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Webs Related to K-Loops and Reflection Structures

By E. GABRIELI, B. IM, and H. KARZEL

Abstract. We give a characterization of webs (£, §1, %2, ) which are related
to A;-loops, weak K -loops, K-loops and reflection structures. We also obtain a
geometric proof of KREUZER’S result that the concept of K -loop is equivalent to
that of Bruck loop.

1 Introduction

By the works of G. BOL and W. BLASCHKE [1], K. REIDEMEISTER [18] and
G. THOMSEN [19] we know that there is a correspondence between loops and webs
(cf. Theorem 4.1). In the last years the so called K-loops gained particular interest
(cf. [3,4,5,7,8, 11, 13, 14, 20, 21]). The notion of a K-loop (E, +) is defined
among the loops as follows.

Fora,b e E,letat: E > E;x > a+x,8,5 = ((a +b)+)_l oat ob™, let
—a € E bedefinedbya + (—a) =0andletv: E - E; x — —x be the negative
map. The loop (E, +) is called an A;-loop if for all a, b € E the permutation J;, 5
is an automorphism of the loop (E, +), i.e. 8,5 € Aut(E, +), a weak K-loop if
moreover 8, —, = id and a K-loop if furthermore v € Aut(E, +) (automorphic
inverse property) and 8, p = 84,544 foralla, b € E.

Recently it has been proved in [13] by A. KREUZER that the concept of a K-loop
is equivalent to that of a Bruck loop. A Bruck loop (E, +) is a Bol loop, i.e. a loop
satisfying the Bol identity

a+ob+oa+=(a+(b+a))+, Ya,be E,

which, moreover, satisfies the automorphic inverse property (cf. [13]).

K -loops are closely related to invariant reflection structures. A triple (2,°; 0)
consisting of a non-empty set &, a fixed element 0 € # andamap°: P — J :=
{o € SymP | 0% =id}; x — x° such that:

BlVae ®: a°(0) =a

is called a reflection structure and an invariant reflection structure if moreover
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B2 Va,be #: a°ob®0a’® = (a° ob"(a))o
is satisfied. By [4] we have

(1.1) Let (P, +) be aright loop, (i.e. forall a, b € P the equation a + x = b has
a unique solution x € P and there isa0 € P witha+0 =0+ a = a.) and for
a€ P leta® :=at ov. Then:

(1) If (P, +) has the property
Va,be P: a—(a—b)=b, (*)

then (P.°; 0) is a reflection structure;
(i) If (P, +) is a K-loop, then (P.,°; 0) is an invariant reflection structure.

By [7] the converse is also true

(1.2) Let (2.°; 0) be a reflection structure and fora, b € P letat := a° o0 0° and
a+b=atb). Then:

(1) (P, +) is a right loop with (x);
(i) If (2,°; 0) is invariant, then (P, +) is a K-loop.

Remark. In [7] the following statements of Theorem 6.1 were proved completely
(cf. [7], (6.1)(3) and (4)) :

1) 0°0P°00° =P° < vecAut(P, +);
(ii) (£,°;0) is invariant = (P, +) is a weak K-loop with v € Aut(P, +).

In order to show (ii) in (1.2) we have still to prove the property:
Ya,be P: 8. =babta- ¢}

This can be done in the following way by modifying the proof of [8], (3.3):

Proof. Leta,b e P,¢c :=a+b =a°00°(b),d := b+aand e := a+(b+a) = a+d.
Then

¢c®°0a®00°0b°(0) =c°(c) =0, 2)
d=d°(0)=b°00°0a’0) (3)
and

e=e(0) = a°00°0d°(0) 2 a°00° 0 b° 0 0° 0 a°(0).

By B1 and B2 this equation implies
e =a°00°0b°00°0a°. 4)
1 1 (o] O o] o] o] a] (e] (2) o te] o (3) T
Again, since b° 0 0° 0a® o0c®0a®00°0b°(0) = b°00° 0a®(0) = d we obtain by
B1 and B2:

d°=b°00°0a°0c’0a’o00°0b°. (5)
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Now
8a.bta = (eH oatodt =0°0e°0a®00°0d°o0°
@ 0°0(@° 00°0b°00°0a®)o0a’o00°0(h°00°0a’oc®0a®c00°0h®)ol°
=0°0c°0a°00°0b°00° =(ct) ' oaTobt =84.p-
O

The purpose of this paper is to characterize the structure of webs corresponding
to Aj-loops, weak K -loops, K -loops and reflection structures. Our main results are
stated in (3.2), (3.3), (4.2), (5.1), (6.4): By the proofs of (1.3), (3.2), (3.3) and (4.2)
we have a purely geometric proof of Kreuzer’s result ([13]) that Bruck loops and
K -loops are the same. The most important step in the proof is that the Bol identity
and the automorphic inverse property imply that the loop is an A;-loop. A geometric
proof of this result is also contained in [2].

2 Basic concepts concerning nets and chain-nets related to K-loops

Let & be a non-empty set and let G| and G; be subsets of the power set of P;
the elements of P, respectively of §; and G, will be called points, respectively
generators. The triple (P, &1, $2) is called a net, if foreach X € §1U §a, |X| = 2
and if the following two conditions are valid:

N1 For each point x € #, foreach i € {1, 2} there is exactly one generator G € §,
with x € G; such generator will be denoted by [x];.

N2 Any two generators X| and X, of distinct classes §| and % intersect in exactly
one point.

Let J := {o € Sym P | o =id} and J* := J \ {id} (= set of all involutions).
We denote by I" := Aut(P, 1 U $») the group of all permutations x of & with the
property:

VXeG1 UG x(X)e g1 UG
Clearly, for each x € Aut(P, §1 U §7) and for each x € # we have either

(M x(x1) = [x () and x([x]2) = [x(x)]2 or

(@) x(xh) =[xz and x ([x]2) = [x (O]
Let Tt := Aut(P, 41, §2), respectively '™ be the set of all automorphisms of type
(1), respectively (2). If '™ # ¢ then I'" is a normal subgroup of I' of index 2.

For the point set # of our net (£, §1, §2) we introduce the following binary
operation:

O: PxP —>P; (x,y) = xOy :=[x]1 N[yl2
A subset S C P iscalled a subnetif Vx,y e S : xly € S.

(2.1) If N denotes the set of all subnets, then N is N-closed and for the associated
closure operation xU.=n {NeN | XCN}forX CP wehave:

xU = xOx = {xOy | x,y e X}.
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Proof. Letx,y,x’,y € X, then (xOy)O(x'0y") = x0Oy'. O
(2.2) TF = Aut(P, ) and '™ is the set of all antiautomorphisms of (, 0).

Proof. Letx,y € P,a € ' and B € T'", then a(x0y) = a([x}; N [yr) =
()] N [a(M] = ex)0a(y) and B(xUy) = B(xli N [y) = [Bx)]2 N
[BO)h = B(y)DOB(x). Now let @ € Aut(#, ) and let B be an antiautomorphism
of (#,0). Then [x]; = xOP, [x]» = £0x and so «([x];) = a(x)Ta(P) =
a()UP = [a®)]i, a([x]2) = PlUalx) = [a(x)]2, Bx]) = POBK) =
[B()]2, BIx]2) = B()UP = [B(x)]. O

A subset C C 2 is called a chain of the net (P, §1, §2) if the following condi-
tion holds:

N3VXeg UGy: [XNC|=1;

Let C be the set of all chains of (P, §1,G2). If € # 0 and C € @G, then
VX € 61U G

ICl =1XI=1§11 =192| and |P|= 41
(2.3) Foreach C € C let

C:2— 2 x> [xhincl,n[ixl.nc],
and let C := {C’ | C € C}, then we have:

(1) €I~ and €* C T, B
(2)CoC idandFixC =C, ie, ~: C—I; X — X is an injection.

24) Leta eI . Ifa € J* then Fixa € C; if Fixa € G, then Fixa = a.

Proof. Let X € §1 U §, for instance X € §;. Then ¢(X) € 5, since e € I'” and
therefore ¢ := X Na(X) is a point. If ¢ € J* then a(c) = ¢ and c is the only fixed
point of o contained in X. Hence Fixa € €. Now let C := Fixax € G, ;x € P
and x; := [x]; NC (i € {1,2}). Then x = x;0xy, a(x;}) = x; and since @ € '™,

a(x) = a(xyOx2) = a(x)0a(x)) = x20x = G(x) by (2.2). O
2.5) VYA, B, C e C we have:
(1) A(B) € &;

(2) ABBy=AoBoA:

(3) Fix(Ao B) = (Ams)D

4 AoBoCel*® AoBoCeC;
(5) Alg, = Blg, <= A=B5.

Proof. (1):1f X € §1U §o, then [A(B) N X| = |A (BﬁA(X) | = IBNAX)| =1
since A oA zd thus A(B) €C. _
(2): FromA, Band Ao B o A eIl ,Fix(AoBoA) = (le(B)) A(B), we

obtain by (2.4) . A 3 BoA= A(B)

3): Letw := AoB andletx,y € ANB,thena € T't by (2.3,(1)). x, y € Fixa by
(2.3, (2)) and so by (2.2) a(x0y) = a(x)UJa(y) = xOy, i.e. by (2.1), (AN B)D
(AN B)O(AN B) C Fixa. Now let x € Fixe then A(x) = [[x1i N A]2 N[lxl2 N
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A], = B(x) = [[x]; N B], N [[x]2 N B],. Therefore [[x]; N A], = [[x]) N B],
and [[x]o N A], = [[x]2 N B],. This implies a := [x]; N[[x]y N Als = [x]; N A =
xiNBe ANBandb:=[x>rNA=[xpbNB e ANB,andso x = allb, i.e.
Fixa € (AN B)U.

(4): =" Leta := AoBoC € J* By (23, (1)) « € T and so by (2.4)
o = Fixa € C. O

Two chains A, B € C are called orthogonal and denoted by A L B,if A # B
and A(B) = B. This relation is symmetrlc since A(B) = B implies by (2 5, (2))
B=AB)=AoBoA hence A=BoAoB = B(A)andso A = B(A)by
(2.3, 2)).

Let AL := {X € € | X L A}. Now we are going to consider subsets § of the
set C of chains satisfying certain conditions. 4 C C is called transitive, respectively
regular if

TVA,Be4:3Ce4: 5(A) = B, respectively

T VA,Be$:3Ced:C(A)=

symmetric if

S VA,Be$: A(B) € 8.

The quadruple (P, G1, $2, 8) is called a web if § satisfies the following condition
N1’ Vx € P3;[x]3 € 8 with x € [x]5.

Theorem 2.6. Let £ C C be a symmetric and regular set of chains and let O € L
be fixed. For each A € L let A’ € £ such that A’(O) = A (¢f T) and for all
A,Be Llet A® B := Ao O(B) Then (L, ®) is a K-loop.

Proof. By (2.3,(2))and (2.5, (1)) foreach A € £, A induces an involutory permuta-
tion on the set C, and since £ is symmetric, we have A (L) = L. Therefore we can
consider £ := {ZL,C: L € L} asasubsetof J} ;= {o € Sym £ | o2 =id # o}.
Since £ is regular, the map °: £ — J7: X > X° := )?/L,c is an injection, i.e.
(L£,°;0) is a reflection structure. Since £ is symmetric, (£,°; 0) is invariant by
(2.5, (2)). Therefore, our Theorem 2.6 is a consequence of (1.2). O

Finally, we consider a correspondence between chain—nets and permutation
groups (cf. [10], 15.1). We assume C # # and fix an element E € €. For each
CeClet

C:E—>E; xr— [khiNnC],NE

then C is a permutation of E, and if y € Sym E, the set C(y) := {xOy(x) | x €
E} is a chain.

(2.7) Let J(E) := {0 € SymE | o? =id}, J*(E) = J(E) \ {id}, y € SymE,
a€ E b:=y(a)and C .= C(y), then:

(1) aObeCandy(b) =a < bla € C;

2) yeJ(E) & C LEorC=E;

(3) Ify € J(E) then y = C|g;
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(4) Yo, B e SymE: C(ar) L C(B) <= a ' op e JXE).
(2.8) (Extension Theorem) Foro € SymE let
| #=E0E — & N — P
ot xOy — o(x)dy ° xOy +— xOo(y)
andd = oy ooy andlet S := C(0). Then
(1) Yy € SymE: 01(C(y)) = C(y o07!), 02(C(y)) = Clo 0 ¥), 7(C(y)) =
Clooy oo™ Y, ie, 01, 00, T € Aut(P, 91, %2, C, 1),
(2) Yo, T € SymE: (o or)JJ =0107], gg 0T)) =020T7),0 0T =00T,
(3) Ifo € J(E), thend = SoE =E o S;
) IfS LEorS=E,then(S|g)=So L
(5) Let A,B,C,D € E+, then Ao Bo C &= Al|goBlgoC|g = D|g.
Proof. (1): al(C(y)) =o((xdy(x) | x € E) ={ox)dy oo ool | x €

E}=C(y oo~ and 0y (C(a)) = Cl@oo™!) L oy(C(B)) = C(Boo~) %L

voalofoo! € JHE) « a0 e *E) Y c@) Lcp).

~

E:NEOS:;

3): By 27,03),0 = S| hence 7(x0y) = o(x)do(y) = S)OS() 23,0
S(yOx) = So E(xy),ie.0 =ScE.
(4): is a consequence of (3) and (2.7, (3)) and (5) follows from (4). a

3 Chain nets associated with reflection structures

In this section, let (£,°; 0) be a reflection structure and (# := E X E, %1, $2, C)
(with §; := {{x} x E | x € E}und §, := {E x {x} | x € E}) the chain net
corresponding to the symmetric group Sym E with the identifications x = (x, x) =
xOx forx € E,hence 0 = (0,0) and E = {(x,x) | x € E}.

Since E° := {a° | a € E} C J(E) and a®°(0) = a by (B1), we have a®° € J*(E)
if a # 0. For 0 € E we have the two cases, 0° € J*(E) and 0° = id.
From (2.7, (3)), (2.8, (3)) we obtain:

(3.1) Fora € E leta® := C(a°) = {xOa°(x) | x € E} € C be the graph of the
map a° and @ := a the reflection in the chain a®. Then
(D@ =a°0E =FEoa’a =0ls a* € E*U{E}anddoboT = E
a°o0b°0c® = a°ob’oc® o E, in particular a(b°) = dobod = E
a°ob®0a® and a(b¢) = C(a® o b° 0a®) C EL+ U{E}, hence a(b°) € E° :
{a° | a e E} < a°ob°0a® € E°
(2) If0° # id, then E¢ C E* and E°(0°) := {a°(0°) l ac E}=E70°):
{@(0) |ac E}={C(@°00°0a®) |ac E}CE
(3) If0° = id, then E = 0 € E¢ C EL U{E}, 0=E and E°(0°) = E™(0°)
{E};
4) Vx e [0 U[0], 31a° € ES: x €a;
5y UE“ =% < E° acts nansitively on E;
6) (P,81,%2, ES) isaweb <= E° acts regularly on E;
(7) E°(0°) C E¢ <> YacE:a°00°0a° € E° = E C |JE;
(8) a° 0 E°0a° = E° < d € Aut(P, §1U $2, E°);

I o o
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9) (E,?;0)isinvariant < E° is symmetric;
(10) If (E,°;0) is invariant, then E° acts regularly on E and (P, §1, G2, ES) isa
symmetric web such that there is an F € C with E€ C FYU{F} and we have
Jor each a € E the commutative diagramm

0 LN o

<a°oo°(a))°l J'a—o
a®o0°(a) —— (a° o 0°(a))c
(11) (Immersion theorem) If (E,°;0) is invariant and if Fixa® # @ for each
a € E, then Fix a® consists of a single element a’ ¢ E and (E",D , 09 with

( C)D EC -> EC
a : . ~

x > adx)=C@®ox°0d®)
is a reflection structure isomorphic to (E,° ; 0).

If we call (E,°;0)¢ := (P := E x E, §1, G2, E°) the chain-derivation of the
reflection structure (E,°; 0) then we can state the following characterization theo-
rems:

(3.2) Let (E,°;0) be an invariant reflection structure, W := (,$1,%2;, %) =
(E,°; 0) and C the set of chains of (P, G1, $2). Then ‘W is a web, G is symmetric
and there is an E € C such that § C E+ U {E).

If (P, %1, $2; &) is a chain net such that:
(O1)3IE € C: § C EXU(E)

is satisfied, then we call (£, 41, $2; 9,)E = (E; §|E) the reflection derivation in E
and if moreover

(02)30e€ E:Vx e E F1x8€4:00x € x8

is valid, then the map
o.| E — SymE
1 x > x°:=x8

is an injection and (P, 41, $2; 9)E’0 := (E,°; 0) is a reflection structure.

3.3) Let W = (P, 1, $2; $) be aweb such that (O1) is satisfied and G is symmet-
ric. Then for each 0 € E, (E,°;0) := (£, %1, §2; g,)E’O is an invariant reflection
structure and moreover W is isomorphic to (E,°; 0)“.

4 Applications to K-loops

In this section let (P, %1, $2) be a net, € the set of all chains of (£, $1, $2) and §
a subset of C such that there is a generator Y € § satisfying the condition:

N1’ For each y € Y there is exactly one G € § with y € G; we set [y]3 := G.



96 E. Gabrieli, B. Im, and H. Karzel

Then fixing a point 0 € Y the chain E := [0]3 can be turned in a right loop (E, +)
with the neutral element 0: For all a, b € E let

at . E>E xm— [[Yﬂ[a]2]3ﬂ[x]1]2ﬂE

and a + b := at(b). Weset W := (P, 41, $2; $) and WO := (E, +) and call
this the loop derivation in the point 0. This derivation exists for each point 0 € P
where [0]; satisfies N1'. If on the other hand (E, +) is a right loop with neutral
element0,at: E - E; x> a+xfora € Eand E* := {at | a € E} then
the chain derivation (E, +)¢ := (E, ET) gives us a chain net (£, §1, $2; $) (§ :=
{C(a™) | a € E}) where [000]; satisfies N1'. Clearly ((E, +)C)O+ = (E,+)if0
denotes the point 01J0, and (WO = W if for 0 € P, [0]; satisfies N1'.
We have (cf. [9], (2.5), [10], p- 81):

@1) IfwW=1(P,%1,%2: %) is a web, then for each 0 € § P, W is a loop with
the neutral element O; if (E, +) is a loop, then (E, +)€ is a web

By (1.1) and (1.2) there is a one to one correspondence between reflection struc-
tures (E,° ; 0) and right loops (E, +) satisfying the condition (x) of (1.1): If (£,°; 0)
is given, then we set (E,°; 0) := (E, +) where a +b := a° 00°(b) and if we start
from (E, +), we set (E, +)° := (E,°;0) where a® :=atovandv: E — E;
x > —x. Here we have ((E, +)°)+ = (E,+)and ((E,°; 0)*)° = (E,°; 0).

@4.2) Let (E,+) be a right loop, W = (P,%1,%2 %) = (E,+)° and 0° :=
CW) = {xO(—=x) | x € E}. Then:

(1) The following statements are equivalent:
(i) (E,+) satisfies (%) of (1.1);
(i) § C (09t U {0°).
(2) Equivalent are:
() (E, +) is a right loop satisfying the Bol condition: Ya,b € E: a* ob™ o
a+ — (a+(b))+;
(i) (E,+) is a Bol loop;
(iii) G is symmetric;
(iv) ‘W is a Bol web.
(3) Equivalent are:
(1) (E,+) is a K-loop;
(i) § is symmetric and § C (0°)+ U {0°);
(iii) ‘W is a Bol web with the additional property: A € C: § C A+ U (A).

Proof. This theorem is a consequence of (1.1), (1.2), (3.1), (3.2) and (3.3). We
have only in (2) to show that ‘W is a web since then the symmetry is equivalent
to the property that each Bol configuration closes. Let x € £ be given, x; =
[x]z N O, x2 = [xIi N s, x3 = [0]1 N [x2]>. Then since § is symmetric,

[xl]z([x3]3) € § and since [x|]3(x3) = x, we have x € X. Suppose there is
afurther U € gwithx € U, then x3 = [x1]3(x) € [x1]3(U) € 4 with x3 € [0],
hence [x113(U) = [x3]3 by Nl and so U = X. O
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Remark. Let (E,°; 0) be a reflection structure, (E, +) := (E,°; Ot (P, 41, 2:
§) := (E,°; 0)° and (P, §1, §2; H) = (E, +)°, then (0°)1(§) = F (cf. (2.8)).

5 Web configurations related to properties of K-loops

Here let W = (P, G1,%2: $) be aweb and for x € P let [x]3 € § with x € [x]s.
We remark that the closing of web configurations characterizing certain classes of
webs can be expressed elegantly by using reflections in elements of 4. The condition
REIfa € P, b; € [a);, ¢ij = [bi]; N[bj]; fori, j € (1,2,3} withi # j, then
[c12]3 N{easli Nesi)a # 0

which characterizes the Reidemeister webs can be written in the form:

RE'If A, B, C, D € § with Fix(AoBoCoDlg,) # #, then AoBoCoDlg, = idg,.

Proof. Let X € 9,1, = A ﬂ X,b =D ﬂ~X,£2 = [qu N B and cpp =
[bi2 O [ba)1. Then B(X) = D(lal) = [bil, B o A(X) = B(lak) = [by); and
we have: AoBoCo D(X) X << CoDX)=C(bi]) = BoA(X) =
[b]i < c1peC < C =|cn2ls.

We assume [c12]3 = C. LetY € §1,b3 :=YNA = Yﬂ[a]3,c13 = [b113N[b3]| =
DﬂYandcz3 = [b2]3ﬂ[b3]2 = Bﬂ[b3]2 ThenAoBoCoD(Y) =Y «<—
CoD(Y) = C(le13l) = Bo A(Y) = B([b3)) = [esh <= [cials Nleas)i N

[c13]2 # @. This shows the equivalence of RE and RE’. O
€13 -7
b Go
b / P P /
c - ’ b €23
[al2
A @ by
B /
A X ly
FIGURE 1.

If we add in RE, respectively in RE’ the assumption ¢, € [al3, respectively
B = D then we obtain the conditions BO, respectively BO’ characterizing the Bol
webs which are equivalent to (cf. [15], (1.2), [2]):

BO” § is symmetric.

The stronger assumption c12 = b3 in RE leads to the condition HEX describing the
hexagonal webs, a condition which is equivalent to

HEX' If X € Fix(Ao B oC o Blg,), then Bo C(X) € Fix(Ao B o C o Blg,).
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If p € 2 is fixed and HEX is valid for c¢;» = b3 = p, then we denote this condition
by HEX(p) and call ‘W hexagonal with respect to p. HEX(p) can be expressed by:

HEX(p) If [p] € Fix(4 o [pl3 o C o [plslg, ), then [pl3 o C([ply) € Fix(A o
[pl3 0 Colplaly,).

(5.1) Let0 € P befixed, let E := [0)3 and let (E, +) := WOt be the derived loop
andlet N :=C() ={x0O(-x) | x e E} € C. Foreacha € Eletat : E — E;
X — a+ x, —a, respectively ~ a be defined by a + (—a) = 0, respectively
~ata= 0. For x € E let x be identified with [x]; and let x := [00x]3 and
X :=X. Moreoverleta,b € E,c:=a+bandd :=b + a. Then:

(1) Vx € E: —x =~ x <= HEX(0) < E ¢ NLU(N} < 7=EoN;

(2) bag =id < (a+a)* =a* oat < UE) ey

B)Vx €E: 8y =xto(—x)t =id & E € Au(P, §);

(4) BO" = E € Aut(?, §) = HEX(0);

(5) 84 =Codo E oblg,;

(6) dabta = (Sba) ! = atobToat =@+ +ta)t = GoED) € §:

@) aab—(aba) <=>boanocoaoEobod|9| idg, ;

(8) 8ab =84.b+ta (:}coaoEobodoanoa’lgI idg,;

O Bab EAut(E +) <<= VXe€43IX €4 X oEoCodoEoboEoXo

boanoclgl idg,.

6 Point-reflections related to a web and the negative map of the corresponding
loop

In this section let W = (P, %1, §2, $3) be a web, then (P, $1, §3), respectively
(P, $2, $3) is anet and G2, respectively G| can be considered as a chain-set. There-
fore for A € §,, respectively A € 41 we define (according to (2.3)) the map
A:P - P x = [[x]; N A]l; N [[x]; N A); with {i, j} = {1, 3}, respectively
{i, j} € {2,3}.

We call a pair (0,0) € £ x §3 (53 denotes the symmetric group of three ele-
ments) a frame of reference and the bijection

P = [0ls3) x [0la@y;  x = ([xloy N0l 3)s [Xlo2) N [0lo3))

the corresponding coordinatization function. In order to simplify our considerations
we discuss only the case 0 = id and E := [0]3. Then » = EOF = {xOy | x,y €
E} and x, y are the coordinates of the point xUy.
For each ¢ € # and for each 0 € §3 we define now a permutation of the line
[9]5(3) fixing the point g by

9o [qle3 = [9lo3); X = [[[X]o Ngle(h]o@) N [61]0(2)]0(1) Nlglo3)
which we will call a turn of [q],(3) about g.

Remark. ‘W is hexagonal with respect to ¢ if and only if ¢, o g, = id.
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Now we extend the turn ¢, to a permutation of & via (2.8). In order to answer
the question whether g5 € Aut(, §o3)) we need the following bend-configuration
with respect to a point ¢ € & and a permutation o € S3:

BE(g;0) Leto € 83, 1; € S3\ A3 with 7y (1) = § (hence 71 = (23), 1o = (12),
i3 = (13)),

and let
(g (P) = [[[Plo) N [qloor; @ ]oon3) N [‘I]a(i)]oorl.(z) NIgloor3)-

We say that the bend-configuration closes if for all p € 2:

ﬂ [to)g(P)]; # 0.

ief{l,2,3}
(0], 0]
3
p
-~ |ta(p)

T (p) / 0]
j - 0 ’
o
@—— 2(p)

FIGURE 2. BE(0; id)

(6.1) (Characterization Theorem) For g € P and o € S3 the following state-
ments are equivalent:

(1) go € Aut(ﬂ’, 90(3));
(2) The bend-configuration BE(q; o) with respect to q and o closes.

Proof. We may assume ¢ = id, g = 0, E = [0]3. We set t; := 150 (i € {1,2,3)}).
Let A € §3,a € E such that a0 € A and A’ := [0i4(a[10)]3 = [0ig(a)D0]5. For
all p := x;0xy with x|, xo € E, we have by definition Oiq(p) = [t1(p)]1 Nl (Pl
and pe A <= 13(p) € A'. Then 0i4(A) € §3 <= 0g(A) = A & Vp=
x1Ux € A: [u(p)hi Nlr(p)la € A" = [13(p)]a. O

(6.2) Letqe P, 0 € 83, we A3, T € S3\ A3, then we have:
(1) If t oo (1) = 0(2), then qo © Groo = idg), s, and G5 © Gros = id;
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) I qs € Awt(P, $03)), then Guoo = Go and Greg = G5 (ie. if the bend-
configuration with respect to q closes for one permutation oy € S3 then it
closes for all permutations o € S3);

(3) Ifgs € Aut(:?’, 9,0(3)) and g5 o g = id, then g, € Aut(ﬂ’, $o(1)s Go(2)
g0(3)) N J. In this case we call g, the point-reflection in q related to the web.

Proof.

(1): Without loss of generality we may assume ¢ = 0 and o = id. One verifies by
the definition of turn that for each x € [0]3: : 0ig 0 O12)(x) = x and this implies
0;4 0 0(12) =id.

X1

N X3

y2

I3
Xy
FIGURE 3.

(2): We may assume w = (123). Then Fig.2 shows that 0ig = 0(123) is equivalent to
the fact that the bend-configuration with respect to 0 and o = id closes. Therefore
by (6.1) and (1) the statements of (2) are valid. il

Now let 0 € P be fixed, E := [0}, (E,+) := WO and N := C(v) =
{xO(—x) | x € E} (cf. (4.2)). Then N € C by v € Sym E and we can state:

(6.3) The following statements (1), (2), (3) are equivalent:
(1) veAu(E, +);
(2) The bend-configuration BE(O; id) with respect to 0 and o = id closes;
3) v=0q€ Aut(!P, 9,3)
Under the assumption E € Aut(P, §3) also (1), (2), (3) and (4) are equivalent:
4) 83 C NLU(N}
Proof.
(1) < ()”: Themap E x E — P, (a,b) — p := blJ{(a + b) is a bijection
and we have 71(p) = (=)0 = v(H)I0, r2(p) = —(@ + b) = v(a + b), 13(p) =



Webs Related to K-Loops and Reflection Structures 101

00(—a) = 00v(a). v(@)+v(b) = [v(@)N[vB)1]2NE = [[13(p)]3N[Ty (mh],n
E hence v(a) + v(b) = v(a + b) < [n2(p)]2 3 [3(P))3 N [11(P)]1.

7(2) < (3)7: cf. (6.1).

a E
p —a
a+b
e
b Ve
e
a -
71(p) e
0 e
e
—a
3(p)
[ e
12102 )
o &
FIGURE 4.

Now let E € Aut(#, §3). Then ¥ = E o N by (5.1, (4)) and (5.1, (1)), and
so: U € Aut(P, §3) <= N e Aut(P,§3). Clearly (4) = N € Aut(P, §3).
Now let N € Aut(P, §3) and X = ¥ € $3. Then 0x, (—x)00 € X, hence
N(0Ox) = E o 5(00x) = E(OO(=x)) = (—x)0 € N(X) € g3 and so X =
[(=x)d0]3 = N(X),ie. §3 C N* U(N}. O

Remark. Theorem (4.6) of [2] proves that the loop corresponding to a 3-web sat-
istying the Bol condition, such that the bend-configuration closes, satisfies the au-
tomorphic inverse property. Theorem (6.3) proves the equivalence between the au-
tomorphic inverse property in a loop (not necessary a Bol loop) corresponding to a
3-web and the closure of the bend-configuration.

From (4.2, (3)) and (6.3) we obtain the result:

Theorem 6.4. (E, +) is a K-loop if and only if G3 is symmetric and the bend-
configuration BE(0; id) with respect to 0 and o = id closes.

References

[1] W. BLASCHKE and G. BOL, Geometrie der Gewebe. Springer 1938.

[2] M. FUNK and P. T. NAGY, On collineation groups generated by Bol reflections. J.
Geometry 48 (1993), 63-78.

{3] E. GaBRIELI and H. KARZEL, Point-reflection geometries, geometric K-loops and
unitary geometries. Results Math. 32 (1997), 66-72.

[4] , Reflection geometries over loops. Results Math. 32 (1997), 61-65.




102 E. Gabrieli, B. Im, and H. Karzel

[5] B. IM and H. KARZEL, Determination of the autornorphism group of a hyperbolic X -
loop. J. Geometry 49 (1994), 96-105.

[6] H. KARZEL, Symmetrische Permutationsmengen. Aequat. Math. 17 (1978), 83-90.

[7] , Recent developments on absolute geometries and algebraization by K -loops.
To appear in Discrete Math. (1999).

[8] H. KARZEL and A. KONRAD, Reflection groups and K-loops. J. Geometry 52 (1995),
120-129.

[9] H. KARZEL and H.-J. KROLL, Perspectivities in circle geometries. Geometry von
Staudt’s point of view. Ed. by P. Plaumann and K. Strambach. Dordrecht-Boston-
London, 1981, 51-99.

[10] , Geschichte der Geometrie seit Hilbert. Wiss. Buchgesellschaft 1988.

[11] H. KARZEL and H. WEFELSCHEID, A geometric construction of the K-loop of a hy-
perbolic space. Geom. Dedicata 58 (1995), 227-236.

[12] G. KisT, Theorie der verallgemeinerten kinematischen Raiime. Beitrdge zur Geometrie
und Algebra 14 (1986), TUM-M 8611, 1-142.

[13] A. KREUZER, Inner mappings of Bol loops. Math. Proc. Camb. Phil. Soc. 123 (1998),
53-57.

[14] A. KREUZER and H. WEFELSCHEID, On K-loops of finite order. Results Math. 25
(1994), 79-102.

[15] H. KUHLBRANDT, Automorphismen von 2-Strukturen. Beitrdge zur Geometrie und
Algebra 5 (1979), TUM-M 7910, 49-65.

, Uber ein Problem von H. Karzel. Beitrige zur Geometrie und Algebra 6
(1980), TUM-M 8010, 17-21.

[17] P. T. NAGY and K. STRAMBACH, Loops as invariant sections in groups, and their
geometry. Can. J. Math. 46(5) (1994),1027-1056.

[18] K. REIDEMEISTER, Topologische Fragen der Differentialgeometrie V, Gewebe und
Gruppen. Math. Z. 29 (1929), 427-435.

[19] G. THOMSEN, Topologische Fragen der Differentialgeometrie XII, Schnittpunktsatze
in ebenen Geweben. Abh. Math. Sem. Univ. Hamburg 7 (1930), 99-106.

[20] A. A. UNGAR, Weakly associative groups. Results Math. 17 (1990) 149-168.

[21] , Group-like structure underlying the unit ball in real inner product spaces. Re-
sults Math. 18 (1990) 355-364.

[16]

Eingegangen am: 12. Mai 1998
in revidierter Fassung am: 29. April 1999

Author’s addresses: Elisabetta Gabrieli, Mathematisches Seminar der Universitat Hamburg,
Bundesstrafie 55, D-20146 Hamburg, Germany.

E-Mail: gabrieli@math.uni-hamburg.de.

Bokhee Im, Department of Mathematics, Chonnam National University, Kwangju 500-757,
Rep. of Korea.

E-Mail: bim@chonnam. chonnam.ac.kr.

Helmut Karzel, Mathematisches Institut, Technische Universitat Miinchen, D-80290 Miin-
chen, Germany.

E-Mail: karzel@mathematik. tu-muenchen.de.



