼ srq ¼ 0

(8.5.1)

where X and Y are the tangential and normal force components shown in Figure 8.19. The surface
displacements (plane stress case) for the normal loading were given by relations (8.4.44) and (8.4.45)
while the corresponding displacements for the tangential loading cases can be determined from Ex-
ercise 8.37. Summarizing these results gives

Normal loading Tangential loading

urðr;0Þ ¼ urðr;pÞ ¼ � Y

2E
ð1� nÞ urðr;0Þ ¼ �urðr;pÞ ¼ �2X

pE
log r þ B

uqðr;0Þ ¼ �uqðr;pÞ ¼ � Y

pE
½ð1þ nÞ þ 2 log r� uqðr;0Þ ¼ uqðr;pÞ ¼ �ð1� nÞX

E
þ A

(8.5.2)

where A and B are constants from the rigid-body motion terms.
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FIGURE 8.39 Elastic Half-Space Subjected to a Rigid Indenter.
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We now wish to apply these results for a half-space that is subjected to a distributed surface
displacement determined from the shape and frictional characteristics of the indenter (see Figure 8.39).
Following the general superposition schemes used in Section 8.4.9 and Exercise 8.38, we will transfer
to Cartesian coordinates and use Flamant solution results (8.5.2). Both the stress and displacement
fields can then be determined by integral superposition using the Flamant solution as a Green’s
function. The shift to Cartesian coordinates requires writing the log r as sgn(x)logjxj. Thus, for the
general case with both normal and shear distributions p(x) and t(x) over the free surface �a � x � a,
the surface displacements ux and uy can be expressed by

ux ¼ �1� n

2E

� ð x

�a
pðsÞds�

ð a

x
pðsÞds

	
� 2

pE

ð a

�a
tðsÞlogjx� sjdsþ a1

uy ¼ � 2

pE

ð a

�a
pðsÞlogjx� sjds� 1� n

2E

� ð x

�a
tðsÞds�

ð a

x
tðsÞds

	
þ a2

(8.5.3)

Note that we have separated the integration range to properly handle the sign switch inherent in
ur and uq relations (8.5.2); see Johnson (1985) for details. The constants a1 and a2 correspond to
undetermined rigid-body motion terms.

Restricting the problem to frictionless indenters, the shear loading distribution t(x) will vanish, and
we eliminate the undetermined constants by differentiating (8.5.3) to determine the displacement
gradients as

dux
dx

¼ �1� n

E
pðxÞ

duy
dx

¼ � 2

pE

ð a

�a

pðsÞ
x� s

ds

(8.5.4)

Since the integral in (8.5.4) is singular at x ¼ s, it is interpreted as the usual Cauchy Principal Value
sense, i.e.

ð a

�a

pðsÞ
x� s

ds ¼ lim
ε/0

� ð x�ε

�a

pðsÞ
x� s

dsþ
ð a

xþε

pðsÞ
x� s

ds

	
(8.5.5)

Now if we consider a flat rigid indenter as shown in Figure 8.40, uy ¼ uy
o ¼ constant, and thus (8.5.4)2

gives the simple singular integral relation

ð a

�a

pðsÞ
x� s

ds ¼ 0 (8.5.6)

The solution to this equation for the normal load distribution has been given by Johnson (1985) as

pðxÞ ¼ P

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p (8.5.7)

where P is the total load applied by the rigid indenter. Note that contact load distribution is singular at
the edges of the indenter x ¼ �a.
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With the loading now determined, the surface displacements follow from relations (8.5.3)

ux ¼ �1� n

pE
P sin�1ðx=aÞ; x < jaj

uy ¼ � 2

pE
log

�
x

a
þ
�
x2

a2
� 1

�1=2	
þ uy

o; x > jaj
(8.5.8)

Note that for Poisson’s ratio in the usual range �1 � n � 1=2, horizontal surface displacements under
the indenter move toward the center. Realistically this motion would be opposed by friction, which was
originally neglected.

The individual stress components for this case follow from the results of Exercise 8.38

sx ¼ �2y

p

ð a

�a

pðsÞðx� sÞ2h
ðx� sÞ2 þ y2

i2 ds ¼ �2Py

p2

ð a

�a

ðx� sÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p h
ðx� sÞ2 þ y2

i2 ds

sy ¼ �2y3

p

ð a

�a

pðsÞh
ðx� sÞ2 þ y2

i2 ds ¼ �2Py3

p2

ð a

�a

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p h
ðx� sÞ2 þ y2

i2 ds

sxy ¼ �2y2

p

ð a

�a

pðsÞðx� sÞh
ðx� sÞ2 þ y2

i2 ds ¼ �2Py2

p2

ð a

�a

ðx� sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p h
ðx� sÞ2 þ y2

i2 ds

(8.5.9)

Analytical evaluation of these integrals appears to be formidable, and thus we employ numerical
integration usingMATLAB� software (see code C.6 in Appendix C) to extract stress values. Results of
the maximum shearing stress contours below the indenter are illustrated in Figure 8.41. Since the
surface load distribution (8.5.7) is singular at x ¼ �a, the stress is also unbounded at these points.
These results should be compared with the photoelastic smax contours shown in Figure 8.28 for the flat
punch loading. Comparisons with the other cases shown in this figure qualitatively illustrate differ-
ences in stresses coming from different contact loading situations.
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FIGURE 8.40 Elastic Half-Space Subjected to a Flat Rigid Indenter.
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Next we consider a similar frictionless contact problem but with a rigid cylindrical indenter, as
shown in Figure 8.42. For this case the prescribed vertical surface displacement uy with respect to an
arbitrary datum is proportional to �x2=2R, and thus relation (8.5.4)2 can be written as

ð a

�a

pðsÞ
x� s

ds ¼ pE

2R
x (8.5.10)
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FIGURE 8.41 Maximum Shear Stress Distribution Under a Flat Rigid Indenter.

FIGURE 8.42 Elastic Half-Space Subjected to a Cylindrical Rigid Indenter.
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Johnson (1985) again gives the solution to this integral equation for the normal load distribution as

pðxÞ ¼ 2P

pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
(8.5.11)

where P is the total load applied by the indenter. This result is the classic elliptical distribution that
vanishes at x ¼ �a (see Figure 8.43). For this problem the contact semi-width a is related to the total
applied load, and the expression for the plane stress case is given by

a2 ¼ 4PR

pE
(8.5.12)

With the contact load distribution now determined, the stresses in the elastic half-space can be
determined employing the scheme previously used for the flat punch shown in equations (8.5.9). The
individual stress components for this case can thus be expressed by

sx ¼ �2y

p

ð a

�a

pðsÞðx� sÞ2h
ðx� sÞ2 þ y2

i2 ds ¼ � 4Py
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i2 ds
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�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p
h
ðx� sÞ2 þ y2

i2 ds

sxy ¼ �2y2

p

ð a

�a

pðsÞðx� sÞh
ðx� sÞ2 þ y2

i2 ds ¼ �4Py2

p2a2
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�a
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a2 � s2

p
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ðx� sÞ2 þ y2
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(8.5.13)
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FIGURE 8.43 Maximum Shear Stress Distribution Under a Circular Rigid Indenter.
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As before, numerical methods (MATLAB�) are used to evaluate these integrals, and maximum
shearing stress contours below the indenter are illustrated in Figure 8.43. Differing from the previous
flat punch case shown in Figure 8.41, the circular indenter produces no singular contact loading, and
thus the half-space stresses are all bounded. These results can again be compared with the photoelastic
smax contours shown in Figure 8.28 for the cylinder contact loading case.

Similar methods can be applied to solve the more general case where each of the two bodies in
contact is treated as linear elastic. For such cases, classical Hertz theory assumes that at the contact point
each nonconforming surface has a particular radius of curvature, thus allowing a similar representation
for the surface displacements as used in the previous cylindrical indenter case. Each radius of curvature
is assumed to be sufficiently large so that the Flamant half-space solution can be employed as before.
More details on such contact problems can be found in references quoted at the beginning of this section.
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EXERCISES

8.1 Explicitly show that the fourth-order polynomial Airy stress function

A40x
4 þ A22x

2y2 þ A04y
4

will not satisfy the biharmonic equation unless 3A40 þ A22 þ 3A04 ¼ 0.
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8.2 Show that the Airy function

f ¼ 3P

4c

�
xy� xy3

3c2

�
þ N

4c
y2

solves the following cantilever beam problem, as shown in the following figure. As usual
for such problems, boundary conditions at the ends (x¼ 0 and L) should be formulated only
in terms of the resultant force system, while at y ¼ �c the exact pointwise specification
should be used. For the case with N ¼ 0, compare the elasticity stress field with the cor-
responding results from strength of materials theory. Answer:

sx ¼ �3Pxy

2c3
þ N

2c
; sy ¼ 0; sxy ¼ �3P

4c

�
1� y2

c2

�

x

y

N

P

L

2c

8.3 Determine the displacement field for the beam problem in Exercise 8.2. To determine the
rigid-body motion terms, choose fixity conditions

uðL;0Þ ¼ vðL;0Þ ¼ vvðL;0Þ
vx

¼ 0

Note that with our approximate SainteVenant solution, we cannot ensure pointwise conditions
all along the built-in end. Finally, for the special case with N ¼ 0, compare the elasticity
displacement field with the corresponding results from mechanics of materials theory (see
Appendix D). Answer :

N ¼ 0: velasticityðx;0Þ ¼ P

4Ec3
�
x3 � 3L2xþ 2L3

� ¼ vMOMðxÞ
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8.4 The solution to the illustrated two-dimensional cantilever beam problem is proposed using
the Airy stress function f ¼ C1x

2 þ C2x
2y þ C3y

3 þ C4y
5 þ C5x

2y3, where Ci are constants.
First determine requirements on the constants so that f satisfies the governing equation. Next
find the values of the remaining constants by applying exact pointwise boundary conditions
on the top and bottom of the beam and integrated resultant boundary conditions on the ends
x ¼ 0 and x ¼ L.

x

y

c

c

L

q

8.5 Verify that the Airy stress function

f ¼ s

4

�
xyþ ly2

c
þ ly3

c2
� xy2

c
� xy3

c2

�

solves the problem of a cantilever beam loaded by uniform shear along its bottom edge
as shown. Use pointwise boundary conditions on y ¼ �c and only resultant effects at ends
x ¼ 0 and l. Note, however, you should be able to show that sx vanishes at x ¼ l.

s

c

l

y

x
c

8.6 The following stress function

f ¼ C1xyþ C2
x3

6
þ C3

x3y

6
þ C4

xy3

6
þ C5

x3y3

9
þ C6

xy5

20

is proposed to solve the problem of a cantilever beam carrying uniformly varying loading as
shown in the following figure. Explicitly verify that this stress function will satisfy all
conditions on the problem and determine each of the constants Ci and the resulting stress
field. Use resultant force boundary conditions at the beam ends. Answers:

C1 ¼ � pc

40L
; C2 ¼ � p

2L
; C3 ¼ � 3p

4Lc
; C4 ¼ 3p

10Lc
; C5 ¼ 3p

8Lc3

C6 ¼ � p

2Lc3
; sx ¼ pxy

20Lc3
�
5x2 � 10y2 þ 6c2

�
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x

y

c

c

L

(p/L)x

8.7 The cantilever beam shown in the figure is subjected to a distributed shear stress sox/l on the
upper face. The following Airy stress function is proposed to solve this problem

f ¼ c1y
2 þ c2y

3 þ c3y
4 þ c4y

5 þ c5x
2 þ c6x

2yþ c7x
2y2 þ c8x

2y3

Determine the constants ci and find the stress distribution in the beam. Use resultant force
boundary conditions at the ends. (Answer: c1 ¼ soc/12l, c2 ¼ so/20l, c3 ¼ �so/24cl, .)

x

y

c

c

l

τox/l

8.8* A triangular plate of narrow rectangular cross-section and uniform thickness is loaded uni-
formly along its top edge as shown in the following figure. Verify that the Airy stress function

f ¼ p cota

2ð1� a cotaÞ
h
� x2 tanaþ xyþ �x2 þ y2

�

a� tan�1y

x

�i
solves this plane problem. For the particular case of a¼ 30�, explicitly calculate the normal
and shear stress distribution over a typical cross-section AB and make comparison plots
(MATLAB� recommended) of your results with those from elementary strength of
materials. Answer:

sx ¼ 2K

�
a� tan�1y

x
� xy

x2 þ y2

	
; sy ¼ 2K

�
a� tana� tan�1y

x
þ xy

x2 þ y2

	

sxy ¼ �2K
y2

x2 þ y2
; K ¼ p cota

2ð1� a cotaÞ

x

y

L

 p

A

B

α
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8.9* Redo Exercise 8.8* using polar coordinates.

8.10 A triangular plate of narrow rectangular cross-section and uniform thickness carries a uni-
formly varying loading along its top edge as shown. Verify that the Airy stress function

f ¼ r3½a14 cos qþ b14 sin qþ a31 cos 3qþ b31 sin 3q�
solves this plane problem.

x 

y 

p(x) = kx 

α
r θ

•

8.11* For the pure beam bending problem solved in Example 8.2, calculate and plot the in-plane
displacement field given by relation (8.1.22)2. Use the vector distribution plotting scheme
illustrated in Appendix C, Example C.5. Your solution should look like the following figure.

8.12* For the beam problem in Example 8.3, the boundary conditions required that the resultant
normal force vanish at each end (x ¼ �l). Show, however, that the normal stress on each end
is not zero, and plot its distribution over �c < y < c.

8.13* Explicitly determine the bending stress sx for the problem in Example 8.4. For the case l/c¼ 3,
plot this stress distribution through the beam thickness at x¼ l/2, and compare with strength of
materials theory. For long beams (l>> c), show that the elasticity results approach the strength
of materials predictions.

8.14 Develop the general displacement solution (8.3.9) for the axisymmetric case.
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8.15 Consider the axisymmetric problem of an annular disk with a fixed inner radius and loaded
with uniform shear stress s over the outer radius. Using the Airy stress function term a4q,
show that the stress and displacement solution for this problem is given by

sr ¼ sq ¼ 0; srq ¼ s
r22
r2

ur ¼ 0; uq ¼ 1þ n

E
sr22

 
r

r21
� 1

r

!

r2

r1

τ

8.16 Under the conditions of polar axisymmetry, verify that the Navier equations (5.4.4) reduce to
relation (8.3.10). Refer to Example 1.5 to evaluate vector terms in (5.4.4) properly. Next
show that the general solution to this CauchyeEuler differential equation is given by
(8.3.11). Finally, use this solution to determine the stresses and show that they will not
contain the logarithmic terms given in the general solution (8.3.8).

8.17 For the axisymmetric problem of Example 8.6, explicitly develop the displacement solution
given by relation (8.4.5).

8.18 Consider the annular ring loaded with a sinusoidal distributed pressure as illustrated. Show
that this problem can be solved using the Airy function

f ¼ a1 log r þ a2r
2 þ �a21r2 þ a22r

4 þ a23r
�2 þ a24

�
cos 2q

r1

r2

x

p= posin2θ

y
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8.19 Through a shrink-fit process, a rigid solid cylinder of radius r1 þ d is to be inserted into the
hollow cylinder of inner radius r1 and outer radius r2 (as shown in the following figure). This
process creates a displacement boundary condition ur(r1)¼ d. The outer surface of the hollow
cylinder is to remain stress free. Assuming plane strain conditions, determine the resulting
stress field within the cylinder (r1 < r < r2).

r2

r1

ur =δ

8.20 A long composite cylinder is subjected to the external pressure loading as shown in the
following figure. Assuming idealized perfect bonding between the two materials, the normal
stress and displacement will be continuous across the interface r ¼ r1 (see Section 5.2).
Under these conditions, determine the stress and displacement fields in each material.

8.21* Numerically generate and plot the fields of stress (sr, sq) and displacement (ur) within the
composite cylinder of Exercise 8.20 for the specific case with material (1) ¼ steel and
material (2) ¼ aluminum. Use Table 4.2 for elastic moduli values. Explore and discuss the
continuity issues for these field quantities at the interface r ¼ r1.

8.22 Resolve Exercise 8.20 for the case where material (1) is rigid and material (2) is elastic with
modulus E and Poisson’s ratio n.

r2

r1

Material (1)

p

Material (2)
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8.23 For the case of a thin-walled tube under internal pressure, verify that the general solution for the
hoop stress (8.4.3)2 will reduce to the strength of materials relation (see Appendix D, Section D.5)

sq z
pro
t

where t is the wall thickness and ro is the mean radius.

8.24 Consider the cut-and-weld problem in which a small wedge of angle a is removed from an annular
ring as shown in the figure. The ring is then to be joined back together (welded) at the cut section.
This operation produces an axisymmetric stress field, but the problem will contain a cyclic
tangential displacement condition uq (r,2p) � uq (r,0) ¼ ar. First using the general plane stress
solution (8.3.9)2, drop the rigid-body motion terms and show that the constant a3 is given by

a3 ¼ aE

8p

Next use the general solution form (8.3.8) with zero boundary tractions on the inner and outer
radii of the ring and determine the constants a1 and a2 and complete the stress field solution.

α

8.25 Using superposition of the stress field (8.4.15) given in Example 8.7, show that the problem
of equal biaxial tension loading on a stress-free hole as shown in the figure is given by
equations (8.4.9).

TT

T

T
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8.26* Using superposition of the stress field (8.4.15), develop solution (8.4.18) for the equal but
opposite biaxial loading on a stress-free hole shown in Figure 8.15(a). Also justify that this
solution will solve the shear loading case shown in Figure 8.15(b). Construct a polar plot
(similar to Figure 8.13) of sq(a,q)/T for this case.

8.27 An elastic circular plug of radius a with properties E1 and n1 is perfectly bonded and
embedded in an infinite elastic medium with properties E2 and n2. The composite is loaded
with a uniform far-field biaxial stress T as shown. Using the results from Exercise 8.20,
determine the stress and displacement solutions in each material. Explicitly explore the
stresses on the boundary of the plug (r ¼ a) and determine if any stress concentration will
exist.

8.28 An infinite elastic medium contains a perfectly bonded rigid plug and is loaded with uniform
far-field biaxial stress T as shown. Using the results from Exercise 8.22, determine the stress
and displacement solution. Explicitly explore the stresses on the boundary of the plug (r¼ a)
and determine if any stress concentration will exist.

T

T

Perfectly Bonded 
Elastic Plug of Radius a
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8.29 Show that the stress function

f ¼ sor2

p

�
sin2 q log r þ q sinq cosq� sin2 q

�
gives the solution to the problem of an elastic half-space loaded by a uniformly distributed
shear over the free surface (x � 0), as shown in the figure. Identify locations where the
stresses are singular.

8.30 Show that the Flamant solution given by equations (8.4.31) and (8.4.32) can also be used to
solve the more general wedge problem as shown.

x

y

r

θ

το

x

 y

r

X

Y

β

θ
α

228 CHAPTER 8 Two-Dimensional Problem Solution



8.31 Show that plane stress displacements for the Flamant problem in Section 8.4.7 under only
tangential force X are given by

ur ¼ ð1� nÞX
pE

q sinq� 2X

pE
log r cosqþ A sinqþ B cosq

uq ¼ ð1� nÞX
pE

q cosqþ 2X

pE
log r sinq� ð1� 3nÞX

pE
sinq

þ A cosq� B sinqþ Cr þ K

8.32 Determine the stress field solution (8.4.47) for the problem of a half-space under a
concentrated surface moment as shown in Figure 8.23. It is recommended to use the su-
perposition and limiting process as illustrated in the figure. This solution can be formally
developed using either Cartesian or polar coordinate stress components. However, a simple
and elegant solution can be found by noting that the superposition and limiting process yields
the stress function solution fM ¼ �dvf/vx, where f is the solution to the Flamant problem
shown in Figure 8.21.

8.33 Show that the problem of a half-space carrying a concentrated surface moment (see
Figure 8.23) can also be solved using the Airy function form f ¼ a4qþ b24 sin 2q.

8.34* Consider an elastic half-space loaded over its entire free surface with a sinusoidal pressure as
shown. Using a portion of the general solution (8.2.6), show that an Airy stress function of the
form f ¼ cos bx½Be�by þ Dye�by� will satisfy the appropriate boundary and far-field con-
ditions and thus solve this problem. Next determine the x-location where the horizontal shear
stress is a maximum and plot the distribution of this component versus depth into the me-
dium. Such solutions have been used in geomechanics problems to simulate seafloor loading
from surface water waves.

x

y

p = pocos(πx/L)
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8.35 Working in polar coordinates, show that an Airy stress function of the form
f ¼ a2r

2 þ a21r
2 cos 2q (where a2 and a21 are constants) solves the illustrated problem of a

shear loaded wedge problem. Are there any points in the body that exhibit singular behavior?

x 

θ

α

s 

• α
r 

s 

8.36* For the problem of a half-space under uniform normal loading as shown in Figure 8.24, show
that the maximum shear stress can be expressed by

smax ¼ p

p
sinðq1 � q2Þ

Plot the distribution of lines of constant maximum shear stress, and compare the results with
the photoelastic fringes shown in Figure 8.28. These results, along with several other loading
cases, have been given by Poulos and Davis (1974).

8.37 Following a similar solution procedure as used in Section 8.4.9, show that the solution for a
half-space carrying a uniformly distributed shear loading t is given by

sx ¼ t

2p
½4 logðsinq1=sinq2Þ � cos2q2 þ cos2q1Þ�

sy ¼ t

2p
½cos2q2 � cos2q1Þ�

sxy ¼ � t

2p
½2ðq2 � q1Þ þ sin2q2 � sin2q1�

x

y

aa θ1θ2

t

r1r2
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8.38 Generalize the integral superposition methods used in the examples shown in Section 8.4.9
and Exercise 8.37. In particular, show that the stress solution for a half-space carrying general
normal and shear distributions p(x) and t(x) over the free surface �a � x � a is given by

sx ¼ �2y

p

ða
�a

pðsÞðx� sÞ2
½ðx� sÞ2 þ y2�2 ds�

2

p

ða
�a

tðsÞðx� sÞ3
½ðx� sÞ2 þ y2�2 ds

sy ¼ �2y3

p

ða
�a

pðsÞ
½ðx� sÞ2 þ y2�2 ds�

2y2

p

ða
�a

tðsÞðx� sÞ
½ðx� sÞ2 þ y2�2 ds

sxy ¼ �2y2

p

ða
�a

pðsÞðx� sÞ
½ðx� sÞ2 þ y2�2 ds�

2y

p

ða
�a

tðsÞðx� sÞ2
½ðx� sÞ2 þ y2�2 ds

8.39 Using the formulation and boundary condition results of the thin notch crack problem shown
in Figure 8.29, explicitly develop the stress components given by relations (8.4.56) and
(8.4.57).

8.40* Photoelastic studies of the stress distribution around the tip of a crack have produced the
isochromatic fringe pattern (opening mode I case) as shown in the figure. Using the solution
given in (8.4.57), show that maximum shear stresses for each mode case are given by

ðsmaxÞI ¼
3A

2
ffiffi
r

p sin w; ðsmaxÞII ¼
B

2
ffiffi
r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3 cos2 wÞ

q
Next, plot contours of constant maximum shear stress for modes I and II. In plotting each case,
normalize smax by the coefficient A or B. For the mode I case, theoretical contours should
compare with the following photoelastic picture.

(Courtesy of Dynamic Photomechanics
Laboratory, University of Rhode Island)
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8.41 Consider the crack problem shown for the antiplane strain case with u ¼ v ¼ 0, w ¼ w(x,y).
From Section 7.4, the governing equation for the unknown displacement component with
zero body force was given by Laplace’s equation, which in polar coordinates reads

V2w ¼ v2w

vr2
þ 1

r

vw

vr
þ 1

r2
v2w

vq2
¼ 0

Use a separation of variables scheme with w¼ rlf (q), where l is a parameter to be determined
and f (q) is expected to be an odd function. Show that using this solution form in the governing
equation gives the result w ¼ Arl sinlq, where A is a constant. Next determine the polar
coordinate stress components, and following similar methods as in Section 8.4.10, show that
the boundary condition of zero stress on the crack surfaces gives l¼ n/2, where n¼ 1, 3, 5,.
Finally, using the arguments of finite displacements but singular stresses at the crack tip, show
that 0 < l < 1 and thus conclude that the displacement and stress near r z 0 must be of the
form

w ¼ A
ffiffi
r

p
sin

q

2
; szq ¼ mA

2
ffiffi
r

p cos
q

2
; szr ¼ mA

2
ffiffi
r

p sin
q

2

Note that the order of stress singularity, O(r�1/2), is identical to our previous study.

y

r

x

θ
•

8.42* For the antiplane stain crack problem solved in Exercise 8.41, plot contours of the
displacement and stress fields.

8.43* Using strength of materials theory (see Appendix D), the bending stress sq for curved beams is
given by sq¼�M(r� B)/[rA(R� B)], where A¼ b� a, B¼ (b� a)/log(b/a), R¼ (aþ b)/2.
For the problem shown in Figure 8.30, compare and plot the strength of materials and elasticity
predictions for the cases of b/a ¼ 2 and 4. Follow the nondimensional plotting scheme used in
Figure 8.31.
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8.44 Show that the curved beam problem with given end loadings can be solved by superimposing
the solution from the Airy function f ¼ [Ar3 þ (B/r) þ Cr þ Dr log r] cosq with the pure
bending solution (8.4.61).

8.45* For the disk under diametrical compression (Figure 8.35), plot the distribution of the two
normal stresses sx and sy along the horizontal diameter (y ¼ 0, �R < x < R).

8.46* The behavior of granular materials has often been studied using photoelastic models of circular
particles as shown in the following figure. This provides the full-field distribution of local
contact load transfer through the model assembly. Particles in such models are commonly
loaded through multiple contacts with neighboring grains, and the particular example particle
shown has four contact loads. Assuming the loadings are in-line and along two perpendicular
diameters, use superposition of the solution given in Example 8.10 to determine the stress field
within the model particle. Make a comparison plot of the distribution of normal stress along a
loaded diameter with the corresponding results from Example 8.10.

P

P

P

P

(Courtesy of Dynamic Photomechanics Laboratory, University of Rhode Island)

T

a
b

r

M

θ

Exercises 233



8.47 Consider an extension of Exercise 8.46 in which wewish to explore the stress distribution in a
circular disk under an increasing number of boundary loadings. First show that for case
(a) with four loadings, the center stresses are given by sx ¼ sy ¼ �4P=pD; sxy ¼ 0, where
D is the disk diameter. Next for case (b) with eight loadings, show that the center stresses
become sx ¼ sy ¼ �8P=pD; sxy ¼ 0. Hence conclude that for a general case with N
loadings (N ¼ 4, 8, 16, .), the center stresses can be expressed by
sx ¼ sy ¼ �NP=pD; sxy ¼ 0. Thus as N / N, the boundary loading becomes uniformly
distributed as shown in case (c), and center stresses are then given by sx ¼ sy ¼ �p; sxy ¼ 0
where p ¼ NP=pD, which can be found from solution (8.4.3).

(c) Distributed Boundary Loading(b) Eight Boundary Loadings

P

P

P

P 

(a) Four Boundary Loadings 

P 

P 

P 

P 

P

PP

P

p 

8.48 Solve the rotating disk problem of Example 8.11 for the case of an annular disk with inner
radius a and outer radius b being stress free. Explicitly show that for the case b >> a, the
maximum stress is approximately twice that of the solid disk.

8.49 Using relation (8.5.4)1 along with Hooke’s law for plane stress, show that the surface stresses
under a frictionless indenter are given by the hydrostatic state sx ¼ sy ¼ �pðxÞ. This situ-
ation would tend to restrict the surface layer to deform plastically under such loading.

8.50 The example MATLAB� code C.6 numerically integrated the integrals in solution (8.5.9) for
the case of the flat rigid punch problem. Modify this example code to handle the case of the
cylindrical punch given by solution (8.5.13) and thus generate the smax contours shown in
Figure 8.43.
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Extension, Torsion, and Flexure
of Elastic Cylinders 9
This chapter investigates particular solutions to the problem of cylindrical bars subjected to forces
acting on the end planes. The general problem is illustrated in Figure 9.1, where an elastic cy-
lindrical bar with arbitrary cross-section R and lateral surface S carries general resultant end loadings
of force P and momentM. The lateral surface is taken to be free of external loading. The cylindrical
body is a prismatic bar, and the constant cross-section may be solid or contain one or more holes.
Considering the components of the general loading leads to a definition of four problem types
including extension, torsion, bending, and flexure. These problems are inherently three-dimensional,
and thus analytical solutions cannot be generally determined. In an attempt to obtain an approximate
solution in central portions of the bar, Saint-Venant presumed that the character of the elastic field in
this location would depend only in a secondary way on the exact distribution of tractions on the ends
of the cylinder and that the principal effects are caused by the force resultants on the ends (Saint-
Venant’s principle). As such, he relaxed the original problem by no longer requiring the solution to
satisfy pointwise traction conditions on the ends, but rather seeking one that had the same resultant
loading. This approach is similar to our previous two-dimensional studies of beam problems in

CHAPTER

x

y

zP

M

l

S

R

FIGURE 9.1 Prismatic Bar Subjected to End Loadings.
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Chapter 8. Under these conditions, the solution is not unique but provides reasonable results away
from the ends of the cylinder.

9.1 General formulation
Formulation and solution of the extension, torsion, bending, and flexure problems are normally made
using the semi-inverse method, as previously discussed in Section 5.7. Recall this method assumes a
portion of the solution field and then determines the remaining unknowns by requiring that all
fundamental field equations be satisfied. For a prismatic bar with zero body forces and under only end
loadings as shown in Figure 9.1, it is reasonable to assume that

sx ¼ sy ¼ sxy ¼ 0 (9.1.1)

Note that this enforces zero tractions on the lateral surface S. Under these conditions, the equilibrium
equations (3.6.5) and stress compatibility equations (5.3.4) give

vsxz
vz

¼ vsyz
vz

¼ 0

v2sz

vx2
¼ v2sz

vy2
¼ v2sz

vz2
¼ v2sz

vxvy
¼ 0

(9.1.2)

Thus, sxz and syz must be independent of z, and sz must be a bilinear form in x,y,z such that sz ¼ C1xþ
C2yþ C3zþ C4xz þ C5yz þ C6, where Ci are arbitrary constants (see Exercise 9.1). For the extension,
bending, and torsion problems, it can be further argued that sz must be independent of z. We now
investigate the formulation and solution of extension, torsion, and flexure problems.

9.2 Extension formulation
Consider first the case of an axial resultant end loading P ¼ Pz e3 andM ¼ 0. It is further assumed that
the extensional loading Pz is applied at the centroid of the cross-section R so as not to produce any
bending effects. Invoking the Saint-Venant principle, the exact end tractions can be replaced by a
statically equivalent system, and this is taken as a uniform loading over the end section. Under these
conditions, it is reasonable to assume that the stress sz is uniform over any cross-section throughout the
solid, and this yields the simple results

sz ¼ Pz

A
; sxz ¼ syz ¼ 0 (9.2.1)

Using stress results (9.1.1) and (9.2.1) inHooke’s law and combining themwith the strain–displacement
relations gives

vu

vx
¼ �nPz

AE
;

vv

vy
¼ e

nPz

AE
;

vw

vz
¼ Pz

AE

vu

vy
þ vv

vx
¼ 0;

vv

vz
þ vw

vy
¼ 0;

vw

vx
þ vu

vz
¼ 0
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Integrating these results and dropping the rigid-body motion terms such that the displacements vanish
at the origin yields

u ¼ e
nPz

AE
x; v ¼ �nPz

AE
y; w ¼ Pz

AE
z (9.2.2)

These results then satisfy all elasticity field equations and complete the problem solution.
An additional extension example of a prismatic bar under uniform axial body force has been

presented previously in Example 5.1. This problem was defined in Figure 5.11 and corresponds to the
deformation of a bar under its own weight. The problem includes no applied end tractions, and the
deformation is driven by a uniformly distributed axial body force Fz ¼ �rg. Relations for the stresses,
strains, and displacements are given in the example.

9.3 Torsion formulation
For the general problem shown in Figure 9.1, we next investigate the case of a torsional end loading
P¼ 0 andM¼ Te3. Formulation of this problem began at the end of the eighteenth century, and a very
comprehensive review of analytical, approximate, and experimental solutions has been given by
Higgins (1942, 1943, 1945). Studies on the torsional deformation of cylinders of circular cross-section
have found the following:

• Each section rotates as a rigid body about the center axis.
• For small deformation theory, the amount of rotation is a linear function of the axial coordinate.
• Because of symmetry, circular cross-sections remain plane after deformation.

Guided by these observations, it is logical to assume the following for general cross-sections:

• The projection of each section on the x,y-plane rotates as a rigid body about the central axis.
• The amount of projected section rotation is a linear function of the axial coordinate.
• Plane cross-sections do not remain plane after deformation, thus leading to a warping

displacement.

In order to quantify these deformation assumptions, consider the typical cross-section shown in
Figure 9.2. For convenience, the origin of the coordinate system is located at point O called the center
of twist, which is defined by the location where u ¼ v ¼ 0. The location of this point depends on the
shape of the section; however, the general problem formulation does not depend on the choice of
coordinate origin (see Exercise 9.3). Under torque T, the displacement of a generic point P in the x,y-
plane will move to location P0 as shown. Line OP then rotates through a small angle b, and thus the arc
length PP0 ¼ rb. This distance may be represented by a straight line normal to OP. The in-plane or
projected displacements can thus be determined as

u ¼ �rb sin q ¼ �by

v ¼ rb cos q ¼ bx
(9.3.1)

Using the assumption that the section rotation is a linear function of the axial coordinate, we can
assume that the cylinder is fixed at z ¼ 0 and take

b ¼ az (9.3.2)
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where the parameter a is the angle of twist per unit length. The out-of-plane, warping displacement is
assumed to be a function of only the in-plane coordinates and is left as an unknown to be determined.
Collecting these results together, the displacements for the torsion problem can thus be written as

u ¼ �ayz
v ¼ axz
w ¼ wðx; yÞ

(9.3.3)

This then establishes a semi-inverse scheme whereby requiring these displacements to satisfy all
governing field equations generates a much simplified problem that can be solved for many particular
cross-sectional shapes. We now proceed with the details of both a stress (stress function) and
displacement formulation.

9.3.1 Stress–stress function formulation
The stress formulation leads to the use of a stress function similar to the scheme used in the plane
problem discussed in Section 7.5. Using the displacement form (9.3.3), the strain–displacement
relations give the following strain field

ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

�
vw

vx
� ay

�

eyz ¼ 1

2

�
vw

vy
þ ax

� (9.3.4)
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FIGURE 9.2 In-Plane Displacements for the Torsion Problem.
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The corresponding stresses follow from Hooke’s law

sx ¼ sy ¼ sz ¼ sxy ¼ 0

sxz ¼ m

�
vw

vx
� ay

�

syz ¼ m

�
vw

vy
þ ax

� (9.3.5)

Note the strain and stress fields are functions only of x and y.
For this case, with zero body forces, the equilibrium equations reduce to

vsxz
vx

þ vsyz
vy

¼ 0 (9.3.6)

Rather than using the general Beltrami–Michell compatibility equations, it is more direct to develop a
special compatibility relation for this particular problem. This is easily done by simply differentiating
(9.3.5)2 with respect to y and (9.3.5)3 with respect to x and subtracting the results to get

vsxz
vy

� vsyz
vx

¼ �2ma (9.3.7)

This represents an independent relation among the stresses developed under the continuity conditions
of w(x,y).

Relations (9.3.6) and (9.3.7) constitute the governing equations for the stress formulation. The
coupled system pair can be reduced by introducing a stress function approach. For this case, the
stresses are represented in terms of the Prandtl stress function f ¼ f (x,y) by

sxz ¼ vf

vy
; syz ¼ �vf

vx
(9.3.8)

Note that here we are using the same notation for the stress function as used for the Airy function in the
previous chapter that dealt with plane elasticity. Since the problem types are completely different,
there should be little confusion. The equilibrium equations are then identically satisfied and the
compatibility relation gives

V2f ¼ v2f

vx2
þ v2f

vy2
¼ �2ma (9.3.9)

This single relation is then the governing equation for the problem and (9.3.9) is a Poisson equation
that is amenable to several analytical solution techniques.

To complete the stress formulation we now must address the boundary conditions on the problem.
As previously mentioned, the lateral surface of the cylinder S (see Figure 9.1) is to be free of tractions,
and thus

Tn
x ¼ sxnx þ syxny þ szxnz ¼ 0

Tn
y ¼ sxynx þ syny þ szynz ¼ 0

Tn
z ¼ sxznx þ syzny þ sznz ¼ 0

(9.3.10)
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The first two relations are identically satisfied because sx ¼ sy ¼ sxy ¼ nz ¼ 0 on S. To investigate the
third relation, consider the surface element shown in Figure 9.3. The components of the unit normal
vector can be expressed as

nx ¼ dy

ds
¼ dx

dn
; ny ¼ �dx

ds
¼ dy

dn
(9.3.11)

Using this result along with (9.3.8) in (9.3.10)3 gives

vf

vx

dx

ds
þ vf

vy

dy

ds
¼ 0

which can be written as

df

ds
¼ 0; on S (9.3.12)

This result indicates that the stress function f must be a constant on the cross-section boundary.
Because the value of this constant is not specified (at least for simply connected sections), we may
choose any convenient value and this is normally taken to be zero.

Next consider the boundary conditions on the ends of the cylinder. On this boundary, components
of the unit normal become nx ¼ ny ¼ 0, nz ¼ �1, and thus the tractions simplify to

Tn
x ¼ �sxz

Tn
y ¼ �syz

Tn
z ¼ 0

(9.3.13)

x

y

dx

ny

n

nx
dy ds

S

FIGURE 9.3 Differential Surface Element.
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Recall that we are only interested in satisfying the resultant end-loading conditions, and thus the
resultant force should vanish while the moment should reduce to a pure torque T about the z-axis.
These conditions are specified by

Px ¼
ð ð

R
Tn
x dxdy ¼ 0

Py ¼
ð ð

R
Tn
y dxdy ¼ 0

Pz ¼
ð ð

R
Tn
z dxdy ¼ 0

Mx ¼
ð ð

R
yTn

z dxdy ¼ 0

My ¼
ð ð

R
� xTn

z dxdy ¼ 0

Mz ¼
ð ð

R

�
xTn

y � yTn
x

�
dxdy ¼ T

(9.3.14)

With Tn
z ¼ 0, conditions (9.3.14)3–5 are automatically satisfied. Considering the first condition in set

(9.3.14), the x component of the resultant force on the ends may be written asð ð
R
Tn
x dxdy ¼ �

ð ð
R
sxzdxdy ¼ �

ð ð
R

vf

vy
dxdy (9.3.15)

Using Green’s theorem (1.8.11),

ð ð
R

vf

vy
dxdy ¼

þ
s
fnyds, and because f vanishes on boundary S, the

integral is zero and the resultant force Px vanishes. Similar arguments can be used to show that the
resultant force Py will vanish. The final end condition (9.3.14)6 involving the resultant torque can be
expressed as

T ¼
ð ð

R

�
xTn

y � yTn
x

�
dxdy ¼ �

ð ð
R

�
x
vf

vx
þ y

vf

vy

�
dxdy (9.3.16)

Again using results from Green’s theoremð ð
R
x
vf

vx
dxdy ¼

ð ð
R

v

vx
ðxfÞdxdy�

ð ð
R
fdxdy

¼
þ
S
xfnxds�

ð ð
R
fdxdy

ð ð
R
y
vf

vy
dxdy ¼

ð ð
R

v

vy
ðyfÞdxdy�

ð ð
R
fdxdy

¼
þ
S
yfnyds�

ð ð
R
fdxdy

(9.3.17)
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Because f is zero on S, the boundary integrals in (9.3.17) will vanish and relation (9.3.16) simplifies to

T ¼ 2

ð ð
R
f dxdy (9.3.18)

We have now shown that the assumed displacement form (9.3.3) produces a stress field that when
represented by the Prandtl stress function relation (9.3.8) yields a governing Poisson equation (9.3.9)
with the condition that the stress function vanishes on the boundary of the cross-section. All resultant
boundary conditions on the ends of the cylinder are satisfied by the representation, and the overall
torque is related to the stress function through relation (9.3.18). This then concludes the stress
formulation of the torsion problem for simply connected sections.

9.3.2 Displacement formulation
The displacement formulation starts by expressing the equilibrium equation in terms of the warping
displacement w. Using (9.3.5) in (9.3.6) gives

v2w

vx2
þ v2w

vy2
¼ 0 (9.3.19)

and thus the displacement component satisfies Laplace’s equation in the cross-section R. The asso-
ciated boundary condition on the lateral side S is given by (9.3.10)3, and expressing this in terms of the
warping displacement gives �

vw

vx
� ya

�
nx þ

�
vw

vy
þ xa

�
ny ¼ 0 (9.3.20)

Using relations (9.3.11), this result can be rewritten as

vw

vx

dx

dn
þ vw

vy

dy

dn
¼ a

�
x
dx

ds
þ y

dy

ds

�
dw

dn
¼ a

2

d

ds

�
x2 þ y2

� (9.3.21)

It can again be shown that the boundary conditions on the ends specified by equations (9.3.14)1–5 will
all be satisfied, and the resultant torque condition (9.3.14)6 will give

T ¼ m

ð ð
R

�
a
�
x2 þ y2

�þ x
vw

vy
� y

vw

vx

�
dxdy (9.3.22)

This result is commonly written as

T ¼ aJ (9.3.23)

where J is called the torsional rigidity and is given by

J ¼ m

ð ð
R

�
x2 þ y2 þ x

a

vw

vy
� y

a

vw

vx

�
dxdy (9.3.24)

This completes the displacement formulation for the torsion problem.

242 CHAPTER 9 Extension, Torsion, and Flexure of Elastic Cylinders



Comparing the two formulations, it is observed that the stress function approach results in a
governing equation of the Poisson type (9.3.9) with a very simple boundary condition requiring only
that the stress function be constant or vanish. On the other hand, the displacement formulation gives a
somewhat simpler Laplace governing equation (9.3.19), but the boundary specification is expressed in
terms of the normal derivative. An additional approach involving formulation in terms of a conjugate
function (see Exercise 9.4) creates yet another scheme that yields a Laplace governing equation with a
somewhat simpler boundary condition involving specification of the unknown itself. The boundary-
value problems created by these approaches generally fall into the area of applied mathematics
called potential theory (Kellogg, 1969). As such, many mathematical techniques have been developed
to solve such problems, including potential theory, complex variables, Fourier methods, and some
specialized simple schemes based on the boundary equation. In this presentation we only consider two
solution schemes, one using the boundary equation and the other using Fourier methods. Before
moving on to these solutions, we wish to establish briefly the necessary modifications to the formu-
lations for cylinders with hollow sections. We shall also explore an analogous (membrane) problem
that provides some useful information and interpretation for development of approximate solutions to
the torsion problem.

9.3.3 Multiply connected cross-sections
We now wish to develop some additional relations necessary to solve the torsion of hollow cylinders
with multiply connected cross-sections (see definitions in Section 2.6). Figure 9.4 illustrates a typical
section of this type with a single hole, and we shall establish theory capable of handling any number of
holes. It is assumed that the original boundary conditions of zero tractions on all lateral surfaces apply
to the external boundary So and all internal boundaries S1,. Therefore, as before, condition (9.3.10)3

x

y

C

So

R

S1

FIGURE 9.4 Multiply Connected Cross-Section.
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would imply that the stress function is a constant and the displacement is specified as per (9.3.20) or
(9.3.21) on each boundary Si, i ¼ 0,1, .

f ¼ fi on Si

dw

dn
¼ a

�
ynx � xny

�
on Si

(9.3.25)

where fi are constants. These conditions imply that the stress function and warping displacement can
be determined up to an arbitrary constant on each boundary Si. With regard to the stress function, the
value of fi may be arbitrarily chosen only on one boundary, and commonly this value is taken as zero
on the outer boundary So similar to the simply connected case.

For multiply connected sections, the constant values of the stress function on each of the interior
boundaries are determined by requiring that the displacement w be single-valued. Considering the
doubly connected example shown in Figure 9.4, the displacement will be single-valued ifþ

S1

dwðx;yÞ ¼ 0 (9.3.26)

This integral can be written asþ
S1

dwðx;yÞ ¼
þ
S1

�
vw

vx
dxþ vw

vy
dy

�

¼ 1

m

þ
S1

�
sxzdxþ syzdy

�� a

þ
S1

ðxdy� ydxÞ
(9.3.27)

Now sxzdx þ syzdy ¼ sds, where s is the resultant shear stress. Using Green’s theorem (1.8.10)þ
S1

ðxdy� ydxÞ ¼
ð ð

A1

�
vx

vx
þ vy

vy

�
dxdy ¼ 2

ð ð
A1

dxdy ¼ 2A1 (9.3.28)

where A1 is the area enclosed by S1. Combining these results, the single-valued condition (9.3.26)
implies that þ

S1

sds ¼ 2maA1 (9.3.29)

The value of f1 on the inner boundary S1 must therefore be chosen so that (9.3.29) is satisfied. If the
cross-section has more than one hole, relation (9.3.29) must be satisfied for each; that isþ

Sk

sds ¼ 2maAk (9.3.30)

where k ¼ 1, 2, 3, . is the index corresponding to each of the interior holes.
It can be shown that boundary conditions on the ends of the cylinder given by (9.3.14)1–5 will all be

satisfied, and the resultant torque condition (9.3.14)6 will give

T ¼ 2

ð ð
R
fdxdyþ 2f1A1 (9.3.31)
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For the case with N holes, this relation becomes

T ¼ 2

ð ð
R
fdxdyþ

XN
k¼1

2fkAk (9.3.32)

Justifying these developments for multiply connected sections requires contour integration in a cut
domain following the segments So, C, S1, as shown in Figure 9.4.

9.3.4 Membrane analogy
It was originally discovered by Prandtl in 1903 that the equations of the stress function formulation
(9.3.9), (9.3.12), and (9.3.18) are identical with those governing the static deflection of an elastic
membrane under uniform pressure. This fact then creates an analogy between the two problems and
enables particular features from the membrane problem to be used to aid in solution of the torsion
problem. Use of this analogy is generally limited to providing insight into qualitative features and to
aid in developing approximate solutions.

Consider a thin elastic membrane stretched over a frame with shape S that encloses region R in the
x,y-plane, as shown in Figure 9.5(a). The membrane is stretched with uniform tension N and is sub-
jected to a uniform pressure p, which produces a transverse membrane deflection z(x,y). For small
deformation theory, it is assumed that the pressure loading will not alter the membrane tension. The
governing membrane displacement equation is developed by applying equilibrium to a differential
element shown in Figure 9.5(b). A side view of this element along the y-axis shown in Figure 9.5(c)

x

z N dy

N dy
∂x
∂z dx

∂x2∂x
∂z ∂2z+

p dx dy

(c) Equilibrium of Membrane Element

x

 y

S

z

S

R

 p

Deflected Membrane

(a) Static Deflection of Stretched Membrane

N dy

N dy

N dx
N d x

(b) Membrane Element

dxdy

FIGURE 9.5 Membrane Problem.
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illustrates the tension forces on each edge and the pressure loading. Summing forces in the z direction
and including the tension forces in both x and y directions gives

Ndy

�
vz

vx
þ v2z

vx2
dx

�
� Ndy

�
vz

vx

�
þ Ndx

�
vz

vy
þ v2z

vy2
dy

�
� Ndx

�
vz

vy

�
þ pdxdy ¼ 0

and this result simplifies to

v2z

vx2
þ v2z

vy2
¼ �P

N
(9.3.33)

Because the membrane is stretched over the boundary S in the x,y-plane, the boundary condition for
deflection is expressed by

z ¼ 0 on S (9.3.34)

The volume enclosed by the deflected membrane and the x,y-plane is given by

V ¼
ð ð

R
zdxdy (9.3.35)

The analogy can now be recognized because relations (9.3.33)–(9.3.35) match the corresponding
results from the torsion formulation providing f ¼ z, p/N ¼ 2ma, T ¼ 2V.

In order to extract some useful information from this analogy, consider first the relationship be-
tween the shear stress and stress function

sxz ¼ vf

vy
¼ vz

vy

syz ¼ �vf

vx
¼ �vz

vx

(9.3.36)

A contour line on the membrane is defined as z ¼ constant (see Figure 9.6). Using the analogy, such a
contour is also a line of constant f, and along the contour

vz

vs
¼ vf

vs
¼ vf

vx

dx

ds
þ vf

vy

dy

ds
¼ 0

¼ syzny þ sxznx ¼ szn

(9.3.37)

where szn is the component of shear stress normal to the contour line. Thus, the component szn is zero
along a contour line and the resultant shear stress must be tangent to the contour. This resultant shear
stress is given by

s ¼ szt ¼ �sxzny þ syznx ¼ �sxz
dy

dn
þ syz

dx

dn

¼ �
�
vf

vy

dy

dn
þ vf

vx

dx

dn

�
¼ �df

dn
¼ �dz

dn

(9.3.38)
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Reviewing the previous findings related to the membrane analogy, the following concepts can be
concluded. The shear stress at any point in the cross-section is given by the negative of the slope of
the membrane in the direction normal to the contour line through the point. The maximum shear
stress appears to be located on the boundary where the largest slope of the membrane occurs.
Actually, this result can be explicitly proven (see Exercise 9.5). The torque T is given as twice the
volume under the membrane. Using these membrane visualizations, a useful qualitative picture of
the stress function distribution can be determined and approximate solutions can be constructed (see
Exercise 9.8). However, it should be realized that trying to make slope measurements of an actual
pressurized membrane would not provide an accurate method to determine the stresses in a bar under
torsion.

We now explore the solution to several torsion problems using boundary equation schemes, Fourier
methods, and membrane analogy techniques. These methods provide solutions to sections of simple
geometry. More complicated sections can be solved using complex variable theory; see Sokolnikoff
(1956) for a brief presentation of these techniques.

9.4 Torsion solutions derived from boundary equation
For simply connected sections, the stress function formulation requires that the function
satisfy Poisson equation (9.3.9) and vanish on boundary S. If the boundary is expressed by the relation
f(x,y)¼ 0, this suggests a possible simple solution scheme of expressing the stress function in terms of
the boundary equation f ¼ Kf(x,y) where K is an arbitrary constant.

This form satisfies the boundary condition on S, and for some simple geometric shapes it will also
satisfy the governing equation (9.3.9) with an appropriate choice of K. Unfortunately, this is not a
general solution method but rather an ad hoc scheme that works only for special cross-sections of
simple geometry. Nevertheless, it provides several solutions to problems of interest, and we now
investigate some particular solutions using this scheme.

nt

Contour Lines

FIGURE 9.6 Contour Lines for the Torsion-Membrane Analogy.
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FIGURE 9.7 Elliptical Cross-Section.

EXAMPLE 9.1: ELLIPTICAL SECTION
The first example of this solution method is that of an elliptical cross-section as shown in Figure 9.7.
The boundary equation has the usual form

x2

a2
þ y2

b2
¼ 1 (9.4.1)

where a and b are the semi major and minor axes as shown.
Using the boundary equation scheme, we look for a stress function of the form

f ¼ K

�
x2

a2
þ y2

b2
� 1

�
(9.4.2)

This stress function satisfies the boundary condition by vanishing on S, and this form will also
satisfy the governing equation (9.3.9) if the constant is chosen as

K ¼ �a2b2ma

a2 þ b2
(9.4.3)

Because both the governing equation and the boundary conditions are satisfied, we have found
the solution to the torsion of the elliptical section.

The load-carrying torque follows from relation (9.3.18)

T ¼ �2a2b2ma

a2 þ b2

�
1

a2

ð ð
R
x2dxdyþ 1

b2

ð ð
R
y2dxdy�

ð ð
R
dxdy

�
(9.4.4)

The integrals in this expression have the following simple meaning and evaluation

A ¼ Area of section ¼
ð ð

R
dxdy ¼ pab

Ix ¼ Moment of inertia about x-axis ¼
ð ð

R
y2dxdy ¼ p

4
ab3

Iy ¼ Moment of inertia about y-axis ¼
ð ð

R
x2dxdy ¼ p

4
ba3

(9.4.5)
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Substituting these results back into (9.4.4) yields

T ¼ pa3b3ma

a2 þ b2
(9.4.6)

which can be cast in the form to determine the angle of twist in terms of the applied loading

a ¼ T
�
a2 þ b2

�
pa3b3m

(9.4.7)

The shear stresses resulting from this solution are given by

sxz ¼ � 2a2ma

a2 þ b2
y ¼ � 2Ty

pab3

syz ¼ � 2b2ma

a2 þ b2
x ¼ 2Tx

pba3

(9.4.8)

Intuition from strength of materials theory would suggest that the maximum stress should occur
at the boundary point most removed from the section’s center; that is, at x¼�a and y¼ 0 (assuming
a > b). However, the membrane analogy would argue for a boundary point closest to the center of
the section where the membrane slope would be the greatest. Evaluating equations (9.4.8), we find
that the resultant shear stress becomes

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xz þ s2yz

q
¼ 2T

pab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a4
þ y2

b4

r
(9.4.9)

For the case a > b, the maximum value of s occurs at x ¼ 0 and y ¼ �b and is given by

smax ¼ 2T

pab2
(9.4.10)

This result then corresponds to arguments from the membrane analogy and thus differs from
strength of materials suggestions. Contour lines of the stress function are shown in Figure 9.8,
and it is observed that the maximum slope of the stress function (membrane) occurs at x ¼ 0 and
y ¼ �b (on the top and bottom of the section).

Using the stress relations (9.4.8) in (9.3.5) yields a system that can be integrated to determine the
displacement field

w ¼ T
�
b2 � a2

�
pa3b3m

xy (9.4.11)

Contour lines of this displacement field are represented by hyperbolas in the x,y-plane and are
shown in Figure 9.8 for the case of a positive counterclockwise torque applied to the section. Solid
lines correspond to positive values ofw, indicating that points move out of the section in the positive z
direction, while dotted lines indicate negative values of displacement. A three-dimensional plot of
the warping displacement surface is also shown in Figure 9.8, illustrating the positive and negative
behavior of the w displacement. Along each of the coordinate axes the displacement is zero, and for
the special case with a ¼ b (circular section), the warping displacement vanishes everywhere. If the
ends of the elliptical cylinder are restrained, normal stresses sz are generated as a result of the torsion.
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FIGURE 9.8 Stress Function and Warping Displacement Contours and Warping Displacement Surface for the

Elliptical Section.

EXAMPLE 9.2: EQUILATERAL TRIANGULAR SECTION
Consider next the torsion of a cylinder with equilateral triangular section, as shown in Figure 9.9.
Following our boundary equation solution scheme, we look for a stress function of the form

f ¼ K
�
x�

ffiffiffi
3

p
yþ 2a

��
xþ

ffiffiffi
3

p
yþ 2a

�
ðx� aÞ (9.4.12)

where we have simply used a product form of each boundary line equation. In this fashion, the stress
function vanishes on each side of the triangular section. It is found that this function satisfies the
governing equation (9.3.9) if the constant is taken as

K ¼ �ma

6a
(9.4.13)

All conditions on the problem are now satisfied, and we have thus determined the solution for
the equilateral triangular case. The torque may be calculated through a lengthy integration using
relation (9.3.18), giving the result

T ¼ 27

5
ffiffiffi
3

p maa4 ¼ 3

5
maIp (9.4.14)

where Ip ¼ 3
ffiffiffi
3

p
a4 is the polar moment of inertia of the cross-section about the centroid.

The stresses follow from relations (9.3.8)

sxz ¼ ma

a
ðx� aÞy

syz ¼ ma

2a

�
x2 þ 2ax� y2

� (9.4.15)
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Note that the component sxz vanishes along the edge x ¼ a as required by the problem bound-
ary conditions, and this can also be argued by the membrane analogy. This component also van-
ishes along the x-axis. The maximum stress always occurs on the boundary, and the section
symmetry implies that each boundary side has an identical resultant stress distribution. Therefore,
we can choose one particular side to investigate and determine the maximum resultant shear
stress. For convenience, we choose side x¼ a, and because sxz¼ 0 on this edge, the resultant stress
is given by

s ¼ syzða; yÞ ¼ ma

2a

�
3a2 � y2

�
(9.4.16)

The maximum value of this expression gives

smax ¼ syzða; 0Þ ¼ 3

2
maa ¼ 5

ffiffiffi
3

p
T

18a3
(9.4.17)

Contours of the stress function are shown in Figure 9.10, and by using the membrane analogy it
is evident that the maximum stress occurs at the midpoint of each boundary side.

The warping displacement again follows from integrating relations (9.3.5)

w ¼ a

6a
y
�
3x2 � y2

�
(9.4.18)

Contour lines of this displacement field are shown in Figure 9.10 for the case of a positive coun-
terclockwise torque applied to the section. Again, solid lines correspond to positive values, while
dotted lines indicate negative displacements.

x

 y

2a a

FIGURE 9.9 Equilateral Triangular Cross-Section.
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EXAMPLE 9.3: HIGHER-ORDER BOUNDARY POLYNOMIALS
As a final example of the boundary equation scheme, consider the more general case of a section
with a polynomial boundary equation. The trial stress function is taken of the form

f ¼ K
�
a2 � x2 þ cy2

��
a2 þ cx2 � y2

�
(9.4.19)

where K, a, and c are constants to be determined. The terms in parentheses can be rewritten as

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ cy2

p
; y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ cx2

p
and these represent pairs of curves shown in Figure 9.11 that can be interpreted as bounding a closed
region R as shown. This region is taken as the cylinder section for the torsion problem. As
before, this stress function vanishes on the boundary, and it satisfies the governing equation
(9.3.9) if c ¼ 3 � ffiffiffi

8
p

and K ¼ �ma/[4a2(1 � ffiffiffi
2

p
)]. The stresses and displacements can be calcu-

lated using the previous procedures (see Exercise 9.16). Timoshenko and Goodier (1970) discuss
additional examples of this type of problem.

FIGURE 9.10 Stress Function and Warping Displacement Contours for the Equilateral Triangular Section.
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9.5 Torsion solutions using Fourier methods
Previously introduced in Section 8.2 for plane problems, Fourier methods also provide a useful
technique for solving the torsion problem. Using separation of variables and Fourier series theory,
solutions can be developed to particular problems formulated either in terms of the stress or
displacement function. We now pursue one such case in Cartesian coordinates involving the torsion of
a rectangular section.

EXAMPLE 9.4: RECTANGULAR SECTION
We now wish to develop the solution to the torsion of a cylinder with rectangular section shown in
Figure 9.12. Trying the previous scheme of products of the boundary lines does not create a stress
function that can satisfy the governing equation (see Exercise 9.17). Thus, we must resort to a more
fundamental solution technique, and the Fourier method is ideally suited for this problem. We
develop the solution using the stress function formulation, but a similar solution can also be deter-
mined using the displacement formulation.

The solution to governing equation (9.3.9) can be written as the sum of a general solution to the
homogeneous Laplace equation plus a particular solution to the nonhomogeneous form; that is, f¼
fh þ fp. A convenient particular solution can be chosen as

fpðx;yÞ ¼ ma
�
a2 � x2

�
(9.5.1)

Note that this choice of a parabolic form can be motivated using the membrane analogy for the
case of a thin rectangle with a << b (see Exercise 9.8). We discuss more on this limiting case at

x

 y

a2 + cx2y =

a2 + cy2x =

a2 + cy2x =

a2 + cx2y =

R

a

a

−

−

FIGURE 9.11 Polynomial Boundary Example.
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the end of the problem solution. Using this form, the homogeneous solution must then satisfy the
following conditions

V2fh ¼ 0

fhð � a; yÞ ¼ 0

fhðx;� bÞ ¼ �ma
�
a2 � x2

� (9.5.2)

and this ensures that the combined stress function f satisfies the general formulation conditions.
Standard separation of variables methods are used to generate the homogeneous solution by looking
for solutions of the form

fhðx; yÞ ¼ XðxÞYðyÞ (9.5.3)

Substituting this form into (9.5.2)1 allows the variables to be separated into the following pair of
differential relations

X00ðxÞ þ l2XðxÞ ¼ 0

Y 00ðyÞ � l2YðyÞ ¼ 0
(9.5.4)

where l is the separation constant. The solution to (9.5.4) is given by

XðxÞ ¼ A sin lxþ B cos lx

YðyÞ ¼ C sinh lyþ D cosh ly
(9.5.5)

where A, B, C, D are constants. Because of the given problem symmetry, we can immediately argue
that the solution should be an even function of x and y, and thus the odd function terms must be
dropped by taking A ¼ C ¼ 0. In order to satisfy condition (9.5.2)2, the separation constant must

x

 y

a

b

FIGURE 9.12 Rectangular Section Example.
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be given by l ¼ np/2a, n ¼ 1, 3, 5,. Combining these results, the homogeneous solution can then
be expressed by

fhðx;yÞ ¼
XN
n¼1

Bn cos
npx

2a
cosh

npy

2a
(9.5.6)

where we use the superposition of all solution forms and the coefficient Bn has absorbed the product
term BD.

The final boundary condition (9.5.2)3 yields the result

�ma
�
a2 � x2

� ¼XN
n¼1

B�
n cos

npx

2a
(9.5.7)

where B�
n ¼ Bn cosh (npb/2a). Equation (9.5.7) is recognized as the Fourier cosine series for the

expression on the left-hand side. Using relations (8.2.27), Fourier series theory provides a simple
scheme to determine the series coefficients, giving the result

B�
n ¼ �2ma

a

ða
0

�
a2 � x2

�
cos

npx

2a
dx (9.5.8)

Evaluating this integral, the original coefficient can then be expressed as

Bn ¼ �32maa2ð�1Þðn�1Þ=2

n3p3 cosh
npb

2a

(9.5.9)

The stress function has now been determined, and combining the previous results gives

f ¼ ma
�
a2 � x2

�� 32maa2

p3

XN
n¼1;3;5;.

ð�1Þðn�1Þ=2

n3cosh
npb

2a

cos
npx

2a
cosh

npy

2a
(9.5.10)

The stresses follow from relation (9.3.8)

sxz ¼ vf

vy
¼ �16maa

p2

XN
n¼1;3;5;.

ð�1Þðn�1Þ=2

n2 cosh
npb

2a

cos
npx

2a
cosh

npy

2a

syz ¼ e
vf

vx
¼ 2max� 16maa

p2

XN
n¼1;3;5;.

ð�1Þðn�1Þ=2

n2 cosh
npb

2a

sin
npx

2a
cosh

npy

2a

(9.5.11)

and using (9.3.18), the torque is given by

T ¼ 16maa3b

3
� 1024maa4

p5

XN
n¼1;3;5;.

1

n5
tanh

npb

2a
(9.5.12)

Using our experience from the previous examples or from the membrane analogy, the maximum
stress will occur on the boundary at the midpoint of the longest side. Under the assumption that
a < b, these points are located at x ¼ �a and y ¼ 0, and thus
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smax ¼ syzða; 0Þ ¼ 2maa� 16maa

p2

XN
n¼1;3;5;.

1

n5 cosh
npb

2a

(9.5.13)

Figure 9.13 illustrates the stress function contours for this case, and it is observed that the
maximum stresses occur at the midpoint of each of the longest boundary sides. For the square sec-
tion case (a ¼ b), the maximum stresses would occur at the midpoint of each side.

Again, the displacement field follows from integrating relations (9.3.5), giving the result

w ¼ axy� 32aa2

p3

XN
n¼1;3;5;.

ð�1Þðn�1Þ=2

n3 cosh
npb

2a

sin
npx

2a
sinh

npy

2a
(9.5.14)

Contour lines of this displacement field are shown in Figure 9.13 for three sections with different
aspect ratios. Again, solid lines correspond to positive displacements, while dotted lines indicate

(Stress Function Contours) (Displacement Contours, a/b = 1.0)

(Displacement Contours, a/b = 0.5)(Displacement Contours, a/b = 0.9)

FIGURE 9.13 Stress Function and Displacement Contours for the Rectangular Section.
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negative values. The square section case with a/b ¼ 1 produces a displacement pattern with eight
zones of symmetry. As the aspect ratio a/b is reduced, four of the displacement patterns disappear
and the resulting displacement contours for a/b ¼ 0.5 look similar to that from the elliptical section
case shown in Figure 9.8.

We now investigate these results for the special case of a very thin rectanglewith a<< b. Under
the conditions of b/a>> 1, cosh (npb/2a)/N and tanh (npb/2a)/ 1, and we therefore find that
the stress function, maximum shear stress, and torque relations reduce to

f ¼ ma
�
a2 � x2

�
smax ¼ 2maa

T ¼ 16

3
maa3b

(9.5.15)

For this limiting case, it is observed that the stress function reduces to a parabolic distribution, and
thiswould bepredictable from themembrane analogy (seeExercise 9.8). These results can be applied to
the torsionofsections composedofanumberof thin rectangles suchas theexampleshown inFigure 9.14
with three rectangles. Note that these shapes can approximate many common structural beams with
angle, channel, and I sections. Neglecting the local regions where the rectangles are joined and the free
short edges, it can be assumed that the membrane has the parabolic distribution given by (9.5.15)1 over
each rectangle. Stress function contours (from a numerical solution) shown in Figure 9.14 justify these
assumptions. Thus, the load-carrying torque for such a composite section is given by

T ¼ 16

3
ma
XN
i¼1

a3i bi (9.5.16)

where ai and bi (bi >> ai) are the dimensions of the various N rectangles. Neglecting the high local-
ized stresses at the re-entrant corners, the maximum shear stress can be estimated by using relation
(9.5.15)2 for the narrowest rectangle.

x

 y

1

2

3

(Stress Function Contours)(Composite Section)

FIGURE 9.14 Composite Section of Three Thin Rectangles.
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9.6 Torsion of cylinders with hollow sections
Section 9.3 develops the basic formulation for the torsion of hollow cylinders with multiply connected
cross-sections. It was found that the stress function must be constant on all section boundaries.
Although f could be arbitrarily chosen as zero on the outer boundary, on each interior surface it is
required to be a different constant determined by relation (9.3.30), a requirement that ensures single-
valued displacements. Under such a formulation, analytical solutions of these problems are difficult to
develop and only a few closed-form solutions exist. Complex variable theory using conformal map-
ping has provided some of these solutions, and Sokolnikoff (1956) provides references to a few
specific cases. Rather than trying to pursue these details, we shall only present a couple of simple
solutions in order to demonstrate some basic features of such problems.

EXAMPLE 9.5: HOLLOW ELLIPTICAL SECTION
Consider the torsion of a bar with a hollow elliptical section as shown in Figure 9.15. The inner
boundary is simply a scaled ellipse similar to that of the outer boundary. Using the solid section
solution from Example 9.1, it can be shown that the contour lines, or lines of constant shear stress,
coincide with such a scaled concentric ellipse (see Exercise 9.10). The shear stress will then be
tangent to the inner boundary contour and no stress will then act on the lateral surface of a cylinder
with inner ellipse section. Therefore, the solution to the hollow section can be found by simply
removing the inner core from the solid solution developed in Example 9.1, and this results in the
same stress distribution in the remaining material.

Thus, the stress function solution for the hollow case is given by

f ¼ �a2b2ma

a2 þ b2

�
x2

a2
þ y2

b2
� 1

�
(9.6.1)

x

 y = 1+
(ka)2 (kb)2

= 1+ y2 y2x2 x2

a2 b2

FIGURE 9.15 Hollow Elliptical Section.
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and this form satisfies the governing equation, boundary conditions, and the multiply connected
condition (9.3.30). The constant value of the stress function on the inner boundary is found to be

fi ¼ �a2b2ma

a2 þ b2
�
k2 � 1

�
(9.6.2)

In order to determine the load-carrying capacity, the torque relation for the solid section (9.4.6)
must be reduced by subtracting the load carried by the removed inner cylinder. This gives the result

T ¼ pa3b3ma

a2 þ b2
� pðkaÞ3ðkbÞ3ma

ðkbÞ2 þ ðkbÞ2

¼ pma

a2 þ b2
a3b3

�
1� k4

� (9.6.3)

and this relation can also be determined from equation (9.3.31). As mentioned, the stress distribu-
tion in the hollow cylinder will be the same as that found in the corresponding material of the
solid section; see relations (9.4.8). For the case a > b, the maximum stress still occurs at x ¼ 0
and y ¼ �b and is given by

smax ¼ 2T

pab2
1

1� k4
(9.6.4)

This solution scheme could be applied to other cross-sections whose inner boundary coincides
with a contour line of the corresponding solid section problem.

EXAMPLE 9.6: HOLLOW THIN-WALLED SECTIONS
The torsion of hollow thin-walled cylinders can be effectively handled using an approximate solu-
tion based on the membrane analogy. Consider the general thin-walled tube shown in Figure 9.16.
We assume that thickness t is small, although not necessarily constant. A general section aa is taken
through the tube wall at AB, and the expected membrane shape is shown. From our previous theory,
the membrane (stress function) will be zero at the outer boundary (point B) and equal to a nonzero
constant, say fo, on the inner boundary (point A). Because the thickness is small there will be little
variation in the membrane slope, and thus shape BC can be approximated by a straight line. Because
the membrane slope equals the resultant shear stress, we can write

s ¼ fo

t
(9.6.5)

The load-carrying relation (9.3.31) gives

T ¼ 2

ð ð
R
fdxdyþ 2foAi (9.6.6)
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(Section aa)
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MembraneC

φ

FIGURE 9.16 Thin-Walled Section.

where Ai is the area enclosed by the inner boundary. Using our assumption that the membrane slope
is constant over the section and neglecting variation in the wall thickness (see Figure 9.16), the
integral over the cross-section R can be approximated by Afo/2, where A is the section area.
This allows the torque relation to be expressed by

T ¼ 2

�
A
fo

2

�
þ 2foAi ¼ 2foAc (9.6.7)

where Ac is the area enclosed by the section’s centerline. Combining relations (9.6.5) and (9.6.7)
gives

s ¼ T

2Act
(9.6.8)

The angle of twist is determined using relation (9.3.29) with constant wall thicknessþ
Sc

sds ¼ 2maAc0

a ¼ TSc
4A2

cmt

(9.6.9)
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where Sc is the length of the centerline of the tube section. These results provide reasonable
estimates of the stress, torque capacity, and angle of twist for thin-walled tubes under torsion.
However, if the tube has sharp corners such as those found in square or rectangular
sections, considerable stress concentration normally exists at these re-entrant locations.
Timoshenko and Goodier (1970) provide additional details on calculating these stress concen-
tration effects.

9.7 Torsion of circular shafts of variable diameter
The previous discussion on the torsion problem was limited to bars of constant section. We nowwish to
investigate the case of variable section, and in order to limit problem complexity we consider only
circular cross-sections, as shown in Figure 9.17. Cylindrical coordinates are the logical choice to
formulate this type of problem, and the governing field equations have been previously given by
(2.7.3), (3.7.6), and (4.3.2), or see Appendix A. Guided by studies on uniform circular cylinders, we
assume that ur ¼ uz ¼ 0, and uq ¼ uq(r, z). For this semi-inverse scheme, it will be shown that the
solution based on these assumptions satisfies all governing elasticity field equations, and therefore
represents the true solution.

Under these assumptions, strain and stress fields are then determined as

er ¼ eq ¼ ez ¼ erz ¼ 0

erq ¼ 1

2

�
vuq
vr

� uq
r

�
; eqz ¼ 1

2

vuq
vz

(9.7.1)

sr ¼ sq ¼ sz ¼ srz ¼ 0

srq ¼ m

�
vuq
vr

� uq
r

�
; sqz ¼ m

vuq
vz

(9.7.2)

x

y

z
r

θ

FIGURE 9.17 Shaft of a Variable Circular Section.
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Using these stress results in the equilibrium equations with no body forces gives one nonvanishing
relation

v

vr

	
r3

v

vr

�uq
r

�

þ v

vz

	
r3

v

vz

�uq
r

�

¼ 0 (9.7.3)

This particular form suggests attempting a stress function approach, and introducing the function J,
such that

vJ

vz
¼ �r3

v

vr

�uq
r

�
¼ �r2

m
srq

vJ

vr
¼ r3

v

vz

�uq
r

�
¼ r2

m
sqz

(9.7.4)

satisfies the equilibrium equation identically. Differentiating relations (9.7.4) to eliminate uq generates
the compatibility relation

v2J

vr2
� 3

r

vJ

vr
þ v2J

vz2
¼ 0 (9.7.5)

The lateral sides of the bar are again taken to be traction free, and thus the boundary conditions are
expressed as

srqnr þ sqznz ¼ 0 (9.7.6)

As before nr ¼ dz

ds
and nz ¼ �dr

ds
, and incorporating (9.7.4), boundary condition (9.7.6) becomes

m

r2

�
vJ

vr

dr

ds
þ vJ

vz

dz

ds

�
¼ 00

dJ

ds
¼ 0 (9.7.7)

and so, as before, the stress function must be a constant on the boundary of the section.
The load-carrying torque is given by

T ¼
ð2p
0

ðRðzÞ
0

sqzr
2drdq ¼ 2pm

ðRðzÞ
0

vJ

vr
dr

¼ 2pm½JðRðzÞ; zÞ �Jð0; zÞ�
(9.7.8)

where R(z) is the variable radius of the section.

EXAMPLE 9.7: CONICAL SHAFT
As an example of a variable section problem, consider the torsion of a conical shaft with cone angle
4, as shown in Figure 9.18. We again have selected a problem whose boundary shape will help
generate the solution. On the lateral sides of the conical boundary, z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p ¼ cos 4, which is
a constant. Thus, any function of this ratio will satisfy the boundary condition (9.7.7). It can be
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shown that a linear combination of this ratio with its cube can be constructed to satisfy the govern-
ing equation (9.7.5), and the solution for the stress function is then given by

J ¼ C

 
zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p � 1

3

z3

ðr2 þ z2Þ3=2

!
(9.7.9)

where the constant C has been determined to satisfy the load-carrying relation (9.7.8)

C ¼ � T

2pm

�
2

3
� cos4þ 1

3
cos34

� (9.7.10)

The stresses follow from relations (9.7.4)

srq ¼ � Cmr2

ðr2 þ z2Þ5=2

sqz ¼ � Cmrz

ðr2 þ z2Þ5=2
(9.7.11)

and the displacement uq can be determined by integrating equations (9.7.2) to get

uq ¼ � Cr

3ðr2 þ z2Þ3=2
þ ur (9.7.12)

where ur is the rigid-body rotation term about the z-axis and u can be determined by specifying the
shaft rotation at a specific z location. Additional examples of such problems are discussed in
Timoshenko and Goodier (1970) and Sokolnikoff (1956).

z

2

r

ϕ

FIGURE 9.18 Conical Shaft Geometry.
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Before leaving the torsion problem, it should be mentioned that this problem can also be easily
formulated and solved using the numerical finite element method. Chapter 16 discusses this important
numerical scheme and provides a series of such solutions in Example 16.4 and Figure 16.7. These
examples illustrate the power and usefulness of this numerical method to solve problems with
complicated geometry that could not be easily solved using analytical means.

9.8 Flexure formulation
We now investigate a final case of deformation of elastic cylinders under end loadings by considering
the flexure of elastic beams subject to transverse end forces, as shown in Figure 9.19. The problem
geometry is formulated as a cantilever beam of arbitrary section with a fixed end at z ¼ 0 and
transverse end loadings Px and Py at z ¼ l. Following our usual procedure, the problem is to be solved
in the Saint-Venant sense, in that only the resultant end loadings Px and Py are used to formulate the
boundary conditions at z ¼ l.

From our general formulation in Section 9.1, sx ¼ sy ¼ sxy ¼ 0. The other three nonzero stresses
will be determined to satisfy the equilibrium and compatibility relations and all associated boundary
conditions. From our earlier work, the equilibrium and compatibility relations resulted in equations
(9.1.2) from which it was argued that sxz and syz were independent of z, and sz was a bilinear form in
x,y,z (see Exercise 9.1). Motivated from strength of materials theory, we choose the arbitrary form for
sz as follows

sz ¼ ðBxþ CyÞðl� zÞ (9.8.1)

where B and C are constants.

x

y

z

l

S

R Px

Py

(xo,yo)

FIGURE 9.19 Flexure Problem Geometry.
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Using this result in the remaining equilibrium equation in the z direction gives

vsxz
vx

þ vsyz
vy

� ðBxþ CyÞ ¼ 0

which can be written in the form

v

vx

	
sxz � 1

2
Bx2


þ v

vy

	
syz � 1

2
Cy2


¼ 0 (9.8.2)

This equilibrium statement motivates the introduction of another stress function F(x,y), such that

sxz ¼ vF

vy
þ 1

2
Bx2

syz ¼ �vF

vx
þ 1

2
Cy2

(9.8.3)

This form then satisfies equilibrium identically, and using it in the remaining compatibility relations
gives the results

v

vy

�
V2F

�þ nB

1þ n
¼ 0

� v

vx

�
V2F

�þ nC

1þ n
¼ 0

(9.8.4)

This system can be integrated to get

V2F ¼ n

1þ n
ðCx� ByÞ þ k (9.8.5)

where k is a constant of integration. In order to determine this constant, consider the rotation about the
z-axis. From the general relation (2.1.9), uz ¼ [(vv/vx) � (vu/vy)]/2, differentiating with respect to z
and using Hooke’s law and our previous results gives

vuz

vz
¼ 1

2

�
v2v

vxvz
� v2u

vyvz

�

¼ 1

2m

�
vsyz
vx

� vsxz
vy

�

¼ � 1

2m
V2F ¼ � 1

2m

h n

1þ n
ðCx� ByÞ þ k

i
(9.8.6)

From the torsion formulation, the angle of twist per unit length was specified by the parameter a,
and selecting the section origin (x ¼ y ¼ 0) at the center of twist, relation (9.8.6) then implies that
k ¼ �2ma. Thus, the governing equation (9.8.5) can be written as

V2F ¼ n

1þ n
ðCx� ByÞ � 2ma (9.8.7)
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The zero loading boundary condition on the lateral surface S is expressed by

sxznx þ syzny ¼ 0

and using the stress function definition, this can be written as

vF

vx

dx

dy
þ vF

vy

dy

ds
þ 1

2

�
Bx2

dy

ds
� Cy2

dx

ds

�
¼ 0 or

dF

ds
¼ �1

2

�
Bx2

dy

ds
� Cy2

dx

ds

�
(9.8.8)

It is convenient to separate the stress function F into a torsional part f and a flexural part j,
such that

Fðx;yÞ ¼ fðx;yÞ þ jðx;yÞ (9.8.9)

where the torsional part is formulated by

V2f ¼ �2ma in R

df

ds
¼ 0 on S

(9.8.10)

while the flexural portion satisfies

V2j ¼ n

1þ n
ðCx� ByÞ in R

dj

dx
¼ �1

2

�
Bx2

dy

ds
� Cy2

dx

ds

�
on S

(9.8.11)

Because we have already investigated the torsional part of this problem in the preceding sections, we
now pursue only the flexural portion. The general solution to (9.8.11)1 may be expressed as the sum of
a particular solution plus a harmonic function

jðx;yÞ ¼ f ðx;yÞ þ 1

6

n

1þ n

�
Cx3 � By3

�
(9.8.12)

where f is a harmonic function satisfying V2f ¼ 0. The boundary conditions on end z ¼ l can be
stated as ð ð

R
sxzdxdy ¼ Pxð ð

R
syzdxdy ¼ Pyð ð

R

�
xsyz � ysxz

�
dxdy ¼ xoPy � yoPx

(9.8.13)

Using the first relation of this set gives

ð ð
R

	
v

vy
ðfþ jÞ þ 1

2
Bx2


dxdy ¼ Px (9.8.14)
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but from the torsion formulation

ð ð
R

vf

vy
dxdy ¼ 0, and so (9.8.14) can be written as

ð ð
R

	
v

vx

�
x
vj

vy

�
� v

vy

�
x
vj

vx

�

dxdyþ

ð ð
R

1

2
Bx2dxdy ¼ Px (9.8.15)

Using Green’s theorem and the boundary relation (9.8.11)2, the first integral can be expressed asð ð
R

	
v

vx

�
x
vj

vy

�
� v

vy

�
x
vj

vx

�

dxdy ¼ �

ð ð
R

	
3

2
Bx2 þ Cxy



dxdy

and thus equation (9.8.15) reduces to

BIy þ CIxy ¼ �Px (9.8.16)

In a similar manner, boundary condition (9.8.13)2 gives

BIxy þ CIx ¼ �Py (9.8.17)

The expressions Ix, Iy, and Ixy are the area moments of inertia of section R

Ix ¼
ð ð

R
y2dxdy; Iy ¼ �

ð ð
R
x2dxdy; Ixy ¼

ð ð
R
xydxdy (9.8.18)

Relations (9.8.16) and (9.8.17) can be solved for the constants B and C

B ¼ �PxIx � PyIxy
IxIy � I2xy

C ¼ �PyIy � PxIxy
IxIy � I2xy

(9.8.19)

The final boundary condition (9.8.13)3 can be expressed as

�
ð ð

R

	
x
vf

vx
þ y

vf

vy



dxdy�

ð ð
R

	
x
vj

vx
þ y

vj

vy



dxdy

þ
ð ð

R

1

2

�
Cxy2 � Bx2y

�
dxdy ¼ xoPy � yoPx

(9.8.20)

From the torsion formulation

�
ð ð

R

	
x
vf

vx
þ y

vf

vy



dxdy ¼ 2

ð ð
R
fdxdy ¼ T ¼ aJ

so (9.8.20) becomes

aJ þ
ð ð

R

�
1

2

�
Cxy2 � Bx2y

�� �x vj
vx

þ y
vj

vy

��
dxdy ¼ xoPy � yoPx (9.8.21)

Once the flexural stress function j is known, (9.8.21) will provide a relation to determine the angle of
twist a.

Relation (9.8.21) can also be used to determine the location (xo, yo) for no induced torsional rotation,
a point commonly called the shear center or center of flexure. Choosing a ¼ 0, this equation can be
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independently used for the two cases of (Px¼ 0, Pys 0) and (Pxs 0, Py¼ 0) to generate two equations
for locations xo and yo. If the x-axis is an axis of symmetry, then yo ¼ 0; likewise, if the y-axis is one of
symmetry, then xo ¼ 0. For a section with two perpendicular axes of symmetry, the location (xo, yo) lies
at the intersection of these two axes, which is at the centroid of the section. However, in general the
shear center does not coincide with the section’s centroid and need not even lie within the section.

9.9 Flexure problems without twist
Because we have previously studied examples of the torsion problem, we shall now develop flexure
solutions to problems that do not include twist. The two examples to be investigated include simple
symmetric cross-sections with single end loadings along an axis of symmetry.

EXAMPLE 9.8: CIRCULAR SECTION
Consider the flexure of an elastic beam of circular section, as shown in Figure 9.20. The end loading
(Px ¼ 0, Py ¼ P) passes through the center of the section, which coincides with the centroid and
center of twist. Thus, for this problem there will be no torsion (a ¼ 0), and so f ¼ 0 and F ¼ j.
It is convenient to use polar coordinates for this problem, and the governing equation (9.8.11)1
can then be written as

V2j ¼ � n

1þ n

P

Ix
r cos q (9.9.1)

while the boundary condition (9.8.11)2 becomes

1

a

vj

vq
¼ 1

2

P

Ix
a2 sin3 q on r ¼ a (9.9.2)

The solution to (9.9.1) can then be taken as

j ¼ P

Ix

	
f � 1

6

n

1þ n
r3 cos3 q



(9.9.3)

x

 y

z
a

P

l

FIGURE 9.20 Flexure of a Beam of Circular Section.
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Using trigonometric identities, relations (9.9.3) and (9.9.2) can be rewritten as

j ¼ P

Ix

	
f � 1

24

v

1þ v
r3ðcos 3qþ 3 cos qÞ




vj

vq
¼ 1

8

P

Ix
a3ð�sin 3qþ 3 sin qÞ on r ¼ a

(9.9.4)

Based on the previous relations, we look for solutions for the harmonic function in the form
f ¼P

n
Anr

n cos nq and consider the two terms

f ¼ A1r cos qþ A3r
3 cos 3q (9.9.5)

Combining (9.9.4) and (9.9.5) yields

j ¼ P

Ix

		
A1r � nr3

8ð1þ nÞ


cos qþ

	
A3 � n

24ð1þ nÞ


r3 cos 3q



(9.9.6)

Boundary condition (9.9.4)2 yields two relations to determine the constants A1 and A3

A1 ¼ � 3þ 2n

8ð1þ nÞa
2

A3 ¼ 1þ 2n

24ð1þ nÞ
(9.9.7)

and back-substituting this result into (9.9.6) gives the final form of the stress function

j ¼ P

Ix

	
� 3þ 2n

8ð1þ nÞ a
2x� 1þ 2n

8ð1þ nÞ xy
2 þ 1� 2n

24ð1þ nÞ x
3



(9.9.8)

The stresses corresponding to this solution become

sxz ¼ � P

4Ix

1þ 2n

1þ n
xy

syz ¼ P

Ix

3þ 2n

8ð1þ nÞ
	
a2 � y2 � 1� 2n

3þ 2n
x2



sz ¼ �P

Ix
yðl� zÞ

(9.9.9)

Note for this section Ix ¼ pa4/4. The maximum stress occurs at the origin and is given by

smax ¼ syzð0; 0Þ ¼ P

pa2
3þ 2n

2ð1þ nÞ (9.9.10)

This can be compared to the value developed from strength of materials theory smax ¼ 4P/3pa2.
Differences in the maximum shear stress between the two theories are small, and for the special case
n ¼ 1/2, the elasticity solution is the same as the elementary result. Comparison of the shear stress
distribution with strength of materials theory for n ¼ 0.1 has been given by Sadd (1979), and again
differences were found to be small. Displacements for this problem can be determined through the
usual integration process (see Exercise 9.29).
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EXAMPLE 9.9: RECTANGULAR SECTION
Our second flexure example involves a beam of rectangular sectionwith end loading (Px¼ 0, Py¼ P)
passing through the shear center, as shown in Figure 9.21. The section dimensions are the same as
those given in Figure 9.12. As in the previous example, there is no torsion (a ¼ 0), and so for this
case f ¼ 0 and F ¼ j. Formulation equations (9.8.11) then give

V2j ¼ � n

1þ n

P

Ix
x in R

dj

ds
¼ �1

2

P

Ix
y2

dx

ds
on S

(9.9.11)

For the rectangular section

dj

ds
¼

8>><
>>:

�dj

dy
¼ 0; x ¼ �a

H
dj

dx
¼ �1

2

P

Ix
b2; y ¼ �b

(9.9.12)

Based on these boundary relations we are motivated to select a solution of the form

j ¼ P

Ix

	
f � 1

6

n

1þ n

�
x3 � a2x

�� b2x

2



(9.9.13)

with the harmonic function f satisfying

f
�
x;y
� ¼

8<
:

0; x ¼ �a

n

6ð1þ nÞ
�
x3 � a2x

�
; y ¼ �b

(9.9.14)

x

y

z

2a

P
l

2b

FIGURE 9.21 Flexure of a Beam of Rectangular Section.
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Because we expect syz to be an even function in x and y, and sxz to be odd in y, we look for a
harmonic solution for f in the form

f ðx;yÞ ¼
XN
n¼1

An sin
npx

a
cosh

npy

a
(9.9.15)

This form satisfies (9.9.14)1 identically, while (9.9.14)2 implies that

XN
n¼1

bn sin
npx

a
¼ n

6ð1þ nÞ
�
x3 � a2x

�
(9.9.16)

where bn ¼ An cosh (npb/a). Relation (9.9.16) is recognized as a Fourier sine series, and thus the
coefficients follow from standard theory (8.2.28) and are given by bn ¼ 2n3 (�1)n/(1 þ n)n3p3.
Putting these results back together gives the final form of the stress function

j ¼ P

Ix

2
64� 1

6

n

1þ n

�
x3 � a2x

�� b2x

2
þ 2na3

ð1þ nÞp3

XN
n¼1

ð�1Þn
n3

sin
npx

a
cosh

npy

a

cosh
npb

a

3
75 (9.9.17)

The stresses then follow to be

sxz ¼ 2na2P

ð1þ nÞp2Ix

XN
n¼1

ð�1Þn
n2

sin
npx

a
sinh

npy

a

cosh
npb

a

syz ¼ P

2Ix

�
b2 � y2

�þ nP

6ð1þ nÞIx

2
643x2 � a2 � 12a2

p2

XN
n¼1

ð�1Þn
n2

cos
npx

a
cosh

npy

a

cosh
npb

a

3
75

sz ¼ �P

Ix
yðl� zÞ

(9.9.18)

The corresponding results from strength of materials gives syz¼ P(b2 � y2)/2Ix, and thus the sec-
ond term of (9.9.18)2 represents the correction to the elementary theory. Note that if n ¼ 0, this
correction term vanishes, and the two theories predict identical stresses. For the case of a thin rect-
angular section with b >> a, cosh(npb/a) / N, and it can be shown that the elasticity solution
reduces to the strength of materials prediction. A similar result is also found for the case of a
thin section with a >> b. Comparison of the shear stress distribution syz with strength of materials
theory for n ¼ 1/2 has been presented by Sadd (1979), and differences between the two theories
were found to be sizeable. As in the previous example, the maximum stress occurs at x ¼ y ¼ 0

smax ¼ syzð0; 0Þ ¼ P

2Ix
b2 � nPa2

6ð1þ nÞIx

"
1þ 12

p2

XN
n¼1

ð�1Þn
n2

sech
npb

a

#
(9.9.19)

Again, the strength of materials result is given by the first term in relation (9.9.19).
This concludes our brief presentation of flexure examples. Solutions to additional flexure prob-

lems are given by Sokolnikoff (1956) and Timoshenko and Goodier (1970).

9.9 Flexure problems without twist 271



References
Higgins TJ: A comprehensive review of Saint-Venant torsion problem, Am J Physics 10:248–259, 1942.
Higgins TJ: The approximate mathematical methods of applied physics as exemplified by application to Saint-

Venant torsion problem, J Appl Physics 14:469–480, 1943.
Higgins TJ: Analogic experimental methods in stress analysis as exemplified by Saint-Venant’s torsion problem,

Proc Soc Exp Stress Analysis 2:17–27, 1945.
Kellogg OD: Foundations of Potential Theory, New York, 1969, Dover.
Sadd MH: A comparison of mechanics of materials and theory of elasticity stress analysis, Mech Engng News

ASEE 16:34–39, 1979.
Sokolnikoff IS: Mathematical Theory of Elasticity, New York, 1956, McGraw-Hill.
Timoshenko SP, Goodier JN: Theory of Elasticity, New York, 1970, McGraw-Hill.

EXERCISES

9.1 Under the assumption that sx ¼ sy ¼ sxy ¼ 0, show that equilibrium and compatibility
equations with zero body forces reduce to relations (9.1.2). Next integrate relations

v2sz

vx2
¼ v2sz

vy2
¼ v2sz

vz2
¼ v2sz

vxvy
¼ 0

to justify that sz ¼ C1xþ C2yþ C3zþ C4xzþ C5yzþ C6, where Ci are arbitrary constants.

9.2 During early development of the torsion formulation, Navier attempted to extend Coulomb’s
theory for bars of circular section and to assume that there is no warping displacement for
general cross-sections. Show that although such an assumed displacement field will satisfy
all elasticity field equations, it will not satisfy the boundary conditions and thus is not an
acceptable solution.

9.3 Referring to Figure 9.2, if we choose a different reference origin that is located at point (a,b)
with respect to the given axes, the displacement field would now be given by

u ¼ �azðy� bÞ; v ¼ azðx� aÞ; w ¼ wðx;yÞ
where x and y now represent the new coordinates. Show that this new representation leads
to an identical torsion formulation as originally developed.

9.4 In terms of a conjugate function j(x,y) defined by

vj

vx
¼ � 1

a

vw

vy
;

vj

vy
¼ 1

a

vw

vx

show that the torsion problem may be formulated as

V2j ¼ 0 in R

j ¼ 1

2

�
x2 þ y2

�þ constant on S
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9.5 A function f(x,y) is defined as subharmonic in a region R if V2f � 0 at all points in R. It can be
proved that the maximum value of a subharmonic function occurs only on the boundary S of
region R. For the torsion problem, show that the square of the resultant shear stress
s2 ¼ s2xz þ s2yz is a subharmonic function, and thus the maximum shear stress will always
occur on the section boundary.

9.6 We wish to reformulate the torsion problem using cylindrical coordinates. First show that the
general form of the displacements can be expressed as ur ¼ 0; uq ¼ arz; uz ¼ uzðr; qÞ.
Next show that this leads to the following strain and stress fields

er ¼ eq ¼ ez ¼ erq ¼ 0; erz ¼ 1

2

vuz
vr

; eqz ¼ 1

2

�
ar þ 1

r

vuz
vq

�

sr ¼ sq ¼ sz ¼ srq ¼ 0; srz ¼ m
vuz
vr

; sqz ¼ m

�
ar þ 1

r

vuz
vq

�

Verify that with no body forces the equilibrium equations reduce to vsrz=vr þ ð1=rÞvsqz=vq
þsrz=r ¼ 0. Following the same scheme as used in section 9.3.1, develop the compatibility
relation

1

r

vsrz
vq

� vsqz
vr

þ sqz
r

¼ �2ma

Finally, choosing a stressestress function relation of the form srz ¼ ð1=rÞvf=vq; sqz ¼ �vf=vr,
show that the equilibrium equation is identically satisfied and the compatibility relation gives
the expected result

v2f

vr2
þ 1

r

vf

vr
þ 1

r2
v2f

vq2
¼ �2ma

9.7 Using polar coordinates and the basic results of Exercise 9.6, formulate the torsion of a
cylinder of circular section with radius a, in terms of the usual Prandtl stress function. Note
for this case, there will be no warping displacement and f ¼ fðrÞ. Show that the stress
function is given by

f ¼ �ma

2

�
r2 � a2

�
and the only non-zero stress simplifies to sqz ¼ mar. Check these results with the solution
given for the elliptical section for the case with a ¼ b.

9.8 Employing the membrane analogy, develop an approximate solution to the torsion
problem of a thin rectangular section as shown. Neglecting end effects at y ¼ �b,
the membrane deflection will then depend only on x, and the governing equation can be
integrated to give z ¼ f ¼ ma(a2 � x2), thus verifying that the membrane shape is parabolic.
Formally compute the maximum membrane slope and volume enclosed to justify relations
(9.5.15).
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9.9 Using the stress results for the torsion of the elliptical section, formally integrate the
strainedisplacement relations and develop the displacement solution (9.4.11).

9.10 For the torsion of an elliptical section, show that the resultant shear stress at any point within
the cross-section is tangent to an ellipse that passes through the point and has the same ratio
of major to minor axes as that of the boundary ellipse.

9.11 Develop relation (9.4.14) for the load-carrying torque of an equilateral triangular section.

9.12 For the torsion of a bar of elliptical section, express the torque equation (9.4.6) in terms of the
polar moment of inertia of the section, and compare this result with the corresponding
relation for the equilateral triangular section.

9.13* For the triangular section shown in Figure 9.9, calculate the resultant shear stress along the
line y¼ 0, and plot the result over the range �2a � x� a. Determine and label all maximum
and minimum values.

9.14* For the triangular section of Example 9.2, plot contours of constant resultant shear stress

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xz þ s2yz

q
Point out how these contours would imply that the maximum shear stress occurs at the mid-
points of each boundary side.

9.15 Consider the torsion of a bar of general triangular section as shown in the following figure.
Using the boundary equation technique of Section 9.4, attempt a stress function solution of
the form

f ¼ Kðx� aÞ ðy� m1xÞ ðyþ m2xÞ

x

  y

a

b

Parabolic Membrane

aa
x

z
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where m1, m2, and a are geometric constants defined in the figure and K is a constant to be
determined. Show that this form will be a solution to the torsion problem only for the case
of an equilateral triangular section.

9.16 For the torsionproblem inExample9.3, explicitly justify that the requiredvalues for the constants
appearing in the stress function are given by c ¼ 3 � ffiffiffi

8
p

and K ¼ �ma/[4a2(1 � ffiffiffi
2

p
)].

Also calculate the resulting shear stresses and determine the location and value of the maximum
stress.

9.17 Attempt to solve the torsion of a rectangular section shown in Figure 9.12 by using the
boundary equation method. Show that trying a stress function created from the four products
of the boundary lines x ¼ �a and y ¼ �b will not satisfy the governing equation (9.3.9).

9.18 Using the displacement formulation given in Section 9.3.2, use standard separation of var-
iables to solve the torsion problem of an elliptical section shown in Figure 9.7. For this
problem it is only necessary to use results coming from the zero separation constant case.
Verify your solution with relation (9.4.11).

9.19 Using the displacement formulation given in Section 9.3.2, use standard separation of var-
iables to solve the torsion problem of a rectangular section shown in Figure 9.12. Verify your
solution with relation (9.5.14).

9.20* Using the torque relation (9.5.12) for the rectangular section, compute the nondimensional
load-carrying parameter T/mab4, and plot this as a function of the dimensionless ratio b/a
over the range 1 � b/a � 10. For the case where b/a approaches 10, show that the load-
carrying behavior can be given by the approximate relation (9.5.15).

9.21 Using the relation (9.5.16), develop an approximate solution for the load-carrying torque of
the channel section shown.

x = a

 y = m1x

 y = −m2x

x

 y
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9.22 A circular shaft with a keyway can be approximated by the section shown in the following
figure. The keyway is represented by the boundary equation r ¼ b, while the shaft has the
boundary relation r ¼ 2a cos q. Using the technique of Section 9.4, a trial stress function is
suggested of the form

f ¼ K
�
b2 � r2

��
1� 2a cos q

r

�

where K is a constant to be determined. Show that this form will solve the problem and
determine the constant K. Compute the two shear stress components sxz and syz.

9.23* For the keyway section of Exercise 9.22, show that resultant stresses on the shaft and keyway
boundaries are given by

sshaft ¼ maa

�
b2

4a2 cos2 q
� 1

�
; skeyway ¼ mað2a cos q� bÞ

a

t

b

t

t

b

r = b

r = 2acos

r

x

 y

.

θ

θ
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Determine the maximum values of these stresses, and show that for b << a, the magnitude of
the maximum keyway stress is approximately twice that of the shaft stress. Finally, make a plot
of the stress concentration factor

ðsmaxÞkeyway
ðsmaxÞsolid shaft

versus the ratio b/a over the range 0 � b/a � 1. Note that (smax)solid shaft is the maximum
shear stress for a solid shaft of circular section and can be determined from Example 9.1 or
strength of materials theory. Show that the stress concentration plot gives

ðsmaxÞkeyway
ðsmaxÞsolid shaft

/2; as b=a/0

thus indicating that a small notch will result in a doubling of the stress in a circular section
under torsion.

9.24 Example 9.6 provides the torsion solution of a closed thin-walled section shown in
Figure 9.16. Investigate the solution of the identical section for the case where a small cut has
been introduced as shown in the following figure. This cut creates an open tube and produces
significant changes to the stress function (use membrane analogy), stress field, and load-
carrying capacity. The open tube solution can be approximately determined using results
(9.5.15) from the thin rectangular solution. For the open tube, develop an equivalent
relation as given by (9.6.8) for the closed tube. For identical applied torque, compare the
stresses for each case, and justify that the closed tube has much lower stress and is thus much
stronger.

9.25 Consider the torsion of a rod with the half-ring cross-section as shown. Formulating the
problem in polar coordinates (see Exercise 9.6), the governing stress function equation be-
comes

v2f

vr2
þ 1

r

vf

vr
þ 1

r2
v2f

vq2
¼ �2ma
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Using Fourier methods to solve this problem, first show that we can expand the constant right-
hand side in a Fourier sine series to get �2ma ¼ �SN

n¼08ma=½ð2nþ 1Þp�sinð2nþ 1Þq. Based
on this, use the series solution form fðr; qÞ ¼ SN

n¼0FnðrÞsinð2nþ 1Þq and show that the
governing equation leads to the ordinary differential equation

d2Fn

dr2
þ 1

r

dFn

dr
� ð2nþ 1Þ2

r2
Fn ¼ � 8ma

ð2nþ 1Þp
Show that the solution to this equation is given by

Fn ¼ Anr
2nþ1 þ Bnr

�2n�1 þ Knr
2; where Kn ¼ 8ma

ð2nþ 1Þð2n� 1Þð2nþ 3Þp
Note that the stress function form already satisfies the zero boundary condition on q¼ 0 and p.
Finally apply the remaining boundary conditions on r1 and r2, to determine the constants An

and Bn and show that the stresses can be written as

srz ¼ 1

r

vf

vq
¼
XN
n¼0

�
Anr

2n þ Bnr
�2n�2 þ Knr

� ð2nþ 1Þcosð2nþ 1Þq

sqz ¼ �vf

vr
¼ �

XN
n¼0

�
Anð2nþ 1Þr2n � Bnð2nþ 1Þr�2n�2 þ 2Knr

�
sinð2nþ 1Þq

r1

r2

x

y

r
θ

9.26 The potential energy per unit length for the torsion problem was given in Exercise 6.14.
Using the principle of minimum potential energy, dP ¼ 0 and this leads to a minimization of
the following integral expression

I ¼
ð ð

R

	�
vf

vx

�2

þ
�
vf

vy

�2

� 4maf



dxdy

From variational calculus this is equivalent to satisfying the governing differential equation
V2f ¼ �2ma. Using this result we can apply a RayleigheRitz scheme (see Section 6.7) and
choose an approximate set of terms for the stress function f ¼ a1f1 þ a2f2 þ. and
minimize the potential energy by using relations vI=vai ¼ 0. Note that these trial fi functions
must satisfy the boundary conditions fi ¼ 0. Using this proposed scheme, develop an
approximate solution for the torsion of the “L-shaped” section, by using only a single term of
the form f1 ¼ sin 4px sin 4py. Show that the Ritz coefficient is given by a1 ¼ ma=7p4,
leading to a load-carrying torque capacity of T ¼ ma=14p6. Using just a single term will not
yield a very accurate approximate solution.
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x

1

1

1/4

1/4

9.27 For the solution of the conical shaft given in Example 9.7, compare the maximum shearing
stress sqz with the corresponding result from strength of materials theory. Specifically,
consider the case with a cone angle 4¼ 20� with z¼ l, and compare dimensionless values of
sqzl

3/T.

9.28* Make a comparison study of the torsion of a conical shaft given in Example 9.7 with cor-
responding results from mechanics of materials. First develop the sqz shear stress relations for
each theory, and then make a comparison plot of the maximum section shear stress
(normalized by the torque, T) for the case with cone angle 4¼ 30� over the range 4� z� 10.

9.29 Determine the displacement field for the flexure problem of a beam of circular section given
in Example 9.8. Starting with the stress solution (9.9.9), integrate the strainedisplacement
relations and use boundary conditions that require the displacements and rotations to vanish
at z ¼ 0. Compare the elasticity results with strength of materials theory. Also investigate
whether the elasticity displacements indicate that plane sections remain plane.

9.30* Make a comparison of theory of elasticity and strength of materials shear stresses for the
flexure of a beam of rectangular section from Example 9.9. For each theory, calculate and
plot the dimensionless shear stress syz(0, y)b

2/P versus y/b for an aspect ratio b/a ¼ 1.

9.31 Solve the flexure problem without twist of an elastic beam of elliptical section as shown in
Figure 9.7 with Py¼ P. Show that the stress results reduce to (9.9.9) for the circular case with
a ¼ b.
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Complex Variable Methods 10
Complex variable theory provides a very powerful tool for the solution of many problems in elasticity.
Such applications include solutions of the torsion problem and most importantly the plane problem
discussed in Chapters 7 and 8. The technique is also useful for cases involving anisotropic and
thermoelastic materials, and these are discussed in subsequent chapters. Employing complex variable
methods enables many problems to be solved that would be intractable by other schemes. The method
is based on reduction of the elasticity boundary-value problem to a formulation in the complex
domain. This formulation then allows many powerful mathematical techniques available from com-
plex variable theory to be applied to the elasticity problem. Such applications were originally
formulated by Kolosov (1909), and additional Russian researchers further expanded the use of this
technique. Comprehensive texts on this solution method include Muskhelishvili (1953, 1963), Milne-
Thomson (1960), Green and Zerna (1968), and England (1971). Additional briefer sources of infor-
mation can also be found in Sokolnikoff (1956) and Little (1973). The purpose of this chapter is to
introduce the basics of the method and to investigate its application to particular problems of engi-
neering interest. We shall first briefly review complex variable theory to provide a general background
needed to develop elasticity solutions. Further and more detailed information on complex variables
may be found in the mathematical texts by Churchill (1960) or Kreyszig (2011).

10.1 Review of complex variable theory
A complex variable z is defined by two real variables x and y in the form

z ¼ xþ iy (10.1.1)

where i ¼ ffiffiffiffiffiffiffi�1
p

is called the imaginary unit, x is known as the real part of z, that is, x¼ Re(z), while y
is called the imaginary part, y ¼ Im(z). This definition can also be expressed in polar form by

z ¼ rðcosqþ i sinqÞ ¼ reiq (10.1.2)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is known as the modulus of z and q ¼ tan�1(y/x) is the argument. These defi-

nitions may be visualized in a plot of the complex plane, as shown in Figure 10.1, where the variable
z may be thought of as a point in the plane, and definitions of r and q have obvious graphical meaning.
Because a complex variable includes two quantities (real and imaginary parts), it can be used in a
similar fashion as a two-dimensional vector with x and y components. This type of representation is
used several times in our plane elasticity applications. The complex conjugate z of the variable z is
defined by

z ¼ x� iy ¼ re�iq (10.1.3)
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It should be apparent that this quantity is simply a result of changing the sign of the imaginary part of z,

and in the complex plane (see Figure 10.1) is a reflection of z about the real axis. Note that r ¼ ffiffiffiffi
zz

p
:

Using the definitions (10.1.1) and (10.1.3), the following differential operators can be developed

v

vx
¼ v

vz
þ v

vz
;

v

vy
¼ i

�
v

vz
� v

vz

�

v

vz
¼ 1

2

�
v

vx
� i

v

vy

�
;

v

vz
¼ 1

2

�
v

vx
þ i

v

vy

� (10.1.4)

Addition, subtraction, multiplication, and division of complex numbers z1 and z2 are defined by

z1 þ z2 ¼ ðx1 þ x2Þ þ iðy1 þ y2Þ
z1 � z2 ¼ ðx1 � x2Þ þ iðy1 � y2Þ

z1z2 ¼ ðx1x2 � y1y2Þ þ iðy1x2 þ x1y2Þ
z1
z2

¼ x1 þ iy1
x2 þ iy2

¼ x1x2 þ y1y2

x22 þ y22
þ i

y1x2 � x1y2

x22 þ y22

(10.1.5)

A function of a complex variable z may be written as

f ðzÞ ¼ f ðxþ iyÞ ¼ uðx;yÞ þ ivðx;yÞ (10.1.6)

where u(x,y) and v(x,y) are the real and imaginary parts of the complex function f (z). An example of
this definition is given by

f ðzÞ ¼ azþ bz2 ¼ aðxþ iyÞ þ bðxþ iyÞ2 ¼ �axþ bx2 � by2
�þ iðayþ 2bxyÞ

z

r

 y

x

z

θ

FIGURE 10.1 Complex Plane.
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thus u(x,y) ¼ ax þ bx2 � by2 and v(x,y) ¼ ay þ 2bxy, where we have assumed that a and b are real
constants.

The complex conjugate of the complex function is defined by

f ðzÞ ¼ f ðzÞ ¼ uðx;yÞ � ivðx;yÞ (10.1.7)

and thus for the previous example of f (z) ¼ az þ bz2

f ðzÞ ¼ �azþ bz2
� ¼ azþ bz2

¼ aðx� iyÞ þ bðx� iyÞ2

¼ �axþ bx2 � by2
�� iðayþ 2bxyÞ

Differentiation of functions of a complex variable follows the usual definitions. Let f (z) be a
single-valued continuous function of z in a domain D. The function f is differentiable at point zo
in D if

f 0ðzoÞ¼ lim
Dz/0

�
f ðzo þ DzÞ � f ðzoÞ

Dz

�
(10.1.8)

exists and is independent of how Dz / 0. If the function is differentiable at all points in a domain D,
then it is said to be holomorphic, analytic, or regular in D. Points where the function is not analytic are
called singular points.

Using the representation (10.1.6) with differential relations (10.1.4), the derivative of f can be
expressed by

f 0ðzÞ ¼ v

vz
ðuþ ivÞ ¼ 1

2

�
vu

vx
þ vv

vy

�
þ i

1

2

�
vv

vx
� vu

vy

�
(10.1.9)

Because the derivative limit must be the same regardless of the path associated with Dz / 0, relation
(10.1.9) must be valid for the individual cases of Dx ¼ 0 and Dy ¼ 0, and thus

f 0ðzÞ ¼ 1

2

�
vu

vx

�
þ i

1

2

�
vv

vx

�
¼ 1

2

�
vv

vy

�
þ i

1

2

�
�vu

vy

�
(10.1.10)

Equating real and imaginary parts in relations (10.1.10) gives

vu

vx
¼ vv

vy
;

vu

vy
¼ �vv

vx
(10.1.11)

which are called the Cauchy–Riemann equations. In polar coordinate form, these relations may be
written as

vu

vr
¼ 1

r

vv

vq
;

1

r

vu

vq
¼ �vv

vr
(10.1.12)

Note that by simple differentiation of these relations, it can be shown that

V2u ¼ 0; V2v ¼ 0 (10.1.13)
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and thus the real and imaginary parts of any analytic function of a complex variable are solutions to
Laplace’s equation and are harmonic functions. It can also be observed that relations (10.1.11) allow
the differential of u to be expressed in terms of the variable v, that is

du ¼ vu

vx
dxþ vu

vy
dy ¼ vv

vy
dx� vv

vx
dy (10.1.14)

and so if we know v, we could calculate u by integrating relation (10.1.14). In this discussion, the roles
of u and v could be interchanged, and therefore if we know one of these functions, the other can be
determined. This behavior establishes u and v as conjugate functions.

Next consider some concepts and results related to integration in the complex plane shown in
Figure 10.2. The line integral over a curve C from z1 to z2 is given byð

C
f ðzÞdz ¼

ð
C
ðuþ ivÞðdxþ idyÞ ¼

ð
C
ððudx� vdyÞ þ iðudyþ vdxÞÞ (10.1.15)

Using the Cauchy–Riemann relations, we can show that if the function f is analytic in a region D that
encloses the curve C, then the line integral is independent of the path taken between the end points z1
and z2. This fact leads to two useful theorems in complex variable theory.

Cauchy Integral Theorem: If a function f (z) is analytic at all points interior to and on a closed curve

C, then þ
C
f ðzÞdz ¼ 0 (10.1.16)

Cauchy Integral Formula: If f (z) is analytic everywhere within and on a closed curve C, and if zo is

any point interior to C, then

f ðzoÞ ¼ 1

2pi

þ
C

f ðzÞ
z� zo

dz (10.1.17)

z2

z1

y

x

C

FIGURE 10.2 Contour in the Complex Plane.
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The integration over C is to be taken in the positive sense with the enclosed region to the left as the
curve is traversed. Notice that the Cauchy integral formula provides a method to express the value of an
analytic function at interior points of a domain in terms of values on the boundary.

It is often convenient to express functions of a complex variable in a power series. If f (z) is analytic
at all points within a circle C with center at z ¼ a, then at each point inside C the function admits the
Taylor series expansion

f ðzÞ ¼ f ðaÞ þ f 0ðaÞðz� aÞ þ/þ f ðnÞðaÞ
n!

ðz� aÞn þ/ (10.1.18)

about point z ¼ a. For the special case where a ¼ 0, the representation is referred to as the Maclaurin
series. These results are useful for expansions in interior regions. A generalization of series repre-
sentations for an annular region also exists. If f (z) is analytic on two concentric circles C1 and C2 and
throughout the region between these circles (C1 > C2), then the function may be expressed by the
Laurent series

f ðzÞ ¼
XN
n¼0

Anðz� aÞn þ
XN
n¼1

Bn

ðz� aÞn (10.1.19)

where

An ¼ 1

2pi

þ
C1

f ðzÞ
ðz� zoÞnþ1

dz; n ¼ 0; 1; 2; .

Bn ¼ 1

2pi

þ
C2

f ðzÞ
ðz� zoÞ�nþ1

dz; n ¼ 1; 2; .

(10.1.20)

Recall that points where a complex function is not analytic are called singular points or singularities.We
nowwish to discuss briefly one particular type of singularity called a pole. If f (z) is singular at z¼ a, but
the product (z � a)nf (z) is analytic for some integer value of n, then f (z) is said to have a pole of order
n at z ¼ a. For this case, the analytic product form can be expanded in a Taylor series about z ¼ a

ðz� aÞnf ðzÞ ¼
XN
k¼0

Akðz� aÞk

Ak ¼ 1

k!

dk

dzk
fðz� aÞnf ðzÞg

����
z¼a

Rewriting this series for f (z)

f ðzÞ ¼
XN
k¼0

Ak
ðz� aÞk
ðz� aÞn

Integrating this expression around a closed contour C that encloses the point a and using the Cauchy
integral formula reduces the right-hand side to a single termþ

C
f ðzÞdz ¼ 2piAn�1
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The quantity An�1 is called the residue of f (z) at the pole z ¼ a, and this result would allow the
calculation of the integral by knowing the residue of the pole inside the contour C. Thus, if f (z) is
analytic except for a pole of order n at z ¼ a in a region enclosed by an arbitrary contour C, then the
integral of f (z) around C is given byþ

C
f ðzÞdz ¼ 2pi

�
1

ðn� 1Þ!
dn�1

dzn�1
fðz� aÞnf ðzÞg

����
z¼a

	
(10.1.21)

If more than one pole exists in the domain enclosed by C, then the integral is evaluated using relation
(10.1.21) by including the summation of the residues of all poles in the domain. This procedure is
called the calculus of residues and is useful to evaluate complex integrals. Using this scheme along
with the Cauchy integral formula, the following useful integral relation may be developed

1

2pi

þ
C

1

znðz� zÞ dz ¼


0; n > 0
1; n ¼ 0

(10.1.22)

where C is the contour around the unit circle and z is inside the circle.
Another type of nonanalytic, singular behavior involves multivalued complex functions. Examples of

such behavior are found in the functions z1/ 2 and log z. Consider in more detail the logarithmic function

log z ¼ log
�
reiq
� ¼ log r þ iq

It is observed that this function is multivalued in q. This multivaluedness can be eliminated by
restricting the range of q to �p < q � p, and this results in the principal value of log z. For this case,
the function is single-valued at all points except for the origin and the negative real axis. The origin is
then referred to as a branch point, and the negative real axis is a branch cut. By restricting the function
to the domain r > 0 and �p < q � p, the singular behavior is avoided, and the function is analytic in
the restricted range. Because of the common occurrence of functions involving

ffiffiffiffiffiffið$Þn
p

and log, branch
points and branch cuts are present in many applications in elasticity.

Consider next the issue of the connectivity of the plane domain. Recall that a simply connected
region is one where any closed curve can be continuously shrunk to a point without going outside the
region, and for two dimensions this simply means a region with no holes in it. Figure 10.3 illustrates a

x

y

L1

L2
L3

D

FIGURE 10.3 Multiply Connected Domain.
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multiply connected region D with several internal boundaries Lk. It can be shown that analytic func-
tions in such multiply connected regions need not be single-valued. Note, however, that such regions
can be made simply connected by making appropriate cuts joining each of the internal boundaries with
the outer boundary.

The final topic in our complex variable review involves the powerful method of conformal
transformation or mapping. This transformation concept provides a convenient means to find elasticity
solutions to interior and exterior problems of complex shape. The concept starts with a general
relationship between two complex variables z and z

z ¼ wðzÞ; z ¼ f ðzÞ (10.1.23)

The transformation w is assumed to be analytic in the domain of interest, and this establishes a
one-to-one mapping of points in the z-plane to points in the z-plane, as shown in Figure 10.4. Thus,
the region R is mapped onto the region D by the relation z ¼ f (z). The term conformal is associated
with the property that angles between line elements are preserved under the transformation.

Many plane elasticity problems rely on solutions related to the unit circle, and thus the conformal
mapping of a region R in the z-plane into a unit circle in the z-plane is commonly used. This case is
shown in Figure 10.5. The particular transformation that accomplishes this mapping is given by the
following

z ¼
XN
k¼0

ckz
k (10.1.24)

where the constants ck would be determined by the specific shape of the domain R. Another useful
transformation is that which maps the exterior of region R into the unit circle, and this is of the form

z ¼ C

z
þ
XN
k¼0

ckz
k (10.1.25)

z-plane

z = w (ζ)

ζ = f (z)

ζ-plane

D

y

x

R

ξ

η

FIGURE 10.4 Conformal Mapping.
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where as before the constants C and ck would be determined by the shape of R. Other special mappings
are presented as this theory is applied to specific elasticity problems in later sections. A large number
of conformal mappings have been developed for various applications in many branches of engineering
science; see, for example, Kober (1952).

10.2 Complex formulation of the plane elasticity problem
The general plane problem of elasticity formulated in Chapter 7 establishes the two theories of plane
strain and plane stress. Although each case is related to a completely different two-dimensional model,
the basic formulations are quite similar. By simple changes in elastic constants, solutions to each case
were shown to be interchangeable (see Table 7.1).

The basic equations for plane strain include expressions for the stresses

sx ¼ l

�
vu

vx
þ vv

vy

�
þ 2m

vu

vx

sy ¼ l

�
vu

vx
þ vv

vy

�
þ 2m

vv

vy

sxy ¼ m

�
vu

vy
þ vv

vx

�
(10.2.1)

while the Navier equations reduced to

mV2uþ ðlþ mÞVðV$uÞ ¼ 0 (10.2.2)

where the Laplacian is given by V2 ¼ ( )xx þ ( )yy, with subscripts representing partial differentiation.
For both plane strain and plane stress with zero body forces, the stresses were expressed in a self-
equilibrated form using the Airy stress function f

sx ¼ v2f

vy2
; sy ¼ v2f

vx2
; sxy ¼ � v2f

vxvy
(10.2.3)

z-plane ζ-plane

z = w(ζ)

ζ = f (z)

y

x

R

η

ξ

D

1

FIGURE 10.5 Conformal Mapping of a Region onto the Unit Circle.
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and from the compatibility relations, f satisfied the biharmonic equation

V4f ¼ fxxxx þ 2fxxyy þ fyyyy ¼ 0 (10.2.4)

Thus, the stress formulation to the plane problem reduced to solving the biharmonic equation.
We now wish to represent the Airy stress function in terms of functions of a complex variable and

transform the plane problem into one involving complex variable theory. Using relations (10.1.1) and
(10.1.3), the variables x and y can be expressed in terms of z and z, and thus functions of x and y can
be expressed as functions of z and z. Applying this concept to the Airy stress function, we can write
f ¼ f(z, z). Repeated use of the differential operators defined in equations (10.1.4) allows the
following representation of the harmonic and biharmonic operators

V2ð Þ ¼ 4
v2ð Þ
vzvz

; V4ð Þ ¼ 16
v4ð Þ
vz2vz2

(10.2.5)

Therefore, the governing biharmonic elasticity equation (10.2.4) can be expressed as

v4f

vz2vz2
¼ 0 (10.2.6)

Integrating this result yields

fðz; zÞ ¼ 1

2

�
zgðzÞ þ zgðzÞ þ cðzÞ þ cðzÞ

�

¼ ReðzgðzÞ þ cðzÞÞ
(10.2.7)

where g and c are arbitrary functions of the indicated variables, and we have invoked the fact that f
must be real. This result demonstrates that the Airy stress function can be formulated in terms of two
functions of a complex variable.

Following along another path, we consider the governing Navier equations (10.2.2) and introduce
the complex displacement U ¼ u þ iv to get

ðlþ mÞ v
vz

�
vU

vz
þ vU

vz

�
þ 2m

v2U

vzvz
¼ 0 (10.2.8)

Integrating this expression yields a solution form for the complex displacement

2mU ¼ kgðzÞ � zg0ðzÞ � jðzÞ (10.2.9)

where again g(z) and j(z) ¼ c0(z) are arbitrary functions of a complex variable and the Kolosov
parameter k depends only on Poisson’s ratio n

k ¼
8<
:

3� 4n; plane strain

3en

1þ n
; plane stress

(10.2.10)

Result (10.2.9) is the complex variable formulation for the displacement field and is written in terms of
two arbitrary functions of a complex variable.
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Using relations (10.2.3) and (10.2.7) yields the fundamental stress combinations

sx þ sy ¼ 2
�
g0ðzÞ þ g0ðzÞ

�
sy � sx þ 2isxy ¼ 2ðzg00ðzÞ þ j 0ðzÞÞ

(10.2.11)

By adding and subtracting and equating real and imaginary parts, relations (10.2.11) can be easily
solved for the individual stresses (see Exercise 10.5). Using standard transformation laws (see Exercise
3.3), the stresses and displacements in polar coordinates can be written as

sr þ sq ¼ sx þ sy

sq � sr þ 2isrq ¼
�
sy � sx þ 2isxy

�
e2iq

ur þ iuq ¼ ðuþ ivÞeeiq

(10.2.12)

From the original definition of the traction vector, we can express these components as

Tn
x ¼ sxnx þ sxyny ¼ fyynx � fxyny ¼ fyy

dy

ds
þ fxy

dx

ds
¼ d

ds

�
vf

vy

�

Tn
y ¼ sxyny þ syny ¼ �fxynx þ fxxny ¼ �

�
fxy

dy

ds
þ fxx

dx

ds

�
¼ � d

ds

�
vf

vx

� (10.2.13)

and thus

Tn
x þ iTn

y ¼ d

ds

�
vf

vy
� i

vf

vx

�
¼ i

d

ds

�
vf

vx
þ i

vf

vy

�

¼ i
d

ds

�
gðzÞ þ zg0ðzÞ þ jðzÞ

� (10.2.14)

Therefore, we have demonstrated that all of the basic variables in plane elasticity are expressible in
terms of two arbitrary functions of a complex variable. These two functions g(z) and j(z) are
commonly referred to as the Kolosov–Muskhelishvili potentials. The solution to particular problems is
then reduced to finding the appropriate potentials that satisfy the boundary conditions. This solution
technique is greatly aided by mathematical methods of complex variable theory.

EXAMPLE 10.1: CONSTANT STRESS STATE EXAMPLE
Consider the complex potentials g(z) ¼ Az, j(z) ¼ Bz, where A and B are complex constants. We
wish to determine the stresses and displacements and explicitly show that this example corresponds
to a uniform stress field. Using the stress combinations (10.2.11)

sx þ sy ¼ 2
�
g0ðzÞ þ g0ðzÞ

�
¼ 2
�
Aþ A

� ¼ 4ReA ¼ 4AR

sy � sx þ 2isxy ¼ 2ðzg00ðzÞ þ j0ðzÞÞ ¼ 2B ¼ 2ðBR þ iBIÞ
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Equating real and imaginary parts in the second relation gives

sy � sx ¼ 2BR

sxy ¼ BI

and this allows the individual stresses to be calculated as

sx ¼ 2AR � BR; sy ¼ 2AR þ BR; sxy ¼ BI

If these stresses are to be a uniform state sx ¼ sox ; sy ¼ soy ; sxy ¼ sozy then the constants must
take the form

AR ¼ sox þ soy

4
; BR ¼ soy þ sox

2
; BI ¼ sozy

Note that the imaginary part of A is not determined by the stress state.
The polar coordinate stresses can easily be calculated by using relation (10.2.12)

sr þ sq ¼ 4AR

sq � sr þ 2isrq ¼ 2ðBR þ iBIÞe2iq ¼ 2ðBR þ iBIÞðcos 2qþ i sin 2qÞ
Again, separating and equating real and imaginary parts gives the individual stresses

sr ¼ 2AR � BR cos 2qþ BI sin 2q

sq ¼ 2AR þ BR cos 2q� BI sin 2q

srq ¼ BR sin 2qþ BI cos 2q

Finally, the displacements follow from equation (10.2.9)

2mðuþ ivÞ ¼ kAz� zA� Bz ¼ kðAR þ iAIÞðxþ iyÞ
�ðxþ iyÞðAR � iAIÞ � ðBR � iBIÞðx� iyÞ

Equating real and imaginary parts, the individual components can be determined as

u ¼ 1

2m
½ðARðk� 1Þ � BRÞxþ ðBI � AIðkþ 1ÞÞy�

v ¼ 1

2m
½ðAIðkþ 1Þ þ BIÞxþ ðARðk� 1Þ þ BRÞy�

10.3 Resultant boundary conditions
The final formulation step in the complex variable approach is to develop expressions to handle general
resultant boundary conditions, and this involves methods to determine the resultant force and moment
acting on arbitrary boundary segments. Consider the boundary segment AB for an interior simply
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connected domain problem shown in Figure 10.6. The resultant force components produced by
tractions acting on this segment may be expressed in complex form as

Fx þ iFy ¼
ðB
A

�
Tn
x þ iTn

y

�
ds

¼ �i

ðB
A
d
h
gðzÞ þ zg0ðzÞ þ jðzÞ

i

¼ �i
h
gðzÞ þ zg0ðzÞ þ jðzÞ

iB
A

(10.3.1)

Again, the direction of the boundary integration is always taken to keep the region to the left. Similarly,
the resultant moment M with respect to the coordinate origin is given by

M ¼
ðB
A

�
xTn

y � yTn
x

�
ds

¼ �
ðB
A

�
xd

�
vf

vx

�
þ yd

�
vf

vy

�	

¼ �
�
x
vf

vx
þ y

vf

vy

	B
A

þ fjBA

¼ Re½cðzÞ � zjðzÞ � zzg0ðzÞ�BA

(10.3.2)

where c0(z) ¼ j(z).
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FIGURE 10.6 Resultant Boundary Loading.
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10.4 General structure of the complex potentials
It has been shown that the solution to plane elasticity problems involves determination of two complex
potential functions g(z) and j(z). These potentials have some general properties and structures that we
now wish to investigate. First, by examining relations for the stresses and displacements, a particular
indeterminacy or arbitrariness of the potentials can be found. From the first stress relation in set
(10.2.11), it is observed that an arbitrary imaginary constant iC may be added to the potential g0(z)
without affecting the stresses. From the second stress relation (10.2.11)2, an arbitrary complex constant
can be added to the potential j(z) without changing the stresses. These two observations indicate that
without changing the state of stress, a new set of complex potentials g*(z) and j*(z) could be written as

g�ðzÞ ¼ gðzÞ þ iCzþ A

j�ðzÞ ¼ jðzÞ þ B
(10.4.1)

Using these new forms in relation (10.2.9) yields a displacement field that differs from the original
form by the terms

2mðU� � UÞ ¼ ðkþ 1ÞiCzþ kA� B (10.4.2)

These difference terms correspond to rigid-body motions [see relations (2.2.9)], and thus as expected
the stresses determine the displacements only up to rigid-body motions.

Particular general forms of these potentials exist for regions of different topology. Most problems
of interest involve finite simply connected, finite multiply connected, and infinite multiply connected
domains as shown in Figure 10.7. We now present specific forms for each of these cases.

10.4.1 Finite simply connected domains
Consider the finite simply connected region shown in Figure 10.7(a). For this case, the potential
functions g(z) and j(z) are analytic and single-valued in the domain and this allows the following
power series representation

gðzÞ ¼
XN
n¼0

anz
n

jðzÞ ¼
XN
n¼0

bnz
n

(10.4.3)

where an and bn are constants to be determined by the boundary conditions of the problem under study.

(a) Finite Simply Connected (b) Finite Multiply Connected (c) Infinite Multiply Connected

RC1

C2
C3R R

Co

C1

C2

C3

FIGURE 10.7 Typical Domains of Interest.
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10.4.2 Finite multiply connected domains
For the general region shown in Figure 10.7(b), it is assumed that the domain has k internal
boundaries as shown. For this topology, the potential functions need not be single-valued, as can
be demonstrated by considering the behaviors of the stresses and displacements around each of the
n contours Ck in region R. For the present case, we shall limit the problem and assume that
the displacements and stresses are continuous and single-valued everywhere. Multivalued
displacements lead to the theory of dislocations, and this is discussed at a later stage in
Chapter 15. The resultant force on a typical internal boundary Ck may be determined by using
relation (10.3.1)

Fk ¼ Xk þ iYk ¼
þ
Ck

�
Tn
x þ iTn

y

�
ds ¼ i

h
gðzÞ þ zg0ðzÞ þ jðzÞ

i
Ck

(10.4.4)

where ½ f ðz; zÞ�Ck
is referred to as the cyclic function of f and represents the change of the

function f around closed contour Ck. Note that in relation (10.4.4), the internal boundary circuit Ck is
traversed with the region on the left, thus leading to a clockwise circuit and a change of sign from
relation (10.3.1). Of course, the cyclic function of a single-valued expression is zero; further
details on properties of cyclic functions may be found in Milne-Thomson (1960). Because the
resultant force on a given internal boundary will not necessarily be zero, the cyclic function on the
right-hand side of relation (10.4.4) should properly produce this result. Therefore, the potential
functions g(z) and j(z) must have appropriate multivalued behavior. It can be shown that the log-
arithmic function previously discussed in Section 10.1 can provide the necessary multivaluedness,
because

½logðz� zkÞ�Ck
¼ 2pi (10.4.5)

where zk is a point within the contour Ck and the cyclic evaluation is taken in the counterclockwise
sense for the usual right-handed coordinate system with q measured counterclockwise. Including such
logarithmic terms for each of the two complex potentials and employing (10.4.4) for all contours
within the region R in Figure 10.7(b) develops the following general forms

gðzÞ ¼ �
Xn
k¼1

Fk

2pð1þ kÞ logðz� zkÞ þ g�ðzÞ

jðzÞ ¼
Xn
k¼1

kFk

2pð1þ kÞ logðz� zkÞ þ j�ðzÞ
(10.4.6)

where Fk is the resultant force on each contour Ck, g*(z) and j*(z) are arbitrary analytic functions in R,
and k is the material constant defined by (10.2.10).
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10.4.3 Infinite domains
For the region shown in Figure 10.7(c), the general form of the potentials is determined in an analogous
manner as in the previous case. The logarithmic terms in (10.4.6) may be expanded in the region
exterior to a circle enclosing all m contours Ck to get

logðz� zkÞ ¼ log zþ log

�
1� zk

z

�
¼ log z�

�
zk
z
þ 1

2

�
zk
z

�2

þ/

�

¼ log zþ ðarbitrary analytic functionÞ
Combining this result with the requirement that the stresses remain bounded at infinity gives the
general form for this case

gðzÞ ¼ �

Xm
k¼1

Fk

2pð1þ kÞ log zþ
sNx þ sNy

4
zþ g��ðzÞ

jðzÞ ¼ �
k
Xm
k¼1

Fk

2pð1þ kÞ log zþ sNy � sNx þ 2isNxy
2

zþ j��ðzÞ

(10.4.7)

where sNx ; s
N
y ; and sNxy are the stresses at infinity, and g**(z) and j**(z) are arbitrary analytic

functions outside the region enclosing all m contours. Using power series theory, these analytic
functions can be expressed as

g��ðzÞ ¼
XN
n¼1

anz
�n

j��ðzÞ ¼
XN
n¼1

bnz
�n

(10.4.8)

An examination of the displacements at infinity would indicate unbounded behavior unless all stresses
at infinity vanish and SFk ¼ SFk ¼ 0. This fact occurs because even a bounded strain over an infinite
length will produce infinite displacements. Note that the case of a simply connected, infinite domain is
obtained by dropping the summation terms in (10.4.7).

10.5 Circular domain examples
We now develop some solutions of particular plane elastic problems involving regions of a circular
domain. The process starts by developing a general solution to a circular region with arbitrary edge
loading, as shown in Figure 10.8. The region 0� r� R is to have arbitrary boundary loadings at r¼ R
specified by sr ¼ f1(q), srq ¼ �f2 (q), which can be written in complex form as

f ¼ f1ðqÞ þ if2ðqÞ ¼ sr � isrqjr¼R (10.5.1)
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The fundamental stress combinations and displacements in polar coordinates were given in relations
(10.2.12). The tractions given by (10.2.14) may be expressed in polar form as

Tr
x þ iTr

y ¼ �i
d

ds

�
gðzÞ þ zg0ðzÞ þ jðzÞ

���
r¼R

(10.5.2)

Integrating this result around the boundary r ¼ R (ds ¼ Rdq) gives

i

ð�
Tr
x þ iTr

y

�
Rdq ¼

�
gðzÞ þ zg0ðzÞ þ jðzÞ

���
r¼R

¼ g (10.5.3)

where the boundary function g depends only on q. Using general form (10.4.3) for the complex po-
tentials, the stress resultant becomes

sr � isrq ¼ g0ðzÞ þ g0ðzÞ � e2iq½zg00ðzÞ þ j0ðzÞ�

¼
XN
n¼1

�
annz

n�1 þ annz
n�1 � e2iq


zannðn� 1Þzn�2 þ bnnz

n�1
��

¼ a1 þ a1 þ
XN
k¼1

��akþ1

�
k2 � 1

�
rk þ bk�1ðk � 1Þrk�2

�
eikq þ akþ1ðk þ 1Þrke�ikq

�
(10.5.4)

This relation can be recognized as the complex Fourier series expansion for sr� isrq. On the boundary
r ¼ R, the complex boundary-loading function f can also be expanded in a similar Fourier series as

f ðqÞ ¼
XN

k¼�N

Cke
ikq

Ck ¼ 1

2p

ð2p
0

f ðqÞe�ikqdq

(10.5.5)

 y

x

f1(θ)

−f2(θ)

R

FIGURE 10.8 Circular Disk Problem.

298 CHAPTER 10 Complex Variable Methods



Matching (10.5.4) with (10.5.5) on the boundary and equating like powers of exponentials of q yields
the system

a1 þ a1 ¼ Co ¼ 2Reða1Þ
akþ1ðk þ 1ÞRk ¼ C�k; ðk > 0Þ
akþ1

�
k2 � 1

�
Rk þ bk�1ðk � 1ÞRk�2 ¼ Ck; ðk > 0Þ

(10.5.6)

Equating real and imaginary parts in relations (10.5.6) generates a system of equations to determine
the constants ak and bk. This solution is essentially the same as the Michell solution previously dis-
cussed in Section 8.3. Note that the annulus (ri� r� ro) and the exterior (r� R) domain problems may
be solved in a similar fashion.

This solution scheme only duplicates previous methods based on Fourier analysis. A more
powerful use of complex variable techniques involves the application of Cauchy integral formulae. In
order to discuss this method, consider again the circular region with unit boundary radius. Relation
(10.5.3) becomes �

gðzÞ þ zg0ðzÞ þ jðzÞ
����

z¼z
¼ g (10.5.7)

where z ¼ zjr¼1 ¼ eiq and z ¼ e�iq ¼ 1/z. Multiplying (10.5.7) by 1/2pi(z � z) and integrating around
the boundary contour C (r ¼ 1) yields

1

2pi

þ
C

gðzÞ
z� z

dzþ 1

2pi

þ
C
z
g0ðzÞ
z� z

dz

þ 1

2pi

þ
C

jðzÞ
z� z

dz ¼ 1

2pi

þ
C

gðzÞ
z� z

dz

(10.5.8)

Using the Cauchy integral formula, the first term in (10.5.8) is simply g(z). Using the general series
form (10.4.3) for the potentials and employing the integral formula (10.1.22), the remaining two terms
on the left-hand side of (10.5.8) can be evaluated, and the final result reduces to

gðzÞ þ a1zþ 2a2 þ jð0Þ ¼ 1

2pi

þ
C

gðzÞ
z� z

dz (10.5.9)

We also find that an¼ 0 for n> 2, and so g(z)¼ aoþ a1zþ a2z
2. These results can be used to solve for

the remaining terms in order to determine the final form for the potential g(z). Using a similar scheme
but starting with the complex conjugate of (10.5.7), the potential j(z) may be found. Dropping the
constant terms that do not contribute to the stresses, the final results are summarized as

gðzÞ ¼ 1

2pi

þ
C

gðzÞ
z� z

dz� a1z; a1 þ a1 ¼ 1

2pi

þ
C

gðzÞ
z2

dz

jðzÞ ¼ 1

2pi

þ
C

gðzÞ
z� z

dz� g0ðzÞ
z

þ a1
z

(10.5.10)

Note that the preceding solution is valid only for the unit disk. For the case of a disk of radius a, the last
two terms for j(z) should be multiplied by a2.

We now consider a couple of specific examples using this general solution.
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EXAMPLE 10.2: DISK UNDER UNIFORM COMPRESSION
Consider the case of uniform compression loading of the circular disk, as shown in Figure 10.9.

The boundary tractions for this case become

Tr
x þ iTr

y ¼ ðsr þ isrqÞeiq ¼ �peiq

and thus the boundary-loading function defined by (10.5.3) reduces to

g ¼ i

ðq
0

�
Tr
x þ iTr

y

�
dq ¼ � i

ðq
0
peiqdq ¼ �peiq ¼ �pz

Substituting into relation (10.5.10)1 gives

gðzÞ ¼ � 1

2pi

þ
C

pz

z� z
dz� a1z ¼ �pz� a1z

a1 þ a1 ¼ � 1

2pi

þ
C

p

z
dz ¼ �p

(10.5.11)

Finally, substituting these results into relation (10.5.10)2 gives the result for the second potential
function

jðzÞ ¼ � 1

2pi

þ
C

p

zðz� zÞ dzþ
pþ a1

z
þ a1

z
¼ 0 (10.5.12)

With the potentials now explicitly determined, the stress combinations can be calculated from
(10.2.11) and (10.2.12), giving

sr þ sq ¼ 2ð�p� a1 � p� a1Þ ¼ �2p

sq � sr þ 2isrq ¼ 0

σr =−

1

p

FIGURE 10.9 Disk Under Uniform Compression.
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Separating the real and imaginary parts gives individual stresses

sr ¼ sq ¼ �p; srq ¼ 0 (10.5.13)

Of course, this hydrostatic state of stress is the expected result that is easily verified as a special
case of Example 8.6.

EXAMPLE 10.3: CIRCULAR PLATE WITH CONCENTRATED EDGE LOADING
Consider next the circular plate of radius a under symmetric concentrated edge loadings F, as shown
in Figure 10.10.

For this case, the boundary condition on jzj ¼ a (z ¼ aeiq) may be expressed as

sr þ isrq ¼ Fe�ia

a
dðq� aÞ þ Feia

a
dðq� p� aÞ (10.5.14)

The expression d() is the Dirac delta function, which is a special defined function that is
zero everywhere except at the origin, where it is singular and has the integral propertyÐ d
�d f ðxÞdðx� xÞdx ¼ f ðxÞ for any parameter d and continuous function f. Using this representation,
the resultant boundary-loading function can be expressed as

g ¼ i

ðq
0
ðTr

x þ iTr
yÞadq ¼

8<
:

0; 0 � q < a

iF; a � q � p� a

0; p� a � q � 2p
(10.5.15)

F

a

F
r

θ α

FIGURE 10.10 Circular Plate with Edge Loading.
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Thus, using the general solution (10.5.10) then gives

a1 þ a1 ¼ F

2p

ðaeiðp�aÞ

aeia

dz

z2
¼ � F

2p

1

z

����
aeiðp�aÞ

aeia
¼ F

pa
cos a

and the expressions for the potential functions become

gðzÞ ¼ F

2p

ðaeiðp�aÞ

aeia

dz

z� z
� a1z ¼ F

2p
log ðz� zÞjaeiðp�aÞ

aeia

�a1z ¼ F

2p
log

�
zþ ae�ia

z� aeia

�
� a1z

j
�
z
� ¼ � F

2p
log

�
zþ ae�ia

z� aeia

�
þ Fa3 cos a

pzðzþ ae�iaÞðz� aeiaÞ þ
a1 þ a1

z
a2

(10.5.16)

The stress resultant then becomes

sr þ sq ¼ 2
�
g0ðzÞ þ g0ðzÞ

�

¼ �2Fa cos a

p

�
1

ðzþ ae�iaÞðz� aeiaÞ þ
1

ðzþ aeiaÞðz� ae�iaÞ þ
1

a2

	 (10.5.17)

Note that for the case with a ¼ 0 (diametrical compression), we get

sr þ sq ¼ sx þ sy ¼ �2Fa

p

�
1

ðz2 � a2Þ þ
1�

z2 � a2
�þ 1

a2

	
(10.5.18)

which was the problem previously solved in Example 8.10, giving the stresses specified in relations
(8.4.69). Solutions to many other problems of circular domain can be found in Muskhelishvili
(1963), Milne-Thomson (1960), and England (1971).

10.6 Plane and half-plane problems
Complex variable methods prove to be very useful for the solution of a large variety of full-space
and half-space problems. Full-space examples commonly include problems with various types of
internal concentrated force systems and internal cavities carrying different loading conditions.
Typical half-space examples include concentrated force and moment systems applied to the free
surface and indentation contact mechanics problems where the boundary conditions may be in
terms of the stresses or displacements, or of mixed type over a portion of the free surface. This
general class of problems involves infinite domains and requires the general solution form given
by (10.4.7).
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FIGURE 10.11 Concentrated Force System in an Infinite Medium.

EXAMPLE 10.4: CONCENTRATED FORCEeMOMENT SYSTEM IN AN INFINITE PLANE
We now investigate the elasticity solution to the full plane with a concentrated force and moment
acting at the origin, as shown in Figure 10.11.

Using the general potential solutions (10.4.7) with no stresses at infinity, we choose the partic-
ular form

gðzÞ ¼ � X þ iY

2pð1þ kÞ log z

jðzÞ ¼ kðX � iYÞ
2pð1þ kÞ log zþ

iM

2pz

(10.6.1)

The stress combinations become

sx þ sy ¼ 2
�
g0ðzÞ þ g0ðzÞ

�
¼ � 1

pð1þ kÞ
�
X þ iY

z
þ X � iY

z

�

sy � sx þ 2isxy ¼ 2ðzg00ðzÞ þ j 0ðzÞÞ ¼ X þ iY

pð1þ kÞ
z

z2
þ kðX � iYÞ

pð1þ kÞ
1

z
� iM

pz2

(10.6.2)

while the resulting displacements are

2mU ¼ kgðzÞ � zg0ðzÞ � jðzÞ

¼ �kðX þ iYÞ
2pð1þ kÞ ðlog zþ log zÞ þ X � iY

2pð1þ kÞ
z

z
þ iM

xpz

(10.6.3)

Using relations (10.3.1) and (10.3.2), the resultant force and moment on any internal circle C
enclosing the origin is given byþ

C

�
Tn
x þ iTn

y

�
ds ¼ i

h
gðzÞ þ zg0ðzÞ þ jðzÞ

i
C
¼ X þ iYþ

C

�
xTn

y � yTn
x

�
ds ¼ �Re½cðzÞ � zjðzÞ � zzg0ðzÞ�C ¼ M

(10.6.4)
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Note that appropriate sign changes have been made as a result of integrating around an internal
cavity in the clockwise sense. Thus, the proper resultant match is attained with the applied loading
for any circle, and in the limit, as the circle radius goes to zero, the concentrated force system in the
problem is realized.

For the special case of X ¼ P and Y ¼ M ¼ 0, the stresses reduce to

sx ¼ � Px

2pð1þ kÞr2
�
4
x2

r2
þ k� 1

	

sy ¼ Px

2pð1þ kÞr2
�
4
x2

r2
þ k� 5

	

sxy ¼ Py

2pð1þ kÞr2
�
4
y2

r2
� 3� k

	
; r2 ¼ x2 þ y2

(10.6.5)

EXAMPLE 10.5: CONCENTRATED FORCE SYSTEM ON THE SURFACE OF A HALF PLANE
Consider now the half plane carrying a general concentrated force system on the free surface, as
shown in Figure 10.12. Recall this Flamant problem was previously solved using Fourier methods
in Example 8.8 (Section 8.4.7).

Following the solution pattern from Example 10.4, the complex potentials can be written as

gðzÞ ¼ �X þ iY

2p
log z

jðzÞ ¼ ðX � iYÞ
2p

log z

(10.6.6)

C

x

y

X

Y

FIGURE 10.12 Concentrated Force System on a Half-Space.
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The stress combinations then become

sr þ sq ¼ 2
h
g0ðzÞ þ g0ðzÞ

i
¼ �1

p

�
X þ iY

z
þ X � iY

z

�

sq � sr þ 2isrq ¼ 2e2iq½zg00ðzÞ þ j0ðzÞ� ¼ 2e2iq
�
X þ iY

2p

z

z2
þ X � iY

2p

1

z

�

which can be reduced to

sr þ sq ¼ � 2

pr
ðX cosqþ Y sinqÞ

sq � sr þ 2isrq ¼ 2

pr
ðX cosqþ Y sinqÞ

(10.6.7)

Solving for the individual stresses gives

sr ¼ 2

pr
ðX cosqþ Y sinqÞ

sq ¼ srq ¼ 0

(10.6.8)

This result matches with our previous solution to this problem in Example 8.8; see relations
(8.4.34). Again, it is somewhat surprising that both sq and srq vanish even with the tangential sur-
face loading X.

The boundary condition related to the concentrated force involves integrating the tractions
around the contour C (a semicircle of arbitrary radius centered at the origin), as shown in
Figure 10.12. Thus, using (10.4.4)þ

C

�
Tn
x þ iTn

y

�
ds ¼ i

h
gðzÞ þ zg0ðzÞ þ jðzÞ

i
C
¼ X þ iY

which verifies the appropriate boundary condition. By using the moment relation (10.3.2), it can
also be shown that the resultant tractions on the contour C give zero moment.

For the special case X¼ 0 and Y¼ P, the individual stresses can be extracted from result (10.6.8)
to give

sr ¼ �2P

pr
sinq; sq ¼ srq ¼ 0 (10.6.9)

Again, this case was previously presented in Example 8.8 by relation (8.4.35).

By employing analytic continuation theory and Cauchy integral representations, other more complicated
surface boundary conditions can be handled. Such cases typically arise from contact mechanics problems
involving the indentation of an elastic half space by another body. Some of these problems were pre-
viously discussed in Section 8.5. Such a problem is illustrated in Figure 10.13, and the boundary con-
ditions under the indenter could involve stresses and/or displacements depending on the contact
conditions specified. These problems are discussed in Muskhelishvili (1963), Milne-Thomson (1960),
and England (1971).
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EXAMPLE 10.6: STRESSED INFINITE PLANE WITH A CIRCULAR HOLE
The final example in this section is a full plane containing a stress-free circular hole, and the prob-
lem is loaded with a general system of uniform stresses at infinity, as shown in Figure 10.14. A spe-
cial case of this problem was originally investigated in Example 8.7.

Indenter

FIGURE 10.13 Typical Indentation Problem.

x

y

a
x

y

xy

xy

σ ∞

σ ∞

∞

τ

τ

∞

FIGURE 10.14 Stress-Free Hole Under General Far-Field Loading.
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The general solution form (10.4.7) is again used; however, for this problem the terms with
stresses at infinity are retained while the logarithmic terms are dropped because the hole is stress
free. The complex potentials may then be written as

gðzÞ ¼ sNx þ sNy

4
zþ

XN
n¼1

anz
�n

jðzÞ ¼ sNy � sNx þ 2isNzy
2

zþ
XN
n¼1

bnz
�n

(10.6.10)

Using relation (10.5.4), the stress-free condition on the interior of the hole may be written as

ðsr � isrqÞr¼a

�
g0ðzÞ þ g0ðzÞ � e2iq½zg00ðzÞ þ j 0ðzÞ�

�
r¼a

¼ 0 (10.6.11)

Substituting the general form (10.6.10) in this condition gives

sNx þ sNy

2
� sNy � sNx þ 2isNzy

2
e2iq

¼
XN
n¼1

�
1

anþ1

h
nan

�
eðnþ1Þiq þ e�ðnþ1Þiq þ ðnþ 1Þe�ðnþ1Þiq

�
� nbne

�ðn�1Þiq
i�

Equating like powers of einq gives relations for the coefficients an and bn

a1 ¼ �sNy � sNx þ 2isNxy
2

a2; an ¼ 0 ðn � 2Þ

b1 ¼ �sNx þ sNy

2
a2; b2 ¼ 0; b3 ¼ a2a1; bn ¼ 0 ðn � 4Þ

(10.6.12)

The potential functions are now determined and the stresses and displacements can easily be found
using the standard relations in Section 10.2. Exercise 10.18 further explores a specific loading case.
Recall that our previous work using Fourier methods in Example 8.7 investigated several special cases
of this problem with uniaxial sNx ¼ S; sNy ¼ sNxy ¼ 0 and biaxial sNx ¼ sNy ¼ S; sNxy ¼ 0 loadings.

10.7 Applications using the method of conformal mapping
The method of conformal mapping discussed in Section 10.1 provides a very powerful tool to solve plane
problems with complex geometry. The general concept is to establish a mapping function, which will
transform a complex region in the z-plane (actual domain) into a simple region in the z-plane. If the
elasticity solution is known for the geometry in the z-plane, then through appropriate transformation
formulae the solution for the actual problem can be easily determined. Because we have established the
general solution for the interior unit disk problem in Section 10.5, mapping functions that transform regions
onto the unit disk (see Figure 10.5) will be most useful. Specific mapping examples are discussed later.

To establish the appropriate transformation relations, we start with the general mapping function

z ¼ wðzÞ (10.7.1)
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where w is an analytic single-valued function. Using this result, the derivatives are related by

dz ¼ dw

dz
dz (10.7.2)

Now the complex potentials are to be transformed into functions of z through the relations

gðzÞ ¼ gðwðzÞÞ ¼ g1ðzÞ; jðzÞ ¼ jðwðzÞÞ ¼ j1ðzÞ (10.7.3)

and thus

dg

dz
¼ dg1

dz

dz

dz
¼ g01ðzÞ

w0ðzÞ (10.7.4)

These relations allow the stress combinations to be expressed in the z-plane as

sr þ s4 ¼ sx þ sy ¼ 2

0
@g01ðzÞ
w0ðzÞ þ

g01ðzÞ
w0ðzÞ

1
A

s4 � sr þ 2isr4 ¼ 2z2

r2w0ðzÞ

 
wðzÞ

"
g00
1ðzÞ

w0ðzÞ �
g0
1ðzÞw00ðzÞ
½w0ðzÞ�2

#
þ j 0

1ðzÞ
! (10.7.5)

where in the transformed plane z ¼ rei4 and e2i4 ¼ z2w0ðzÞ
r2w0ðzÞ . The boundary tractions become

i

ð�
Tn
x þ iTn

y

�
ds ¼ g1ðzÞ þ

wðzÞ
w0ðzÞg

0
1ðzÞ þ j1ðzÞ (10.7.6)

The complex displacement transforms to

2m
�
ur þ iu4

� ¼ kg1ðzÞ �
wðzÞ
w0ðzÞg

0
1ðzÞ þ j1ðzÞ (10.7.7)

To proceed further we must establish the form of the complex potentials, and this requires information
on the problem geometry in order to determine an appropriate mapping function. Although many types
of problems can be handled by this scheme, we specialize to the particular case of an infinite domain
bounded internally by an arbitrary closed curve C, as shown in Figure 10.15. This case has important

ζ-plane

z-plane

1
C

FIGURE 10.15 General Mapping for an Infinite Plane with an Interior Hole.
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applications to problems of stress concentration around holes and cracks in extended planes.
We choose the particular transformation that maps the region exterior to boundary C onto the interior
of the unit disk. Some authors use a scheme that maps the region onto the exterior of the unit disk in the
z-plane. Either mapping scheme can be used for problem solution by incorporating the appropriate
interior or exterior solution for the unit disk problem. Mappings for the special cases of circular and
elliptical holes are shown in Figure 10.16, and additional examples can be found in Milne-Thomson
(1960) and Little (1973).

For the exterior problem, the potential functions are given by relations (10.4.7) and (10.4.8), and
when applied to the case under study give

gðzÞ ¼ � F

2pð1þ kÞ log½wðzÞ� þ
sNx þ sNy

4
wðzÞ þ g�ðzÞ

jðzÞ ¼ � kF

2pð1þ kÞ log½wðzÞ� þ
sNy � sNx þ 2isNxy

2
wðzÞ þ j�ðzÞ

(10.7.8)

where F is the resultant force on the internal boundary C, and the functions g*(z) and j*(z) are analytic
in the interior of the unit circle. For the geometry under investigation, the mapping function will always
have the general formw(z)¼ Cz�1þ (analytic function), and thus the logarithmic term in (10.7.8) can be
written as log w ¼ �log zþ (analytic function). This allows the potentials to be expressed as

g1ðzÞ ¼
F

2pð1þ kÞ log zþ
sNx þ sNy

4

C

z
þ g�ðzÞ

j1ðzÞ ¼ � kF

2pð1þ kÞ log zþ sNy � sNx þ 2isNxy
2

C

z
þ j�ðzÞ

(10.7.9)

We now investigate a specific case of an elliptical hole in a stressed plane.

ζ-plane

1

w (ζ ) = Rζ −1

+ mζw(ζ )=R
1

z-plane: Circular Case

R

z-plane: Elliptical Case

R(1+m)

R(1−m)

ζ

FIGURE 10.16 Mappings for an Infinite Plane with Circular and Elliptical Holes.
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EXAMPLE 10.7: STRESSED INFINITE PLANE WITH AN ELLIPTICAL HOLE
Consider the problem of a stress-free elliptical hole in an infinite plane subjected to uniform stress
sNx ¼ S; sNy ¼ sNxy ¼ 0, as shown in Figure 10.17. The mapping function is given in Figure 10.16 as

wðzÞ ¼ R

�
1

z
þ mz

�
(10.7.10)

where the major and minor axes are related to the parameters R and m by

R ¼ aþ b

2
; m ¼ a� b

aþ b
0a ¼ Rð1þ mÞ; b ¼ Rð1� mÞ

For this case, relations (10.7.9) give the potentials

g1ðzÞ ¼
S

4

R

z
þ g�ðzÞ

j1ðzÞ ¼
S

2

R

z
þ j�ðzÞ

(10.7.11)

where g*(z) and j*(z) are analytic in the unit circle. These functions may be determined by
using either Fourier or Cauchy integral methods as outlined in Section 10.5. Details on this proce-
dure may be found in Little (1973), Muskhelishvilli (1963), or Milne-Thomson (1960). The result is

g�ðzÞ ¼ SR

4
ð2� mÞz

j�ðzÞ ¼ SR

2

z�
mz2 � 1

� �m2 � 1� z2 � m
� (10.7.12)

The stress combination in the z-plane is then given by

sr þ s4 ¼ S Re

 �
2z2 � mz2 � 1

��
mz

2 � 1
�

m2z2z
2 � m

�
z2 þ z

2�þ 1

!
(10.7.13)

x

 y
x = S

b
a

σ∞

FIGURE 10.17 Infinite Plane with an Elliptical Hole.
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On the boundary z ¼ ei4, sr ¼ 0 and the circumferential stress is given by

s4ð4Þ ¼ S

�
2mþ 1� 2 cos 24� m2

m2 � 2m cos 24þ 1

�
(10.7.14)

The maximum value of this stress is found at 4 ¼ �p/2 with a value

�
s4
�
max

¼ �S

�
m� 3

mþ 1

�
¼ S

�
1þ 2

b

a

�
(10.7.15)

Note the casem¼ 0 corresponds to the circular hole (a¼ b¼ R) and gives a stress concentration
factor of 3, as found previously in Example 8.7. The case m ¼ 1 gives b ¼ 0, and thus the hole
reduces to a line crack of length 2a parallel to the applied loading. This gives (s4)max ¼ S with
no stress concentration effect. The most interesting case occurs when m ¼ �1 because this gives
a ¼ 0 and reduces the elliptical hole to a line crack of length 2b perpendicular to the direction
of applied stress. As expected for this case, the maximum value of s4 at the tip of
a crack becomes unbounded. Because of the importance of this topic, we further investigate the na-
ture of the stress distribution around cracks in the next section. A plot of the stress concentration
factor (s4)max/S versus the aspect ratio b/a is shown in Figure 10.18. It is interesting to
observe that this relationship is actually linear. For aspect ratios less than 1, the concentration is
smaller than that of the circular case, while very high concentrations exist for b/a > 1.

A more general and complete solution to the elliptical hole problem has been given by Bonfoh,
Tiem, and Carmasol (2007) using Mathematica to handle the complex algebraic manipulations
required to determine full closed-form analytical expressions for the stress and displacement fields.
Gao (1996) also provides a similar complete analytical solution. Further details on such stress con-
centration problems for holes of different shape can be found in Savin (1961). Numerical techniques
employing the finite element method are applied to this stress concentration problem in Chapter 16
(see Example 16.2 and Figure 16.5).

0

5

10

15

20

25

Eccentricity Parameter, b/a

S
tr

es
s 

C
on

ce
nt

ra
tio

n 
Fa

ct
or

Circular Case

0 1 2 3 4 5 6 7 8 9 10

(σϕ)max/S

FIGURE 10.18 Stress Concentration Factor for the Elliptical Hole Problem.
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10.8 Applications to fracture mechanics
As shown in the previous example and in Section 8.4.10, the elastic stress field around crack tips
can become unbounded. For brittle solids, this behavior can lead to rapid crack propagation
resulting in catastrophic failure of the structure. Therefore, the nature of such elevated stress
distributions around cracks is important in engineering applications, and the general study of
such problems forms the basis of linear elastic fracture mechanics. Complex variable methods
provide a convenient and powerful means to determine stress and displacement fields for a large
variety of crack problems. We therefore wish to investigate some of the basic procedures for such
applications.

Several decades ago, Westergaard (1937) presented a specialized complex variable method to
determine the stresses around cracks. The method used a single complex potential now respectfully
called the Westergaard stress function. Although this scheme is not a complete representation for all
plane elasticity problems, it was widely used to solve many practical problems of engineering interest.
More recently, Sih (1966) and Sanford (1979) have re-examined the Westergaard method and
established appropriate modifications to extend the validity of this specialized technique. More
detailed information on the general method can be found in Sneddon and Lowengrub (1969) and Sih
(1973), and an extensive collection of solutions to crack problems has been given by Tada, Paris, and
Irwin (2000).

Crack problems in elasticity introduce singularities and discontinuities with two important and
distinguishing characteristics. The first is involved with the unbounded nature of the stresses at the
crack tip, especially in the type of singularity of the field. The second feature is that the displacements
along the crack surface are commonly multivalued. For open cracks, the crack surface will be stress
free. However, some problems may have loadings that can produce crack closure, leading to
complicated interface conditions. In order to demonstrate the basic complex variable application for
such problems, we now consider a simple example of a crack in an infinite plane under uniform tension
loading.

EXAMPLE 10.8: INFINITE PLANE WITH A CENTRAL CRACK
Consider the problem of an infinite plane containing a stress-free crack of length 2a lying along the
x-axis, as shown in Figure 10.19. The plane is subjected to uniform tension S in the y direction, and
thus the problem has symmetries about the coordinate axes.

The solution to this problem follows the general procedures of the previous section using the
mapping function

z ¼ a

2

�
z�1 þ z

�
(10.8.1)

Note this relation is somewhat different than our previous work in that it maps the exterior prob-
lem in the z-plane onto the exterior of the unit circle in the z-plane. Inverting this relation gives

z ¼ 1

a

�
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p �
(10.8.2)
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where the positive sign for the radical term has been chosen because we are interested in the exterior
mapping. Using this result, we can eliminate z from expressions in our previous work and express
the potentials in terms of z

gðzÞ ¼ S

4

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
� z
�

jðzÞ ¼ S

2

�
z� a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p

� (10.8.3)

For this case the stress combinations become

sx þ sy ¼ S Re

 
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p � 1

!

sy þ sx þ 2isxy ¼ S

 
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p � zz2

ðz2 � a2Þ3=2
þ za2

ðz2 � a2Þ3=2
þ 1

!

¼ Sa2

 
z� z

ðz2 � a2Þ3=2
þ 1

a2

!
(10.8.4)

Fracture mechanics applications are normally interested in the solution near the crack tip. In
order to extract this information, consider the geometry of the crack neighborhood, as shown in
Figure 10.20. For this case we define a polar coordinate system centered on the crack tip at z ¼ a

x

y

y = S

aa

σ ∞

FIGURE 10.19 Central Crack in an Infinite Plane.

10.8 Applications to fracture mechanics 313



and wish to develop the crack-tip solution for small values of r. In terms of the given geometry, we
note that z ¼ rb eib, z � a ¼ reiq, z þ a ¼ ra eia, and r sin q ¼ ra sin a ¼ rb sin b.

Using these new geometric variables, the stress combinations and displacements can be
written as

sx þ sy ¼ S

�
2rbffiffiffiffiffiffiffi
rra

p cos

�
b� qþ a

2

	
� 1

�

sy þ sx þ 2isxy ¼ 2Sa2irb sin b

ðrraÞ3=2
�
cos

�
3ðqþ aÞ

2

	
� i sin

�
3ðqþ aÞ

2

	�
þ S

(10.8.5)

Evaluating these relations for small r gives

sx þ sy ¼ 2Saffiffiffiffiffiffiffi
2ar

p cos
q

2

sy � sx þ 2isxy ¼ 2Saffiffiffiffiffiffiffi
2ar

p sin
q

2
cos

q

2

�
sin

3q

2
þ i cos

3q

2

� (10.8.6)

and solving for the individual stresses produces the following

sx ¼ KIffiffiffiffiffiffiffiffi
2pr

p cos
q

2

�
1� sin

q

2
sin

3q

2

�

sy ¼ KIffiffiffiffiffiffiffiffi
2pr

p cos
q

2

�
1þ sin

q

2
sin

3q

2

�

sxy ¼ KIffiffiffiffiffiffiffiffi
2pr

p sin
q

2
cos

q

2
cos

3q

2

(10.8.7)

where the parameter KI ¼ S
ffiffiffiffiffiffi
pa

p
and is referred to as the stress intensity factor. Using relation

(10.2.9), the corresponding crack-tip displacements can be expressed by

r

aa

r
rα

x

 y

α β θ
β

FIGURE 10.20 Crack Geometry.
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u ¼ KI

m

ffiffiffiffiffiffi
r

2p

r
cos

q

2

�
k� 1

2
þ sin2

q

2

�

v ¼ KI

m

ffiffiffiffiffiffi
r

2p

r
sin

q

2

�
kþ 1

2
� cos2

q

2

� (10.8.8)

As observed in Section 8.4.10, these results indicate that the crack-tip stresses have an r�1/2 sin-
gularity, while the displacements behave as r1/2. The stress intensity factor KI is a measure of the
intensity of the stress field near the crack tip under the opening mode (mode I) deformation.
Two additional shearing modes also exist for such crack problems, and the crack-tip stress and
displacement fields for these cases have the same r dependence but different angular distributions
(see Exercise 8.41). For the central crack problem considered in this example, the stress intensity
factor was proportional to

ffiffiffi
a

p
; however, for other crack geometries, this factor will be related to

problem geometry in a more complex fashion. Comparing the vertical displacements on the top
and bottom crack surfaces indicates that v(r,p)¼�v(r,�p). This result illustrates the expected mul-
tivalued discontinuous behavior on each side of the crack surface under opening mode deformation.

10.9 Westergaard method for crack analysis
As mentioned, Westergaard (1937) developed a specialized complex variable technique to handle a
restricted class of plane problems. The method uses a single complex potential, and thus the scheme
is not a complete representation for all plane elasticity problems. Nevertheless, the technique has
been extensively applied to many practical problems in fracture mechanics dealing with the deter-
mination of stress fields around cracks. Sih (1966) and Sanford (1979) have re-examined the
Westergaard method and established appropriate modifications to extend its validity.

In order to develop the procedure, consider again the central crack problem shown in Figure 10.19.
Because this is a symmetric problem, the shear stresses must vanish on y ¼ 0, and thus from relation
(10.2.11)

Im½zg00ðzÞ þ j0ðzÞ� ¼ 0 on y ¼ 0 (10.9.1)

This result can be satisfied by taking

zg00ðzÞ þ j0ðzÞ ¼ A (10.9.2)

where we have used z ¼ z on y ¼ 0, and A is a real constant determined by the boundary conditions.
Equation (10.9.2) can be integrated to give the result

jðzÞ ¼ gðzÞ � zg0ðzÞ þ Az (10.9.3)

where the constant of integration has been dropped. This provides a relation to express one
potential function in terms of the other, and thus we can eliminate one function for this class of problem.
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Using the stress combination definitions (10.2.11), we eliminate the j potential and find

sx ¼ 2 Re½g0ðzÞ� � 2yIm½g00ðzÞ� � A

sy ¼ 2 Re½g0ðzÞ� þ 2yIm½g00ðzÞ� þ A

sxy ¼ �2y Re½g00ðzÞ�
(10.9.4)

Defining the Westergaard stress function Z(z) ¼ 2g0(z), the stresses can now be written as

sx ¼ ReZðzÞ � yImZ 0ðzÞ � A

sy ¼ ReZðzÞ þ yImZ 0ðzÞ þ A

sxy ¼ �y ReZ 0ðzÞ
(10.9.5)

Note that this scheme is sometimes referred to as themodified Westergaard stress function formulation.
This method can be applied to the central crack problem of Example 10.8. For this case, the

Westergaard function is given by

ZðzÞ ¼ Szffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p � S

2
(10.9.6)

with A¼ S/2. The stresses follow from equation (10.9.5) and would give identical values as previously
developed.

The Westergaard method can also be developed for skew-symmetric crack problems in which the
normal stress sy vanishes along y ¼ 0. Exercise 10.27 explores this formulation.
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EXERCISES

10.1 Derive the relations (10.1.4) and (10.2.5)

v

vx
¼ v

vz
þ v

vz
;

v

vy
¼ i

�
v

vz
� v

vz

�

v

vz
¼ 1

2

�
v

vx
� i

v

vy

�
;

v

vz
¼ 1

2

�
v

vx
þ v

vy

�

V2ðÞ ¼ 4
v2ðÞ
vzvz

; V4ðÞ ¼ 16
v4ðÞ
vz2vz2

10.2 Formally integrate relation (10.2.6) and establish the result

fðz; zÞ ¼ 1

2

�
zgðzÞ þ zgðzÞ þ jðzÞ þ jðzÞ

�
¼ ReðzgðzÞ þ jðzÞÞ

10.3 Starting with the Navier equations (10.2.2) for plane strain, introduce the complex
displacement U ¼ u þ iv, and show that

ðlþ mÞ v
vz

�
vU

vz
þ vU

vz

�
þ 2m

v2U

vzvz
¼ 0

Integrate this result with respect to z to get

ðlþ mÞ
�
vU

vz
þ vU

vz

�
þ 2m

vU

vz
¼ f 0ðzÞ

where f 0(z) is an arbitrary analytic function of z. Next, combining both the preceding
equation and its conjugate, solve for vU/vz, and simplify to get form (10.2.9).

10.4 Establish the relations

v

vz
½2mðuþ ivÞ� ¼ �

h
zg00ðzÞ þ j0ðzÞ

i
¼ m

�
ex � ey þ 2iexy

�
where ex, ey, and exy are the strain components.
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10.5 Explicitly derive the fundamental stress combinations

sx þ sy ¼ 2

g0ðzÞ þ g0ðzÞ �

sy � sx þ 2isxy ¼ 2½zg00ðzÞ þ j0ðzÞ�
Next solve these relations for the individual stresses

sx ¼ 2 Re

�
g0ðzÞ � 1

2
zg00ðzÞ � 1

2
j0ðzÞ

	

sy ¼ 2 Re

�
g0ðzÞ þ 1

2
zg00ðzÞ þ 1

2
j0ðzÞ

	

sxy ¼ Im½zg00ðzÞ þ j0ðzÞ�
10.6 Develop the polar coordinate transformation relations for the stress combinations and

complex displacements given in equations (10.2.12).

10.7 Determine the Cartesian stresses and displacements in a rectangular domain (�a � x � a;
� b � y � b) from the potentials g(z) ¼ Aiz2, j(z) ¼ �Aiz2, where A is an arbitrary
constant. Discuss the boundary values of these stresses, and show that this particular case
could be used to solve a pure bending problem.

10.8 Determine the polar coordinate stresses corresponding to the complex potentials g(z) ¼ Az
and j(z) ¼ Bz�1, where A and B are arbitrary constants. Show that these potentials could
solve the plane problem of a cylinder with both internal and external pressure loadings.

10.9 Show that the potentials g(z) ¼ 0, j(z) ¼ A/z will solve the problem of a circular hole of
radius a with uniform pressure loading p in an infinite elastic plane. Determine the constant
A and the stress and displacement fields for r � a.

10.10 Consider the problem geometry described in Exercise 10.9. Show that the suggested
potentials (with different A) can also be used to solve the problem of a rigid inclusion of
radius aþ d, which is forced into the hole of radius a. Determine the new constant A and the
stress and displacement fields for r � a.

10.11 From Section 10.4, the complex potentials

gðzÞ ¼ � X þ iY

2pð1þ kÞ log z; jðzÞ ¼ kðX � iYÞ
2pð1þ kÞ log z

would be the appropriate forms for a problem in which the body contains a hole sur-
rounding the origin (i.e., multiply connected). Show for this case that the complex
displacement U is unbounded as jzj / 0 and jzj / N. Also, explicitly verify that the
resultant force across any contour surrounding the origin is X þ iY. Finally, determine the
stress distribution on the circle r ¼ a.

10.12 Show that the resultant moment caused by tractions on a boundary contour AB is given by
relation (10.3.2)

M ¼ Re½cðzÞ � zjðzÞ � zzg0ðzÞ�BA; where c0ðzÞ ¼ jðzÞ
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10.13 An infinite elastic medium jzj � a is bonded over its internal boundary jzj ¼ a to a rigid
inclusion of radius a. The inclusion is acted upon by a force X þ iY and a moment M about
its center. Show that the problem is solved by the potentials

gðzÞ ¼ � X þ iY

2pð1þ kÞ log z

jðzÞ ¼ X � iY

2pð1þ kÞ k log zþ
X þ iY

2pð1þ kÞ
a2

z2
þ iM

2pz

Finally, show that the rigid-body motion of the inclusion is given by

uo ¼ �kX log a

2pmð1þ kÞ; vo ¼ �kY log a

2pmð1þ kÞ; qo ¼ M

4pma2

10.14 An infinite isotropic sheet contains a perfectly bonded, rigid inclusion of radius a and is
under uniform tension T in the x-direction as shown. Show that this problem is solved by the
following potentials

gðzÞ ¼ T

4

�
z� 2a2

kz

�
; jðzÞ ¼ �T

2

�
z� k� 1

2z
a2 þ a4

kz3

�
Note that because of the problem symmetry, the inclusion will not move. In solving this
problem, you should verify boundary conditions on r ¼ a and at r / N, and the
appropriateness of the potential forms as per Section 10.4.

10.15 Consider the unit disk problem with displacement boundary conditions ur þ iuq ¼ h(z) on
C: z ¼ eiq. Using Cauchy integral methods described in Section 10.5, determine the form of
the potentials g(z) and j(z).

10.16 For Example 10.3 with a ¼ 0, verify that the stresses from equation (10.5.18) reduce to
those previously given in (8.4.69).

10.17 Consider the concentrated force system problem shown in Figure 10.11. Verify for the
special case of X ¼ P and Y ¼M ¼ 0 that the stress field reduces to relations (10.6.5). Also
determine the corresponding stresses in polar coordinates.

10.18 For the stress concentration problem shown in Figure 10.14, solve the problem with the far-
field loadings sNx ¼ sNy ¼ S; sNxy ¼ 0, and compute the stress concentration factor. Verify
your solution with that given in (8.4.9) and (8.4.10).

x

y

TT

Inclusion
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10.19 Verify the mappings shown in Figure 10.16 by explicitly investigating points on the
boundaries and the point at infinity in the z-plane.

10.20* Consider relation (10.7.14) for the circumferential stress s4 on the boundary of the elliptical
hole shown in Figure 10.17. Explicitly verify that the maximum stress occurs at 4 ¼ p/2.
Next plot the distribution of s4 vs. 4 for the cases of m ¼ 0, �0.5, �1.

10.21 Using the solution from Example 10.7, apply the principle of superposition and solve the
problem of a stress-free elliptical hole under uniform biaxial tension as shown. In particular
show that the circumferential stress is given by

s4ð4Þ ¼ Sx

�
2mþ 1� 2 cos 24� m2

m2 � 2m cos 24þ 1

�
þ Sy

��2mþ 1þ 2 cos 24� m2

m2 � 2m cos 24þ 1

�
Finally for the special case of Sx ¼ Sy ¼ S, show that

s4ð4Þ ¼ S

�
2
�
1� m2

�
m2 � 2m cos 24þ 1

�

and justify that for a > b, smax ¼ s4ð0Þ ¼ 2Sða=bÞ, while for b > a,
smax ¼ s4ðp=2Þ ¼ 2Sðb=aÞ.

x

y
x xSσ ∞ =

a
b

y ySσ ∞ =

10.22* Consider the problem of an infinite plate containing a stress-free elliptical hole with
sNx ¼ sNy ¼ 0; sNxy ¼ S. For this problem, the derivative of the complex potential has been
developed by Milne-Thomson (1960)

dgðzÞ
dz

¼ iS

m� z2

Show that the stress on the boundary of the hole is given by

s4 ¼ � 4S sin 24

m2 � 2m cos 24þ 1

Determine and plot s4 vs. 4 for the cases m ¼ 0, 0.5, and 1. Identify maximum stress values
and locations.
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10.23 Verify the crack-tip stress distributions given by (10.8.6) and (10.8.7).

10.24 Construct a contour plot of the crack tip stress component sy from equation (10.8.7).
Normalize values with respect to KI.

10.25 Verify that the crack-tip displacements are given by (10.8.8).

10.26 Show that the Westergaard stress function

ZðzÞ ¼ Szffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 � a2Þ

p � S

2

with A ¼ S/2 solves the central crack problem shown in Figure 10.19.

10.27 Following similar procedures as in Section 10.9, establish a Westergaard stress function
method for skew-symmetric crack problems. For this case, assume that loadings are applied
skew-symmetrically with respect to the crack, thereby establishing that the normal stress sy
vanishes along y ¼ 0. Show that this leads to the following relations

sx ¼ 2ReZðzÞ � yImZ 0ðzÞ
sy ¼ yImZ 0ðzÞ
sxy ¼ eImZðzÞ � yReZ0ðzÞeB

where Z(z) ¼ 2g0(z) and B is a real constant.
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Anisotropic Elasticity 11
It has long been recognized that deformation behavior of many materials depends upon orientation;
that is, the stress–strain response of a sample taken from the material in one direction will be different
than if the sample were taken in a different direction. The term anisotropic is generally used to describe
such behaviors. Early investigators of these phenomena were motivated by the response of naturally
occurring anisotropic materials such as wood and crystalline solids. Today, extensive use of engineered
composites (see Jones, 1998; Swanson, 1997) has brought forward many new types of fiber- and
particle-reinforced materials with anisotropic response. Thus, knowledge of stress distributions in
anisotropic materials is very important for proper use of these new high-performance materials
in structural applications. Our previous development of the linear elastic stress–strain relations in
Section 4.2 began with the general case of inhomogeneous and anisotropic behavior. However, this
generality was quickly eliminated, and only the homogeneous isotropic case was subsequently
developed in detail. We now wish to go back and further investigate the anisotropic homogeneous case
and develop applications for particular elasticity problems including torsion and plane problems.
Much of the original work in this field was done by Lekhnitskii (1968, 1981), while Love (1934) and
Hearmon (1961) also made early contributions. More recently, texts by Ting (1996a) and Rand and
Rovenski (2005) provide modern and comprehensive accounts on this subject.

11.1 Basic concepts
The directional-dependent behaviors found in anisotropic solids normally result from particular
microstructural features within the material. Our previous isotropic model neglected these effects, thus
resulting in a material that behaved the same in all directions. Micro features commonly arise in
natural and synthetic materials in such a way as to produce a stress–strain response with particular
symmetries. This concept is based on the Neumann principle (Love, 1934) that symmetry in material
microgeometry corresponds to identical symmetry in the constitutive response. We can qualitatively
gain an understanding of this concept from some simple two-dimensional cases shown in Figure 11.1.
The figure illustrates idealized internal microstructures of two crystalline solids and one fiber com-
posite. The two crystalline materials correspond to special atomic packing arrangements that lead to
identical behaviors in the indicated directions of the arrows. The fiber-reinforced composite has a 90�
fiber layout, which again produces identical behaviors in the layout directions. Many other material
symmetries exist for more complicated microstructures, and some follow a curvilinear reference
system such as that found in wood. These symmetries generally lead to a reduction in the complexity
of the stress–strain constitutive relation, and examples of this are shown in the next section. On a
related topic, for multiphase or porous materials, many researchers (e.g., Cowin, 1985) have been
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trying to establish relationships between the elasticity tensor Cijkl and a fabric tensor that characterizes
the arrangement of microstructural material components.

From Section 4.2, the general form of Hooke’s law was given by

sij ¼ Cijklekl (11.1.1)

The fourth-order elasticity tensor Cijkl contains all of the elastic stiffness moduli, and we have pre-
viously established the following symmetry properties

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij (11.1.2)

The first two symmetries in relation (11.1.2) come from the symmetry of the stress and strain tensors,
while the final relation comes from arguments based on the existence of the strain energy function (see
Section 6.1). Relations (11.1.2) reduce the original 81 independent elastic constants within Cijkl to a set
of 21 elastic moduli for the general case. We shall assume that the material is homogeneous and thus
the moduli are independent of spatial position. On occasion we may wish to invert (11.1.1) and write
strain in terms of stress

eij ¼ Sijklskl (11.1.3)

where Sijkl is the elastic compliance tensor, which has identical symmetry properties as those in
relations (11.1.2).

Because of the various pre-existing symmetries, stress–strain relations (11.1.1) and (11.1.3) contain
many superfluous terms and equations. To avoid these, a convenient contracted notation has been
developed, sometimes referred to as Voigt matrix notation

2
6666664

sx
sy
sz
syz
szx
sxy

3
7777775
¼

2
6666664

C11 C12 / C16

C21 : / :
: : / :
: : / :
: : / :

C61 : / C66

3
7777775

2
6666664

ex
ey
ez
2eyz
2ezx
2exy

3
7777775

(11.1.4)

Simple Cubic Crystal Fiber Reinforced CompositeHexagonal Crystal

(Arrows indicate material symmetry directions)

FIGURE 11.1 Material Microstructures.
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or in compact notation

si ¼ Cijej (11.1.5)

where si and ei are defined by comparing relations (11.1.4) and (11.1.5). Note that the symmetry
imposed by strain energy implies that the 6 � 6 C matrix is symmetric; that is, Cij ¼ Cji, and thus only
21 independent elastic constants exist. The two elasticity stiffness tensors are related by the expression

Cij ¼

2
6666664

C1111 C1122 C1133 C1123 C1131 C1112

: C2222 C2223 C2223 C2231 C2212

: : C3333 C3323 C3331 C3312

: : : C2323 C2331 C2312

: : : : C3131 C3112

: : : : : C1212

3
7777775

(11.1.6)

A similar scheme can be established for relation (11.1.3), and a compliance matrix Sij can be
defined by

ei ¼ Sijsj (11.1.7)

11.2 Material symmetry
From the previous section, we determined that for the general anisotropic case (sometimes referred to
as triclinic material), 21 independent elastic constants are needed to characterize the material
response. However, as per our discussion related to Figure 11.1, most real materials have some types of
symmetry, which further reduces the required number of independent elastic moduli. Orientations for
which an anisotropic material has the same stress–strain response can be determined by coordinate
transformation (rotation) theory previously developed in Sections 1.4 and 1.5. Such particular trans-
formations are sometimes called the material symmetry group. Further details on this topic have been
presented by Zheng and Spencer (1993) and Cowin and Mehrabadi (1995). In order to determine
various material symmetries, it is more convenient to work in the noncontracted form. Thus, applying
this theory, Hooke’s law (11.1.1) can be expressed in a new coordinate system as

s0ij ¼ C0
ijkle

0
kl (11.2.1)

Now because the stress and strain must transform as second-order tensors

s0ij ¼ QikQjlskl; sij ¼ QkiQljs
0
kl

e0ij ¼ QikQjlekl; eij ¼ QkiQlje
0
kl

(11.2.2)

Combining equations (11.2.1) and (11.2.2) and using the orthogonality conditions (1.4.9) and (1.4.10)
yields the transformation law for the elasticity tensor

C0
ijkl ¼ QimQjnQkpQlqCmnpq (11.2.3)

If under a specific transformation Q the material response is to be the same, relation (11.2.3) reduces to

Cijkl ¼ QimQjnQkpQlqCmnpq (11.2.4)
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This material symmetry relation will provide a system of equations that allows reduction in the number
of independent elastic moduli. We now consider some specific cases of practical interest.

11.2.1 Plane of symmetry (monoclinic material)
We first investigate the case of a material with a plane of symmetry. Such a medium is commonly
referred to as a monoclinic material. We consider the case of symmetry with respect to the x,y-plane as
shown in Figure 11.2.

For this particular symmetry, the required transformation is simply a mirror reflection about the
x,y-plane and is given by

Qij ¼
2
4 1 0 0
0 1 0
0 0 �1

3
5 (11.2.5)

Note that this transformation is not a simple rotation that preserves the right-handedness of the
coordinate system; that is, it is not a proper orthogonal transformation. Nevertheless, it can be used for
our symmetry investigations. Using this specific transformation in relation (11.2.4) gives Cijkl ¼�Cijkl

if the index 3 appears an odd number of times, and thus these particular moduli would have to vanish.
In terms of the contracted notation, this gives

Ci4 ¼ Ci5 ¼ C46 ¼ C56 ¼ 0 ði ¼ 1; 2; 3Þ (11.2.6)

Thus, the elasticity matrix takes the form

Cij ¼

2
6666664

C11 C12 C13 0 0 C16

: C22 C23 0 0 C26

: : C33 0 0 C36

: : : C44 C45 0
: : : : C55 0
: : : : : C66

3
7777775

(11.2.7)

x

y

z

Plane of Symmetry

FIGURE 11.2 Plane of Symmetry for a Monoclinic Material.
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It is therefore observed that 13 independent elastic moduli are needed to characterize monoclinic
materials.

11.2.2 Three perpendicular planes of symmetry (orthotropic material)
A material with three mutually perpendicular planes of symmetry is called orthotropic. Common
examples of such materials include wood and fiber-reinforced composites. To investigate the material
symmetries for this case, it is convenient to let the symmetry planes correspond to coordinate planes as
shown in Figure 11.3.

The symmetry relations can be determined by using 180� rotations about each of the coordinate
axes. Another convenient scheme is to start with the reduced form from the previous monoclinic case,
and reapply the same transformation with respect to, say, the y,z-plane. This results in the additional
elastic moduli being reduced to zero

C16 ¼ C26 ¼ C36 ¼ C45 ¼ 0 (11.2.8)

Thus, the elasticity matrix for the orthotropic case reduces to having only nine independent stiffnesses
given by

Cij ¼

2
6666664

C11 C12 C13 0 0 0
: C22 C23 0 0 0
: : C33 0 0 0
: : : C44 0 0
: : : : C55 0
: : : : : C66

3
7777775

(11.2.9)

It should be noted that only two transformations were needed to develop the final reduced constitutive
form (11.2.9). The material also must satisfy a third required transformation that the properties would
be the same under a reflection of the x,z-plane. However, attempting this transformation would only
give relations that are identically satisfied. Thus, for some materials the reduced constitutive form may
be developed by using only a portion of the total material symmetries [see Ting (1996a) for more on

Planes of Symmetry
x

y

z

FIGURE 11.3 Three Planes of Symmetry for an Orthotropic Material.
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this topic]. On another issue for orthotropic materials, vanishing shear strains imply vanishing shear
stresses, and thus the principal axes of stress coincide with the principal axes of strain. This result is of
course not true for general anisotropic materials; see, for example, the monoclinic constitutive form
(11.2.7).

For orthotropic materials, the compliance matrix has similar form but is commonly written using
notation related to isotropic theory

Sij ¼

2
66666666666666666666664

1

E1
� n21

E2
� n31

E3
0 0 0

� n12

E1

1

E2
� n32

E3
0 0 0

� n13

E1
� n23

E2

1

E3
0 0 0

: : :
1

m23
0 0

: : : :
1

m31
0

: : : : :
1

m12

3
77777777777777777777775

(11.2.10)

where Ei are Young’s moduli in the three directions of material symmetry, nij are Poisson’s ratios
defined by�ej/ei for a stress in the i direction, and mij are the shear moduli in the i, j-planes. Symmetry
of this matrix requires that nij /Ei ¼ nji /Ej.

11.2.3 Axis of symmetry (transversely isotropic material)
Another common form of material symmetry is with respect to rotations about an axis. This concept
can be specified by stating that a material possesses an axis of symmetry of order n when the elastic
moduli remain unchanged for rotations of 2p/n radians about the axis. This situation is shown sche-
matically in Figure 11.4. The hexagonal packing crystalline case shown in Figure 11.1 has such a
symmetry about the axis perpendicular to the page for n ¼ 6 (60� increments). It can be shown
(Lekhnitskii, 1981) that the only possible symmetries for this case are for orders 2, 3, 4, 6, and infinity.
The order 2 case is equivalent to a plane of symmetry previously discussed, and order 6 is equivalent to
the infinite case.

The transformation for arbitrary rotations q about the z-axis is given by

Qij ¼
2
4 cosq sinq 0
�sinq cosq 0
0 0 1

3
5 (11.2.11)

Using this transformation and invoking symmetry for arbitrary rotations corresponds to the case of
n/N, and such materials are called transversely isotropic. The elasticity stiffness matrix for this case
reduces to
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Cij ¼

2
6666664

C11 C12 C13 0 0 0
$ C11 C13 0 0 0
$ $ C33 0 0 0
$ $ $ C44 0 0
$ $ $ $ C44 0
$ $ $ $ $ ðC11 � C12Þ=2

3
7777775

(11.2.12)

Thus, for transversely isotropic materials, only five independent elastic constants exist.

11.2.4 Complete symmetry (isotropic material)
For the case of complete symmetry, the material is referred to as isotropic, and the fourth-order
elasticity tensor has been previously given by

Cijkl ¼ ldijdkl þ m
�
dikdjl þ dildjk

�
(11.2.13)

This form can be determined by invoking symmetry with respect to two orthogonal axes, which implies
symmetry about the remaining axis. In contracted matrix form, this result would be expressed as

Cij ¼

2
6666664

lþ 2m l l 0 0 0
$ lþ 2m l 0 0 0
$ $ lþ 2m 0 0 0
$ $ $ m 0 0
$ $ $ $ m 0
$ $ $ $ $ m

3
7777775

(11.2.14)

Thus, as shown previously, only two independent elastic constants exist for isotropic materials. For
each case presented, a similar compliance elasticity matrix could be developed. Our brief presentation
does not include all cases of material symmetry, and in fact we have only investigated what is generally

Axis of Symmetry

x

y

z

FIGURE 11.4 Axis of Symmetry for a Transversely Isotropic Material.
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referred to as rectilinear anisotropy. Based on symmetry planes, Ting (2003) has proven that there are
only eight symmetries for linear anisotropic elastic materials for the general case. Of course, a large
variety of curvilinear material symmetries also exist in various biological and synthetic materials and
these will be discussed further in Section 11.7.

EXAMPLE 11.1: HYDROSTATIC COMPRESSION OF A MONOCLINIC CUBE
In order to demonstrate the difference in behavior between isotropic and anisotropic materials,
consider a simple example of a cube of monoclinic material under hydrostatic compression. For
this case, the state of stress is given by sij ¼ �pdij, and the monoclinic Hooke’s law in compliance
form would read as follows2

6666664

ex
ey
ez
2eyz
2ezx
2exy

3
7777775
¼

2
6666664

S11 S12 S13 0 0 S16
$ S22 S23 0 0 S26
$ $ S33 0 0 S36
$ $ $ S44 S45 0
$ $ $ $ S55 0
$ $ $ $ $ S66

3
7777775

2
6666664

�p
�p
�p
0
0
0

3
7777775

(11.2.15)

Expanding this matrix relation gives the following deformation field components

ex ¼ �ðS11 þ S12 þ S13Þp
ey ¼ �ðS12 þ S22 þ S23Þp
ez ¼ �ðS13 þ S23 þ S33Þp
eyz ¼ 0

ezx ¼ 0

exy ¼ � 1

2
ðS16 þ S26 þ S36Þp

(11.2.16)

The corresponding strains for the isotropic case would be given by ex ¼ ey ¼ ez ¼ �[(1 � 2n)/E]p,
eyz ¼ ezx ¼ exy ¼ 0. Thus, the response of the monoclinic material is considerably different from
isotropic behavior and yields a nonzero shear strain even under uniform hydrostatic stress. Addi-
tional examples using simple shear and/or bending deformations can also be used to demonstrate
the complexity of anisotropic stressestrain behavior (see Sendeckyj, 1975). It should be apparent
that laboratory testing methods attempting to characterize anisotropic materials would have to be
more involved than those used for isotropic solids.

11.3 Restrictions on elastic moduli
Several general restrictions exist on particular combinations of elastic moduli for the anisotropic
material classes discussed previously. These restrictions follow from arguments based on rotational
invariance and the positive definiteness of the strain energy function.

330 CHAPTER 11 Anisotropic Elasticity



Consider first the idea of rotational invariance. This concept has already been discussed in Section
1.6, where it was shown that for all 3 � 3 symmetric matrices or tensors there exist three invariants
given by relations (1.6.3). This general concept may be applied to symmetric square matrices of any
order including the general elasticity matrix Cij. One scheme to generate such invariant relationships is
to employ the rotational transformation (11.2.11) about the z-axis. Using this transformation, we can
show that

C0
44 ¼ C44 cos

2q� 2C45 sinq cosqþ C55 sin
2q

C0
55 ¼ C44 sin

2qþ 2C45 sinq cosqþ C55 cos
2q

Adding these individual equations together gives the simple result

C0
44 þ C0

55 ¼ C44 þ C55

and thus this sum must be an invariant with respect to such rotations. Other invariants can also be
found using this type of rotational transformation scheme, and the results include the following
invariant forms

C11 þ C22 þ 2C12

C66 � C12

C44 þ C55

C13 þ C23

C2
34 þ C2

35

C11 þ C22 þ C33 þ 2ðC12 þ C23 þ C13Þ

(11.3.1)

Next consider modulus restrictions based on strain energy concepts. In terms of the contracted no-
tation, the strain energy function can be written as

U ¼ 1

2
sijeij ¼ 1

2
Cijeiej ¼ 1

2
Sijsisj (11.3.2)

Now the strain energy is always positive definite, U � 0 with equality only if the stresses or strains
vanish. This result implies that both the Cij and Sij must be positive definite symmetric matrices. From
matrix theory (see, for example, Ting, 1996a,b), it can be shown that for such a case all eigenvalues and
principal minors of Cij and Sijmust be positive and nonzero. Recall that a principal minor pi of a square
matrix is the determinant of the submatrix created by deleting the ith row and column. For the general
case, this concept will yield six rather lengthy relations; however, one simple result from this is that all
diagonal elements of each matrix are positive.

For an orthotropic material, these results would yield

C11C22 > C2
12; C22C33 > C2

23; C33C11 > C2
13

C11C22C33 þ 2C12C23C31 > C11C
2
23 þ C22C

2
13 þ C33C

2
12

(11.3.3)

while for a transversely isotropic material we get

C2
11 > C2

12; C33ðC11 þ C12Þ>2C2
13; C11C33 > C2

13 (11.3.4)
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and the isotropic case reduces to

lþ 2

3
m > 0; m > 0 (11.3.5)

Note that for the isotropic case, relations (6.3.11) from Section 6.3 give the same results as (11.3.5).
Typical values of elastic moduli for some planar orthotropic composite materials are given in
Table 11.1. These values represent average properties, and in some cases considerable variation may
occur depending on the type and percentage of fibers and/or resin used in the composite mix.

11.4 Torsion of a solid possessing a plane of material symmetry
As our first example, consider the torsion of a prismatic bar of arbitrary cross-section, as shown in
Figure 11.5. The isotropic problem was investigated in Chapter 9, and we now wish to formulate and
develop solutions to the problem where the bar material is anisotropic with a plane of material

Table 11.1 Typical Elastic Moduli for Some Planar Orthotopic Composite Materials

Material E1 (GPa) E2 (GPa) n12 m12 (GPa)

S-Glass/Epoxy 50 17 0.27 7

Boron/Epoxy 205 20 0.23 6.5

Carbon/Epoxy 205 10 0.26 6

Kevlar49/Epoxy 76 5.5 0.34 2.2

Note: Direction 1 corresponds to fiber layout axis.

x

y

z

S

R

T

Plane of Symmetry

FIGURE 11.5 Torsion of an Anisotropic Bar.
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symmetry normal to the bar axis (z-axis). For this case, the x,y-plane is the symmetry plane (similar to
Figure 11.2), and the elasticity matrix takes the reduced form for a monoclinic material as given by
equation (11.2.7).

Following the usual procedure for torsion problems, boundary conditions are formulated on the
lateral surface S and on the end sections R. Conditions on the lateral surfaces of the bar are to be stress
free, and these traction conditions are expressed as

sxnx þ sxyny ¼ 0
sxynx þ syny ¼ 0
sxznx þ syzny ¼ 0

(11.4.1)

where nx and ny are the components of the unit normal vector to surface S. The loadings on the end
sections (or any bar cross-section R) reduce to a single resultant moment T about the z-axis, and this is
formulated as ð

R

szdA ¼
ð
R

sxzdA ¼
ð
R

syzdA ¼ 0

ð
R

xszdA ¼
ð
R

yszdA ¼ 0

ð
R

�
xsyz � ysxz

�
dA ¼ T

(11.4.2)

11.4.1 Stress formulation
Following our previous approach in Chapter 9, we seek the torsion solution using the Saint–Venant
semi-inverse method. Based on the boundary conditions (11.4.1), we assume as before that sx ¼ sy ¼
sxy ¼ 0. Using the equilibrium equations, we find that sxz and syz are independent of z, and the
remaining z equation reduces to

vsxz
vx

þ vsyz
vy

¼ 0 (11.4.3)

Next we employ the strain compatibility equations and substitute for the strains using the appropriate
form of Hooke’s law ei ¼ Sijsj coming from (11.2.7). For the anisotropic problem, this yields a new
form of compatibility in terms of stress given by

v2sz

vx2
¼ v2sz

vy2
¼ v2sz

vz2
¼ v2sz

vxvy
¼ 0

v

vx

�
� v

vx

�
S44syz þ S45sxz

�þ v

vy

�
S54syz þ S55sxz

�þ S63sz

�
¼ 2S13

v2sz

vyvz

v

vy

�
� v

vy

�
S54syz þ S55sxz

�þ v

vx

�
S44syz þ S45sxz

�þ S63sz

�
¼ 2S23

v2sz

vxvz

(11.4.4)

11.4 Torsion of a solid possessing a plane of material symmetry 333



As found in Chapter 9, the first line of (11.4.4) can be integrated, giving the result

sz ¼ C1xþ C2yþ C3zþ C4xzþ C5yzþ C6 (11.4.5)

However, using this result in boundary conditions (11.4.2) gives Ci ¼ 0, and thus sz must vanish. This
result simplifies the remaining compatibility relations in (11.4.4), and these may be integrated to give
the single equation

� v

vx

�
S44syz þ S45sxz

�þ v

vy

�
S54syz þ S55sxz

� ¼ C (11.4.6)

where C is an arbitrary constant of integration. Using Hooke’s law and strain–displacement and
rotation relations, it can be shown that the constant is given by the simple result

C ¼ �2a (11.4.7)

where a is the angle of twist per unit length of the bar.
The stress formulation to this problem is then given by equations (11.4.3) and (11.4.6), and the

solution to this system is conveniently found by employing a stress function approach similar to the
Prandtl stress function formulation given in Section 9.3 for the isotropic case. Following the usual
approach, we seek a solution form that identically satisfies equilibrium

sxz ¼ a
vj

vy
; syz ¼ �a

vj

vx
(11.4.8)

where j is the stress function for our anisotropic problem. With equilibrium satisfied identically, the
compatibility relation (11.4.6) yields the governing equation for the stress function

S44
v2j

vx2
� 2S45

v2j

vxvy
þ S55

v2j

vy2
¼ �2 (11.4.9)

The remaining boundary condition on the lateral surface (11.4.1)3 becomes

vj

vy
nx � vj

vx
ny ¼ 0 (11.4.10)

From our previous investigation in Section 9.3, the components of the normal vector can be expressed
in terms of derivatives of the boundary arc length measure [see equation (9.3.11)], and this allows
(11.4.10) to be written as

vj

vx

dx

ds
þ vj

vy

dy

ds
¼ dj

ds
¼ 0 (11.4.11)

Thus, it follows as before that the stress function j(x,y) is a constant on the boundary. For solid cross-
sections, this constant can be set to zero without loss of generality. However, for hollow bars with
sections containing internal cavities (see Figure 9.4), the constant can still be selected as zero on the
outer boundary, but it will take on different constant values on each of the internal boundaries. More
details on this are given later in the discussion.
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Following similar steps as in Section 9.3, the resultant moment boundary condition on the ends can
be expressed as

T ¼
ð
R

�
xsyz � ysxz

�
dA ¼ �a

ð
R

�
x
vj

vx
þ y

vj

vy

�
dA

¼ 2a

ð
R

jdA� a

ð
R

�
vðxjÞ
vx

þ vðyjÞ
vy

�
dA

¼ 2a

ð
R

jdAþ 2a
XN
k¼1

jkAk

(11.4.12)

where jk is the constant value of the stress function on internal contour Ck enclosing area Ak. If the
section is simply connected (no holes), then the summation term in relation (11.4.12) is dropped. One
can show that all other boundary conditions are now satisfied using the assumed stress field, and thus
the problem formulation in terms of the stress function is now complete.

11.4.2 Displacement formulation
Next consider the displacement formulation of the anisotropic torsion problem. Again, following
similar arguments as given in Section 9.3, we assume a displacement field with one unknown
component of the form

u ¼ �ayz; v ¼ axz; w ¼ wðx;yÞ (11.4.13)

where a is the angle of twist per unit length and w is the warping displacement.
This displacement field gives the following strain components

ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

�
vw

vx
� ay

�
; eyz ¼ 1

2

�
vw

vy
þ ax

�
(11.4.14)

and using Hooke’s law, the stresses become

sx ¼ sy ¼ sz ¼ sxy ¼ 0

sxz ¼ C55

�
vw

vx
� ay

�
þ C45

�
vw

vy
þ ax

�

syz ¼ C45

�
vw

vx
� ay

�
þ C44

�
vw

vy
þ ax

� (11.4.15)

Substituting these stresses into the equilibrium equations yields the following governing equation for
the warping displacement

C55
v2w

vx2
þ 2C45

v2w

vxvy
þ C44

v2w

vy2
¼ 0 (11.4.16)
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For this formulation, the boundary conditions on the lateral surface give the result�
C55

�
vw

vx
� ay

�
þ C45

�
vw

vy
þ ax

��
nx

þ
�
C45

�
vw

vx
� ay

�
þ C44

�
vw

vy
þ ax

��
ny ¼ 0

(11.4.17)

and the moment condition on the ends is given by

T ¼ a

ð
R

�
C44x

2 þ C55y
2 � 2C45xyþ C44x

vw

vy

�C55y
vw

vx
þ C45

�
x
vw

vx
� y

vw

vy

��
dA

(11.4.18)

Note that all other boundary conditions in set (11.4.1) and (11.4.2) are satisfied.
Comparison of the stress and displacement formulations for the anisotropic torsion problem results

in similar conclusions found for the isotropic case in Chapter 9. The stress function is governed by a
slightly more complicated nonhomogeneous differential equation but with a simpler boundary con-
dition. This fact commonly favors using the stress function approach for problem solution.

11.4.3 General solution to the governing equation
The governing equation for both the stress and displacement formulations of the torsion problem can
be written as

auxx þ 2buxy þ cuyy ¼ d (11.4.19)

where the constants a, b, and c are related to appropriate elastic moduli, and d is either zero or �2,
depending on the formulation. Of course, for the nonhomogeneous case, the general solution is the sum
of the particular plus homogeneous solutions.

To investigate the general solution to (11.4.19) for the homogeneous case, consider solutions of the
form u(x,y) ¼ f (x þ ly), where l is a parameter. Using this form in (11.4.19) gives�

aþ 2blþ cl2
�
f 00 ¼ 0

Since f 00 cannot be zero, the term in parentheses must vanish, giving the characteristic equation

cl2 þ 2blþ a ¼ 0 (11.4.20)

Solving the quadratic characteristic equation gives roots

l1;2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p

c
(11.4.21)

Using these roots, the original differential equation (11.4.19) can be written in operator form as

D1D2uðx;yÞ ¼ 0

where Dk ¼ v

vy
� lk

v

vx

(11.4.22)
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It is apparent that the characteristic equation (11.4.20) has complex conjugate roots whenever b2 < ac.
As per our discussion in Section 11.3, elastic moduli for materials possessing a strain energy function
must satisfy relations C44C55> C2

45 and S44S55> S245; and this implies that all roots to (11.4.20) will be
complex conjugate pairs of the form l1¼ l and l2¼ l. The general solution to (11.4.22) then becomes

uðx;yÞ ¼ f1ðxþ lyÞ þ f2
�
xþ ly

�
(11.4.23)

where f1 and f2 are arbitrary functions to be determined.
Because u(x,y) must be real, f1 and f2 must be complex conjugates of each other, and so (11.4.23)

can be written in the simplified form

uðx;yÞ ¼ 2Re½ f1ðxþ lyÞ� (11.4.24)

Because l is a complex number, we can introduce the complex variable z�¼ x þ ly, and the previous
solution form can be written as

uðx; yÞ ¼ 2Re½ f ðz�Þ� (11.4.25)

This formulation then allows the method of complex variables to be applied to the solution of the
torsion problem. As discussed in the previous chapter, this method is very powerful and can solve
many problems, which are intractable by other schemes. We will not, however, pursue the formal use
of this method for our limited discussion of the anisotropic torsion problem.

These results then provide the general solution for the homogeneous case. To complete our dis-
cussion we need the particular solution to (11.4.19). Using the structure of the equation, a simple
particular solution is given by

upðx;yÞ ¼
d
�
x2 þ y2

�
2ðaþ cÞ (11.4.26)

EXAMPLE 11.2: TORSION OF AN ELLIPTICAL ORTHOTROPIC BAR
Consider the torsion of a bar with elliptical cross-section as shown in Figure 9.7. Recall that this
problem was previously solved for the isotropic case in Example 9.1. Here, we wish to solve the
problem for the case of an orthotropic material. For convenience, the coordinate system is taken
to coincide with the material symmetry axes, and this will yield the reduced stiffness matrix given
in relation (11.2.9). Note that for this case C45 ¼ S45 ¼ 0. Because of the simple section geometry
and the expected correspondence with the isotropic case, the solution method will not employ the
general scheme discussed previously. Rather, we will use the boundary equation method presented
in Section 9.4.

Consider first the solution using the stress function formulation. Using the scheme for the
isotropic case, we choose a stress function form that will vanish on the boundary of the elliptical
cross-section

j ¼ K

�
x2

a2
þ y2

b2
� 1

�
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where the constant K is to be determined. Substituting this form into the governing equation (11.4.9)
determines the value of K and gives the final solution

j ¼ a2b2 � b2x2 � a2y2

S55a2 þ S44b2
(11.4.27)

The stresses then follow from relations (11.4.8)

sxz ¼ � 2aa2y

S55a2 þ S44b2

syz ¼ 2ab2x

S55a2 þ S44b2

(11.4.28)

which reduce to equations (9.4.8) for the isotropic case with S44 ¼ S55 ¼ 1/m. The load-carrying
torque may be determined from result (11.4.12)

T ¼ apa3b3

S55a2 þ S44b2
(11.4.29)

The warping displacement again follows from integrating relations (11.4.15)2,3, giving the result

wðx;yÞ ¼ b2C55 � a2C44

a2C44 þ b2C55
xy (11.4.30)

which again reduces appropriately to the isotropic case given by (9.4.11). With the warping
displacement determined, the twisting moment can also be calculated from relation (11.4.18).

11.5 Plane deformation problems
We now wish to investigate the solution of two-dimensional problems of an anisotropic elastic solid.
The material is chosen to have a plane of material symmetry that coincides with the plane of reference
for the deformation field. Plane problems were first discussed in Chapter 7, and this leads to the
formulation of two theories: plane strain and plane stress. The assumed displacement field for plane
strain was given in Section 7.1, and the corresponding assumptions on the stress field for plane stress
were specified in Section 7.2. These general assumptions still apply for this case with a plane of
material symmetry, and each theory produces similar governing equations for anisotropic materials.
Ultimately, a complex variable formulation similar to that of Chapter 10 will be established. Further
details on this formulation can be found in Milne-Thomson (1960), Lekhnitskii (1981), and Sendeckyj
(1975). We begin with the case of plane stress in the x,y-plane. For this case, the elasticity stiffness
matrix is given by relation (11.2.7) and a similar form would exist for the compliance matrix. Under
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the usual plane stress (or generalized plane stress) assumptions sz ¼ sxz ¼ syz ¼ 0, and Hooke’s law
would then read

ex ¼ S11sx þ S12sy þ S16sxy
ey ¼ S12sx þ S22sy þ S26sxy

2exy ¼ S16sx þ S26sy þ S66sxy
(11.5.1)

For plane strain, the usual assumptions give ez ¼ exz ¼ eyz ¼ 0, and Hooke’s law in terms of the
stiffness matrix would read

ex ¼ B11sx þ B12sy þ B16sxy
ey ¼ B12sx þ B22sy þ B16sxy

2exy ¼ B16sx þ B26sy þ B66sxy
(11.5.2)

where the constants Bij may be expressed in terms of the compliances Sij by the relations

B11 ¼ S11S33 � S213
S33

; B12 ¼ S12S33 � S13S23
S33

B22 ¼ S22S33 � S223
S33

; B16 ¼ S16S33 � S13S36
S33

B66 ¼
S66S33 � S236

S33
; B26 ¼ S26S33 � S23S36

S33

(11.5.3)

Comparing stress–strain relations (11.5.1) and (11.5.2), it is observed that they are of the same form,
and a simple interchange of the elastic moduli Sij with the corresponding Bij will transform the plane
stress relations into those of plane strain. This is a similar result as found earlier for the isotropic case.
Because of this transformation property, we proceed only with the plane stress case, realizing that any
of the subsequent developments can be easily converted to plane strain results.

The Airy stress function f(x,y) can again be introduced, and for the case with zero body forces, we
have the usual relations

sx ¼ v2f

vy2
; sy ¼ v2f

vx2
; sxy ¼ � v2f

vxvy
(11.5.4)

This stress field automatically satisfies the equilibrium equations, and using this form in (11.5.1) yields
the corresponding strain field in terms of the stress function. As before, the only remaining nonzero
compatibility relation is

v2ex
vy2

þ v2ey
vx2

¼ 2
v2exy
vxvy

(11.5.5)

and substituting the strain field into this relation gives the governing equation for the stress function

S22
v4f

vx4
� 2S26

v4f

vx3vy
þ ð2S12 þ S66Þ v4f

vx2vy2
� 2S16

v4f

vxvy3
þ S11

v4f

vy4
¼ 0 (11.5.6)

The case with nonzero body forces has been given by Sendeckyj (1975).
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The general solution to equation (11.5.6) can be found using methods of characteristics as dis-
cussed previously in the torsion problem formulation; see result (11.4.23). The process starts by
looking for solutions of the form f¼ f(xþ my), where m is a parameter. Using this in (11.5.6) gives the
characteristic equation

S11m
4 � 2S16m

3 þ ð2S12 þ S66Þm2 � 2S26mþ S22 ¼ 0 (11.5.7)

The four roots of this equation are related to the elastic compliances by the relations

m1m2m3m4 ¼ S22=S11

m1m2m3 þ m2m3m4 þ m3m4m1 þ m4m1m2 ¼ 2S26=S11

m1m2 þ m2m3 þ m3m4 þ m4m1 þ m1m3 þ m2m4 ¼ ð2S12 þ S66Þ=S11
m1 þ m2 þ m3 þ m4 ¼ 2S16=S11

(11.5.8)

Using this formulation, the governing equation (11.5.6) can be written in operator form

D1D2D3D4f ¼ 0

where Dk ¼ v

vy
� mk

v

vx

(11.5.9)

It can be shown (Lekhnitskii, 1981) that the roots of the characteristic equation (11.5.7) must be
complex. Because complex roots always occur in conjugate pairs, this leads to two particular cases

Case 1: m1 ¼ a1 þ ib1; m2 ¼ a2 þ ib2; m3 ¼ m1; m4 ¼ m2
Case 2: m1 ¼ m2 ¼ aþ ib; m3 ¼ m4 ¼ m1

(11.5.10)

With the equality condition, the second case rarely occurs, and it can be shown that it will reduce to an
isotropic formulation. We therefore do not consider this case further. Note for the orthotropic case,
S16 ¼ S26 ¼ 0, and the roots of the characteristic equation become purely complex, that is, ai ¼ 0 (see
Exercise 11.14).

For the unequal complex conjugate root case, (11.5.9) can be separated into four equations and
integrated in a similar fashion as done to get result (11.4.23). This then leads to the general solution

fðx;yÞ ¼ F1ðxþ mlyÞ þ F2ðxþ m2yÞ þ F3ðxþ m3yÞ þ F4ðxþ m4yÞ
¼ F1ðxþ mlyÞ þ F2ðxþ m2yÞ þ F3ðxþ m1yÞ þ F4ðxþ m2yÞ
¼ 2Re½F1ðxþ mlyÞ þ F2ðxþ m2yÞ�
¼ 2Re½F1ðz1Þ þ F2ðz2Þ�; z1 ¼ xþ mly; z2 ¼ xþ m2y

(11.5.11)

where we have used similar arguments as in the development of the torsion solution (11.4.24) and
(11.4.25). Thus, we have now established that the general solution to the anisotropic plane problem is
given in terms of two arbitrary functions of the complex variables z1 and z2.

We now wish to express the remaining elasticity equations in terms of these two complex potential
functions. It is generally more convenient to introduce two new complex potentials that are simply the
derivatives of the original pair

F1ðz1Þ ¼ dF1

dz1
; F2ðz2Þ ¼ dF2

dz2
(11.5.12)
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In terms of these potentials, the in-plane stresses can be written as

sx ¼ 2Re
	
m21F

0
1ðz1Þ þ

	
m22F

0
2ðz2Þ



sy ¼ 2Re

	
F0
1ðz1Þ þ F0

2ðz2Þ



sxy ¼ �2Re½m1F0
1ðz1Þ þ m2F

0
2ðz2Þ�

(11.5.13)

where primes indicate derivatives with respect to argument. Using Hooke’s law, the strains may be
determined, and the displacements follow from integration of the strain–displacement relations, giving
the result

uðx;yÞ ¼ 2Re½p1F1ðz1Þ þ p2F2ðz2Þ�
vðx;yÞ ¼ 2Re½q1F1ðz1Þ þ q2F2ðz2Þ�

(11.5.14)

where we have dropped the rigid-body motion terms and

pi ¼ S11m
2
ieS16mi þ S12

qi ¼ S12mieS26 þ S22=miÞ
(11.5.15)

In polar coordinates, the stresses and displacements take the form

sr ¼ 2Re½ðsinq� m1 cosqÞ2F0
1ðz1Þ þ ðsinq� m2 cosqÞ2F0

2ðz2Þ�
sq ¼ 2Re½ðcosqþ m1 sinqÞ2F0

1ðz1Þ þ ðcosqþ m2 sinqÞ2F0
2ðz2Þ�

srq ¼ 2Re½ðsinq� m1 cosqÞðcosqþ m1 sinqÞF0
1ðz1Þ

þðsinq� m2 cosqÞðcosqþ m2 sinqÞF0
2ðz2Þ�

(11.5.16)

ur ¼ 2Re½ðp1 cosqþ q1 sinqÞF1ðz1Þ þ ðp2 cosqþ q2 sinqÞF2ðz2Þ�
uq ¼ 2Re½ðq1 cosq� p1 sinqÞF1ðz1Þ þ ðq2 cosq� p2 sinqÞF2ðz2Þ�

(11.5.17)

Next we wish to establish the usual boundary conditions in terms of the complex potentials. Results
developed in the previous chapter, equation (10.2.13), are also valid here, and thus the traction vector
can be written as

Tn
x ¼ sxnx þ sxyny ¼ d

ds

�
vf

vy

�

Tn
y ¼ sxynx þ syny ¼ � d

ds

�
vf

vx

� (11.5.18)

Integrating this result over the boundary gives the boundary forcesð
S

Tn
x dsþ C1 ¼ vf

vy
¼ 2Re½m1F1ðz1Þ þ m2F2ðz2Þ� ¼ pxðsÞ

ð
S

Tn
y dsþ C2 ¼ � vf

vx
¼ �2Re½F1ðz1Þ þ F2ðz2Þ� ¼ pyðsÞ

(11.5.19)
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where px(s) and py(s) are the prescribed boundary tractions and C1 and C2 are arbitrary constants of
integration that do not affect the stresses, and thus can be chosen as any convenient value. The
displacement boundary conditions follow directly from equations (11.5.14)

uðsÞ ¼ 2Re½p1F1ðz1Þ þ p2F2ðz2Þ�
vðsÞ ¼ 2Re½q1F1ðz1Þ þ q2F2ðz2Þ�

(11.5.20)

where u(s) and v(s) are the prescribed boundary displacements.
Therefore, we have now formulated the plane anisotropic problem in terms of two arbitrary

functions of the complex variables z1 and z2. In regard to the general structure of these complex
potentials, many of the conclusions from the isotropic case covered previously in Section 10.4 would
still hold for the anisotropic formulation. We now investigate the use of this formulation for the
solution to several problems of engineering interest.

EXAMPLE 11.3: UNIFORM TENSION OF AN ANISOTROPIC SHEET
Consider first the simple problem shown in Figure 11.6 of an anisotropic plane under uniform ten-
sion T acting at an angle a measured from the horizontal. For this problem, we already know the
solution, namely a uniform stress field given by

sx ¼ Tcos2 a
sy ¼ Tsin2 a
sxy ¼ T sin a cos a

(11.5.21)

Complex potential functions corresponding to such a constant stress field would take the form
F1(z1) ¼ A1z1, F2(z2) ¼ A2z2, where A1 and A2 are constants that may be complex. Using this
form in relations (11.5.13) gives

sx ¼ 2Re
	
m21A1 þ m22A2



sy ¼ 2Re½A1 þ A2�
sxy ¼ �2Re½m1A1 þ m2A2�

(11.5.22)

Equating (11.5.21) with (11.5.22) gives

Tcos2 a ¼ 2Re
	
m21A1 þ m22A2



Tsin2 a ¼ 2Re½A1 þ A2�

Tsin a cos a ¼ �2Re½m1A1 þ m2A2�
(11.5.23)

Because the complex constants A1 and A2 each have real and imaginary parts, the previous three
relations cannot completely determine these four values. Another condition is needed, and it is
commonly chosen as A1 ¼ A1. Using this constraint, (11.5.23) can now be solved to yield

A1 ¼ Tðcos aþ m2 sin aÞðcos aþ m2 sin aÞ
ðm1 � m2Þðm1 � m2Þ þ ðm1 � m2Þðm1 � m2Þ

A2 ¼ Tðcos aþ m1 sin aÞðcos aþ m2 sin aÞ � ðm1 � m1Þðm1 � m2ÞA1

ðm2 � m1Þðm2 � m2Þ

(11.5.24)
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EXAMPLE 11.4: CONCENTRATED FORCE SYSTEM IN AN INFINITE PLANE
Consider next the problem of an infinite anisotropic plane containing a concentrated force system at
the origin, as shown in Figure 11.7. The problem is similar to Example 10.4, which investigated the
isotropic case.

Guided by our previous isotropic analysis, we choose the logarithmic form for the complex
potentials

F1ðz1Þ ¼ A1 log z1

F2ðz2Þ ¼ A2 log z2
(11.5.25)

The stresses from these potentials are

sx ¼ 2Re

�
m21

A1

z1
þ m22

A2

z2

�

sy ¼ 2Re

�
A1

z1
þ A2

z2

�

sxy ¼ �2Re

�
m1

A1

z1
þ m2

A2

z2

�
(11.5.26)

Consider the boundary loading on a circle C enclosing the origin. Using the general result (11.5.19),
the resultant loadings are given by

�X ¼
þ
C

Tn
x ds ¼ 2Re½m1F1ðz1Þ þ m2F2ðz2Þ�C

�Y ¼
þ
C

Tn
y ds ¼ �2Re½F1ðz1Þ þ F2ðz2Þ�C

(11.5.27)

T

T

T

T

FIGURE 11.6 Uniform Tension of an Anisotropic Plane.
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where we have dropped the arbitrary constants. Substituting in the complex potentials, and using the
cyclic properties of logarithmic functions [see (10.4.5)], the preceding relations become

�X ¼ 4pRe½m1A1iþ m2A2i�
�Y ¼ �4pRe½A1iþ A2i�

(11.5.28)

This system is not sufficient to determine completely the complex constants A1 and A2, and addi-
tional relations can be found by invoking the condition of single-valued displacements. If the
displacements are to be single-valued, then the cyclic function (defined in Section 10.4) of relations
(11.5.14) must be zero

Re½p1F1ðz1Þ þ p2F2ðz2Þ�C ¼ 0

Re½q1F1ðz1Þ þ q2F2ðz2Þ�C ¼ 0
(11.5.29)

and for this case gives the result

Re½p1A1iþ p2A2i� ¼ 0

Re½q1A1iþ q2A2i� ¼ 0
(11.5.30)

Relations (11.5.28) and (11.5.30) now provide sufficient relations to complete the problem.

EXAMPLE 11.5: CONCENTRATED FORCE SYSTEM ON THE SURFACE OF A HALF-PLANE
We now develop the solution to the problem of an anisotropic half-plane carrying a general force
system at a point on the free surface. The problem shown in Figure 11.8 was originally solved for
the isotropic case in the previous chapter in Example 10.5.

FIGURE 11.7 Concentrated Force System in an Infinite Plane.
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Again guided by our previous isotropic solution, the potential functions are chosen as

F1ðz1Þ ¼ A1 log z1

F2ðz2Þ ¼ A2 log z2
(11.5.31)

The stresses from these potentials are then given by

sx ¼ 2Re

�
m21

A1

z1
þ m22

A2

z2

�

sy ¼ 2Re

�
A1

z1
þ A2

z2

�

sxy ¼ �2Re

�
m1

A1

z1
þ m2

A2

z2

�
(11.5.32)

Following the procedures from Example 10.5, we consider the boundary loading on a semicircle
C lying in the half-space domain and enclosing the origin. Using the general result (11.5.19), the
resultant loadings are given by

�X ¼
þ
C

Tn
x ds ¼ 2Re½m1F1ðz1Þ þ m2F2ðz2Þ�C

�Y ¼
þ
C

Tn
y ds ¼ �2Re½F1ðz1Þ þ F2ðz2Þ�C

(11.5.33)

Substituting in the complex potentials, and again using the cyclic properties of the logarithmic func-
tion, we find

�X ¼ 2pRe½m1A1iþ m2A2i�
�Y ¼ �2pRe½A1iþ A2i�

(11.5.34)

As before, this system is not sufficient to determine completely the complex constants A1 and A2.
Additional relations can be found by invoking the stress-free boundary condition on surface y ¼ 0,
giving the result

FIGURE 11.8 Concentrated Force System on a Half-Plane.
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syðx; 0Þ ¼ 2Re

�
A1

z1
þ A2

z2

�����
y¼0

¼ 0

sxyðx; 0Þ ¼ �2Re

�
m1

A1

z1
þ m2

A2

z2

�����
y¼0

¼ 0

(11.5.35)

Solving relations (11.5.34) and (11.5.35), the constants are found to be

A1 ¼ ðX þ m2YÞ
2ipðm2 � m1Þ

A2 ¼ ðX þ m1YÞ
2ipðm1 � m2Þ

(11.5.36)

With the constants determined, the stresses can easily be calculated using (11.5.32). Using polar co-
ordinates, we can show the surprising result that sq ¼ srq ¼ 0, and thus the stress state will be only
radial. This result matches our findings for the corresponding isotropic case given by relations
(8.4.34) and/or (10.6.8). Exercise 11.16 computes and compares sr stress components for orthotropic
and isotropic cases, and significant differences between the two cases are found.

EXAMPLE 11.6: INFINITE PLATE WITH AN ELLIPTICAL HOLE
Let us now investigate the solution to a class of problems involving an elliptical hole in an infinite
anisotropic plate, as shown in Figure 11.9. Although we develop solutions only to a couple of cases
in this example, Savin (1961) provides many additional solutions to problems of this type. We first
construct the general solution for arbitrary loading on the hole surface for the case where the loading
produces no net force or moment. Finally, a specific case of a pressure loading is investigated in detail.

Employing the usual conformal mapping concept, consider the mapping function that trans-
forms the exterior of the ellipse to the exterior of a unit circle

z ¼ wðzÞ ¼ aþ b

2
zþ a� b

2z
(11.5.37)

The complex variables z1 and z2 can be expressed in terms of z and z as

z1 ¼ xþ m1y ¼
1

2
ð1� im1Þðxþ iyÞ þ 1

2
ð1þ im1Þðx� iyÞ ¼ g1zþ d1z

z2 ¼ xþ m2y ¼
1

2
ð1� im2Þðxþ iyÞ þ 1

2
ð1þ im2Þðx� iyÞ ¼ g2zþ d2z

(11.5.38)

where gi ¼ (1 � imi)/2, di ¼ (i þ mi)/2. Relations (11.5.38) lead to the concept of induced mappings
whereby the transformation (11.5.37) induces mappings in the variables z1 and z2

z1 ¼ g1wðzÞ þ d1wðzÞ ¼ w1ðz1Þ
z2 ¼ g2wðzÞ þ d2wðzÞ ¼ w2ðz2Þ

(11.5.39)
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Using the specified transformation (11.5.37) in (11.5.38), the mapped variables z1, z2 can be deter-
mined as

z1 ¼
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2 � m21b

2
q
a� im1b

z2 ¼
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2 � m22b

2
q
a� im2b

(11.5.40)

Note that on the boundary of the hole, z1 ¼ z2 ¼ eiq.
Using the general results (11.5.19), we assume these boundary loadings can be expanded in a

complex Fourier series on the elliptic boundary

pxðsÞ ¼
XN
m¼1

�
Ame

imq þ Ame
�imq

�

pyðsÞ ¼
XN
m¼1

�
Bme

imq þ Bme
�imq

� (11.5.41)

where Am and Bm are complex constants to be determined by the specific boundary loading.
Following our experience from the previous chapter for the isotropic case, we expect our solution
to be given by potential functions of the series form

F1ðz1Þ ¼
XN
m¼1

amz
�m
1

F2ðz2Þ ¼
XN
m¼1

bmz
�m
2

(11.5.42)

FIGURE 11.9 Elliptical Hole in an Infinite Anisotropic Plane.
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where am and bm are complex constants and z1 and z2 are given by relations (11.5.40). Substituting
these potential forms into the boundary loading relations (11.5.19) and combining with (11.5.41)
allows the determination of the constants am and bm in terms of boundary loading. This then
provides the final general solution form

F1ðz1Þ ¼
XN
m¼1

Bm þ m2Am

m1 � m2
z�m
1

F2ðz2Þ ¼ �
XN
m¼1

Bm þ m1Am

m1 � m2
z�m
2

(11.5.43)

11.5.1 Uniform pressure loading case
Consider now the specific case of a pressure p acting uniformly on the entire elliptical cavity. For this
case, the boundary tractions are given by

Tn
x ¼ �pnx; Tn

y ¼ �pny

where nx and ny are the usual normal vector components. The boundary loading functions are then
determined from relations (11.5.19), giving the result

pxðsÞ ¼ �
ðs
0

pdyþ C1 ¼ �pb sinqþ C1

pyðsÞ ¼
ðs
0

pdxþ C2 ¼ pa cosq� paþ C2

(11.5.44)

The arbitrary constants can now be chosen for convenience as C1 ¼ 0 and C2 ¼ pa. Using these results
in boundary relation (11.5.41) determines the Fourier coefficients as

A1 ¼ ipb=2; B1 ¼ pa=2
Am ¼ Bm ¼ 0; m ¼ 2; 3; 4; .

(11.5.45)

This then determines the complex potentials, and the stresses and displacements can be calculated
from previous relations (11.5.13) and (11.5.14).

The maximum stresses are most important for applications, and these occur as tangential stresses
on the boundary of the elliptical hole. It can be shown that this tangential stress on the elliptical cavity
is given by

sq ¼ p

a2 sin2qþ b2 cos2q
Re

�
ie�iq

ða sin2qþ m1b cosqÞða sinq� m2b cosqÞ
$
	ðm1m2a� im1b� im2bÞa3sin3qþ iðm1m2 � 2Þa2b2sin2q cosq

þð2m1m2 � 1Þa2b2 sinq cos2qþ ðm1aþ m2a� ibÞb3 cos3q

 (11.5.46)
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For the circular case (a ¼ b), this result becomes

sq ¼ pRe

�
ie�iq

ðsinqþ m1 cosqÞðsinq� m2 cosqÞ
$
	ðm1m2 � im1 � im2Þsin3qþ iðm1m2 � 2Þsin2q cosq

þð2m1m2 � 1Þsinq cos2qþ ðm1 þ m2 � iÞcos3q

(11.5.47)

We can extract the isotropic limit by choosing the case m1 ¼ m2 ¼ i, and result (11.5.47) becomes simply
sq¼ p, which is the correct value for a pressurized circular hole in an isotropic sheet (see Section 8.4.1).
It should be noted that this scheme of developing the isotropic limit must be done on the final relations
for the stresses and displacements. For example, if the expression m1 ¼ m2 ¼ i had been substituted into,
say, relation (11.5.43) for the potential functions, a meaningless result would occur. Exercise 11.17
explores sq numerical results for the orthotropic case and demonstrates that at particular field points,
anisotropy will increase this hoop stress component compared to the isotropic value.

EXAMPLE 11.7: STRESSED INFINITE PLATE WITH AN ELLIPTICAL HOLE
Consider next an infinite anisotropic plate with a stress-free elliptical hole. The plate is loaded in the
x direction, as shown in Figure 11.10. Recall that the isotropic case was previously solved in
Example 10.7.

The potentials for this problem can be determined by our previously developed conformal map-
ping procedures. The details for this and other cases are given in Savin (1961), and the final result
may be written as

F1ðz1Þ ¼ A1z1 � iSb

2ðm1 � m2Þ
a� im1b

z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 �

�
a2 þ m21b

2
�q

F2ðz2Þ ¼ A2z2 þ iSb

2ðm1 � m2Þ
a� im2b

z2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 �

�
a2 þ m22b

2
�q

(11.5.48)

FIGURE 11.10 Infinite Anisotropic Plate with an Elliptical Hole.
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The first term in each expression corresponds to the uniform tension case discussed in Example 11.3.
For tension in the x direction, the constants become

A1 ¼ � S

2
h
ða2 � a1Þ2 þ

�
b22 � b21

�i

A2 ¼ � �S

2
h
ða2 � a1Þ2 þ

�
b22 � b21

�iþ i
ða1 � a2ÞS

2b2

h
ða2 � a1Þ2 þ

�
b22 � b21

�i
(11.5.49)

with parameters ai and bi defined by equation (11.5.10)1.
The stresses for this case follow from (11.5.13)

sx ¼ Sþ Re

2
64� iSbm21

ðm1 � m2Þðaþ im1bÞ

2
64 z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 �
�
a2 þ m21b

2
�q � 1

3
75

þ iSbm22
ðm1 � m2Þðaþ im2bÞ

2
64 z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 �
�
a2 þ m22b

2
q �� 1

3
75
3
75

sy ¼ Re

2
64� iSb

ðm1 � m2Þðaþ im1bÞ

2
64 z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 �
�
a2 þ m21b

2
�q � 1

3
75

þ iSb

ðm1 � m2Þðaþ im2bÞ

2
64 z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 �
�
a2 þ m22b

2
q

Þ
� 1

3
75
3
75

sxy ¼ �Re

2
64� iSbm1

ðm1 � m2Þðaþ im1bÞ

2
64 z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 �
�
a2 þ m21b

2
�q � 1

3
75

þ iSbm2
ðm1 � m2Þðaþ im2bÞ

2
64 z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 �
�
a2 þ m22b

2
�q � 1

3
75
3
75

(11.5.50)

Consider now the special case of an orthotropic material with mi ¼ ibi. For this case, the stress sx
along the y-axis (x ¼ 0) is given by
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sxð0; yÞ ¼ Sþ Sb

ðb1 � b2Þ

2
64� b21

ða� b1bÞ

2
64 b1yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

a2 þ b21ðy2 � b2Þ
q � 1

3
75

þ b22
ða� b2bÞ

2
64 b2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

a2 þ b22ðy2 � b2Þ
q � 1

3
75
3
75

(11.5.51)

Investigating the value of this stress at the edge of the ellipse (y ¼ b), we get

sxð0; bÞ ¼ S

�
1þ ðb1 þ b2Þ

b

a

�
(11.5.52)

The isotropic limit of this result is found by setting b1 ¼ b2 ¼ 1, which gives

sxð0; bÞ ¼ S

�
1þ 2

b

a

�
(11.5.53)

and this matches with the isotropic case given previously in equation (10.7.15). For many materials,
b1 þ b2 > 2 (see Exercise 11.14), and thus the stress concentration for the anisotropic case is
commonly greater than the corresponding isotropic material. Exercise 11.18 explores sx numerical
results and demonstrates that this stress component for the orthotropic case will be larger than the
corresponding isotropic value.

11.6 Applications to fracture mechanics
The elastic stress and displacement distribution around cracks in anisotropic media has important
applications in the fracture behavior of composite materials. Similar to our previous study in Sections
10.8 and 10.9, we now wish to develop solutions to some basic plane problems of anisotropic materials
containing cracks. As discussed before, a crack can be regarded as the limiting case of an elliptical
cavity as one axis is reduced to zero. Thus, in some cases the solution to the crack problem can be
determined from a corresponding elliptical cavity problem. There exists, however, more direct methods
for solving crack problems in anisotropic materials. Original work on this topic was developed by Sih,
Paris, and Irwin (1965), and further information may be found in Sih and Liebowitz (1968).

The first problem we wish to investigate is that of a pressurized crack in an infinite medium. The
solution to this problem can be conveniently determined from our solution of the pressurized elliptical
cavity problem in Example 11.6. The crack case follows by simply letting the semiminor axis b / 0.
From (11.5.45) we find A1 ¼ 0, and relations (11.5.43) then give the potential functions

F1ðz1Þ ¼ pa2m2
2ðm1 � m2Þ

�
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q ��1

¼ �pm2
2ðm1 � m2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q
� z1

�

F2ðz2Þ ¼ � pa2m1
2ðm1 � m2Þ

�
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q ��1

¼ pm1
2ðm1 � m2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q
� z2

� (11.6.1)
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The stresses follow from relations (11.5.13)

sx ¼ �pRe

2
64 m21m2

m1 � m2

2
64 z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 � a2
q � 1

3
75� m1m

2
2

m1 � m2

2
64 z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � a2
q � 1

3
75
3
75

sy ¼ �pRe

2
64 m2

m1 � m2

2
64 z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 � a2
q � 1

3
75� m1

m1 � m2

2
64 z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � a2
q � 1

3
75
3
75

sxy ¼ pRe

2
64 m1m2

m1 � m2

2
64 z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 � a2
q � z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 � a2
q

3
75
3
75

(11.6.2)

Evaluating these stresses on the x-axis (z1 ¼ z2 ¼ x) gives

sx ¼ �pRe

�
m1m2

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1

��

sy ¼ pRe

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1

�
sxy ¼ 0

(11.6.3)

For the case jx1j > a, the stresses can be written as

sx ¼ �p

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1

�
Refm1m2g

sy ¼ p

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1

�
sxy ¼ 0

(11.6.4)

The stresses depend on the material properties only through the term Re{m1m2}. Note that for the
isotropic case m1 ¼ m2 ¼ i, and thus

sx ¼ sy ¼ p

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p � 1

�
; sxy ¼ 0 (11.6.5)

Notice that both the anisotropic and isotropic stresses are singular at x ¼ �a, which corre-
sponds to each crack tip. In the neighborhood of the crack tip x ¼ a, we can use the usual ap-
proximations x þ a z a, x � a z r (see Figure 10.20), and for this case equations (11.6.4) and
(11.6.5) indicate that the crack-tip stress field has the 1=

ffiffi
r

p
singularity for both the anisotropic and

isotropic cases.
Next let us investigate the restricted problem of determining the stress and displacement solution in

the vicinity of a crack tip in an infinite medium, as shown in Figure 11.11. We assume that the problem
has uniform far-field loading in the y direction normal to the crack.
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Considering only the solution in the neighborhood of the crack tip (i.e., small jzj), it can be shown
that the potential functions can be reduced to the following form

F0
1ðz1Þ ¼ A1z

�1=2
1 ; F0

2ðz2Þ ¼ A2z
�1=2
2 (11.6.6)

where A1 and A2 are arbitrary constants. Using this result in equations (11.5.13) and (11.5.14) gives the
following stress and displacement fields

sx ¼ K1ffiffiffiffiffi
2r

p Re

"
m1m2

m1 � m2

 
m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m2 sinq
p � m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m1 sinq
p

!#

sy ¼ K1ffiffiffiffiffi
2r

p Re

"
1

m1 � m2

 
m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m2 sinq
p � m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m1 sinq
p

!#

sxy ¼ K1ffiffiffiffiffi
2r

p Re

"
m1m2

m1 � m2

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m1 sinq
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m2 sinq
p

!#

u ¼ K1

ffiffiffiffiffi
2r

p
Re

�
1

m1 � m2

�
m1p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosq� m2 sinq

p
� m2p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosq� m1 sinq

p ��

v ¼ K1

ffiffiffiffiffi
2r

p
Re

�
1

m1 � m2

�
m1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosq� m2 sinq

p
� m2q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosq� m1 sinq

p ��

(11.6.7)

where for convenience we have chosen

A1 ¼ m2

2
ffiffiffi
2

p ðm2 � m1Þ
K1

A2 ¼ m1

2
ffiffiffi
2

p ðm1 � m2Þ
K1

(11.6.8)

Similar to the isotropic case, the parameter K1 is referred to as the stress intensity factor. It is important
to note from stress relations in (11.6.7) that the crack-tip stress singularity is of order 1=

ffiffi
r

p
; which is

FIGURE 11.11 Crack in an Infinite Anisotropic Plane.
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identical to the isotropic case. This result holds for all plane problems with a plane of material
symmetry (sometimes referred to as rectilinear anisotropy). However, it has been shown that the nature
of this singularity does change for materials with more complex anisotropy. It can also be observed
from (11.6.7) that, unlike the isotropic case, variation of the local stress and displacement field depends
upon material properties through the roots mi. Finally, similar to the isotropic case, the stress and
displacement field near the crack tip depends on remote boundary conditions only through the stress
intensity factor.

Next let us consider a more specific fracture mechanics problem of a crack of length 2a lying along
the x-axis in an infinite medium with far-field stress sNy ¼ S, as illustrated in Figure 11.12.

For this problem, the complex potentials are given by Sih, Paris, and Irwin (1965) as

F1ðz1Þ ¼ A1z1 þ Sa2m2
2ðm1 � m2Þ

�
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q ��1

F2ðz2Þ ¼ A2z2 � Sa2m1
2ðm1 � m2Þ

�
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q ��1
(11.6.9)

where A1 and A2 are again constants. Substituting this form into relations (11.5.13) gives the following
stress field in the vicinity of the crack tip

sx ¼ S
ffiffiffi
a

pffiffiffiffiffi
2r

p Re

"
m1m2

m1 � m2

 
m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m2 sinq
p � m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m1 sinq
p

!#

sy ¼ S
ffiffiffi
a

pffiffiffiffiffi
2r

p Re

"
1

m1 � m2

 
m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m2 sinq
p � m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m1 sinq
p

!#

sxy ¼ S
ffiffiffi
a

pffiffiffiffiffi
2r

p Re

"
m1m2

m1 � m2

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m1 sinq
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosq� m2 sinq
p

!#
(11.6.10)

FIGURE 11.12 Central Crack in an Infinite Anisotropic Plane.
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Note the similarity of this result with the relations developed in (11.6.7). For this case, the stress
intensity factor is then given by K1 ¼ S

ffiffiffi
a

p
.

The previous two examples include only opening mode deformation of the crack tip. Other loading
cases can produce a shearing deformation mode, and these cases introduce a new stress field with a
different stress intensity factor, commonly denoted by K2. Sih, Paris, and Irwin (1965) provide
additional information on these examples. The analytically simpler crack problem for anisotropic
antiplane strain deformation is given in Exercise 11.22 and the results are comparable to the isotropic
problem developed in Exercise 8.41.

11.7 Curvilinear anisotropic problems
As mentioned earlier, many materials have an anisotropic microstructure that would require a
curvilinear anisotropic model. Biological examples of such cases would include wood coming from
trees that grow in approximately cylindrical fashion, and various tissue and bone material. There are
also many cases of synthetic composite materials with such curvilinear microstructure. As done
previously for rectilinear anisotropy cases in Section 11.2, we would expect that curvilinear anisotropy
would also occur with some symmetries in material structure. This would lead to a convenient
modeling scheme of incorporating Hooke’s law within an orthogonal curvilinear coordinate system
using, for example, cylindrical or spherical coordinates. Lekhnitskii (1981), Galmudi and Dvorkin
(1995), Horgan and Baxter (1996), and others have developed solutions to these types of problems, and
we will now explore such solutions.

11.7.1 Two-dimensional polar-orthotropic problem
Following the work of Galmudi and Dvorkin (1995) and Horgan and Baxter (1996), we first limit the
discussion to the two-dimensional case using a polar coordinate system model. Therefore, consider the
curvilinear microstucture shown in Figure 11.13. We assume that the material has a uniform micro-
stucture such that properties have orthogonal symmetry with respect to the r and q directions as shown.
Under this assumption, the material would be classified as being polar-orthotropic, and following the
basic form of relation (11.2.10), we could write Hooke’s law for the plane stress case as

sr ¼ Er

1� nqrnrq
ðer þ nqreqÞ; sq ¼ Eq

1� nqrnrq
ðeq þ nrqerÞ (11.7.1)

FIGURE 11.13 Material with an Idealized Orthogonal Curvilinear Microstructure Leading to Polar Orthotropy.
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We also assume axisymmetry so that stresses will only depend on the radial coordinate and srq ¼ 0.
Note that from the discussion in Section 11.2.2

nqr

Eq

¼ nrq

Er
(11.7.2)

Using the strain–displacement relations, the stresses can be expressed as

sr ¼ Er

1� nqrnrq

�
du

dr
þ nqr

u

r

�
; sq ¼ Eq

1� nqrnrq

�
u

r
þ nrq

du

dr

�
(11.7.3)

In polar coordinates with no body forces, the equilibrium equation is

dsr
dr

þ sr � sq

r
¼ 0 (11.7.4)

Using relations (11.7.3) and (11.7.2), this equation can be written as

d2u

dr2
þ 1

r

du

dr
� n2

u

r2
¼ 0 (11.7.5)

where n2 ¼ Eq=Er ¼ nqr=nrq. The parameter n provides a measure of the amount of material
anisotropy, and with n > 10Eq > Er and the material may be classified as circumferentially
orthotropic, while with n < 10Er > Eq and the material is classified as radially orthotropic (Horgan
and Baxter, 1996). The isotropic case is found by setting n ¼ 1. Equation (11.7.5) is a Cauchy–Euler
differential equation and is similar to the isotropic result previously given in (8.3.10). The equation can
be easily solved giving the result for the radial displacement

u ¼ Arn þ Br�n (11.7.6)

where A and B are arbitrary constants. This solution allows the stresses to be expressed by the general
form

sr ¼ C1r
n�1 þ C2r

�n�1; sq ¼ C1nr
n�1 � C2nr

�n�1 (11.7.7)

where C1 ¼ A
Er

1� nqrnrq
ðn� nqrÞ and C2 ¼ �B

Er

1� nqrnrq
ðnþ nqrÞ are new, appropriately

defined arbitrary constants.
Consider now the specific problem of the thick-walled cylindrical domain problem with internal

and external pressure loadings previously shown in Figure 8.8. For this case we redefine the annular
domain with a 	 r 	 b, and consider pressure loading equal to p only on the outer boundary r ¼ b.
Under these boundary conditions, the arbitrary constants C1 and C2 can be easily determined and the
stresses become

sr ¼ � pbnþ1

b2n � a2n
�
rn�1 � a2nr�n�1

�

sq ¼ � pbnþ1n

b2n � a2n
�
rn�1 þ a2nr�n�1

� (11.7.8)
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It can be shown that both of these normal stresses will be compressive in the region a	 r 	 b, and that
for n > 1, jsqj > jsrj.

Dimensionless distribution plots of the radial and hoop stresses are shown in Figure 11.14 for cases
of n ¼ 0.5, 1.0, and 1.5 with b/a ¼ 5. It is seen that for n > 1, the magnitude of the radial stress will be
less than the isotropic value; Galmudi and Dvorkin (1995) refer to this as stress shielding. The opposite
behavior occurs for the case n< 1, where the radial stress magnitude is greater than the isotropic value,
thereby leading to stress amplification. Both of these effects can be viewed as being related to the
decay of boundary conditions, and thus could have importance to the applicability of Saint–Venant’s
principle for anisotropic problems (see comments at the end of Section 5.6). Notice also that the hoop
stress magnitude at the inner boundary (r ¼ a) decreases with increasing values of the anisotropic
parameter, n. In general, the stresses are significantly affected by the curvilinear anisotropy.

Going back to the isotropic case (n ¼ 1), relations (11.7.8) reduce to

sr ¼ � pb2

b2 � a2

�
1� a2

r2

�

sq ¼ � pb2

b2 � a2

�
1þ a2

r2

� (11.7.9)

FIGURE 11.14 Stress Distributions in a Polar Orthotropic Annular Domain (a £ r £ b) with External Pressure

with b /a [ 5.
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For this case, taking the limit as b/N and letting p ¼ �T, the result is

sr ¼ T

�
1� a2

r2

�
; sq ¼ T

�
1þ a2

r2

�
(11.7.10)

which matches with our previous result (8.4.9) and corresponds to a stress-free hole in an infinite
medium under equal far-field biaxial tensile loading T. Note the isotropic problem then generates a
stress concentration factor of 2.

As was first pointed out by Galmudi and Dvorkin (1995), attempting to do the same limiting
analysis for the anisotropic case (ns 1) will not produce a converged solution. This surprising result
is related to the fact that for n < 1, the stresses will become unbounded as b / N. A similar result
for isotropic inhomogeneous materials will be shown in Chapter 14. Although we cannot analytically
evaluate the limiting case b /N, we can still explore this situation by evaluating relations (11.7.8)
for the case with large but finite b/a ratios. Figure 11.15 illustrates the dimensionless hoop stress for
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FIGURE 11.15 Dimensionless Hoop Stresses in Annular Region b /a [ 50 Simulating a Small Hole in a Large

Sheet with n £ 1.
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the case with b/a ¼ 50 for several values of n 	 1. Values shown at r ¼ a actually illustrate the stress
concentration factors for a small stress-free hole in a large sheet under equal far-field biaxial loading.
It can be seen that the stress concentration significantly increases as the anisotropy parameter n is
reduced from the isotropic value of unity. Note for this case Eq< Er, and n decreasing from 1.0 would
correspond to a material where the hoop modulus becomes increasingly smaller than the radial
modulus. A similar plot of the hoop stress, for cases with n> 1, would show a further decrease in the
local stress concentration but would now predict an increasing stress field with radial distance from
the hole (see Figure 11.14 with n ¼ 1.5).

11.7.2 Three-dimensional spherical-orthotropic problem
Following the work of Lekhnitskii (1981) and Horgan and Baxter (1996), we next explore a three-
dimensional case using a spherical coordinate system as shown in Figure B.1. Similar to our previ-
ous example, we assume that the material has a uniform microstucture such that properties have
orthogonal symmetry with respect to the R, f, q directions. Under these assumptions, the material
would be classified as being spherical-orthotropic. We make one further simplification, and assume
that properties in the f and q directions are the same. Under these conditions, relation (11.2.10) would
allow us to express Hooke’s law in the form

eR ¼ 1

ER
sR � nRq

ER

�
sf þ sq

�

ef ¼ 1

Eq

sf � nqR

Eq

sq � nRq

ER
sR

eq ¼ 1

Eq

sq � nRq

ER
sR � nqR

Eq

sf

efq ¼ sfq=2mq ¼
1þ nqR

Eq

sfq

eRf ¼ sRf=2mR; eqR ¼ sqR=2mR

(11.7.11)

Note that because of common properties in the f and q directions, we have only introduced
four elastic constants and similar to the previous two-dimensional case, these must satisfy the usual
relation

nqR

Eq

¼ nRq

ER
(11.7.12)
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Equation form (11.7.11) can be inverted to express the stresses in terms of the strains as

sR ¼ C11eR þ C12

�
ef þ eq

�
sf ¼ C12eR þ C22ef þ C23eq

sq ¼ C12eR þ C23ef þ C22eq

sRf ¼ C44eRf; sfq ¼ ðC22 � C23Þefq; sqR ¼ C44eqR

(11.7.13)

where the elastic moduli Cij are related to E, n, and m forms by the relations

C11 ¼ ERð1� nqRÞ
m

; C12 ¼ EqnRq

m

C22 ¼ Eq

ð1þ nqRÞm
�
1� n2Rq

Eq

ER

�

C23 ¼ Eq

ð1þ nqRÞm
�
nqR þ n2Rq

Eq

ER

�

C44 ¼ 2mR; C22 � C23 ¼ 2mq ¼
Eq

ð1þ nRqÞ

m ¼ 1� nqR � 2n2Rq
Eq

ER

(11.7.14)

With the given symmetry in the material response, we can now focus on problems that will only
produce spherically symmetric deformations yielding a single radial displacement uR ¼ uðRÞ. Using
relations (A.3), the strains thus become

eR ¼ du

dR
; ef ¼ eq ¼ u

R
; eRf ¼ efq ¼ eqR ¼ 0 (11.7.15)

and from Hooke’s law (11.7.13) the stresses are

sR ¼ C11
du

dR
þ 2C12

u

R

sf ¼ sq ¼ C12
du

dR
þ ðC22 þ C23Þ u

R

sRf ¼ sfq ¼ sqR ¼ 0

(11.7.16)
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With no body forces, the equilibrium equations (A.6) then reduce to a single relation

dsR
dR

þ 2

R

�
sR � sf

� ¼ 0 (11.7.17)

Unfortunately this result contains two unknown stresses, and thus it is more convenient to move to a
displacement formulation in terms of the single unknown uR ¼ uðRÞ. Substituting (11.7.16) into
(11.7.17) then gives

d2u

dR2
þ 2

R

du

dR
� 2

C22 þ C23 � C12

C11

u

R2
¼ 0 (11.7.18)

As in the previous polar-orthotropic case, equation (11.7.18) is a Cauchy–Euler differential equation
and is similar to the isotropic result given in Exercise 13.20. The equation can be easily solved giving
the result

u ¼ ARn�ð1=2Þ þ BR�n�ð1=2Þ (11.7.19)

where A and B are arbitrary constants to be determined from the boundary conditions, and the
anisotropy parameter n is given by

n2 ¼ 1

4
þ 2

C22 þ C23 � C12

C11
¼ 1

4
þ 2Eqð1� nRqÞ

ERð1� nqRÞ ¼ 1

4
þ 2nqRð1� nRqÞ

nRqð1� nqRÞ (11.7.20)

Note the isotropic case ðER ¼ Eq; nRq ¼ nqRÞ is retained with n ¼ 3/2.
The problem of a spherical shell a 	 R 	 b with both internal and external pressures can now be

solved and the results are given in Lekhnitskii (1981). The case to be investigated here will include
only the external loading case as presented by Horgan and Baxter (1996), with boundary conditions
sRðaÞ ¼ 0; sRðbÞ ¼ �p. Applying these two conditions determines the constants A and B and gives
the following solution

sR ¼ �pbnþð3=2Þ

b2n � a2n

h
Rn�ð3=2Þ � a2nR�ðnþð3=2ÞÞ

i

sf ¼ sq ¼ �pbnþð3=2Þ

b2n � a2n

h
CnR

n�ð3=2Þ � C�na
2nR�ðnþð3=2ÞÞ

i (11.7.21)

with

Cn ¼ 1þ ½n� ð1=2Þ�nRq
nRq½2þ ð1� nqRÞðn� ð1=2ÞÞ=nqR�

C�n ¼ 1� ½nþ ð1=2Þ�nRq
nRq½2� ð1� nqRÞðnþ ð1=2ÞÞ=nqR�

(11.7.22)

Dimensionless distribution plots of the radial and hoop stresses are shown in Figure 11.16 for cases of
n ¼ 1.0, 1.5 (isotropic value), and 2.0 with b/a ¼ 5. Results are quite similar to the two-dimensional
case shown previously in Figure 11.14. It is seen that with n> 1.5, locally the magnitude of the stresses
will be less than the isotropic value (stress shielding), while for n< 1.5 the stresses will be greater than
the isotropic value (stress amplification). Again, these effects can be viewed as being related to the
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decay of boundary conditions, and thus could have applicability to Saint–Venant’s principle for
anisotropic problems. Notice also that the hoop stress magnitude at the inner boundary (R ¼ a)
decreases with increasing values of the anisotropic parameter, n. In general, these three-dimensional
stresses are significantly affected by the spherical curvilinear anisotropy.

Additional features of this and other similar problems with polar and spherical curvilinear
anisotropy are discussed by Galmudi and Dvorkin (1995) and Horgan and Baxter (1996).
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EXERCISES

11.1 From strain energy arguments in Section 6.1, it was found that vsij=vekl ¼ vskl=veij. Show
that these results imply that Cij ¼ Cji, therefore justifying that only 21 independent elastic
moduli are needed to characterize the most general anisotropic material.

11.2 Using material symmetry through 180� rotations about each of the three coordinate axes,
explicitly show the reduction of the elastic stiffness matrix to nine independent components
for orthotropic materials.Also demonstrate that after two rotations, the third transformation
is actually already satisfied.

11.3 A transversely isotropic material with an x3-axis of symmetry was specified by the elasticity
matrix given in equation (11.2.12). Under an arbitrary q rotation about the x3-axis given by
relation (11.2.11), all components of this elasticity matrix should remain the same.
Explicitly show this property for the 55 and 22 components of the C matrix. Use the
translation relation (11.1.6) and the given structure of the Cmatrix such as C16¼ C1112¼ 0,
C44 ¼ C55 .

11.4 Verify the inequality restrictions on the elastic moduli for orthotropic, transversely
isotropic, and isotropic materials given by relations (11.3.3), (11.3.4), and (11.3.5).

11.5 For the orthotropic case, show that by using arguments of a positive definite strain energy
function, n2ij < ðEi=EjÞ. Next, using typical values for E1 and E2 from Table 11.1, justify that
this theory could allow the unexpected result that n12 > 1.

11.6 For the torsion of cylinders discussed in Section 11.4, show that with sx¼ sy¼ sz¼ sxy¼ 0,
the compatibility equations yield
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� v

vx

�
S44syz þ S45sxz

�þ v

vy

�
S54syz þ S55sxz

� ¼ C

where C is a constant.

11.7 In terms of the stress function j, the torsion problem was governed by equation (11.4.9)

S44jxx � 2S45jxy þ S55jyy ¼ �2

Show that the homogeneous counterpart of this equation may be written as

�
v

vy
� m1

v

vx

��
v

vy
� m2

v

vx

�
j ¼ 0

where m1,2 are the roots of the characteristic equation

S55m
2 � 2S45mþ S44 ¼ 0

11.8 Explicitly justify relationships (11.5.3) between the compliances of the plane stress and
plane strain theories.

11.9 Investigate case 2 (m1 ¼ m2) in equation (11.5.10), and determine the general form of the
Airy stress function. Show that this case is actually an isotropic formulation.

11.10 Determine the roots of the characteristic equation (11.5.7) for S-Glass/Epoxy material with
properties given in Table 11.1. Justify that they are purely imaginary.

11.11 Recall that for the plane anisotropic problem, the Airy stress function was found to be

f ¼ F1ðz1Þ þ F1ðz1Þ þ F2ðz2Þ þ F2ðz2Þ
where z1 ¼ x þ m1y and z2 ¼ x þ m2y. Explicitly show that the in-plane stresses are
given by

sx ¼ 2Re
	
m21F

00
1 ðz1Þ þ m22F

00
2 ðz2Þ



sy ¼ 2Re

	
F00
1 ðz1Þ þ F00

2 ðz2Þ



sxy ¼ �2Re
	
m1F

00
1 ðz1Þ þ m2F

00
2 ðz2Þ



11.12 For the plane stress case, in terms of the two complex potentialsF1 andF2, compute the two

in-plane displacements u and v and thus justify relations (11.5.14).

11.13 Determine the polar coordinate stresses and displacements in terms of the complex po-
tentials F1 and F2, as given by equations (11.5.16) and (11.5.17).

11.14* For the plane problem with an orthotropic material, show that the characteristic equation
(11.5.7) reduces to the quadratic equation in m2

S11m
4 þ ð2S12 þ S66Þm2 þ S22 ¼ 0
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Explicitly solve this equation for the roots mi, and show that they are purely complex and thus
can be written as m1,2 ¼ ib1,2, where

b21;2 ¼ � 1

2S11

�
�ð2S12 þ S66Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2S12 þ S66Þ2 � 4S11S22

q �

Justify the isotropic case where b1,2 ¼ 1. Finally, determine b1,2 for each of the four
composite materials given in Table 11.1.

11.15 Consider an anisotropic monoclinic material symmetric about the x,y-plane (see
Figure 11.2) and subject to an antiplane deformation specified by u ¼ v ¼ 0, w ¼ w(x,y).
Show that in the absence of body forces, the out-of-plane displacement must satisfy the
Navier equation

C55
v2w

vx2
þ 2C45

v2w

vxvy
þ C44

v2w

vy2
¼ 0

Next looking for solutions that are of the form w¼ F(xþmy), show that this problem is solved
by

w ¼ 2RefFðz�Þ�
sxz ¼ 2RefðmC45 þ C55ÞF0ðz�Þ�
syz ¼ 2Re

�ðmC44 þ C45ÞF0ðz�Þ

where z* ¼ x þ my and m are the roots of the equation C44m

2 þ 2C45m þ C55 ¼ 0. Note
that for this case, positive definite strain energy implies that C44C55 > C2

45; therefore, the
roots will occur in complex conjugate pairs.

11.16* For Example 11.5, consider the case of only a normal boundary load (X ¼ 0), and assume
that the material is orthotropic with mi ¼ ibi (see Exercise 11.14). Show that the resulting
stress field is given by

sr ¼ � Yb1b2ðb1 þ b2Þsinq
pr
�
cos2qþ b21 sinq

��
cos2qþ b22 sin

2q
�; sq ¼ srq ¼ 0

Next compare the stress component sr with the corresponding isotropic value by plotting the
stress contours sr /Y¼ constant for each case. Use orthotropic material values for the Carbon/
Epoxy composite given in Table 11.1, and compare with the corresponding isotropic case.

11.17* Consider the case of the pressurized circular hole in an anisotropic sheet. Using orthotropic
material properties given in Table 11.1 for Carbon/Epoxy, compute and plot the boundary
hoop stress sq as a function of q. Compare with the isotropic case.

11.18* Investigate the case of a circular hole of radius a in Example 11.7. Use orthotropic material
properties given in Table 11.1 for Carbon/Epoxy with the 1-axis along the direction of
loading. Compute and plot the stress sx(0, y) for y> a.Also compare with the corresponding
isotropic case.
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11.19 Consider the elliptical hole problem in Example 11.7. By letting a/ 0, determine the stress
field for the case where the hole reduces to a line crack of length 2b. Demonstrate the nature
of the singularity for this case.

11.20 The potentials

F1ðz1Þ ¼ A1z1 þ Sa2m2
2ðm1 � m2Þ

�
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q ��1

F2ðz2Þ ¼ A2z2 � Sa2m1
2ðm1 � m2Þ

�
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q ��1

were proposed to solve the plane extension of an anisotropic panel containing a crack of
length 2a (see Figure 11.12). Recall that the constants A1 and A2 correspond to the uniform
tension case, and for stress S in the y direction

A1 ¼
�
a22 þ b22

�
S

2
h
ða2 � a1Þ2 þ

�
b22 � b22

�i

A2 ¼
�
a21 þ b21 � 2a1a2

�
S

2
h
ða2 � a1Þ2 þ

�
b22 � b21

�iþ i

	
a2
�
a21 � b21

�� a1
�
a22 � b22

�

S

2b2
h
ða2 � a1Þ2 þ

�
b22 � b21

�i
(a) Determine the general stress field and verify the far-field behavior.

(b) Show that the stress field is singular at each crack tip.

(c) Using the limiting procedures as related to Figure 10.20, verify that the crack-tip stress
field is given by (11.6.10).

11.21* Construct a contour plot of the crack tip stress component sy from solution (11.6.7). This
result could be compared with the equivalent isotropic problem from Exercise 10.24.

11.22 Consider the case of a crack problem in an anisotropic monoclinic material under antiplane
deformation as described in Exercise 11.15. Following relation (11.6.6), choose the com-

plex potential form as F(z�) ¼ A
ffiffiffiffi
z�

p
, where A ¼ � ffiffiffi

2
p

K3m/(C55 þ mC45) and K3 is a real
constant. Using this form, show that the nonzero displacement and stresses in the vicinity of
the crack tip (see Figure 11.11) are given by

w ¼ K3

ffiffiffiffiffi
2r

p
Re

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosqþ m sinq

p
C45 þ mC44

�

sxz ¼ � K3ffiffiffiffiffi
2r

p Re

�
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosqþ m sinq
p

�

syz ¼ K3ffiffiffiffiffi
2r

p Re

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosqþ m sinq
p

�
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Note that the parameter K3 will be related to the stress intensity factor for this case. Verify that
shear stress syz vanishes on each side of the crack face, q ¼ �p. These results can be
compared to the corresponding solution for the isotropic case given in Exercise 8.41.

11.23 Explicitly develop the governing Navier equation (11.7.5) for the polar orthotropic problem.
Verify that its solution is given by (11.7.6) and show how this leads to the stress solution
(11.7.7). Finally, confirm that the problem with only external pressure loading is given by
(11.7.8).

11.24 For the spherically orthotropic problem, justify that Hooke’s law (11.7.11) can be inverted
into form (11.7.13) under the relations (11.7.14).

11.25 Under the stated symmetry conditions in Section 11.7.2, explicitly show that in the absence
of body forces the general equilibrium equations reduce to forms (11.7.17) and (11.7.18).
Verify the general displacement solution given by (11.7.19) and (11.7.20), and the particular
stress solution (11.7.21) and (11.7.22) for the external loading case.

11.26 For the rotating disk problem given previously in Example 8.11, the governing equilibrium
equation was given by (8.4.74). Since this equation is also valid for anisotropic materials,
consider the polar-orthotropic case and use equations (11.7.3) to express the equilibrium
equation in terms of the displacement as

r2
d2u

dr2
þ r

du

dr
þ Eq

Er
u ¼ �ð1� nrqnqrÞ

Er
ru2r3

Next show that the general solution to this equation is given by

u ¼ C1r
n þ C2r

�n � ð1� nrqnqrÞ
Er½9� ðEq=ErÞ� ru

2r3; n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq=Er

p

where C1 and C2 are arbitrary constants and ns3. Note for the case of a solid disk, C2¼ 0.

11.27 Using the results from Exercise 11.26, show that the stresses in a rotating solid circular
polar-orthotropic disk of radius a with boundary condition srðaÞ ¼ 0 are given by

sr ¼ 3þ nqr

9� n2
ru2

�
a3�nrn�1 � r2

�

sq ¼ ru2

9� n2

�
nð3þ nqrÞa3�nrn�1 � �n2 þ 3nqr

�
r2
�

Discuss issues with the case n < 1.

11.28 Consider the cantilever beam problem shown previously in Exercise 8.2 with no axial force
(N ¼ 0). Assume a plane stress anisotropic model given by Hooke’s law (11.5.1) and
governed by the Airy stress function equation (11.5.6). Show that the stress function

f ¼ 3P

4c3

�
c2xy� xy3

3
þ S16
6S11

�
2c2y2 � y4

��
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satisfies the governing equation and gives the following stress field

sx ¼ � 3P

2c3
xyþ 3P

2c3
S16
S11

�
c2

3
� y2

�
; sy ¼ 0; sxy ¼ � 3P

4c

�
1� y2

c2

�
Next show that these stresses satisfy the problem boundary conditions in the usual sense
with exact pointwise specification on y ¼ �c, and only resultant force conditions on the ends
x ¼ 0 and x ¼ L. What happens to this solution if we let the material become orthotropic?
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Thermoelasticity 12
Many important stress analysis problems involve structures that are subjected to both mechanical and
thermal loadings. Thermal effects within an elastic solid produce heat transfer by conduction, and this
flow of thermal energy establishes a temperature field within the material. Most solids exhibit a
volumetric change with temperature variation, and thus the presence of a temperature distribution
generally induces stresses created from boundary or internal constraints. If the temperature variation is
sufficiently high, these stresses can reach levels that may lead to structural failure, especially for brittle
materials. Thus, for many problems involving high temperature variation, the knowledge of thermal
stress analysis can be very important.

The purpose of this chapter is to provide an introduction to thermoelasticity; that is, elasticity with
thermal effects. We develop the basic governing equations for isotropic materials and investigate
several solutions to problems of engineering interest. We have already briefly discussed the form of
Hooke’s law for this case in Section 4.4. More detailed information may be found in several texts
devoted entirely to the subject such as Boley and Weiner (1960), Nowacki (1962), Parkus (1976),
Kovalenko (1969), Nowinski (1978), and Burgreen (1971). We start our study with some developments
of heat conduction in solids and the energy equation.

12.1 Heat conduction and the energy equation
As mentioned, the flow of heat in solids is associated with temperature differences within the material.
This process is governed by the Fourier law of heat conduction, which is the constitutive relation
between the heat flux vector q and the temperature gradient VT. This theory formulates a linear
relationship that is given by

qi ¼ �kijT; j (12.1.1)

where kij is the thermal conductivity tensor. It can be shown that this tensor is symmetric, that is,
kij ¼ kji. For the isotropic case kij ¼ kdij, and thus

qi ¼ �kT;i (12.1.2)

where k is a material constant called the thermal conductivity. Note the flow of heat moves against the
temperature gradient, that is, flows from hot to cold regions.

In order to properly establish thermoelasticity theory, particular thermal variables such as temperature
and heat flux must be included, and this requires incorporation of the energy equation. Previous to this
point, our purely mechanical theory did not require this field relation. The energy equation represents the
principle of conservation of energy, and this concept is to be applied for the special case of an elastic
solid continuum. Details of the equation derivation will not be presented here, and the interested reader is
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referred to Boley and Weiner (1960) or Fung (1965) for a more complete discussion on the thermo-
dynamic development of this equation. We consider an elastic solid that is stress free at a uniform
temperature Towhen all external forces are zero. This stress-free state is referred to as the reference state,
and To is called the reference temperature. For this case, the energy equation can be written as

r _ε ¼ sijvi; j � qi;i þ rh (12.1.3)

where r is the mass density, ε is the internal energy, vi is the velocity field, and h is any prescribed
energy source term. From thermodynamic theory, the internal energy rate may be simplified to

_ε ¼ c _T (12.1.4)

where c is the specific heat capacity at constant volume.
Recall that the stress follows from the Duhamel–Neumann constitutive relation given previously in

(4.4.5) as

sij ¼ Cijklekl þ bijðT � ToÞ (12.1.5)

and for the isotropic case this reduces to

sij ¼ lekkdij þ 2meij � ð3lþ 2mÞaðT � ToÞdij

eij ¼ 1þ n

E
sij � n

E
skkdij þ aðT � ToÞdij

(12.1.6)

where a is the coefficient of thermal expansion.
Using results (12.1.4) and (12.1.6) in the energy equation and linearizing yields

kT;ii ¼ rc _T þ ð3lþ 2mÞaTo _eii � rh (12.1.7)

Note that the expression (3l þ 2m)aTo _eii involves both thermal and mechanical variables, and
consequently this is referred to as the coupling term in the energy equation. It has been shown (see, for
example, Boley and Weiner, 1960) that for most materials under static or quasi-static loading con-
ditions, this coupling term is small and can be neglected. For this case, we establish the so-called
uncoupled conduction equation

kT;ii ¼ rc _T � rh (12.1.8)

For our applications, we consider only uncoupled theory and normally with no sources (h ¼ 0).
Another simplification is to consider only steady-state conditions, and for this case the conduction
equation reduces to the Laplace equation

T;ii ¼ V2T ¼ v2T

vx2
þ v2T

vy2
þ v2T

vz2
¼ 0 (12.1.9)

It should be noted that for the uncoupled, no-source case the energy equation (12.1.8) reduces to a
single parabolic partial differential equation, while for the steady state case the reduction leads to an
elliptic equation (12.1.9) for the temperature distribution. For either case, with appropriate thermal
boundary conditions, the temperature field can be determined independent of the stress-field calcu-
lations. Once the temperature is obtained, elastic stress analysis procedures can then be employed to
complete the problem solution.
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12.2 General uncoupled formulation
Let us now formulate the general uncoupled thermoelastic problem. Many of our previous equations
are still valid and remain unchanged, including the strain–displacement relations

eij ¼ 1

2

�
ui; j þ uj;i

�
(12.2.1)

the strain–compatibility equations

eij;kl þ ekl;ij � eik; jl � ejl;ik ¼ 0 (12.2.2)

and the equilibrium equations

sij; j þ Fi ¼ 0 (12.2.3)

These are to be used with the new form of Hooke’s law

sij ¼ lekkdij þ 2meij � ð3lþ 2mÞaðT � ToÞdij (12.2.4)

and the energy equation

rc _T ¼ kT;ii (12.2.5)

The 16 equations (12.2.1) and (12.2.3)–(12.2.5) constitute the fundamental set of field equations
for uncoupled thermoelasticity for the 16 unknowns ui, eij, sij, and T. As before, it proves
to be very helpful for problem solution to further reduce this set to a displacement and/or
stress formulation as previously done for the isothermal case. Recall that the compatibility
equations are used only for the stress formulation. These further reductions are not carried out at
this point, but will be developed in the next section for the two-dimensional formulation.
Boundary conditions for the mechanical problem are identical as before, while thermal boundary
conditions normally take the form of specifying the temperatures or heat fluxes on boundary
surfaces.

12.3 Two-dimensional formulation
The basic two-dimensional thermoelasticity formulation follows in similar fashion as done previously
for the isothermal case in Chapter 7, leading to the usual plane strain and plane stress problems. Each
of these formulations is now briefly developed. Some parts of the ensuing presentation are identical to
the isothermal formulation, while other results create new terms or equations. It is important to pay
special attention to these new contributions and to be able to recognize them in the field equations and
boundary conditions.

12.3.1 Plane strain
The basic assumption for plane strain in the x,y-plane was given by the displacement field

u ¼ uðx;yÞ; v ¼ vðx;yÞ; w ¼ 0 (12.3.1)
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Recall that this field is a reasonable approximation for cylindrical bodies with a large z dimension, as
shown previously in Figure 7.1. This leads to the following strain and stress fields

ex ¼ vu

vx
; ey ¼ vv

vy
; exy ¼ 1

2

�
vu

vy
þ vv

vx

�

ez ¼ exz ¼ eyz ¼ 0

(12.3.2)

sx ¼ l

�
vu

vx
þ vv

vy

�
þ 2m

vu

vx
� að3lþ 2mÞðT � ToÞ

sy ¼ l

�
vu

vx
þ vv

vy

�
þ 2m

vv

vy
� að3lþ 2mÞðT � ToÞ

sxy ¼ m

�
vu

vy
þ vv

vx

�

sz ¼ v
�
sx þ sy

�� EaðT � ToÞ
sxz ¼ syz ¼ 0

(12.3.3)

In the absence of body forces, the equilibrium equations become

vsx

vx
þ vsxy

vy
¼ 0

vsxy
vx

þ vsy

vy
¼ 0

(12.3.4)

and in terms of displacements these equations reduce to

mV2uþ ðlþ mÞ v

vx

�
vu

vx
þ vv

vy

�
� ð3lþ 2mÞa vT

vx
¼ 0

mV2vþ ðlþ mÞ v

vy

�
vu

vx
þ vv

vy

�
� ð3lþ 2mÞa vT

vy
¼ 0

(12.3.5)

where V2 ¼ v2

vx2
þ v2

vy2
. Comparing this result with the equivalent isothermal equations (7.1.5), it

is noted that thermoelasticity theory creates additional thermal terms in Navier’s relations (12.3.5).
The only nonzero compatibility equation for plane strain is given by

v2ex
vy2

þ v2ey
vx2

¼ 2
v2exy
vxvy

(12.3.6)

Using Hooke’s law in this result gives

V2
�
sx þ sy

�þ Ea

1� n
V2T ¼ 0 (12.3.7)

Again, note the additional thermal term in this relation when compared to the isothermal result given
by (7.1.7). The additional terms in both (12.3.5) and (12.3.7) can be thought of as thermal body forces

372 CHAPTER 12 Thermoelasticity



that contribute to the generation of the stress, strain, and displacement fields. Relations (12.3.5) would
be used for the displacement formulation, while (12.3.4) and (12.3.7) would be incorporated in the
stress formulation.

The boundary conditions for the plane strain problem are normally specified for either the stresses

Tn
x ¼ sxnx þ sxyny ¼

�
Tn
x

�
s

Tn
y ¼ sxynx þ syny ¼

�
Tn
y

�
s

(12.3.8)

or the displacements

u ¼ usðx;yÞ
v ¼ vsðx;yÞ (12.3.9)

where ðTn
x Þs, ðTn

y Þs, us, and vs are the specified boundary tractions and displacements on the lateral
surfaces. Note that these specified values must be independent of z and the temperature field must also
depend only on the in-plane coordinates; that is, T¼ T(x,y). It should be recognized that using Hooke’s
law (12.3.3) in the traction boundary conditions (12.3.8) will develop relations that include the tem-
perature field.

12.3.2 Plane stress
The fundamental starting point for plane stress (and/or generalized plane stress) in the x,y-plane is an
assumed stress field of the form

sx ¼ sxðx;yÞ; sy ¼ syðx;yÞ; sxy ¼ sxyðx;yÞ
sz ¼ sxz ¼ syz ¼ 0

(12.3.10)

As per our previous discussion in Section 7.2 this field is an appropriate approximation for bodies thin
in the z direction (see Figure 7.3). The thermoelastic strains corresponding to this stress field come
from Hooke’s law

ex ¼ 1

E

�
sx � nsy

�þ aðT � ToÞ

ey ¼ 1

E

�
sy � nsx

�þ aðT � ToÞ

exy ¼ 1þ n

E
sxy

ez ¼ � n

E

�
sx þ sy

�þ aðT � ToÞ
exz ¼ eyz ¼ 0

(12.3.11)

The equilibrium and strain compatibility equations for this case are identical to the plane strain model;
that is, equations (12.3.4) and (12.3.6). However, because of the differences in the form of Hooke’s
law, plane stress theory gives slightly different forms for the displacement equilibrium equations and
stress compatibility relations. However, as we discovered previously for the isothermal case, differ-
ences between plane stress and plane strain occur only in particular coefficients involving the elastic
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constants, and by simple interchange of elastic moduli one theory can be transformed into the other
(see Table 7.1). This result also holds for the thermoelastic case, and the specific transformation rules
are given in Table 12.1.

Using these transformation results, the displacement equilibrium equations for plane stress follow
from (12.3.5)

mV2uþ E

2ð1� nÞ
v

vx

�
vu

vx
þ vv

vy

�
� E

1� n
a
vT

vx
¼ 0

mV2vþ E

2ð1� nÞ
v

vy

�
vu

vx
þ vv

vy

�
� E

1� n
a
vT

vy
¼ 0

(12.3.12)

and the plane stress compatibility relation becomes

V2
�
sx þ sy

�þ EaV2T ¼ 0 (12.3.13)

The boundary conditions for plane stress are similar in form to those of plane strain specified by
relations (12.3.8) and (12.3.9), and these would apply on the lateral edges of the domain.

Reviewing plane strain theory, it is observed that the temperature effect is equivalent to adding

an additional body force �(3l þ 2m)a
vT

vx
to Navier’s equations of equilibrium and adding a traction

term (3l þ 2m)a(T � To)ni to the applied boundary tractions. A similar statement could be
made about the plane stress theory, and in fact this concept can be generalized to three-dimensional
theory.

12.4 Displacement potential solution
We now present a general scheme for the solution to the thermoelastic displacement problem.
Although this scheme can be employed for the three-dimensional case (see Timoshenko and Goodier,
1970), only the plane problem will be considered here. We introduce a displacement potentialJ, such
that the displacement vector is given by

u ¼ VJ (12.4.1)

Further details on potential methods are discussed in Chapter 13. Using this representation in Navier’s
equations for plane stress (12.3.12) with no body forces gives the result

Table 12.1 Elastic Moduli Transformation Relations for Conversion Between Plane Stress and Plane

Strain for Thermoelastic Problems

E n a

Plane stress to plane strain E

1� n2

n

1� n
ð1þ nÞa

Plane strain to plane stress Eð1þ 2nÞ
ð1þ nÞ2

n

1þ n
1þ n

1þ 2n
a
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v

vx

�
v2J

vx2
þ v2J

vy2

�
¼ ð1þ nÞa vT

vx

v

vy

�
v2J

vx2
þ v2J

vy2

�
¼ ð1þ nÞa vT

vy

(12.4.2)

These equations can be integrated to give

v2J

vx2
þ v2J

vy2
¼ ð1þ nÞaT (12.4.3)

where the constant of integration has been dropped and T denotes the temperature change from the
stress-free reference value. Note for the plane strain case, the coefficient on the temperature term
would become a(1 þ n)/(1 � n).

The general solution to (12.4.3) can be written as the sum of a particular integral plus the solution to
the homogeneous equation

J ¼ JðpÞ þJðhÞ (12.4.4)

with

V2JðhÞ ¼ 0 (12.4.5)

The particular integral of the Poisson equation (12.4.3) is given by standard methods of potential
theory (see, for example, Kellogg, 1953)

JðpÞ ¼ 1

2p
ð1þ nÞa

ð ð
R
Tðx;hÞlog r dxdh (12.4.6)

where r ¼ [(x � x)2 þ (y � h)2]1/2 and R is the two-dimensional domain of interest.
The displacement field corresponding to these two solutions may be expressed as

ui ¼ u
ðpÞ
i þ u

ðhÞ
i (12.4.7)

It is noted that the homogeneous solution field satisfies the Navier equation

mu
ðhÞ
i;kk þ

E

2ð1� nÞ u
ðhÞ
k;ki ¼ 0 (12.4.8)

which corresponds to an isothermal problem. The boundary conditions for the solution u
ðhÞ
i are

determined from the original conditions by subtracting the contributions of the particular integral
solution u

ðpÞ
i . Thus, with the particular integral known, the general problem is then reduced to solving

an isothermal case.

12.5 Stress function formulation
Let us now continue the plane problem formulation and pursue the usual stress function method of
solution. As before, we can introduce the Airy stress function defined by
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sx ¼ v2f

vy2
; sy ¼ v2f

vx2
; sxy ¼ � v2f

vxvy
(12.5.1)

Recall that this representation satisfies the equilibrium equations identically. Using this form in the
compatibility equation (12.3.13) for the plane stress case gives

V4fþ EaV2T ¼ 0

or

v4f

vx4
þ 2

v4f

vx2vy2
þ v4f

vy4
þ Ea

�
v2T

vx2
þ v2T

vy2

�
¼ 0

(12.5.2)

The corresponding equation for plane strain follows by using the transformation relations in
Table 12.1.

The general solution to (12.5.2) can be written in the form f ¼ f(p) þ f(h), where f(h) satisfies the
homogeneous equation

V4fðhÞ ¼ 0 (12.5.3)

and for plane stress f(p) is a particular solution of the equation

V2fðpÞ þ EaT ¼ 0 (12.5.4)

A similar result can be obtained for the plane strain case. Note that for the steady-state problem, the
temperature field is harmonic, and thus (12.5.2) reduces to the homogeneous equation.

The general traction boundary conditions are expressible as

Tn
x ¼ sxnx þ sxyny ¼ v2f

vy2
dy

ds
þ v2f

vxvy

dx

ds
¼ d

ds

�
vf

vy

�

Tn
y ¼ sxynx þ sy ¼ � v2f

vxvy

dy

ds
� v2f

vx2
dx

ds
¼ � d

ds

�
vf

vx

� (12.5.5)

which are identical to the isothermal relations (10.2.13). Integrating these results over a particular
portion of the boundary C gives

ð
C
Tn
x dsþ C1 ¼ vf

vyð
C
Tn
y dsþ C2 ¼ � vf

vx

(12.5.6)

where C1 and C2 are arbitrary constants of integration.
Combining this result with the total differential definition df¼ vf

vx
dxþ vf

vy
dy and integrating over

C from 0 to s gives

fðsÞ ¼ �x

ðs
0
Tn
y dsþ y

ðs
0
Tn
x dsþ

ðs
0

�
xTn

y � yTn
x

�
ds (12.5.7)
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where we have dropped constants of integration because they will not contribute to the stress field.
Likewise, using the directional derivative definition df=dn ¼ Vf $ n gives the result

df

dn
¼ � dx

ds

ðs
0
Tn
x ds�

dy

ds

ðs
0
Tn
y ds ¼ �t $ F (12.5.8)

where t is the unit tangent vector to the boundary curve and F is the resultant boundary force. For many
applications, the boundary conditions are simply expressed in terms of specific stress components, and
for the Cartesian case we can use the defining relations (12.5.1) to develop appropriate conditions
necessary to solve the problem.

Note that for the case of zero surface tractions Tn
x ¼ Tn

y ¼ 0, these boundary conditions imply that

f ¼ df

dn
¼ 0 on the boundary (12.5.9)

For this case under steady-state conditions, the solution to the homogeneous form of (12.5.2) is the
trivial solution f h 0. Thus, we can conclude the rather surprising result: For simply connected re-
gions, a steady temperature distribution with zero boundary tractions will not affect the in-plane stress
field. Note, however, for multiply connected bodies, we must add additional equations ensuring the
single-valuedness of the displacement field. When including these additional relations, a steady
temperature field normally gives rise to in-plane stresses. Additional information on analysis of
multiply connected regions can be found in Kovalenko (1969).

EXAMPLE 12.1: THERMAL STRESSES IN AN ELASTIC STRIP
Consider the thermoelastic problem in a rectangular domain as shown in Figure 12.1. We assume
that the vertical dimension of the domain is much larger than the horizontal width (2a), and thus the
region may be described as an infinite strip of material. For this problem, assume that the temper-
ature is independent of x and given by T¼ Tosinby, where To and b are constants. Note that by using
Fourier methods and superposition we could generate a more general temperature field.

Considering the plane stress case, the governing stress function equation becomes

V4f ¼ EaTob
2 sinby (12.5.10)

The particular solution to this equation is easily found to be

fðpÞ ¼ EaTo

b2
sinby (12.5.11)

For the homogeneous solution we try the separation of variables approach and choose f(h)¼ f (x)
sin by. Using this form in the homogeneous biharmonic equation gives an auxiliary equation for the
function f (x)

f 0000 � 2b2f 00 þ b4f ¼ 0

The general solution to this differential equation is

f ¼ C1 sinh bxþ C2 cosh bxþ C3x sinh bxþ C4x cosh bx (12.5.12)
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Now since the temperature field was symmetric in x, we expect the stresses to also exhibit the
same symmetry. Thus, the stress function must also be symmetric in x and so C1 ¼ C4 ¼ 0.
Combining the particular and homogeneous solutions, the resulting stresses become

sx ¼ �b2½C2 cosh bxþ C3x sinh bx� sin by� EaTo sin by

sx ¼ b2
�
C2 cosh bxþ C3

�
x sinh bxþ 2

b
cosh bx

�	
sinby

sxy ¼ �b2
�
C2 sinh bxþ C3

�
x cosh bxþ 1

b
sinh bx

�	
cos by

(12.5.13)

These stress results can then be further specified by employing boundary conditions on
the lateral sides of the strip at x ¼ �a. For example, we could specify stress-free conditions
sx(�a, y) ¼ sxy(�a, y) ¼ 0, and this would determine the constants C2 and C3 (see Exercise 12.6).

12.6 Polar coordinate formulation
We now wish to list the basic plane thermoelastic equations in polar coordinates. Recall that the
isothermal results were previously given in Section 7.6. Following the same notational scheme as
before, the strain–displacement relations are given by

x

y

aa

FIGURE 12.1 Thermoelastic Rectangular Strip.
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er ¼ vur
vr

; eq ¼ ur
r
þ 1

r

vuq
vq

erq ¼ 1

2

�
1

r

vur
vq

þ vuq
vr

� uq
r

� (12.6.1)

For the case of plane stress, Hooke’s law becomes

sr ¼ E

1� n2
½er þ neq � ð1þ nÞaðT � ToÞ�

sq ¼ E

1� n2
½eq þ ner � ð1þ nÞaðT � ToÞ�

srq ¼ E

1þ n
erq

(12.6.2)

In the absence of body forces, the equilibrium equations reduce to

vsr

vr
þ 1

r

vsrq
vq

þ sr � sq

r
¼ 0

vsrq
vr

þ 1

r

vsq

vq
þ 2srq

r
¼ 0

(12.6.3)

The Airy stress function definition now becomes

sr ¼ 1

r

vf

vr
þ 1

r2
v2f

vq2

sq ¼ v2f

vr2

srq ¼ � v

vr

�
1

r

vf

vq

�
(12.6.4)

which again satisfies (12.6.3) identically. The governing stress function equation given previously by
(12.5.2)1 still holds with the Laplacian and biharmonic operators specified by

V2 ¼ v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

vq2

V4 ¼ V2V2 ¼
�
v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

vq2

��
v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

vq2

� (12.6.5)

12.7 Radially symmetric problems
We now investigate some particular thermoelastic solutions to plane stress problems with
radially symmetric fields. For this case we assume that all field quantities depend only on the radial
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coordinate; that is, sr¼ sr(r), sq¼ sq(r), srq¼ srq(r), T¼ T(r). Similarly, the stress function also
has this reduced dependency, and thus the stresses are specified by

sr ¼ 1

r

df

dr

sq ¼ d2f

dr2
¼ d

dr
ðrsrÞ

srq ¼ 0

(12.7.1)

The governing equation in terms of the stress function simplifies to

1

r

d

dr



r
d

dr

�
1

r

d

dr

�
r
df

dr

�	�
þ Ea

1

r

d

dr

�
r
dT

dr

�
¼ 0 (12.7.2)

This relation can be recast in terms of the radial stress by using (12.7.1)1, giving the result

1

r

d

dr



r
d

dr

�
1

r

d

dr

�
r2sr

�	� ¼ �Ea
1

r

d

dr

�
r
dT

dr

�
(12.7.3)

which can be directly integrated to give

sr ¼ C3

r2
þ C2 þ C1

4
ð2 log r � 1Þ � Ea

r2

ð
Trdr (12.7.4)

The constants of integration Ci are normally determined from the boundary conditions, and the
temperature appearing in the integral is again the temperature difference from the reference state. Note
that C1 and C3 must be set to zero for domains that include the origin. Combining this result with
(12.7.1)2 gives the hoop stress, and thus the two nonzero stress components are determined.

Considering the displacement formulation for the radially symmetric case, ur ¼ u(r) and uq ¼ 0.
Going back to the equilibrium equations (12.6.3), it is observed that the second equation vanishes
identically. Using Hooke’s law and strain–displacement relations in the first equilibrium equation gives

d

dr

�
1

r

d

dr
ðruÞ

	
¼ ð1þ nÞa dT

dr
(12.7.5)

This equation can be directly integrated, giving the displacement solution

u ¼ A1r þ A2

r
þ ð1þ nÞa

r

ð
Trdr (12.7.6)

where Ai are constants of integration determined from the boundary conditions, and as before T is the
temperature difference from the reference state. The general displacement solution (12.7.6) can then be
used to determine the strains from relations (12.6.1) and stresses from Hooke’s law (12.6.2). As found in
Section 8.3 for the isothermal case, the stresses developed from the displacement solution do not contain
the logarithmic term found in relation (12.7.4). Thus, the logarithmic term is inconsistent with single-
valued displacements, and further discussion on this point is given in Section 8.3. We commonly
drop this term for most problem solutions, but an exception to this is given in Exercise 12.11.
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EXAMPLE 12.2: CIRCULAR PLATE PROBLEMS
Let us investigate the thermal stress problem in an annular circular plate shown in Figure 12.2. The
solid plate solution is determined as a special case as ri / 0. The problem is to be radially sym-
metric, and we choose stress-free inner and outer boundaries.

After dropping the log term, the general stress solution (12.7.4) gives

sr ¼ C3

r2
þ C2 � Ea

r2

ð
Trdr (12.7.7)

Using the boundary conditions sr(ri) ¼ sr(ro) ¼ 0 determines the two constants C2 and C3.
Incorporating these results, the stresses become

sr ¼ Ea

r2



r2 � r2i
r2o � r2i

ðro
ri

TðxÞxdx�
ðr
ri

TðxÞxdx
�

sq ¼ Ea

r2



r2 þ r2i
r2o � r2i

ðr0
ri

TðxÞxdxþ
ðr
ri

TðxÞxdx� Tr2
� (12.7.8)

and the corresponding displacement solution is given by

u ¼ a

r



ð1þ nÞ

ðr
ri

TðxÞxdxþ ð1� nÞr2 þ ð1þ nÞr2i
r2o � r2i

ðro
ri

TðxÞxdx
�

(12.7.9)

In order to explicitly determine the stress and displacement fields, the temperature distribution
must be determined. As mentioned, this is calculated from the energy or conduction equation.
Assuming steady-state conditions, the conduction equation was given by (12.1.9), and for the radi-
ally symmetric case this reduces to

1

r

d

dr

�
r
dT

dr

�
¼ 0 (12.7.10)

ro

ri

FIGURE 12.2 Annular Plate Geometry.
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This equation is easily integrated directly, giving the solution

T ¼ A1 log r þ A2 (12.7.11)

Choosing thermal boundary conditions T(ri) ¼ Ti, T(ro) ¼ 0, the constants A1 and A2 can be
determined, and the temperature solution is obtained as

T ¼ Ti

log

�
ri
ro

� log

�
r

ro

�
¼ Ti

log

�
ro
ri

� log
�ro
r

�
(12.7.12)

For the case Ti > 0, this distribution is shown schematically in Figure 12.3.
Substituting this temperature distribution into the stress solution (12.7.8) gives

sr ¼ EaTi
2 logðro=riÞ



� log

�ro
r

�
� r2i
r2o � r2i

�
1� r2o

r2

�
log

�
ro
ri

��

sq ¼ EaTi
2 logðro=riÞ



1� log

�ro
r

�
� r2i
r2o � r2i

�
1þ r2o

r2

�
log

�
ro
ri

�� (12.7.13)

Note for this solution when Ti > 0, sr < 0, and the hoop stress sq takes on maximum values at
the inner and outer boundaries of the plate. For the specific case ro/ri ¼ 3, the stress distribution
through the plate is illustrated in Figure 12.4. For steel material (E ¼ 200 GPa, a ¼ 13 � 10�6/�C)
with Ti ¼ 100�C, the maximum hoop stress on the inner boundary is about �174 MPa.

For the case of a thin ring plate where ro z ri, we can write ro/ri z 1 þ ε, where ε is a small
parameter. The logarithmic term can be simplified using

log

�
ro
ri

�
z logð1þ εÞz ε� ε

2

2
þ ε

3

3
�/

and this yields the following approximation

sqðriÞz � EaTi
2

�
1þ ε

3

�
z � EaTi

2

sqðroÞzEaTi
2

�
1� ε

3

�
z

EaTi
2

(12.7.14)

T

r
rori

Ti

FIGURE 12.3 Temperature Distribution in an Annular Plate.
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Finally, by allowing the inner radius ri to reduce to zero, we obtain the solution for a solid cir-
cular plate. For this case, the constant C3 in solution (12.7.7) must be set to zero for finite stresses at
the origin. The resulting stress field for zero boundary loading becomes

sr ¼ Ea



1

r2o

ðro
0
Trdr � 1

r2

ðr
0
Trdr

�

sq ¼ Ea



1

r2o

ðro
0
Trdr þ 1

r2

ðr
0
Trdr � T

� (12.7.15)

Casual inspection of the integral term
1

r2

ðr
0
Trdr indicates the possibility of unbounded behavior

at the origin. This term can be investigated using l’Hospital’s rule, and it can be shown that

lim
r/0

�
1

r2

ðr
0
Trdr

�
¼ 1

2
Tð0Þ

Because we expect the temperature at the origin to be finite, this limit then implies that the
stresses will also be finite at r ¼ 0. Using a temperature boundary condition T(ro) ¼ To, the gen-
eral solution (12.7.11) predicts a uniform temperature T ¼ To throughout the entire plate. For this
case, relations (12.7.15) give sr ¼ sq ¼ 0, and thus the plate is stress free. This particular result
verifies the general discussion in Section 12.5 that a steady temperature distribution in a simply
connected region with zero boundary tractions gives rise to zero stress. The previous results for
plane stress can be easily converted to plane strain by using the appropriate conversion of elastic
constants.
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FIGURE 12.4 Stress Distribution in an Annular Plate (ro /ri [ 3).
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The general thermoelastic plane problem (without axial symmetry) can be developed using methods of
Fourier analysis; see, for example, Boley and Weiner (1960). The results lead to a similar solution
pattern as developed in Section 8.3. Instead of pursuing this development, we look at the use of
complex variable methods for the general plane problem.

12.8 Complex variable methods for plane problems
We now wish to develop a complex variable technique for the solution to plane problems in ther-
moelasticity. As demonstrated in Chapter 10, the complex variable method is a very powerful tool for
solution of two-dimensional problems. This method may be extended to handle problems involving
thermal stress; see Bogdanoff (1954) and Timoshenko and Goodier (1970).

For the steady-state case, the scheme starts by defining a complex temperature

T�ðzÞ ¼ T þ iTI (12.8.1)

where the actual temperature T is the real part of T* and TI is the conjugate of T. As before, these
temperatures actually represent the change with respect to the stress-free reference state. Further define
the integrated temperature function

t�ðzÞ ¼
ð
T�ðzÞdz ¼ tR þ itI (12.8.2)

Using the Cauchy–Riemann equations

vtR
vx

¼ vtI
vy

;
vtR
vy

¼ � vtI
vx

(12.8.3)

Note that these results imply that the temperature can be expressed as

T ¼ vtR
vx

¼ vtI
vy

(12.8.4)

Next decompose the two-dimensional displacement field as

u ¼ u0 þ btR
v ¼ iv0 þ btI

(12.8.5)

where b is a constant to be determined. Substituting these displacements into Hooke’s law (12.3.3) for
plane strain yields the following stress field

sx ¼ l

�
vu0

vx
þ vv0

vy

�
þ 2m

vu0

vx
þ ½2bðlþ mÞ � að3lþ 2mÞ�T

sy ¼ l

�
vu0

vx
þ vv0

vy

�
þ 2m

vv0

vy
þ ½2bðlþ mÞ � að3lþ 2mÞ�T

sxy ¼ m

�
vu0

vy
þ vv0

vx

�
(12.8.6)
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By choosing

b ¼

 ð1þ nÞa; plane strain

a; plane stress
(12.8.7)

the temperature terms in (12.8.6) are eliminated and thus the problem reduces to the isothermal case in
terms of the displacements u0, v0. This reduction indicates that the general thermoelastic plane problem
can be formulated in terms of complex variable theory by the relations

sx þ sy ¼ 2
�
g0ðzÞ þ g0ðzÞ

�

sy � sx þ 2isxy ¼ 2ðzg00ðzÞ þ j0ðzÞÞ
2mðuþ ivÞ ¼ kgðzÞ � zg0ðzÞ � jðzÞ þ 2mbt�ðzÞ

Tn
x þ iTn

y ¼ �i
d

ds

�
gðzÞ þ zg0ðzÞ þ jðzÞ

�
(12.8.8)

where we have used many of the relations originally developed in Section 10.2. The material parameter
k was given by (10.2.10) and b is specified in (12.8.7). Thus, the problem is solved by superposition of
an isothermal state with appropriate boundary conditions and a displacement field given by u þ iv ¼
bt*(z). For the nonsteady case, the temperature is no longer harmonic, and we would have to represent
the complex temperature in the more general scheme T* ¼ T*(z, z).

EXAMPLE 12.3: ANNULAR PLATE PROBLEM
Consider again the annular plate problem shown in Figure 12.2. Assume a complex temperature
potential of the form

T�ðzÞ ¼ �C
1

z
(12.8.9)

where C is a real constant. The actual temperature field follows as

T ¼ �C Re

�
1

z

�
¼ �C

r
cosq (12.8.10)

and it is easily verified that this temperature is a harmonic function, thus indicating a steady-state
field. Note that the boundary temperatures on the inner and outer surfaces for this case become

TðriÞ ¼ �C cosq

ri
; TðroÞ ¼ �C cosq

ro

and this would have to match with the assumed temperature boundary conditions. Of course, we
could use Fourier superposition methods to handle a more general boundary distribution. Using
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relation (12.8.5), it is found that this temperature field produces a logarithmic term in the displace-
ment distribution, and this leads to a discontinuity when evaluating the cyclic behavior. This
displacement discontinuity must be removed by adding an additional field with the opposite cyclic
behavior. Based on our previous experience from Chapter 10, we therefore choose an additional
field with the following potentials

gðzÞ ¼ A log zþ goðzÞ
jðzÞ ¼ B log zþ joðzÞ

(12.8.11)

where go(z) and jo(z) are single-valued and analytic in the domain (ri � r � ro). For single-valued
displacements in the region, we can use equations (12.8.8)3 to evaluate and set the cyclic
displacement to zero, thus giving

kAþ B ¼ 2mbC (12.8.12)

where we have taken A and B to be real.
Again, choosing stress-free boundaries at ri and ro and using results from (10.2.11) and

(10.2.12), we can write

ðsr � isrqÞr¼ri;ro
¼

�
g0ðzÞ þ g0ðzÞ � e2iq½zg00ðzÞ þ j 0ðzÞ�

�
r¼ri;ro

¼ 0 (12.8.13)

and this is satisfied by potentials with the following properties

A ¼ B

goðzÞ ¼ �A
z2

r2i þ r2o

joðzÞ ¼ �A
r2i r

2
o

z2
�
r2i þ r2o

�
(12.8.14)

Thus, the final form of the potentials becomes

gðzÞ ¼ 2mbC

1þ k

�
log z� z2

r2i þ r2o

�

jðzÞ ¼ 2mbC

1þ k

�
log z� r2i r

2
o

z2
�
r2i þ r2o

�
� (12.8.15)

The stresses follow from (12.8.8), and the radial stress at q ¼ 0 is given by

sr
��
q¼0

¼ sxðx; 0Þ ¼ 4mbC

ð1þ kÞ� r2i þ r2o
�
�
1� r2i

x2

� �
1� r2o

x2

�
x (12.8.16)
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EXAMPLE 12.4: CIRCULAR HOLE IN AN INFINITE PLANE UNDER UNIFORM HEAT FLOW
We now investigate the localized thermal stresses around a traction-free circular cavity in a plane of
infinite extent. The thermal loading is taken to be a uniform heat flow q in the vertical direction, and
the circular hole is to be insulated from heat transfer. The plane stress problem shown in Figure 12.5
was originally solved by Florence and Goodier (1959). Such problems have applications to stress
concentration and thermal fracture in structures carrying high thermal gradients.

If the plane had no hole, the temperature distribution for uniform heat flow in the negative y di-
rection would be T ¼ qy/k. The presence of the insulated hole locally disturbs this linear distribu-
tion. This arises from the thermal boundary condition on r ¼ a given by the Fourier conduction law
(12.1.2)

qnða;qÞ ¼ �k
vT

vr
ða;qÞ ¼ 0 (12.8.17)

where we have introduced the usual polar coordinates. The form of the complex temperature fol-
lows from theory discussed in Chapter 10. A far-field behavior term is added to a series form,
which is analytic in the region exterior to the circular hole to form the expression

T�ðzÞ ¼ � iqz

k
þ
XN
n¼1

anz
�n (12.8.18)

Applying boundary condition (12.8.17) determines the coefficients an and gives the final form

T�ðzÞ ¼ � iq

k

�
z� a2

z

�
(12.8.19)

which yields the actual temperature field

Tðr; qÞ ¼ q

k

�
r þ a2

r

�
sinq (12.8.20)

This solution can also be determined using separation of variables and Fourier methods on the
heat conduction equation (12.1.9) in polar coordinates (see Exercise 12.16).

Using (12.8.8)3, the displacements resulting from this temperature distribution are

ðuþ ivÞ ¼ b

ð
T�ðzÞdz ¼ � iqa

k

�
z2

2
� a2 log z

�
(12.8.21)

Evaluating the cyclic function of this complex displacement around a contour C enclosing the
hole, we find

½ðuþ ivÞ�C ¼ � iqa

k

�
z2

2
� a2 log z

	
C

¼ � 2qapa2

k
(12.8.22)

Thus, this temperature field creates a displacement discontinuity, and this must be annulled by
superimposing an isothermal dislocation solution that satisfies zero tractions on r ¼ a, with stresses
that vanish at infinity. It can be shown that these conditions are satisfied by potentials of the
following form

gðzÞ ¼ A log z

jðzÞ ¼ �A

�
a2

z2
þ log zþ 1

�
(12.8.23)
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with

A ¼ � 2imqa2a

ð1þ kÞk
Using our previous polar coordinate stress combinations (10.2.12), we find

sr ¼ sq ¼ �Eaqa2

kr
sinq

sq � sr þ 2isrq ¼ �Eaqa4

kr3
sinqþ i

Eaqa

k

�
a

r
� a3

r3

�
cosq

(12.8.24)

and the individual stresses then become

sr ¼ � 1

2

Eaqa

k

�
a

r
� a3

r3

�
sinq

sq ¼ � 1

2

Eaqa

k

�
a

r
þ a3

r3

�
sinq

srq ¼ 1

2

Eaqa

k

�
a

r
� a3

r3

�
cosq

(12.8.25)

The largest stress is given by the hoop stress on the boundary of the hole

smax ¼ sqða;qÞ ¼ �Eaqa

k
sinq (12.8.26)

Notice that this expression takes on maximum values of HEaqa/k at q ¼ �p/2 and predicts a
maximum compressive stress on the hot side of the hole q ¼ p/2 and maximum tensile stress on
the cold side q ¼ �p/2. For the case of a steel plate with properties E ¼ 200 GPa and a ¼ 13 �
10�6/�C), and with qa/k ¼ 100�C, the maximum stress is 260 MPa.

x

y

q

a

FIGURE 12.5 Flow of Heat Around a Circular Hole in an Infinite Plane.
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EXAMPLE 12.5: ELLIPTICAL HOLE IN AN INFINITE PLANE UNDERUNIFORMHEAT FLOW
Similar to the previous example, we now investigate the localized thermal stresses around a
traction-free elliptical hole (with semiaxes a and b) in a plane of infinite extent, as shown in
Figure 12.6. The thermal loading is again taken to be a uniform heat flow q in the vertical direction,
and the hole is to be insulated from heat transfer. The plane stress solution to this problem again
comes from the work of Florence and Goodier (1960), who solved the more general case of an ova-
loid hole with heat flow at an arbitrary angle. This problem is solved by complex variable methods
employing conformal transformation (see Section 10.7).

As discussed in Chapter 10, conformal mapping provides a very useful tool for this type of prob-
lem, and the appropriate mapping function

z ¼ wðzÞ ¼ R

�
zþ m

z

�
(12.8.27)

transforms the region exterior to the unit circle in the z-plane onto the region exterior to the ellipse
in the z-plane. The ellipse major and minor axes are related to the mapping parameters by 2Rm ¼
a � b and 2R ¼ a þ b. As before, in the transformed plane, z ¼ reiq.

From our previous example, the temperature distribution for heat flow around an insulated cir-
cular hole of unit radius in the z-plane may be written as

T ¼ q

k
R

�
rþ 1

r

�
sinq (12.8.28)

The complex temperature corresponding to this result is

T�ðzÞ ¼ � q

k
iR

�
z� 1

z

�
(12.8.29)
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FIGURE 12.6 Flow of Heat Around an Elliptical Hole in an Infinite Plane.

12.8 Complex variable methods for plane problems 389



Again, this temperature field creates a dislocation in the displacement. Following similar steps
as in equations (12.8.21) and (12.8.22), the cyclic function of the complex temperature displace-
ment is given by

½ðuþ ivÞ�C ¼
�
a

ð
T�ðzÞdz

	
C

¼ � 2qapR2

k
ð1þ mÞ (12.8.30)

where C is the counterclockwise contour around the unit circle enclosing the origin.
Employing conformal transformation, relations (10.7.5)e(10.7.7) can be used to determine the

stresses, displacements, and tractions in the z-plane. As in the previous example, we now wish to
superimpose an isothermal state having equal but opposite dislocation behavior as (12.8.30), with
zero tractions on the hole boundary and vanishing stresses at infinity. The appropriate potentials that
satisfy these conditions are given by

gðzÞ ¼ A log z

jðzÞ ¼ A log z� A
1þ mz2

z2 � m

with A ¼ �EaqR2i

4k
ð1þ mÞ

(12.8.31)

Using relations (10.7.5), the stresses in the z-plane become

sr ¼ � Eaqa

2khðqÞ r
�
r2 þ m

�
r4 � r2

�
1þ m2

�þ m2
�
sinq

sq ¼ � Eaqa

2khðqÞ r
�
r2 þ m

��
r4 þ r2ð1þ mÞ2 þ m2

�
sinq� 2r2m sin3q

�

srq ¼ Eaqa

2khðqÞ r
�
r2 � m

�
r4 � r2

�
1þ m2

�þ m2
�
cosq

(12.8.32)

where h(q) ¼ [r4 � 2r2m cos2q þ m2]2. It can be shown that the circular hole case is found by
setting m ¼ 0, and the stresses will reduce to those given in the previous example in equations
(12.8.25). Another interesting special case is given by m ¼ 1, which corresponds to the elliptical
hole reducing to a line crack of length 2a along the x-axis. For this case the heat flow is perpendic-
ular to the crack, and the stresses become

sr ¼ � Eaqa

2khðqÞ r
�
r2 þ 1

�
r4 � 2r2 þ 1

�
sinq

sq ¼ � Eaqa

2khðqÞ r
�
r2 þ 1

��
r4 þ 4r2 þ 1

�
sinq� 2r2 sin3q

�

srq ¼ Eaqa

2khðqÞ r
�
r2 � 1

�
r4 � 2r2 þ 1

�
cosq

(12.8.33)
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with h(q) ¼ [r4 � 2r2 cos2q þ 1]2. On the surface of the crack (r ¼ 1), the hoop stress becomes

sqð1; qÞ ¼ �Eaqa

2k

3 sinq� sin3q

ð1� cos2qÞ2 ¼ � Eaqa

2k sinq
(12.8.34)

and as expected this stress becomes unbounded at the ends of the crack at q ¼ 0, p.
Another interesting result for this case occurs with the shear stress behavior along the positive

x-axis (q ¼ 0)

srqðr;0Þ ¼ Eaqa

2k

r

r2 � 1
(12.8.35)

We again observe that this stress component becomes infinite at the crack tip when r ¼ 1.
As mentioned, Florence and Goodier (1960) solved the more general problem of an ovaloid hole
for which the elliptical cavity is a special case. Deresiewicz (1961) solved the general thermal
stress problem of a plate with an insulated hole of arbitrary shape and worked out solution details
for a triangular hole under uniform heat flow. For the anisotropic case, Sadd and Miskioglu (1978)
and Miskioglu (1978) have investigated the problem of an insulated elliptical hole in an aniso-
tropic plane under unidirectional heat flow. Sih (1962) has investigated the singular nature of
the thermal stresses at crack tips. He showed that the usual 1=

ffiffi
r

p
singularity also exists for this

case and that the stress intensity factors [see equation (10.8.7)] are proportional to the temperature
gradient.
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EXERCISES

12.1 Using the assumption for isotropic materials that a temperature change produces isotropic
thermal strains of the form a(T � To)dij, develop relations (12.1.6).

12.2 For the general three-dimensional thermoelastic problem with no body forces, explicitly
develop the BeltramieMichell compatibility equations

sij;kk þ 1

ð1þ nÞ skk; ij þ
Ea

1þ n

�
T; ij þ 1þ n

1� n
dijT; kk

�
¼ 0

12.3 If an isotropic solid is heated nonuniformly to a temperature distribution T(x,y,z)
and the material has unrestricted thermal expansion, the resulting strains will be
eij ¼ aTdij. Show that this case can only occur if the temperature is a linear function of
the coordinates

T ¼ axþ byþ czþ d

12.4 Express the traction boundary condition (12.3.8) in terms of displacement and temperature
for the plane stress problem.

12.5 Develop the compatibility equations for plane strain (12.3.7) and plane stress (12.3.13).

12.6* Explicitly develop the stress field equations (12.5.13) in Example 12.1 and determine
the constants C2 and C3 for the case of stress-free edge conditions. Plot the value of sy
through the thickness (versus coordinate x) for both high-temperature (sin by ¼ 1) and
low-temperature (sin by ¼ �1) cases.

12.7 For the radially symmetric case, verify that the governing stress function equation can be
expressed as (12.7.2). Integrate this equation and verify the general solution (12.7.4).

12.8 Verify the equilibrium equation in terms of displacement (12.7.5) for the radially symmetric
case and then develop its general solution (12.7.6).

12.9 Consider the axisymmetric plane strain problem of a solid circular bar of radius a with a
constant internal heat generation specified by ho. The steady-state conduction equation thus
becomes

v2T

vr2
þ 1

r

vT

vr
þ ho ¼ 0

Using boundary condition T(a) ¼ To, determine the temperature distribution, and then
calculate the resulting thermal stresses for the case with zero boundary stress. Such solutions
are useful to determine the thermal stresses in rods made of radioactive materials.
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12.10 Using the general displacement solution, solve the thermoelastic problem of a solid circular
elastic plate with a restrained boundary edge at r¼ a. For the case of a uniform temperature
distribution, show that the displacement and stress fields are zero.

12.11 Consider the thermal stress problem in a circular ring as shown in the figure. Assuming the
temperature and stress fields depend only on the radial coordinate r, the general solution is
given by (12.7.4). If the surfaces r ¼ a and r ¼ b are to be stress free, show that the solution
can be written as

sr ¼ A1

r2
þ A2

a2

�
2 log

r

a
þ 1

�
þ 2A3

a2
� Ea

r2

ðr
a
Trdr

for appropriate constants Ai. Note for this type of problem the logarithmic term is retained
as long as the ring is only a segment and not a full ring. For this case the displacements at
each end section need not be continuous.

a

b

r

12.12 Consider the thermoelastic problem in spherical coordinates (R, f, q); see Figure 1.6. For
the case of spherical symmetry where all field quantities depend only on the radial coor-
dinate R, develop the general solution

uR ¼ 1þ n

1� n
a

1

R2

ðR
Tx2dxþ C1Rþ C2

R2

sR ¼ � 2aE

1� n

1

R3

ðR
Tx2dxþ EC1

1� 2n
� 2EC2

1þ n

1

R3

sf ¼ sq ¼ aE

1� n

1

R3

ðR
Tx2dxþ EC1

1� 2n
þ EC2

1þ n

1

R3
� aET

1� n

Note that any convenient lower limit may be placed on the integral terms to aid in problem
solution.
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12.13 Use the general solution of Exercise 12.12 to solve the thermal stress problem of a hollow
thick-walled spherical shell (a � R � b) with stress-free boundary conditions. Assuming
that the problem is steady state with temperature conditions T(a) ¼ Ti, T(b) ¼ 0, show that
the solution becomes

T ¼ Tia

b� a

�
b

R
� 1

�

sR ¼ aETi
1� n

ab

b3 � a3

�
aþ b� 1

R

�
b2 þ abþ a2

�þ a2b2

R3

	

sf ¼ sq ¼ aETi
1� n

ab

b3 � a3

�
aþ b� 1

2R

�
b2 þ abþ a2

�� a2b2

2R3

	

For the case of a thin spherical shell, let b¼ a(1þ ε), where ε is a small parameter. Show that
using this formulation, the hoop stresses at the inner and outer surfaces become

sf ¼ sq ¼ aETi
2ð1� nÞ

�
H1� 2

3
ε

�

and if we neglect the ε term, these values match those of the cylindrical shell given by
relations (12.7.14).

12.14 Explicitly develop relations (12.8.6) and verify that by using the value of b given in (12.8.7)
the temperature terms will drop out of these relations.

12.15 For Example 12.3, verify that the potentials go(z), jo(z) given by relations (12.8.14)
satisfy the stress-free boundary conditions on the problem.

12.16 Using separation of variables and Fourier methods, solve the conduction equation and verify
that the temperature distribution (12.8.20) in Example 12.4 does indeed satisfy insulated
conditions on the circular hole and properly matches conditions at infinity.

12.17 For Example 12.4, explicitly develop the stresses (12.8.25) from the complex potentials
given by equation (12.8.23).

12.18* Plot the isotherms (contours of constant temperature) for Examples 12.4 and 12.5.

12.19 For the elliptical hole problem in Example 12.5, show that by lettingm¼ 0, the stress results
will reduce to those of the circular hole problem given in Example 12.4.

12.20* In Example 12.5, show that the dimensionless hoop stress around the boundary of the hole is
given by

sq ¼ sq

Eaqa=k
¼ �ð1þ mÞ �1þ mþ m2

�
sinq� m sin3q

�
ð1� 2m cos2qþ m2Þ2

For the cases m ¼ 0, �1 =

2, �1, plot and compare the behavior of sq versus q (0 � q � 2p).
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12.21 Show that for the plane anisotropic problem, the heat-conduction equation for uncoupled
steady-state conditions is given by

kxx
v2T

vx2
þ 2kxy

v2T

vxvy
þ kyy

v2T

vy2
¼ 0

Looking for solutions that are of the form T¼ F (xþ ly), show that this leads to the quadratic
characteristic equation

kyyl
2 þ 2kxylþ kxx ¼ 0

Using the fact that kxxkyy > kxy
2, demonstrate that the two roots to this equation will be

complex conjugate pairs; therefore, since the temperature must be real, the final form of the
solution will be

T ¼ 2RefFðz�Þg
where z* ¼ x þ ly. This problem is mathematically similar to Exercise 11.15.
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Displacement Potentials
and Stress Functions: Applications
to Three-Dimensional Problems

13
Wenowwish to investigate the method of potentials to generate solutions to elasticity problems. Several
different potential techniques have been developed in order to solve problems within both displacement
and stress formulations. Methods related to the displacement formulation include the scalar and vector
potentials from the Helmholtz decomposition, Galerkin vector, and Papkovich–Neuber functions. These
schemes provide general solution forms for Navier’s equations. Potentials used in the stress formulation
are those related to the Maxwell and Morera stress functions, and these lead to Airy and other common
stress functions that we have already used for the solution of particular elasticity problems. As previously
observed, these stress functions normally satisfy the equilibrium equations identically and when com-
bined with the compatibility relations they yield a simpler and more tractable system of equations.

For either displacement or stress formulations, these solution schemes bring up the questiondare
all solutions of elasticity expressible by the particular potential representation? This issue is normally
referred to as the completeness of the representations, and over the past several decades these theo-
retical questions have generally been answered in the affirmative. For many cases these approaches are
useful to solve particular three-dimensional elasticity problems, and we will investigate several such
solutions. Some potential methods are also especially useful in formulating and solving dynamic
elasticity problems involving wave propagation (see Fung, 1965; or Graff, 1991).

13.1 Helmholtz displacement vector representation
A useful relation called the Helmholtz theorem states that any sufficiently continuous vector field can
be represented as the sum of the gradient of a scalar potential plus the curl of a vector potential. Using
this representation for the displacement field, we can write

u ¼ Vfþ V� 4 (13.1.1)

where f is the scalar potential and 4 is the vector potential. The gradient term in the decomposition has
a zero curl and is referred to as the lamellar or irrotational part, while the curl term in (13.1.1) has no
divergence and is called solenoidal. Note that this representation specifies three displacement com-
ponents in terms of four potential components, and furthermore the divergence of 4 is arbitrary. In
order to address these problems, it is common to choose 4 with zero divergence

V$4 ¼ 0 (13.1.2)

It can be easily shown that the volume dilatation w and the rotation vector u are related to these
potentials by

w ¼ ekk ¼ f;kk; ui ¼ �1

2
4i;kk (13.1.3)
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General solutions of these relations can be determined (see Fung, 1965), and thus the scalar and vector
potentials can be expressed in terms of the displacement field.

Using representation (13.1.1) in the general three-dimensional Navier equations (5.4.4), we find

ðlþ 2mÞV�V2f
�þ mV� �V24

� þ F ¼ 0 (13.1.4)

Notice that if the divergence and curl are taken of the previous equation with zero body forces, the
following relations are generated

V2V2f ¼ V4f ¼ 0; V2V24 ¼ V44 ¼ 0 (13.1.5)

and thus we find that both potential functions are biharmonic functions. Further reduction of (13.1.4)
will now be made for specific applications.

13.2 Lamé’s strain potential
It is noted that for the case of zero body forces, special solutions of (13.1.4) occur with V2f¼ constant
and V24 ¼ constant. We consider the special case with

V2f ¼ constant; 4 ¼ 0 (13.2.1)

Because our goal is to determine simply a particular solution, we can choose the constant to be zero,
and thus the potential f will be a harmonic function. For this case, the displacement representation is
commonly written as

2mui ¼ f;i (13.2.2)

and the function f is called Lamé’s strain potential. Using this form, the strains and stresses are given
by the simple relations

eij ¼ 1

2m
f;ij

sij ¼ f;ij

(13.2.3)

In Cartesian coordinates, these expressions would give

u ¼ 1

2m

vf

vx
; v ¼ 1

2m

vf

vy
; w ¼ 1

2m

vf

vz

ex ¼ 1

2m

v2f

vx2
; ey ¼ 1

2m

v2f

vy2
; .

sx ¼ v2f

vx2
; sy ¼ v2f

vy2
; sxy ¼ v2f

vxvy
; .

(13.2.4)

Thus, for this case any harmonic function can be used for Lamé’s potential. Typical forms of harmonic
functions are easily determined, and some examples include

x2 � y2; xy; rn cos nq; log r;
1

R
; logðRþ zÞ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; q ¼ tan�1 y

x
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p (13.2.5)
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13.3 Galerkin vector representation
In the previous sections, the displacement vector was represented in terms of first derivatives of the
potential functions f and 4. Galerkin (1930) showed that it is also useful to represent the displacement
in terms of second derivatives of a single vector function. The proposed representation is given by

2mu ¼ 2ð1� nÞV2V � VðV$VÞ (13.3.1)

where the potential function V is called the Galerkin vector. Substituting this form into Navier’s
equation gives the result

V4V ¼ � F

1� n
(13.3.2)

Note that for the case of zero body forces, the Galerkin vector is biharmonic. Thus, we have reduced
Navier’s equation to a simpler fourth-order vector equation.

By comparing the representations given by (13.1.1) with that of (13.3.1), the Helmholtz potentials
can be related to the Galerkin vector by

f ¼ 1� 2n

2m
ðV$VÞ; 4 ¼ �1� n

m
ðV� VÞ (13.3.3)

Notice that if V is taken to be harmonic, then the curl of 4 will vanish and the scalar potential f will
also be harmonic. This case then reduces to Lamé’s strain potential presented in the previous section.
With zero body forces, the stresses corresponding to the Galerkin representation are given by

sx ¼ 2ð1� vÞ v

vx
V2Vx þ

�
nV2 � v2

vx2

�
V$V

sy ¼ 2ð1� nÞ v

vy
V2Vy þ

�
nV2 � v2

vy2

�
V$V

sz ¼ 2ð1� nÞ v

vz
V2Vz þ

�
nV2 � v2

vz2

�
V$V

sxy ¼ ð1� nÞ
�
v

vy
V2Vx þ v

vx
V2Vy

�
� v2

vxvy
V$V

syz ¼ ð1� nÞ
�
v

vz
V2Vy þ v

vy
V2Vz

�
� v2

vyvz
V$V

szx ¼ ð1� nÞ
�
v

vx
V2Vz þ v

vz
V2Vx

�
� v2

vzvx
V$V

(13.3.4)

As previously mentioned, for no body forces the Galerkin vector must be biharmonic. In Cartesian
coordinates, the general biharmonic vector equation would decouple, and thus each component of the
Galerkin vector would satisfy the scalar biharmonic equation. However, in curvilinear coordinate
systems (such as cylindrical or spherical), the unit vectors are functions of the coordinates, and this
will not in general allow such a simple decoupling. Equation (1.9.18) provides the general form for the
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Laplacian of a vector, and the expression for polar coordinates is given in Example 1.5 by relation
(1.9.21)7. Therefore, in curvilinear coordinates the individual components of the Galerkin vector do
not necessarily satisfy the biharmonic equation. For cylindrical coordinates, only the z component of
the Galerkin vector satisfies the biharmonic equation, while the other components satisfy a more
complicated fourth-order partial differential equation (see Exercise 13.8 for details).

Before moving on to specific applications, we investigate a few useful relationships dealing with
harmonic and biharmonic functions. Consider the following identity

V2ðxf Þ ¼ xV2f þ 2
vf

vx

Taking the Laplacian of this expression gives

V4ðxf Þ ¼ V2
�
xV2f

�þ 2
v

vx

�
V2f
�

and thus if f is harmonic, the product xf is biharmonic. Obviously, for this result the coordinate x could
be replaced by y or z. Likewise we can also show by standard differentiation that the product R2fwill be
biharmonic if f is harmonic, where R2 ¼ x2 þ y2 þ z2. Using these results, we can write the following
generalized representation for a biharmonic function g as

g ¼ fo þ xf1 þ yf2 þ z f3 þ 1

2
R2f4 (13.3.5)

where fi are arbitrary harmonic functions. It should be pointed out that not all of the last four terms of
(13.3.5) are independent.

Consider now the special Galerkin vector representation where only the z component of V is
nonvanishing; that is, V ¼ Vzez. For this case, the displacements are given by

2mu ¼ 2ð1� nÞV2Vzez � V

�
vVz

vz

�
(13.3.6)

With zero body forces, Vz will be biharmonic, and this case is commonly referred to as Love’s strain
potential. A special case of this form was introduced by Love (1944) in studying solids of revolution
under axisymmetric loading.

For this case the displacements and stresses in Cartesian coordinates become

2mu ¼ �v2Vz

vxvz
; 2mv ¼ �v2Vz

vyvz
; 2mw ¼ 2ð1� nÞV2Vz � v2Vz

vz2

sx ¼ v

vz

�
nV2 � v2

vx2

�
Vz; sxy ¼ � v3Vz

vxvyvz

sy ¼ v

vz

�
nV2 � v2

vy2

�
Vz; syz ¼ v

vy

�
ð1� nÞV2 � v2

vz2

�
Vz

sz ¼ v

vz

�
ð2� nÞV2 � v2

vz2

�
Vz; szx ¼ v

vx

�
ð1� nÞV2 � v2

vz2

�
Vz

(13.3.7)
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The corresponding relations in cylindrical coordinates are given by

2mur ¼ �v2Vz

vrvz
; 2muq ¼ �1

r

v2Vz

vqvz
; 2muz ¼ 2ð1� nÞV2Vz � v2Vz

vz2

sr ¼ v

vz

�
nV2 � v2

vr2

�
Vz; srq ¼ � v3

vrvqvz

�
Vz

r

�

sq ¼ v

vz

�
nV2 � 1

r

v

vr
� 1

r2
v2

vq2

�
Vz; sqz ¼ 1

r

v

vq

�
ð1� nÞV2 � v2

vz2

�
Vz

sz ¼ v

vz

�
ð2� nÞV2 � v2

vz2

�
Vz; szr ¼ v

vr

�
ð1� nÞV2 � v2

vz2

�
Vz

(13.3.8)

We now consider some example applications for axisymmetric problems where the field variables are
independent of q.

EXAMPLE 13.1: KELVIN’S PROBLEMdCONCENTRATED FORCE ACTING IN THE
INTERIOR OF AN INFINITE SOLID
Consider the problem (commonly referred to as Kelvin’s problem) of a single concentrated force
acting at a point in the interior of an unbounded elastic solid. For convenience we choose a coor-
dinate system such that the force is applied at the origin and acts in the z direction (see Figure 13.1).
The general boundary conditions on this problem would require that the stress field vanish at infin-
ity, be singular at the origin, and give the resultant force system Pez on any surface enclosing the
origin.

The symmetry of the problem suggests that we can choose the Love/Galerkin potential as an
axisymmetric form Vz(r, z). In the absence of body forces, this function is biharmonic, and using
the last term in representation (13.3.5) with f4 ¼ 1/R gives the trial potential

Vz ¼ AR ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
(13.3.9)

where A is an arbitrary constant to be determined. We shall now show that this potential produces
the correct stress field for the concentrated force problem under study.

The displacement and stress fields corresponding to the proposed potential follow from relations
(13.3.8)

2mur ¼ Arz

R3
; 2muq ¼ 0; 2muz ¼ A

�
2ð1� 2nÞ

R
þ 1

R
þ z2

R3

�

sr ¼ A

�ð1� 2nÞz
R3

� 3r2z

R5

�
; srq ¼ 0

sq ¼ A
ð1� 2nÞz

R3
; sqz ¼ 0

sz ¼ �A

�ð1� 2nÞz
R3

þ 3z3

R5

�
; szr ¼ �A

�ð1� 2nÞr
R3

þ 3rz2

R5

�
(13.3.10)
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Clearly, these stresses (and displacements) are singular at the origin and vanish at in-
finity. To analyze the resultant force condition, consider an arbitrary cylindrical surface
enclosing the origin as shown in Figure 13.1. For convenience, we choose the cylinder to be
bounded at z ¼ �a and will let the radius tend to infinity. Invoking vertical equilibrium, we
can write ðN

0
2prszðr; aÞdr �

ðN
0
2prszðr;�aÞdr þ

ða
�a

2prsrzðr; zÞdzþ P ¼ 0 (13.3.11)

The first two terms in (13.3.11) can be combined, and in the limit as r/N the third integral is
found to vanish, thus giving

P ¼ �2

ðN
a
2pRszðr; aÞdR

¼ 4pA

�
ð1� 2nÞa

ðN
a

RdR

R3
þ 3a3

ðN
a

RdR

R5

�

¼ 8pð1� nÞA

(13.3.12)

The constant is now determined and the problem is solved. Of course, the stress field is linearly
related to the applied loading, and typically for such three-dimensional problems the field also de-
pends on Poisson’s ratio.

x
y

z

P

x
y

z

P

Resultant Boundary
Condition Evaluation

FIGURE 13.1 Kelvin’s Problem: Concentrated Force in an Infinite Medium.
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EXAMPLE 13.2: BOUSSINESQ’S PROBLEMdCONCENTRATED FORCE ACTING NORMAL
TO THE FREE SURFACE OF A SEMI-INFINITE SOLID
Several other related concentrated force problems can be solved by displacement potential
methods. For example, consider Boussinesq’s problem of a concentrated force acting normal to
the free surface of a semi-infinite solid, as shown in Figure 13.2. Recall that the corresponding
two-dimensional problem was solved in Section 8.4.7 (Flamant’s problem) and later using com-
plex variables in Example 10.5.

This problem can be solved by combining a Galerkin vector and Lamé’s strain potential of the
forms

Vx ¼ Vy ¼ 0; Vz ¼ AR

f ¼ B logðRþ zÞ
(13.3.13)

Using similar methods as in the previous example, it is found that the arbitrary constants
become

A ¼ P

2p
; B ¼ �ð1� 2nÞP

2p
(13.3.14)

The displacements and stresses are easily calculated using (13.2.4) and (13.3.7); see Exercise 13.9.

z

y

x

P

FIGURE 13.2 Boussinesq’s Problem: Normal Force on the Surface of a Half-Space.
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EXAMPLE 13.3: CERRUTI’S PROBLEMdCONCENTRATED FORCE ACTING PARALLEL
TO THE FREE SURFACE OF A SEMI-INFINITE SOLID
Another related example is Cerruti’s problem of a concentrated force acting parallel to the
free surface of an elastic half space (see Figure 13.3). For convenience, the force is chosen to be
directed along the x-axis as shown. Although this problem is not axisymmetric, it can be solved
by combining a particular Galerkin vector and Lamé’s strain potential of the following forms

Vx ¼ AR; Vy ¼ 0; Vz ¼ Bx logðRþ zÞ

f ¼ Cx

Rþ z

(13.3.15)

Again, using methods from the previous examples, the constants are found to be

A ¼ P

4pð1� nÞ ; B ¼ ð1� 2nÞP
4pð1� nÞ ; C ¼ ð1� 2nÞP

2p
(13.3.16)

The displacements and stresses follow from relations (13.2.4) and (13.3.7); see Exercise 13.10.

13.4 Papkovich–Neuber representation
Using scalar and vector potential functions, another general solution to Navier’s equations was
developed by Papkovich (1932) and later independently by Neuber (1934). The completeness of this
representation was shown by Eubanks and Sternberg (1956), and thus all elasticity solutions are
representable by this scheme. We outline the development of this solution by first writing Navier’s
equation in the form

V2uþ 1

1� 2n
VðV$uÞ ¼ �F

m
(13.4.1)

Using the Helmholtz representation (13.1.1) and relation (13.1.3), this previous equation can be
written as

V2

�
uþ 1

ð1� 2nÞVf

�
¼ �F

m
(13.4.2)

FIGURE 13.3 Cerruti’s Problem: Tangential Force on the Surface of a Half-Space.
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Define the vector term in the brackets as

h ¼ uþ 1

ð1� 2nÞVf (13.4.3)

We note that

V2h ¼ �F=m; V$h ¼ 2ð1� nÞ
1� 2n

V2f (13.4.4)

Using the identity V2(R$h) ¼ R$V2h þ 2(V$h), it can be shown that

V$h ¼ 1

2

�
V2ðR$hÞ þ R$F

m

�
(13.4.5)

Combining results (13.4.5) with (13.4.4) gives

V2

�
2ð1� nÞ
1� 2n

f� 1

2
R$h

�
¼ R$F

2m
(13.4.6)

Defining the term in brackets by scalar h, we get

V2h ¼ R$F

2m
(13.4.7)

Finally using the definition of h, we can eliminate f from relation (13.4.3) and obtain an expression for
the displacement vector.

Redefining new scalar and vector potentials in terms of h and h, we can write

2mu ¼ A�V

�
Bþ A$R

4ð1� nÞ
�

(13.4.8)

where

V2A ¼ �2F; V2B ¼ R$F

2ð1� nÞ (13.4.9)

This general displacement representation is the Papkovich–Neuber solution of Navier’s equations. For
the case with zero body forces, the two potential functions A and B are harmonic. The four individual
functions Ax, Ay, Az , and B, however, are not all independent, and it can be shown that for arbitrary
three-dimensional convex regions, only three of these functions are independent. Note that a convex
region is one in which any two points in the domain may be connected by a line that remains totally
within the region.

Comparing the Galerkin vector representation (13.3.1) with the Papkovich solution (13.4.8), it is
expected that a relationship between the two solution types should exist, and it can be easily shown that

A ¼ 2ð1� nÞV2V; B ¼ V$V � A$R

4ð1� nÞ (13.4.10)

As with the Galerkin vector solution, it is convenient to consider the special case of axisymmetry
where

Ar ¼ Aq ¼ 0; Az ¼ Azðr; zÞ; B ¼ Bðr; zÞ
with V2B ¼ 0 and V2Az ¼ 0

(13.4.11)
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For this axisymmetric case, B and Az are commonly called the Boussinesq potentials, and as before
with zero body forces they are harmonic functions.

EXAMPLE 13.4: BOUSSINESQ’S PROBLEM REVISITED
We consider again the problem shown previously in Figure 13.2 of a concentrated force acting
normal to the stress-free surface of a semi-infinite solid. Because the problem is axisymmetric,
we use the Boussinesq potentials defined by (13.4.11). These potentials must be harmonic functions
of r and z, and using (13.2.5), we try the forms

Az ¼ C1

R
; B ¼ C2 logðRþ zÞ (13.4.12)

where C1 and C2 are constants to be determined.
The boundary conditions on the free surface require that sz ¼ srz ¼ 0 everywhere except at the

origin, and that the summation of the total vertical force be equal to P. Calculation of these stresses
follows using the displacements from (13.4.8) in Hooke’s law, and the result is

sz ¼ � 3C1z
3

4ð1� nÞR5

srz ¼ r

R3

�
C2 � ð1� 2nÞ

4ð1� nÞC1 � 3C1z
2

4ð1� nÞR2

� (13.4.13)

Note that the expression for sz vanishes on z¼ 0, but is indeterminate at the origin, and thus this
relation will not directly provide a means to determine the constant C1. Rather than trying
to evaluate this singularity at the origin, we pursue the integrated condition on any typical plane
z ¼ constant

P ¼ �
ðN
0
szðr; zÞ2prdr (13.4.14)

Invoking these boundary conditions determines the two constants

C1 ¼ 2ð1� nÞ
p

P; C2 ¼ ð1� 2nÞ
2p

P (13.4.15)

The results for the displacements and stresses are given by

ur ¼ P

4pmR

�
rz

R2
� ð1� 2nÞr

Rþ z

�

uz ¼ P

4pmR

�
2ð1� nÞ þ z2

R2

�
uq ¼ 0

(13.4.16)
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sr ¼ P

2pR2

�
� 3r2z

R3
þ ð1� 2nÞR

Rþ z

�

sq ¼ ð1� 2nÞP
2pR2

�
z

R
� R

Rþ z

�

sz ¼ �3Pz3

2pR5
; srz ¼ �3Prz2

2pR5

(13.4.17)

Many additional problems can be solved using the Papkovich method, and some of these are given in
the exercises at the end of this chapter. This technique is also used in Chapter 15 to generate solutions
for many singular stress states employed in micromechanics modeling.

An interesting connection can be made for the two-dimensional case between the Papkovich–
Neuber scheme and the complex variable method discussed in Chapter 10. For the case of plane
deformation in the x,y-plane, we choose

Ax ¼ Axðx;yÞ; Ay ¼ Ayðx;yÞ; Az ¼ 0; B ¼ Bðx;yÞ (13.4.18)

Using the general representation (13.4.8), it can be shown (see Exercise 13.16) that for the plane strain
case

2mðuþ ivÞ ¼ ð3� 4nÞgðzÞ � zg0ðzÞ � jðzÞ (13.4.19)

with appropriate selection of g(z) and j(z) in terms of Ax, Ay, and B. It is noted that this form is
identical to (10.2.9) found using the complex variable formulation.

A convenient summary flow chart of the various displacement functions discussed in this chapter is
shown in Figure 13.4. The governing equations in terms of the particular potential functions are for the

V
V

V

V
V

– –
– –

– –
/2μ

FIGURE 13.4 Displacement Potential Solutions.
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zero body force case. Chou and Pagano (1967) provide additional tables for displacement potentials
and stress functions.

13.5 Spherical coordinate formulations
The previous solution examples employing displacement potentials simply used preselected forms of
harmonic and biharmonic potentials. We now investigate a more general scheme to determine
appropriate potentials for axisymmetric problems described in spherical coordinates. Referring to
Figures 1.5 and 1.6, cylindrical coordinates (r,q,z) are related to spherical coordinates (R,f,q) through
relations

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
; sin f ¼ r

R
; cos f ¼ z

R
(13.5.1)

Restricting attention to axisymmetric problems, all quantities are independent of q, and thus we choose
the axisymmetric Galerkin vector representation. Recall that this leads to Love’s strain potential Vz,
and the displacements and stresses were given by relations (13.3.6) to (13.3.8). Because this potential
function was biharmonic, consider first solutions to Laplace’s equation. In spherical coordinates the
Laplacian operator becomes

V2 ¼ v2

vR2
þ 2

R

v

vR
þ 1

R2
cotf

v

vf
þ 1

R2

v2

vf2
(13.5.2)

We first look for separable solutions of the form RnFn(f), and substituting this into Laplace’s equation
gives

1

sin f

d

df

�
sin f

dFn

df

�
þ nðnþ 1ÞFn ¼ 0 (13.5.3)

Next, making the change of variable x ¼ cos f, relation (13.5.3) becomes

�
1� x2

� d2Fn

dx2
� 2x

dFn

dx
þ nðnþ 1ÞFn ¼ 0 (13.5.4)

and this is the well-known Legendre differential equation. The two fundamental solutions are the
Legendre functions Pn(x) and Qn(x) of the first and second kinds. However, only Pn(x) is continuous for
jxj � 1, (0 � f � p), and so we drop the solution Qn(x). Considering only the case of integer values of
parameter n, the solution reduces to the Legendre polynomials given by

PnðxÞ ¼ 1

2nn!

dn
�
x2 � 1

�n
dxn

(13.5.5)

where P0 ¼ 1, P1 ¼ x, P2 ¼ 1
2 (3x

2 � 1), � Putting these results together gives the following harmonic
solution set

fRnFng ¼
	
1; z; z2 � 1

3

�
r2 þ z2

�
; z3 � 3

5
z
�
r2 þ z2

�
; � � �



(13.5.6)

These terms are commonly referred to as spherical harmonics.
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Our goal, however, is to determine the elasticity solution that requires biharmonic functions for the
Love/Galerkin potential. In order to construct a set of biharmonic functions, we employ the last term in
relation (13.3.5) and thus argue that if RnFn are harmonic, Rnþ2Fn will be biharmonic. Thus, a rep-
resentation for the Love strain potential may be written as the linear combination

Vz ¼ B0

�
r2 þ z2

�þ B1z
�
r2 þ z2

�þ B2

�
2z2 � r2

��
r2 þ z2

�
þ A0 þ A1zþ A2

�
z2 � 1

3

�
r2 þ z2

��þ � � �
(13.5.7)

It can be shown that this solution form is useful for general problems with finite domains. However, for
the case involving infinite regions, this form will result in unbounded displacements and stresses at
infinity. Therefore, (13.5.7) must be modified for use in regions that extend to infinity. This modifi-
cation is easily developed by noting that the coefficient n(nþ 1) in governing equation (13.5.3) will be
the same if we were to replace n by (�n � 1). This then implies that solution forms R�n�1F�n�1 ¼
R�n�1Fn will also be harmonic functions. Following our previous construction scheme, another set of
biharmonic functions for the potential function can then be expressed as

Vz ¼ B0

�
r2 þ z2

�1=2 þ B1z
�
r2 þ z2

��1=2 þ � � �
þ A0

�
r2 þ z2

��1=2 þ A1z
�
r2 þ z2

��3=2 þ � � �
(13.5.8)

and this form will be useful for infinite domain problems. For example, the solution to the Kelvin
problem in Example 13.1 can be found by choosing only the first term in relation (13.5.8). This
scheme can also be employed to construct a set of harmonic functions for the Papkovich potentials;
see Little (1973).

EXAMPLE 13.5: SPHERICAL CAVITY IN AN INFINITE MEDIUM SUBJECTED TO UNIFORM
FAR-FIELD TENSION
Consider the problem of a stress-free spherical cavity in an infinite elastic solid that is subjected to a
uniform tensile stress at infinity. The problem is shown in Figure 13.5, and for convenience we have
oriented the z-axes along the direction of the uniform far-field stress S.

We first investigate the nature of the stress distribution on the spherical cavity caused solely by
the far-field stress. For the axisymmetric problem, the spherical stresses are related to the cylindrical
components (see Appendix B) by the equations

sR ¼ sr sin
2 fþ sz cos

2 fþ 2srz sinf cosf
s4 ¼ sz sin

2 fþ sr cos
2 f� 2srz sinf cos f

sR4 ¼ ðsr � szÞsinf cosf� srz
�
sin2f� cos2 f

� (13.5.9)

Therefore, the far-field stress sNz ¼ S produces normal and shearing stresses on the spherical
cavity of the form

sR ¼ S cos2 f; sRf ¼ �S sin f cos f (13.5.10)

Using particular forms from our general solution (13.5.8), we wish to superimpose additional
stress fields that will eliminate these stresses and vanish at infinity.
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It is found that the superposition of the following three fields satisfies the problem requirements:

1. Force doublet in z direction. This state corresponds to a pair of equal and opposite forces in the
z direction acting at the origin. The solution is formally determined from the combination of
two equal but opposite Kelvin solutions from Example 13.1. The two forces are separated by a
distance d, and the limit is taken as d/ 0. This summation and limiting process yields a state
that is actually the derivative (v/vz) of the original Kelvin field with a new coefficient of �Ad
(see Exercise 13.18). This field’s coefficient is denoted as K1.

2. Center of dilatation. This field is the result of three mutually orthogonal double-force pairs
from the previous state (1) (see Exercise 13.19). The coefficient of this state is denoted by K2.

3. Particular biharmonic term. A state corresponding to the A1 term from equation (13.5.8).

Combining these three terms with the uniform far-field stress and using the condition of zero
stress on the spherical cavity provide sufficient equations to determine the three unknown constants.
Details of this process can be found in Timoshenko and Goodier (1970), and the results determine
the coefficients of the three superimposed fields

K1 ¼ � 5Sa3

2ð7� 5nÞ

K2 ¼ Sð1� 5nÞa3
ð7� 5nÞ

A1 ¼ Sa5

2ð7� 5nÞ

(13.5.11)

Using these constants, the stress and displacement fields can be determined.
The normal stress on the x,y-plane (z ¼ 0) is given by

x

y

z

a

S

S

FIGURE 13.5 Spherical Cavity in an Infinite Medium Under Tension.
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szðr; 0Þ ¼ S

�
1þ 4� 5n

2ð7� 5nÞ
a3

r3
þ 9

2ð7� 5nÞ
a5

r5

�
(13.5.12)

At r ¼ a, this result produces the maximum stress

szða; 0Þ ¼ ðszÞmax ¼
27� 15n

2ð7� 5nÞ S (13.5.13)

Typically, for many metals, n ¼ 0.3, and this would give a stress concentration factor of

ðszÞmax

S
¼ 45

22
¼ 2:04 (13.5.14)

It should be noted that in three dimensions the stress concentration factor is generally a function
of Poisson’s ratio. A plot of this general behavior given by equation (13.5.13) is shown in
Figure 13.6. It can be observed that the value of Poisson’s ratio produces only small variation on
the stress concentration. It is also interesting to note that if the plot were continued for negative
values of Poisson’s ratio, further decrease in the stress concentration would be found. Exercise
13.26 explores this behavior in more detail.

Note that the corresponding two-dimensional case was previously developed in Example 8.7 and
produced a stress concentration factor of 3. Plots of the corresponding two- and three-dimensional
stress distributions are shown in Figure 13.7. For each case the normal stress component in the di-
rection of loading is plotted versus radial distance away from the hole. It is seen that the three-
dimensional stresses are always less than two-dimensional predictions. This is to be expected
because the three-dimensional field has an additional dimension to decrease the concentration caused
by the cavity. Both stress concentrations rapidly decay away from the hole and essentially vanish at
r > 5a. Additional information on this problem is given by Timoshenko and Goodier (1970).
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FIGURE 13.6 Stress Concentration Factor Behavior for the Spherical Cavity Problem.
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13.6 Stress functions
In the absence of body forces, the stress formulation of elasticity theory includes the equilibrium and
Beltrami–Michell equations

sij; j ¼ 0 (13.6.1)

sij;kk þ 1

1þ n
skk;ij ¼ 0 (13.6.2)

In order to develop a general solution to this system, stress functions are commonly used. Of course,
we have already seen the use of several special stress functions earlier in the text, including Airy’s form
for the plane problem and Prandtl’s function for the torsion example. Here, we investigate the general
three-dimensional case and later specialize these results to some of the particular cases just mentioned.
The concept of developing a stress function involves the search for a representation of the form

sij ¼ FijfFg (13.6.3)

where Fij is some differential operator and F is a tensor-valued variable. Normally, the search looks
for forms that automatically satisfy the equilibrium equations (13.6.1), and these are called self-
equilibrated forms.

It is apparent that the equilibrium equations will be satisfied if sij is expressed as the curl of some vector
function, because the divergence of a curl vanishes identically. It can be shown that under certain conditions
one such equilibrated form that provides a complete solution to the elasticity problem is given by

sij ¼ εimpεjklFmk;pl (13.6.4)

whereF is a symmetric second-order tensor. Relation (13.6.4) is sometimes referred to as the Beltrami
representation, and F is called the Beltrami stress function. It has been shown that all elasticity
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solutions admit this representation; see, for example, Carlson (1966). It is easily demonstrated that
(13.6.4) is an equilibrated form, since

sij; j ¼
�
εimpεjklFmk;pl

�
; j
¼ εimpεjklFmk;plj ¼ 0

because of the product of symmetric and antisymmetric forms in indices jl.
Property (1.3.5) allows expansion of the alternating symbol product, and thus relation (13.6.4) can

be expressed as

sij ¼ dijFkk;ll � dijFkl;kl � Fij;kk þ Fli;lj þ Flj;li � Fkk;ij (13.6.5)

or

s11 ¼ F33;22 þ F22;33 � 2F23;23

s22 ¼ F11;33 þ F33;11 � 2F31;31

s33 ¼ F22;11 þ F11;22 � 2F12;12

s12 ¼ �F12;33 � F33;12 þ F23;13 þ F31;23

s23 ¼ �F23;11 � F11;23 þ F31;21 þ F12;31

s31 ¼ �F31;22 � F22;31 þ F12;32 þ F23;12

(13.6.6)

The first invariant of the stress tensor then becomes

snn ¼ εnmpεnklFmk;pl

¼ �dmkdpl � dmldpk
�
Fmk;pl

¼ Fkk;ll � Flk;lk

(13.6.7)

and thus the compatibility equations (13.6.2) can be expressed in terms of the general stress function as

�
εimpεjklFmk;pl

�
;nn þ 1

1þ n

�
Fkk;ll � Flk;lk

�
;ij ¼ 0 (13.6.8)

Not all of the six components of Fij are independent. Two alternate ways of generating complete
solutions to the stress formulation problem are developed through the use of reduced forms that include
the Maxwell and Morera stress function formulations.

13.6.1 Maxwell stress function representation
The Maxwell stress function representation considers the reduced form whereby all off-diagonal
elements of Fij are set to zero

Fij ¼
2
4F11 0 0

0 F22 0
0 0 F33

3
5 (13.6.9)

which yields a representation

s11 ¼ F33;22 þ F22;33

s22 ¼ F11;33 þ F33;11

s33 ¼ F22;11 þ F11;22

s12 ¼ �F33;12

s23 ¼ �F11;23

s31 ¼ �F22;31

(13.6.10)
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Notice that the Airy stress function that is used for two-dimensional problems is a special case of this
scheme with F11 ¼ F22 ¼ 0 and F33 ¼ f(x1, x2).

13.6.2 Morera stress function representation
The Morera stress function method uses the general form with diagonal terms set to zero

Fij ¼

2
64

0 F12 F13

F12 0 F23

F13 F23 0

3
75 (13.6.11)

This approach yields the representation

s11 ¼ �2F23;23

s22 ¼ �2F31;31

s33 ¼ �2F12;12

s12 ¼ �F12;33 þ F23;13 þ F13;23

s23 ¼ �F23;11 þ F13;21 þ F12;31

s31 ¼ �F31;22 þ F12;32 þ F23;12

(13.6.12)

It can be observed that for the torsion problem, the Prandtl stress function (here denoted by 4) is a
special case of this representation with F12 ¼ F13 ¼ 0 and F23,1 ¼ 4(x1, x2).
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EXERCISES

13.1 Using the Helmholtz representation, determine the displacement field that corresponds to
the potentials f ¼ x2 þ 4y2, 4 ¼ R2e3. Next show that this displacement field satisfies
Navier’s equation with no body forces.

13.2 Explicitly show that the dilatation and rotation are related to the Helmholtz potentials
through relations (13.1.3).

13.3 For the case of zero body forces, show that by using the vector identity (1.8.5)9 Navier’s
equation can be written as

ðlþ 2mÞV2uþ ðlþ mÞV� V� u ¼ 0

Using repeated differential operations on this result, show that the displacement vector is
biharmonic. Furthermore, because the stress and strain are linear combinations of first
derivatives of the displacement, they too will be biharmonic.

13.4 For the case of Lamé’s potential, show that strains and stresses are given by (13.2.3).

13.5 Justify that the Galerkin vector satisfies the governing equation (13.3.2).

13.6 Show that the Helmholtz potentials are related to the Galerkin vector by relations (13.3.3).

13.7 Justify relations (13.3.4) for the stress components in terms of the Galerkin vector.

13.8 For the case of zero body forces, the Galerkin vector is biharmonic. However, it was pointed
out that in curvilinear coordinate systems, the individual Galerkin vector components might
not necessarily be biharmonic. Consider the cylindrical coordinate case where V ¼ Vr er þ
Vq eq þ Vz ez. Using the results of Section 1.9, first show that the Laplacian operator on each
term will give rise to the following relations

V2ðVrerÞ ¼
�
V2Vr � Vr

r2

�
er þ 2

r2
vVr

vq
eq

V2ðVqeqÞ ¼
�
V2Vq � Vq

r2

�
eq � 2

r2
vVq

vq
er

V2ðVzezÞ ¼ V2Vzez

Using these results, show that the biharmonic components are given by

V2V2ðVrerÞ ¼
��

V2 � 1

r2

�2

Vr � 4

r4
vVr

vq2

�
er þ

�
4

r2

�
V2 � 1

r2

�
vVr

vq

�
eq

V2V2ðVqeqÞ ¼
�
� 4

r2

�
V2 � 1

r2

�
vVq

vq

�
er þ

��
V2 � 1

r2

�2

Vq � 4

r4
v2Vq

vq2

�
eq

V2V2ðVzezÞ ¼ V2V2Vzez

and thus only the component Vz will satisfy the scalar biharmonic equation.
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13.9 Explicitly show that Boussinesq’s problem as illustrated in Figure 13.2 is solved by the
superposition of a Galerkin vector and Lamé’s potential given by relation (13.3.13). Verify
that the Cartesian displacements and stresses are given by

u ¼ Px

4pmR

�
z

R2
� 1� 2n

Rþ z

�
; v ¼ Py

4pmR

�
z

R2
� 1� 2n

Rþ z

�
; w ¼ P

4pmR

�
2ð1� nÞ þ z2

R2

�

sx ¼ � P

2pR2

"
3x2z

R3
� ð1� 2nÞ

 
z

R
� R

Rþ z
þ x2ð2Rþ zÞ

RðRþ zÞ2
!#

sy ¼ � P

2pR2

"
3y2z

R3
� ð1� 2nÞ

 
z

R
� R

Rþ z
þ y2ð2Rþ zÞ

RðRþ zÞ2
!#

sz ¼ �3Pz3

2pR5
; sxy ¼ � P

2pR2

"
3xyz

R3
� ð1� 2nÞð2Rþ zÞxy

RðRþ zÞ2
#

syz ¼ �3Pyz2

2pR5
; sxz ¼ �3Pxz2

2pR5

13.10 Show that Cerruti’s problem of Figure 13.3 is solved by the Galerkin vector and Lamé’s
potential specified in relations (13.3.15). Develop the expressions for the Cartesian
displacements and stresses

u ¼ P

4pmR

"
1þ x2

R2
þ ð1� 2nÞ

 
R

Rþ z
� x2

ðRþ zÞ2
!#

v ¼ Pxy

4pmR

 
1

R2
� 1� 2v

ðRþ zÞ2
!
; w ¼ Px

4pmR

�
z

R2
þ 1� 2n

Rþ z

�

sx ¼ Px

2pR3

"
� 3x2

R2
þ ð1� 2nÞ

ðRþ zÞ2
�
R2 � y2 � 2Ry2

Rþ z

�#

sy ¼ Px

2pR3

"
� 3y2

R2
þ ð1� 2nÞ

ðRþ zÞ2
�
3R2 � x2 � 2Rx2

Rþ z

�#

sz ¼ �3Pxz2

2pR5
; syz ¼ �3Pxyz

2pR5
; sxz ¼ �3Px2z

2pR5

sxy ¼ Py

2pR3

"
� 3x2

R2
� ð1� 2nÞ

ðRþ zÞ2
�
R2 � x2 þ 2Rx2

Rþ z

�#

13.11 Explicitly justify that the Papkovich functions A and B satisfy relations (13.4.9).
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13.12 For the axisymmetric case, the Papkovich functions reduced to the Boussinesq potentials B
and Az defined by relations (13.4.11). Show that the general forms for the displacements and
stresses in cylindrical coordinates are given by

ur ¼ � 1

2m

v

vr

�
Bþ Azz

4ð1� nÞ
�
; uq ¼ 0; uz ¼ 1

2m

�
Az � v

vz

�
Bþ Azz

4ð1� nÞ
��

sr ¼ � n

1� 2n
V2

�
Azz

4ð1� nÞ
�
þ n

1� 2n

vAz

vz
� v2

vr2

�
Bþ Azz

4ð1� nÞ
�

sq ¼ � n

1� 2n
V2

�
Azz

4ð1� nÞ
�
þ n

1� 2n

vAz

vz
� 1

r

v

vr

�
Bþ Azz

4ð1� nÞ
�

sz ¼ � n

1� 2n
V2

�
Azz

4ð1� nÞ
�
þ n

1� 2n

vAz

vz
þ vAz

vz2
� v2

vz2

�
Bþ Azz

4ð1� nÞ
�

srz ¼ 2merz ¼ 1

2

vAz

vr
� v2

vrvz

�
Bþ Azz

4ð1� nÞ
�

13.13 Using the results of Exercise 13.12, verify that the displacement and stress fields for
the Boussinesq problem of Example 13.4 are given by (13.4.16) and (13.4.17). Note
the interesting behavior of the radial displacement, that ur > 0 only for points where z/R >
(1 � 2n)R/(R þ z). Show that points satisfying this inequality lie inside a cone f � fo, with
fo determined by the relation cos2fo þ cosfo � (1 � 2n) ¼ 0.

13.14* The displacement field for the Boussinesq problem was given by (13.4.16). For this case,
construct a displacement vector distribution plot, similar to the two-dimensional case shown
in Figure 8.22. For convenience, choose the coefficient P/4pm ¼ 1 and take n ¼ 0. 3.
Compare the two- and three-dimensional results.

13.15 Consider an elastic half-space with sz ¼ 0 on the surface z ¼ 0. For the axisymmetric
problem, show that the Boussinesq potentials must satisfy the relation Az ¼ 2vB/vz within
the half-space.

13.16 Consider the Papkovich representation for the two-dimensional plane strain case where
A ¼ A1(x,y)e1 þ A2(x,y) e2 and B ¼ B(x,y). Show that this representation will lead to the
complex variable formulation

2mðuþ ivÞ ¼ kgðzÞ � zg0ðzÞ � jðzÞ
with appropriate definitions of g(z) and j(z).

13.17 Show that Kelvin’s problem of Figure 13.1 may be solved using the axisymmetric
Papkovich functions (Boussinesq potentials)

B ¼ 0; Az ¼ P

2pR

Verify that the displacements match those given in equations (13.3.10).
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13.18 A force doublet is commonly defined as two equal but opposite forces acting in an infinite
medium as shown in the following figure. Develop the stress field for this problem by
superimposing the solution from Example 13.1 onto that of another single force of �P
acting at the point z ¼ �d. In particular, consider the case as d / 0 such that the product
Pd/D, where D is a constant. This summation and limiting process yield a solution that is
simply the derivative of the original Kelvin state. For example, the superposition of the
radial stress component gives

lim
d/0

½srðr; zÞ � srðr; zþ dÞ� ¼ �d
vsr

vz

¼ � D

8pð1� nÞ
v

vz

h
ð1� 2nÞz�r2 þ z2

��3=2 � 3r2z
�
r2 þ z2

��5=2
i

The other stress components follow in an analogous manner. Using relations (13.5.9), show
that the stress components in spherical coordinates can be expressed as

sR ¼ � ð1þ nÞD
4pð1� nÞR3

�
� sin2fþ 2ð2� nÞ

1þ v
cos2f

�

sRf ¼ � ð1þ nÞD
4pð1� nÞR3

sinf cosf

x
y

z

P

P

d

13.19 Using the results of Exercise 13.18, continue the superposition process by combining three
force doublets in each of the coordinate directions. This results in a center of dilatation at
the origin as shown in the figure. Using spherical coordinate components, show that the
stress field for this problem is given by

sR ¼ � ð1� 2nÞD
2pð1� nÞR3

¼ C

R3
; sRf ¼ 0

where C is another arbitrary constant, and thus the stresses will be symmetrical with
respect to the origin.
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x

y

z

P

P

P

13.20 Using the basic field equations for spherical coordinates given in Appendix A, formulate the
elasticity problem for the spherically symmetric case, where uR ¼ u(R), uf ¼ uq ¼ 0. In
particular, show that the governing equilibrium equation with zero body forces becomes

d2u

dR2
þ 2

R

du

dR
� 2

R2
u ¼ 0

Next solve this equation and show that the general solution can be expressed as

u ¼ C1Rþ C2

R2
; sR ¼ K1 � 2K2

R3
; sf ¼ sq ¼ K1 þ K2

R3

where C1, C2, K1, and K2 are arbitrary constants.

13.21 Using the results of Exercise 13.20, solve the problem of a stress-free spherical cavity in an
infinite elastic medium under uniform far-field stress sNx ¼ sNy ¼ sNz ¼ S. Explicitly show
that the stress concentration factor for this case is K ¼ 1.5, and compare this value with the
corresponding two-dimensional case. Explain why we would expect such a difference be-
tween these two concentration factors.

13.22 Using the results of Exercise 13.20, solve the problem of a thick-walled spherical shell with
inner radius R1 loaded with uniform pressure p1, and with outer radius R2 loaded with
uniform pressure p2. For the special case with p1 ¼ p and p2 ¼ 0, show that the stresses are
given by

sR ¼ pR3
1

R3
2 � R3

1

�
1� R3

2

R3

�

sf ¼ sq ¼
pR3

1

R3
2 � R3

1

�
1þ R3

2

2R3

�

13.23* Using the general solution forms of Exercise 13.20, solve the problem of a rigid spherical
inclusion of radius a perfectly bonded to the interior of an infinite body subjected to uniform
stress at infinity of sNR ¼ S. Explicitly show that the stress field is given by
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sR ¼ S

�
1þ 2

1� 2n

1þ n

�a
R

�3�
; sf ¼ sq ¼ S

�
1� 1� 2n

1þ n

�a
R

�3�
Determine the nature of the stress field for the incompressible case with n ¼ 1/2. Finally,
explore the stresses on the boundary of the inclusion (R ¼ a), and plot them as a function of
Poisson’s ratio.

13.24 Consider the three-dimensional stress concentration problem given in Example 13.5. Recall
that the maximum stresses occur on the boundary of the spherical cavity (r ¼ a). With
respect to the problem geometry shown in Figure 13.5, the maximum stress component was
found to be

szða; z ¼ 0Þ ¼ 27� 15n

2ð7� 5nÞ S

Other stress components can also be determined from the solution method outlined in the
problem, and two particular components on the cavity boundary are

sfða;f ¼ 0Þ ¼ � 3þ 15n

2ð7� 5nÞ S; sqða;f ¼ p=2Þ ¼ 15n� 3

2ð7� 5nÞ S

Using these results, along with the superposition principle, show that maximum stresses for
the following cases are given by:
(a) Uniform uniaxial tension loadings of S along x and z directions

smax ¼ 24� 30n

2ð7� 5nÞ S

(b) Tension loading S along z axis and compression loading S along x directions

smax ¼ 15

7� 5n
S

(c) Tension loadings of S along each Cartesian direction

smax ¼ 3

2
S

Note that part (b) corresponds to far-field pure shear and part (c) coincides with the
results found in Exercise 13.21.

13.25* Generate plots of the stress concentration factor vs. Poisson’s ratio (similar to Figure 13.6)
for each case in Exercise 13.24. Compare the results.

13.26* There has been some interesting research dealing with materials that have negative values of
Poisson’s ratio; recall from fundamental theory �1 � n � 1/2. Beginning studies of this
concept were done by Lakes (1987) and commonly these types of materials have specialized
internal microstructures (e.g., foams and cellular solids) that produce such anomalous
behavior. Several interesting consequences occur with n < 0, and one such behavior results
in decreasing the stress concentration around holes in three-dimensional solids. This can be
directly explored by expanding the plot shown in Figure 13.6 to include the full range of
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Poisson’s ratio. Redevelop Figure 13.6 for the range �1 � n � 1/2 and determine the
maximum decrease in the stress concentration factor.

13.27 Using the Morera stress function formulation, define

F13 ¼ �1

2
zf;1; F23 ¼ �1

2
zf;2; F12;12 ¼ �n

2
V2f

where f is independent of z. Show that this represents plane strain conditions with f equal
to the usual Airy stress function.
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Nonhomogeneous Elasticity 14
It has been observed that many materials have a spatially varying microstructure that leads to spatial
variation in elastic properties and thus requires a nonhomogeneous model. For example, in geo-
mechanics studies, rock and soil material will commonly have depth-dependent properties resulting
from the overburden of material lying above a given point. Gradations in microstructure are also
commonly found in biological cellular materials such as wood and bone, where biological adaptation
has distributed the strongest microstructure in regions that experience the highest stress.

Recently, there has been considerable interest in the development of graded materials that have
spatial property variations deliberately created to improve mechanical performance (Suresh, 2001).
Such graded properties can be traced back to surface heat treatments for swords, knives, and gear teeth.
Various composite materials have been constructed using graded transitions in composition to reduce
stress concentrations at interfaces. In the 1990s, interest in graded materials focused on controlling
thermal stresses in structures exposed to high-temperature applications and to surface contact damage.
This work has led to a new class of engineered materials called functionally graded materials (FGMs)
that are developed with spatially varying properties to suit particular applications. The graded
composition of such materials is commonly established and controlled using advanced manufacturing
techniques, including powder metallurgy, chemical vapor deposition, centrifugal casting, solid free-
form fabrication, and other schemes.

Our previous developments have been connected to the formulation and solution of isotropic and
anisotropic elasticity problems. We now wish to go back and investigate the inhomogeneous isotropic
case and explore solutions for a few problems that exist in the literature. We will focus attention on
formulation issues that allow the development of tractable boundary value problems and will examine
the effect of inhomogeneity on the resulting stress and displacement solution fields. By exploring
closed-form solutions to a series of example problems, we will see that in some cases inhomogeneity
produces little effect, while in others significant and fundamentally different stress and displacement
distributions will occur.

14.1 Basic concepts
For the inhomogeneous model, elastic moduli Cijkl or Cij will now be functions of the spatial co-
ordinates xm describing the problem; thus, Hooke’s law would read

sij ¼ CijklðxmÞekl (14.1.1)

Other than this modification, the structural form of Hooke’s law is the same as used previously. Similar
to the anisotropic case presented in Chapter 11, the other basic field equations of strain displacement,
strain compatibility, and equilibrium will also remain the same. However, it should be recognized that
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by combining the new form (14.1.1) with these other field equations (e.g., in developing stress or
displacement formulations), entirely new and more complicated field equations will be generated. This
will create a more complex problem formulation and analytical solutions will of course be more
difficult to obtain.

For example, considering the general case with no body forces, the displacement formulation
would now yield equilibrium equations in terms of displacement as

sij; j ¼ 0 0
v

vxj

�
Cijkl

�
uk;l þ ul:k

�� ¼ 0 0
v

vxj

�
Cijkluk;l

� ¼ 0 (14.1.2)

where we have used the symmetry Cijkl ¼ Cijlk. Expanding relation (14.1.2) gives

Cijkluk; lj þ Cijkl; juk;l ¼ 0 (14.1.3)

The first term in relation (14.1.3) corresponds to the homogeneous case and for isotropic materials
would simply lead to the homogeneous form of Navier’s equations (5.4.3) developed in Chapter 5. The
second term in (14.1.3) accounts for spatial variation in elastic moduli and includes first-order
derivatives of both the elastic moduli and displacements.

Depending on the nature of the material’s anisotropy and inhomogeneity, equation (14.1.3) could
become very complex and thereby limit solution by analytical methods. Only limited studies have
included both anisotropy and inhomogeneity (e.g., Lekhnitskii, 1981; Horgan and Miller, 1994; Fraldi
and Cowin, 2004; Stampouloglou and Theotokoglou, 2005), and thus most nonhomogeneous analyses
have been made under the simplification of material isotropy. For example, using the isotropic
assumption, relation (14.1.3) for a two-dimensional plane strain model would reduce to

m72uþ ðlþ mÞ v

vx

�
vu

vx
þ vv

vy

�
þ vl

vx

�
vu

vx
þ vv

vy

�
þ 2

vm

vx

vu

vx
þ vm

vy

�
vu

vy
þ vv

vx

�
¼ 0

m72vþ ðlþ mÞ v

vy

�
vu

vx
þ vv

vy

�
þ vl

vy

�
vu

vx
þ vv

vy

�
þ 2

vm

vy

vv

vy
þ vm

vx

�
vu

vy
þ vv

vx

�
¼ 0

(14.1.4)

which clearly simplifies to the homogeneous form (7.1.5) if the elastic moduli l and m are constants.
Next, consider the stress formulation for the inhomogeneous but isotropic plane problem with

no body forces. Introducing the usual Airy stress function f defined by (8.1.3), the equilibrium
equations are again identically satisfied. As before, we look to generate compatibility relations in
terms of stress and then incorporate the Airy stress function to develop a single governing field
equation. Because the elastic moduli are now functions of spatial coordinates, results for the
nonhomogeneous case will differ significantly from our developments in Section 7.5 that lead to a
simple biharmonic equation. For the two-dimensional plane strain case, using Hooke’s law in the
only nonzero compatibility relation (7.1.6) gives the new form for nonhomogeneous materials in
terms of the Airy stress function

v2

vx2

�
1� n2

E

v2f

vx2
� nð1þ nÞ

E

v2f

vy2

�

þ v2

vy2

�
1� n2

E

v2f

vy2
� nð1þ nÞ

E

v2f

vx2

�
þ 2

v2

vxvy

�
1þ n

E

v2f

vxvy

�
¼ 0

(14.1.5)
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The corresponding relation for the case of plane stress is given by

v2

vx2

�
1

E

v2f

vx2
� n

E

v2f

vy2

�
þ v2

vy2

�
1

E

v2f

vy2
� n

E

v2f

vx2

�
þ 2

v2

vxvy

�
1þ n

E

v2f

vxvy

�
¼ 0 (14.1.6)

Note that results (14.1.5) and (14.1.6) reduce to the biharmonic equation for the case of constant elastic
moduli. It should be evident that a biharmonic function will not, in general, satisfy either of these
governing equations for nonhomogeneous materials.

In order to formulate tractable problems, the variation in elastic properties is normally taken to be
of simple continuous form. For example, in an unbounded domain, the elastic moduli might be chosen
to vary in a single direction, as shown schematically in Figure 14.1, with shading drawn to indicate
gradation.

Particular functional forms used to prescribe such nonhomogeneity have commonly used linear,
exponential, and power-law variation in elastic moduli of the form

CijðxÞ ¼ Co
ijð1þ axÞ

CijðxÞ ¼ Co
ije

ax

CijðxÞ ¼ Co
ijx

a

(14.1.7)

where Co
ij and a are prescribed constants. Because experience has indicated that variation in Poisson’s

ratio normally does not play a significant role in determining magnitudes of stresses and displace-
ments, n is commonly taken to be constant in many inhomogeneous formulations. Exercises 14.2, 14.3,
and 14.7 explore formulation results for some particular elastic moduli variation.

Early work on developing elasticity solutions for inhomogeneous problems began to appear in the
literature a half a century ago; see, for example, Du (1961), Ter-Mkrtich’ian (1961), Rostovtsev
(1964), and Plevako (1971, 1972). Numerous works followed on refining formulations and developing
solutions to problems of engineering interest; see, for example, the beam studies by Sankar (2001).
Much of this work was fueled by interest in developing models of functionally graded materials. We
now wish to explore specific solutions to some of these problems and compare the results with pre-
viously generated homogeneous solutions to find particular differences resulting from the
inhomogeneity.

Cij = Cij(x)

x

FIGURE 14.1 Continuously Graded Material in a Single Direction.
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We first start with a simple example that exploits a scheme to generate nonhomogeneous solutions
from corresponding homogeneous solutions. This method has been previously used by Sadd (2010) to
determine a variety of plane nonhomogeneous elasticity solutions. This particular technique falls
under the more general theoretical framework given by Fraldi and Cowin (2004) who showed that
inhomogeneous solutions can be found from an associated homogeneous problem providing the
problem has a zero eigenvalue stress state, detðsijÞ ¼ 0. By definition all plane stress problems satisfy
this requirement.

EXAMPLE 14.1: UNIAXIAL TENSION OF A GRADED SHEET
Consider a two-dimensional, plane stress problem of a rectangular inhomogeneous sheet under uni-
form uniaxial tension T, as shown in Figure 14.2. We will assume that the modulus of elasticity is
uniaxially graded such that E ¼ E(x), while Poisson’s ratio will be taken to be constant. Recall that
this problem was solved for the homogeneous case in Example 8.1.

Based on the boundary conditions, we might guess the same stress field solution as found in the
homogeneous case, that is, sx ¼ T, sy ¼ sxy ¼ 0, and this field would result from the Airy stress
function f ¼ Ty2/2. Note that this stress function is biharmonic but, as previously mentioned, it
will not identically satisfy the governing equation (14.1.6). Using this stress function along with
the prescribed uniaxial gradation E ¼ E(x), the governing relation (14.1.6) would imply that (see
Exercise 14.1)

d2

dx2

�
1

E

�
¼ 0 0

1

E
¼ Axþ B or E ¼ 1

Axþ B
(14.1.8)

where A and B are arbitrary constants. Thus, we find a restriction on the allowable form of the ma-
terial grading in order to preserve the simplified uniform stress field found in the homogeneous case.
It will be more convenient to rewrite relation (14.1.8) in the form

E ¼ Eo

1þ Kx
(14.1.9)

where Eo is the modulus at x¼ 0 and K is another arbitrary constant related to the level of gradation.
Note that K ¼ 0 corresponds to the homogeneous case with E ¼ Eo.

x

y

TT

l

E = E(x)

FIGURE 14.2 Uniaxial Tension of an Inhomogeneous Sheet.
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Next we wish to determine the displacement field associated with this stress distribution.
This is accomplishedby the standardprocedure usingHooke’s lawand the strain displacement relations

vu

vx
¼ ex ¼ 1

E

�
sx � nsy

� ¼ T

E

vv

vy
¼ ey ¼ 1

E

�
sy � nsx

� ¼ �n
T

E

(14.1.10)

These results are then integrated to get

u ¼ T

Eo

 
xþ K

x2

2
þ v

y2

2

!! 

v ¼ �n
T

Eo
ð1þ KxÞy (14.1.11)

where we have selected zero rigid-body motion terms such that uð0; 0Þ ¼ vð0; 0Þ ¼ uzð0; 0Þ ¼ 0.
Note the somewhat surprising result that the horizontal displacement u also depends on y, a result
coming from the fact that the shear strain must vanish.

The gradation in Young’s modulus is shown in Figure 14.3 for three different gradation cases
with K ¼ �0.5, 0, 5. These particular parameters give increasing, constant, and decreasing grada-
tion with axial distance x.

The axial displacement behavior for these three gradation cases is shown in Figure 14.4. As ex-
pected, a sheet with material having increasing stiffness (positive gradation, K¼�0.5) would yield
smaller displacements than a corresponding homogeneous sample. The opposite behavior is
observed for a sheet with decreasing stiffness (K ¼ 5).

Comparison results from this simple example are somewhat limited since the solution scheme
started with the assumption that the inhomogeneous stress field coincided with the corresponding
homogeneous solution. Thus, differences between the material models only developed in the strain
and displacement fields. As we shall see in the coming problems, using a more general problem
formulation and solution will produce completely different inhomogeneous stress, strain, and
displacement fields.

14.2 Plane problem of a hollow cylindrical domain under
uniform pressure

We start our study by re-examining Example 8.6, a plane axisymmetric problem of a hollow cylin-
drical domain under uniform internal and external pressure loadings, as shown in Figure 14.5.
Following the work of Horgan and Chan (1999a), we choose plane stress conditions and initially allow
the modulus of elasticity and Poisson’s ratio to be functions of the radial coordinate; that is, E(r) and
n(r). In polar coordinates, the two nonzero normal stresses can then be expressed in terms of the radial
displacement u(r) by
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FIGURE 14.3 Modulus of Elasticity Gradation.
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FIGURE 14.4 Axial Displacement Behavior for Several Gradation Cases for y [ 0.
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sr ¼ EðrÞ
1� n2ðrÞ

�
du

dr
þ nðrÞ u

r

	

sq ¼ EðrÞ
1� n2ðrÞ

�
u

r
þ nðrÞ du

dr

	 (14.2.1)

Note that the corresponding plane strain relations can be determined by simple transformation of
elastic moduli as given in Table 7.1.

Because it has been shown that variation in Poisson’s ratio is of much less significance than in
Young’s modulus, wewill now assume that n(r) is a constant. Substituting (14.2.1) into the equations of
equilibrium then generates the form of Navier’s equation for this case

d2u

dr2
þ 1

r

du

dr
� u

r2
þ 1

EðrÞ
dEðrÞ
dr

�
du

dr
þ n

u

r

	
¼ 0 (14.2.2)

This result should be compared to the previously developed relation (8.3.10) for the homogeneous
case.

In order to develop a solvable equation, choose the specific power-law variation for Young’s
modulus

EðrÞ ¼ Eo


 r
a

�n
(14.2.3)

where Eo and n are constants and a is the inner boundary radius. Note that Eo has the same units as
E and as n/ 0 we recover the homogeneous case. In order to gain insight into the relative magnitude
of such a gradation, relation (14.2.3) is plotted in Figure 14.6 for different values of power-law
exponent. Note that the case n ¼ 1 corresponds to linear variation in Young’s modulus. It is

a

b

pi

po

FIGURE 14.5 Hollow Cylindrical Domain Under Uniform Pressure.
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FIGURE 14.6 Gradation in Young’s Modulus for Different Values of the Power-Law Exponent.

observed that values of n greater than 1 produce quite substantial changes in elastic modulus. These
particular parameters of the power-law exponent will be used in subsequent comparisons of the stress
fields.

This particular gradation model reduces the Navier equation (14.2.2) to

d2u

dr2
þ ðnþ 1Þ

r

du

dr
þ ðnn� 1Þ u

r2
¼ 0 (14.2.4)

The solution to equation (14.2.4) is given by

u ¼ Ar�ðnþkÞ=2 þ Brð�nþkÞ=2 (14.2.5)

where A and B are arbitrary constants and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4� 4nn

p
> 0. Substituting result (14.2.5) into

relation (14.2.1) allows determination of the stresses.
Evaluation of the pressure boundary conditions sr (a)¼�pi and sr (b)¼�po allows determination

of the arbitrary constants A and B and produces the following stress field

sr ¼ �a�n=2b�n=2rð�2�kþnÞ=2

bk � ak

h
�akþn=2bð2þkÞ=2po þ an=2bð2þkÞ=2pork þ að2þkÞ=2bn=2piðbk � rkÞ

i

sq ¼ a�n=2b�n=2rð�2�kþnÞ=2

bk � ak

"
ðað2þkÞ=2bn=2pi � an=2bð2þkÞ=2poÞrkð2þ kn� nnÞ

k � nþ 2n

þ ak=2bk=2ð�abðkþnÞ=2pi þ aðkþnÞ=2ÞbpoÞð �2þ knþ nnÞ
k þ n� 2n

#
(14.2.6)
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As with the homogeneous example, we choose the special case with only internal pressure ( po ¼ 0),
which gives the stresses

sr ¼ pia
ð2þk�nÞ=2

bk � ak

h
rð�2þkþnÞ=2 � bkrð�2�kþnÞ=2

i

sq ¼ pia
ð2þk�nÞ=2

bk � ak

�
2þ kn� nn

k � nþ 2n
rð�2þkþnÞ=2 þ 2� kn� nn

k þ n� 2n
bkrð�2�kþnÞ=2

	 (14.2.7)

The homogeneous solution is found by letting n / 0, which implies that k / 2, giving the result

sr ¼ pia
2

b2 � a2

�
1� b2

r2

	

sq ¼ pia
2

b2 � a2

�
1þ b2

r2

	 (14.2.8)

which matches with the solution shown in Figure 8.9 for b/a ¼ 2.
A plot of the nondimensional stress distributions through the thickness for various gradation cases

is shown in Figures 14.7 and 14.8 for the case of b/a¼ 5 and n¼ 0.25. Figure 14.7 shows the variation
in radial stress for different amounts of inhomogeneity reflected by choices of the power-law exponent
n. Comparing the homogeneous case (n ¼ 0) with increasing gradients of radial inhomogeneity
illustrates that the radial stress is not significantly affected by this type of material grading. However,

n = 0 (Homogeneous Case)

n = 2 

n = 1

n = 1/2

b / a = 5

= 0.25

FIGURE 14.7 Nondimensional Radial Stress Distribution Through Domain Wall.
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the corresponding results for the tangential stress shown in Figure 14.8 show much more marked
differences. While the homogeneous hoop stress is always a monotonically decreasing function of
the radial coordinate and has its maximum on the inner boundary (r ¼ a), the inhomogeneous solid
behaves quite differently. The graded material shows behaviors whereby the tangential stress can
take a minimum value within the domain (a< r< b) and have a maximum value on the outer boundary
(r ¼ b). More details on these behaviors are given by Horgan and Chan (1999a).

Another interesting special case is that of external pressure loading ( pi¼ 0) only. This solution can
be easily developed from the general solution (14.2.6) and is given in the following relations (14.2.9)

sr ¼ �pob
ð2þk�nÞ=2

bk � ak

h
rð�2þkþnÞ=2 � akrð�2�kþnÞ=2

i

sq ¼ �pob
ð2þk�nÞ=2

bk � ak

�
2þ kn� nn

k � nþ 2n
rð�2þkþnÞ=2 þ 2� kn� nn

k þ n� 2n
akrð�2�kþnÞ=2

	 (14.2.9)

The homogeneous solution is again found by letting n / 0, giving the result

sr ¼ � pob
2

b2 � a2

�
1� a2

r2

	

sq ¼ � pob
2

b2 � a2

�
1þ a2

r2

	 (14.2.10)

n = 0 (Homogeneous Case) 

n = 1/2 

n = 1 

n = 2 

b / a = 5
= 0.25

FIGURE 14.8 Nondimensional Tangential Stress Distribution Through Domain Wall.
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As in Section 8.4.2, the problem of a stress-free hole in an infinite medium under uniform far-field
stress (see Figure 8.11) can be obtained from (14.2.10) by letting po / �T and b/a / N, which
gives the result identical to the previous relation (8.4.9)

sr ¼ T

�
1� a2

r2

	
; sq ¼ T

�
1þ a2

r2

	
(14.2.11)

and thus produces the classic stress concentration factor of K ¼ 2. The next logical step in our
investigation would be to pursue the corresponding concentration effect for the inhomogeneous case using
the same limiting process. However, attempting this on relations (14.2.9) surprisingly fails to produce
satisfactory results because finite stresses for b/a / N require that (2 þ k � n)/2 ¼ k 0 k ¼ 2 � n,

which is precluded by the original definition k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4� 4nn

p
unless n ¼ 0. Horgan and Chan

(1999a) point out that this unexpected result is similar to findings in analogous problems involving
certain curvilinear anisotropic materials (e.g., Galmudi and Dvorkin, 1995; Horgan and Baxter, 1996;
see also Section 11.7).

Even with this analytical dilemma, we can still pursue the original stress concentration problem of
interest (Figure 8.11) by simply evaluating the general result (14.2.9) for the case with large b/a and
po / �T. Figure 14.9 illustrates this case for the tangential stress behavior with b/a ¼ 20, n ¼ 0.25,
and n ¼ �0.2, 0, 0.2, 0.4, and 0.6. Since the domain includes large variation in the radial coordinate,
we restricted the power-law exponent to cases where n < 1. It is observed that as n increases, the
maximum hoop stress no longer occurs on the inner boundary r ¼ a, thus reducing the local stress
concentration effect. For negative values of the power-law exponent, the local stress on the hole

n = 0 (Homogeneous Case) 

n = 0.2 

n = 0.4 

n = 0.6 

n = − 0.2 

b / a = 20
= 0.25

FIGURE 14.9 Nondimensional Tangential Stress Distribution for the External Loading Case with a Large b /a.
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boundary will be higher than the homogeneous case, thus creating an increase in the local stress
concentration. Figure 14.10 shows the behavior of the equivalent stress concentration factor, K ¼
sq(a)/T, as a function of the power-law exponent over the range �0.4 � n � 0.4. The stress
concentration exhibits a decreasing behavior with the gradation parameter. Similar stress-decreasing
effects have also been found in studies of anisotropic circular tube problems (Galmudi and Dvorkin,
1995; Horgan and Baxter, 1996).

Clearly, the results in this section indicate that inhomogeneity can significantly alter the elastic
stress distribution in such cylindrical domain problems. Stress concentration effects are also changed
from corresponding homogeneous values. For this analysis, material inhomogeneity was modeled
using a simple radial power-law relation for Young’s modulus, and thus solution results were limited to
correlations with the power-law exponent for cases with increasing or decreasing modulus.

14.3 Rotating disk problem
The next problem wewish to investigate is that of a solid circular disk (or cylinder) of radius a, rotating
with constant angular velocity u, as shown in Figure 14.11. The disk is assumed to have zero tractions
on its outer boundary, r ¼ a. Recall that the solution to the homogeneous problem was developed in
Example 8.11.

We follow the inhomogeneous formulation and solution scheme originally presented by Horgan
and Chan (1999b). As before, we note that this is an axisymmetric plane problem in which all elastic
fields are functions only of the radial coordinate. The rotation produces a centrifugal loading that can
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FIGURE 14.10 Equivalent Stress Concentration Factor for a Small Stress-Free Hole in a Large Domain Under

Uniform Biaxial Tension.
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FIGURE 14.11 Rotating Disk Problem.

be handled easily by including a radial body force, Fr ¼ ru2r, where r is mass density. The only
nonzero equilibrium equation then reduces to

dsr
dr

þ sr � sq

r
þ ru2r ¼ 0 (14.3.1)

As in our previous example, we choose plane stress conditions and allow the modulus of elasticity and
Poisson’s ratio to be functions of the radial coordinate: E(r) and n(r). Using Hooke’s law in polar
coordinates, the two nonzero normal stresses can then be expressed in terms of the radial displacement
u(r) by

sr ¼ EðrÞ
1� n2ðrÞ

�
du

dr
þ nðrÞ u

r

	

sq ¼ EðrÞ
1� n2ðrÞ

�
u

r
þ nðrÞ du

dr

	 (14.3.2)

As before, the corresponding plane strain relations can be determined by simple transformation of
elastic moduli, as given in Table 7.1.

Again, following similar logic to that in the previous example, variation in Poisson’s ratio is of
much less significance than Young’s modulus, and thus we assume that n(r) ¼ n ¼ constant.
Substituting (14.3.2) into equations (14.3.1) then generates Navier’s equation for this case

d2u

dr2
þ 1

r

du

dr
� u

r2
þ 1

EðrÞ
dEðrÞ
dr

�
du

dr
þ n

u

r

	
¼ �r

�
1� n2

�
u2r

EðrÞ (14.3.3)

As in our previous pressurized tube example, a power-law distribution for Young’s modulus will help
reduce the complexity of Navier’s equation. On this basis, we again choose a modulus variation of the
form (identical to (14.2.3))

EðrÞ ¼ Eo


 r
a

�n
(14.3.4)
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FIGURE 14.12 Gradation in Young’s Modulus for the Rotating Disk Problem.

where Eo and n are constants and a is the outer boundary radius. As before, Eo has the same units as
E and as n / 0 we recover the homogeneous case. Various moduli distributions from this form are
shown in Figure 14.12 for different values of the power-law exponent, n ¼ �0.5, 0, 0.5, 1, 2. Notice
that for cases with n > 0, the gradation increases from 0 at the disk center to Eo at the outer boundary.
For the case with n < 0, the modulus is unbounded at the disk’s center, and thus we expect a similar
singularity in the stress field for this case.

Using this gradation model, relation (14.3.3) reduces to

d2u

dr2
þ ðnþ 1Þ

r

du

dr
þ ðnn� 1Þ u

r2
¼ �r

�
1� n2

�
u2r1�nan

Eo
(14.3.5)

The general solution to equation (14.3.5) follows from standard theory as the sum of homogeneous
plus particular solutions. Note that the solution to the homogeneous equation was given by (14.2.5).
Combining these results gives

uðrÞ ¼ Ar�ðnþkÞ=2 þ Brð�nþkÞ=2 � r
�
1� n2

�
u2an

Eoðnn� 3nþ 8Þr
3�n (14.3.6)

where A and B are arbitrary constants and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 þ 4� 4nnÞ

p
> 0. Solution (14.3.6) requires the

following

nn� 3nþ 8s 0 or ðnþ kÞ=2s 3 (14.3.7)

For the case where (14.3.7) does not hold [i.e., (14.3.7) with equality signs], the particular solution
must be fundamentally modified, giving the result
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uðrÞ ¼ A�r�3 þ B�r3�n � r
�
1� n2

�
u2an

Eo
logðr=aÞ (14.3.8)

Relation (14.3.7) with equality signs yields n ¼ 8/(3 � n), which implies the interesting fact that for
0 � n � 1/2, the gradation power-law exponent must be in the range

8

3
� n � 16

5
(14.3.9)

We now proceed to determine the displacement and stress fields for particular gradation cases invoking
bounded solutions at the origin (r ¼ 0) and zero tractions (sr ¼ 0) at r ¼ a.

Consider first the case with n> 0 so that the modulus gradation increases monotonically with radial
coordinate. Because now n þ k > 0, the boundedness condition at the origin requires that A ¼ 0, and
the third term in solution (14.3.6) implies that n � 3, thus restricting the power-law exponent to the
range 0< n� 3. To satisfy the traction-free boundary condition, our solution (14.3.6) must retain the B
term, which means that k� n> 0, and this will happen only if 1� nn> 0. Additionally, we must honor
the usual range restriction on Poisson’s ratio, 0 � n � 1/2. Collectively these conditions place coupled
restrictions on the gradation parameter n and Poisson’s ratio n, but these can be satisfied. Therefore, we
now move forward with the solution assuming this is the case.

With A ¼ 0 in solution (14.3.6), the radial stress follows from relation (14.3.2)1

sr ¼ Ba�nEo

1� n2

�
nþ 1

2
ðk � nÞ

	
rðnþk�2Þ=2 � ð3� nþ nÞru2r2

ðnn� 3nþ 8Þ (14.3.10)

Applying the zero-traction boundary condition easily determines the constant B, giving the final stress
results

sr ¼
�
3� nþ n

�
ru2

ðnn� 3nþ 8Þ
h
a3�ðnþkÞ=2rðnþk�2Þ=2 � r2

i

sq ¼ ru2

ðnn� 3nþ 8Þ
�ð3� nþ nÞ ½1þ ðn=2Þ ðk � nÞ�

½nþ ðk � nÞ=2� a3�ðnþkÞ=2rðnþk�2Þ=2 � ½ð3� nÞnþ 1�r2
	

(14.3.11)

for the case nn � 3n þ 8 s 0.
Recall that these results were developed under condition (14.3.7). For the case where this condition

is not satisfied, solution form (14.3.8) must be used instead. Similar analysis yields the stress solutions

sr ¼ ru2
hðn� 4Þ ðn� 2Þ

n
r2 logðr=aÞ

	

sq ¼ ru2

n

�
8r2 � 3ðn� 4Þ ðn� 2Þr2 logðr=aÞ�

for the case
8

3
� n � 16

5

(14.3.12)

The homogeneous case corresponds to n/ 0, which means k/ 2, and (14.3.11) would reduce to our
previous solution (8.4.81).
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Returning now to consider the case where n < 0 (decreasing radial gradation), we find that the
boundedness condition implies that the solution constant A must again be set to 0. However, no
restriction is needed on the power of r in the third term of solution (14.3.6). Consideration of the
special solution (14.3.8) is no longer needed because nn � 3n þ 8 s 0 will always be satisfied. Thus,
the solution given by (14.3.11) is also valid for n < 0.

To show details on the stress distribution, we will choose the case n ¼ 0 so that no restriction is
placed on the condition that k � n > 0, and additionally plane stress results coincide with plane strain
values. We also take the case 8 � 3n s 0 and thus relations (14.3.11) are used to determine the
stresses. Results for the radial stress distribution are shown in Figure 14.13 for gradation parameter
values n ¼ �0.5, 0, 0.5, 1, 2. The results indicate very significant differences in behavior from the
homogeneous case n ¼ 0, which has its maximum value at the disk center (r ¼ 0) and decays to 0 at
the outer stress-free boundary. For inhomogeneous cases with positive gradations (e.g., n ¼ 0.5, 1, 2),
the radial stress actually vanishes at r ¼ 0 and at r ¼ a, and thus takes on a maximum value at an
interior point within the interval 0 < r < a. It can be shown that this maximum occurs at

r ¼ rm ¼ a

�
2

M � 1

�1=ðM�3Þ
; where M ¼ 1

2



nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4

p �
(14.3.13)

Note that for the homogeneous case, as n/ 0,M/ 1 and rm/ 0, and as n/ 8/3,M/ 3 and rm/ a.
Also note that for positive gradations (n > 0) at fixed r, the radial stress decreases monotonically with
the gradation parameter n.

FIGURE 14.13 Radial Stress Distribution in a Rotating Disk (n [ 0).
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For negative values of gradation parameter, the radial stress distribution drastically changes its
behavior and is actually unbounded at the origin. The case for n¼�0.5 is shown in Figure 14.13, and it
is observed that the stress drops rapidly from its singular value at r¼ 0 to 0 at the outer boundary r¼ a.
As pointed out by Horgan and Chan (1999b), similar singular behaviors have been found in the
analogous problem for homogeneous radially orthotropic materials (Horgan and Baxter, 1996; see
Section 11.7) that are due to an anisotropic focusing effect at the origin. For the present inhomoge-
neous case, the singularity corresponds to the unbounded Young’s modulus as r / 0 with n < 0 (see
Figure 14.12).

It is interesting that the location of maximum stress can actually be controlled by appropriate
modulus gradation [see, for example, relation (14.3.13)]. We also find this situation in the torsion
problem to be discussed later in the chapter. Also, as discussed by Horgan and Chan (1999b), a design
criterion for a disk of uniform stress proposes that

sr ¼ sq; r˛ ð0; aÞ (14.3.14)

which can be accomplished by a gradation of the form

EðrÞ
1þ nðrÞ ¼ Kru2

�
a2 � r2

�
(14.3.15)

where K is an arbitrary constant.
As shown by Horgan and Chan (1999b), the hoop stress sq for the disk problem has similar be-

haviors; a detailed plot of this component has been left as an exercise.

14.4 Point force on the free surface of a half-space
By far the most studied inhomogeneous elasticity problem is the half-space domain under point or
distributed loadings applied to the free surface. Over the past several decades this problem has received
considerable attention; examples include Holl (1940), Lekhnitskii (1961), Gibson (1967), Gibson and
Sills (1969), Kassir (1972), Awojobi and Gibson (1973), Carrier and Christian (1973), Calladine and
Greenwood (1978), Booker, Balaam, and Davis (1985), Oner (1990), Giannakopoulos and Suresh
(1997), and Vrettos (1998). Wang et al. (2003) provide an excellent literature review of previous work.
Early applications of these studies were in the field of geomechanics, where the depth variation in the
elastic response of soils was investigated.

More current applications involved creating functionally graded materials (FGMs) with depth-
dependent properties to provide high surface hardness/stiffness while allowing for softer/tougher
core material. Solutions to this type of problem have typically been either for the two-dimensional
plane strain/plane stress case or for the three-dimensional axisymmetric geometry. Inhomogeneity
has normally included elastic moduli variation with depth coordinates into the elastic half-space using
forms similar to relations (14.1.7). Many problems with varying degrees of complexity in either the
loading or moduli variation have been solved. We will explore one of the more basic and simple
solutions that provide fundamental insight into the effect of inhomogeneity on the stress and
displacement fields.

Following the work of Booker, Balaam, and Davis (1985), we first explore the two-dimensional
plane strain solution of an inhomogeneous half-space with depth-dependent elastic modulus
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carrying the surface point loadings, as shown in Figure 14.14. Of course, this problem is the coun-
terpart of the Flamant solution given for the homogeneous case in Section 8.4.7. Similar to the pre-
vious example, the particular variation in Young’s modulus is prescribed by the power-law relation

E ¼ Eoz
a (14.4.1)

where Eo and a are positive constants. Again, note that Eo has the same units as E and as a / 0 we
recover the homogeneous case. The general graded behavior of form (14.4.1) is identical to that shown
in Figure 14.6. As before, stress and displacement fields commonly show little variation with Poisson’s
ratio, and thus n is to be kept constant.

The problem is formulated and solved using polar coordinates r and q, as shown in Figure 14.14.
Reviewing the solution forms from our previous homogeneous case in Section 8.4.7, we follow a semi-
inverse solution scheme by proposing a somewhat similar form for the nonhomogeneous stress and
displacement fields

sr ¼ SrðqÞ
r

; sq ¼ SqðqÞ
r

; srq ¼ SrqðqÞ
r

ur ¼ UrðqÞ
ra

; uq ¼ UqðqÞ
ra

(14.4.2)

where Sr , Sq, Srq, Ur, and Uq are functions to be determined and a is the power-law exponent from
relation (14.4.1). Using these forms, the equilibrium equations (7.6.3) with no body force produce

dSrq
dq

� Sq ¼ 0

dSq
dq

þ Srq ¼ 0

(14.4.3)
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FIGURE 14.14 Inhomogeneous Half-Space with Graded Modulus E(z).
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These relations can be easily solved, giving the results

Srq ¼ A cosqþ B sinq
Sq ¼ �A sinqþ B cosq

(14.4.4)

where A and B are arbitrary constants. On the free surface, the stress-free boundary conditions sq(r, 0)¼
srq(r, 0)¼ 0 and sq(r, p)¼ srq(r, p)¼ 0 greatly simplify the solution forms. These conditions imply that
A and B vanish and thus Srq and Sq are also zero, indicating that sr is the only nonzero stress. This type of
stress field is commonly referred to as a radial stress distribution. Similar findings were also found in the
homogeneous solution.

Combining Hooke’s law (plane strain case) with the strain displacement relations gives

vur
vr

¼ 1þ n

E
½ð1� nÞsr � vsq�

1

r

�
ur þ vuq

vq

�
¼ 1þ n

E
½ð1� nÞsq � nsr�

1

r

vur
vq

þ vuq
vr

� uq
r
¼ 2ð1þ nÞ

E
srq

(14.4.5)

Substituting our assumed forms (14.4.2) into (14.4.5) and using the fact that Srq ¼ Sq ¼ 0 yields

�aUr ¼ 1� n2

Eo cosa q
Sr

dUq

dq
þ Ur ¼ � ð1þ nÞn

Eo cosa q
Sr

dUr

dq
� ð1þ aÞ Uq ¼ 0

(14.4.6)

Relations (14.4.6) represent three linear differential equations for the unknowns Sr, Ur, and Uq. The
system can be reduced to a single equation in terms of a single unknown and then solved. This result
may then be back-substituted to determine the remaining unknowns. The final solution results are
found to be

Sr ¼ �cosaq

�
C1 cosbqþ 1þ a

b
C2 sinbq

	

Ur ¼ 1� n2

Eoa

�
C1 cosbqþ 1þ a

b
C2 sinbq

	

Uq ¼ 1� n2

Eoa

�
� b

1þ a
C1 sinbqþ C2 cosbq

	
(14.4.7)

where C1 and C2 are arbitrary constants and b is a parameter given by

b2 ¼ ð1þ aÞ
h
1� an

1� n

i
(14.4.8)
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As with the homogeneous case, the constants C1 and C2 are determined by applying force equilibrium
over the semicircular arc C of radius a, as shown in Figure 14.14. Similar to relations (8.4.33), we may
write the force balance as

Z ¼ �
ðp=2
�p=2

srða; qÞa cosqdq ¼ �
ðp=2
�p=2

SrðqÞcosqdq ¼ C1=Fab

X ¼ �
ðp=2
�p=2

srða; qÞa sinqdq ¼ �
ðp=2
�p=2

SrðqÞsinqdq ¼ C2=Fab

(14.4.9)

and thus C1 ¼ ZFab and C2 ¼ XFab, where

Fab ¼ 2ð1þaÞð2þ aÞ
p

Gðð3þ aþ bÞ=2ÞGðð3þ a� bÞ=2Þ
Gð3þ aÞ (14.4.10)

and G($) is the gamma function defined by G(z) ¼
ðN
0

e�t tz�1 dt.

The solution is now complete, and the homogeneous case can be extracted by letting a/ 0, which
yields b ¼ 1, Fab ¼ 2/p, and the solution reduces to our previous result (8.4.34).

Let us now evaluate the special inhomogeneous case with only normal loading (X¼ 0) and explore
the nature of the resulting stress and displacement fields. The solution for this case is given by

sr ¼ �cosaq

r
ZFab cosbq

ur ¼
�
1� n2

�
Eoara

ZFab cosbq

uq ¼ �
�
1� n2

�
b

Eoarað1þ aÞ ZFab sinbq

(14.4.11)

Results (14.4.11) are shown in Figures 14.15–14.18, with n ¼ 0.25 for three different values of
the power-law exponent including the homogeneous case (a ¼ 0). Such results illustrate the effect of
inhomogeneity on the resulting elastic fields. Clearly, the degree of nonhomogeneity has a significant
influence on these stress and displacement distributions. Figures 14.15 and 14.16 illustrate that, at
a fixed depth into the half-space, both radial stress and displacement directly under the surface loading
(q ¼ 0) will increase with higher values of a. On the other hand, Figure 14.17 indicates that the
magnitude of the tangential displacement will get smaller as the inhomogeneity variation is increased.
Radial stress contours are shown in Figure 14.18 for both the homogeneous (a ¼ 0) and nonhomo-
geneous (a¼ 1) cases. For the inhomogeneous material, the stress contours become elongated and thus
are no longer circular, as demonstrated for the homogeneous case.

The corresponding three-dimensional problem shown in Figure 14.19 has also been developed by
Booker, Balaam, and Davis (1985). The formulation was constructed using spherical coordinates in much
the same manner as the previous two-dimensional problem. Following an axisymmetric, semi-inverse
solution scheme, we assume that uq ¼ 0, sfq ¼ sRq ¼ 0 and the nonzero stresses and displacements
are given by

sR ¼ SRðfÞ
R2

; sf ¼ SfðfÞ
R2

; sq ¼ SqðfÞ
R2

; sRf ¼ SRfðfÞ
R2

UR ¼ URðfÞ
R1þa

; Uf ¼ UfðfÞ
R1þa

(14.4.12)
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FIGURE 14.15 Radial Stress Distribution in a Nonhomogeneous Half-Space.
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FIGURE 14.16 Radial Displacement Distribution in a Nonhomogeneous Half-Space.
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where SR, Sf, Sq, SRf,UR, and Uf are functions to be determined and a is the power-law exponent from
relation (14.4.1). Using these forms, the equilibrium equations in spherical coordinates (A.6), with no
body force, reduce to

dSRf
df

þ SRf cot f� Sf � Sq ¼ 0

dSf
df

þ �Sf � Sq
�
cot fþ SRf ¼ 0

(14.4.13)

Furthermore, by considering the equilibrium of a conical volume bounded by R1 � R � R2, f ¼ fo, it
can be shown that SRf and Sf are related and can be expressed by

SRf ¼ SðfÞsin f

Sf ¼ SðfÞcos f (14.4.14)

Combining Hooke’s law with the strain–displacement relations again gives a system of relations
similar to the previous result (14.4.6) for the two-dimensional case. Unfortunately, the relations for
the three-dimensional problem cannot be integrated analytically, and thus final results were
generated by Booker, Balaam, and Davis (1985) using numerical methods. The radial stress results

= 0.5

 = 0 (Homogeneous Case)

= 1

Angle,   (Degrees)

FIGURE 14.17 Tangential Displacement Distribution in a Nonhomogeneous Half-Space.
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are shown in Figure 14.20, with n ¼ 0.25 for several cases of power-law exponent, and again the
homogeneous case (a ¼ 0) corresponds to the Boussinesq solution given in Examples 13.2 and 13.4.
Note the similarity of the three-dimensional results with those of the two-dimensional model shown
in Figure 14.15.

Oner (1990) has also provided a solution to the point-force problem shown in Figure 14.19 but for
the power-law gradation in terms of the shear modulus

m ¼ moz
n (14.4.15)

For this type of inhomogeneity, the resulting Cartesian stress and displacement fields are found
to be

sx ¼ ðnþ 3ÞP
2pz2

cosðnþ3Þ f sin2f cos2q

sy ¼ ðnþ 3ÞP
2pz2

cosðnþ3Þf sin2f sin2q

sz ¼ ðnþ 3ÞP
2pz2

cosðnþ5Þ f

sxy ¼ ðnþ 3ÞP
2pz2

cosðnþ3Þ f sin2f sinq cosq

syz ¼ ðnþ 3ÞP
2pz2

cosðnþ4Þf sinf sinq

szx ¼ ðnþ 3ÞP
2pz2

cosðnþ4Þ f sinf cosq

(14.4.16)
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FIGURE 14.18 Radial Stress Contour Comparisons for the Flamant Problem.
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FIGURE 14.20 Radial Stress Distribution for the Nonhomogeneous Point Load Problem, with n [ 0.25.

(From Booker et al., 1985; reprinted with permission of John Wiley & Sons.)
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u ¼ P

4pmo

xz

ðx2 þ y2 þ z2Þðnþ3Þ=2

v ¼ P

4pmo

yz

ðx2 þ y2 þ z2Þðnþ3Þ=2

w ¼ P

4pmo

x2 þ y2 þ z2ðnþ 2Þ
ð1þ nÞðx2 þ y2 þ z2Þðnþ3Þ=2

(14.4.17)

These results are developed under the power-law exponent restriction n ¼ (1/n) � 2. Note that the
homogeneous case corresponds to n ¼ 0, which implies that n ¼ 1/2 (incompressible case). Under
these conditions, the inhomogeneous results (14.4.16) and (14.4.17) reduce to the homogeneous
solution developed in Exercise 13.9.

The distribution of the normal stress sz is shown in Figure 14.21 for several cases of the power-law
exponent, n¼ 0, 1/3, 2/3, 1. These results indicate behavior similar to that shown in Figure 14.20 for a
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FIGURE 14.21 Nondimensional Normal Stress Distribution sz for the Inhomogeneous Point Load Problem.

(See Oner, 1990.)
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comparable inhomogeneous problem. Directly under the loading (f ¼ 0), the normal stress sz in-
creases with increasing inhomogeneity gradient, a result consistent with the findings shown in Figures
14.15 and 14.20. Oner also presents stress and displacement results for the horizontal point loading
(Cerruti problem) shown in Figure 13.3.

14.5 Antiplane strain problems
Because of its relatively simple formulation, antiplane strain problems have been investigated for
nonhomogeneous material. Examples of such work include Clements, et al. (1978), Dhaliwal and
Singh (1978), Delale (1985), Ang and Clements (1987), Erdogan and Ozturk (1992), Horgan and
Miller (1994), Clements, Kusuma, and Ang (1997), and Spencer and Selvadurai (1998). Much of this
work has been applied to crack problems related to mode III fracture behaviors. For the homoge-
neous case, this crack problem was given as Exercise 8.41. The homogeneous formulation of
antiplane strain was given in Section 7.4, and we now develop the corresponding inhomogeneous
formulation for a particular class of material gradation.

Antiplane strain is based on the existence of only out-of-plane deformation, and thus with respect
to a Cartesian coordinate system the assumed displacement field can be written as

u ¼ v ¼ 0; w ¼ wðx; yÞ (14.5.1)

This yields the following strains
ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

vw

vx
; eyz ¼ 1

2

vw

vy

(14.5.2)

Using Hooke’s law, the stresses become

sx ¼ sy ¼ sz ¼ sxy ¼ 0

sxz ¼ m
vw

vx
; syz ¼ m

vw

vy

(14.5.3)

Thus, in the absence of body forces, the equilibrium equations reduce to the single equation

v

vx

�
m
vw

vx

�
þ v

vy

�
m
vw

vy

�
¼ 0 (14.5.4)

where the shear modulus is assumed to be a function of the in-plane coordinates m ¼ m(x,y).
Following the solution procedure outlined by Dhaliwal and Singh (1978), the transformation

wðx;yÞ ¼ Wðx;yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mðx;yÞ

p
(14.5.5)

can be used to reduce relation (14.5.4) to

m72W þ 1

2

�
1

2m



m2x þ m2y

�
� mxx � myy

�
W ¼ 0 (14.5.6)

where mx ¼
vm

vx
, my ¼

vm

vy
, mxx ¼

v2m

vx2
, myy ¼

v2m

vy2
.
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We now assume separable product forms for W and m such that

Wðx;yÞ ¼ XðxÞYðyÞ; mðx;yÞ ¼ mopðxÞqðyÞ (14.5.7)

where mo is a constant. Substituting (14.5.7) into (14.5.6) yields a separable relation that can be written
as two equations

Xxx þ
�
n2 þ 1

4

�
px
p

�2

� 1

2

�
pxx
p

�#
X ¼ 0

Yyy þ
�
�n2 þ 1

4

�
qy
q

�2

� 1

2

�
qyy
q

�#
Y ¼ 0

(14.5.8)

where n2 is the separation constant and subscripts indicate partial differentiation as before.
In order to proceed further with an analytical solution, particular choices of the material gradation

functions p and q must be made. In particular, we choose the case where

1

2p

d2p

dx2
� 1

4

�
1

p

dp

dx

�2

¼ ao

1

2q

d2q

dy2
� 1

4

�
1

q

dq

dy

�2

¼ bo

(14.5.9)

where ao and bo are constants; relations (14.5.8) then reduce to

Xxx þ k2X ¼ 0
Yyy �

�
ao þ bo þ k2

�
Y ¼ 0

(14.5.10)

where k2 ¼ n2 � ao. Combining the previous results, the general bounded solution to governing
equation (14.5.4) for, say, the domain y � 0, can be written in a Fourier integral form

wðx;yÞ ¼ 1ffiffiffi
m

p
ðN
0

h
A


x
�
cos


xx
�
þ BðxÞsinðxxÞe�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aoþboþx2Þyp

dx (14.5.11)

under the conditions that k2 ¼ n2 � ao � 0 and ao þ bo þ k2 � 0, and where A(x) and B(x) are arbitrary
functions of x.

Again, following the work of Dhaliwal and Singh (1978), an application of this solution method
can be applied to an unbounded medium containing a crack located at �1 � x � 1, y ¼ 0 (see
Figure 14.22). The crack surfaces are to be loaded under self-equilibrated uniform, out-of-plane shear
stress S. For this problem the boundary conditions can thus be written as

wðx; 0Þ ¼ 0; jxj > 1
syzðx; 0Þ ¼ S; jxj < 1
syzðx;yÞ/ 0 as r /N

(14.5.12)

For the particular material inhomogeneity, we choose p(x) ¼ eajxj and q(y) ¼ ebjyj, and thus

mðx;yÞ ¼ mo expðajxj þ bjyjÞ (14.5.13)
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where a and b are constants. For this choice, p(x) and q(y) satisfy conditions (14.5.9) with ao ¼ a2/4
and bo ¼ b2/4; our bounded solution scheme then gives

w ¼ 1ffiffiffi
m

p
ðN
0

AðxÞe�sðxÞjyj cosðxxÞdx

syz ¼ � ffiffiffi
m

p ðN
0
½b=2þ sðxÞ�AðxÞe�sðxÞjyj cosðxxÞdx

(14.5.14)

where sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ða2 þ b2Þ=4

q
.

The two boundary conditions (14.5.12)1,2 imply that

ðN
0

AðxÞcosðxxÞdx ¼ 0; x > 1

ðN
0

�
b=2þ sðxÞ�AðxÞcosðxxÞdx ¼ � Sffiffiffiffiffi

mo
p e�ax=2; 0 < x < 1

(14.5.15)

For some function F(t), we can write an integral representation for A(x) in the form

AðxÞ ¼
ð1
0
FðtÞJoðxtÞdt (14.5.16)

where Jo is the zero-order Bessel function of the first kind. By using the result

ðN
0

JoðxtÞcosðxxÞdx ¼

0; x > t�
t2 � x2

��1=2
; 0 � x < t

(14.5.17)

x

y
τyz = S

11

FIGURE 14.22 Antiplane Strain Crack Problem.
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it can be shown that relation (14.5.15)1 will be identically satisfied. The remaining boundary condition
(14.5.15)2 can be rewritten asðN

0
½xþ GðxÞ�AðxÞcosðxxÞdx ¼ � Sffiffiffiffiffi

mo
p e�ax=2; 0 < x < 1 (14.5.18)

where G(x) ¼ s(x) � x þ b/2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ða2 þ b2Þ

q
/4 � x þ b/2.

Using results (14.5.16) and (14.5.17), relation (14.5.18) can be expressed as the following integral
equation

FðtÞ þ
ð1
0
FðxÞKðx; tÞdx ¼ gðtÞ; 0 < t < 1 (14.5.19)

with

gðtÞ ¼ � 2tS

p
ffiffiffiffiffi
mo

p
ð1
0

e�ax=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2

p dx ¼ tSffiffiffiffiffi
mo

p ½Loðat=2Þ � Ioðat=2Þ�

Kðx; tÞ ¼ t

ðN
0

GðxÞJoðxtÞJoðxtÞdx

(14.5.20)

and Io($) is the modified Bessel function of the first kind of zero order and Lo($) is the modified Struve
function of zero order (see Abramowitz and Stegun, 1964).

Combining the previous results, the shear stress on the x-axis can be expressed as

syzðx; 0Þ ¼
ffiffiffiffiffi
mo

p
x

e�ax=2

"
Fð1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p �
ð1
0

tF0ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2

p dt

#

� ffiffiffiffiffi
mo

p
e�ax=2

ð1
0
FðtÞdt

ðN
0

GðxÞJoðxtÞcosðxxÞdx; x > 1

(14.5.21)

As mentioned in Chapters 8 and 10, the stress intensity factor plays an important role in fracture
mechanics theory. For this out-of-plane deformation case, the stress intensity factor is related to mode
III fracture toughness, and its value can be computed by the expression

KIII ¼ lim
x/1þ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� 1Þ

p
syzðx; 0Þ

�
¼ ffiffiffiffiffi

mo
p

ea=2Fð1Þ (14.5.22)

To obtain explicit results for the displacement, stress, and stress intensity factor, equation (14.5.19)
must be solved to determine the functional behavior of F(t) for various values of a and b. Relation
(14.5.19) is a Fredholm integral equation of the second kind and generally requires numerical inte-
gration methods to determine the solution. Dhaliwal and Singh (1978) conducted such numerical
evaluation, and their results for the stress intensity factor are shown in Figure 14.23. These results
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generally indicate that the stress intensity factor increases with a but decreases with increasing values
of b. Note that for the homogeneous case (a ¼ b ¼ 0), KIII ¼ S

ffiffiffiffiffi
mo

p
.

14.6 Torsion problem
We now wish to re-examine the torsion of elastic cylinders for the case where the material is
nonhomogeneous. The basic formulation and particular solutions were given in Chapter 9 for the
homogeneous case and in Chapter 11 for anisotropic materials. Although a vast amount of work has
been devoted to these problems, only a few studies have investigated the corresponding inhomoge-
neous case. Early work on the torsion of nonhomogeneous cylinders includes Lekhnitskii (1981); later
studies were done by Rooney and Ferrari (1995) and Horgan and Chan (1999c). As expected, most
closed-form analytical solutions for the inhomogeneous problem are limited to cylinders of revolution,
normally with circular cross-sections.

Following the work of Horgan and Chan (1999c), we consider the torsion of a right circular cyl-
inder of radius a, as shown in Figure 14.24. The cylindrical body is assumed to be isotropic, but with
graded shear modulus that is a function only of the radial coordinate m ¼ m(r). The usual boundary
conditions require zero tractions on the lateral boundary S and a resultant pure torque loading T over
each end section R.

Inhomogeneity Factor, β
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FIGURE 14.23 Stress Intensity Factor as a Function of Inhomogeneity.

(From Dhaliwal and Singh, 1978; reprinted with permission from Springer.)
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FIGURE 14.24 Torsion of a Nonhomogeneous Circular Cylinder.

The beginning formulation steps remain the same as presented previously, and thus the displace-
ments, strains, and stresses are the same as given in Chapter 9

u ¼ �ayz
v ¼ axz
w ¼ wðx; yÞ

(14.6.1)

ex ¼ ey ¼ ez ¼ exy ¼ 0

exz ¼ 1

2

�
vw

vx
� ay

�

eyz ¼ 1

2

�
vw

vy
þ ax

� (14.6.2)

sx ¼ sy ¼ sz ¼ sxy ¼ 0

sxz ¼ m

�
vw

vx
� ay

�

syz ¼ m

�
vw

vy
þ ax

� (14.6.3)

It again becomes useful to introduce the Prandtl stress function, f ¼ f(x,y)

sxz ¼ vf

vy
; syz ¼ �vf

vx
(14.6.4)

so that the equilibrium equations are satisfied identically. We can again generate the compatibility
relation among the two nonzero stress components by differentiating and combining relations
(14.6.3)2,3 to eliminate the displacement terms. Substituting (14.6.4) into that result gives the gov-
erning relation in terms of the stress function

v

vx

�
1

m

vf

vx

�
þ v

vy

�
1

m

vf

vy

�
¼ �2a (14.6.5)

where the shear modulus m must now be left inside the derivative operations because the material is
inhomogeneous. Recall that, for the homogeneous case, relation (14.6.5) reduced to the Poisson
equation 72f ¼ 2ma.

14.6 Torsion problem 453



Incorporation of the boundary condition that tractions vanish on the lateral surface S leads to identical
steps as given previously by equations (9.3.10)–(9.3.12), thus leading to the fact that the stress function
must be a constant on all cross-section boundaries

df

ds
¼ 0 0 f ¼ constant; on S (14.6.6)

For simply connected sections, the constant may again be chosen as 0. Invoking the resultant force
conditions on the cylinder end planes (domain R), as given by relations (9.3.14), again yields

T ¼
ðð

R



xTn

y � yTn
x

�
dxdy ¼ 2

ðð
R
fdxdy (14.6.7)

and the torsional rigidity J can again be defined by J ¼ T/a.
Because we wish to use a simple radial shear modulus variation, m ¼ m(r), it is more convenient to

use a polar coordinate formulation. For the circular cylinder under study, the problem reduces to an
axisymmetric formulation independent of the angular coordinate and the warping displacement
vanishes. Under these conditions the displacements, strains, and stresses reduce to

ur ¼ uz ¼ 0; uq ¼ arz

er ¼ eq ¼ ez ¼ erz ¼ erq ¼ 0; eqz ¼ ar

2

sr ¼ sq ¼ sz ¼ srz ¼ srq ¼ 0; sqz ¼ amr

(14.6.8)

Relations (14.6.4) and (14.6.5) for the stress function formulation then reduce to a system in terms of
only the radial coordinate r

sqz ¼ �df

dr

1

r

d

dr

�
r

m

df

dr

�
¼ �2a

(14.6.9)

with boundary condition f(a) ¼ 0.
The governing differential equation (14.6.9) can be easily integrated to give the general solution

fðrÞ ¼ �a

ð
rmðrÞdr þ C1

ð
mðrÞ
r

dr þ C2 (14.6.10)

where C1 and C2 are arbitrary constants. We require that the solution for f remain bounded as r / 0,
thus implying that each integral term in (14.6.10) be finite at the origin. Restricting ourselves to the
plausible case where the shear modulus is expected to be nonzero but bounded at the origin,

lim
x/0

ð
rmðrÞdr / 0, while the second integral, lim

x/0

ð�
m
ðrÞ
r

	
dr, is singular. Based on these arguments,

C1 must be set to 0. Finally, the boundary condition f(a) ¼ 0 determines the final constant C2 and
produces the general solution

fðrÞ ¼ a

ða
r
xmðxÞdx (14.6.11)
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With this result, the shear stress and torsional rigidity then become

sqz ¼ armðrÞ

J ¼ 2p

ða
0
r3mðrÞdr

(14.6.12)

To explore the effects of inhomogeneity, let us consider some specific gradations in shear modulus.
Following some of the examples discussed by Horgan and Chan (1999c), we consider two cases of the
following form

mðrÞ ¼ mo

�
1þ n

a
r

�m

mðrÞ ¼ moe
�n

a
r

(14.6.13)

where n � 0 and mo > 0 and m are material constants. Note that, for either example, as n / 0 we
recover the homogeneous case m(r) ¼ mo. Also, as r/ 0, m/ mo, and so these material examples all
have finite shear modulus at r ¼ 0.

Plots of these shear modulus gradations are shown in Figure 14.25 for various cases of material
parameter m with n ¼ 1. For the model given by (14.6.13)1, three cases are shown. The m ¼ 1 case
corresponds to a linearly increasing shear modulus from the central axis of the shaft, whilem¼�1 or�3
gives a nonlinear decreasing gradation in material stiffness. The figure also shows the modulus
variation for the exponential graded model given by (14.6.13)2 for the case n ¼ 1. All gradation forms

FIGURE 14.25 Shear Modulus Behavior for Torsion Problems (n [ 1).
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(14.6.13) allow simple solutions to be generated for the stress function, shear stress, and torsional
rigidity.

Solutions for the gradation model given by (14.6.13)1 are found to be

fðrÞ ¼

moa

2

�
a2 � r2

�þ moan

3

�
a2 � r3

a

�
; m ¼ 1

�moa
ha
n
r �


a
n

�2
log
���1þ n

a
r
���	þ moa

�
a2

n
�

a
n

�2
logj1þ nj

	
; m ¼ �1

8>>><
>>>:

(14.6.14)

sqz ¼ moar


1þ n

a
r
�m

(14.6.15)

Note that the solution for the stress function requires integration through relation (14.6.11), and
thus closed-form solutions can only be determined for integer and other special values of the
parameter m. From relation (14.6.15), it can be shown that if m � �1, the maximum shear stress
always occurs at the boundary r ¼ a. Recall that this result was found to be true in general for all
homogeneous cylinders of any cross-section geometry (see Exercise 9.5). However, for the inho-
mogeneous case when m < �1, the situation changes and the location of maximum shear stress can
occur in the cylinder’s interior.

Horgan and Chan (1999c) have shown that for the case with n > 0, the choice of m < �1 � 1/n
produces a maximum shear stress sq z at r ¼ �a/n(1 þ m). These results imply that modulus gradation
can be adjusted to allow control of the location of (sqz)max. Dimensionless shear stress distributions for
model (14.6.13)1 are shown in Figure 14.26 for various cases of material parameters m and n. As
expected, higher stresses occur for a gradation with increasing shear modulus. For the homogeneous
case, the shear stress distribution will be linear, as predicted from both elasticity theory and mechanics
of materials. For the nonhomogeneous cases with n ¼ 1 and m ¼ �1, it is noted that the maximum
shear stress occurs on the boundary of the shaft. However, for the case shown with n ¼ 1 and m ¼ �3,
the maximum stress occurs interior at r ¼ a/2 according to our previous discussion.

Considering next the solutions for the gradation model (14.6.13)2, relations (14.6.11) and (14.6.12)
give

fðrÞ ¼ moae
�n
a r

ar
n
þ

a
n

�2�� moaa
2

�
1

n
þ 1

n2

�
e�n

sqz ¼ moare
�n
a r

(14.6.16)

It can easily be shown that if n � 1 the maximum shear stress will exist on the outer boundary,
while if n > 1 the maximum moves to an interior location within the shaft. Nondimensional shear
stress distributions for this exponential gradation are shown in Figure 14.27 for several values of
the parameter n. As observed in the previous model, for the case with decreasing radial gradation
(n > 0), the shear stress will always be less than the corresponding homogeneous distribution. With
n < 0, we have an increasing radial gradation that results in stresses larger than the homogeneous
values.

The discussion of the location of maximum shear stress can be generalized for the radial gradation
case by going back to the general shear stress solution (14.6.12)1. Using this relation, it can be shown
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that the necessary and sufficient condition on m(r) for an extremum of sqz at an interior point (r < a) is
given by

m0ðrÞ < �mðrÞ
a

; r˛ð0; aÞ (14.6.17)

where the prime indicates differentiation. Furthermore the location ro of this extremum is specified by

ro ¼ �mðroÞ
m0ðroÞ (14.6.18)

Further analysis to determine the torsional rigidities can also be carried out (see, for example, Exercise
14.25). Horgan and Chan (1999c) have explored torsional rigidities in detail and have developed
several general results including upper and lower bounding theorems.

It should be noted that the general field equation for the torsion problem (14.6.5) is quite similar to
the corresponding field equation for the antiplane strain problem (14.5.4) discussed previously. Thus, a
transformation scheme similar to (14.5.5) may also help reduce the torsion field equation into a more
tractable relation. Following this concept, we use the transformation

fðx;yÞ ¼ Fðx;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mðx;yÞ

p
(14.6.19)

FIGURE 14.26 Shear Stress Distribution for the Torsion Problem with Modulus Given by Model (14.6.13)1.
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into (14.6.5) and find the following reduction

72Fþ FðmÞF ¼ �2a
ffiffiffi
m

p
(14.6.20)

where

FðmÞ ¼ 1

2m

�
72m� 3

2m
jVmj2

	
¼ � ffiffiffi

m
p

72


m�1=2

�
(14.6.21)

Assuming that m > 0 in the domain, boundary condition (14.6.6) implies that

F ¼ 0; on S (14.6.22)

This formulation leads to significant simplification for the case where F(m) ¼ 0, which corresponds to
the situation where m�1/2 is harmonic. For such a case, the governing equation reduces to the Poisson
equation

72F ¼ �2a
ffiffiffi
m

p
(14.6.23)
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FIGURE 14.27 Shear Stress Distribution for the Torsion Problem with Modulus Given by Model (14.6.13)2.
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and standard solution techniques for solving such equations can then be applied.
Another noteworthy area of significant research dealing with graded materials includes studies of

static and dynamic fracture mechanics; see, for example, Parameswaran and Shukla (1999, 2002).
These and other studies have investigated material gradation effects on crack tip stresses around
stationary and moving cracks.

This concludes our exploration into nonhomogeneous elasticity solutions. The examples given
illustrate some of the interesting effects caused by spatial variation of elastic moduli. As should be
evident, problem formulation and solution are more challenging. Solutions to such problems commonly
indicate significant differences in the elastic stress and displacement fields when compared with cor-
responding homogeneous solutions. In some cases, material gradation will reduce maximum stresses
and change the spatial location where such maxima occur. This provides the possibility of tailoring
material variation to achieve desired stresses in a structure and thus of functionally grading the material.
The difficult part of this concept is how to develop manufacturing techniques that will produce the
desired continuous modulus variation in realistic materials used in engineering applications.

References
Abramowitz M, Stegun IA: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical

Tables, National Bureau of Standards, 1964.
Ang WT, Clements DL: On some crack problems for inhomogeneous elastic materials, Int J Solids Structures, 23:

1089–1104, 1987.
Awojobi AO, Gibson RE: Plane strain and axially symmetric problems of a linearly nonhomogeneous elastic half-

space, Quart J Mech Appl Math 21:285–302, 1973.
Booker JR, Balaam NP, Davis EH: The behavior of an elastic non-homogeneous half-space. Part I. Line and point

loads, Int J Numer Anal Meth Geomech 9:353–367, 1985.
Calladine CR, Greenwood JA: Line and point loads on a non-homogeneous incompressible elastic half-space,

J Mech Appl Math 31:507–529, 1978.
Carrier WD, Christian JT: Analysis of an inhomogeneous elastic half-space, J Soil Mech Foundations Engng 99:

301–306, 1973.
Clements DL, Atkinson C, Rogers C: Antiplane crack problems for an inhomogeneous elastic material, Acta Mech

29:199–211, 1978.
Clements DL, Kusuma J, Ang WT: A note on antiplane deformations of inhomogeneous elastic materials, Int

J Engng Sci 35:593–601, 1997.
Delale F: Mode III fracture of bonded non-homogeneous materials, Engng Fracture Mech 22:213–226, 1985.
Dhaliwal RS, Singh BM: On the theory of elasticity of a non-homogeneous medium, J Elasticity 8:211–219, 1978.
Du CH: The two-dimensional problems of the nonhomogeneous isotropic medium, Problems of Continuum Me-

chanics: Contributions in Honor of the 70th Birthday of I. Muskehlishvili, Noordhoff, 1961, SIAM, 104–108.
Erdogan F, Ozturk M: Diffusion problems in bonded nonhomogeneous materials with an interface cut, Int J Engng

Sci 30:1507–1523, 1992.
Fraldi M, Cowin SC: Inhomogeneous elastostatic problem solutions constructed from stress-associated homo-

geneous solutions, J Mech Phys Solids 52:2207–2233, 2004.
Galmudi D, Dvorkin J: Stresses in anisotropic cylinders, Mech Res Commun 22:109–113, 1995.
Giannakopoulos AE, Suresh S: Indentation of solids with gradients in elastic properties: Part I. Point force, Int

J Solids Structures 34:2357–2392, 1997.
Gibson RE: Some results concerning displacements and stresses in a non-homogeneous elastic half space,

Geotechnique 17:58–67, 1967.

References 459

http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0010
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0010
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0015
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0015
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0020
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0020
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0025
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0025
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0030
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0030
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0035
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0035
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0040
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0040
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0045
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0045
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0050
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0055
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0060
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0060
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0065
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0065
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0070
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0070
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0075
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0080
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0080
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0085
http://refhub.elsevier.com/B978-0-12-408136-9.00014-3/ref0085


Gibson RE, Sills GC: On the loaded elastic half space with a depth varying Poisson’s ratio, ZAMP 20:691–695, 1969.
Holl DL: Stress transmission in earths, Proc Highway Res Board 20:709–721, 1940.
Horgan CO, Baxter SC: Effects of curvilinear anisotropy of radially symmetric stresses in anisotropic linearly

elastic solids, J Elasticity 42:31–48, 1996.
Horgan CO, Chan AM: The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly

elastic materials,, J Elasticity 55:43–59, 1999a.
Horgan CO, Chan AM: The stress response of functionally graded isotropic linearly elastic rotating disks,

J Elasticity 55:219–230, 1999b.
Horgan CO, Chan AM: Torsion of functionally graded isotropic linearly elastic bars, J. Elasticity 52:181–199, 1999c.
Horgan CO, Miller KL: Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linearly

elastic solids, J Appl Mech 61:23–29, 1994.
Kassir MK: Boussinesq problems for nonhomogeneous solids, J Engng Mech 98:457–470, 1972.
Lekhnitskii SG: Radial distribution of stresses in a wedge and in a half-plane with variable modulus of elasticity,

PMM 26:146–151, 1961.
Lekhnitskii SG: Theory of Elasticity of an Anisotropic Body, Moscow, 1981, Mir Publishers.
Oner M: Vertical and horizontal deformation of an inhomogeneous elastic half-space, Int. J. Numer. Anal Meth

Geomech 14:613–629, 1990.
Parameswaran V, Shukla A: Crack-tip stress fields for dynamic fracture in functionally gradient materials, Mech

Mater 31:579–596, 1999.
Parameswaran V, Shukla A: Asymptotic stress fields for stationary cracks along the gradient in functionally graded

materials, J Appl Mech 69:240–243, 2002.
Plevako VP: On the theory of elasticity of inhomogeneous media, PMM 35:853–860, 1971.
Plevako VP: On the possibility of using harmonic functions for solving problems of the theory of elasticity of

nonhomogeneous media, PMM 36:886–894, 1972.
Rooney FJ, Ferrari M: Torsion and flexure of inhomogeneous materials, Comp Engng 5:901–911, 1995.
Rostovtsev NA: On the theory of elasticity of a nonhomogeneous medium, PMM 28:601–611, 1964.
Sadd MH: Some simple Cartesian solutions to plane nonhomogeneous elasticity problems, Mech Research

Commun 37:22–27, 2010.
Sankar BV: An elasticity solution for funtionally graded beams, Comp Sci Technol 61:689–696, 2001.
Spencer AJM, Selvadurai APS: Some generalized anti-plane strain problems for an inhomogeneous elastic half

space, J Engng Math 34:403–416, 1998.
Stampouloglou IH, Theotokoglou EE: The anisotropic and angularly inhomogeneous elastic wedge under a

monomial load distribution, Arch Appl Mech 75:1–17, 2005.
Suresh S: Graded materials for resistance to contact deformation and damage, Science 292:2447–2451, 2001.
Ter-Mkrtich’ian LN: Some problems in the theory of elasticity of nonhomogeneous elastic media, PMM 25:

1120–1125, 1961.
Vrettos C: The Boussinesq problem for soils with bounded non-homogeneity, Int J Numer Anal Meth Geomech 22:

655–669, 1998.
Wang CD, Tzeng CS, Pan E, Liao JJ: Displacements and stresses due to a vertical point load in an inhomogeneous

transversely isotropic half-space, Int J Rock Mech Mining Sci 40:667–685, 2003.

EXERCISES

14.1 Show that, for the case of plane stress, the governing compatibility relation in terms of the
Airy stress function is given by (14.1.6)
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Next determine the reduced form of this equation for the special case E ¼ E(x) and n ¼
constant.

14.2 Consider a special case of equation (14.1.4). Parameswaran and Shukla (1999) presented a two-
dimensional study where the shear modulus and Lamé’s constant varied as m(x) ¼ mo(1 þ ax)
and l(x) ¼ km(x), where mo, a, and k are constants. For such a material, show that in the
absence of body forces the two-dimensional Navier’s equations become

moð1þ axÞ
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14.3 Parameswaran and Shukla (2002) recently presented a fracture mechanics study of
nonhomogeneous material behavior related to functionally graded materials. They inves-
tigated a two-dimensional plane stress problem where Poisson’s ratio remained constant but
Young’s modulus varied as E(x) ¼ Eoe

ax, where Eo and a are constants. For this case, with
zero body forces, show that the governing Airy stress function equation is given by

74f� 2a
v

vx

�
72f

�þ a272f� a2ð1þ nÞ v
2f

vy2
¼ 0

This result may be compared with the more general case given by relation (14.1.6). Note
that, when a ¼ 0, this result reduces to the homogeneous form 74f ¼ 0. The nonho-
mogeneous result is a challenging equation, and its solution was developed for the limited
case near the tip of a crack using asymptotic analysis.

14.4 Explicitly integrate relations (14.1.10) and develop the displacements relations (14.1.11).

14.5* Plot horizontal and vertical displacement contours of relations (14.1.11) in the unit domain
0 � ðx; yÞ � 1 for cases K ¼ �0:5 and 5. Normalize values with respect to T/Eo and take
n ¼ 0:3. Qualitatively compare these results with those expected for the homogeneous case
K ¼ 0.

14.6 Following the scheme used in Example 14.1, consider the same stress field case f ¼ Ty2=2
but with modulus variation in the y-direction, E ¼ EðyÞ. First show that the required
modulus variation is given by E ¼ Eo=ð1þ KyÞ. Next determine the resulting displacement
field assuming as before zero displacements and rotation at the origin, to get

u ¼ T

Eo
ð1þ KyÞx; v ¼ �n

T

Eo

�
yþ K

�
y2

2
þ x2

2n

��

14.7 Consider the plane stress inhomogeneous case with only variation in elastic modulus given
by E ¼ EðyÞ ¼ 1=ðAyþ BÞ. Further assume that the Airy function depends only on y,
f ¼ fðyÞ. Show that governing relation (14.1.6) reduces to the ordinary differential
equation
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ðAyþ BÞ d
4f

dy4
þ 2A

d3f
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¼ 0

Solve this relation to find that d3f=dy3 ¼ C1=ðyþ B=AÞ2, thus giving the stress forms

sx ¼ d2f

dy2
¼ � C1

yþ B=A
þ C2; sy ¼ sxy ¼ 0

where C1 and C2 are arbitrary constants of integration.

14.8 Consider a stress function formulation for the axisymmetric problem discussed in Section
14.2. The appropriate compatibility relation for this case has been previously developed in
Example 8.11; see (8.4.76). Using the plane stress Hooke’s law, express this compatibility
relation in terms of stress and then in terms of the Airy function to get the result
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14.9 For the hollow cylinder problem shown in Figure 14.5, use the given boundary conditions to
explicitly determine the arbitrary constants A and B and the stress relations (14.2.6).

14.10 For the problem in Figure 14.5 with only internal pressure, show that the general stress field
(14.2.6) reduces to relations (14.2.7).

14.11 For the hollow cylinder problem illustrated in Figure 14.5, show that the usual restrictions
on Poisson’s ratio, 0 � n � 1/2, and n > 0 imply that

�2þ k þ n � 0; �2� k þ n � 0

2þ kn� nn

k � nþ 2n
� 1;

2� kn� nn

k þ n� 2n
� 1

Using these results, develop arguments to justify that the stresses in solution (14.2.7) must
satisfy sr < 0 and sq > 0 in the cylinder’s domain. Thus, stresses in the nonhomogeneous
problem have behavior similar to those of the ungraded case.

14.12* Following procedures similar to those for the homogeneous problem (see Section 8.4.1),
develop the following stress field for a pressurized hole in an infinite nonhomogeneous
medium with moduli variation given by (14.2.3)

sr ¼ �pi


a
r

�ð2þk�nÞ=2

sq ¼ pi
2� kn� nv

k þ n� 2n


a
r

�ð2þk�nÞ=2

Plot the dimensionless stress fields for this case using the same parameters n and n used in
Figures 14.7 and 14.8.

14.13 For the inhomogeneous rotating disk problem with n¼ 0, explore the solution for the special
case of n ¼ 3 and show that the stresses reduce to

sr ¼ 0; sq ¼ ru2r2
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Also determine the displacement solution and show the surprising result that u(0) > 0.
This strange behavior has been referred to as a cavitation at the disk’s center.

14.14* Using MATLAB� or similar software, make a plot similar to Figure 14.13 showing the
behavior of the hoop stress sq for the case with n¼ 0 and n¼�0.5, 0, 0.5, 1, 2. Discuss your
results.

14.15 Using the design criterion (14.3.14), incorporate the fundamental equations for the inho-
mogeneous rotating disk problem to explicitly develop the required gradation given by
relation (14.3.15).

14.16 Rather than using polar coordinates to formulate the inhomogeneous half-space problem
of Section 14.4, some researchers have used Cartesian coordinates instead. Using the x,
z-coordinates as shown in Figure 14.14, consider the plane strain case with inhomogeneity
only in the shear modulus such that m ¼ m(z) and n ¼ constant. First show that combining
the strain displacement relations with Hooke’s law gives
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ð1� 2nÞ. Next show that the

equilibrium equations yield
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1

m

��
dm

dz

�
. Explore the simplification of these equations for the special

inhomogeneous case in which m ¼ moe
az, where mo and a are constants.

14.17 Consider the axisymmetric half-space problem shown in Figure 14.19 for the case where only
Poisson’s ratio is allowed to vary with depth coordinate n ¼ n(z). Using cylindrical coordi-
nates (r, q, z) to formulate the problem, first show that the stress field can be expressed by

sr ¼ 2m
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vur
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where w ¼ vur
vr

þ ur
r
þ vuz

vz
is the dilatation and n�ðzÞ ¼ nðzÞ

½1� 2nðzÞ�. Next show that the

equilibrium equations reduce to�
72 � 1

r

�
ur þ v

vr
ðð1þ 2n�ÞwÞ ¼ 0

72uz þ v
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ðð1þ 2n�ÞwÞ ¼ 0

14.18 For the antiplane strain problem, verify that transformation (14.5.5) will reduce the gov-
erning equilibrium equation to relation (14.5.6). Next show that the separation of variables
scheme defined by (14.5.7) will lead to the two equations (14.5.8).

14.19 Explicitly show that the inhomogeneity functions p(x) ¼ e�ajxj and q(y) ¼ e�bjyj, that were
used for the antiplane crack problem, do in fact satisfy relations (14.5.9) with ao¼ a 2/4 and
bo ¼ b2/4.

14.20 For the torsion problem discussed in Section 14.6, explicitly justify the reductions in polar
coordinates summarized by relations (14.6.8) and (14.6.9).

14.21 Verify that the general solutions to equations (14.6.9) are given by (14.6.11) and (14.6.12)
for the torsion problem.

14.22 For the torsion problem, verify the solutions (14.6.14) and (14.6.15) for the gradation model
(14.6.13)1.

14.23 For the torsion problem, verify the solutions (14.6.16) for the gradation model (14.6.13)2.

14.24 Investigate the issue of finding the location of (sqz)max for the torsion problem. First verify
the results given by (14.6.17) and (14.6.18). Next apply these general relations to the
specific gradation models given by (14.6.13)1,2, and develop explicit results for locations of
the extrema.

14.25 Show that the torsional rigidity for the exponential gradation case (14.6.13)2 is given by

J ¼ 2pa4mo
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� e�n
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Next use a Taylor series expansion for small n to show that
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þ O
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:

Compare this result with the homogeneous case.
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Micromechanics Applications 15
In recent years, considerable interest has developed in micromechanical modeling of solids. This
interest has been fueled by the realization that many materials have heterogeneous microstructures that
play a dominant role in determining macro deformational behavior. Materials where this occurs
include multiphase fiber and particulate composites, soil, rock, concrete, and various granular mate-
rials. These materials have microstructures that occur at a variety of length scales from meters to
nanometers, and general interest lies with the case where the length scale is smaller than other
characteristic lengths in the problem. The response of such heterogeneous solids shows strong
dependence on the micromechanical behaviors between different material phases. Classical theories of
continuum mechanics have limited ability to predict such behaviors, and this has lead to the devel-
opment of many new micromechanical theories of solids.

Work in this area, initiated over a century ago by Volterra (1907), began with studies of elastic
stress and displacement fields around dislocations and other imperfections. More recently, using
continuum mechanics principles, theories have been developed in which the material response de-
pends on particular microscale length parameters connected with the existence of inner degrees of
freedom and nonlocal continuum behavior. By nonlocal behavior we mean that the stress at a point
depends not only on the strain at that point but also on the strains of neighboring points. Mindlin
(1964) developed a general linear elasticity theory with microstructure that allowed the stress to
depend on both the strain and an additional kinematic microdeformation tensor. Related research has
led to the development of micropolar and couple-stress theories; see Eringen (1968). These ap-
proaches allow material deformation to include additional independent microrotational degrees of
freedom. Elastic continuum theories using higher-order gradients have also been developed to
model micromechanical behavior of solids; see, for example, Mindlin (1965), Chang and Gao
(1995), Aifantis (1999), and Li, Miskioglu, and Altan (2004). A general review of modeling het-
erogeneous elastic solids has been provided by Nemat-Nasser and Hori (1993). Along similar lines,
Cowin and Nunziato (1983) developed a theory of elastic materials with voids including an inde-
pendent volume fraction in the constitutive relations.

Another interesting theory called doublet mechanics (Ferrari et al., 1997) represents heterogeneous
solids in a discrete fashion as arrays of points or particles that interact through prescribed micro-
mechanical laws. Other related work has investigated elastic materials with distributed cracks; see, for
example, Budianski and O’Connell (1976) and Kachanov (1994). Originally developed by Biot
(reference collection, 1992), poroelasticity allows for the coupling action between a porous elastic
solid and the contained pore fluid. The coupled diffusion–deformation mechanisms provide useful
applications in many geomechanics problems. Some work has approached the heterogeneous problem
using statistical and probabilistic methods to develop models with random variation in micro-
mechanical properties; see, for example, Ostoja-Starzewski and Wang (1989, 1990). The monograph
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by Mura (1987) provides considerable elastic modeling of dislocations, inclusions, cracks, and other
inhomogeneities using the eigenstrain technique.

We now present an introduction to some of these particular modeling schemes, including dis-
locations, singular stress states, elastic materials with distributed cracks, micropolar/couple-stress
theory, elastic materials with voids, and doublet mechanics. Our brief coverage focuses on only
the linear elastic response of a given theory, generally including one or two example applications.
Of course, many other theories have been developed, and the choice of topics to be presented is
based on their appropriateness for the educational goals of the text. This review provides a good
foundation for further study and pursuit of additional theories that may be more appropriate for a
given material.

15.1 Dislocation modeling
Deformations of an elastic solid may depend not only on the action of the external loadings, but also
on internal microstructural defects that may be present in the material. In crystalline materials, such
internal defects are commonly associated with imperfections in the atomic lattice and are referred to
as dislocations. The particular type of defect depends on the basic atomic lattice structure of the
crystal, and an example imperfection is shown in Figure 15.1 for the case of a simple cubic packing
geometry. This imperfection is associated with the insertion of an extra plane of atoms (indicated by
the dotted line) and is referred to as an edge dislocation. Other examples exist, and we now investigate
the elastic stress and displacement fields of two particular dislocation types. As previously
mentioned, studies on dislocation modeling began over a century ago by Volterra (1907) and detailed
summaries of this work have been given by Weertman and Weertman (1964), Lardner (1974), and
Landau and Lifshitz (1986).

The two most common types of imperfections are the edge and screw dislocations, and these are
shown for a simple cubic crystal in Figure 15.2. As mentioned, the edge dislocation occurs when an
extra plane(s) of atoms is inserted into the regular crystal as shown, while the screw dislocation is

FIGURE 15.1 Edge Dislocation.

466 CHAPTER 15 Micromechanics Applications



associated with a shearing deformational shift along a regular plane. The effect of such dislocations is
to produce a local stress and displacement field in the vicinity of the imperfection. For such cases, the
local stress field will exhibit singular but single-valued behavior, while the displacements will be finite
and multivalued. This displacement discontinuity can be measured by evaluating the cyclic property
around a closed contour C that encloses the dislocation line D shown in Figure 15.2. The value of this
discontinuity is called the Burgers vector b and is given by the following integral relation

bi ¼
þ
C
dui ¼

þ
C

vui
vxj

dxj (15.1.1)

Note that for the cases shown in Figure 15.2, the magnitude of the Burgers vector will be one atomic
spacing.

In order to determine the elastic stress and displacement fields around edge and screw dislocations,
we consider idealized elastic models. The edge dislocation model is shown in Figure 15.3. For this case

D

D

(Screw Dislocation)(Edge Dislocation)

FIGURE 15.2 Schematics of Edge and Screw Dislocations.
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z

y

bx

Dislocation Line

(Edge Dislocation in x Direction)

x

z

y

by

Dislocation Line

(Edge Dislocation in y Direction)

FIGURE 15.3 Edge Dislocation Models.
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the medium has been cut in the x,z-plane for x � 0, and the dislocation line coincides with the z-axis.
Two cases can be considered that include displacement discontinuities in either the x or y directions.
The action of these discontinuities produces a local stress and strain field that we wish to determine.
For the edge dislocation, a plane strain displacement field in the x,y-plane can be chosen. The Burgers
vector for the general case with both in-plane discontinuities would read b ¼ (bx,by,0). This
type of problem can be solved by complex variable methods using the cyclic displacement condition
[u þ iv]C ¼ bx þ iby , where the contour C lies in the x,y-plane and encloses the origin. We expect in
this problem singular stresses at the origin.

EXAMPLE 15.1: EDGE DISLOCATION IN THE X DIRECTION
We first consider in detail an edge dislocation where bx ¼ b, by ¼ 0. The appropriate displacement
field must give rise to the required multivaluedness, and this can be accomplished through a field of
the form

u ¼ b

2p

�
tan�1 y

x
þ 1

2ð1� nÞ
xy

x2 þ y2

�

v ¼ � b

2p

�
1� 2n

4ð1� nÞ log
�
x2 þ y2

�� 1

2ð1� nÞ
y2

x2 þ y2

� (15.1.2)

The stresses associated with these displacements are found to be

sx ¼ �bB
y
�
3x2 þ y2

�
ðx2 þ y2Þ2

sy ¼ bB
y
�
x2 � y2

�
ðx2 þ y2Þ2

sxy ¼ bB
x
�
x2 � y2

�
ðx2 þ y2Þ2

sz ¼ n
�
sx þ sy

�
sxz ¼ syz ¼ 0

(15.1.3)

where B ¼ m/2p(1 � n). In cylindrical coordinates, the stresses are

sr ¼ sq ¼ � bB

r
sin q

srq ¼ bB

r
cos q

(15.1.4)

It should be noted that this solution actually follows from a portion of the general Michell solution
(8.3.6), f ¼ b12r log r sin q.

A similar set of field functions can be determined for the edge dislocation case of a y disconti-
nuity with bx ¼ 0, by ¼ b.
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EXAMPLE 15.2: SCREW DISLOCATION IN THE Z DIRECTION
Next consider the screw dislocation case, as shown in Figure 15.4. For this problem the material is
again cut in the x,z-plane for x � 0, and the dislocation line coincides with the z-axis. The displace-
ment discontinuity is now taken in the z direction as shown, and thus the Burgers vector becomes
bx ¼ by ¼ 0, bz ¼ b.

This case can be easily solved with the following displacement field

u ¼ v ¼ 0

w ¼ b

2p
tan�1 y

x

(15.1.5)

Clearly, this field satisfies the required cyclic displacement discontinuity. Fields of the form (15.1.5)
are commonly called antiplane elasticity (see the discussion in Section 7.4). The resulting stresses
for this case are

sxz ¼ � mb

2p

y

x2 þ y2

syz ¼ mb

2p

x

x2 þ y2

sx ¼ sy ¼ sz ¼ sxy ¼ 0

(15.1.6)

In cylindrical coordinates, these stresses can be expressed in simpler form as

sqz ¼ mb

2pr

sr ¼ sq ¼ sz ¼ srq ¼ srz ¼ 0

(15.1.7)

Dislocation Line

xy

z

b

FIGURE 15.4 Screw Dislocation Model.
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Notice that the edge and screw dislocation stress fields are singular at the origin. This is expected
because of the nature of the displacement discontinuities associated with each problem. Other aspects
of dislocation modeling include determination of the associated strain energy (see Exercises), effect of
external force fields, dislocation interaction, and movement. These and other modeling issues can be
found in Weertman and Weertman (1964), Lardner (1974), and Landau and Lifshitz (1986).

15.2 Singular stress states
As discussed in the previous section, elasticity theory can be used to model defects in solids. Such
studies may involve modeling of imperfections that are not simple edge or screw dislocations. For
example, other defects may include voids and inclusions of arbitrary shape and distribution. In
some cases these defects can produce localized, self-equilibrated residual stress fields from, say,
trapped gases, thermal mismatch associated with an inclusion, and so forth. For many such
problems, elasticity models can be developed by using solutions from a particular solution class
sometimes referred to as singular stress states. These stress states include a variety of concentrated
force and moment systems yielding stress, strain, and displacement fields that have singular be-
haviors at particular points in the domain. Such cases commonly include concentrated forces as
developed in the solution of the Kelvin problem (see Example 13.1). Combinations and super-
position of this fundamental solution are normally made to generate more complex and applicable
solutions. We now develop some basic singular stress states and investigate their fundamental
features.

Define a regular elastic state in a domain D as the set

SðxÞ ¼ fu; e;sg (15.2.1)

where the displacement vector u and stress and strain tensors s and e satisfy the elasticity field
equations in D.

We use the Papkovich–Neuber solution scheme from Section 13.4 with redefined scalar and vector
potential functions to allow the displacement solution to be expressed as

2mu ¼ Vðfþ R$jÞ � 4ð1� nÞj (15.2.2)

where f is the scalar potential and j is the vector potential satisfying the equations

V2f ¼ � R$F

2ð1� nÞ; V2j ¼ F

2ð1� nÞ (15.2.3)

with body force F. Using elements of potential theory (Kellogg, 1953), a particular solution to
equations (15.2.3) in a bounded domain D can be written as

fðxÞ ¼ 1

8pð1� nÞ
ð
D

x$FðxÞ
R̂ðx; xÞ dVðxÞ

jðxÞ ¼ � 1

8pð1� nÞ
ð
D

FðxÞ
R̂ðx; xÞ dVðxÞ

(15.2.4)

where R̂ ¼ jx � xj.
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Useful relations for the dilatation, strains, and stresses are given by

ekk ¼ � 1� 2n

m
jk;k

eij ¼ 1

2m

�
f; ij � ð1� 2nÞ�ji; j þ jj;i

�þ xkjk;ij

�

sij ¼ f; ij � 2ndijjk;k � ð1� 2nÞ�ji; j þ jj;i

�þ xkjk;ij

(15.2.5)

Let us now investigate a series of example singular states of interest. Zero body forces will be chosen
for these examples.

EXAMPLE 15.3: CONCENTRATED FORCE IN AN INFINITE MEDIUM (KELVIN PROBLEM)
Consider first the simplest singular state problem of a concentrated force acting in an infinite
medium, as shown in Figure 15.5. Recall this was referred to as the Kelvin problem and was
solved previously in Example 13.1. The solution to this problem is given by the Papkovich
potentials

f ¼ 0; j ¼ � 1

8pð1� nÞ
P

R
(15.2.6)

where R ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

x

y

z

P

FIGURE 15.5 Concentrated Force Singular State Problem.
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EXAMPLE 15.4: KELVIN STATE WITH UNIT LOADS IN COORDINATE DIRECTIONS
Consider next the combined Kelvin problem with unit loads aa (a ¼ 1, 2, 3) acting along each of
three coordinate directions, as shown in Figure 15.6. This singular state is denoted by Sa(x) and is
given by the potentials

fa ¼ 0; ja
i ¼ �C

dia

R
; where C ¼ 1

8pð1� nÞ (15.2.7)

The displacements and stresses corresponding to this case become

uai ¼ C

2mR

hxaxi
R2

þ ð3� 4nÞdai
i

saij ¼ � C

R3

�
3xaxixj
R2

þ ð1� 2nÞ�daixj þ dajxi � dijxa
�� (15.2.8)

As a special case of this state, consider aa ¼ [0, 0, 1], which would be state Sz(x) with potentials

fz ¼ jz
x ¼ jz

y ¼ 0; jz
z ¼ �C

R
(15.2.9)

and in spherical coordinates (R,f,q) (see Figure 1.6) yields the following displacements and stresses

uR ¼ 2Cð1� nÞ
m

cosf

R
; uf ¼ �Cð3� 4nÞ

2m

sinf

R
; uq ¼ 0

sR ¼ �2Cð2� nÞ cosf
R2

; sq ¼ sf ¼ Cð1� 2nÞ cosf
R2

sRf ¼ Cð1� 2nÞ sinf
R2

; sRq ¼ sfq ¼ 0

(15.2.10)

x

y

z

a3

a2

a1

FIGURE 15.6 Unit Concentrated Loadings.
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For the case with the force in the x direction, that is, the state Sx(x), we get the following fields

uR ¼ 2Cð1� 2nÞ
mR

sinf cosq

uf ¼ Cð3� 4nÞ
2mR

cosf cosq

uq ¼ �Cð3� 4nÞ
2mR

sinq

sR ¼ � 2Cð2� nÞ
R2

sinf cosq

sq ¼ sf ¼ Cð1� 2nÞ
R2

sinf cosq

sRf ¼ Cð2n� 1Þ
R2

cosf cosq

sRq ¼ Cð1� 2nÞ
R2

sinq; sqf ¼ 0

(15.2.11)

Notice that for the Kelvin state the displacements are of order O(1/R), while the stresses are
O(1/R2), and that ð

S
Tnds ¼ P;

ð
S
R� Tnds ¼ 0

for any closed surface S enclosing the origin.
Using the basic Kelvin problem, many related singular states can be generated. For example,

define SS0(x) ¼ SS,a ¼ {u,a, s,a, e,a}, where a ¼ 1, 2, 3. Now, if the state SS is generated by the
Papkovich potentials f(x) and j(x), then SS0 is generated by

f0ðxÞ ¼ f;a þ ja

j 0ðxÞ ¼ ji;a ei
(15.2.12)

Further, define the Kelvin state Sa(x;x) as that corresponding to a unit load applied in the xa direc-
tion at point x, as shown in Figure 15.7. Note that S a(x;x) ¼ S a(x � x). Also define the set of nine
states S ab(x) by the relation

SabðxÞ ¼ Sa
; bðxÞ (15.2.13)

or equivalently

ŜabðxÞ ¼ Saðx1; x2; x3Þ � Sa
�
x1 � db1h; x2 � db2h; x3 � db3h

�
h

¼ Saðx1; x2; x3Þ � Sa
�
x1; x2; x3; db1h; db2h; db3h

�
h

(15.2.14)

and thus

Sab ¼ lim
h/0

Ŝab
(15.2.15)
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EXAMPLE 15.5: FORCE DOUBLET
Consider the case of two concentrated forces acting along a common line of action but in opposite
directions, as shown in Figure 15.8. The magnitude of each force is specified as 1/h, where h is the
spacing distance between the two forces. We then wish to take the limit as h / 0, and this type
of system is called a force doublet. Recall that this problem was first defined in Chapter 13; see
Exercise 13.18.

From our previous constructions, the elastic state for this case is given by Saa(x) with no sum
over a. This form matches the suggested solution scheme presented in Exercise 13.18.

x

y

z

P

x

ξ

FIGURE 15.7 Generalized Kelvin State.

h

xα  Direction

1/h

1/h

FIGURE 15.8 Force Doublet State.
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EXAMPLE 15.6: FORCE DOUBLET WITH A MOMENT (ABOUT g-AXIS)
Consider again the case of a double-force system with equal and opposite forces but acting along
different lines of action, as shown in Figure 15.9. For this situation the two forces produce a
moment about an axis perpendicular to the plane of the forces. Again, the magnitudes of the forces
are taken to be 1/h, where h is the spacing between the lines of action, and the limit is to be taken
as h / 0.

The elastic state for this case is specified by S ab(x), where as b, and the resulting moment acts
along the g-axis defined by the unit vector eg ¼ ea � eb. It can be observed from Figure 15.9 that
S ab ¼ �Sba. From the previous equations (15.2.7), (15.2.12), and (15.2.13), the Papkovich poten-
tials for state S ab(x) are given by

fab ¼ �C
dab

R
; j

ab
i ¼ Cdai

xb
R3

; C ¼ 1

8pð1� nÞ (15.2.16)

and this yields the following displacements and stresses

uabi ¼ � C

2mR3

	
3xaxbxi

R2
þ ð3� 4nÞdaixb � dabxi � dbixa



(15.2.17)

s
ab
ij ¼ C

R3

	
15xaxbxixj

R4
þ 3ð1� 2nÞ

R2

�
daixbxj þ dajxbxi � dijxaxb

�
� 3

R2

�
dbixaxj þ dbjxaxi þ dabxixj

�� ð1� 2nÞ�daidbj þ dajdbi þ dijdab
�
 (15.2.18)

Note the properties of state SS ab ¼ {uab, sab, eab}: uab ¼ O(R�2), sab ¼ O(R�3), andð
S
TabdS ¼ 0;

ð
S
R� TabdS ¼ εgabeg

for any closed surface S enclosing the origin.

h

xα Direction

1/h

1/hxβ Direction

FIGURE 15.9 Double-Force System with a Moment.
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EXAMPLE 15.7: CENTER OF COMPRESSION/DILATATION
A center of compression (or dilatation) is constructed by the superposition of three mutually perpen-
dicular force doublets, as shown in Figure 15.10. The problem was introduced previously in
Exercise 13.19. The elastic state for this force system is given by

SoðxÞ ¼ 1

2ð1� 2nÞCS
aaðxÞ (15.2.19)

with summation over a ¼ 1, 2, 3. This state is then associated with the following potentials

fo ¼ �3

2ð1� 2nÞ
1

R
; jo

i ¼
xi

2ð1� 2nÞ
1

R3
(15.2.20)

and these yield the displacements and stresses

uoi ¼ � xi
2mR3

soij ¼
1

R3

	
3xixj
R2

� dij


 (15.2.21)

Note that this elastic state has zero dilatation and rotation. In spherical coordinates the displace-
ments and stresses are given by

uoR ¼ � 1

2mR2
; uoq ¼ uof ¼ 0

soR ¼ 2

R3
; soq ¼ sof ¼ � 1

R3
; soRq ¼ soRf ¼ soqf ¼ 0

(15.2.22)

A center of dilatation follows directly from the center of compression with a simple sign reversal
and thus can be specified by �S o(x).

x

y

z

FIGURE 15.10 Center of Compression.
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EXAMPLE 15.8: CENTER OF ROTATION
Using the cross-product representation, a center of rotation about the a-axis can be expressed by the
state

aSðxÞ ¼ 1

2
εabgSbgðxÞ (15.2.23)

where summation over b and g is implied. Thus, centers of rotation about the coordinate axes can be
written as

1SðxÞ ¼ 1

2

�S23 � S32
�

2SðxÞ ¼ 1

2

�S31 � S13
�

3SðxÞ ¼ 1

2

�S12 � S21
�

(15.2.24)

Using the solution (15.2.16), the potentials for this state become

af ¼ 0; aji ¼ C

2R3
εaijxj (15.2.25)

with the constant C defined in relation (15.2.16). The corresponding displacements and stresses
follow as

aui ¼ � 1

8pmR3
εaijxj

asij ¼ � 3

8pR5

�
εaikxkxj þ εajkxkxi

�
(15.2.26)

This state has the following properties:
Ð
S
aTdS ¼ 0;

Ð
S R� aTdS ¼ daiei, where the integration is

taken over any closed surface enclosing the origin.

In order to develop additional singular states that might be used to model distributed singularities,
consider the following property.

Definition: Let SS(x;l)¼ {u(x;l), s(x;l), e(x;l)} be a regular elastic state for each parameter l ˛ [a,
b] with zero body forces. Then the state SS* defined by

S�ðxÞ ¼
ðb
a
Sðx;lÞdl (15.2.27)

is also a regular elastic state. This statement is just another form of the superposition principle, and it
allows the construction of integrated combinations of singular elastic states as shown in the next
example.
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EXAMPLE 15.9: HALF LINE OF DILATATION
A line of dilatation may be created through the superposition relation (15.2.27) by combining cen-
ters of dilatation. Consider the case shown in Figure 15.11 that illustrates a line of dilatation over the
negative x3-axis. Let S o(x;l) be a center of compression located at (0, 0, �l) for all l ˛ [0, N).
From our previous definitions, it follows that

zSoðxÞ ¼ �
ðN
0

Soðx;lÞdl
where Soðx;lÞ ¼ Soðx1; x2; x3 þ lÞ (15.2.28)

will represent the state for a half line of dilatation along the negative x3-axis, that is, x3 ˛ [0,N).
Using the displacement solution for the center of compression (15.2.21) in (15.2.28) yields the

following displacement field for the problem

zuo1 ¼
x1
2m

ðN
0

dl

R̂
3

zuo2 ¼
x2
2m

ðN
0

dl

R̂
3

zuo3 ¼
1

2m

ðN
0

ðx3 þ lÞdl
R̂
3

(15.2.29)

which can be expressed in vector form as

zuo ¼ � 1

2m

ðN
0

V

	
1

R̂



dl ¼ 1

2m

ðN
0

dl

R̂
¼ VlogðRþ x3Þ (15.2.30)

The potentials for this state can be written as

zfo ¼ log ðRþ x3Þ; zjo
i ¼ 0 (15.2.31)

x1

x2

x3

Line of Dilatation

(0,0,−λ)

R

x

R̂

FIGURE 15.11 Line of Dilatation Along the Negative x3-Axis.
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Notice the singularity at R¼�x3, and of course this behavior is expected along the negative x3-axis
because of the presence of the distributed centers of dilatation.

In spherical coordinates the displacement and stress fields become

zuoR ¼ 1

2mR
; zuof ¼ �sin f

2mRð1þ cos fÞ;
zuoq ¼ 0

zsoR ¼ � 1

R2
; zsof ¼ cos f

R2ð1þ cos fÞ;
zsoq ¼

1

R2ð1þ cos fÞ
zsoRf ¼ sin f

R2ð1þ cos fÞ;
zsoRq ¼ zsoqf ¼ 0

(15.2.32)

15.3 Elasticity theory with distributed cracks
Many brittle solids such as rock, glass, ceramics, and concretes contain microcracks. It is generally
accepted that the tensile and compressive strength of these materials is determined by the coalescence
of these flaws into macrocracks, thus leading to overall fracture. The need to appropriately model such
behaviors has led to many studies dealing with the elastic response of materials with distributed cracks.
Some studies have simply developed moduli for elastic solids containing distributed cracks; see, for
example, Budiansky and O’Connell (1976), Hoenig (1979), and Hori and Nemat-Nasser (1983). Other
work (Kachanov, 1994) has investigated the strength of cracked solids by determining local crack
interaction and propagation behaviors. Reviews by Kachanov (1994) and Chau, Wong, and Wang
(1995) provide good summaries of work in this field.

We now wish to present some brief results of studies that have determined the elastic constants of
microcracked solids, as shown in Figure 15.12. It is assumed that a locally isotropic elastic material
contains a distribution of planar elliptical cracks as shown. Some studies have assumed a random crack
distribution, thus implying an overall isotropic response; other investigators have considered preferred

(Cracked Elastic Solid)

(Elliptical Shaped Crack)

FIGURE 15.12 Elastic Solid Containing a Distribution of Cracks.
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crack orientations, giving rise to anisotropic behaviors. Initial research assumed that the crack density
is dilute so that crack interaction effects can be neglected. Later studies include crack interaction using
the well-established self-consistent approach. In general, the effective moduli are found to depend on a
crack density parameter, defined by the following

ε ¼ 2N

p

�
A2

P

�
(15.3.1)

where N is the number of cracks per unit volume, A is the crack face area, P is the crack perimeter, and
the angle brackets indicate the average value. Space limitations prevent us going into details of the
various analyses, and thus only effective moduli results are given. Three particular examples are
presented, and all cases assume no crack closure.

EXAMPLE 15.10: ISOTROPIC DILUTE CRACK DISTRIBUTION
Consider first the special case of a random dilute distribution of circular cracks of radius a. Note
for the circular crack case the crack density parameter defined by (15.3.1) reduces to
ε ¼ Nha3i. Results for the effective Young’s modulus E, shear modulus m, and Poisson’s ratio n

are given by

E

E
¼ 45ð2� nÞ

45ð2� nÞ þ 16ð1� n2Þð10� 3nÞε
m

m
¼ 45ð2� nÞ

45ð2� nÞ þ 32ð1� nÞð5� nÞε

ε ¼ 45ðn� nÞð2� nÞ
16ð1� n2Þð10n� 3nn� nÞ

(15.3.2)

where E, m, and n are the moduli for the uncracked material.

EXAMPLE 15.11: PLANAR TRANSVERSE ISOTROPIC DILUTE CRACK DISTRIBUTION
Next consider the case of a dilute distribution of cracks arranged randomly but with all crack nor-
mals oriented along a common direction, as shown in Figure 15.13. For this case results for the
effective moduli are as follows

E

E
¼ 3

3þ 16ð1� n2Þε
m

m
¼ 3ð2� nÞ

3ð2� nÞ þ 16ð1� nÞε

(15.3.3)

where E and m are the effective moduli in the direction normal to the cracks. A plot of this behavior
for n ¼ 0.25 is shown in Figure 15.14. It is observed that both effective moduli decrease with crack
density, and the decrease is more pronounced for Young’s modulus.
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(Transverse Cracked Solid)

FIGURE 15.13 Cracked Elastic Solid with a Common Crack Orientation.
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FIGURE 15.14 Effective Elastic Moduli for a Transversely Cracked Solid (n [ 0.25).
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EXAMPLE15.12: ISOTROPIC CRACKDISTRIBUTIONUSINGASELF-CONSISTENTMODEL
Using the self-consistent method, effective moduli for the random distribution case can be devel-
oped. The results for this case are given by

E

E
¼ 1� 16

�
1� n2

�ð10� 3nÞε
45ð2� nÞ

m

m
¼ 1� 32ð1� nÞð5� nÞε

45ð2� nÞ

ε ¼ 45ðn� nÞð2� nÞ
16
�
1� n2

�ð10n� 3nn� nÞ

(15.3.4)

It is interesting to note that as ε/ 9/16, all effective moduli decrease to zero. This can be inter-
preted as a critical crack density where the material will lose its coherence. Although it would be
expected that such a critical crack density would exist, the accuracy of this particular value is sub-
ject to the assumptions of the modeling and is unlikely to match universally with all materials.

In the search for appropriate models of brittle microcracking solids, there has been a desire to find a
correlation between failure mechanisms (fracture) and effective elastic moduli. However, it has been
pointed out (Kachanov, 1990, 1994) that such a correlation appears to be unlikely because failure-
related properties such as stress intensity factors are correlated to local behavior, while the effec-
tive elastic moduli are determined by volume average procedures. External loadings on cracked solids
can close some cracks and possibly produce frictional sliding, thereby affecting the overall moduli.
This interesting process creates induced anisotropic behavior as a result of the applied loading. In
addition to these studies of cracked solids, there also exists a large volume of work on determining
effective elastic moduli for heterogeneous materials containing particulate and/or fiber phasesdthat is,
distributed inclusions. A review of these studies has been given by Hashin (1983). Unfortunately, space
does not permit a detailed review of this work.

15.4 Micropolar/couple-stress elasticity
As previously mentioned, the response of many heterogeneous materials has indicated dependency on
microscale length parameters and on additional microstructural degrees of freedom. Solids exhibiting
such behavior include a large variety of cemented particulate materials such as particulate composites,
ceramics, and various concretes. This concept can be qualitatively illustrated by considering a simple
lattice model of such materials, as shown in Figure 15.15. Using such a scheme, the macro load
transfer within the heterogeneous particulate solid is modeled using the microforces and moments
between adjacent particles (see Chang and Ma, 1991; Sadd et al., 1992, 2004). Depending on the
microstructural packing geometry (sometimes referred to as fabric), this method establishes a lattice
network that can be thought of as an interconnected series of elastic bar or beam elements inter-
connected at particle centers. Thus, the network represents in some way the material microstructure
and brings into the model microstructural dimensions such as the grid size. Furthermore, the elastic
network establishes internal bending moments and forces, which depend on internal degrees of
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freedom (e.g., rotations) at each connecting point in the microstructure as shown. These internal ro-
tations would be, in a sense, independent of the overall macro deformations.

This concept then suggests that an elastic continuum theory including an independent rotation field
with concentrated pointwise moments might be suitable for modeling heterogeneous materials. Such
approaches have been formulated under the names Cosserat continuum; oriented media; asymmetric
elasticity; and micropolar, micromorphic, or couple-stress theories. The Cosserat continuum, devel-
oped in 1909, was historically one of the first models of this category. However, over the next 50 years
very little activity occurred in this field. Renewed interest began during the 1960s, and numerous
articles on theoretical refinements and particular analytical and computational applications were
produced. The texts and articles by Eringen (1968, 1999) and Kunin (1983) provide detailed back-
ground on much of this work, while Nowacki (1986) presents a comprehensive account on dynamic
and thermoelastic applications of such theories.

Micropolar theory incorporates an additional internal degree of freedom called the microrotation
and allows for the existence of body and surface couples. For this approach, the new kinematic
strain–deformation relation is expressed as

eij ¼ uj; i � εijlfl (15.4.1)

where eij is the usual strain tensor, ui is the displacement vector, and fi is themicrorotation vector. Note
that this new kinematic variable fi is independent of the displacement ui, and thus is not in general the
same as the usual macrorotation vector

ui ¼ 1

2
εijkuk; j s fi (15.4.2)

Later in our discussion we relax this restriction and develop a more specialized theory that normally
allows simpler analytical problem solution.

The body and surface couples (moments) included in the new theory introduce additional terms in
the equilibrium equations. Skipping the derivation details, the linear and angular equilibrium equations
thus become

sji; j þ Fi ¼ 0
mji; j þ εijksjk þ Ci ¼ 0

(15.4.3)

Network of
Elastic Elements

(Heterogeneous Elastic Material)

=
?

Inner Degrees
of Freedom

(Equivalent Lattice Model)

FIGURE 15.15 Heterogeneous Materials with Microstructure.
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where sij is the usual stress tensor, Fi is the body force, mij is the surface moment tensor normally
referred to as the couple-stress tensor, and Ci is the body couple per unit volume. Notice that as a
consequence of including couple stresses and body couples, the stress tensor sij is no longer symmetric.
For linear elastic isotropic materials, the constitutive relations for a micropolar material are given by

sij ¼ lekkdij þ ðmþ kÞeij þ meji
mij ¼ afk;kdij þ bfi; j þ gfj;i

(15.4.4)

where l,m,k,a,b,g are the micropolar elastic moduli. Note that classical elasticity relations correspond
to the case where k¼ a¼ b¼ g¼ 0. The requirement of a positive definite strain energy function puts
the following restrictions on these moduli

0 � 3lþ 2mþ k; 0 � 2mþ k; 0 � k

0 � 3aþ bþ g; �g � b � g; 0 � g
(15.4.5)

Relations (15.4.1) and (15.4.4) can be substituted into the equilibrium equations (15.4.3) to establish
two sets of governing field equations in terms of the displacements and microrotations. Appropriate
boundary conditions to accompany these field equations are more problematic. For example, it is not
completely clear how to specify the microrotation fi and/or couple-stress mij on domain boundaries.
Some developments on this subject have determined particular field combinations whose boundary
specification guarantees a unique solution to the problem.

15.4.1 Two-dimensional couple-stress theory
Rather than continuing onwith the general three-dimensional equations, we nowmove directly into two-
dimensional problems under plane strain conditions. In addition to the usual assumption u ¼ u(x,y),
v ¼ v(x,y), w ¼ 0, we include the restrictions on the microrotation, fx ¼ fy ¼ 0, fz ¼ fz(x,y).
Furthermore, relation (15.4.2) is relaxed and the microrotation is allowed to coincide with the
macrorotation

fi ¼ ui ¼ 1

2
εijkuk; j (15.4.6)

This particular theory is then a special case of micropolar elasticity and is commonly referred to as
couple-stress theory. Eringen (1968) refers to this theory as indeterminate because the antisymmetric
part of the stress tensor is not determined solely by the constitutive relations.

Stresses on a typical in-plane element are shown in Figure 15.16. Notice the similarity of this force
system to the microstructural system illustrated previously in Figure 15.15. For the two-dimensional
case with no body forces or body couples, the equilibrium equations (15.4.3) reduce to

vsx

vx
þ vsyx

vy
¼ 0

vsxy
vx

þ vsy

vy
¼ 0

vmxz

vx
þ vmyz

vy
þ sxy � syx ¼ 0

(15.4.7)
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The in-plane strains can be expressed as

ex ¼ vu

vx
; ey ¼ vv

vy

exy ¼ vv

vx
� fz; eyx ¼ vu

vy
þ fz

(15.4.8)

while using (15.4.6) gives

fz ¼
1

2

	
vv

vx
� vu

vy



(15.4.9)

Notice that substituting (15.4.9) into (15.4.8)2 gives the result exy ¼ eyx.
The constitutive equations (15.4.4) yield the following forms for the stress components

sx ¼ l
�
ex þ ey

�þ ð2mþ kÞex
sy ¼ l

�
ex þ ey

�þ ð2mþ kÞey
sxy ¼ ð2mþ kÞexy ¼ syx

mxz ¼ g
vfz

vx
; myz ¼ g

vfz

vy

(15.4.10)

In regard to the last pair of equations of this set, some authors (Mindlin, 1963; Boresi and Chong,
2011) define the gradients of the rotation fz as the curvatures. Thus, they establish a linear constitutive
law between the couple stresses and curvatures. This approach is completely equivalent to the current
method. It is to be noted from (15.4.10) that under the assumptions of couple-stress theory we find the
unpleasant situation that the antisymmetric part of the stress tensor disappears from the constitutive
relations. In order to remedy this, we can solve for the antisymmetric stress term from the moment
equilibrium equation (15.4.7)3 to get

σy

σx

τxy

τyx

mxz

myz

FIGURE 15.16 Couple Stresses on a Planar Element.
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s½xy� ¼
1

2

�
sxy � syx

� ¼ �1

2

	
vmxz

vx
þ vmyz

vy




¼ �g

2
V2fz

(15.4.11)

By cross-differentiation we can eliminate the displacements from (15.4.8) and (15.4.9) and develop the
particular compatibility equations for this theory; i.e

v2ex
vy2

þ v2ey
vx2

¼ 2
v2exy
vxvy

v2fz

vxvy
¼ v2fz

vyvx

vfz

vx
¼ vexy

vx
� vex

vy

vfz

vy
¼ vey

vx
� vexy

vy

(15.4.12)

Using the constitutive forms (15.4.10), these relations may be expressed in terms of the stresses as

v2sx

vy2
þ v2sy

vx2
� nV2

�
sx þ sy

� ¼ v2

vxvy

�
sxy þ syx

�
vmxz

vy
¼ vmyz

vx

mxz ¼ l2
v

vx

�
sxy þ syx

�� 2l2
v

vy

�
sx � n

�
sx þ sy

��

myz ¼ 2l2
v

vx

�
sy � n

�
sx þ sy

��� l2
v

vy

�
sxy þ syx

�
(15.4.13)

where n ¼ l/(2l þ 2m þ k) and l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð4mþ 2kÞp

is a material constant with units of length. Notice
that this result then introduces a length scale into the problem. If l ¼ 0, the couple-stress effects are
eliminated and the problem reduces to classical elasticity. It should also be pointed out that only three
of the four equations in set (15.4.13) are independent because the second relation can be established
from the other equations.

Proceeding along similar lines as classical elasticity, we introduce a stress function approach (Carlson,
1966) to solve (15.4.13). A self-equilibrated form satisfying (15.4.7) identically can be written as

sx ¼ v2F

vy2
� v2J

vxvy
; sy ¼ v2F

vx2
þ v2J

vxvy

sxy ¼ � v2F

vxvy
� v2J

vy2
; syx ¼ v2F

vxvy
þ v2J

vx2

mxz ¼ vJ

vx
; myz ¼ vJ

vy

(15.4.14)
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where F ¼ F(x,y) and J ¼ J(x,y) are the stress functions for this case. If J is taken to be zero, the
representation reduces to the usual Airy form with no couple stresses. Using form (15.4.14) in the
compatibility equations (15.4.13) produces

V4F ¼ 0

v

vx

�
J� l2V2J

� ¼ �2ð1� nÞl2 v
vy

�
V2F

�
v

vy

�
J� l2V2J

� ¼ 2ð1� nÞl2 v
vx

�
V2F

� (15.4.15)

Differentiating the second equation with respect to x and the third with respect to y and adding
eliminates F and gives the following result

V2J� l2V4J ¼ 0 (15.4.16)

Thus, the two stress functions satisfy governing equations (15.4.15)1 and (15.4.16). Now we consider
a specific application of this theory for the following stress concentration problem.

EXAMPLE 15.13: STRESS CONCENTRATION AROUND A CIRCULAR HOLE: MICROPOLAR
ELASTICITY
We now wish to investigate the effects of couple-stress theory on the two-dimensional stress distri-
bution around a circular hole in an infinite medium under uniform tension at infinity. Recall that this
problem was previously solved for the nonpolar case in Example 8.7 and the problem geometry is
shown in Figure 8.12. The hole is to have radius a, and the far-field stress is directed along the x
direction as shown. The solution for this case is first developed for the micropolar model and
then the additional simplification for couple-stress theory is incorporated. This solution was first
presented by Kaloni and Ariman (1967) and later by Eringen (1968).

As expected for this problem the plane strain formulation and solution are best done in polar
coordinates (r,q). For this system, the equilibrium equations become

vsr

vr
þ 1

r

vsqr
vq

þ sr � sq

r
¼ 0

vsrq
vr

þ 1

r

vsq

vq
þ srq � sqr

r
¼ 0

vmrz

vr
þ 1

r

vmqz

vq
þ mrz

r
þ srq � sqr ¼ 0

(15.4.17)

while the strainedeformation relations are

er ¼ vur
vr

; eq ¼ 1

r

	
vuq
vq

þ ur




erq ¼ vuq
vr

� fz; eqr ¼ 1

r

	
vur
vq

� uq



þ fz

(15.4.18)

15.4 Micropolar/couple-stress elasticity 487



The constitutive equations in polar coordinates read as

sr ¼ lðer þ eqÞ þ ð2mþ kÞer
sq ¼ lðer þ eqÞ þ ð2mþ kÞeq
srq ¼ ðmþ kÞerq þ meqr; sqr ¼ ðmþ kÞeqr þ merq

mrz ¼ g
vfz

vr
; mqz ¼ g

1

r

vfz

vq

(15.4.19)

and the strainecompatibility relations take the form

veqr
vr

� 1

r

ver
vq

þ eqr � erq
r

� vfz

vr
¼ 0

veq
vr

� 1

r

verq
vq

þ eq � er
r

� 1

r

vfz

vq
¼ 0

vmqz

vr
� 1

r

vmrz

vq
þ mqz

r
¼ 0

(15.4.20)

For the polar coordinate case, the stressestress function relations become

sr ¼ 1

r

vF

vr
þ 1

r2
v2F

vq2
� 1

r

v2J

vrvq
þ 1

r2
vJ

vq

sq ¼ 1

r2
v2F

vr2
þ 1

r

v2J

vrvq
� 1

r2
vJ

vq

srq ¼ � 1

r

v2F

vrvq
þ 1

r2
vF

vq
� 1

r

vJ

vr
� 1

r2
v2J

vq2

sqr ¼ � 1

r

v2F

vrvq
þ 1

r2
vF

vq
þ v2J

vr2

mrz ¼ vJ

vr
; mqz ¼ 1

r

vJ

vq

(15.4.21)

Using constitutive relations (15.4.19), the compatibility equations (15.4.20) can be expressed in
terms of stresses, and combining this result with (15.4.21) will yield the governing equations for
the stress functions in polar coordinates

v

vr

�
J� l21V

2J
� ¼ �2ð1� nÞl22

1

r

v

vq

�
V2F

�
1

r

v

vq

�
J� l21V

2J
� ¼ 2ð1� nÞl22

v

vr

�
V2F

� (15.4.22)

where
l21 ¼

gðmþ kÞ
kð2mþ kÞ; l22 ¼

g

2ð2mþ kÞ

V2 ¼ v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

vq2

(15.4.23)

Note that for the micropolar case, two length parameters l1 and l2 appear in the theory.
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The appropriate solutions to equations (15.4.22) for the problem under study are given by

F ¼ T

4
r2ð1� cos 2qÞ þ A1log r þ

	
A2

r2
þ A3



cos 2q

J ¼
	
A4

r2
þ A5K2ðr=l1Þ



sin 2q

(15.4.24)

where Kn is the modified Bessel function of the second kind or order n and Ai are constants to be
determined with A4¼ 8(1� n)l21 A3. Using this stress function solution, the components of the stress
and couple stress then follow from (15.4.21) to be

sr ¼ T

2
ð1þ cos 2qÞ þ A1

r2
�
	
6A2

r4
þ 4A3

r2
� 6A4

r4



cos 2q

þ 2A5

l1r

�
3l1
r
Koðr=l1Þ þ

	
1þ 6l21

r2



K1ðr=l1Þ

�
cos 2q

sq ¼ T

2
ð1� cos 2qÞ � A1

r2
þ
	
6A2

r4
� 6A4

r4



cos 2q

� 2A5

l1r

�
3l1
r
Koðr=l1Þ þ

	
1þ 6l21

r2



K1ðr=l1Þ

�
cos 2q

srq ¼ �
	
T

2
þ 6A2

r4
þ 2A3

r2
� 6A4

r4



sin 2q

þ A5

l1r

�
6l1
r
Koðr=l1Þ þ

	
1þ 12l21

r2



K1ðr=l1Þ

�
sin 2q

sqr ¼ �
	
T

2
þ 6A2

r4
þ 2A3

r2
� 6A4

r4



sin 2q

þ A5

l21

�	
1þ 6l21

r2



Koðr=l1Þ þ

	
3l1
r

þ 12l31
r3



K1ðr=l1Þ

�
sin 2q

mrz ¼ �
n
2A4

r3
þ A5

l1

�
2l1
r
Koðr=l1Þ þ

	
1þ 4l21

r2



K1ðr=l1Þ

�
sin 2q

mqz ¼
�
2A4

r3
þ 2A5

r

�
Koðr=l1Þ þ 2l1

r
K1ðr=l1Þ

�
cos 2q

(15.4.25)

For boundary conditions we use the usual forms for the nonpolar variables, while the couple stress
mrz is taken to vanish on the hole boundary and at infinity

srða;qÞ ¼ srqða; qÞ ¼ mrzða; qÞ ¼ 0

srðN;qÞ ¼ T

2
ð1þ cos 2qÞ

srqðN;qÞ ¼ � T

2
sin 2q

mrzðN;qÞ ¼ 0

(15.4.26)
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Using these conditions, sufficient relations can be developed to determine the arbitrary constants Ai,
giving the results

A1 ¼ � T

2
a2; A2 ¼ �Ta4ð1� FÞ

4ð1þ FÞ

A3 ¼ Ta2

2ð1þ FÞ; A4 ¼ 4Tð1� nÞa2l22
1þ F

A5 ¼ � Tal1F

ð1þ FÞK1ða=l1Þ

(15.4.27)

where

F ¼ 8ð1� nÞ l
2
2

l21

"
4þ a2

l21
þ 2a

l1

Koða=l1Þ
K1ða=l1Þ

#�1

(15.4.28)

This then completes the solution to the problem.
Let us now investigate the maximum stress and discuss the nature of the concentration behavior

in the vicinity of the hole. As in the previous nonpolar case, the circumferential stress sq on the hole
boundary will be the maximum stress. From the previous solution

sqða; qÞ ¼ T

	
1� 2cos 2q

1þ F



(15.4.29)

As expected, the maximum value of this quantity occurs at q ¼ �p/2, and thus the stress concen-
tration factor for the micropolar stress problem is given by

K ¼ ðsqÞmax

T
¼ 3þ F

1þ F
(15.4.30)

Notice that for micropolar theory, the stress concentration depends on the material parameters and
on the size of the hole.

This problem has also been solved by Mindlin (1963) for couple-stress theory, and this result
may be found from the current solution by letting l1 ¼ l2 ¼ l. Figure 15.17 illustrates the behavior
of the stress concentration factor as a function of a/l1 for several cases of length ratio l2/l1 with
n ¼ 0. It is observed that the micropolar/couple-stress concentration factors are less than that pre-
dicted by classical theory (K ¼ 3), and differences between the theories depend on the ratio of the
hole size to the microstructural length parameter l1 (or l). If the length parameter is small in com-
parison to the hole size, very small differences in the stress concentration predictions occur. For
the case l1 ¼ l2 ¼ l ¼ 0, it can be shown that F / 0, thus giving K ¼ 3, which matches with
the classical result. Mindlin (1963) also investigated other far-field loading conditions for this prob-
lem. He showed that for the case of equal biaxial loading, the couple-stress effects disappear
completely, while for pure shear loading couple-stress effects produce a significant reduction in
the stress concentration when compared to classical theory.

Originally, it was hoped that this solution could be used to explain the observed reduction in
stress concentration factors for small holes in regions of high stress gradients. Unfortunately, it
has been pointed out by several authors (Schijve, 1966; Ellis and Smith, 1967; Kaloni and Ariman,
1967), that for typical metals the reduction in the stress concentration for small holes cannot be
accurately accounted for using couple-stress theory.
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Additional similar solutions for stress concentrations around circular inclusions have been developed
by Weitsman (1965) and Hartranft and Sih (1965). More recent studies have had success in applying
micropolar/couple-stress theory to fiber-reinforced composites (Sun and Yang, 1975) and granular
materials (Chang and Ma, 1991). With respect to computational methods, micropolar finite element
techniques have been developed by Kennedy and Kim (1987) and Kennedy (1999).

15.5 Elasticity theory with voids
A micromechanics model has been proposed for materials with distributed voids. The linear theory
was originally developed by Cowin and Nunziato (1983) and a series of application papers followed,
including Cowin and Puri (1983) and Cowin (1984a, b, 1985). The theory is intended for elastic
materials containing a uniform distribution of small voids, as shown in Figure 15.18. When the void
volume vanishes, the material behavior reduces to classical elasticity theory. The primary new feature
of this theory is the introduction of a volume fraction (related to void volume), which is taken as an
independent kinematic variable. The other variables of displacement and strain are retained in their
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FIGURE 15.17 Stress Concentration Behavior for the Micropolar Theory (n [ 0).
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FIGURE 15.18 Elastic Continuum with Distributed Voids.

15.5 Elasticity theory with voids 491



usual form. The inclusion of the new variable requires additional microforces to provide proper
equilibrium of the micropore volume.

The theory begins by expressing the material mass density as the following product

r ¼ gy (15.5.1)

where r is the bulk (overall) mass density, g is the mass density of the matrix material, and y is the
matrix volume fraction or volume distribution function. This function describes the way the medium is
distributed in space and is taken to be an independent variable, thus introducing an additional kine-
matic degree of freedom in the theory. The linear theory with voids deals with small changes from a
stress- and strain-free reference configuration. In this configuration relation (15.5.1) can be written as
rR¼ gRyR. The independent kinematical variables of this theory are the usual displacements ui and the
change in volume fraction from the reference configuration expressed by

f ¼ y� yR (15.5.2)

The strain–displacement relations are those of classical elasticity

eij ¼ 1

2

�
ui; j þ uj; i

�
(15.5.3)

and likewise for the equilibrium equations (with no body forces)

sij; j ¼ 0 (15.5.4)

The general development of this theory includes external body forces and dynamic inertial terms.
However, our brief presentation does not include these complexities.

In order to develop the microequilibrium of the void volume, new micromechanics theory
involving the balance of equilibrated force is introduced. Details of this development are beyond the
scope of our presentation, and we give only the final results

hi;i þ g ¼ 0 (15.5.5)

where hi is the equilibrated stress vector and g is the intrinsic equilibrated body force. Simple physical
meanings of these variables have proved difficult to provide. However, Cowin and Nunziato (1983)
have indicated that these variables can be related to particular self-equilibrated singular-force systems
as previously discussed in Section 15.2. In particular, hi and g can be associated with double-force
systems as presented in Example 15.5, and the expression hi, i can be related to centers of dilata-
tion; see Example 15.7.

The constitutive equations for linear isotropic elastic materials with voids provide relations for the
stress tensor, equilibrated stress vector, and intrinsic body force of the form

sij ¼ lekkdij þ 2meij þ bfdij
hi ¼ af;i

g ¼ �uf_ � xf� bekk

(15.5.6)

where the material constants l, m, a, b, x, u all depend on the reference fraction yR and satisfy the
inequalities

m � 0; a � 0; x � 0; u � 0; 3lþ 2m � 0; M ¼ 3lþ 2m

b2
� 3 (15.5.7)
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Note that even though we have dropped dynamic inertial terms, constitutive relation (15.5.6)3 includes
a time-dependent response in the volume fraction. This fact indicates that the theory will predict a
viscoelastic type of behavior (Cowin, 1985) even for problems with time-independent boundary
conditions and homogeneous deformations.

For this theory, the boundary conditions on stress and displacement are the same as those of
classical elasticity. The boundary conditions on the self-equilibrated stress vector are taken to have a
vanishing normal component; that is, hini ¼ 0, where ni is the surface unit normal vector. Using this
with the constitutive statement (15.5.6)2 develops the boundary specification on the volume fraction

f;ini ¼ 0 (15.5.8)

This completes our brief general presentation of the theory, and we will now discuss the solution to the
stress concentration problem around a circular hole discussed previously in Example 15.13.

EXAMPLE 15.14: STRESS CONCENTRATION AROUND A CIRCULAR HOLEdELASTICITY
WITH VOIDS
Consider again the stress concentration problem of a stress-free circular hole of radius a in an infin-
ite plane under uniform tension, as shown in Figure 8.12. We now outline the solution given by
Cowin (1984b) and compare the results with the micropolar, couple-stress, and classical solutions.
The problem is formulated under the usual plane stress conditions

sx ¼ sxðx; yÞ; sy ¼ syðx; yÞ; sxy ¼ sxyðx; yÞ; sz ¼ sxz ¼ syz ¼ 0

For this two-dimensional case the constitutive relations reduce to

sij ¼ 2m

lþ 2m
ðlekk þ bfÞdij þ 2meij

g ¼ �uf_ �
	
x� b2

lþ 2m



f� 2mb

lþ 2m
ekk

(15.5.9)

where all indices are taken over the limited range 1, 2. Using a stress formulation, the single nonzero
compatibility relation becomes

skk;mm � mb

lþ m
f;mm ¼ 0 (15.5.10)

Introducing the usual Airy stress function, denoted here by j, allows this relation to be written as

V4j� mb

lþ m
V2f ¼ 0 (15.5.11)

For this case, relation (15.5.5) for balance of equilibrated forces reduces to

aV2f� a

h2
f� uf_ ¼ b

3lþ 2m

	
V2j� mb

lþ m
f



(15.5.12)

The parameter h is defined by
a

h2
¼ x� b2

lþ m
(15.5.13)
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and has units of length, and thus can be taken as a microstructural length measure for this particular
theory.

Relations (15.5.11) and (15.5.12) now form the governing equations for the plane stress prob-
lem. The presence of the time-dependent derivative term in (15.5.12) requires some additional
analysis. Using Laplace transform theory, Cowin (1984b) shows that under steady boundary con-
ditions, the solutions f and j can be determined from the limiting case where t / N, which is
related to taking u ¼ 0. Thus, taking the Laplace transform of (15.5.11) and (15.5.12) gives the
following

V4j� mb

lþ m
V2f ¼ 0

aV2f� a

h
2
f ¼ b

3lþ 2m

	
V2j� mb

lþ m
f


 (15.5.14)

where f ¼ fðsÞ; j ¼ jðsÞ are the standard Laplace transforms of f, j, and s is the Laplace trans-
form variable. The basic definition of this transform is given by

f ðsÞ ¼
ðN
0

f ðtÞe�stdt

and the parameter h is defined by a

h
2 ¼ a

h2 þ us. Boundary conditions on the problem follow from our
previous discussions to be

sr ¼ srq ¼ vf

vr
¼ 0 on r ¼ a

For the circular hole problem, the solution to system (15.5.14) is developed in polar
coordinates. Guided by the results from classical elasticity, we look for solutions of the form
f(r) þ g(r) cos 2q, where f and g are arbitrary functions of the radial coordinate. Employing this
scheme, the properly bounded solution satisfying the boundary condition vf

vr ¼ 0 at r ¼ a is found
to be

f ¼ �xp

Mbusþ bxðM � 3Þ þ
A3ðlþ mÞ

mh
2
b

�
FðrÞ � 1

�
cos2q

j ¼ mb

lþ m
h
2
fþ

�
pr2

4
þ A1log r

	
A2

r2
þ A3 � pr2

4



cos2q

� (15.5.15)

where F is given by

FðrÞ ¼ 1þ 4mxh
2

ðlþ mÞMusþ 4mxN

"
1

r2
þ 2hK2

�
r=h
�

a3K 0
2

�
a=h
�
#

(15.5.16)

and p is the Laplace transform of the uniaxial stress at infinity, K2 is the modified Bessel function of
the second kind of order 2

N ¼ lþ m

4m
ðM � 3Þ � 0

and the constants A1, A2, A3 are determined from the stress-free boundary conditions as
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A1 ¼ � 1

2
pa2; A2 ¼ � 1

4
pa4; A3 ¼ 1

2
pa2FðaÞ

Note in relation (15.5.16) the bar on F indicates the dependency on the Laplace transform parameter
s, and the bar is to be removed for the case where s / 0 and hðsÞ is replaced by h.

This completes the solution for the Laplace-transformed volume fraction and Airy stress func-
tion. The transformed stress components can now be obtained from the Airy function using the
usual relations

sr ¼ 1

r

vj

vr
þ 1

r2
v2j

vq2
; sq ¼ v2j

vr2
; srq ¼ 1

r2
vj

vq
� 1

r

v2j

vrvq
(15.5.17)

We now consider the case where the far-field tension T is a constant in time, and thus p ¼ T=s.
Rather than formally inverting (inverse Laplace transformation) the resulting stress components
generated from relations (15.5.17), Cowin develops results for the cases of t¼ 0 and t/N. It turns
out that for the initial condition at t¼ 0, the stresses match those found from classical elasticity (see
Example 8.7). However, for the final-value case (t / N), which implies (s / 0), the stresses are
different than predictions from classical theory.

Focusing our attention on only the hoop stress, the elasticity with voids solution for the final-
value case is determined as

sq ¼ T

2

�	
1þ a2

r2



þ cos 2q

�
a2
F00ðrÞ
FðaÞ �

	
1þ 3

a4

r4


�
(15.5.18)

The maximum value of this stress is again found at r ¼ a and q ¼ �p/2 and is given by

ðsqÞmax ¼ sqða;�p=2Þ ¼ T

	
3� a2

2

F00ðaÞ
FðaÞ




¼ T

�
3þ

	
2N þ �1þ �4þ L2

�
N
� K1ðLÞ
LKoðLÞ


�1� (15.5.19)

where L ¼ a/h. It is observed from this relation that the stress concentration factor K ¼ (sq)max/T
will always be greater than or equal to 3. Thus, the elasticity theory with voids predicts an elevation
of the stress concentration when compared to the classical result. The behavior of the stress concen-
tration factor as a function of the dimensionless hole size L is shown in Figure 15.19. It can be seen
that the concentration factor reduces to the classical result as L approaches zero or infinity. For a
particular value of the material parameter N, the stress concentration takes on a maximum value
at a finite intermediate value of L.

It is interesting to compare these results with our previous studies of the same stress concentra-
tion problem using some of the other micromechanical theories discussed in this chapter. Recall in
Example 15.13 we solved the identical problem for micropolar and couple-stress theories, and re-
sults were given in Figure 15.17. Figures 15.17 and 15.19 both illustrate the stress concentration
behavior as a function of a nondimensional ratio of hole radius divided by a microstructural length
parameter. Although the current model with voids indicates an elevation of stress concentration, the
micropolar and couple-stress results show a decrease in this factor. Micropolar/couple-stress theory
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also predicts that the largest difference from the classical result occurs at a dimensionless hole size
ratio of zero. However, for elasticity with voids this difference occurs at a finite hole size ratio
approximately between 2 and 3. It is apparent that micropolar theory (allowing independent micro-
rotational deformation) gives fundamentally different results than the current void theory, which
allows for an independent microvolumetric deformation.

15.6 Doublet mechanics
As a final example, we wish to investigate a micromechanical theory that has demonstrated appli-
cations for particulate materials in predicting observed behaviors that cannot be shown using classical
continuum mechanics. The theory known as doublet mechanics (DM) was originally developed by
Granik (1978). It has been applied to granular materials by Granik and Ferrari (1993) and Ferrari et al.
(1997) and to asphalt concrete materials by Sadd and Dai (2004). Doublet mechanics is a micro-
mechanical theory based on a discrete material model whereby solids are represented as arrays of
points or nodes at finite distances. A pair of such nodes is referred to as a doublet, and the nodal
spacing distances introduce length scales into the theory. Current applications of this scheme have
normally used regular arrays of nodal spacing, thus generating a regular lattice microstructure with
similarities to the micropolar model shown in Figure 15.15. Each node in the array is allowed to have a
translation and rotation, and increments of these variables are expanded in a Taylor series about the
nodal point. The order at which the series is truncated defines the degree of approximation employed.
The lowest-order case that uses only a single term in the series will not contain any length scales, while
using additional terms results in a multi-length-scale theory. The allowable kinematics develop
microstrains of elongation, shear, and torsion (about the doublet axis). Through appropriate
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FIGURE 15.19 Stress Concentration Behavior for Elastic Material with Voids.
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constitutive assumptions, these microstrains can be related to corresponding elongational, shear, and
torsional microstresses.

Although not necessary, a granular interpretation of doublet mechanics is commonly employed, in
which the material is viewed as an assembly of circular or spherical particles. A pair of such particles
represents a doublet, as shown in Figure 15.20. Corresponding to the doublet (A,B) there exists a
doublet or branch vector za connecting the adjacent particle centers and defining the doublet axis a.
The magnitude of this vector ha ¼ jzaj is simply the sum of the two radii for particles in contact.
However, in general the particles need not be in contact, and the length scale ha could be used to
represent a more general microstructural feature. As mentioned, the kinematics allow relative elon-
gational, shearing, and torsional motions between the particles, and this is used to develop elonga-
tional microstress pa, shear microstress ta, and torsional microstress ma, as shown in Figure 15.20. It
should be pointed out that these microstresses are not second-order tensors in the usual continuum
mechanics sense. Rather, they are vector quantities that represent the elastic microforces and micro-
couples of interaction between doublet particles. Their directions are dependent on the doublet axes
that are determined by the material microstructure. Also, these microstresses are not continuously
distributed but rather exist only at particular points in the medium being simulated by DM theory.

If u(x,t) is the displacement field coinciding with a particle displacement, then the increment
function can be written as

Dua ¼ uðxþ za; tÞ � uðx; tÞ (15.6.1)

where a¼ 1,., n, and n is referred to as the valence of the lattice. Considering only the case where the
doublet interactions are symmetric, it can be shown that the shear and torsional microdeformations and
stresses vanish, and thus only extensional strains and stresses exist. For this case the extensional
microstrain εa (representing the elongational deformation of the doublet vector) is defined by

εa ¼ qa$Dua
ha

(15.6.2)

where qa¼ za/ha is the unit vector in the a direction. The increment function (15.6.1) can be expanded
in a Taylor series as

Dua ¼
XM
m¼1

ðhaÞm
m!

ðqa$VÞmuðx; tÞ (15.6.3)
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FIGURE 15.20 Doublet Mechanics Geometry.
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Using this result in relation (15.6.2) develops the series expansion for the extensional microstrain

εa ¼ qai
XM
m¼1

ðhaÞm�1

m!
qak1 / qakm

vmui
vxk1/ vxkm

(15.6.4)

where qak are the direction cosines of the doublet directions with respect to the coordinate system. As
mentioned, the number of terms used in the series expansion of the local deformation field determines
the order of approximation in DM theory. For the first-order case (m ¼ 1), the scaling parameter ha
drops from the formulation, and the elongational microstrain is reduced to

εx ¼ qaiqajeij (15.6.5)

where eij ¼ ½(ui, j þ uj,i) is the usual continuum strain tensor.
For this case, it has been shown that the DM solution can be calculated directly from the corre-

sponding continuum elasticity solution through the relation

sij ¼
Xn
a¼1

qaiqajpa (15.6.6)

This result can be expressed in matrix form

fsg ¼ ½Q�fpg0fpg ¼ ½Q��1fsg (15.6.7)

where for the two-dimensional case, {s} ¼ {sxsysxy}
T is the continuum elastic stress vector in Car-

tesian coordinates, {p} is the microstress vector, and [Q] is a transformation matrix. For plane
problems, this transformation matrix can be written as

½Q� ¼
2
4 ðq11Þ2 ðq21Þ2 ðq31Þ2
ðq12Þ2 ðq22Þ2 ðq32Þ2
q11q12 q21q22 q31q32

3
5 (15.6.8)

This result allows a straightforward development of first-order DM solutions for many problems of
engineering interest; see Ferrari et al. (1997).

EXAMPLE 15.15: DOUBLET MECHANICS SOLUTION OF THE FLAMANT PROBLEM
We now wish to investigate a specific application of the doublet mechanics model for a two-
dimensional problem with regular particle packing microstructure. The case of interest is the Flam-
ant problem of a concentrated force acting on the free surface of a semi-infinite solid, as shown in
Figure 15.21. The classical elasticity solution to this problem was originally developed in Section
8.4.7, and the Cartesian stress distribution was given by

sx ¼ � 2Px2y

pðx2 þ y2Þ2

sy ¼ � 2Py3

pðx2 þ y2Þ2

sxy ¼ � 2Pxy2

pðx2 þ y2Þ2

(15.6.9)
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FIGURE 15.21 Flamant Problem for the Doublet Mechanics Model.

This continuummechanics solution specifies that the normal stresses are everywhere compressive in
the half space, and a plot of the distribution of normal and shear stresses on a surface y ¼ constant
was shown in Figure 8.20.

The doublet mechanics model of this problem is established by choosing a regular two-
dimensional hexagonal packing, as shown in Figure 15.21. This geometrical microstructure estab-
lishes three doublet axes at anglesg¼ 60	 as shown. Using only first-order approximation, DM shear
and torsional microstresses vanish, leaving only elongational microstress components (p1, p2, p3) as
shown. Positive elongational components correspond to tensile forces between particles.

For this fabric geometry the transformation matrix (15.6.8) becomes

½Q� ¼
2
4 cos2g cos2g 1

sin2g sin2g 0
�cos g sin g cos g sin g 0

3
5 (15.6.10)

Using this transformation in relation (15.6.7) produces the following microstresses

p1 ¼ � 4Py2
� ffiffiffi

3
p

xþ y
�

3pðx2 þ y2Þ2

p2 ¼ � 4Py2
� ffiffiffi

3
p

x� y
�

3pðx2 þ y2Þ2

p3 ¼ � 2Py
�
3x2 � y2

�
3pðx2 þ y2Þ2

(15.6.11)

Although these DM microstresses actually exist only at discrete points and in specific directions as
shown in Figure 15.21, we use these results to make continuous contour plots over the half-space
domain under study. In this fashion we can compare DM predictions with the corresponding clas-
sical elasticity results. Reviewing the stress fields given by (15.6.9) and (15.6.11), we can directly
compare only the horizontal elasticity component sx with the doublet mechanics microstress p3. The
other stress components act in different directions and thus do not allow a simple direct comparison.
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Figure 15.22 illustrates contour plots of the elasticity sx and DM p3 stress components. As
mentioned previously, the classical elasticity results predict a totally compressive stress field as
shown. Note, however, the difference in predictions from doublet mechanics theory. There exists
a symmetric region of tensile microstress below the loading point in the region y � ffiffiffi

3
p ��x��. It has

been pointed out in the literature that there exists experimental evidence of such tensile behavior
in granular and particulate composite materials under similar surface loading, and Ferrari et al.
(1997) refer to this issue as Flamant’s paradox. It would appear that micromechanical effects
are the mechanisms for the observed tensile behaviors, and DM theory offers a possible approach
to predict this phenomenon. Additional anomalous elastic behaviors have been reported for other
plane elasticity problems; see Ferrari et al. (1997) and Sadd and Dai (2004).

Many other micromechanical theories of solids have been developed and reported in the literature. Our
brief study has been able to discuss only a few of the more common modeling approaches within the
context of linear elastic behavior. This has been and will continue to be a very challenging and
interesting area in solid mechanics research.
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FIGURE 15.22 Comparison of Horizontal Stress Fields from Classical Elasticity and Doublet Mechanics.
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EXERCISES

15.1 Show that the general plane strain edge dislocation problem shown in Figure 15.3 can be
solved using methods of Chapter 10 with the two complex potentials

gðzÞ ¼ imb

4pð1� nÞ log z; jðzÞ ¼ � imb

4pð1� nÞ log z

where b ¼ bx þ iby. In particular, verify the cyclic property [u þ iv]C ¼ �b, where C is
any circuit in the x,y-plane around the dislocation line. Also determine the general stress
and displacement field.

15.2 Justify that the edge dislocation solution (15.1.2) provides the required multivalued
behavior for the displacement field. Explicitly develop the resulting stress fields given by
(15.1.3) and (15.1.4).
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15.3 Show that the screw dislocation displacement field (15.1.5) gives the stresses (15.1.6) and
(15.1.7).

15.4 For the edge dislocation model, consider a cylinder of finite radius with axis along the
dislocation line (z-axis). Show that although the stress solution gives rise to tractions on this
cylindrical surface, the resultant forces in the x and y directions will vanish.

15.5 The stress field (15.1.7) for the screw dislocation produces no tangential or normal forces on
a cylinder of finite radius with axis along the dislocation line (z-axis). However, show that if
the cylinder is of finite length, the stress szq on the ends will not necessarily be zero and will
give rise to a resultant couple.

15.6 Show that the strain energy (per unit length) associated with the screw dislocation model of
Example 15.2 is given by

Wscrew ¼ mb2

4p
log

Ro

Rc

where Ro is the outer radius of the crystal and Rc is the core radius of the dislocation. This
quantity is sometimes referred to as the self-energy. The radial dimensions are somewhat
arbitrary, although Rc is sometimes taken as five times the magnitude of the Burgers
vector.

15.7 Using similar notation as Exercise 15.6, show that the strain energy associated with the edge
dislocation model of Example 15.1 can be expressed by

Wedge ¼ mb2

4pð1� nÞ log
Ro

Rc

Note that this energy is larger than the value developed for the screw dislocation in
Exercise 15.6. Evaluate the difference between these energies for the special case of n ¼ 1

3.

15.8 For the Kelvin state as considered in Example 15.4, explicitly justify the displacement and
stress results given in relations (15.2.8) and (15.2.10).

15.9 Verify that the displacements and stresses for the center of compression are given by
(15.2.21) and (15.2.22).

15.10 A fiber discontinuity is to be modeled using a line of centers of dilatation along the x1-axis
from 0 to a. Show that the displacement field for this problem is given by

u1 ¼ 1

2m

	
1

R̂
� 1

R




u2 ¼ 1

2m

 
1

R

x1x2

x22 þ x23
� 1

R̂

ðx1 � aÞx2
x22 þ x23

!

u3 ¼ 1

2m

 
1

R

x1x3

x22 þ x23
� 1

R̂

ðx1 � aÞx3
x22 þ x23

!

where R̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � aÞ2 þ x22 þ x23

q
and R is identical to that illustrated in Figure 15.11.
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15.11* For the isotropic self-consistent crack distribution case in Example 15.12, show that for the
case n ¼ 0.5, relation (15.3.4)3 reduces to

ε ¼ 9

16

	
1� 2n

1� n2



Verify the total loss of moduli at ε ¼ 9

16. Using these results, develop plots of the effective
moduli ratios n=n;E=E;m=m versus the crack density. Compare these results with the
corresponding values from the dilute case given in Example 15.10.

15.12 Develop the compatibility relations for couple-stress theory given by (15.4.12). Next, using
the constitutive relations, eliminate the strains and rotations, and express these relations in
terms of the stresses, thus verifying equations (15.4.13).

15.13 Explicitly justify that the stressestress function relations (15.4.14) are a self-equilibrated
form.

15.14 For the couple-stress theory, show that the two stress functions satisfy

V4F ¼ 0; V2J� l2V4J ¼ 0

15.15 Using the general stress relations (15.4.25) for the stress concentration problem of Example
15.13, show that the circumferential stress on the boundary of the hole is given by

sqða; qÞ ¼ T

	
1� 2cos 2q

1þ F



Verify that this expression gives a maximum at q ¼ �p/2, and explicitly show that this value
will reduce to the classical case of 3T by choosing l1 ¼ l2 ¼ l ¼ 0.

15.16 Starting with the general relations (15.5.6), verify that the two-dimensional plane stress
constitutive equations for elastic materials with voids are given by (15.5.9).

15.17 For elastic materials with voids, using the single strainecompatibility equation, develop the
stress and stress function compatibility forms (15.5.10) and (15.5.11).

15.18* Compare the hoop stress sq(r,p/2) predictions from elasticity with voids given by relation
(15.5.18) with the corresponding results from classical theory. Choosing N ¼ 1

2 and L ¼ 2,
for the elastic material with voids, make a comparative plot of sq(r,p/2)/T versus r/a for
these two theories.

15.19* For the doublet mechanics Flamant solution in Example 15.15, develop contour plots
(similar to Figure 15.22) for the microstresses p1 and p2. Are there zones where these
microstresses are tensile?
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Numerical Finite and Boundary
Element Methods 16
Reviewing the previous chapters would indicate that analytical solutions to elasticity problems are
normally accomplished for regions and loadings with relatively simple geometry. For example, many
solutions can be developed for two-dimensional problems, while only a limited number exist for three
dimensions. Solutions are commonly available for problems with simple shapes such as those having
boundaries coinciding with Cartesian, cylindrical, and spherical coordinate surfaces. Unfortunately,
problems with more general boundary shape and loading are commonly intractable or require very
extensive mathematical analysis and numerical evaluation. Because most real-world problems involve
structures with complicated shape and loading, a gap was formed between what was needed in
applications and what can be solved by analytical closed-form methods.

Over the years, this need to determine deformation and stresses in complex problems has lead to
the development of many approximate and numerical solution methods (see brief discussion in
Section 5.7). Approximate methods based on energy techniques were outlined in Section 6.7, but it
was pointed out that these schemes have limited success in developing solutions for problems of
complex shape. Methods of numerical stress analysis normally recast the mathematical elasticity
boundary value problem into a direct numerical routine. One such early scheme is the finite difference
method (FDM) in which derivatives of the governing field equations are replaced by algebraic dif-
ference equations. This method generates a system of algebraic equations at various computational
grid points in the body, and the solution to the system determines the unknown variable at each grid
point. Although simple in concept, FDM has not been able to provide a useful and accurate scheme to
handle general problems with geometric and loading complexity. Over the past few decades, two
methods have emerged that provide necessary accuracy, general applicability, and ease of use. This
has led to their acceptance by the stress analysis community and has resulted in the development of
many private and commercial computer codes implementing each numerical scheme.

The first of these techniques is known as the finite element method (FEM) and involves dividing the
body under study into a number of pieces or subdomains called elements. The solution is then
approximated over each element and is quantified in terms of values at special locations within the
element called the nodes. The discretization process establishes an algebraic system of equations for
the unknown nodal values, which approximate the continuous solution. Because element size, shape,
and approximating scheme can be varied to suit the problem, the method can accurately simulate
solutions to problems of complex geometry and loading. The FEM has thus become a primary tool for
practical stress analysis and is also used extensively in many other fields of engineering and science.

The second numerical scheme, called the boundary element method (BEM), is based on an integral
statement of elasticity [see relation (6.4.7)]. This statement may be cast into a form with unknowns
only over the boundary of the domain under study. The boundary integral equation is then solved using
finite element concepts where the boundary is divided into elements and the solution is approximated
over each element using appropriate interpolation functions. This method again produces an algebraic
system of equations to solve for unknown nodal values that approximate the solution. Similar to FEM
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techniques, the BEM also allows variations in element size, shape, and approximating scheme to suit
the application, and thus the method can accurately solve a large variety of problems.

Generally, an entire course is required to present sufficient finite and boundary element theory to
prepare properly for the techniques’ numerical/computational applications. Thus, the brief presenta-
tion in this chapter provides only an overview of each method, focusing on narrow applications for
two-dimensional elasticity problems. The primary goal is to establish a basic level of understanding
that will allow a quick look at applications and enable connections to be made between numerical
solutions (simulations) and those developed analytically in the previous chapters. This brief intro-
duction provides the groundwork for future and more detailed study in these important areas of
computational solid mechanics.

16.1 Basics of the finite element method
Finite element procedures evolved out of matrix methods used by the structural mechanics community
during the 1950s and 1960s. Over the years, extensive research has clearly established and tested
numerous FEM formulations, and the method has spread to applications in many fields of engineering
and science. FEM techniques have been created for discrete and continuous problems including static
and dynamic behavior with both linear and nonlinear responses. The method can be applied to one-,
two-, or three-dimensional problems using a large variety of standard element types. We, however,
limit our discussion to only two-dimensional, linear isotropic elastostatic problems. Numerous texts
have been generated that are devoted exclusively to this subject; for example, Reddy (2006), Bathe
(1982), Zienkiewicz and Taylor (2005), Fung and Tong (2001), and Cook et al. (2002).

As mentioned, the method discretizes the domain under study by dividing the region into sub-
domains called elements. In order to simplify formulation and application procedures, elements are
normally chosen to be simple geometric shapes, and for two-dimensional problems these would
be polygons including triangles and quadrilaterals. A two-dimensional example of a rectangular plate
with a circular hole divided into triangular elements is shown in Figure 16.1. Two different meshes
(discretizations) of the same problem are illustrated, and even at this early stage in our discussion, it is
apparent that improvement of the representation is found using the finer mesh with a larger number of
smaller elements. Within each element, an approximate solution is developed, and this is quantified at
particular locations called the nodes. Using a linear approximation, these nodes are located at the
vertices of the triangular element as shown in the figure. Other higher-order approximations (quadratic,
cubic, etc.) can also be used, resulting in additional nodes located in other positions. We present only a
finite element formulation using linear, two-dimensional triangular elements.

Typical basic steps in a linear, static finite element analysis include the following

1. Discretize the body into a finite number of element subdomains.
2. Develop approximate solution over each element in terms of nodal values.
3. Based on system connectivity, assemble elements and apply all continuity and boundary

conditions to develop an algebraic system of equations among nodal values.
4. Solve assembled system for nodal values; post process solution to determine additional variables

of interest if necessary.

The basic formulation of the method lies in developing the element equation that approximately
represents the elastic behavior of the element. This development is done for the generic case, thus
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creating a model applicable to all elements in the mesh. As pointed out in Chapter 6, energy methods
offer schemes to develop approximate solutions to elasticity problems, and although these schemes were
not practical for domains of complex shape, they can be easily applied over an element domain of simple
geometry (i.e., triangle). Therefore, methods of virtual work leading to a Ritz approximation prove to
be very useful in developing element equations for FEM elasticity applications. Another related scheme
to develop the desired element equation uses a more mathematical approach known as the method of
weighted residuals. This second technique starts with the governing differential equations, and through
appropriate mathematical manipulations, a so-called weak form of the system is developed. Using a
Ritz/Galerkin scheme, an approximate solution to the weak form is constructed, and this result is
identical to the method based on energy and virtual work. Before developing the element equations, we
first discuss the necessary procedures to create approximate solutions over an element in the system.

16.2 Approximating functions for two-dimensional linear triangular
elements

Limiting our discussion to the two-dimensional case with triangular elements, we wish to investigate
procedures necessary to develop a linear approximation of a scalar variable u(x,y) over an element.
Figure 16.2 illustrates a typical triangular element denoted by Ue in the x,y-plane. Looking for a linear
approximation, the variable is represented as

uðx;yÞ ¼ c1 þ c2xþ c3y (16.2.1)

(Discretization with 228 Elements)

(Discretization with 912 Elements)

(Triangular Element)

(Node)

FIGURE 16.1 Finite Element Discretization Using Triangular Elements.
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where ci are constants. It should be kept in mind that in general the solution variable is expected to have
nonlinear behavior over the entire domain and our linear (planar) approximation is only proposed over
the element. We therefore are using a piecewise linear approximation to represent the general
nonlinear solution over the entire body. This approach usually gives sufficient accuracy if a large
number of elements are used to represent the solution field. Other higher-order approximations
including quadratic, cubic, and specialized nonlinear forms can also be used to improve the accuracy
of the representation.

It is normally desired to express the representation (16.2.1) in terms of the nodal values of the
solution variable. This can be accomplished by first evaluating the variable at each of the three nodes

uðx1; y1Þ ¼ u1 ¼ c1 þ c2x1 þ c3y1
uðx2; y2Þ ¼ u2 ¼ c1 þ c2x2 þ c3y2
uðx3; y3Þ ¼ u3 ¼ c1 þ c2x3 þ c3y3

(16.2.2)

Solving this system of algebraic equations, the constants ci can be expressed in terms of the nodal
values ui, and the general results are given by

c1 ¼ 1

2Ae
ða1u1 þ a2u2 þ a3u3Þ

c2 ¼ 1

2Ae
ðb1u1 þ b2u2 þ b3u3Þ

c3 ¼ 1

2Ae
ðg1u1 þ g2u2 þ g3u3Þ

(16.2.3)

1
2

3

x

 y

Ωe

(Element Geometry)

Γe = Γ12 + Γ23 + Γ31

(x1,y1)
(x2,y2)

(x3,y3)

(Lagrange Interpolation Functions)

1

2

3

1

ψ1
ψ2 ψ3

1

2

3

1 1

2

3
1

FIGURE 16.2 Linear Triangular Element Geometry and Interpolation.
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where Ae is the area of the element, and ai¼ xjyk� xkyj, bi¼ yj� yk, gi¼ xk� xj, where is js k and
i,j,k permute in natural order. Substituting for ci in (16.2.1) gives

uðx;yÞ ¼ 1

2Ae
½ða1u1 þ a2u2 þ a3u3Þ

þ ðb1u1 þ b2u2 þ b3u3Þx
þðg1u1 þ g2u2 þ g3u3Þy�

¼
X3
i¼1

uijiðx;yÞ

(16.2.4)

where ji are the interpolation functions for the triangular element given by

jiðx;yÞ ¼
1

2Ae
ðai þ bixþ giyÞ (16.2.5)

It is noted that the form of the interpolation functions depends on the initial approximation assumption
and on the shape of the element. Each of the three interpolation functions represents a planar surface as
shown in Figure 16.2, and it is observed that they will satisfy the following conditions

jiðxj;yjÞ ¼ dij;
X3
i¼1

ji ¼ 1 (16.2.6)

Functions satisfying such conditions are referred to as Lagrange interpolation functions.
This method of using interpolation functions to represent the approximate solution over an element

quantifies the approximation in terms of nodal values. In this fashion, the continuous solution over the
entire problem domain is represented by discrete values at particular nodal locations. This discrete
representation can be used to determine the solution at other points in the region using various other
interpolation schemes. With these representation concepts established, we now pursue a brief devel-
opment of the plane elasticity element equations using the virtual work formulation.

16.3 Virtual work formulation for plane elasticity
The principle of virtual work developed in Section 6.5 can be stated over a finite element volume Ve
with boundary Se as ð

Ve

sijdeijdV ¼
ð
Se

Tn
i duidSþ

ð
Ve

FiduidV (16.3.1)

For plane elasticity with an element of uniform thickness he, Ve¼ heUe and Se¼ heGe, and the previous
relation can be reduced to the two-dimensional form

he

ð
Ue

�
sxdex þ sydey þ 2sxydexy

�
dxdy

�he

ð
Ge

�
Tn
x duþ Tn

y dv
�
dS� he

ð
Ue

�
Fxduþ Fydv

�
dxdy ¼ 0

(16.3.2)
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Using matrix notation, this relation can be written as

he

ð
Ue

0
@
8<
:

dex
dey
2dexy

9=
;

T8<
:

sx
sy
sxy

9=
;
1
Adxdy

� he

ð
Ge

��
du
dv

�T� Tn
x

Tn
y

�	
dS� he

ð
Ue

��
du
dv

�T�
Fx

Fy

�	
dxdy ¼ 0

(16.3.3)

We now proceed to develop an element formulation in terms of the displacements and choose a linear
approximation for each component

uðx;yÞ ¼
X3
i¼1

uijiðx;yÞ

vðx;yÞ ¼
X3
i¼1

vijiðx;yÞ
(16.3.4)

where ji(x,y) are the Lagrange interpolation functions given by (16.2.5). Using this scheme there will
be two unknowns or degrees of freedom at each node, resulting in a total of six degrees of freedom for
the entire linear triangular element. Because the strains are related to displacement gradients, this
interpolation choice results in a constant strain element (CST), and of course the stresses will also be
element-wise constant. Relation (16.3.4) can be expressed in matrix form

�
u
v

�
¼


j1 0 j2 0 j3 0
0 j1 0 j2 0 j3

�
8>>>>>><
>>>>>>:

u1
v1
u2
v2
u3
v3

9>>>>>>=
>>>>>>;

¼ ½j�fDg (16.3.5)

The strains can then be written as

feg ¼
8<
:

ex
ey
2exy

9=
; ¼

2
4 v=vx 0

0 v=vy
v=vy v=vx

3
5� u

v

�

¼
2
4 v=vx 0

0 v=vy
v=vy v=vx

3
5½j�fDg ¼ ½B�fDg

(16.3.6)
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where

½B� ¼

2
6666666664

vj1

vx
0

vj2

vx
0

vj3

vx
0

0
vj1

vy
0

vj2

vy
0

vj3

vy

vj1

vy

vj1

vx

vj2

vy

vj2

vx

vj3

vy

vj3

vx

3
7777777775

¼ 1

2Ae

2
664
b1 0 b2 0 b3 0

0 g1 0 g2 0 g3

g1 b1 g2 b2 g3 b3

3
775

(16.3.7)

Hooke’s law then takes the form

fsg ¼ ½C�feg ¼ ½C�½B�fDg (16.3.8)

where [C] is the elasticity matrix that can be generalized to the orthotropic case (see Section 11.2) by

½C� ¼
2
4C11 C12 0
C12 C22 0
0 0 C66

3
5 (16.3.9)

For isotropic materials

C11 ¼ C22 ¼

8>>><
>>>:

E

1� n2
/ plane stress

Eð1� nÞ
ð1þ nÞð1� 2nÞ / plane strain

C12 ¼

8>>><
>>>:

En

1� n2
/ plane stress

En

ð1þ nÞð1� 2nÞ / plane strain

C66 ¼ m ¼ E

2ð1þ nÞ / plane stress and plane strain

(16.3.10)
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Using results (16.3.5), (16.3.6), and (16.3.8) in the virtual work statement (16.3.3) gives

he

ð
Ue

fdDgT
�
½B�T ½C�½B�

�
fDgdxdy

� he

ð
Ue

fdDgT ½j�T
�
Fx

Fy

�
dxdy� he

ð
Ge

fdDgT ½j�T
(
Tn
x

Tn
y

)
dS ¼ 0

(16.3.11)

which can be written in compact form

fdDgT�½K��D� �F� �Q� ¼ 0 (16.3.12)

Because this relation is to hold for arbitrary variations {dD}T, the expression in parentheses must
vanish, giving the finite element equation

½K�fDg ¼ fFg þ fQg (16.3.13)

The equation matrices are defined as follows

½K� ¼ he

ð
Ue

½B�T ½C�½B�dxdy / stiffness matrix

fFg ¼ he

ð
Ue

½j�T
�
Fx

Fy

�
dxdy / body force vector

fQg ¼ he

ð
Ge

½j�T
�
Tn
x

Tn
y

�
dS / loading vector

(16.3.14)

Using the specific interpolation functions for the constant strain triangular element, the [B] matrix had
constant components given by (16.3.7). If we assume that the elasticity matrix also does not vary over
the element, then the stiffness matrix is given by

½K� ¼ heAe½B�T ½C�½B� (16.3.15)

and multiplying out the matrices gives the specific form

½K� ¼ he
4Ae

2
6666666664

b21C11 þ g21C66 b1g1C12 þ b1g1C66 b1b2C11 þ g1g2C66 b1g2C12 þ b2g1C66 b1b3C11 þ g1g3C66 b1g3C12 þ b3g1C66

: g21C22 þ b21C66 b2g1C12 þ b1g2C66 g1g2C22 þ b1b2C66 b3g1C12 þ b1g3C66 g1g3C22 þ b1b3C66

: : b22C11 þ g2
2C66 b2g2C12 þ b2g2C66 b2b3C11 þ g2g3C66 b2g3C12 þ b3g2C66

: : : g22C22 þ b22C66 b3g2C12 þ b2g3C66 g2g3C22 þ b2b3C66

: : : : b23C11 þ g23C66 b3g3C12 þ b3g3C66

: : : : : g23C22 þ b23C66

3
7777777775

(16.3.16)

Note that the stiffness matrix is always symmetric, and thus only the top right (or bottom left) portion
need be explicitly written out. If we also choose body forces that are element-wise constant, the body
force vector {F} can be integrated to give

fFg ¼ heAe

3

�
Fx Fy Fx Fy Fx Fy

T
(16.3.17)
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The {Q} matrix involves integration of the tractions around the element boundary, and its evaluation
depends on whether an element side falls on the boundary of the domain or is located in the region’s
interior. The evaluation also requires a modeling decision on the assumed traction variation on the
element sides. Most problems can be adequately modeled using constant, linear, or quadratic variation
in the element boundary tractions. For the typical triangular element shown in Figure 16.2, the {Q}
matrix may be written as

fQg ¼ he

ð
Ge

½j�T
(
Tn
x

Tn
y

)
dS

¼ he

ð
G12

½j�T
(
Tn
x

Tn
y

)
dSþ he

ð
G23

½j�T
(
Tn
x

Tn
y

)
dSþ he

ð
G31

½j�T
(
Tn
x

Tn
y

)
dS

(16.3.18)

Wishing to keep our study brief in theory, we take the simplest case of element-wise constant boundary
tractions, which allows explicit calculation of the boundary integrals. For this case, the integral over
element side G12 is given by

he

ð
G12

½j�T
(
Tn
x

Tn
y

)
dS ¼ he
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where L12 is the length of side G12. Note that we have used the fact that along side G12, j1 and j2 vary
linearly and j3 ¼ 0. Following similar analysis, the boundary integrals along sides G23 and G31 are
found to be
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(16.3.20)

It should be noted that for element sides that lie in the region’s interior, values of the boundary tractions
will not be known before the solution is found; therefore, the previous relations cannot be used to evaluate
the contributions of the {Q} matrix explicitly. However, for this situation, the stresses and tractions are in
internal equilibrium, and thus the integrated result from one element will cancel that from the opposite
adjacent element when the finite element system is assembled. For element sides that coincide with the
region’s boundary, any applied boundary tractions are then incorporated into the results given by
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relations (16.3.19) and (16.3.20). Our simplifications of choosing element-wise constant values for the
elastic moduli, body forces, and tractions were made only for convenience of the current abbreviated
presentation. Normally, FEM modeling allows considerably more generality in these choices, and in-
tegrals in the basic element equation (16.3.14) are then evaluated numerically for such applications.

16.4 FEM problem application
Applications using the linear triangular element discretize the domain into a connected set of such ele-
ments (see, for example, Figure 16.1). The mesh geometry establishes which elements are interconnected
and identifies those on the boundary of the domain. Using computer implementation, each element in the
mesh is mapped or transformed onto a master element in a local coordinate systemwhere all calculations
are done. The overall problem is thenmodeled by assembling the entire set of elements through a process
of invoking equilibrium at each node in the mesh. This procedure creates a global assembled matrix
system equation of similar form as (16.3.13). Boundary conditions are then incorporated into this global
system to reduce the problem to a solvable set of algebraic equations for the unknown nodal dis-
placements. We do not pursue the theoretical and operational details in these procedures, but rather focus
attention on a particular example to illustrate some of the key steps in the process.

EXAMPLE 16.1: ELASTIC PLATE UNDER UNIFORM TENSION
Consider the plane stress problem of an isotropic elastic plate under uniform tension with zero
body forces, as shown in Figure 16.3. For convenience, the plate is taken with unit dimensions
and thickness and is discretized into two triangular elements as shown. This simple problem is
chosen in order to demonstrate some of the basic FEM solution procedures previously presented.
More complex examples are discussed in the next section to illustrate the general power and utility
of the numerical technique.
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FIGURE 16.3 FEM Analysis of an Elastic Plate Under Uniform Tension.
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The element mesh is labeled as shown with local node numbers within each element and global
node numbers (1e4) for the entire problem. We start by developing the equation for each element
and then assemble the two elements to model the entire plate. For element 1, the geometric param-
eters are b1 ¼ �1, b2 ¼ 1, b3 ¼ 0, g1 ¼ 0, g2 ¼ �1, g3 ¼ 1, and A1 ¼ 1/2. For the isotropic plane
stress case, the element equation follows from our previous work
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(16.4.1)

In similar fashion for element 2, b1 ¼ 0, b2 ¼ 1, b3 ¼ �1, g1 ¼ �1, g2 ¼ 0, g3 ¼ 1, A1 ¼ 1/2, and
the element equation becomes
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(16.4.2)

These individual element equations are to be assembled to model the plate, and this is carried out
using the global node numbering format by enforcing x and y equilibrium at each node. The final
result is given by the assembled global system
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where Ui and Vi are the global x and y nodal displacements, and K
ð1Þ
ij and K

ð2Þ
ij are the local stiffness

components for elements 1 and 2 as given in relations (16.4.1) and (16.4.2).
The next step is to use the problem boundary conditions to reduce this global system. Because the

plate is fixed along its left edge, U1 ¼ V1 ¼ U4 ¼ V4 ¼ 0. Using the scheme presented in equations

(16.3.18)e(16.3.20), the tractions on the right edge are modeled by choosing T
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This result can then be solved for the nodal unknowns, and for the case of material with properties
E ¼ 207 GPa and n ¼ 0.25, the solution is found to be8>><
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>>:
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9>>=
>>;T � 10�11 m (16.4.5)

Note that the FEM displacements are not symmetric as expected from analytical theory. This is
caused by the fact that our simple two-element discretization eliminated the symmetry in the
original problem. If another symmetric mesh were used, the displacements at nodes 2 and 3 would
then be symmetric. As a postprocessing step, the forces at nodes 1 and 4 could now be computed by
back-substituting solution (16.4.5) into the general equation (16.4.3). Many of the basic steps in an
FEM solution are demonstrated in this hand-calculation example. However, the importance of the
numerical method lies in its computer implementation, and examples of this are now discussed.

16.5 FEM code applications
The power and utility of the finite element method lies in the use of computer codes that implement the
numerical method for problems of general shape and loading. A very large number of both private and
commercial FEM computer codes have been developed over the past several decades. Many of these
codes (e.g., ABAQUS, ANSYS, ALGOR, NASTRAN, ADINA) offer very extensive element libraries
and can handle linear and nonlinear problems under either static or dynamic conditions. However, the
use of such general codes requires considerable study and practice and would not suit the needs of this
chapter. Therefore, rather than attempting to use a general code, we follow our numerical theme of
employing MATLAB� software, which offers a simple FEM package appropriate for our limited
needs. The MATLAB� code is called the PDE Toolbox and is one of the many toolboxes distributed
with the basic software.

This software package provides an FEM code that can solve two-dimensional elasticity problems
using linear triangular elements. Additional problems governed by other partial differential equations
can also be handled, and this allows the software to be used for the torsion problem. The PDE Toolbox
is very easy to use, and its simple graphical user interface and automeshing features allow the user to
create problem geometry quickly and appropriately mesh the domain. Some additional user details on
this MATLAB� package are provided in Appendix C (Example C.10). We now present some example
FEM solutions to problems developed by analytical methods in earlier chapters.

EXAMPLE 16.2: CIRCULAR AND ELLIPTICAL HOLES IN A PLATE UNDER UNIFORM
TENSION
We wish to investigate the numerical finite element solution to the two-dimensional problem of an
elastic plate under uniform tension that contains a circular or elliptical hole. These problems were
previously solved for the case of an unbounded plane domain; the circular hole (see Figure 8.12)
was developed in Example 8.7, while the elliptical hole (Figure 10.17) was solved in Example
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10.7. It is noted that for a standard FEM solution we must have a finite size domain to discretize into
a mesh. Because of problem symmetry, only one-quarter of the domain need be analyzed; however,
due to the simple problem geometry we do not use this fact and the entire domain is discretized.

The circular hole example is shown in Figure 16.4. The code allows many different meshes
to be generated, and the particular case shown is a fine mesh with 3648 elements and 1912
nodes. Using this software, various types of FEM results can be plotted, and the particular
graphic shows contours of the horizontal normal stress sx. The concentration effect around
the hole is clearly evident, and FEM results give a stress concentration factor K z 2.9 (based on
nominal stress applied at the boundaries). Recall that our theoretical result for an infinite plane
gave K ¼ 3, and results for the finite-width plate can be found from Peterson (1974), giving K
z 3.2 for this geometry (width/diameter z 4.23). Thus, the FEM result is slightly less than that
predicted from theory and Peterson, indicating that the numerical model has some difficulty in prop-
erly capturing the high stress gradient in the vicinity of the hole. Using a finer mesh or higher-order
elements would result in a value closer to the theoretical/experimental prediction.

A similar problem with an elliptical hole of aspect ratio b/a ¼ 2 is shown in Figure 16.5. The
mesh for this case has 3488 elements with 1832 nodes. Again, FEM results are illustrated with con-
tours of horizontal stress sx. The concentration effect is reflected by the high stress values at the top
and bottom of the ellipse, and the stress concentration factor was found to be K z 3.3. Using
Figure 10.18 from our previous analytical solution in Example 10.7, an aspect ratio of 2 would
result in K ¼ 5. Thus, we again experience a lower concentration prediction from the finite element

(Finite Element Mesh: 3648 Elements, 1912 Nodes)

(Contours of Horizontal Stress σx)

FIGURE 16.4 FEM Solution of a Plate Under Uniform Tension Containing a Circular Hole.
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model, and the difference between FEM and theory is larger than in the previous example with the
circular hole. The lower FEM concentration value is again attributable to the numerical model’s
inability to simulate the high stress gradient near the top and bottom of the ellipse boundary. Again,
a finer mesh and/or higher-order elements would result in better FEM predictions.

EXAMPLE 16.3: CIRCULAR DISK UNDER DIAMETRICAL COMPRESSION
Consider next the problem of a circular disk under diametrical compression, as originally
discussed in Example 8.10. The problem was solved for the case of concentrated loadings as
shown in Figure 8.35, and contours of the maximum shear stress were compared with photoelastic
data in Figure 8.36. Recall that the photoelastic contours result from an actual experiment in
which the loading is distributed over a small portion of the top and bottom of the disk. This distrib-
uted loading case was solved using the MATLAB� PDE Toolbox, and the results are shown in
Figure 16.6. The figure illustrates two FEM models with different meshes along with contours of
maximum shear stress. With the loading distributed over a small portion of the disk boundary,
the maximum stresses occur slightly interior to the loading surfaces. As expected, the finer mesh
produces better results that more closely compare with analytical and photoelastic predictions
shown in Figure 8.36.

(Finite Element Mesh: 3488 Elements, 1832 Nodes)

(Contours of Horizontal Stress σx)

FIGURE 16.5 FEM Solution of a Plate Under Uniform Tension Containing an Elliptical Hole.
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EXAMPLE 16.4: TORSION PROBLEM EXAMPLES
Recall that in Chapter 9 we formulated the torsion problem in terms of the Prandtl stress function f,
which satisfies the Poisson equation V2f ¼ �2ma in the cross-section. For simply connected
sections, f ¼ 0 on the boundary, while for multiply connected sections the function could be
set to zero on the outer boundary but must be a different constant on each inner boundary. This
two-dimensional problem is easily solved using finite elements and in particular using the PDE
Toolbox. Figure 16.7 illustrates three sections that have been solved using the MATLAB� soft-
ware with linear triangular elements. The first problem is that of a circular section with a circular
keyway, and this problem was originally presented in Exercises 9.22 and 9.23. FEM results show
stress function contours over the section, and the slope of these contours gives the shear stress in
the perpendicular direction. It is readily apparent that the maximum shear stress occurs at the root
of the keyway acting tangent to the boundary at point A. The second example shown is a square
section with a square keyway. The stress function contour lines indicate high-stress regions at the
two re-entrant corners of the keyway. The final example is a multiply connected section with a

(FEM Mesh: 1112 Elements, 539 Nodes) (Contours of Max Shear Stress)

(FEM Mesh: 4448 Elements, 2297 Nodes) (Contours of Max Shear Stress)

FIGURE 16.6 FEM Solution of a Disk Under Diametrical Compression.
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square outer boundary and a triangular inner hole. Contours for this case show three high-stress
regions at each vertex of the triangular cutout. Countless other torsion examples can be quickly
analyzed using this simple FEM code, and quantitative stress results can also be generated (see
Exercise 16.10).

(4224 Elements, 2193 Nodes)

(4928 Elements, 2561 Nodes)

(4624 Elements, 2430 Nodes)

(Stress Function Contours)

(Stress Function Contours)

(Stress Function Contours)

 A

FIGURE 16.7 FEM Solutions to Three Torsion Problems.
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16.6 Boundary element formulation
A second numerical method has recently emerged that provides good computational abilities and has
some particular advantages when compared to FEM. The technique, known as the boundary element
method (BEM), has been widely used by computational mechanics investigators, leading to the
development of many private and commercial codes. Similar to the finite element method, the BEM
can analyze many different problems in engineering science including those in thermal sciences and
fluid mechanics. Although the method is not limited to elastic stress analysis, this brief presentation
discusses only this particular case. Many texts have been written that provide additional details on this
subject (see, for example, Banerjee and Butterfield, 1981; Brebbia and Dominguez, 1992).

The formulation of BEM is based on an integral statement of elasticity, and this can be cast into a
relation involving unknowns only over the boundary of the domain under study. This originally led to
the boundary integral equation (BIE) method, and early work in the field was reported by Rizzo (1967)
and Cruse (1969). Subsequent research realized that finite element methods could be used to solve the
boundary integral equation by dividing the boundary into elements over which the solution is
approximated using appropriate interpolation functions. This process generates an algebraic system of
equations to solve for the unknown nodal values that approximate the boundary solution. A procedure
to calculate the solution at interior domain points can also be determined from the original boundary
integral equation. This scheme also allows variation in element size, shape, and approximating scheme
to suit the application, thus providing similar advantages as the FEM.

By discretizing only the boundary of the domain, the BEM has particular advantages over the FEM.
The first issue is that the resulting boundary element equation system is generally much smaller than
that generated by finite elements. It has been pointed out in the literature that boundary discretization is
somewhat easier to interface with computer-aided design (CAD) codes that create the original problem
geometry. A two-dimensional comparison of equivalent FEM and BEM meshes for a rectangular plate
with a central circular hole is shown in Figure 16.8. It is apparent that a significant reduction in the
number of elements (by a factor of 5) is realized in the BEM mesh. It should be pointed out, however,
that the BEM scheme does not automatically compute the solution at interior points, and thus addi-
tional computational effort is required to find such information.

Some studies have indicated that BEM more accurately determines stress concentration effects.
Problems of infinite extent (e.g., full-space or half-space domains) create some difficulty in developing
appropriate FEM meshes, whereas particular BEM schemes can automatically handle the infinite
nature of the problem and only require limited boundary meshing. There exist several additional
advantages and disadvantages related to each method; however, we will not pursue further comparison
and debate. For linear elasticity, both methods offer considerable utility to solve very complex
problems numerically. We now proceed with a brief development of the boundary element method for
two-dimensional elasticity problems.

The integral statement of elasticity was developed in Section 6.4 as Somigliana’s identity. Using
the reciprocal theorem, one elastic state was selected as the fundamental solution, while the other
state was chosen as the desired solution field. For a region V with boundary S, this led to the
following result

cujðxÞ ¼
ð
S

�
TiðxÞGijðx; xÞ � uiTikjðx; xÞnk

�
dSþ

ð
V
FiGijðx; xÞdV (16.6.1)
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where the coefficient c is given by

c ¼

8>>><
>>>:
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2
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(16.6.2)

Gij (x,x) is the displacement Green’s function that comes from the fundamental solution to the elas-
ticity equations and corresponds to the solution of the displacement field at point x produced by a unit
concentrated body force e located at point x
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�
x; x
�
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�
(16.6.3)

The stresses associated with this state are specified by

sGij ¼ Tijkðx; xÞek ¼
h
lGlk;ldij þ m

�
Gik; j þ Gjk;i

�i
ek (16.6.4)

and the tractions follow to be

TG
i ¼ sGij nj ¼ Tijknjek ¼ pikek (16.6.5)

(FEM Discretization: 228 Elements)

(BEM Discretization: 44 Elements)

FIGURE 16.8 Comparison of Typical FEM and BEM Meshes.
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with pik ¼ Tijknj. Relation (16.6.1) gives the displacement of a given observational point x in terms of
boundary and volume integrals. If point x is chosen to lie on boundary S, then the expression will
contain unknowns (displacements and tractions) only on the boundary. For this case (x on S), relation
(16.6.2) indicates c ¼ 1/2, but this is true only if the boundary has a continuous tangent (i.e., is
smooth). Slight modifications are necessary for the case of nonsmooth boundaries (see Brebbia and
Dominguez, 1992).

Restricting our attention to only the two-dimensional plane strain case, Green’s function becomes
(Brebbia and Dominguez, 1992)

Gij ¼ 1

8pmð1� nÞ
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r

	
dij þ r;ir; j

�
(16.6.6)

where r¼ jx� xj is the distance between points x and x. Relation (16.6.5) can be used to determine the
traction pij associated with this specific Green’s function, giving the result
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It is convenient to use matrix notation in the subsequent formulation and thus define

G ¼


G11 G12

G21 G22

�
; p ¼



p11 p12
p21 p22

�
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�
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�
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�
(16.6.8)

The boundary integral equation (16.6.1) can then be expressed in two-dimensional form as

ciui ¼
ð
G

½GT � pu�dSþ
ð
R
GFdV (16.6.9)

It is noted that by allowing point x to be on the boundary, this relation will contain unknown dis-
placements or tractions only over G. We now wish to apply numerical finite element concepts to solve
(16.6.9) by discretizing the boundary G and region R into subdomains over which the solution will be
approximated. Only the simplest case is presented here in which the approximating scheme assumes
piecewise constant values for the unknowns.

Referring to Figure 16.9, a typical boundary G is discretized into N elements. The unknown
boundary displacements and tractions are assumed to be constant over each element and equal to the
value at each midnode. Subdivision of the interior into cells would also be required in order to compute
integration of the body force term over R. However, such interior integrals can be reformulated in
terms of boundary integrals, thereby maintaining efficiency of the basic boundary techniques. This
reformulation is not discussed here, and we now formally drop body force contributions from further
consideration. Using this discretization scheme, relation (16.6.9) can be written as

ciui þ
XN
j¼1

 ð
Gj

pdS

!
u j ¼

XN
j¼1
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Gj

GdS

!
Tj (16.6.10)
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where index i corresponds to a particular node where the Green’s function concentrated force is
applied, and index j is related to each of the boundary elements including the case j¼ i. Notice that for
the choice of constant approximation over the element, there is no formal interpolation function
required, and nodal values are simply brought outside of the element integrations.

Reviewing the previous expressions (16.6.6) and (16.6.7), the integral terms
Ð
Gj
GdS and

Ð
Gj
pdS

relate node i to node j and are sometimes referred to as influence functions. Each of these terms
generates 2 � 2 matrices that can be defined by

Â
ij ¼

ð
Gj

pdS

Bij ¼
ð
Gj

GdS

(16.6.11)

For the constant element case, some of the integrations in (16.6.11) can be carried out analytically,
while other cases use numerical integration commonly employing Gauss quadrature. It should be noted
that the i ¼ j case generates a singularity in the integration, and special methods are normally used to
handle this problem.

Relation (16.6.10) can thus be written as

ciui þ
XN
j¼1

Â
ij
u j ¼

XN
j¼1

BijTj (16.6.12)

and this result specifies the value of u at node i in terms of values of u and T at all other nodes on the
boundary. If the boundary is smooth, ci ¼ 1

2 at all nodes. By defining

Aij ¼
(
Â
ij
; isj

Â
ij þ ci; i ¼ j

(16.6.13)

equation (16.6.12) can be written in compact form asXN
j¼1

Aiju j ¼
XN
j¼1

BijTj (16.6.14)

Node j Element Γ j

R

Node i

Γ

FIGURE 16.9 Boundary Discretization Using Elements with Constant Approximation.
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or in matrix form

½A�fug ¼ ½B�fTg (16.6.15)

Boundary conditions from elasticity theory normally specify either the displacements or tractions or a
mixed combination of the two variables over boundary G. Using these specified values in (16.6.14)
or (16.6.15) reduces the number of unknowns and allows the system to be rearranged. Placing all
unknowns on the left-hand side of the system equation and moving all known variables to the right
generates a final system that can always be expressed in the form

½C�fXg ¼ fDg (16.6.16)

where all unknown boundary displacements and tractions are located in the column matrix {X} and
all known boundary data have been multiplied by the appropriate influence function and moved into
{D}. Relation (16.6.16) represents a system of linear algebraic equations that can be solved for the
desired unknown boundary information. This BEM system is generally much smaller than that from a
corresponding FEM model. However, unlike the FEM system, the [C] matrix from (16.6.16) is not in
general symmetric, thereby requiring more computational effort to solve for nodal unknowns. Using
modern computing systems, usually this added computational effort is not a significant factor in the
solution of linear elasticity problems.

Once this solution is complete, all boundary data is known and the solution at any desired interior
point can be calculated reusing the basic governing boundary integral equation. For example, at an
interior point relation (16.6.9) with no body forces will take the form

ui ¼
ð
G

GTdS �
ð
G

pudS (16.6.17)

Following our previous constant element approximation, this expression can be discretized as

ui ¼
XN
j¼1

 ð
Gj

GdS

!
Tj �

XN
j¼1

 ð
Gj

pdS

!
u j

¼
XN
j¼1

BijTj �
XN
j¼1

Â
ij
u j

(16.6.18)

and the interior displacement can then be determined using standard computational evaluation of the

influence functions Â
ij
and Bij. Internal values of strain and stress can also be computed using (16.6.17)

in the strain-displacement relations and Hooke’s law, thereby generating expressions similar to relation
(16.6.18); see Brebbia and Dominguez (1992).

EXAMPLE 16.5: BEM SOLUTION OF A CIRCULAR HOLE IN A PLATE UNDER UNIFORM
TENSION
Consider again the problem of Example 16.2 of a plate under uniform tension that contains a stress-
free circular hole. The finite element solution was shown in Figure 16.4 for a very fine FEM mesh
with 3648 triangular elements. A simple BEM FORTRAN code using constant and quadratic
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elements is provided in the text by Brebbia and Dominguez (1992), and this was used to develop the
numerical solution. This simple BEM code does not have drawing or automeshing capabilities, and
thus problem data was input by hand. The boundary element solution was generated using two
different models that incorporated problem symmetry to analyze half of the domain, as shown in
Figure 16.10. One model used 32 constant elements, while the second case used 14 three-noded
quadratic elements.

The constant element model is limited to having nodes located at the midpoint of each element
(see Figure 16.9), and thus does not allow direct determination of the highest stress at the edge of the
hole. For this case using the stress value at node A in Figure 16.10, the stress concentration factor is
found to be K z 2.75. The quadratic element case uses three nodes per element, including nodes
located at the element boundaries. For this case node B in Figure 16.10 is used to determine the
highest stress, and this gives a stress concentration factor of K z 3.02. The particular model has
a width-to-diameter ratio of 10, and for such geometry, results from Peterson (1974) would predict
a stress concentration of about 3. As expected, the BEM results using constant elements were not as
good as the predictions using quadratic interpolation. Comparing this BEM analysis with the finite
element results in Example 16.2 indicates that the quadratic boundary element results appear to give
a more accurate estimate of the actual stress concentration using much fewer elements. However,
this conclusion is based on the particular element models for each analysis, and using other element
types and meshes could produce somewhat different results and comparisons.

Many additional FEM and BEM examples can be developed and compared to illustrate other
interesting features of these computational stress analysis methods. Unfortunately, such an excur-
sion would require developments outside the current scope of the text, and thus we will not pursue
such material. The interested reader is encouraged to consult the chapter references for additional
study.

(32 Constant Element Mesh) (14 Quadratic Element Mesh)

A B

FIGURE 16.10 BEM Solution of a Plate Under Uniform Tension Containing a Circular Hole.
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EXERCISES

16.1 Starting with the general linear form (16.2.1), verify the interpolation relations (16.2.4) and
(16.2.5).

16.2 For the constant strain triangular element, show that the stiffness matrix is given by
(16.3.16).

16.3 For the case of element-wise constant body forces, verify that the body force vector is given
by relation (16.3.17) for the linear triangular element.

16.4 Verify boundary relation (16.3.19) for the linear triangular element with constant boundary
tractions Tn

x and Tn
y .

16.5 For Example 16.1, show that the element stiffness equations for the isotropic case are given
by relations (16.4.1) and (16.4.2).

16.6 Verify the nodal displacement solution given by (16.4.5) in Example 16.1.

16.7* Using the MATLAB� PDE Toolbox (or equivalent), develop an FEM solution for the stress
concentration problem under biaxial loading given in Exercise 8.22. Compare the stress
concentration factor from the numerical results with the corresponding analytical
predictions.

16.8* Using the MATLAB� PDE Toolbox (or equivalent), develop an FEM solution for the stress
concentration problem under shear loading given in Exercise 8.23. Compare the stress
concentration factor from the numerical results with the corresponding analytical
predictions.

528 CHAPTER 16 Numerical Finite and Boundary Element Methods

http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0010
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0015
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0020
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0025
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0025
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0030
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0035
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0040
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0045
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0050
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0050
http://refhub.elsevier.com/B978-0-12-408136-9.00016-7/ref0055


16.9* Using the MATLAB� PDE Toolbox (or equivalent), develop an FEM solution for the curve
beam problem shown in Figure 8.32. At the fixed section, compare numerical stress results
(sx) with analytical predictions (sq) given by equations (8.4.65).

16.10* Using the MATLAB� PDE Toolbox (or equivalent), develop an FEM solution for the
torsion of a cylinder of circular section with circular keyway as shown in Exercise 9.22.
Verify the result of Exercise 9.23, that the maximum shear stress on the keyway is
approximately twice that found on a solid shaft. In order to investigate the shear stress, use
the Toolbox plot selection window to plot contours of the variable abs(grad(u)).

16.11 Verify the traction relation (16.6.7) for the plane strain case.
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Basic Field Equations in Cartesian,
Cylindrical, and Spherical
Coordinates

A
For convenience, the basic three-dimensional field equations of elasticity are listed here for Cartesian,
cylindrical, and spherical coordinate systems. This will eliminate searching for these results in various
chapters of the text. Cylindrical and spherical coordinates are related to the basic Cartesian system, as
shown in Figure A.1.

Strain–displacement relations
Cartesian coordinates

ex ¼ vu

vx
; ey ¼ vv

vy
; ez ¼ vw

vz

exy ¼ 1

2

�
vu

vy
þ vv

vx

�

eyz ¼ 1

2

�
vv

vz
þ vw

vy

�

ezx ¼ 1

2

�
vw

vx
þ vu

vz

�

(A.1)
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FIGURE A.1 Cylindrical and Spherical Coordinate Systems.
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Cylindrical coordinates

er ¼ vur
vr

; eq ¼ 1

r

�
ur þ vuq

vq

�
; ez ¼ vuz

vz

erq ¼ 1

2

�
1

r

vur
vq

þ vuq
vr

� uq
r

�

eqz ¼ 1

2

�
vuq
vz

þ 1

r

vuz
vq

�

ezr ¼ 1

2

�
vur
vz

þ vuz
vr

�

(A.2)

Spherical coordinates

eR ¼ vuR
vR

; ef ¼ 1

R

�
uR þ vuf

vf

�

eq ¼ 1

R sin f

�
vuq
vq

þ sin fuR þ cos fuf

�

eRf ¼ 1

2

�
1

R

vuR
vf

þ vuf
vR

� uf
R

�

efq ¼ 1

2R

�
1

sin f

vuf
vq

þ vuq
vf

� cot fuq

�

eqR ¼ 1

2

�
1

R sin f

vuR
vq

þ vuq
vR

� uq
R

�

(A.3)

Equilibrium equations
Cartesian coordinates

vsx

vx
þ vsyx

vy
þ vszx

vz
þ Fx ¼ 0

vsxy
vx

þ vsy

vy
þ vszy

vz
þ Fy ¼ 0

vsxz
vx

þ vsyz
vy

þ vsz

vz
þ Fz ¼ 0

(A.4)
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Cylindrical coordinates

vsr

vr
þ 1

r

vsrq
vq

þ vsrz
vz

þ 1

r
ðsr � sqÞ þ Fr ¼ 0

vsrq
vr

þ 1

r

vsq

vq
þ vsqz

vz
þ 2

r
srq þ Fq ¼ 0

vsrz
vr

þ 1

r

vsqz
vq

þ vsz

vz
þ 1

r
srz þ Fz ¼ 0

(A.5)

Spherical coordinates

vsR

vR
þ 1

R

vsRf
vf

þ 1

R sin f

vsRq
vq

þ 1

R

�
2sR � sf � sq þ sRf cot f

�þ FR ¼ 0

vsRf
vR

þ 1

R

vsf

vf
þ 1

R sin f

vsfq
vq

þ 1

R

��
sf � sq

�
cot fþ 3sRf

�þ Ff ¼ 0

vsRq
vR

þ 1

R

vsfq
vf

þ 1

R sin f

vsq

vq
þ 1

R

�
2sfq cot fþ 3sRq

�þ Fq ¼ 0

(A.6)

Hooke’s law
Cartesian coordinates

sx ¼ l
�
ex þ ey þ ez

�þ 2mex

sy ¼ l
�
ex þ ey þ ez

�þ 2mey

sz ¼ l
�
ex þ ey þ ez

�þ 2mez

sxy ¼ 2mexy

syz ¼ 2meyz

szx ¼ 2mezx

ex ¼ 1

E

�
sx � n

�
sy þ sz

��

ey ¼ 1

E

�
sy � nðsz þ sxÞ

�

ez ¼ 1

E

�
sz � n

�
sx þ sy

��

exy ¼ 1þ n

E
sxy

eyz ¼ 1þ n

E
syz

ezx ¼ 1þ n

E
szx

(A.7)
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Cylindrical coordinates

sr ¼ lðer þ eq þ ezÞ þ 2mer

sq ¼ lðer þ eq þ ezÞ þ 2meq

sz ¼ lðer þ eq þ ezÞ þ 2mez

srq ¼ 2merq

sqz ¼ 2meqz

szr ¼ 2mezr

er ¼ 1

E
½sr � nðsq þ szÞ�

eq ¼ 1

E
½sq � nðsz þ srÞ�

ez ¼ 1

E
½sz � nðsr þ sqÞ�

erq ¼ 1þ n

E
srq

eqz ¼ 1þ n

E
sqz

ezr ¼ 1þ n

E
szr

(A.8)

Spherical coordinates

sR ¼ l
�
eR þ ef þ eq

�þ 2meR

sf ¼ l
�
eR þ ef þ eq

�þ 2mef

sq ¼ l
�
eR þ ef þ eq

�þ 2meq

sRf ¼ 2meRf

sfq ¼ 2mefq

sqR ¼ 2meqR

eR ¼ 1

E

�
sR � n

�
sf þ sq

��

ef ¼ 1

E

�
sf � nðsq þ sRÞ

�

eq ¼ 1

E

�
sq � n

�
sR þ sf

��

eRf ¼ 1þ n

E
sRf

efq ¼ 1þ n

E
sfq

eqR ¼ 1þ n

E
sqR

(A.9)
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Equilibrium equations in terms of displacements (Navier’s equations)
Cartesian coordinates

mV2uþ ðlþ mÞ v

vx

�
vu

vx
þ vv

vy
þ vw

vz

�
þ Fx ¼ 0

mV2vþ ðlþ mÞ v

vy

�
vu

vx
þ vv

vy
þ vw

vz

�
þ Fy ¼ 0

mV2wþ ðlþ mÞ v
vz

�
vu

vx
þ vv

vy
þ vw

vz

�
þ Fz ¼ 0

(A.10)

Cylindrical coordinates

m

�
V2ur � ur

r2
� 2

r2
vuq
vq

�
þ ðlþ mÞ v

vr

�
1

r

v

vr
ðrurÞ þ 1

r

vuq
vq

þ vuz
vz

�
þ Fr ¼ 0

m

�
V2uq � uq

r2
þ 2

r2
vur
vq

�
þ ðlþ mÞ 1

r

v

vq

�
1

r

v

vr
ðrurÞ þ 1

r

vuq
vq

þ vuz
vz

�
þ Fq ¼ 0

mV2uz þ ðlþ mÞ v
vz

�
1

r

v

vr
ðrurÞ þ 1

r

vuq
vq

þ vuz
vz

�
þ Fz ¼ 0

(A.11)

Spherical coordinates

m

�
V2uR � 2uR

R2
� 2

R2

vuf
vf

� 2uf cot f

R2
� 2

R2 sin f

vuq
vq

�

þðlþ mÞ v

vR

�
1

R2

v

vR

�
R2uR

�þ 1

R sin f

v

vf

�
uf sin f

�þ 1

R sin f

vuq
vq

�
þ FR ¼ 0

m

�
V2uf þ 2

R2

vuR
vf

� uf

R2 sin2 f
� 2 cosf

R2 sin2 f

vuq
vq

�

þðlþ mÞ 1
R

v

vf

�
1

R2

v

vR

�
R2uR

�þ 1

R sin f

v

vf

�
uf sin f

�þ 1

R sin f

vuq
vq

�
þ Ff ¼ 0

m

�
V2uq � uq

R2 sin2 f
þ 2

R2 sin2 f

vuR
vq

þ 2 cos f

R2 sin2 f

vuf
vq

�

þðlþ mÞ 1

R sin f

v

vq

�
1

R2

v

vR

�
R2uR

�þ 1

R sin f

v

vf

�
uf sin f

�þ 1

R sin f

vuq
vq

�
þ Fq ¼ 0

(A.12)
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Transformation of Field Variables
between Cartesian, Cylindrical,
and Spherical Components

B
This appendix contains some three-dimensional transformation relations between displacement and
stress components in Cartesian, cylindrical, and spherical coordinates. The coordinate systems are
shown in Figure A.1 in Appendix A, and the related stress components are illustrated in Figure B.1.
These results follow from the general transformation laws (1.5.1) and (3.3.3). Note that the stress
results can also be applied for strain transformation.
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FIGURE B.1 Stress Components in Cylindrical and Spherical Coordinates.
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Cylindrical components from Cartesian
The transformation matrix for this case is given by

½Q� ¼

2
664

cosq sinq 0

�sinq cosq 0

0 0 1

3
775 (B.1)

Displacement transformation

ur ¼ u cosqþ v sinq

uq ¼ �u sinqþ v cosq

uz ¼ w

(B.2)

Stress transformation

sr ¼ sx cos
2qþ sy sin

2qþ 2sxy sinq cosq

sq ¼ sx sin
2qþ sy cos

2q� 2sxy sinq cosq

sz ¼ sz

srq ¼ �sx sinq cosqþ sy sinq cosqþ sxy
�
cos2q� sin2q

�

sqz ¼ syz cosq� szx sinq

szr ¼ syz sinqþ szx cosq

(B.3)

Spherical components from cylindrical
The transformation matrix from cylindrical to spherical coordinates is given by

½Q� ¼

2
664
sinf 0 cosf

cosf 0 �sinf

0 1 0

3
775 (B.4)
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Displacement transformation

uR ¼ ur sinfþ uz cosf

uf ¼ ur cosf� uz sinf

uq ¼ uq

(B.5)

Stress transformation

sR ¼ sr sin
2fþ sz cos

2fþ 2srz sinf cosf

sf ¼ sr cos
2fþ sz sin

2f� 2srz sinf cosf

sq ¼ sq

sRf ¼ ðsr � szÞsinf cosf� srz
�
sin2f� cos2f

�

sfq ¼ srq cosf� sqz sinf

sqR ¼ srq sinfþ sqz cosf

(B.6)

Spherical components from Cartesian
The transformation matrix from Cartesian to spherical coordinates can be obtained by combining the
previous transformations given by (B.1) and (B.4). Tracing back through tensor transformation theory,
this is accomplished by the simple matrix multiplication

½Q� ¼

2
64
sinf 0 cosf

cosf 0 �sinf

0 1 0

3
75

2
64

cosq sinq 0

�sinq cosq 0

0 0 1

3
75

¼
2
4
sinf cosq sinf sinq cosf
cosf cosq cosf sinq �sinf
�sinq cosq 0

3
5

(B.7)

Displacement transformation

uR ¼ u sinf cosqþ v sinf sinqþ w cosf

uf ¼ u cosf cosqþ v cosf sinq� w sinf

uq ¼ �u sinqþ v cosq

(B.8)
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Stress transformation

sR ¼ sx sin
2f cos2qþ sy sin

2f sin2qþ sz cos
2f

þ2sxy sin2f sinq cosqþ 2syz sinf cosf sinqþ 2szx sinf cosf cosq

sf ¼ sx cos
2f cos2qþ sy cos

2f sin2qþ sz sin
2f

þ 2sxy cos2f sinq cosq� 2syz sinf cosf sinq� 2szx sinf cosf cosq

sq ¼ sx sin
2qþ sy cos

2q� 2sxy sinq cosq

sRf ¼ sx sinf cosf cos2qþ sy sinf cosf sin2q� sz sinf cosf

þ 2sxy sinf cosf sinq cosq� syz
�
sin2f� cos2f

�
sinq

� szx
�
sin2f� cos2f

�
cosq

sfq ¼ �sx cosf sinq cosqþ sy cosf sinq cosqþ sxy cosf
�
cos2q� sin2q

�

� syz sinf cosqþ szx sinf sinq

sqR ¼ �sx sinf sinq cosqþ sy sinf sinq cosqþ sxy sinf
�
cos2q� sin2q

�

þ syz cosf cosq� szx cosf sinq

(B.9)

Inverse transformations of these results can be computed by formally inverting the system equations or
redeveloping the results using tensor transformation theory.
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MATLAB� Primer C
Many locations in the text used numerical methods to calculate and plot solutions to a variety of
elasticity problems. Although other options (e.g., MAPLE, Mathematica) are available, the author has
found MATLAB software ideally suited to conduct this numerical work. This particular software has
all of the necessary computational and plotting tools to enable very efficient and simple applications
for elasticity. MATLAB is a professional engineering and scientific software package developed and
marketed by MathWorks, Inc. In recent years, it has achieved widespread and enthusiastic acceptance
throughout the engineering community. Many engineering schools now require and/or use MATLAB
as one of their primary computing tools, and it is expected that it will continue to replace older
structured programming methods. Its popularity is due to a long history of well-developed and tested
products, to its ease of use by students, and to its compatibility across many different computer
platforms (e.g., PC, Mac, and UNIX). The purpose of this appendix is to present a few MATLAB
basics to help students apply particular software applications for the needs of the text. The software
package itself contains an excellent Help package that provides extensive information on various
commands and procedures. Also, many books are available on the software package (see, for example,
Palm, 2008). It is assumed that the reader has some prior background and experience with at least one
other programming language such as FORTRAN, BASIC, or C, and thus has a fundamental under-
standing of programming techniques.

C.1 Getting started
MATLAB is both a computer programming language and a software environment for using the lan-
guage. Under the MS Windows Operating System, the MATLAB window will appear as shown in
Figure C.1. It is from this window that the Help menu can be accessed and this provides extensive
information on most topics. In this Command window, the user can type instructions after the prompt
“[”. However, it is much more efficient to create and save application programs within the Editor/
Debugger window. This window is activated by going to the File menu in the Command window and
selecting either New to start a new creation or Open to open an existing file. MATLAB files are called
m-files and have the extension “*.m”. Within the Editor/Debugger window, a new application code can
be created or an existing one can be modified. In either case, the resulting file can then be saved for
later use, and the current file can be run from this window. An example program appearing in the
Editor/Debugger window is shown in Figure C.2.

C.2 Examples
Rather than attempting a step-by-step explanation of various MATLAB commands, we instead pursue
a learn-by-example approach. In this fashion most of the needed procedures will be demonstrated
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FIGURE C.1 MATLAB Command Window.

FIGURE C.2 MATLAB Editor/Debugger Window.
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through presentation and discussion of several example codes that have been previously used in the
text. Key features to be learned from these examples include:

• input of problem data
• generation of spatial variables
• calculation procedures
• plotting and display techniques

Readers with previous programming experience should be able to quickly review these examples and
use them (with selected support from the Help menu) to develop their own codes.

EXAMPLE C.1: TRANSFORMATION OF SECOND-ORDER TENSORS
Our first example is a simple MATLAB code to conduct the transformation of second-order tensors.
The transformation rule was given by relation (1.5.1)3 and this has been incorporated into the code
shown in the frame below. Code lines preceded with a percent (%) symbol will not be executed and
are used for comments to explain the coding. A semicolon ending a code line will suppress screen-
printing that particular calculation. The rotation tensor [Q] and tensor to be transformed [A] are
input from within the program, and thus the code must be modified if either of these matrices
are changed. MATLAB’s automatic abilities with matrix multiplication allow very simple
coding. The disp command displays text and each of the matrices to the screen after the code is run.

% MATLAB CODE: Example C.1
% Elasticity: Theory, Applications and Numerics 3e - Elsevier
% M.H. Sadd, University of Rhode Island
% Program to Calculate Components of a Second Order Tensor (Matrix)
% Under Rotational Transformation
% Q ¼ Rotation Tensor, A ¼ Original Tensor to be Transformed, AP ¼ Transformed Tensor
clc; clear all;
% Input Tensors (Matrices) in MATLAB Format
Q¼[0,0,-1;0,1,0;1,0,0];
A¼[1,1,1;0,4,2;0,1,1];
% Apply Transformation Law
AP¼Q*A*Q’;
% Display Segement
disp(‘Original Matrix’)
disp(A)
disp(‘Rotation Matrix’)
disp(Q)
disp(‘Transformed Matrix’)
disp(AP)
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Screen output created from this code is given by

>> Original Matrix
1 1 1
0 4 2
0 1 1

Rotation Matrix
0 0 �1
0 1 0
1 0 0

Transformed Matrix
1 �1 0

�2 4 0
�1 1 1

EXAMPLE C.2: CALCULATION OF INVARIANTS, EIGENVALUES, AND EIGENVECTORS OF
A MATRIX
MATLAB provides very simple and efficient methods to determine the invariants, principal values,
and directions of second-order tensors (matrices). The basic tool for the eigenvalue problem is the
command eig( ), which will generate both the eigenvalues and eigenvectors. The simple code below
illustrates the basics for the matrix originally given in Example 1.3.

% MATLAB CODE: Example C.2
% Elasticity: Theory, Applications and Numerics 3e - Elsevier
% M.H. Sadd, University of Rhode Island
% Program to Numerically Calculate Invariants, Principal Values
% and Directions of a Matrix
% Program Uses Matrix from Example 1-3
clc;clear all;
% Input Matrix
A¼[2,0,0;0,3,4;0,4,-3]
% Calculate Invariants
invariants¼[trace(A),(trace(A)^2-trace(A*A))/2,det(A)]
[V,L]¼eig(A);
% Principal Values are the Diagonal Elements of the L Matrix
principal_values¼[L(1,1),L(2,2),L(3,3)]
% Principal Directions are the Columns of the V Matrix
principal_directions¼[V(:,1),V(:,2),V(:,3)]
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Screen output created from this code is given by

A ¼
2 0 0
0 3 4
0 4 �3

invariants ¼
2 �25 �50

principal_values ¼
�5 2 5

principal_directions ¼
0 1.0000 0
0.4472 0 �0.8944
�0.8944 0 �0.4472

EXAMPLE C.3: XY PLOTTING OF STRESSES IN FIGURE 8.9
The MATLAB code shown in the frame below was developed to calculate and plot the radial and
circumferential stresses in a thick-walled cylinder under internal pressure loading from Example
8.6. The theoretical expressions for the stresses were given by equations (8.4.3) and the plot is
shown in Figure 8.9. The nondimensional radial coordinate r/r2 is conveniently generated from
0.5 to 1, and the length(r) expression gives the number of terms in the r-array which is used as
the limiter on the looping index. This simple code illustrates the for-end looping and calculation
procedure and the basic XY plot call used to draw the two stress curves. Note the plot
formatting used to label the axes. Additional format control is available through the Help menu
and the plot can also be edited within the generated plot window. As shown in the next example,
this looping scheme can actually be avoided by using MATLAB’s automatic handling of array
mathematics.

% MATLAB CODE: Example C.3
% Elasticity: Theory, Applications & Numerics 3e - Elsevier
% M.H. Sadd, University of Rhode Island
% Calculate and Plot Stresses in Thick-Walled Cylinder Problem Example 8.6
% Internal Pressure Loading Case with r1/r2¼0.5; Generate Figure 8.9
clc;clear all;
% Generate Nondimensional Radial Coordinate Space: r/r2
r¼[0.5:0.01:1];
% Calculation Loop for Stresses
for i¼1:length(r)
sr(i)¼(1/3)*(1-(1/r(i))^2);
st(i)¼(1/3)*(1þ(1/r(i))^2);
end
% Plotting Call
plot(r,sr,r,st)
xlabel(‘Dimensionless Distance, r/r_2’)
ylabel(‘Dimensionless Stress’)
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EXAMPLE C.4: POLAR CONTOUR PLOTTING OF HOOP STRESS AROUND CIRCULAR HOLE
IN FIGURE 8.13
This example illustrates a code used to plot the hoop stresses on the boundary of a circular hole in an
infinite plane under uniform far-field tension (see problem geometry in Figure 8.12). The hoop
stress was given by equation (8.4.15)2, and the plot on the boundary of the hole is shown in
Figure 8.13. Similar to the previous example, this code calculates the necessary stress values and
then displays them in a polar plot. The radial coordinate is specified to be 1, while the angular
coordinate is generated from 0 to 2p. For this code the use of the for-loop is dropped since
MATLAB can automatically handle calculations with matrix/vector arguments. The plotting call
used in this example is the polar command that generates Figure 8.13. Additional formatting can
be applied to the polar plot call to control line type, thickness, etc., and these can also be edited
in the plot window.

% MATLAB CODE: Example C.4
% Elasticity: Theory, Applications and Numerics - Elsevier
% M.H. Sadd, University of Rhode Island
% Calculate and Plot Normalized Hoop Stress on Circular Hole
% In Infinite Plane Under Uniform Tension at Infinity: Example 8.7
% Nondimensional Plot Generates Figure 8.13
clc;clear all;
% Input (r/a) - Variable and Generate Angular Coordinate Space
r¼1;
t¼[0:0.01:2*pi];
% Calculation Loop
st¼0.5*(1þ(1/r)^2)-0.5*(1þ3*(1/r)̂4)*cos(2*t);
% Plotting Call
polar(t,st)
title(‘Non-Dimensional Hoop-stress Around Hole’)

EXAMPLE C.5: DISPLACEMENT VECTOR DISTRIBUTION PLOTTING IN FIGURE 8.22
Consider next the example of plotting the displacement vectors for the Flamant problem of Example
8.8 shown in Figure 8.19. For the normal loading case, the displacement field was given by relations
(8.4.43) and these were plotted in Figure 8.22 for the near-field case (0 < r < 0.5) with a Poission’s
ratio of 0.3 and Y/E¼ 1. Radial coordinates are generated by the logspace command as explained in
the comment line, and this range can easily be changed to investigate other regions of the half-plane.
Within the calculation, the Cartesian coordinates and displacement components are changed to
reflect the system used in Chapter 8. The plotting is done using the quiver command, which
draws two-dimensional vectors with components ux and uy at locations x and y. Note the use of
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the meshgrid which creates a mesh of points in the two-dimensional field to do our calculations and
plotting. Also note the use of a period in front of products of arrays to specify that the operation is to
be done on an element-by-element basis. Additional details on this type of plotting can be found in
the Help menu.

% MATLAB CODE: Example C.5
% Elasticity: Theory, Applications and Numerics 3e - Elsevier
% M.H. Sadd, University of Rhode Island
% Displacement Vector Distribution Plot for Flamant Problem - Figure 8.19
% Normal Loading Case (X¼0), Generates Figure 8.22
clc;clear all;
% Input Parameters
Y¼1; E¼1; nu¼0.3;
% Input Radial Coordinates: logspace(M,N,*) Generates Region 10^M < r < 10^N
r¼logspace(-3,-0.5,40);
% Input Theta Coordinates
t¼[0:pi/20:pi];
% Create Mesh
[t,r]¼meshgrid(t,r);
ur¼Y/(pi*E)*((1-nu)*(t-pi/2).*cos(t)-2*log(r).*sin(t));
ut¼Y/(pi*E)*(-(1-nu)*(t-pi/2).*sin(t)-2*log(r).*cos(t)-(1þnu)*cos(t));
% Calculate Cartesian Displacement Components - Flip y-Component
ux¼cos(t).*ur-sin(t).*ut;
uy¼-(sin(t).*urþcos(t).*ut);
% Covert to Cartesian Coordinate Mesh
[x,y]¼pol2cart(-t,r);
% Plotting Call for Vector Distribution
quiver(x,y,ux,uy)
axis equal;

EXAMPLE C.6: PLOTTING OF MAXIMUM SHEAR STRESSES BELOW FLAT PUNCH
PROBLEM IN FIGURE 8.41
The solution to some contact mechanics problems were developed in Section 8.5. For the
particular case of a flat rigid indenter, the half-space stresses were given by relations (8.5.9)
and the maximum shearing stress distribution below the punch was shown in Figure 8.41. The
following code does the numerical evaluation of the complicated integrals in (8.5.9), calculates
pointwise values of smax, and then uses the contour command to plot the contours shown in
Figure 8.41. Numerical evaluation of the integrals is determined by using the quadv command,
which requires the use of function programming to properly pass the integrands into the
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computation. This fact requires that the code must start with a function name. See the Help menu for
more information on function programming and the use of numerical integration commands.

% MATLAB CODE: Example C.6
% Elasticity: Theory, Applications and Numerics 3e - Elsevier
% M.H. Sadd, University of Rhode Island
% Calculate and Plot Tau Max Stress Contours Under Flat Punch Loading (P¼1)
% Numerically Evaluate Integrals in Solution (8.5.9) Using quadv(.)
% Singularity at s¼a is Handled using Integral Range Limiter e
function flat_punch
clc;clear all;clf
a¼1; %input unit loading width
e¼0.0001; %input small range limiter to avoid singular behavior
[x,y]¼meshgrid(-2*a:0.1:2*a,0.05:0.1:4*aþ0.1);
for i¼1:length(x)

for j¼1:length(y)
sx(i,j)¼quadv(@(s)Irx(x(i,j),y(i,j),s,a),-(a-e),a-e);
sy(i,j)¼quadv(@(s)Iry(x(i,j),y(i,j),s,a),-(a-e),a-e);
txy(i,j)¼quadv(@(s)Irxy(x(i,j),y(i,j),s,a),-(a-e),a-e);
smax(i,j)¼sqrt((((sx(i,j)-sy(i,j))/2)̂2)þ(txy(i,j)̂2));

end
end
% Draw half-space boundary line
plot([-2*a,2*a],[0,0],‘k’,‘linewidth’,3)
hold on
contour(x,-y,smax,40,‘k’,‘linewidth’,1.4)
axis off;hold off;
title(‘\tau_m_a_x Contours: Frictionless Rigid Punch Loading on a Half-Space’)
function I¼Irx(x,y,s,a)
I¼-(2*y/pi)*(1/(pi*sqrt(a^2-s^2)))*(x-s)^2/(((x-s)^2þy^2)^2);
function I¼Iry(x,y,s,a)
I¼-(2*ŷ3/pi)*(1/(pi*sqrt(a^2-s^2)))/(((x-s)^2þy^2)^2);
function I¼Irxy(x,y,s,a)
I¼-(2*ŷ2/pi)*(1/(pi*sqrt(a^2-s^2)))*(x-s)/(((x-s)^2þy^2)^2);

EXAMPLE C.7: PLOTTING OF WARPING DISPLACEMENT CONTOURS IN FIGURE 9.8
The following MATLAB code has been developed to calculate and plot the warping displacements
for the torsion of a cylinder with the elliptical section shown in Figure 9.7. This code uses many of
the same commands from the previous examples to input parameters, generate the variable grid
space, and conduct the calculations to determine the warping displacement array. The plotting
call uses the contour command that generates contours of constant w within the grid space that
was created to lie inside the elliptical boundary. The code generates the displacement contours
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shown in Figure 9.8. Again, additional formatting details on this plotting command can be found in
the Help menu.

% MATLAB CODE: Example C.7
% Elasticity: Theory, Applications and Numerics 3e - Elsevier
% M.H. Sadd, University of Rhode Island
% Generates 2-D Warping Displacement Contours for
% Elliptical Section Under Torsion - Figure 9.8
clc, clear all
% Input Geometry and Angle of Twist
a¼1.0; b¼0.5; alpha¼1.0;
% Input Grid Space
[t,r]¼meshgrid(0:pi/20:2*pi,0:0.05:1);
% Generate Contour Data
K¼alpha*(b^2-a^2)/(a^2þb^2);
x¼a*r.*cos(t);
y¼b*r.*sin(t);
w¼K*x.*y;
% Plotting Call with 20 Contours
contour(x,y,w,20,‘k-’);
axis equal

EXAMPLE C.8: PLOTTING THREE-DIMENSIONALWARPING DISPLACEMENT SURFACE IN
FIGURE 9.8
This example illustrates how MATLAB can make a three-dimensional surface plot of the warping
displacement for the torsion of an elliptical section. Figure 9.8 shows the surface plot created
from this code. After generating appropriate x and y location arrays, the warping displacement
values are calculated and stored in the array w. Using the surf command, the warping surface is
then generated in a three-dimensional system. Numerous viewing parameters can be edited to
suit the desired view.

% MATLAB CODE: Example C.8
% Elasticity: Theory, Applications & Numerics 3e - Elsevier
% M.H. Sadd, University of Rhode Island
% Three Dimensional Plot of Warping Displacement Surface
% for Elliptical Section Under Torsion
clc;clear all;
% t¼[0:5:360];
% r¼[0:0.05:1];
a¼1;b¼0.5;
[t,r]¼meshgrid(0:pi/20:2*pi,0:0.05:1);

APPENDIX C MATLAB� Primer 549



x¼a*r.*cos(t);
y¼b*r.*sin(t);
w¼-x.*y;
surfc(x,y,w);
colormap gray
h¼findobj(gcf,‘type’,‘patch’);
set(h,‘LineWidth’,1.0, ‘EdgeColor’,‘k’);
axis([-1 1 -1 1])
axis square
view(20,10)

EXAMPLE C.9: DETERMINATION OF ROOTS FOR ORTHOTROPIC MATERIALS
In Chapter 11 anisotropic solutions to plane elasticity problems required the roots of the
characteristic equation (11.5.7). As indicated in Exercise 11.14, for orthotropic materials this
characteristic equation reduces to a quadratic with roots b1,2. The MATLAB code shown will
calculate these two roots and write the results to the command window screen. This code
illustrates some of the basic formatting issues related to inputting names and data, and printing
calculated information to the screen.

% MATLAB CODE: Example C.9
% Elasticity: Theory, Applications & Numerics 3e - Elsevier
% M.H. Sadd, University of Rhode Island
% Calculate Beta Parameters for Orthotropic E-Glass Material
clc;clear all;
% Input Number of Materials (N), Names and Stiffness Moduli
N¼1;
name(1,:)¼‘E-Glass/Epoxy ’;
e1(1)¼38.6; e2(1)¼8.3; nu12(1)¼0.26; mu12(1)¼4.2;
% Calulate Compliances
for i¼1:N
s11(i)¼1/e1(i); s22(i)¼1/e2(i); s12(i)¼-nu12(i)/e1(i); s66(i)¼1/mu12(i);
% Calculate Beta Values From Solution to Quadratic Characteristic Equation
b1(i)¼sqrt(-(1/(2*s11(i)))*(-(2*s12(i)þs66(i))þsqrt((2*s12(i)þs66(i))^2-4*s11(i)*
s22(i))));
b2(i)¼sqrt(-(1/(2*s11(i)))*(-(2*s12(i)þs66(i))-sqrt((2*s12(i)þs66(i))^2-4*s11(i)*
s22(i))));
% Print Results to Screen
fprintf(1,‘\n ’)
disp(name(i,:))
fprintf(1,‘ beta(1)¼%5.3f’,b1(i))
fprintf(1,‘ beta(2)¼%5.3f’,b2(i))
end
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Screen output from this particular case is given by

>>
E-Glass/Epoxy
beta(1)¼0.758 beta(2)¼2.845

EXAMPLE C.10: PDE TOOLBOXdFINITE ELEMENT APPLICATION OF CIRCULAR HOLE IN
A PLATE UNDER UNIFORM TENSION FROM EXAMPLE 16.2
In Chapter 16 the PDE Toolbox was presented as a MATLAB application software that could
conduct two-dimensional finite element analysis. We will now present some of the basic steps in
generating the solution to the problem of a circular hole in a plate under uniform tension as
originally discussed in Example 16.2. Once properly installed, the toolbox is activated by typing
the command pdetool in the MATLAB Command window. This will bring up the Graphical
User Interface (GUI) window shown in Figure C.3. Within this window, the first step is to select
the type of problem by choosing one of the items from the pull-down menu as shown in
Figure C.4. The figure illustrates the selection of “Structural Mech., Plane Stress”. Other useful
choices would include “Structural Mech., Plane Strain” for plane strain analysis and “Generic
Scalar”, which can be used to find numerical solutions to the torsion problem (see Example 16.4
and Figure 16.7). After selecting the problem type, a click on the “PDE” button will bring down
a window to input the desired values of elastic moduli and body forces.

Once the problem type and input parameters have been chosen, problem geometry can be created
using the simple drawing package within the GUI window. This feature is activated by selecting
“Draw Mode” from the Draw menu. The problem of a rectangular plate with a central circular
hole is created by drawing a rectangle and circle, and then subtracting the circular area from the
rectangle as shown in the drawing mode window in Figure C.5.

After completing the problem geometry, the next step is to input the appropriate boundary
conditions. This step is done in the boundary mode screen that is selected from the Boundary
menu pull-down. Figure C.6 shows this screen for the current example, and the software has
automatically divided the rectangular and circular boundaries into four segments. Unfortunately,
this simple code does not provide selection options in defining the boundary segments, and this
places limits on boundary condition specification. In any event once in the boundary mode
screen, one or more boundary segments can be selected through a simple mouse point-and-click.
Boundary condition specification can then be made on these selected segments by going to
“Specify Boundary Conditions.” found in the Boundary menu pull-down. This will bring
forward the Boundary Condition window shown in Figure C.7. Through appropriate selection of
the various parameters defined in the window, displacement (Dirichlet), traction (Neumann), and
mixed conditions can be specified. For displacement specification, u ¼ r1 and v ¼ r2, while
traction conditions correspond to Tx ¼ g1 and Ty ¼ g2. In this fashion, conditions on each
boundary segment can be specified.
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The next step in the FEA process is to mesh the domain, and this is easily done using the auto-
meshing features of the toolbox. After completing the boundary conditions, an initial coarse
mesh can be generated by simply clicking on the toolbar button denoted with a triangle.
Normally this coarse mesh will not be appropriate for final use, and a finer mesh can be
generated by clicking on the toolbar button with the finer triangles. Continued use of this
button will generate meshes with increasing numbers of elements. Normally only one or two
mesh refinements are necessary to create a useful mesh. These and other meshing procedures
can also be found under the Mesh tab in the main menu. Figure 16.4 illustrates a reasonably
fine mesh for this problem.
Having finished the creation of problem geometry, boundary conditions, and finite element
meshing, the solution is now ready to be completed and the results displayed. However, before
running the solver, selection of the desired graphical solution output should be made. The choice

FIGURE C.3 Graphical User Interface for the PDE Toolbox.
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of results to be displayed is found on the Parameters tab under the Plot menu pull-down. Selecting
this tab will activate the Plot Selection window as shown in Figure C.8. Numerous choices are
available on the variables to be plotted and the type of plot to be made. Selecting the variable x
stress and choosing a contour plot type produces contours of sx as shown in Figure 16.4. Many
other graphical displays can be sequentially generated and saved for later use. Different stages of
the finite element solution can be revisited after completion of the final solution. However, going
back to an earlier stage will require that all subsequent solution steps be redone; for example,
going back to the drawing stage will require re-input of boundary conditions and meshing data.
Because the software is so easy to use, redoing certain steps is normally not a difficult task. This
brief discussion only presented some of the basics of the PDE Toolbox. Further and more
detailed information can be found under the Help menu, and an entire User Manual (pdf format)
is available for reference and/or printout.

FIGURE C.4 Selection of Problem Type in PDE Toolbox.
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FIGURE C.6 Boundary Mode Screen for Rectangle with Circular Hole.

FIGURE C.5 Draw Mode Screen for Rectangle with Circular Hole.
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FIGURE C.8 Plot Selection Window.

FIGURE C.7 Boundary Specification Window.
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Review of Mechanics of Materials D
Beginning undergraduate studies of the mechanics of deformable solids are normally taught in a
course called mechanics of materials or strength of materials. Based on very restrictive assumptions,
this study develops stress, strain, and displacement field solutions for a very limited class of elastic
solids with simple geometry. Strength of materials theory commonly makes use of assumptions on the
geometry of the deformation (e.g., plane sections remain plane) and thus assumes the distribution of
displacements and strains. Further simplification is also sometimes made on the stress field. Because of
the level of approximation, strength of materials is often referred to as the elementary theory when
compared to the more exact elasticity model. Nevertheless, decades of application have shown that
mechanics of materials provides reasonable estimates for many practical stress analysis problems.
Furthermore, strength of materials solutions have provided guidance for the development of particular
elasticity solutions.

We now pursue a brief review of the basic strength of materials solutions of extension, torsion, and
bending/shear of elastic rods and beams, as shown in Figure D.1. Rod and beam structures are nor-
mally defined as prismatic solids with a length dimension much larger than the other two dimensions
located within the cross-section. General loadings to such structures commonly include an axial force
P, a shear force V, a torque T, and a bending moment M. Mechanics of materials theory develops an
approximate solution for each of these four loading types.

Commonly these solutions will be restricted to cases with particular cross-sectional shapes that are
related to section properties of A ¼ area, J ¼ polar moment of inertia, and I ¼ rectangular moment of
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inertia. Because these solutions are useful to compare with related elasticity models, we now briefly
review their development. In addition to these problems, we review curved beams and cylindrical
pressure vessels.

D.1 Extensional deformation of rods and beams
We begin with the simplest case concerning the extensional deformation of an elastic rod or beam
under purely axial loading P, as shown in Figure D.2. For this case the cross-section can be of general
shape, but the resultant loading must pass through the section’s centroid so as not to produce bending
effects. The fundamental deformation assumption is that all points in the cross-section displace uni-
formly in the axial direction (x-direction), thus making the problem one-dimensional.

Under this assumption, the only nonzero stress component considered is the normal component
s¼ sx and it is assumed to be uniformly distributed over the section, as shown in Figure D.2. A simple
force balance will give P ¼ sA, where A is the cross-sectional area. This result then generates the
simple stress relation

s ¼ P

A
(D.1)

Because the problem is one-dimensional, Hooke’s law reduces to s ¼ Eε and the single strain
component is given by ε ¼ du

dx. Combining these results with relation (D.1) produces the simple
displacement or deformation relation

u ¼
ð

P

AE
dx

¼ PL

AE
ðconstant loadingÞ

(D.2)
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FIGURE D.2 Extensional Deformation Problem.
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D.2 Torsion of circular rods
The next loading case concerns the torsional loading and deformation of rods, as shown in Figure D.3.
For this case, the cross-section must be circular or hollow circular, thereby simplifying the section
deformation. The deformation assumption for this problem is that points within the cross-section
displace only tangentially and in proportion to the distance from the section’s center. Thus, cross-
sections perpendicular to the rod’s axis remain plane during the deformation and no section warp-
ing will occur.

Under such deformation, the section shear strain g¼ grq will vary linearly from the center. Typical
of the elementary theory, only one nonzero stress component will be considered; this is the shear stress,
s ¼ srq, lying in the cross-sectional plane. Because the strain component varies linearly, the section
shear stress also behaves in the same manner as shown in Figure D.3. Applying equilibrium between
the applied loading T and the assumed shear stress distribution gives

T ¼
ð
A

�smax

c
r
�
rdA ¼ smax

c

ð
A
r2dA ¼ smax

c
J

where J ¼ Ð
Ar

2dA is known as the polar moment of inertia of the cross-section and for a solid circular

section of radius c, J ¼ pc4

2
. Rearranging the previous expression gives the standard stress relationship

for the torsion problem

smax ¼ Tc

J
(D.3)

and relation (D.3) can be used to calculate the shear stress at any radial distance.
To determine the angle of twist 4, consider a rod element of length dx as shown in Figure D.3.

Under small torsional deformation, the outer fiber arc AB can be expressed in two ways, thus giving the
relation gmaxdx ¼ d4c. This result then implies

d4

dx
¼ gmax

c
¼ T

Jm

d

d

FIGURE D.3 Torsional Deformation Problem.
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where m is the shear modulus. Integrating this result gives the familiar relation

4 ¼
ð
T

Jm
dx

¼ TL

Jm
ðconstant loadingÞ

(D.4)

D.3 Bending deformation of beams under moments and shear forces
The application of transverse external loadings will introduce internal bending moments M and shear
forces V in beam type structures, as shown in Figure D.4. Each of these internal forces will generate
stresses within the structure, and mechanics of materials theory has developed approximate relations to
calculate them. Beam deflection relations have also been formulated to determine the resulting
deformation of the beam’s centroidal axis (x-axis).

Before heading into these stress and deflection analysis relations, we first explore the standard
methods of determining bending moment and shear force distributions in beams. These distributions
will be needed for stress and deflection calculations. Typically this procedure involves a static equi-
librium analysis of the beam, taking into account the particular support conditions and the nature of the
applied loadings. Although other, more complicated conditions can be modeled, most beam problems
involve three types of idealized supports: pinned, roller, and fixed, as shown in Figure D.5. Such
support conditions involve particular constraints on the deformation and these can be translated into
particular support reaction forces.

x

z

y

M

V

Transverse Loading

FIGURE D.4 Bending and Shear Loadings on Beam Structures.
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We will now explore the typical procedures to determine the internal bending moment and shear
force distribution for a particular beam problem, with the understanding that other problems with
different loadings and support conditions can be handled in the same fundamental manner. Consider
the problem of a simply supported beam (pinned and roller supports) carrying a single concentrated
loading of P, as shown in Figure D.6.

Wewish to determine the moment and shear distribution as a function of coordinate x. This is easily
done by constructing one or more sections through the beam in locations where the distributions are
continuous, and given by a single unique relation. For the problem under study, two such regions exist:
0� x� a and a� x� L. After making the appropriate sections, a free-body diagram of each portion of
the beam can then be constructed, as shown in Figure D.7. Note that the vertical reaction R from the
left support has been calculated from overall equilibrium analysis of the entire beam, and the shear
force V and bending moment M have been included at the cut location x. Normal positive sign con-
ventions for the shear and moment are as drawn in the figure.

Pinned Support:
No Horizontal or
Vertical Movement

Resulting Reactions:
Horizontal and Vertical
Forces

Roller Support:
No Vertical Movement

Resulting Reactions:
Vertical Force and
Zero Moment

Fixed Support:
No Horizontal or
Vertical Movement
and No Rotation

Resulting Reactions:
Horizontal and Vertical
Forces and Moment

FIGURE D.5 Common Supports for Beam Problems.
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L = a + b
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FIGURE D.6 Simply Supported Beam Example.
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(0 < x < a) (a < x < L)

FIGURE D.7 Free-Body Diagrams of Sectioned Beam Segments.
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Applying equilibrium analysis (balance of vertical forces and moments) yields the following re-
sults for the shear force and bending moment in each portion of the beam

VðxÞ ¼
�
Pb=L; 0 � x < a

�Pa=L; a < x � L

MðxÞ ¼
�
Pbx=L; 0 � x � a

PaðL� xÞ=L; a � x � L

(D.5)

These results are plotted in Figure D.8, and the maximum values can then be easily determined;
for example, Mmax ¼ Mjx¼a ¼ Pba/L. Note that a general relation between the moment and shear,

V ¼ dM

dx
, can be developed by an equilibrium analysis of a differential beam element. Solutions to

other problems follow using the same basic procedures.

Referring to Figure D.9, the fundamental mechanics of materials assumption for beam theory is
that plane sections perpendicular to the beam axis before deformation remain plane after deformation.
Recall that the beam axis is the line that goes through the centroid of each cross-sectional area. This
assumption leads to the result that the extensional strains due to bending vary linearly from the beam
axis. Neglecting all other normal strain and stress components, the bending stress, s ¼ sx, also varies
linearly, and thus s¼ Ky, where K is some constant. Applying equilibrium between the applied loading
M and the assumed bending stress distribution gives

M ¼ �
ð
A
Ky2dA ¼ �K

ð
A
y2dA ¼ �KI

a x
L

V

Pb/L

−Pa/L

x
L

M

Pbx/L Pa(L−x)/L

a

FIGURE D.8 Shear and Bending Moment Diagrams of the Beam Problem in Figure D.6.
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where I ¼ Ð
A y

2 dA is the moment of inertia of section area A about the neutral axis (z-axis in
Figure D.4) that goes through the centroid of the cross-section. This result establishes the value for the
constant K, and thus the stress relation is now given by the familiar relation

s ¼ �My

I
(D.6)

This simple linear relation predicts maximum stresses at either the top or the bottom of the section
depending on the location of the centroid; this is illustrated in Figure D.10 for the case of a centrally
located centroid. Note that the positive moment produces compression at the top of the section and
tension at the bottom.

The fundamental hypothesis that plane sections remain plane during deformation provides the
basis to determine the theory for beam deflection analysis. As shown in Figure D.9, the beam axis is
bent into a locally circular shape with a radius of curvature r. Denoting Dq as the included angle
between nearby sections, the longitudinal strain can be expressed as

ε ¼ ðr� yÞDq� rDq

rDq
¼ �y

r

x

y

I
Myσ = −

FIGURE D.10 Bending Stress Distribution in the Beam Section.

Undeformed Beam Deformed Beam

Beam Axes

x

y

•

ρ
Δθ

FIGURE D.9 Assumed Deformation Within Beams.
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where y represents the coordinate measure as shown. Using Hooke’s law and relation (D.6), the strain
can also be written as

ε ¼ s

E
¼ �My

EI

Combining these two results gives the Euler–Bernoulli curvature–flexure relation

1

r
¼ M

EI
(D.7)

where 1/r is the curvature. From geometry, the curvature of any two-dimensional space curve v(x) is
given by

1

r
¼

d2v

dx2�
1þ

�
dv

dx

�2�3=2z d2v

dx2

where we have assumed small deformations and small slopes. Now interpreting v(x) as the vertical
deflection of the beam axis (positive upward), we can write the equation of the elastic curve as

d2v

dx2
¼ M

EI
(D.8)

Note that for the case where deflection is positive downward, the right-hand side of relation (D.8) picks
up a minus sign. Once the moment distribution M(x) has been determined, relation (D.8) can then be
integrated to determine the transverse beam deflectiondthat is, the elastic deflection curve v(x). This
solution scheme requires the use of particular boundary conditions to evaluate the arbitrary constants
of integration that are generated during the integrations.

Consider the simple cantilever beam example shown in Figure D.11. The beam is fixed at x¼ L and
carries a single concentrated force at the free end, x ¼ 0. Taking a single section at any location x, the
shear and moment distributions are easily found to be V¼�P andM¼�Px. Using equation (D.8) and
integrating twice yields

EI
d2v

dx2
¼ �Px

EI
dv

dx
¼ �Px2

2
þ C1

EIv ¼ �Px3

6
þ C1xþ C2

v (x)
Elastic Curve 

P

L

x

FIGURE D.11 Cantilever Beam Example.
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Boundary conditions at x ¼ L require zero deflection and zero slope, and thus lead to relations

EI
dvðLÞ
dx

¼ �PL2

2
þ C1 ¼ 0

EIvðLÞ ¼ �PL3

6
þ C1Lþ C2 ¼ 0

which can be solved to determine the constants C1¼ PL2/2 and C2¼�PL3/3. Combining these results
gives the final form for the beam deflection relation

v ¼ P

6EI

	�x3 þ 3L2x� 2L3



From this relation the maximum deflection is found at the free end

vmax ¼ vð0Þ ¼ �PL3

3EI

The results of another example beam deflection problem are shown in Figure D.12.

The final step in our review of beam problems concerns the effect of the shear force V. Although not
explicitly stated, the previous discussion of beam deflection was concerned only with the bending
moment loading. It has been shown that shear effects on beam deflections are only important for very
short beams whose length to section dimension ratio is less than 10. Generally, then, mechanics of
materials theory neglects shear force effects when calculating beam deflections. However, in regard to
beam stresses, the internal shear force must give rise to a resulting shear stress distribution over the
cross-section. For this case, no simple assumption exists for the deformation or strain distribution, and
thus we must make some modification from our previous stress analysis developments.

Figure D.13 illustrates a typical beam element for the general case where the moment will be
changing with location x. Thus, the resulting bending stress distribution on the left-hand side of the
element will not be identical to the stress on the right-hand side. This fact will create an imbalance of
forces and will generate a shear stress s on a horizontal plane, as shown in the sectioned element in
Figure D.13. Note that the identical shear stress will also exist on the vertical plane at the same location
y0. Assuming that this shear stress is uniformly distributed over the differential beam element length dx,
we apply a simple equilibrium force balance in the x-direction to getð

A0

�
M þ dM

I

�
ydA�

ð
A0

�
M

I

�
ydA� sðtdxÞ ¼ 00 s ¼ dM

dx

�
1

It

�ð
A0
ydA

x

L

w

vmax = v(L/2) = −wx
v = −

384EI

5wL4
(L3 − 2Lx2 + x3),

24EI

FIGURE D.12 Uniformly Loaded Beam Deflection Problem.
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where t is the thickness of the section at y ¼ y0, and A0 is the partial section area above the level y ¼ y0.

Now, as previously mentioned,
dM

dx
¼ V , and if we let Q ¼ Ð

A0ydA, our force balance reduces to

s ¼ VQ

It
(D.9)

This is the mechanics of materials formula for the shear stress distribution in beam-bending problems.
It should be observed thatQ is the first area moment of section A0 about the neutral axis, and it varies as
a function of the vertical coordinate measure y0, vanishing when y0 corresponds to the top or bottom of
the section. This parameter can also be expressed by

Q ¼
ð
A0
ydA ¼ y0A0

where y 0 is the vertical distance to the centroid of the partial area A0.
To explore shear stress variation across an example beam section, consider the rectangular section

shown in Figure D.14. Recall that for a cross-section of rectangular shape of height h and width b, the

moment of inertia is given by the relation I ¼ 1

12
bh3. Taking y ¼ y0, the relation for Q can be

written as

dx

dM

dMd

FIGURE D.13 Loadings on a Beam Element.

z
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yA
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b

h

y

− y2τ =
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6V h2

bh3

x

FIGURE D.14 Rectangular Section Shear Stress Distribution Analysis.
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Q ¼ y 0A0 ¼
�
yþ 1

2

�
h

2
� y

���
h

2
� y

�
b ¼ 1

2

�
h2

4
� y2

�
b (D.10)

Using these results in the shear stress formula (D.9) gives

s ¼ VQ

It
¼ 6V

bh3

�
h2

4
� y2

�
(D.11)

which predicts a parabolic shear stress distribution over the section (see Figure D.14) that vanishes at

the top and bottom and takes on maximum smax ¼ 3V

2A
at the neutral axis (y ¼ 0).

This concludes our brief review of the standard four stress and deflection analyses for extension,
torsion, and bending and shear of beams.

D.4 Curved beams
We now discuss the mechanics of materials analysis of curved beams. This topic is often omitted in the
first undergraduate course and is sometimes covered in later courses on advanced mechanics of ma-
terials, machine design, or structures. The analysis is concerned with the bending deformation of a
prismatic beam (constant cross-section) that is in a circular shape, as shown in Figure D.15. These
structures commonly occur in various machine parts such as hooks and links. Clearly this structure is
not modeled well using straight beam theory, and thus strength of materials develops a suitable curved
beam analysis.

It has been shown that for curved beams the normal strain no longer varies linearly from the neutral
axis. We again consider only cross-sections that have an axis of symmetry perpendicular to the
moment axis, as shown in Figure D.16. Consistent with mechanics of materials theory, we assume
again that cross-sections remain plane after the deformation. Using the isolated beam segment illus-
trated in Figure D.16, this assumption allows simple calculation of the strain distribution.

Considering a beam fiber located a distance r from the center of curvature, the original fiber length
is rdq and the change in length is given by (R � r)dj, where each section rotates an amount dj/2
because of the applied moment. Using classical definition, the fiber strain is given by

εq ¼ ε ¼ ðR� rÞdj
rdq

¼ k
ðR� rÞ

r
(D.12)

a

b

r

MM

FIGURE D.15 Curved Beam Geometry.
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d

d

FIGURE D.16 Curved Beam Section and Strain Analysis.

where k¼ dj/dq is a constant parameter for a given element. It is observed that, unlike straight beams,
the strain varies in a nonlinear hyperbolic fashion. Under the usual assumption that one component of
stress and strain exists, Hooke’s law gives the bending stress

sq ¼ s ¼ Eε ¼ Ek
ðR� rÞ

r
(D.13)

With the results just given, the location of the neutral axis and the stress–moment relation can be
determined. Similar to straight beam theory, the location of the neutral axis is found by requiring that
the resultant force normal to the cross-sectional area A must vanish, and thusð

A

sdA ¼
ð
A

Ek
ðR� rÞ

r
dA ¼ 00R ¼ Að

A

dA

r

(D.14)

The location dimension R is then a function only of section properties and does not correspond to the
section centroid as found in straight beam theory.

This location can be easily calculated for particular geometric shapes. For example, using the inner
and outer radial dimensions shown in Figure D.15, the location for a rectangular section is R¼ (b� a)/
log(b/a). Note that this result indicates that, even for a rectangular section with two axes of symmetry,
the neutral axis is not located at the centroid (geometric center).

The stress–moment relation is found by the usual equilibrium statement that balances the applied
section moment to the resulting stress field

M ¼
ð
A

ðR� rÞsdA ¼
ð
A

Ek
ðR� rÞ2

r
dA

¼ Ek

0
@R2

ð
A

dA

r
� 2R

ð
A

dAþ
ð
A

rdA

1
A

¼ EkAðr � RÞ

(D.15)
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where r is the location of the section centroid measured from the center of curvature. Combining this
result with relation (D.13) gives the desired relation

s ¼ MðR� rÞ
Arðr � RÞ (D.16)

A specific comparative example is shown in Figure D.17 for a curved beam of rectangular section of
unit thickness with properties a ¼ 3, b ¼ 5, and M ¼ 1 (using suitable consistent units). The results
compare bending stresses predicted from both straight and curved beam theory. The nonlinear dis-
tribution from curved beam theory is clearly evident; however, results from straight beam theory
compare reasonably well. For beams with a relatively large radius of curvature, the two theories are in
good agreement, while for cases with small values of r=ðb� aÞ, the differences become significant.

D.5 Thin-walled cylindrical pressure vessels
We conclude our review of mechanics of materials with a discussion of the analysis of thin-walled
cylindrical pressure vessels. The elementary theory is concerned only with the uniform stresses
developed in the side walls away from any concentration effects at the ends. The only loadings on the
vessel are due to application of a uniform internal pressure p. It is further assumed that the vessel
thickness t is much smaller than the mean radius r of the side wall.

5
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Straight Beam Theory

FIGURE D.17 Comparison of Curved and Straight Beam Theory for Rectangular Section.
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As shown in Figure D.18, under these conditions an axial stress sa and a hoop stress st are
generated at all points on the lateral sides of the cylinder. Because the vessel is assumed to have thin
walls, variation of the stress through the wall thickness can be neglected. The resulting state of stress is
then assumed to be biaxial, under the condition that the pressure loading on the inside surface is
normally much smaller than the axial and hoop stresses.

To determine these two side-wall stresses in terms of vessel geometry and pressure loading, a
simple equilibrium analysis is done. The cylindrical vessel is first sectioned to isolate a semicircular
strip of width dx, as shown in Figure D.19. Then an equilibrium analysis in the horizontal direction is
conducted on the segment to give

2stðtdxÞ � pð2rdxÞ ¼ 00

st ¼ pr

t

(D.17)

Note that because the vessel is thin, our analysis makes no distinction between inner, outer, and mean
vessel radius.

σt

σa

Internal Pressure, p

Axial Stress, σa

x

FIGURE D.18 Thin-Walled Cylindrical Vessel under Internal Pressure.

r

p

σt

σt

FIGURE D.19 Cylindrical Vessel Section.
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To determine the axial stress, we conduct an axial force balance of a sectioned half-vessel
(similar to Figure D.18 with a left end cap) to get

sað2prtÞ � p
	
pr2


 ¼ 00

sa ¼ pr

2t

(D.18)

Relations (D.17) and (D.18) provide the mechanics of materials predictions for the stresses in the
pressure vessel structure. Note that the hoop stress is twice the magnitude of the axial stress. These
forms indicate that for r=t[1 the two side-wall stresses are much larger than p.
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Cesàro integral, 45–46

Characteristic equation, 12–13

Circular domain, 297–302

Circumferentially orthotropic material, 355–356

Clapeyron’s theorem, 126

Coefficient of thermal expansion, 90

Compatibility relations, 95

Complementary energy, 130–134

Complementary virtual strain energy, 130

Complete symmetry, 329–330

Completeness, 423

Complex conjugate, 283–284

Complex displacement, 291

Complex Fourier series, 297–299

Complex potentials

finite multiply connected domains, 295f, 296

finite simply connected domains, 295, 295f

indeterminacy or arbitrariness, 295

infinite domains, 295f, 297

Complex temperature, 384

Complex variable methods, 110, 384–391

Complex variable theory, 283

branch point, 288

Cauchy–Riemann equations, 285–286

circular domain, 297–302

complex conjugate, 285

complex plane, 284f

conformal mapping method applications, 307–311

conformal transformation, 289, 289f, 290f

contour in complex plane, 286f

differential operators, 284–285

fracture mechanics, 312–315

full-space examples, 302–305

concentrated force system, 303f

half-space examples, 302–305

concentrated force system, 304f

Laurent series, 287–288

multiply connected domain, 288–289

plane elasticity problems, 289–290

real variables, 283–284

resultant boundary conditions, 293–294, 294f

theorems in, 286–287

Westergaard method, 315–316

Composite bodies, 99f

Composite elastic continuum, 100f

Computer-aided design codes (CAD codes), 522

Concentrated surface force system, 191–196, 192f

displacement field for, 196f

radial stress contours for, 194f

Conformal mapping method

plane problems, 307

potential functions, 309–311

stress concentration factor, 311f

transformation relations, 307–309

Conical shaft, 263f

Conjugate functions, 285–286

Conservation of energy, 369–370

Conservation of linear momentum, 69–70

Constant strain element (CST), 509–514

Contact Stress, 159–234, 541–555

Constitutive equations, 81–82

Contraction, 5

Coordinate transformations

change of Cartesian, 8f

elasticity variables and field equations, 8

orthogonal transformations, 9

primed and unprimed, 8–9

Couple-stress tensor, 483–484

Couple-stress theory, two-dimensional,

484–491

Couple-stress theory, 55

CST. See Constant strain element

Cubical dilatation, 41

Curved beams, 567f

fiber strain, 567–568

inner and outer radial dimensions, 568

isolated beam segment, 567

for rectangular section, 569f

using straight beam theory, 567

and strain analysis, 568f

stress–moment relation, 86

Curvilinear anisotropic problems, 355

3D spherical-orthotropic problem, 359–362

2D polar-orthotropic problem, 355–359

Curvilinear coordinates

cylindrical and spherical, 46–47

displacement vector and strain tensor, 47

identical procedures, 48

relations in, 48

scalar equations, 47

574 Index



Cylindrical coordinate system, 21f

from Cartesian, 31

displacement transformation, 31–34

stress components in, 32f

stress transformation, 34–38

Cylindrical coordinates, 4–5, 7

D
Deformation, 31

curvilinear coordinates, 46–48

deviatoric strain tensors, 41

displacement gradient tensor, 33

displacement vectors, 32

linear elasticity, 31

principal strains, 40–41

spherical strain tensors, 41

strain and rotation tensor, 33–34

strain compatibility, 41–46

strain transformation, 39–40

two neighboring points, 32f

2D cantilever beam, 31, 32f
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Integral theorems, 126–128

576 Index



Integral transform method, 110

Interface conditions, 99

Interpolation, 111

Inverse method, 108

Isoclinics, 66

Isopachic contours, 66

Isostatics, 66
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Lamé’s strain potential, 398

Laplace transform, 493–496

Lattice model, 482–483

Laurent series, 398

Legendre differential equation, 408

Legendre functions, 408

Length scales, 496–497

Line integral, 286–287

Line of dilatation, 478f

Linear elastic materials, 83–84

elastic moduli, 83–84
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using interpolation functions, 509

linear triangular element geometry, 508f

scalar variable linear approximation,

507–508

Loading vector, 509–514

Love strain potential, 409

M
m-files, 541

Maclaurin series, 287–288

Material characterization

constitutive equations, 81–82

proportional limit, 82

stress–strain response, 82–83

tension test, 82

uniaxial stress–strain curves, 82f

Material symmetry, 325–326

axis of symmetry, 328–329, 329f

complete symmetry, 329–330

plane of symmetry, 326–327

three perpendicular planes of symmetry, 327–328

torsion of solid possessing, 332–338

Material symmetry group, 325–326

Mathematical preliminaries, 3

Cartesian tensors, 10–12

coordinate transformations, 8–9

index notation, 4–6

Kronecker delta, 7

matrix variables, 3–4

orthogonal curvilinear coordinates, 21–26

scalar quantities, 3–4

symmetric second-order tensors, 12–15

tensor formalism, 4

vector or cross product, 16–17

vector quantities, 3–4

MATLAB primer, 55

boundary mode screen, 62f

Boundary Specification Window, 63f

Command Window, 56f

displacement vector distribution plotting, 58

draw mode screen, 61f

Editor/Debugger Window, 57f

m-files, 541

maximum shear stresses plotting, 58

PDE toolbox, 58

Plot Selection Window, 68f

polar contour plotting, 58

roots for orthotropic materials, 58

second-order tensors transformation, 58

stresses plotting, 58

3D warping displacement surface plotting, 58

warping displacement contours plotting, 58

Matrix notation, 524

Matrix products, 16–17

Matrix variables, 3–4

Maximum shear stress, 75

Maxwell stress function, 413–414

Mechanics of materials, 81

bending deformation of beams, 86–90

curved beams, 87, 567f

extensional deformation, 81–83, 86f

thin-walled cylindrical pressure vessels, 87

torsion of circular rods, 83–86, 92f
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Membrane analogy

contour line, 246–247, 247f

displacement equation, 245–246

features, 245, 245f

Mesh

element, 514–517

finer, 506

superimposed square, 31

Micromechanics applications

classical theories, 465

comparison, 500f

dislocation modeling, 466–470

doublet mechanics, 465, 496–500

elasticity theory

with distributed cracks, 479–482

with voids, 491–496, 491f, 496f

flamant problem, 499f

nonlocal behavior, 465

singular stress states, 470–479

Micropolar stress theory, 55

Micropolar theory, 483

Micropolar/couple-stress elasticity, 482–483

body and surface couples, 483–484

elastic continuum theory, 483

heterogeneous materials with microstructure, 483f

micropolar theory, 483

2D couple-stress theory, 484–491

Modified Westergaard stress function formulation,

316

Modulus of elasticity, 85–86

Modulus of rigidity. See Shear modulus

Mohr’s circles of stress, 63f

Monoclinic material. See Plane of symmetry

Morera stress function, 414

Multiply connected cross-sections, 243–245, 243f

Multivaluedness, 288

N
Natural boundary conditions, 130

Navier’s equations, 21, 103

Galerkin vector in, 399

general solution forms for, 397

Papkovich–Neuber solution of, 405

for plane stress, 374–375

Neumann principle, 323–324

Nodal values, 505

Nodes, 111, 505

Nonhomogeneous elasticity, 423–427

antiplane strain problems, 448–452

continuously graded material, 425f

half-space domain problem, 439–448

plane problem, 427–434

rotating disk problem, 434–439

torsion problem, 452–459

uniaxial tension, 426f

Nonhomogeneous materials, 424

Normal stresses, 56–58

Numerical methods, 514–517

O
Octahedral plane, 65

Orthogonal curvilinear coordinates, 21–22, 23f

cylindrical coordinate system, 21f

physical components, 23–24

polar coordinate system, 26f

primary use of, 22–23

spherical coordinate system, 22f

vector differential operator, 24–25

Orthogonal transformations, 9

Orthotropic material. See Three perpendicular planes of

symmetry

P
Papkovich–Neuber representation, 404–408

PDE Toolbox, 58, 517

GUI, 58f

problem type in, 59f

Piola–Kirchhoff stress tensor, 59–60

Plane contact problems

Cauchy principal value, 215

classical Hertz theory, 219

contact load distribution, 218

contact mechanics, 213–214

cylindrical rigid indenter, 217, 217f

displacement-based contact, 214

elastic half-space, 214f

flat rigid indenter, 215, 216f

indenter, 215

integration range, 215

using MATLAB software, 216

maximum shear stress distribution, 217f, 218f

normal load distribution, 215, 218

Poisson’s ratio, 216

shear loading distribution, 215

surface displacements, 216

Plane deformation problems

Airy stress function, 339

characteristics, 340

complex variables, 342–348

concentrated force system

on half-plane, 345f

in infinite plane, 344f

elasticity equations, 340–342

elliptical hole, 347f
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plane strain and stress, 338–339

uniform pressure loading case, 348–351

uniform tension of anisotropic plane, 343f

Plane of symmetry, 326–327, 326f

plane problem of hollow cylindrical domain, 427–429

axial displacement behavior, 428f

elasticity gradation modulus, 428f

gradation in Young’s modulus, 430f

nondimensional radial stress distribution, 431f

nondimensional tangential stress distribution, 432f, 433f

stress concentration factor, 434f

Plane strain, 141, 290–291

Beltrami–Michell equation, 143

equilibrium relations, 142

fixed and frictionless ends, 143

Hooke’s law, 142

in-plane stress components, 142

long cylindrical body representation, 142f

plane elasticity problem, 143f

Saint-Venant principle, 144

strain compatibility for, 143

strain–displacement relations, 141

stress or traction formulation, 143

Plane stress, 144

compatibility relation, 146

displacement formulation, 146

elastic moduli transformation relations, 147t

equilibrium equations, 145–146

generalized, 147–149

from Hooke’s law, 145

nonzero body forces and tractions, 144

out-of-plane strains, 145

strain–displacement equations, 145

thin elastic plate representation, 144f

Plot Selection Window, 68f

Poisson’s ratio, 85–86

Polar coordinate formulation, 378–379

biharmonic equation in, 154

compatibility equations, 153

equilibrium equations, 152–153

Hooke’s law, 152

Navier equations, 153

strain–displacement relations, 152

stress components and Airy function, 153–154

vector differential operations, 152

Polar coordinate system, 26f

Polar coordinates, solutions in, 178

axisymmetric solution, 179–180

biaxial and shear loading cases, 187–188, 187f

curved cantilever under end loading, 204–213, 205f

general Michell solution, 178–179

half-space, 190

concentrated surface force system, 191–196

maximum shear stress variation, 200f

surface concentrated moment, 196, 197f

uniform normal loading, 197–201, 197f

under uniform normal stress, 190–191, 191f

hoop stress variation, 186f, 187f

notch and crack problems, 201–203, 201f

pressurized hole in infinite medium, 182–183, 183f

pure bending example, 203–204, 203f

quarter-plane example, 189–190, 189f

stress-free hole in infinite medium, 183–186, 183f

thick-walled cylinder problem, 181f

wedge domain geometry, 189f

Polar moment of inertia, 83–84

Polar-orthotropic problem, two-dimensional, 355f

dimensionless hoop stress, 358–359, 358f

polar coordinate system model, 355–356

stress distributions, 357f

stress shielding, 357

thick-walled cylindrical domain problem, 356–357

Poroelasticity, 465

Potential theory, 243

Power series method, 109–110

Prandtl stress function, 414

Principal axes, 13–15, 15f

Principal strains, 40–41

cubical dilatation, 41

matrix in coordinate system, 41

principal axes, 41

Principal stresses, 61–62

comparison of general and, 61f

Mohr’s circles of stress, 63f

traction vector decomposition, 62–64, 62f

Principle of minimum complementary energy, 131, 131f

Principle of minimum potential energy, 130

Principle of superposition, 103–104, 104f

Proportional limit, 82

Q
Quadratic form of strain energy, 122

R
Radial distribution, 192

Radial stress distribution, 440–441

Radially orthotropic material, 355–356

Radially symmetric problems, 379–384

Rayleigh reciprocal theorem. See Betti reciprocal theorem

Rayleigh–Ritz method, 134–136

Reciprocal theorem, 522–524

Rectangular plate problem, 98

Rectilinear anisotropy, 353–354

Reference configuration. See Undeformed configuration
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Reference state, 369–370

Reference temperature, 369–370

Reissner’s principle, 132–134

Residues, calculus of, 288

Restrictions on elastic moduli, 330–332

Rigid-body motions, 295

Rigid-smooth boundary, 97

Ritz method, 110–111

Rosette strain gage, 40

Rotating disk problem, 434–439

gradation in Young’s modulus, 436f

radial stress distribution, 438f

Rotation tensor, 33

Rotation vector, 38

S
Saint-Venant compatibility equations, 43

Saint-Venant principle, 105f

anisotropic and inhomogeneous materials, 106

boundary condition, 106

characteristic effects, 105–106

compressive loadings, 105

quantitative results, 106

statically equivalent loadings, 105f

Scalar notation, 69–70

Scalar quantities, 3–4

Scalar triple product, 16–17

scale factors, 22–23

Screw dislocation model, 469f

Self-equilibrated forms, 412

Semi-inverse method, 108–109

Shape functions. See Interpolation

Shear center, 267–268

Shear modulus, 84–85

Shear strain, 36

Shearing stresses, 56–58

Simple shear, 125

Singular points, 285

Singular stress states, 470

center of compression, 476f

concentrated force singular state problem, 471f

double-force system with moment, 475f

force doublet state, 474f

generalized Kelvin state, 474f

line of dilatation, 478f

Papkovich–Neuber solution scheme, 470

regular elastic state, 470

unit concentrated loadings, 472f

zero body forces, 471–479

Slip interface model, 99

Small deformation theory

constant rotation, 37–38

deformational behavior, 34f

general relations for, 34

normal or extensional strain component, 35

shear strain, 36

shearing, 36

strain–displacement relations, 36, 38

2D, 35, 35f

2D rigid-body rotation, 37f

vector or matrix notation, 37

Software package, 517–521

Solution strategies

analytical solution procedures, 109–110

approximate solution procedures, 110

direct method, 106–107

inverse method, 108

numerical solution procedures, 111–112

semi-inverse method, 108–109

Somigliana’s identity, 127–128

Spherical coordinate formulations, 408–411

spherical cavity in infinite medium, 408, 410f

stress concentrations

comparison, 412f

factor behavior, 411f

Spherical coordinates, 4–5, 8

from cartesian, 33

displacement transformation, 46–48

stress transformation, 540

displacement transformation, 40–41

inverse transformations, 35

stress components in, 32f

stress transformation, 41

system, 22f

Spherical harmonics, 408

Spherical-orthotropic problem, 359–362

Spherical strain tensors, 41

Spherical stress tensors, 64–65

Stokes theorem, 20

Strain compatibility

continuity of displacements, 44f

domain connectivity, 46f

fourth-order relations, 43

integrability or, 41–42

multiply connected, 45

physical interpretation of, 42, 42f

Saint-Venant compatibility equations, 43

simply connected, 45

strain–displacement relations, 43

Strain energy, 119

body forces, 122

bounds on elastic constants, 125–126

deformation process, 119

using Hooke’s law, 122
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hyperelasticity, 123

integral theorems, 126–128

positive definite quadratic form, 122

principle of virtual work, 128–130

strain displacement relations and Hooke’s law,

119–120

strain energy density, 120

stress–strain curve, 120, 121f

symmetry relations, 123

uniform shear stress, 120, 121f

uniform uniaxial stress, 120f

uniqueness of elasticity boundary-value problem, 124

volumetric and distortional change, 123–124

Strain tensor, 33

Strain transformation

in-plane strain components, 39–40

matrix, 39

using rosette strain gage, 40

second-order tensor, 39

two and three dimensional, 40, 40f

Strain–displacement relations, 36, 95, 531–532

Stress components, 56–58

Stress equations, 55

body forces, 55–56

deviatoric stress tensors, 64–65

octahedral plane, 65

principal stresses, 61–64

spherical stress tensors, 64–65

stress distributions and contour lines, 66–67

stress transformation, 60–61

surface forces, 55–56

traction vector, 56–60

von Mises stress, 65–66

Stress formulation

Beltrami–Michell compatibility equations, 101

compatibility equations, 101

for elasticity theory, 102

equilibrium equations, 102

stress functions, 102

Stress functions, 102, 412–414

formulation, 375–378

Maxwell stress function, 413–414

Morera stress function, 414

Stress intensity factor, 353–354

Stress shielding, 357

Stress trajectories, 66

Stress–stress function formulation, 238–239

boundary conditions, 239–240

differential surface element, 240f

equilibrium equations, 239

using Green’s theorem, 240–242

Prandtl stress function, 239

Summation convention, 5

Superimposed square mesh, 31

Superposition principle, 477–479

Surface force density function, 55

Surface forces, 55–56, 56f

Symbolic manipultation, 112

Symmetric second-order tensors

coordinate systems, 12, 12f

principal axes, 13–15, 15f

principal direction, 12–13

Symmetric tensor, 61–62

T
Tapered cantilever beam, 98–99

Taylor series expansion, 287–288

Tensor formalism, 4

Thermal conductivity, 369

Thermoelastic constitutive relations, 90

Thermoelasticity

annular plate, 381f

complex variable methods, 384–391

displacement potential solution, 374–375

energy equation, 369–370

general uncoupled formulation, 371

heat conduction, 369–370

heat flow, 388f, 389f

polar coordinate formulation, 378–379

radially symmetric problems, 379–384

stress function formulation, 375–378

thermoelastic rectangular strip, 378f

two-dimensional formulation, 371–374

Thin-walled cylindrical pressure vessels, 570f

axial force balance, 87

elementary theory, 87

equilibrium analysis, 570

under internal pressure, 570f

Three perpendicular planes of symmetry, 327, 327f

compliance matrix, 328

symmetry relations, 327–328

Three-dimensional spherical-orthotropic problem

internal and external pressures, 361–362

stress distributions, 362f

uniform microstucture, 359–361

Torsion formulation

center of twist, 237–238

deformation of cylinders, 237

displacement formulation, 242–243

with hollow sections, 258–261, 258f

in-plane displacements, 238f

membrane analogy, 245–247

multiply connected cross-sections, 243–245, 243f
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Torsion formulation (Continued )

stress–stress function formulation, 238–242

torsion of circular shafts, 261–264

Torsion of solid possessing, 332–333

anisotropic bar, 332f

boundary conditions, 333

displacement formulation, 335–336

governing equation, 336–338

stress formulation, 333–335

Torsion problem, 452

formulation, 453

general field equation, 457–459

nonhomogeneous elasticity solutions, 459

shear modulus gradations, 455

shear stress distribution, 456, 457f, 458f

torsional rigidity, 454

Torsion solutions

from boundary equation, 247–252

using Fourier methods, 253–257

Torsional rigidity, 242

Traction problem, 100

Traction vector, 56–58

deformation theory, 59–60

external loading, 57f

on oblique plane, 58, 59f

stress components, 58, 58f

Transversely isotropic material. See Axis of symmetry

Triclinic material, 325–326

U
Uncoupled conduction equation, 370

Undeformed configuration, 59–60

Uniaxial stress–strain curves, 82f

Uniaxial tension, 125

Uniqueness, 124

Uniqueness of elasticity boundary-value problem, 124

Unit concentrated loadings, 472f

Unit matrix, 7

V
Variational methods, 110

Vector products, 16–17

Vector quantities, 3–4

Velocity field, 369–370

Virtual displacement, 128

Virtual work formulation, 509–514

Virtual work principle, 128–130

Voigt matrix notation, 324–325

Volume fraction, 465

Volumetric deformation, 41

von Mises stress, 65–66

W
Warping displacement, 242

Weak form, 507–508

Wedge problem, 201

Weighted residual method, 136, 506–507

Westergaard method

for crack analysis, 315

skewsymmetric crack problems, 316

stress combination definitions, 316

symmetric problem, 315

Westergaard stress function, 312

Y
Yield point, 82

Young’s modulus. See Modulus of elasticity

Z
Zero-value theorem, 21
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