Webs Related to K-Loops and Reflection Structures

By E. GABRIELI, B. IM, and H. KARZEL

Abstract. We give a characterization of webs $(\mathcal{P}, g_1, g_2, g)$ which are related to A_l -loops, weak K-loops, K-loops and reflection structures. We also obtain a geometric proof of KREUZER'S result that the concept of K-loop is equivalent to that of Bruck loop.

1 Introduction

By the works of G. Bol and W. Blaschke [1], K. Reidemeister [18] and G. Thomsen [19] we know that there is a correspondence between loops and webs (cf. Theorem 4.1). In the last years the so called K-loops gained particular interest (cf. [3, 4, 5, 7, 8, 11, 13, 14, 20, 21]). The notion of a K-loop (E, +) is defined among the loops as follows.

For $a, b \in E$, let $a^+ : E \to E$; $x \mapsto a + x$, $\delta_{a,b} := ((a+b)^+)^{-1} \circ a^+ \circ b^+$, let $-a \in E$ be defined by a + (-a) = 0 and let $v : E \to E$; $x \mapsto -x$ be the negative map. The loop (E, +) is called an A_l -loop if for all $a, b \in E$ the permutation $\delta_{a,b}$ is an automorphism of the loop (E, +), i.e. $\delta_{a,b} \in \operatorname{Aut}(E, +)$, a weak K-loop if moreover $\delta_{a,-a} = \operatorname{id}$ and a K-loop if furthermore $v \in \operatorname{Aut}(E, +)$ (automorphic inverse property) and $\delta_{a,b} = \delta_{a,b+a}$ for all $a,b \in E$.

Recently it has been proved in [13] by A. KREUZER that the concept of a K-loop is equivalent to that of a Bruck loop. A Bruck loop (E, +) is a Bol loop, i.e. a loop satisfying the Bol identity

$$a^+ \circ b^+ \circ a^+ = (a + (b+a))^+, \quad \forall a, b \in E,$$

which, moreover, satisfies the automorphic inverse property (cf. [13]).

K-loops are closely related to invariant reflection structures. A triple $(\mathcal{P}, \circ; 0)$ consisting of a non-empty set \mathcal{P} , a fixed element $0 \in \mathcal{P}$ and a map $\circ: \mathcal{P} \to J := \{\sigma \in \operatorname{Sym} \mathcal{P} \mid \sigma^2 = \operatorname{id}\}; x \mapsto x^\circ \text{ such that:}$

B1
$$\forall a \in \mathcal{P}: a^{\circ}(0) = a$$

is called a reflection structure and an invariant reflection structure if moreover

¹⁹⁹¹ Mathematics Subject Classification. 20N05, 53A60.

Key words and phrases. Web, weak K-loop, K-loop and reflection structure.

The first author was supported by a grant from the Vigoni project. The second author wishes to acknowledge the financial support of the Korea Research Foundation, 1997.

B2
$$\forall a, b \in \mathcal{P}$$
: $a^{\circ} \circ b^{\circ} \circ a^{\circ} = (a^{\circ} \circ b^{\circ}(a))^{\circ}$

is satisfied. By [4] we have

- **(1.1)** Let $(\mathcal{P}, +)$ be a right loop, (i.e. for all $a, b \in \mathcal{P}$ the equation a + x = b has a unique solution $x \in \mathcal{P}$ and there is a $0 \in \mathcal{P}$ with a + 0 = 0 + a = a.) and for $a \in \mathcal{P}$ let $a^{\circ} := a^{+} \circ v$. Then:
 - (i) If $(\mathcal{P}, +)$ has the property

$$\forall a, b \in \mathcal{P}: \ a - (a - b) = b, \tag{*}$$

then $(\mathcal{P}, \circ; 0)$ is a reflection structure;

(ii) If $(\mathcal{P}, +)$ is a K-loop, then $(\mathcal{P}, \circ; 0)$ is an invariant reflection structure.

By [7] the converse is also true

- **(1.2)** Let $(\mathcal{P}, \circ; 0)$ be a reflection structure and for $a, b \in \mathcal{P}$ let $a^+ := a^{\circ} \circ 0^{\circ}$ and $a + b = a^+(b)$. Then:
 - (i) $(\mathcal{P}, +)$ is a right loop with (*);
 - (ii) If $(\mathcal{P}, \circ; 0)$ is invariant, then $(\mathcal{P}, +)$ is a K-loop.

Remark. In [7] the following statements of Theorem 6.1 were proved completely (cf. [7], (6.1)(3) and (4)):

- (i) $0^{\circ} \circ \mathcal{P}^{\circ} \circ 0^{\circ} = \mathcal{P}^{\circ} \iff \nu \in \operatorname{Aut}(\mathcal{P}, +);$
- (ii) $(\mathcal{P}, \circ; 0)$ is invariant $\Rightarrow (\mathcal{P}, +)$ is a weak K-loop with $\nu \in \operatorname{Aut}(\mathcal{P}, +)$.

In order to show (ii) in (1.2) we have still to prove the property:

$$\forall a, b \in \mathcal{P} : \delta_{a,b} = \delta_{a,b+a}. \tag{1}$$

This can be done in the following way by modifying the proof of [8], (3.3):

Proof. Let $a,b\in\mathcal{P},c:=a+b=a^{\circ}\circ 0^{\circ}(b),d:=b+a$ and e:=a+(b+a)=a+d. Then

$$c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ}(0) = c^{\circ}(c) = 0, \tag{2}$$

$$d = d^{\circ}(0) = b^{\circ} \circ 0^{\circ} \circ a^{\circ}(0) \tag{3}$$

and

$$e = e^{\circ}(0) = a^{\circ} \circ 0^{\circ} \circ d^{\circ}(0) \stackrel{(3)}{=} a^{\circ} \circ 0^{\circ} \circ b^{\circ} \circ 0^{\circ} \circ a^{\circ}(0).$$

By B1 and B2 this equation implies

$$e^{\circ} = a^{\circ} \circ 0^{\circ} \circ b^{\circ} \circ 0^{\circ} \circ a^{\circ}. \tag{4}$$

Again, since $b^{\circ} \circ 0^{\circ} \circ a^{\circ} \circ c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ}(0) \stackrel{(2)}{=} b^{\circ} \circ 0^{\circ} \circ a^{\circ}(0) \stackrel{(3)}{=} d$ we obtain by **B1** and **B2**:

$$d^{\circ} = b^{\circ} \circ 0^{\circ} \circ a^{\circ} \circ c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ}. \tag{5}$$

Now

$$\delta_{a,b+a} = (e^{+})^{-1} \circ a^{+} \circ d^{+} = 0^{\circ} \circ e^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ d^{\circ} \circ 0^{\circ}$$

$$\stackrel{(4),(5)}{=} 0^{\circ} \circ (a^{\circ} \circ 0^{\circ} \circ b^{\circ} \circ 0^{\circ} \circ a^{\circ}) \circ a^{\circ} \circ 0^{\circ} \circ (b^{\circ} \circ 0^{\circ} \circ a^{\circ} \circ c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ}) \circ 0^{\circ}$$

$$= 0^{\circ} \circ c^{\circ} \circ a^{\circ} \circ 0^{\circ} \circ b^{\circ} \circ 0^{\circ} = (c^{+})^{-1} \circ a^{+} \circ b^{+} = \delta_{a,b}.$$

The purpose of this paper is to characterize the structure of webs corresponding to A_l -loops, weak K-loops, K-loops and reflection structures. Our main results are stated in (3.2), (3.3), (4.2), (5.1), (6.4): By the proofs of (1.3), (3.2), (3.3) and (4.2) we have a purely geometric proof of Kreuzer's result ([13]) that Bruck loops and K-loops are the same. The most important step in the proof is that the Bol identity and the automorphic inverse property imply that the loop is an A_l -loop. A geometric proof of this result is also contained in [2].

2 Basic concepts concerning nets and chain-nets related to K-loops

Let \mathcal{P} be a non-empty set and let \mathcal{G}_1 and \mathcal{G}_2 be subsets of the power set of \mathcal{P} ; the elements of \mathcal{P} , respectively of \mathcal{G}_1 and \mathcal{G}_2 will be called *points*, respectively *generators*. The triple $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2)$ is called a *net*, if for each $X \in \mathcal{G}_1 \cup \mathcal{G}_2$, $|X| \ge 2$ and if the following two conditions are valid:

N1 For each point $x \in \mathcal{P}$, for each $i \in \{1, 2\}$ there is exactly one generator $G \in \mathcal{G}_i$ with $x \in G$; such generator will be denoted by $[x]_i$.

N2 Any two generators X_1 and X_2 of distinct classes g_1 and g_2 intersect in exactly one point.

Let $J:=\{\alpha\in\operatorname{Sym}\mathcal{P}\mid\alpha^2=\operatorname{id}\}$ and $J^*:=J\setminus\{\operatorname{id}\}$ (= set of all involutions). We denote by $\Gamma:=\operatorname{Aut}(\mathcal{P},\mathcal{G}_1\cup\mathcal{G}_2)$ the group of all permutations χ of \mathcal{P} with the property:

$$\forall X \in \mathcal{G}_1 \cup \mathcal{G}_2 \colon \ \chi(X) \in \mathcal{G}_1 \cup \mathcal{G}_2.$$

Clearly, for each $\chi \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_1 \cup \mathcal{G}_2)$ and for each $x \in \mathcal{P}$ we have either

- (1) $\chi([x]_1) = [\chi(x)]_1$ and $\chi([x]_2) = [\chi(x)]_2$ or
- (2) $\chi([x]_1) = [\chi(x)]_2$ and $\chi([x]_2) = [\chi(x)]_1$.

Let $\Gamma^+ := \operatorname{Aut}(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2)$, respectively Γ^- be the set of all automorphisms of type (1), respectively (2). If $\Gamma^- \neq \emptyset$ then Γ^+ is a normal subgroup of Γ of index 2.

For the point set \mathcal{P} of our net $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2)$ we introduce the following binary operation:

$$\Box\colon\thinspace \mathcal{P}\times\mathcal{P}\to\mathcal{P};\ (x,y)\mapsto x\Box y:=[x]_1\cap[y]_2$$

A subset $S \subset \mathcal{P}$ is called a *subnet* if $\forall x, y \in S : x \square y \in S$.

(2.1) If \mathcal{N} denotes the set of all subnets, then \mathcal{N} is \cap -closed and for the associated closure operation $X^{\square} := \cap \{N \in \mathcal{N} \mid X \subseteq N\}$ for $X \subset \mathcal{P}$ we have:

$$X^{\square} = X \square X := \{ x \square y \mid x, y \in X \}.$$

Proof. Let
$$x, y, x', y' \in X$$
, then $(x \square y) \square (x' \square y') = x \square y'$.

(2.2) $\Gamma^+ = \operatorname{Aut}(\mathcal{P}, \square)$ and Γ^- is the set of all antiautomorphisms of (\mathcal{P}, \square) .

Proof. Let $x, y \in \mathcal{P}$, $\alpha \in \Gamma^+$ and $\beta \in \Gamma^-$, then $\alpha(x \square y) = \alpha([x]_1 \cap [y]_2) =$ $[\alpha(x)]_1 \cap [\alpha(y)]_2 = \alpha(x) \square \alpha(y)$ and $\beta(x \square y) = \beta([x]_1 \cap [y]_2) = [\beta(x)]_2 \cap$ $[\beta(y)]_1 = \beta(y) \square \beta(x)$. Now let $\alpha \in \text{Aut}(\mathcal{P}, \square)$ and let β be an antiautomorphism of (\mathcal{P}, \Box) . Then $[x]_1 = x \Box \mathcal{P}$, $[x]_2 = \mathcal{P} \Box x$ and so $\alpha([x]_1) = \alpha(x) \Box \alpha(\mathcal{P}) = \alpha(x) \Box \alpha(x)$ $\alpha(x)\square \mathcal{P} = [\alpha(x)]_1, \ \alpha([x]_2) = \mathcal{P}\square \alpha(x) = [\alpha(x)]_2, \ \beta([x]_1) = \mathcal{P}\square \beta(x) =$ $[\beta(x)]_2$, $\beta([x]_2) = \beta(x) \square \mathcal{P} = [\beta(x)]_1$. П

A subset $C \subset \mathcal{P}$ is called a *chain* of the net $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2)$ if the following condition holds:

N3
$$\forall X \in \mathcal{G}_1 \cup \mathcal{G}_2 : |X \cap C| = 1;$$

Let C be the set of all chains of $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2)$. If $\mathcal{C} \neq \emptyset$ and $\mathcal{C} \in \mathcal{C}$, then $\forall X \in \mathcal{G}_1 \cup \mathcal{G}_2$:

$$|C| = |X| = |\mathcal{G}_1| = |\mathcal{G}_2|$$
 and $|\mathcal{P}| = |\mathcal{G}_1|^2$.

(2.3) For each $C \in \mathcal{C}$ let

$$\widetilde{C} \colon \mathcal{P} \to \mathcal{P}; \ x \mapsto [[x]_1 \cap C]_2 \cap [[x]_2 \cap C]_1$$

and let $\tilde{\mathbb{C}} := \{\tilde{\mathbb{C}} \mid \mathbb{C} \in \mathbb{C}\}$, then we have:

- (1) $\widetilde{\mathcal{C}} \subset \Gamma^-$ and $\widetilde{\mathcal{C}}^2 \subset \Gamma^+$;
- (2) $\widetilde{C} \circ \widetilde{C} = \operatorname{id}$ and $\operatorname{Fix} \widetilde{C} = C$, i.e., $\sim : \mathcal{C} \to \Gamma^- : X \mapsto \widetilde{X}$ is an injection.
- (2.4) Let $\alpha \in \Gamma^-$. If $\alpha \in J^*$, then Fix $\alpha \in \mathcal{C}$; if Fix $\alpha \in \mathcal{C}$, then Fix $\alpha = \alpha$.

Proof. Let $X \in \mathcal{G}_1 \cup \mathcal{G}_2$ for instance $X \in \mathcal{G}_1$. Then $\alpha(X) \in \mathcal{G}_2$, since $\alpha \in \Gamma^-$ and therefore $c := X \cap \alpha(X)$ is a point. If $\alpha \in J^*$ then $\alpha(c) = c$ and c is the only fixed point of α contained in X. Hence Fix $\alpha \in \mathcal{C}$. Now let $C := \text{Fix } \alpha \in \mathcal{C}$, $x \in \mathcal{P}$ and $x_i := [x]_i \cap C$ $(i \in \{1, 2\})$. Then $x = x_1 \square x_2$, $\alpha(x_i) = x_i$ and since $\alpha \in \Gamma^-$, $\alpha(x) = \alpha(x_1 \Box x_2) = \alpha(x_2) \Box \alpha(x_1) = x_2 \Box x_1 = C(x)$ by (2.2).

- (2.5) $\forall A, B, C \in \mathcal{C}$ we have:
 - (1) $\widetilde{A}(B) \in \mathcal{C}$;
 - (2) $\widetilde{A}(B) = \widetilde{A} \circ \widetilde{B} \circ \widetilde{A}$;

 - (3) Fix $(\widetilde{A} \circ \widetilde{B}) = (A \cap B)^{\square}$; (4) $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \in J^* \Leftrightarrow \widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \in \widetilde{C}$;
 - (5) $\widetilde{A}|_{a_1} = \widetilde{B}|_{a_1} \iff A = B$.

Proof. (1): If $X \in \mathcal{G}_1 \cup \mathcal{G}_2$, then $|\widetilde{A}(B) \cap X| = |\widetilde{A}(B \cap \widetilde{A}(X))| = |B \cap \widetilde{A}(X)| = 1$ since $\widetilde{A} \circ \widetilde{A} = id$, thus $\widetilde{A}(B) \in \mathcal{C}$.

(2): From \widetilde{A} , \widetilde{B} and $\widetilde{A} \circ \widetilde{B} \circ \widetilde{A} \in \Gamma^-$, $\operatorname{Fix}(\widetilde{A} \circ \widetilde{B} \circ \widetilde{A}) = \widetilde{A}(\operatorname{Fix}(\widetilde{B})) = \widetilde{A}(B)$, we obtain by (2.4) $\widetilde{A} \circ \widetilde{B} \circ \widetilde{A} = \widetilde{A}(B)$.

(3): Let $\alpha := \widetilde{A} \circ \widetilde{B}$ and let $x, y \in A \cap B$, then $\alpha \in \Gamma^+$ by (2.3, (1)). $x, y \in \operatorname{Fix} \alpha$ by (2.3, (2)) and so by (2.2) $\alpha(x \square y) = \alpha(x) \square \alpha(y) = x \square y$, i.e. by (2.1), $(A \cap B)^{\square} =$ $(A \cap B) \square (A \cap B) \subseteq \operatorname{Fix} \alpha$. Now let $x \in \operatorname{Fix} \alpha$ then $\widetilde{A}(x) = [[x]_1 \cap A]_2 \cap [[x]_2 \cap A]_3 \cap [[x]_3 \cap A]_3 \cap [[x]_3$ A]₁ = $\widetilde{B}(x)$ = $[[x]_1 \cap B]_2 \cap [[x]_2 \cap B]_1$. Therefore $[[x]_1 \cap A]_2 = [[x]_1 \cap B]_2$ and $[[x]_2 \cap A]_1 = [[x]_2 \cap B]_1$. This implies $a := [x]_1 \cap [[x]_1 \cap A]_2 = [x]_1 \cap A = [x]_1 \cap B \in A \cap B$ and $b := [x]_2 \cap A = [x]_2 \cap B \in A \cap B$, and so $x = a \Box b$, i.e. Fix $\alpha \subseteq (A \cap B)^{\Box}$.

(4): " \Rightarrow " Let $\alpha := \widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \in J^*$. By (2.3, (1)) $\alpha \in \Gamma^-$ and so by (2.4) $\alpha = \widetilde{Fix} \alpha \in \widetilde{C}$.

Two chains $A, B \in \mathcal{C}$ are called *orthogonal* and denoted by $A \perp B$, if $A \neq B$ and $\widetilde{A}(B) = B$. This relation is symmetric since $\widetilde{A}(B) = B$ implies by (2.5, (2)) $\widetilde{B} = \widetilde{A}(B) = \widetilde{A} \circ \widetilde{B} \circ \widetilde{A}$, hence $\widetilde{A} = \widetilde{B} \circ \widetilde{A} \circ \widetilde{B} = \widetilde{B}(A)$ and so $A = \widetilde{B}(A)$ by (2.3, (2)).

Let $A^{\perp} := \{X \in \mathcal{C} \mid X \perp A\}$. Now we are going to consider subsets \mathcal{S} of the set \mathcal{C} of chains satisfying certain conditions. $\mathcal{S} \subset \mathcal{C}$ is called *transitive*, respectively regular if

T $\forall A, B \in \mathcal{S}: \exists C \in \mathcal{S}: \widetilde{C}(A) = B$, respectively

 $\overline{\mathbf{T}} \ \forall A, B \in \mathcal{S} : \exists_1 C \in \mathcal{S} : \widetilde{C}(A) = B,$

symmetric if

 $S \ \forall A, B \in \mathcal{S} : \widetilde{A}(B) \in \mathcal{S}.$

The quadruple $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, \mathcal{S})$ is called a *web* if \mathcal{S} satisfies the following condition $\mathbf{N}\mathbf{1}' \ \forall x \in \mathcal{P}\exists_1[x]_3 \in \mathcal{S}$ with $x \in [x]_3$.

Theorem 2.6. Let $\mathcal{L} \subset \mathcal{C}$ be a symmetric and regular set of chains and let $O \in \mathcal{L}$ be fixed. For each $A \in \mathcal{L}$ let $A' \in \mathcal{L}$ such that $\widetilde{A}'(O) = A$ (cf. $\overline{\mathbf{T}}$) and for all $A, B \in \mathcal{L}$ let $A \oplus B := \widetilde{A}' \circ \widetilde{O}(B)$. Then (\mathcal{L}, \oplus) is a K-loop.

Proof. By (2.3, (2)) and (2.5, (1)) for each $A \in \mathcal{L}$, \widetilde{A} induces an involutory permutation on the set \mathcal{C} , and since \mathcal{L} is symmetric, we have $\widetilde{A}(\mathcal{L}) = \mathcal{L}$. Therefore we can consider $\widetilde{\mathcal{L}} := \{\widetilde{\mathcal{L}}|_{\mathcal{L}} : L \in \mathcal{L}\}$ as a subset of $J_{\mathcal{L}}^* := \{\sigma \in \operatorname{Sym} \mathcal{L} \mid \sigma^2 = \operatorname{id} \neq \sigma\}$. Since \mathcal{L} is regular, the map $\circ : \mathcal{L} \to J_{\mathcal{L}}^* : X \mapsto X^\circ := \widetilde{X}'|_{\mathcal{L}}$ is an injection, i.e. $(\mathcal{L}, \circ; 0)$ is a reflection structure. Since \mathcal{L} is symmetric, $(\mathcal{L}, \circ; 0)$ is invariant by (2.5, (2)). Therefore, our Theorem 2.6 is a consequence of (1.2).

Finally, we consider a correspondence between chain–nets and permutation groups (cf. [10], 15.1). We assume $\mathcal{C} \neq \emptyset$ and fix an element $E \in \mathcal{C}$. For each $C \in \mathcal{C}$ let

$$\widehat{C} \colon E \to E; \quad x \mapsto [[x]_1 \cap C]_2 \cap E$$

then \widehat{C} is a permutation of E, and if $\gamma \in \operatorname{Sym} E$, the set $C(\gamma) := \{x \square \gamma(x) \mid x \in E\}$ is a chain.

- (2.7) Let $J(E) := \{ \sigma \in \operatorname{Sym} E \mid \sigma^2 = \operatorname{id} \}$, $J^*(E) = J(E) \setminus \{id\}$, $\gamma \in \operatorname{Sym} E$, $a \in E$, $b := \gamma(a)$ and $C := C(\gamma)$, then:
 - (1) $a \Box b \in C \text{ and } \gamma(b) = a \iff b \Box a \in C$;
 - (2) $\gamma \in J(E) \iff C \perp E \text{ or } C = E$;
 - (3) If $\gamma \in J(E)$ then $\gamma = \widetilde{C}|_E$;

- (4) $\forall \alpha, \beta \in \operatorname{Sym} E : C(\alpha) \perp C(\beta) \iff \alpha^{-1} \circ \beta \in J^*(E).$
- **(2.8) (Extension Theorem)** For $\sigma \in \text{Sym } E \text{ let }$

$$\sigma_1 \colon \left\{ \begin{array}{ccc} \mathcal{P} := E \square E & \longrightarrow & \mathcal{P} \\ x \square y & \longmapsto & \sigma(x) \square y \end{array} \right., \ \sigma_2 \colon \left\{ \begin{array}{ccc} \mathcal{P} & \longrightarrow & \mathcal{P} \\ x \square y & \longmapsto & x \square \sigma(y) \end{array} \right.$$

and $\overline{\sigma} = \sigma_1 \circ \sigma_2$ and let $S := C(\sigma)$. Then

- (1) $\forall \gamma \in \operatorname{Sym} E: \sigma_1(C(\gamma)) = C(\gamma \circ \sigma^{-1}), \sigma_2(C(\gamma)) = C(\sigma \circ \gamma), \overline{\sigma}(C(\gamma)) =$ $C(\sigma \circ \gamma \circ \sigma^{-1})$, i.e., $\sigma_1, \sigma_2, \overline{\sigma} \in Aut(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, \mathcal{C}, \bot)$;
- (2) $\forall \sigma, \tau \in \text{Sym } E: (\sigma \circ \tau)_1 = \sigma_1 \circ \tau_1, (\sigma \circ \tau)_2 = \sigma_2 \circ \tau_2, \overline{\sigma \circ \tau} = \overline{\sigma} \circ \overline{\tau};$
- (3) If $\sigma \in J(E)$, then $\overline{\sigma} = \widetilde{S} \circ \widetilde{E} = \widetilde{E} \circ \widetilde{S}$;
- (4) If $S \perp E$ or S = E, then $\overline{(\widetilde{S}|_{E})} = \widetilde{S} \circ \widetilde{E} = \widetilde{E} \circ \widetilde{S}$; (5) Let $A, B, C, D \in E^{\perp}$, then $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} = \widetilde{D} \iff \widetilde{A}|_{E} \circ \widetilde{B}|_{E} \circ \widetilde{C}|_{E} = \widetilde{D}|_{E}$.

Proof. (1):
$$\sigma_1(C(\gamma)) = \sigma_1(\{x \Box \gamma(x) \mid x \in E\}) = \{\sigma(x) \Box \gamma \circ \sigma^{-1} \circ \sigma(x) \mid x \in E\} = C(\gamma \circ \sigma^{-1}) \text{ and } \sigma_1(C(\alpha)) = C(\alpha \circ \sigma^{-1}) \perp \sigma_1(C(\beta)) = C(\beta \circ \sigma^{-1}) \stackrel{(2,7,(4))}{\Longleftrightarrow} \sigma \circ \alpha^{-1} \circ \beta \circ \sigma^{-1} \in J^*(E) \iff \alpha^{-1} \circ \beta \in J^*(E) \stackrel{(2,7,(4))}{\Longleftrightarrow} C(\alpha) \perp C(\beta).$$

- (3): By (2.7, (3)), $\sigma = \widetilde{S}|_E$ hence $\overline{\sigma}(x \Box y) = \sigma(x) \Box \sigma(y) = \widetilde{S}(x) \Box \widetilde{S}(y) \stackrel{(2.3,(1))}{=}$ $\widetilde{S}(y \square x) = \widetilde{S} \circ \widetilde{E}(x \square y)$, i.e. $\overline{\sigma} = \widetilde{S} \circ \widetilde{E}$.
- (4): is a consequence of (3) and (2.7, (3)) and (5) follows from (4).

3 Chain nets associated with reflection structures

In this section, let $(E, \circ; 0)$ be a reflection structure and $(\mathcal{P} := E \times E, \mathcal{G}_1, \mathcal{G}_2, \mathcal{C})$ (with $g_1 := \{\{x\} \times E \mid x \in E\}$ und $g_2 := \{E \times \{x\} \mid x \in E\}$) the chain net corresponding to the symmetric group Sym E with the identifications x = (x, x) = $x \square x$ for $x \in E$, hence 0 = (0, 0) and $E = \{(x, x) \mid x \in E\}$.

Since $E^{\circ} := \{a^{\circ} \mid a \in E\} \subset J(E) \text{ and } a^{\circ}(0) = a \text{ by } (\mathbf{B1}), \text{ we have } a^{\circ} \in J^{*}(E)$ if $a \neq 0$. For $0 \in E$ we have the two cases, $0^{\circ} \in J^*(E)$ and $0^{\circ} = id$. From (2.7, (3)), (2.8, (3)) we obtain:

- (3.1) For $a \in E$ let $a^c := C(a^\circ) = \{x \square a^\circ(x) \mid x \in E\} \in \mathcal{C}$ be the graph of the map a° and $\tilde{a} := \tilde{a^{c}}$ the reflection in the chain a^{c} . Then
 - (1) $\widetilde{a} = \overline{a^{\circ}} \circ \widetilde{E} = \widetilde{E} \circ \overline{a^{\circ}}, a^{\circ} = \widetilde{a}|_{E}, a^{c} \in E^{\perp} \cup \{E\} \text{ and } \widetilde{a} \circ \widetilde{b} \circ \widetilde{c} = \widetilde{E} \circ \overline{a^{\circ}}$ $\frac{\overline{a^{\circ} \circ b^{\circ} \circ c^{\circ}}}{\overline{a^{\circ} \circ b^{\circ} \circ c^{\circ}}} = \frac{\overline{a^{\circ} \circ b^{\circ} \circ c^{\circ}}}{\overline{a^{\circ} \circ b^{\circ} \circ c^{\circ}}} \circ \widetilde{E}, \text{ in particular } \widetilde{a(b^{c})} = \widetilde{a} \circ \widetilde{b} \circ \widetilde{a} = \widetilde{E} \circ \widetilde{b} \circ \widetilde{a}$ $\overline{a^{\circ} \circ b^{\circ} \circ a^{\circ}}$ and $\widetilde{a}(b^{c}) = C(a^{\circ} \circ b^{\circ} \circ a^{\circ}) \subset E^{\perp} \cup \{E\}$, hence $\widetilde{a}(b^{c}) \in E^{c} :=$ $\{a^c \mid a \in E\} \iff a^\circ \circ b^\circ \circ a^\circ \in E^\circ;$
 - (2) If $0^{\circ} \neq id$, then $E^{c} \subset E^{\perp}$ and $\overline{E^{\circ}}(0^{c}) := \{\overline{a^{\circ}}(0^{c}) \mid a \in E\} = E^{\sim}(0^{c}) :=$ $\{\widetilde{a}(0^c) \mid a \in E\} = \{C(a^\circ \circ 0^\circ \circ a^\circ) \mid a \in E\} \subset E^\perp;$
 - (3) If $0^{\circ} = \operatorname{id}$, then $E = 0^{\circ} \in E^{\circ} \subset E^{\perp} \cup \{E\}$, $\widetilde{0} = \widetilde{E}$ and $\overline{E^{\circ}}(0^{\circ}) = E^{\sim}(0^{\circ}) = E^{\sim}(0^{\circ})$ $\{E\}$;
 - (4) $\forall x \in [0]_1 \cup [0]_2 \quad \exists_1 a^c \in E^c : x \in a^c;$
 - (5) $| | E^c = \mathcal{P} \iff E^\circ \text{ acts transitively on } E;$
 - (6) $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, E^c)$ is a web $\iff E^\circ$ acts regularly on E;
 - $(7) \ \overline{E^{\circ}}(0^{c}) \subset E^{c} \iff \forall a \in E : a^{\circ} \circ 0^{\circ} \circ a^{\circ} \in E^{\circ} \Rightarrow E \subset \bigcup E^{c};$
 - (8) $a^{\circ} \circ E^{\circ} \circ a^{\circ} = E^{\circ} \iff \widetilde{a} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_1 \cup \mathcal{G}_2, E^c);$

- (9) $(E,^{\circ}; 0)$ is invariant $\iff E^{c}$ is symmetric;
- (10) If $(E, \circ; 0)$ is invariant, then E° acts regularly on E and $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, E^c)$ is a symmetric web such that there is an $F \in \mathbb{C}$ with $E^c \subset F^{\perp} \cup \{F\}$ and we have for each $a \in E$ the commutative diagramm

$$\begin{array}{ccc}
0 & \xrightarrow{c} & 0^{c} \\
(a^{\circ} \circ 0^{\circ}(a))^{\circ} \downarrow & & \downarrow \overline{a^{\circ}} \\
a^{\circ} \circ 0^{\circ}(a) & \longrightarrow & (a^{\circ} \circ 0^{\circ}(a))^{c}
\end{array}$$

(11) (Immersion theorem) If $(E, \circ; 0)$ is invariant and if Fix $a^{\circ} \neq \emptyset$ for each $a \in E$, then Fix a° consists of a single element $a' \in E$ and $(E^{c}, \Box, 0^{c})$ with

$$(a^c)^{\square}: \left\{ \begin{array}{ccc} E^c & \to & E^c \\ x^c & \mapsto & \widetilde{a'}(x^c) = C(a'^\circ \circ x^\circ \circ a'^\circ) \end{array} \right.$$

is a reflection structure isomorphic to $(E, \circ; 0)$.

If we call $(E,^{\circ}; 0)^{c} := (\mathcal{P} := E \times E, \mathcal{G}_{1}, \mathcal{G}_{2}, E^{c})$ the *chain-derivation* of the reflection structure $(E,^{\circ}; 0)$ then we can state the following characterization theorems:

(3.2) Let $(E, \circ; 0)$ be an invariant reflection structure, $W := (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G}) := (E, \circ; 0)^c$ and C the set of chains of $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2)$. Then W is a web, \mathcal{G} is symmetric and there is an $E \in C$ such that $\mathcal{G} \subset E^{\perp} \cup \{E\}$.

If $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G})$ is a chain net such that:

(O1)
$$\exists E \in \mathcal{C}: \mathcal{G} \subset E^{\perp} \cup \{E\}$$

is satisfied, then we call $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G})^E := (E; \widetilde{\mathcal{G}}|_E)$ the reflection derivation in E and if moreover

(O2)
$$\exists 0 \in E : \forall x \in E \quad \exists_1 x^g \in \mathcal{G} : 0 \Box x \in x^g$$

is valid, then the map

$$^{\circ}: \left\{ \begin{array}{ccc} E & \rightarrow & \operatorname{Sym} E \\ x & \mapsto & x^{\circ} := \widetilde{x^{g}} \end{array} \right.$$

is an injection and $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G})^{E,0} := (E, \circ; 0)$ is a reflection structure.

(3.3) Let $W = (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G})$ be a web such that (O1) is satisfied and \mathcal{G} is symmetric. Then for each $0 \in E$, $(E, \circ; 0) := (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G})^{E,0}$ is an invariant reflection structure and moreover W is isomorphic to $(E, \circ; 0)^c$.

4 Applications to K-loops

In this section let $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2)$ be a net, \mathcal{C} the set of all chains of $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2)$ and \mathcal{G} a subset of \mathcal{C} such that there is a generator $Y \in \mathcal{G}_1$ satisfying the condition:

N1' For each $y \in Y$ there is exactly one $G \in \mathcal{G}$ with $y \in G$; we set $[y]_3 := G$.

Then fixing a point $0 \in Y$ the chain $E := [0]_3$ can be turned in a right loop (E, +) with the neutral element 0: For all $a, b \in E$ let

$$a^+ \colon E \to E; \quad x \mapsto [[Y \cap [a]_2]_3 \cap [x]_1]_2 \cap E$$

and $a+b:=a^+(b)$. We set $W:=(\mathcal{P},\mathcal{G}_1,\mathcal{G}_2;\mathcal{G})$ and $W^{0+}:=(E,+)$ and call this the *loop derivation* in the point 0. This derivation exists for each point $0 \in \mathcal{P}$ where $[0]_1$ satisfies $\mathbb{N}1'$. If on the other hand (E,+) is a right loop with neutral element $0, a^+: E \to E; x \mapsto a+x$ for $a \in E$ and $E^+:=\{a^+ \mid a \in E\}$ then the chain derivation $(E,+)^c:=(E,E^+)^c$ gives us a chain net $(\mathcal{P},\mathcal{G}_1,\mathcal{G}_2;\mathcal{G})$ $(\mathcal{G}:=\{C(a^+)\mid a\in E\})$ where $[0\Box 0]_1$ satisfies $\mathbb{N}1'$. Clearly $((E,+)^c)^{0+}=(E,+)$ if $(E,+)^c$ denotes the point $(E,+)^c=(E,+)^c=(E,+)^c$ for $(E,+)^c=(E,+)^$

We have (cf. [9], (2.5), [10], p. 81):

(4.1) If $W = (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G})$ is a web, then for each $0 \in \mathcal{P}$, W^{0+} is a loop with the neutral element 0; if (E, +) is a loop, then $(E, +)^c$ is a web.

By (1.1) and (1.2) there is a one to one correspondence between reflection structures $(E, \circ; 0)$ and right loops (E, +) satisfying the condition (*) of (1.1): If $(E, \circ; 0)$ is given, then we set $(E, \circ; 0)^+ := (E, +)$ where $a + b := a^\circ \circ 0^\circ(b)$ and if we start from (E, +), we set $(E, +)^\circ := (E, \circ; 0)$ where $a^\circ := a^+ \circ \nu$ and $\nu : E \longrightarrow E$; $x \mapsto -x$. Here we have $((E, +)^\circ)^+ = (E, +)$ and $((E, \circ; 0)^+)^\circ = (E, \circ; 0)$.

- **(4.2)** Let (E, +) be a right loop, $W = (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G}) := (E, +)^c$ and $0^c := C(v) = \{x \square (-x) \mid x \in E\}$. Then:
 - (1) The following statements are equivalent:
 - (i) (E, +) satisfies (*) of (1.1);
 - (ii) $\mathcal{G} \subset (0^c)^{\perp} \cup \{0^c\}.$
 - (2) Equivalent are:
 - (i) (E, +) is a right loop satisfying the Bol condition: $\forall a, b \in E : a^+ \circ b^+ \circ a^+ = (a^+(b))^+$:
 - (ii) (E, +) is a Bol loop;
 - (iii) & is symmetric;
 - (iv) W is a Bol web.
 - (3) Equivalent are:
 - (i) (E, +) is a K-loop;
 - (ii) \mathcal{G} is symmetric and $\mathcal{G} \subset (0^c)^{\perp} \cup \{0^c\}$;
 - (iii) W is a Bol web with the additional property: $\exists A \in \mathbb{C} : \mathcal{G} \subset A^{\perp} \cup \{A\}$.

Proof. This theorem is a consequence of (1.1), (1.2), (3.1), (3.2) and (3.3). We have only in (2) to show that W is a web since then the symmetry is equivalent to the property that each Bol configuration closes. Let $x \in \mathcal{P}$ be given, $x_1 := [x]_2 \cap [0]_1$, $x_2 := [x]_1 \cap [x_1]_3$, $x_3 := [0]_1 \cap [x_2]_2$. Then since \mathcal{G} is symmetric, $X := [x_1]_3([x_3]_3) \in \mathcal{G}$ and since $[x_1]_3(x_3) = x$, we have $x \in X$. Suppose there is a further $U \in \mathcal{G}$ with $x \in U$, then $x_3 = [x_1]_3(x) \in [x_1]_3(U) \in \mathcal{G}$ with $x_3 \in [0]_1$, hence $[x_1]_3(U) = [x_3]_3$ by $\mathbb{N}1'$ and so U = X.

Remark. Let $(E, \circ; 0)$ be a reflection structure, $(E, +) := (E, \circ; 0)^+$, $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G}_2) := (E, \circ; 0)^c$ and $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{H}) := (E, +)^c$, then $(0^\circ)_1(\mathcal{G}) = \mathcal{H}$ (cf. (2.8)).

5 Web configurations related to properties of K-loops

Here let $W = (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2; \mathcal{G})$ be a web and for $x \in \mathcal{P}$ let $[x]_3 \in \mathcal{G}$ with $x \in [x]_3$. We remark that the closing of web configurations characterizing certain classes of webs can be expressed elegantly by using reflections in elements of \mathcal{G} . The condition **RE** If $a \in \mathcal{P}$, $b_i \in [a]_i$, $c_{ij} := [b_i]_j \cap [b_j]_i$ for $i, j \in \{1, 2, 3\}$ with $i \neq j$, then $[c_{12}]_3 \cap [c_{23}]_1 \cap [c_{31}]_2 \neq \emptyset$

which characterizes the Reidemeister webs can be written in the form:

RE' If $A, B, C, D \in \mathcal{G}$ with $Fix(\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{D}|_{\mathcal{G}_1}) \neq \emptyset$, then $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{D}|_{\mathcal{G}_1} = id_{\mathcal{G}_1}$.

Proof. Let $X \in \mathcal{G}_1$, $a := A \cap X$, $b_1 := D \cap X$, $b_2 := [a]_2 \cap B$ and $c_{12} := [b_1]_2 \cap [b_2]_1$. Then $\widetilde{D}(X) = \widetilde{D}([a]_1) = [b_1]_2$, $\widetilde{B} \circ \widetilde{A}(X) = \widetilde{B}([a]_2) = [b_2]_1$ and we have: $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{D}(X) = X \iff \widetilde{C} \circ \widetilde{D}(X) = \widetilde{C}([b_1]_2) = \widetilde{B} \circ \widetilde{A}(X) = [b_2]_1 \iff c_{12} \in C \iff C = [c_{12}]_3$.

We assume $[c_{12}]_3 = C$. Let $Y \in \mathcal{G}_1$, $b_3 := Y \cap A = Y \cap [a]_3$, $c_{13} := [b_1]_3 \cap [b_3]_1 = D \cap Y$ and $c_{23} := [b_2]_3 \cap [b_3]_2 = B \cap [b_3]_2$. Then $\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{D}(Y) = Y \iff \widetilde{C} \circ \widetilde{D}(Y) = \widetilde{C}([c_{13}]_2) = \widetilde{B} \circ \widetilde{A}(Y) = \widetilde{B}([b_3]_2) = [c_{23}]_1 \iff [c_{12}]_3 \cap [c_{23}]_1 \cap [c_{13}]_2 \neq \emptyset$. This shows the equivalence of **RE** and **RE**'.

FIGURE 1.

If we add in **RE**, respectively in **RE**' the assumption $c_{12} \in [a]_3$, respectively B = D then we obtain the conditions **BO**, respectively **BO**' characterizing the *Bol webs* which are equivalent to (cf. [15], (1.2), [2]):

BO" & is symmetric.

The stronger assumption $c_{12} = b_3$ in **RE** leads to the condition **HEX** describing the *hexagonal webs*, a condition which is equivalent to

 $\mathbf{HEX'} \text{ If } X \in \mathrm{Fix}\big(\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{B}|_{\mathcal{G}_1}\big), \text{ then } \widetilde{B} \circ \widetilde{C}(X) \in \mathrm{Fix}\big(\widetilde{A} \circ \widetilde{B} \circ \widetilde{C} \circ \widetilde{B}|_{\mathcal{G}_1}\big).$

If $p \in \mathcal{P}$ is fixed and **HEX** is valid for $c_{12} = b_3 = p$, then we denote this condition by **HEX**(**p**) and call *W* hexagonal with respect to p. **HEX**(**p**) can be expressed by:

$$\begin{split} \mathbf{HEX}(\mathbf{p})' & \text{ If } [p]_1 \in \text{Fix} \big(\widetilde{A} \circ [\widetilde{p}]_3 \circ \widetilde{C} \circ [\widetilde{p}]_3 |_{g_1} \big), \text{ then } [\widetilde{p}]_3 \circ \widetilde{C} ([p]_1) \in \text{Fix} \big(\widetilde{A} \circ [\widetilde{p}]_3 \circ \widetilde{C} \circ [\widetilde{p}]_3 |_{g_1} \big). \end{split}$$

- **(5.1)** Let $0 \in \mathcal{P}$ be fixed, let $E := [0]_3$ and let $(E, +) := \mathbb{W}^{0+}$ be the derived loop and let $N := C(v) = \{x \square (-x) \mid x \in E\} \in \mathbb{C}$. For each $a \in E$ let $a^+ : E \to E$; $x \mapsto a + x$, -a, respectively $\sim a$ be defined by a + (-a) = 0, respectively $\sim a + a = 0$. For $x \in E$ let x be identified with $[x]_1$ and let $\overline{x} := [0 \square x]_3$ and $\widetilde{x} := \widetilde{x}$. Moreover let $a, b \in E$, c := a + b and d := b + a. Then:
 - (1) $\forall x \in E: -x = \sim x \iff \mathbf{HEX(0)} \iff E \in N^{\perp} \cup \{N\} \iff \overline{\nu} = \widetilde{E} \circ \widetilde{N};$
 - (2) $\delta_{a,a} = \mathrm{id} \iff (a+a)^+ = a^+ \circ a^+ \iff \widetilde{a}(E) \in \mathcal{G};$
 - (3) $\forall x \in E: \delta_{x,-x} = x^+ \circ (-x)^+ = id \iff \widetilde{E} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G});$
 - (4) $\mathbf{BO''} \Rightarrow \widetilde{E} \in \mathrm{Aut}(\mathcal{P}, \mathcal{G}) \Rightarrow \mathbf{HEX}(\mathbf{0});$
 - (5) $\delta_{a,b} = \widetilde{c} \circ \widetilde{a} \circ \widetilde{E} \circ \widetilde{b}|_{\mathcal{G}_1};$
 - $(6) \ \delta_{a,b+a} = (\delta_{b,a})^{-1} \iff a^+ \circ b^+ \circ a^+ = (a + (b+a))^+ \iff \widetilde{a} \circ \widetilde{E}(\overline{b}) \in \mathcal{G};$
 - (7) $\delta_{a,b} = (\delta_{b,a})^{-1} \iff \widetilde{b} \circ \widetilde{E} \circ \widetilde{a} \circ \widetilde{c} \circ \widetilde{a} \circ \widetilde{E} \circ \widetilde{b} \circ \widetilde{d}|_{g_1} = \mathrm{id}_{g_1};$
 - $(8) \ \delta_{a,b} = \delta_{a,b+a} \iff \widetilde{c} \circ \widetilde{a} \circ \widetilde{E} \circ \widetilde{b} \circ \widetilde{d} \circ \widetilde{E} \circ \widetilde{a} \circ \widetilde{d}|_{g_1} = \mathrm{id}_{g_1};$
 - (9) $\delta_{a,b} \in \operatorname{Aut}(E,+) \iff \forall X \in \mathcal{G}, \exists X' \in \mathcal{G}: \widetilde{X'} \circ \widetilde{E} \circ \widetilde{c} \circ \widetilde{a} \circ \widetilde{E} \circ \widetilde{b} \circ \widetilde{E} \circ \widetilde{X} \circ \widetilde{b} \circ \widetilde{E} \circ \widetilde{a} \circ \widetilde{c}|_{\mathcal{G}_1} = \operatorname{id}_{\mathcal{G}_1}.$

6 Point-reflections related to a web and the negative map of the corresponding loop

In this section let $W = (\mathcal{P}, \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3)$ be a web, then $(\mathcal{P}, \mathcal{G}_1, \mathcal{G}_3)$, respectively $(\mathcal{P}, \mathcal{G}_2, \mathcal{G}_3)$ is a net and \mathcal{G}_2 , respectively \mathcal{G}_1 can be considered as a chain-set. Therefore for $A \in \mathcal{G}_2$, respectively $A \in \mathcal{G}_1$ we define (according to (2.3)) the map $\widetilde{A}: \mathcal{P} \to \mathcal{P}; x \mapsto [[x]_i \cap A]_j \cap [[x]_j \cap A]_i$ with $\{i, j\} = \{1, 3\}$, respectively $\{i, j\} \in \{2, 3\}$.

We call a pair $(0, \sigma) \in \mathcal{P} \times S_3$ (S_3 denotes the symmetric group of three elements) a *frame of reference* and the bijection

$$\mathcal{P} \to [0]_{\sigma(3)} \times [0]_{\sigma(3)}; \quad x \mapsto \big([x]_{\sigma(1)} \cap [0]_{\sigma(3)}, [x]_{\sigma(2)} \cap [0]_{\sigma(3)} \big)$$

the corresponding *coordinatization function*. In order to simplify our considerations we discuss only the case $\sigma = \operatorname{id}$ and $E := [0]_3$. Then $\mathcal{P} = E \square E = \{x \square y \mid x, y \in E\}$ and x, y are the coordinates of the point $x \square y$.

For each $q \in \mathcal{P}$ and for each $\sigma \in S_3$ we define now a permutation of the line $[q]_{\sigma(3)}$ fixing the point q by

$$q_{\sigma} \colon [q]_{\sigma(3)} \to [q]_{\sigma(3)}; \quad x \mapsto \left[[[x]_{\sigma(2)} \cap [q]_{\sigma(1)}]_{\sigma(3)} \cap [q]_{\sigma(2)} \right]_{\sigma(1)} \cap [q]_{\sigma(3)}$$

which we will call a *turn* of $[q]_{\sigma(3)}$ about q.

Remark. W is hexagonal with respect to q if and only if $q_{\sigma} \circ q_{\sigma} = id$.

Now we extend the turn q_{σ} to a permutation of \mathcal{P} via (2.8). In order to answer the question whether $\overline{q_{\sigma}} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_{\sigma(3)})$ we need the following *bend-configuration* with respect to a point $q \in \mathcal{P}$ and a permutation $\sigma \in S_3$:

BE $(q; \sigma)$ Let $\sigma \in S_3$, $\tau_i \in S_3 \setminus A_3$ with $\tau_i(1) = i$ (hence $\tau_1 = (23)$, $\tau_2 = (12)$, $\tau_3 = (13)$),

and let

$$\tau_{\sigma(i)q}(p) := \left[[[p]_{\sigma(i)} \cap [q]_{\sigma \circ \tau_i(2)}]_{\sigma \circ \tau_i(3)} \cap [q]_{\sigma(i)} \right]_{\sigma \circ \tau_i(2)} \cap [q]_{\sigma \circ \tau_i(3)}.$$

We say that the bend-configuration closes if for all $p \in \mathcal{P}$:

$$\bigcap_{i \in \{1,2,3\}} \left[\tau_{\sigma(i)q}(p) \right]_i \neq \emptyset.$$

FIGURE 2. **BE**(0; id)

- **(6.1) (Characterization Theorem)** For $q \in \mathcal{P}$ and $\sigma \in S_3$ the following statements are equivalent:
 - (1) $\overline{q_{\sigma}} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_{\sigma(3)});$
 - (2) The bend-configuration $\mathbf{BE}(q; \sigma)$ with respect to q and σ closes.

Proof. We may assume $\sigma = \operatorname{id}$, q = 0, $E = [0]_3$. We set $\tau_i := \tau_{i0}$ $(i \in \{1, 2, 3\})$. Let $A \in \mathcal{G}_3$, $a \in E$ such that $a \square 0 \in A$ and $A' := [\overline{0_{id}}(a \square 0)]_3 = [0_{id}(a) \square 0]_3$. For all $p := x_1 \square x_2$ with $x_1, x_2 \in E$, we have by definition $\overline{0_{id}}(p) = [\tau_1(p)]_1 \cap [\tau_2(p)]_2$ and $p \in A \iff \tau_3(p) \in A'$. Then $\overline{0_{id}}(A) \in \mathcal{G}_3 \iff \overline{0_{id}}(A) = A' \iff \forall p = x_1 \square x_2 \in A$: $[\tau_1(p)]_1 \cap [\tau_2(p)]_2 \in A' := [\tau_3(p)]_3$.

- **(6.2)** Let $q \in \mathcal{P}$, $\sigma \in S_3$, $\omega \in A_3$, $\tau \in S_3 \setminus A_3$, then we have:
 - (1) If $\tau \circ \sigma(1) = \sigma(2)$, then $q_{\sigma} \circ q_{\tau \circ \sigma} = \mathrm{id}_{[q]_{\sigma(3)}}$ and $\overline{q_{\sigma}} \circ \overline{q_{\tau \circ \sigma}} = \mathrm{id}$;

- (2) If $\overline{q_{\sigma}} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_{\sigma(3)})$, then $\overline{q_{\omega \circ \sigma}} = \overline{q_{\sigma}}$ and $\overline{q_{\tau \circ \sigma}} = \overline{q_{\sigma}}^{-1}$ (i.e. if the bend-configuration with respect to q closes for one permutation $\sigma_0 \in S_3$ then it closes for all permutations $\sigma \in S_3$);
- (3) If $\overline{q_{\sigma}} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_{\sigma(3)})$ and $q_{\sigma} \circ q_{\sigma} = \operatorname{id}$, then $\overline{q_{\sigma}} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_{\sigma(1)}, \mathcal{G}_{\sigma(2)}, \mathcal{G}_{\sigma(3)}) \cap J$. In this case we call $\overline{q_{\sigma}}$ the point-reflection in q related to the web.

Proof.

(1): Without loss of generality we may assume q=0 and $\sigma=\mathrm{id}$. One verifies by the definition of turn that for each $x\in[0]_3$: $0_{\mathrm{id}}\circ 0_{(12)}(x)=x$ and this implies $\overline{0_{id}}\circ\overline{0_{(12)}}=\mathrm{id}$.

(2): We may assume $\omega = (123)$. Then Fig.2 shows that $\overline{0_{id}} = \overline{0_{(123)}}$ is equivalent to the fact that the bend-configuration with respect to 0 and $\sigma = \text{id closes}$. Therefore by (6.1) and (1) the statements of (2) are valid.

Now let $0 \in \mathcal{P}$ be fixed, $E := [0]_3$, $(E, +) := W^{0+}$ and $N := C(v) = \{x \square (-x) \mid x \in E\}$ (cf. (4.2)). Then $N \in \mathcal{C}$ by $v \in \operatorname{Sym} E$ and we can state:

- (6.3) The following statements (1), (2), (3) are equivalent:
 - (1) $\nu \in \operatorname{Aut}(E, +)$;
 - (2) The bend-configuration **BE**(0; id) with respect to 0 and $\sigma = id$ closes;
 - (3) $\overline{\nu} = \overline{0_{id}} \in Aut(\mathcal{P}, \mathcal{G}_3).$

Under the assumption $\widetilde{E} \in Aut(\mathcal{P}, \mathcal{G}_3)$ also (1), (2), (3) and (4) are equivalent:

(4) $g_3 \subset N^{\perp} \cup \{N\}.$

Proof.

"(1) \iff (2)": The map $E \times E \to \mathcal{P}$, $(a, b) \mapsto p := b \square (a + b)$ is a bijection and we have $\tau_1(p) = (-b)\square 0 = \nu(b)\square 0$, $\tau_2(p) = -(a + b) = \nu(a + b)$, $\tau_3(p) = -(a + b)$

 $0\Box(-a) = 0\Box\nu(a). \ \nu(a) + \nu(b) = [\overline{\nu(a)} \cap [\nu(b)]_1]_2 \cap E = [[\tau_3(p)]_3 \cap [\tau_1(p)]_1]_2 \cap E \text{ hence } \nu(a) + \nu(b) = \nu(a+b) \iff [\tau_2(p)]_2 \ni [\tau_3(p)]_3 \cap [\tau_1(p)]_1.$ $(2) \iff (3)\text{": cf. } (6.1).$

FIGURE 4.

Now let $\widetilde{E} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_3)$. Then $\overline{v} = \widetilde{E} \circ \widetilde{N}$ by (5.1, (4)) and (5.1, (1)), and so: $\overline{v} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_3) \iff \widetilde{N} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_3)$. Clearly (4) $\Rightarrow \widetilde{N} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_3)$. Now let $\widetilde{N} \in \operatorname{Aut}(\mathcal{P}, \mathcal{G}_3)$ and $X = \overline{x} \in \mathcal{G}_3$. Then $0 \square x$, $(-x) \square 0 \in X$, hence $\widetilde{N}(0 \square x) = \widetilde{E} \circ \overline{v}(0 \square x) = \widetilde{E}(0 \square (-x)) = (-x) \square 0 \in \widetilde{N}(X) \in \mathcal{G}_3$ and so $X = [(-x) \square 0]_3 = \widetilde{N}(X)$, i.e. $\mathcal{G}_3 \subset N^{\perp} \cup \{N\}$.

Remark. Theorem (4.6) of [2] proves that the loop corresponding to a 3-web satisfying the Bol condition, such that the bend-configuration closes, satisfies the automorphic inverse property. Theorem (6.3) proves the equivalence between the automorphic inverse property in a loop (not necessary a Bol loop) corresponding to a 3-web and the closure of the bend-configuration.

From (4.2, (3)) and (6.3) we obtain the result:

Theorem 6.4. (E, +) is a K-loop if and only if \mathcal{G}_3 is symmetric and the bend-configuration **BE**(0; id) with respect to 0 and $\sigma = \text{id closes}$.

References

- [1] W. BLASCHKE and G. BOL, Geometrie der Gewebe. Springer 1938.
- [2] M. FUNK and P. T. NAGY, On collineation groups generated by Bol reflections. J. Geometry 48 (1993), 63–78.
- [3] E. GABRIELI and H. KARZEL, Point-reflection geometries, geometric K-loops and unitary geometries. *Results Math.* **32** (1997), 66–72.
- [4] _____, Reflection geometries over loops. Results Math. 32 (1997), 61–65.

- [5] B. IM and H. KARZEL, Determination of the automorphism group of a hyperbolic *K*-loop. *J. Geometry* **49** (1994), 96–105.
- [6] H. KARZEL, Symmetrische Permutationsmengen. Aequat. Math. 17 (1978), 83-90.
- [7] ______, Recent developments on absolute geometries and algebraization by *K*-loops. *To appear in Discrete Math.* (1999).
- [8] H. KARZEL and A. KONRAD, Reflection groups and K-loops. J. Geometry 52 (1995), 120–129.
- [9] H. KARZEL and H.-J. KROLL, Perspectivities in circle geometries. Geometry von Staudt's point of view. Ed. by P. Plaumann and K. Strambach. Dordrecht-Boston-London, 1981, 51–99.
- [10] _____, Geschichte der Geometrie seit Hilbert. Wiss. Buchgesellschaft 1988.
- [11] H. KARZEL and H. WEFELSCHEID, A geometric construction of the *K*-loop of a hyperbolic space. *Geom. Dedicata* **58** (1995), 227–236.
- [12] G. Kist, Theorie der verallgemeinerten kinematischen Raüme. Beiträge zur Geometrie und Algebra 14 (1986), TUM-M 8611, 1–142.
- [13] A. KREUZER, Inner mappings of Bol loops. *Math. Proc. Camb. Phil. Soc.* 123 (1998), 53-57.
- [14] A. KREUZER and H. WEFELSCHEID, On K-loops of finite order. Results Math. 25 (1994), 79–102.
- [15] H. KÜHLBRANDT, Automorphismen von 2-Strukturen. Beiträge zur Geometrie und Algebra 5 (1979), TUM-M 7910, 49-65.
- [16] _____, Über ein Problem von H. Karzel. Beiträge zur Geometrie und Algebra 6 (1980), TUM-M 8010, 17-21.
- [17] P. T. NAGY and K. STRAMBACH, Loops as invariant sections in groups, and their geometry. Can. J. Math. 46(5) (1994),1027–1056.
- [18] K. REIDEMEISTER, Topologische Fragen der Differentialgeometrie V, Gewebe und Gruppen. *Math. Z.* **29** (1929), 427–435.
- [19] G. THOMSEN, Topologische Fragen der Differentialgeometrie XII, Schnittpunktsätze in ebenen Geweben. Abh. Math. Sem. Univ. Hamburg 7 (1930), 99–106.
- [20] A. A. UNGAR, Weakly associative groups. Results Math. 17 (1990) 149–168.
- [21] ______, Group-like structure underlying the unit ball in real inner product spaces. Results Math. 18 (1990) 355–364.

Eingegangen am: 12. Mai 1998 in revidierter Fassung am: 29. April 1999

Author's addresses: Elisabetta Gabrieli, Mathematisches Seminar der Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany.

E-Mail: gabrieli@math.uni-hamburg.de.

Bokhee Im, Department of Mathematics, Chonnam National University, Kwangju 500-757, Rep. of Korea.

E-Mail: bim@chonnam.chonnam.ac.kr.

Helmut Karzel, Mathematisches Institut, Technische Universität München, D-80290 München, Germany.

E-Mail: karzel@mathematik.tu-muenchen.de.