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Vectorspacelike representation of absolute planes
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Abstract. The pointset E of an absolute plane (E, G, ¢, =) can be provided with a binary operation “4” such
that (E, 4+) becomes a loop and for each a € E \ {0} the line [a] through o and a is a commutative subgroup of
(E, +). Two elements a, b € E \ {o} are called independent if [a] N [b] = {o} and the absolute plane is called
vectorspacelike if for any two independent elements we have E = [a] + [b] ;= {x+ y | x € [al,y € [b]}. If
(E, G, o, =) is singular then (E, +) is a commutative group and (E, G, o, =) is vectorspacelike iff (E, G, o, =) is
Euclidean. If (E, G, a, =) is a hyperbolic plane then (E, G, o, =) is vectorspacelike and in the continous case if
a, b are independent, each point p has a unique representation as a quasilinear combination p = o -a+ - b where
«-a € [aland B-b € [b] are points, «, B real numbers such that X(0, »-a) = |A|- N\ (0, a) and N (0, it - b) = | |-
'N(o, b) and N is the distance function.
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1. Introduction

After fixing two points o and e the pointset E of an absolute plane (E, G, o, =) can be
furnished with a binary operation “+” such that (E, 4) becomes a K-loop with o as neutral
element. If E* := E \ {0} then for each a € E* the line [a] := 0, a through 0 and a is a
commutative subgroup of the loop (E, +) and all these groups are isomorphic. Moreover
the halfline [a]+ := oxa is a positive domain of the group ([a], +) and so by “x < y (<=
—x+y € [al+”, ([a], +, <) becomes an ordered group. Such an ordered group (W, +, <)
with W := [e] will be choosen as “scalar domain” and an operation “@® : W x E* —
E; (w, p) — w® p” between scalars and elements of E introduced such that [p] = W& p
holds.

If (a, b) € E* x E* then the pair is called independent if [a] # [b] and direct if E =
[al+[b] ={x+y|xelal,yebl}={uda)+ vdb) |u,ve W}.If [a] L [b]then
(a, b) is a direct pair (cf.(4.5)). We call (E, +) vectorspacelike if each independent pair is
direct. We show:
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(E, +) is vectorspacelike <= to a given segment (s1, s2) and an acute angle « there exists
a rectangular triangle (p,q,r) with p,;g L q,7 ,(q,r) = (s1,s2) and « = L(7, p, q)
(cf.(4.7),(4.8)).

For eachn € Nthemapn : W - W; x — n-x = x4+ --- 4+ x (n times) is a
strictly isotone monomorphism of (W, 4+, <). The set Ny := {n € N | n’ is surjective }
contains 2 (cf.(5.1)) and the imbedding of the subring Zy := {% | m € Z,n € Ny} of the
field of rational numbers Q in (W, 4+, <) by % > m o) Ye)isa monomorphism from
(Zw, +) into (W, +). In this way Zw will be considered as a subset of W with the operation
Ly x W= Wi (5, x) > T xi=mo (n)~'(x). Then for r € Zy, r # 0 the map
r: W — W;w+ r-wis contained in the set Bet(W, +, &) of all betweenness preserving
monomorphisms of (W, +, §) ; r* is isotone resp. antitone if o < r resp. r < 0. A subset
B C W together with an operation - : B x W — W will be called b-ring of (W, +, <) if
(B, +, +) is a ring containing (Zw, +, -) as a subring and if for each g € B* := B\ {0}
themap By : W — W;w > B-wisin Bet(W, +, ). If Bis a b-ring and 8 € B* then
by a so called rotational extension (cf.(5.7)) B; becomes an injection 8 : E - E; x >
B - x called B-quasidilatation (cf. Sec. 4). For o < B < e the quasidilatation § is a
contraction hence if x € E* then 8 - x is a point of the open segment Jo, x[ and if e < 8
then 8 is an enlargement, i.e. x €lo, 8- x[. Fora,b € E and A, u € B the expression
A -a+ u - bis called quasilinear B-combination. If B is transitive, i.e. B = W, then
l[al+[l={r-a+upnu-b| A, ue B}ifa,be Eyorif (W,+,:) :=(B,+,-)isafield. In
the case that (W, +, <) is continuous W can be established with a multiplication “-” such
that (W, +, -, <) becomes an ordered field (isomorphic to the reals R) (cf. (5.6)) and then
[al+[b] =W -a+W-b={r-a+un-b|r,nue W}foralla,bcE.

The loop (E, +) is a group if the absolute plane is singular. In this case (E, +) is vec-
torspacelike iff (E, G, «, =) is an Euclidean plane (cf. (4.6)). In the ordinary case the loop
of a hyperbolic plane is vectorspacelike (cf. (6.1)).

With the theorems (5.6) and (6.1) one obtains the result of A. Greil [1]:

If (E, G, «, =) is a continuous hyperbolic plane (then R is a b-ring) and if a, b € E* with
[a] # [b] then each point x € E can be uniquely represented as a quasilinear R-combination
x=A-a+ u-bwith \(o, A -a) = |\| - (0, a) and (o, i - b) = |it|- (o, b) where \ is
the distance function (cf. Sec. 2).

2. Notations, assumptions and known results

In this paper let (E, G, o, =) be an absolute plane in the sense of [6] p. 96; E and G denotes
the set of points and lines respectively, « the order-function and = the congruence. Let
A be the motion group of (E,G,®,=). Fora € E, A € G let a resp. A denote the
point- resp. line-reflection in a resp. in A and let E:={i|aecE) resp. G = {A |
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A € G} be the set of all point- resp. line-reflections. If a,b € E and a # b let ab resp.

ab denote the (uniquely determined) point- resp. line-reflection interchanging a and b

(cf. [6] (16.11), (16.12), (17.1), (17.2)) (i.e. ab resp. ab is the reflection in the midpoint

resp. midline of @ and b (cf. [6](16.11) and p. 105)). Moreover let a, a, b denote the

line joining a and b and let a?b = {x € a,b | (alb,x) = 1}! be the halfline and let

H :={a¥b | a,b € E, a # b} be the set of all halflines.

By [6] (17.6),(17.9),(17.7) and G G follows:

2.1) A= G2 U G3, E - G? and G2 <A is a normal subgroup of A4 of index 2.

We call the elements of A, := G2 proper motions. By [6] (17.8) and (18.3) we have:

Q2)Letp e A,a € Eand G € G then:

(1) poGogp™ = (pf(\é) hence ¢ o Go o G, i.e. G is an invariant subset consisting
of involutory motions of A and acting transttlvely on E.

(2) goaocp ! = (p(a) hence poEog™! = E, i.e. (E, E) is an invariant set of involutory
motions acting regularly on E.

(3) Va,b,c,d €eE, a# b, c #d J10¢e€ Ay : o(akb) = c¥d, i.e. the group of
proper motions acts regularly on the set H of all halflines (cf. [6] (17.15)).

From [6] (17.7.2) and (17.13.2) resp. (16.10.2) and p.105 follows:
23)Let D e G,a,b,c € Dand p € E\ D then:

(1) AmeD:aoboc=m.

) p(D)ND =4¢.
The absolute planes split into two classes: the singular planes characterized by E> c E
and the ordinary planes characterized by E> ¢ E

Q24 If (E, G, a, =) is singular then E2? is a commutative normal subgroup of A acting
regularly on E. (cf. [6] (21.6))

Now let three non collinear points o, e1, e2 € E with (0, e1) = (0, ¢2) and 0, e1 L 0, e; be
fixed as a frame of reference, let E| := {x € E | (0,x) = (0, e1)} and E* := E \ {o}. For
any a € E* let:

[a] := 0, a the line joining o and a,
[al+ := {x € [a] | (ola, x) = 1} the halfline,
at :=o0aooand ot :=id (et ET :={a™ | a € E}).

Fora € Ei \ {e1} leta® := &a 0o, e and e} := id.

Lalb, x) := a(a, b, x) (cf. [6] (13.9))
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Then by [4] p.405:

(2.5) (E, +) witha + b := a*(b) is a K-loop, i.e. a loop characterized by:
Ya,beE :atobToat =@+ b+a)Tandooat = (6(a)T 0o
Moreover:

(1) E¥ is a set of fixed point free proper motions of (E, G, a, =) acting regularly on the
point set E (cf.(2.2.2)).

2) (E, +) is a group (and then even a commutative group) if and only if (E, G, «, =) is
singular; in this case (E, +) and (E2, 0) are isomorphic.

(3) Va € E*, [a] is a commutative subgroup of the loop (E, +) and [a]+ a subsemigroup
of [a] with [a] = [a]+U{0}U[—a]+.

@) G =1la+[b] | aeckE,be E*} and the set H of all halflines is represented by
H={a+[b]+|acE,becE"}

(5) If(E, G, a, =) isordinarythen¥a € E*,Yo € Aut(E, +) :[al = {x € E | aToxt =
xtoat), o(la]) = [0(a)] and Aut(E, +) < Aut(E, G).

Proof. “(5)"Vx € E:0o0at oo™ (x) = o(a+ o' (x)) = o(a) + x = (6(a)) T (x) hence
ogoat oo™ ! = (6(a))t and so (o(a))T o (c(x)tT = coat oxt oo™ = (6(x)t o
(o(a)™ <= atoxT=xToa" .

Consequently o([a]) = [o(a)] . Since o(a+ [b]) = o(a) + o([b]) = o(a) + [0(b)] we have
o € Aut(E, G). O

From [6] (16.12) and (19.1) we obtain the first part of the following theorem:

(2.6) (E1, o) with a ¢ b := a®(b) is a commutative group with the neutral element ey,
isomorphic to the rotation group in o and for a € E1 and b € E* we have:

(1) a® o bt = (@* b))t 0 a®, ie. a® € Aut(E,+) hence E} :={a®* | a € Ei} <
Aut(E, +).

2) a*([b]) = [a®*(b)], a*([b]+) = [a®*(D)]+ , i.e. the automorphism a® maps the com-
mutative subgroup [b] of the loop (E, +) onto the subgroup [a®(b)], in particular
a*([e1]) = [al.

(3) Ibls NEq| = L.

4) Vb,c € E*3im € Ey : [c]4 = m*([b]4) = [m*(D)]+.

(5) Fora,b € Elet 8, := ((a+b)T) ' oa® ob™ and let d,p := 84(e1) then
8a,p = d , and atobt =(a+btod,

(6) ET < E} = Ay is the quasidirect product of the loop (E, +) and the commutative
group (Eq,0): Ifo € Ay, a = 0(0) and b := (at)" ! o o(ey) then b € E;
and 6 = at o b® and if a,b € E, c¢,d € Ei then (at oc®) o (bT 0d®) =
(a+c* D) o ((daeop) @ c 0 d)°.
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Proof. “(1)” Since (0, e1) = (0, a) the midline of e; and a contains the point o (cf.[6]
(16.12), (16.13)) hence e1a(o) = o and so a®(0) = o. Therefore by (2.2.2), a®odo(a®)~! =
a*(0) = & and a® o 0b o (a®)~' = (a*(0)a* (b)) = o0a*(b) implying a® o b* o (a®)~! =
(0a*(b)) 0 & = (a*(b))*. O

3. Measurement and polar coordinates

Let W :=[e1], Wy :=[e1]+ and E; := {x € E | (W|ea, x) = 1}. According to [6] (13.3)

there is a total order relation “<” on W such that o < e and for all {x, y, z} € (V3V) holds:
xly,2)=-1 &= y<x<zorz<x<y.

From the excelent paper of D. Groger (cf. [2] §2) we obtain:

(3.1) Between the commutative group (W, +) (cf.(2.5.3)) and the ordered set (W, <) there
are the following relations :

(1) Ya € W, ayw is an antiton permutation of (W, <).

(2) YVa e W, ar{,‘, is an isoton permutation , i.e. (W, +, <) is an ordered commutative
group.

(3) W4 is a positive domain hence fora,be W: a<b < —a+be W, 0O

By (2.6.4) to any x € E* there exists exactly one m € E; with m®([x];+) = [e1]+ = W4
Therefore the map

| |ZE — W+U{0} : x}_){m‘(X) ifx;éo

0 ifx =o,
called absolute value, is welldefined and we have:
B2)Vr,yeE: |x|=|y < (0,x)=0,y). o
Using the loop operation of (E, 4+) we define:
N EXE— W,U{o}; (a,b) — N\a,b) :=|—a+ b|

and call \(a, b) the distance of the points a and b. Since the maps a™ are also motions we
can summarize the results of ([2] (2.5), (2.6), (2.7)) and state:

(3.3) Leta,b,c,d € Eand ¢ € Athen :

1) (a,b) = (c,d) < N\(a,b) =\(c,d)

(2) Me(a), p(b)) = Na, b) = N, a)

3) NMa,b) =0 a=0>b

(4) If (a, b, ¢) is a rectangular triangle with @, ¢ L b, ¢ then \(a, ¢) < \ (a, b).

(5) (triangularinequality) \(a, b) < N(a, ¢)+\(b, ¢) and'\(a, b) = N (a, c)+\(b, ¢) <
¢ € [a, b]. O
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From (3.3.4) follows:

(34) For A € Gand x € E let x4 := (x L A) N A be the foot of x on A then for
ae A, nMx,xa) < Nx,a) and Mx, A) := N(x, x4) is called the distance from the point x
to the line A. O

If pgeE, AeGandu e W, are given with p #gandg € A, let
DA, q) :={xeE|N(x,A) =N\(q, A) A (Alg, x) = 1} resp.
DA u) ={xe€E|Nx, A) =u}

be the equidistant of A through g resp. the set of all points having the distance u from A.
If M(g, A) = u then D(A; u) = D(A, q) UD(A, A(g)).

In the absolute plane (E, G, «, =) we introduce an orientation Or : A — {1, —1};
(a,b,c) — Or(a, b, c),i.e. afunction defined on the set A of all triangles by:

Let o € A be the proper motion uniquely determined by o(a%b) = W4 (cf. (2.2.3)) then
Or(a, b, c) == (Wlea, o(c)).

We say (a, b, c) is positively oriented if Or(a, b, c) = 1 otherwise negatively.

The orientation Or induces a cyclic order w on E; turning the commutative group (Ep, o)
in a cyclic ordered group (E1, e, ®) by:

For {a, b, c} € (E3') we have (a, b, ¢) € A and therefore we set w(a, b, ¢) := Or(a, b, c).

Now we can introduce a measure for angles : if « = Z(b, a, ¢) = (db, ac) is an angle let
again o € A, with o(db) = W, then p (@) := [0(c)]+ N Ej is called the measure of «.

Analogously to (3.3) we have:

(3.5) Let y := /(a, c, b) be an angle, let d € E \ {0} with (c,d|a, b) = —1 then p(y) =
n(L(a, c,d)) e n(L(d, c, b)). a

Moreover for any x € E* let £ := [x]4 N E;. Then the pair (|x|, &) € Wy x Eq is called
the polar coordinates of x, and the function pc : E* — W, x Eq; x = (|x|, [x]+ NE}) is
a bijection; for if £ € E; and w € W, are given then x := £*(w) is exactly the point with
the polar coordinates (w, &).

4. Direct sums and direct pairs
Since for each a € E; the motion a® = éja o W is an automorphism of the loop (E, +) we

sete : Ey x E — E; (a, x) — a ex := a®(x) and call the elements of E| multipliers. To
each p € E* we associate the multiplier p; := [p]4+ N E; then:
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@4.1)Va,b € E;,Vx,y € E,Vp € E*:

(1) erex=2x,laex|=|x|and (ae p); =ae p;

) ae(x+y)=aex+aey

B)ae(bex)=(aeb)ex

(4) E; ex:={aex|a e E;}isacircle with center o passing through x

(5) p= p1e|pl,ie. (|pl, p1) are the polar coordinates of p

6) —e; € Ef, (—e))* =0and (—e)) e x = —x.

(7) ae[p] =laep] O

We call the commutative group (W, +) scalar domain and their elements scalars and intro-
duce between W and E* by:

D:WXE" -E, (w,p)—>wd®p:=pie(w+|p))=pirew+p

an operation which has the properties:

@4.2) Forallu,ve W, forall p e E* :

M odp=p

Q) (utvep+p=udp +Wdp)

(3) Ifu > o then |u @ p| = u + |p|

@ Wep=I[pl. Wy @& p=I[pl+ O

If a,b € E* and u, v € W then the expression (u @ a) + (v @ b) shall be called scalar
combination of a and b. Then:

@4.3) Forall a,b € E*, forallu,ve W, forallc e E; :coe(u®a) =u@® (cea),ce
(uda)+(vdDb)=ud(cea)+ (W (ceb)).

(4.4) Let a, c € E* with [a] # [c] and let b € [a] \ {a} then:

(D) [alN(a+[c]) = {a}

@) b+lchnia+[ch =0

(3) Vp € E there is at most one pair (x,y) € [a] x [c] such that p = x + y, i.e. there
is at most one pair (u, v) of scalars such that p = (u ® a) + (v & c) is a scalar
combination of a and c.

Proof. “(1)” : By assumption [a] N [c] = {0}, since [a] is a subgroup of the loop (E, +)
and a* a permutation we have: {a} = (a + [a]) N (a + [c]) = [a] N (a + [c]).

“2)’: Letd' := Fixoa,b' := Fix obhenced = 6a, b’ = obandd resp. b’ is the midpoint
of {0, a} resp. {o, b}. By b € [a] follows 0, d’, b’ € [a] hence by (2.3.1) there is ad’ € [a]
withd' = b od’ 0 0 = ob o 6a o 0. Since 6([c]) = [c] we obtain by (2.3.2) :

(b + [c]) N (a+ [c]) = ob([c]) N ob o Ga([c])) = ob([c] Nd'([c]) # ¥ <>
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(1N d([c]) £ 0 — d' € [a]N[c] = {0} <= da = 0b —=> a = b.
Since a # b, (2) is valid.
“(3)”: Assume there are (x, y), (X', y) € [al x [(]withp=x+y=x"+ Y and x # X'

then for instance x # o and so x’ € [a] = [x]. Thus p € (x + [c]) N (X" + [c]) and by (2),
(x + [c]) N (X' + [c]) = ¥, a contradiction. Hence x = x" and so y = y'. O

A pair (a, b) € E x Eis called a direct pairif [al + [b] :={x+y|x € [a]l,y € [b]} = E
or equivalently if E = (W @ a) + (W @ b). Then by (4.4.3) for every direct pair (a, b) the
loop (E, +) is representable as direct sum of the commutative subgroups [a] and [b], i.e.
each element p € E is uniquely representable as a scalar combination of a and b.

@4.5) Let a, b € E* with [a] L [b] then (a, b) is a direct pair.
Proof. Let p € E, x:= (p L [a]) N[a] then [a] L [b], x + [a] = 0x([a]) = [a] and

x + [b] = ox([b]) imply [a] L (x + [b]) hence p € (p L [a]) = x + [b] and so there is a
y € [b] with p = x + y. O

We call the K-loop (E, +) of an absolute plane vectorspacelike if for all a, b € E* with
[a] # [b], (a, b) is a direct pair.

(4.6) The K-loop of a singular plane is vectorspacelike if and only if the plane is Euclidean.
Proof. By (2.5.2) (E, +) is a commutative group. Let a, b € E* with [a] # [b] and let
p=x+ywithx € [aland y € [b]then p = (x+[b]) N (y+[a]) = (p+[b]D) N (p+ [a]).
Therefore (a, b) is a direct pair if for all p € E holds:

(p+[a]) N[b] # @ and (p + [b]) N [a] # @. Clearly, if the parallelaxiom is valid then this

condition is satisfied:
forletu,x,y,z € Ewithy,z Zothen (u+[y]) || x+[z]) <— [y]=I[z]

If the parallelaxiom is not satisfied then by (2.2.2) there exist lines C, [a], [b] with [a] # [b]
and C N ([a] U [b]) = @. If C = d + [c] then at least one of the statements [c] # [a] or
[c] # [b] is true for instance [c] # [a] .Since (d + [c]) N [a] = C N [a] = @ it follows that
(a, ¢) is not a direct pair. O

Next we consider the case (a, b) € E* x E* with [a] # [b] and [a] L [b]. Then there
are a; € [a] NE;, by € [b] N E such that y := Z(by, 0, ay) is an acute angle hence
ny = al_l e b € E; with w(e, i(y), e2) = 1. We show:

@4.7) Fora, b € E; withw(ej,a ' e b, ep) = 1 the following statements are equivalent:

(1) (a, D) is a direct pair



Vol. 86, 2006 Vectorspacelike representation of absolute planes 89

) Yw e W4 : [b] N D([a]; w) # @
(3) Yw € W exists a rectangular triangle A = (p, ¢, r) with p, g L 7, g, n(L(, p, q))
=a'eband \(r,q) = w.

Proof. By (2.6)and (4.3), (@ Heis a proper motion and an automorphism of (E, 4+, W; @).
Therefore we may assume @ = ej and w(ey, b, e2) = 1.

“(1) = (2), 3)". Let w € W, be given. Since (a, b) is a direct pair there are uniquely
determined scalars u, v € W suchthate, e w = (u ®e1) + (VD b) = (u+e1) + (v D b).

Since w > o and w(ey, b, e2) = 1 we have v > o and u + e¢1 < 0. We consider the triangle
A := (0, —(u 4 e1), (v ® b)) which has the properties:

1. Sinceu +e; € Wando # u +e; wehaveo, —(u +e1) = W = [e;] and (—(u +e1)) ™
is a proper motion fixing the line [e1]. Since [e1] L [e>] also the lines [e1] and (—(u +
e1))T([e2]) = —(u + e1) + [e>] are orthogonal. The line —(u + e1) + [e2] contains the
points —(u +ej) and —(u D ey) +erow=—(ude;) + (ude)) + (Vb b)) =vDb.
Therefore A is rectangular with o, —(u +e1) L —(u + €1), v® b and so —(u + e1) is the
orthogonal projection of (v@® b) onto [e1]. Hence: N(véB b, [e1]) = M—(u+e1), vDb) =
| —(u+e)— Wb =|—eow = |w = wimplying vd b € D([e1]; w), ie.
[61 N D([e1]; w) # @ and (2) is proved. Finally since v > o0 and —(u + e1) > o we have
[vdb]ly = [b)+ and [—(u+e1)]+ = [e1]+ hence L(v® b, 0, —(u+e1)) = L(b, 0, 1) and
so W(Z(b, 0,e1)) = b, i.e. also (3) is proved. “(2) = (1)”. Let p € E be given. If p € [e]]
then p = p + o with o € [b] . Therefore let p & [e;]. Then by assumption (2) there is
exactly one v € W such that {v & b} = [b] N D([e1], p). Let pw = (p L [e1]) N [e1]
and (V@ b)w := (v b L [er]) N[er], then —pw + p = —(v® D)w + (v b) € [e2]
and since (W, +) is a commutative group there is exactly one u € W such that py =
u®er)+Wdb)y = ude)) T (v®b)w . Consequently: p = pijo(—(Vdb)w) T (vBD) =
wdeN)To(W®b)W) o (—(vEL)WT(WED) = Wde)T(vBD) = UDer) +(WBD).

O

From (4.7) follows:

(4.8) The K-loop of an absolute plane is vectorspacelike if and only if : 3A € G and
ac€A:VGeG\{A}withae G,Vxe E\A:GND(A,x) #0.

5. b-Rings, rotational extensions and quasidilatations
Quasidilatations for the K-loop of an absolute geometry were introduced in [4]. In order to
define them we consider firstly the ordered commutative group(W, +, <) (cf.(3.1)) .

Let & denote the betweenness relation on W corresponding to <, let Iso(W, +, <) resp.
Bet(W, +, &) be the set of all endomorphisms of the group (W, +) which are strictly isotone
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resp. which preserve the betweenness relation&on W, let: v: W — W; x > —x 1= 0(x)
and let Mon(W, +) be the set of all monomorphisms of (W, +). Then Bet(W, 4, &) =
Iso(W, +, <) Uvo Iso(W, +, <) € Mon(W, +) where v o Iso(W, +, <) is the set of all
antitone monomorphisms.

(Bet(W, +, &), 0), (Iso(W, +, <), o) and (Iso(W, 4+, <), +) are semigroups. The auto-
morphism groups Aut(W, +, &) resp. Aut(W, +, <) are subgroups of (Bet(W, +, &), o)
resp. (Iso(W, +, <), o) and Aut(W, +, &) = Aut(W, 4. <) Uv o Aut(W, +, <).

‘We show:

(8.1) (W, 4) is uniquely divisible by 2 : fora € W let %a be the midpoint of o and a then
%ae Wand%a—i—%a:a.

Proof. Letd = %a then @’ + a = od o o(d) = d o ofE’(a/) = 57’(0) = oa(0) = a and
ifa=b+b=obo o(b) = bo 0~b(b) = b(0) then b is the midpoint of o and a hence
b=d. O

Since (W, +, <) is an ordered commutative group , (W, +) is a Z- module such that Vn €
Z* :=7\{0}, themapn : W — W; x — n-xis a monomorphism where n" is isotone if
n € N and antitone if —n € N. By (5.1), 2" is even an automorphism with ) ') = %x.

Therefore:

(8.2) Let Py := {p € P | p € SymW} be the set of all prime numbers p such that p’
is even an automorphism of (W, +), let Nw be the set of all natural numbers which are
products of prime numbers of Py and let Zy = {*> | m € Z,n € Ny} be the subring
of the field Q consisting of all fractions where the denominator is an element of Ny.
Then:

(1) 2ePw (by(5.1))andZy :=={m -27" |m e Z,n e NU{0}} C Zy.

2) Vr= % €Ly themapr =m o ((n)~" is a monomorphism of (W, +) and r' is
strictly isotone resp. antitone if r > 0 resp. r < 0.

(3) Ifr := % is a unit of Zyy hence if m € Ny then r" is an automorphism of (W, +).

@) (—el)I'W = (—1) is an antitone automorphism of (W, +).

(5) Zw is a subring of End(W, +) with L3, := Zw \ {0} C Bet(W, +, &).

B83)IfPyw =P, ie. foreachn € N, n' is a permutation of W then Zw = Q and (W, +)
is a Q-module, i.e. (W, Q) is a vectorspace.

A subring B of the endomorphismring End(W, +) is called b-ring of (W, +) if Zw € B
and B* := B\ {0} C Bet(W, +, &)).

By (5.2.5) Zyw is a b-ring of (W, 4, <).
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Now let B be a b-ring of (W, +, <). Then B* := B\ {0} C Bet(W, +, &) € Mon(W, +)
implies that B* is a subsemigroup of (Mon(W, +), o) and sothe map ¢ : B —> W; 8 —
B(e1) is injective. If B; € B, i € {1,2} and b; := Bi(e1) then B; + B> € B and so
b1 + by = Bi(e1) + B2(e1) = (B1 + B2)(e1). Therefore ¢ is a monomorphism from (B, +)
into (W, 4+) hence ¢(B) a subgroup of (W, 4) isomorphic with (B, +). We identify always
B and «(B) and if for 8 € B and b := ((8) = B(e1) we set b' := B and define :

i BxW—=W;b,w)— b -w:=b(w).
If B = W then the b-ring B is called transitive.

(5.4) Let (B, +, o) be a b-ring of (W, +, <). Then for a,b € B* and x,y € W we have
cep€B,e=id,eg-x=x,a-eg=e-a=aa -b=ad) =aob(e)€B
hence (a-b) =a ob anda-(b-x)=(a-b)-x,(a+b)-x=a-x+b-x,a-(x+y) =
a-x+a-ya-x=a-y<=x=yanda-x=b-x<a=>b or x=o. O

This shows: ((W, +), B, -) is a nearfield in the sense of H.Zassenhaus (cf.[9],[3] p.2) (i.e.
(W, +)isagroup, B € W with B* # (Jandifa, b € Bthena (b) € Band (a (b)) = aob’,
i.e. (B, -)isasemigroup,ifx € W* witha' (x) = b'(x) thena = band B* := {b" | b € B*}
is a subgroup of the automorphism group Auz(W, 4).)> Moreover B, := BN Wy is a
subsemigroup of (B*,-) and By - W, = W,.

(8.5) If (B, +, o) is a transitive b-ring of (W, 4, <) hence B := («(B) = B(e;) = W then
(W, 4, -) is a complete nearfield even a field and (W, +, -, <) is an ordered field.

Proof. B* C Bet(W, +, &) C Mon(W, +), B*(e) = W* and (5.4) imply that (W*,-) is a
group hence by (5.4) (W, +, -) is a field and so if a € W* then @' is an automorphism of
(W, +).

Consequently B* C Aut(W, +, &) = Aut(W, +, <) Uv o Aut(W, +, <).

Leta < band o < ¢. Then ¢ € Aut(W,+,§), o < e; and c'(e;) = c imply ¢ €

Aut(W, +, <) and therefore ¢ -a = c(a) < ¢ (b) = c¢ - b. Moreover a < b hence
0 < —a—+ bimplies (—a + b) € Aut(W, +, <) andsoo < (—a+b)(c) = (—a+Db) - c.
Since (W, +, -) is a field we obtaino < —a-c+b-c,ie.a-c < b-c. O

REMARK. If (W, 4, <) is an archimedian ordered group then (by the theorem of O.
Holder) (W, +) is isomorphic to a subgroup of (R, +) (resp. to (R, +)). Therefore:

(5.6) If (W, +, <) is continuous then (R, +, -) is a transitive b-ring of (W, +, <) and (W, +)
can be provided with a multiplication “-” such that (W, +, -) is afield isomorphicto (R, +, -).

27assenhaus calls a nearfield complete if B = W. Today the notion “nearfield” is used for complete nearfields
in the sense of Zassenhaus.
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We call amap ¢ : E — E rotational (homogenous) if : Va e E| : poa® = a® o ¢.

A rotational map ¢ fixes o and is completely determined by its restriction ¢w, : for if
x = x1 o|x| € E* is given by its polar coordinates then ¢(x) = ¢(x1 ® [x|) = ¢(x] o |x]) =
x7 o o(|x]) = x} o w, (|x]) and since W = {0} U W, U (—e1) @ Wy and [x] = x; @ W =
{foyUxieW, Uxie(—e1)e Wi wehave: ¢([x]) = x10p(W) ={o}Ux;ep(W ) Ux|e
(—e1) e p(W,).

Conversely:

(5.7) Any map W : Wy — E can be uniquely extended to a rotational map ¥ : E —
E by ¥(x) = ¥(x1 e |x]) := x}(W(|x])) for all x € E*.  is then called rotational
extension of Y.

Proof. We have to show that v is rotational. Let a € E; and x = x; e |x| € E* then
aex; € Ey (cf. (2.6)) and (a e x1)®* = a® o x} hence ¥ 0 a®(x) = ¥ o a®(x](|x])) =

Y((aex)*(x]) = (aex)*(Y(|x])) = a® o x3(Y(|x]) = a® o Y(x). a

If A is an arbitrary set then any two maps ¢, ¥ € Map(A, E) from A into the loop (E, +)
can be added with the help of the loop operation “+” by: (¢ + ¥)(x) := ¢(x) + ¥(x) for
x e A.

Then ¢ + ¢ € Map(A, E) and so (Map(A, E), +) is also a loop. The properties of the
loop (E, +) pass on (Map(A, E), +) , i.e. in our case (Map(A, E), +) is a K-loop too.
For A = E we set Map(E) := Map(E, E). In this case with ¢, i, x € Map(E) also
poyr € Map(E), (i.e. (Map(E), o) is a semigroup) and (¢ + ¥) o x = ¢ o x + ¥ o x. This
shows that (Map(E), +, o) is a (right) K-loop-nearring (cf.[8]).

LetR(E, 0) := {¢ € Map(E) | Va € E; : poa® = a®og@} bethe set of all rotational maps of
the loop (E, +), let R(E, []) := {¢ € R(E, 0) | Vx € E with ¢(x) # o : ¢([x]) C [¢(x)]},
RE,[[1D) :={¢ € R(E,0) | Vx € E* : ¢(x) C [x]} and R(W,0) := {p € Map(W) |
v o @ = ¢ ov}. Then we can show:

(5.8)

(1) R(E, o) is a subloop-nearring of the K-loop-nearring (Map(E), +, o).

(2) R(W, o) is a subnearring of the nearring (Map(W), +, o).

(3) (RE,[[1D,0) < (R(E,[]),0) < (R(E), o) and E] < (R(E, []), o).

(4) R(E, [[]1]) isasubnearring of (R(E, []), +, o) and (R(E, [[ (1), +, o) isisomorphic
to (R(W, 0), +, 0): Themap:t : R(W, 0) - R(E, [[1]); ¢ — (| W4 (where | W4
denotes the rotational extension of the restriction ¢|W,) is an isomorphism from
(R(W, 0), 4+,0) onto (R(E,[]),+, o).

(5) The endomorphismring End(W, +) is a subring of the nearring R(W, o), +, o) and
so En(E, o) := «(End(W, +)) is a subring of the nearring (R(E, [[ ]]), +, o). The
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elements ¢ of En(E, o) are rotational maps characterized by: If x,y € E with
[x] = [y] then (x + y) = @(x) + ¢(y).

Proof. Let o,y € R(E,+),a € E1, x € E and observe a®* € Aut(E, +) (cf.(2.6.1)) then
(p+yP)oa®(x) =gpoa®(x) +Yoa®(x) = a*(p(x) + a*(Y(x)) = a*(p(x) + Y(x)) =
a®o(p+y)(x)and (poyy)oa® = poa®oyy = a*o(poy). Hence p+ 1y, 9oy € R(E, 0).
This shows (1).

Since with (W, 4) also (Map(W), +) is a commutative group, (Map(W), +, o) is anearring
and with the previous arguments, (2) is proved.

By (4.1.6) —¢ = (—e1)®* o ¢ € R(E, 0). Now assume moreover ¢,y € R(E,[ ]) and
@ o Y(x) # o. Then (since p(0) = 0) Y(x) # o and so p(Y([x])) S e(Y(x)]) <
[e(¥(x))] = [p o Y(x)]. If even ¢, Y € R(E, [[ ]]) and x € E* then p(¥([x])) < ¢([x]) <
[x] and (¢ + ¥)([xD) = {(¢ + VI = e + ¥ () | y € [x]} S [x] + [x] S [x],
iepo Y, + ¥ € R(E,[[ ]I). Moreover by (4.1.7), a®*([x]) = [a®*(x)] hence (3) is
completely proved.

If y € RE,[[ 1D then y(W) = ¥(le1]) € [e1] = W, Y(o) = oandif w € W
then Y(—w) = Y(v(w)) = Y((—e)*(w) = (=¢)* o Y(w) = v(Y(w)) hence ¢ := Y|W €
R(W, o) and so ¢ is completely determined by ¢| W and by (5.7) we have firstly ¥ = ¢| W
and secondly that ¢ is injective and surjective. Clearly if ¢, ¥ € R(W, 0) and x € E* then
by (5.7) and x} € Aut(E, +), p| W4 (x) + YWy (x) = 25 (@(|x]) +x3 (W (|1x]) = 2 (p(|x]) +
v(IxD) = xjolp+¥)(IxD) = (¢ + V)W (x), ie. p|Wi+y|Wi = (¢ + )| W,. Further-
more (¢ o Y)|W4.(x) = x7(p o ¥)(|x]) = x7o (Y(IxD)](@(1¥(xD)])) and observing (5.7),
PIW o YW (x) = @Il Wi(xTo ¥r(|x])) = xTo @ W (¥(Ix)) = x7 o (¥ (IxD)T (@[ (|xD)])-
Thus ¢ is an isomorphism.

Since (W, +) is a commutative group the map v : W — W; w — —w is an automorphism
of (W,+) hence v € End(W,+) and if ¢ € End(W,+) and x € W then ¢ o v(x) =
o(—x) = —p(x) = vop(x) hence End(W, +) < (R(W, 0), +, o). The other statements of
(5) are a consequence of (4).

Now let B be a b-ring of (W, +, <) and let A € B be the rotational extension of the
leftmultiplication A; : W — W;w > A - w (cf. (5.4)) hence A’ : E — E; x = x1 o |x| >
x1 ® (N - |x]) is called a B-quasidilatation. By [4]p.407 follows:

(5.9) Let B be a b-ring of (W, +, <), let U be the set of units of (B, +, -) and let F = {[x] |
x € E*}. Then (E,+, F, B, -) is a structure where (E, +, F) is a loop with an incidence
fibrationand -: BXE — E; (A, x) = A-x:= A'(x) is amap such that forall ., u € B,
forall X € F and for all a, b € E the following hold:

() Ara=o0< r=00ra=o.
Q) IfreU,thenh-E=Eand »- X = X.
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G r-w-a=r-(n-a), A+pu)-a=r-a+u-a
@) Ifa,be Xthenh-(a+b)=A-a+A-b.

(5.10) For » € Zw \ {0, 1} the Zw-quasidilatation )" is a collination of (E, G) if and only
if (E, G, a, =) is singular.

Let B be a b-ring of our absolute plane , i.e. of (W, +, <). If a,b € E and X, i € B then
the expression A - a + p - b shall be called quasilinear B-combination or shortly g-linear
B-combination.

(8.11) If (W, 4, <) possesses a transitive b-ring (i.e. by (5.5), W can be turned in an
ordered field (W, +, -, <)) then for all a, b € E* with [a] # [b] each element x € [a] + [b]
can be written uniquely as a quasilinear W-combination of aand b, i.e. 31(a, f) € Wx W :
x=a-a+p-b. O

6. Hyperbolic planes

Among the absolute planes the hyperbolic planes (E, G, o, =) are characterized by the
following axiom (cf. [6]p.149):

(H)VG eG, VpeE\G IHeGwithpe HAH ||, G

where H ||, G is defined by: Let P := (p L G) then: GN H = @, P(H) # H Vx €
E\ (HU P(H)) with (H|x, P(x)) = 1: p,xNG # .

In [6] it is shown that there is a one-to-one correspondence between the hyperbolic planes
and the commutative Euclidean fields (K, +, -). A commutative field is Euclidean if K@ :=
(x* | xe K* ==K\ {o}}isa positive domain. Fora € K* letsgna = 1 ifa € K@ and
sgna=—1lifa ¢ K @, Starting from a commutative Euclidean field (K, +, -) one can
obtain the corresponding hyperbolic plane in the following way:

Let (M, +, ) be the ring of all 2 x 2-matrices A = (a;;) (with a;; € K) over the Euclidean
field , let E = (3;;) be the identity matrix and let (K, +, -) be imbedded in (M, +, -) via
themap: K - M;ur>u-E. ForA,Be Mlet:

A:(dzz —mz)’ ATz(all a21>’
—daz| dii a2 ax
AS(B):=A-B-ATand f(A,B):=A-B+ B-A. ThendetA = A-A=}f(A, A)and

TrA = A + A.

We denote by S := {X € M | XT = X} the set of all symmetric matrices of M and
consider the subset E := SV T :={§ €S| S-S =1AS+S > 0} as point-set of the
hyperbolic plane.
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FrGeS! ={SeS|S5-§= —1}let G := {X € ST | f(AX,G) = 0} and let
G :={G | G € S7!} be the set of lines

NOTE: for G,H e S™': G = H <= H € {G, —G)}.

The congruence = is given by:

If A, B,C, D € E then: (A, B) = (C, D) <= f(A, B) = f(C, D)

And the order « is defined by:

IfA,BeE,GeS 'and A, B ¢ G then: (G|A, B) := sgn(f(A, G) - f(B, G)).
In [6] and [5] it is shown that (E, G, «, =) is a hyperbolic plane.

If A e E=S'""and G € S~! then the reflection in the point A and in the line G is given
by:

AE>E X AX)=A-X- AT and

G:E—E; X G%X)=G-X-GT and the foot by

A =(ALG)NG=Q2+fA.GH IHA+G A-G).

Let (0, e1,e) = (E, %(g (1)) A—l‘(g g)) be our frame of reference and let “{” denote the
K-loop operation corresponding to the point E. Then [¢;] = ﬁ where G| = ((1)(1)), Gy =
(éj) hence W := [e;] := {()(; XQ]) | x € K@}and W, = {(6 XQI) xe K@ :1<
x}. For A := (“ 0 ) B:= ((I)’ b(l]) € W we have:

0 a!
]
—_— 0 — - 0
EA = %E — oAhenceA<>=EAoE=<\ga — and
a a

AGB = Ja 0 b 0 Ja 0 [ ab 0
Vo VaT]\o»! o va')] \o0 @)
Therefore the map ¢ : (K(z), )= (W,0); x — ()(; x(_).) is an isomorphism of the

multiplicative group of all squares of the Euclidean field (K, 4, -) onto the scalar domain
(W, ¢) and so (W, O) can be identified with the group (K@, -).

Then the absolute value | | : E — Wy U{o} = {& € K® | 1 < A} is given by:

1X| = 3(TrX + /(TrX)? — 4).
Now we can prove:

(6.1) The K-loop of a hyperbolic plane is vectorspacelike.
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Proof. By (4.8) we may consider the line G and the point E. The lines passing through E
are given by the set of matrices

3‘(E):={<Z _Uu)|u,vel(:u2+v2:1},

and for X = (i x‘1(1y+y2) > € E\ G; wehavey# 0and
e X0 = {(A;x )»_zx_l)()l +3) ) 1€ K*}
B {<kyx A_lx_l)()l +%) > e K(Z)} ' e
Now let U = (Z N ) € STI(E) with U # G, , i.e. v # 0. Then
UNDGy, X) = {( ’\yx )»_lx_l)(}l +y2)> A e K¢ (%) A2ux+2yv—ux—" (1+y?) =

0).

The equation (*) has a solution if the discriminant d = u?(1 + y?) + y*v> € K®. But since
(K, +, -) is an Euclidean field and since y, v #% 0 we have d € K @), Thus the criterion
(4.8) is fulfilled and any hyperbolic plane is vectorspacelike. O

From (5.6),(5.11) and (6.1) we obtain the result of A. Greil [1]:

(6.2) Let (E, G, o, =) be the classical hyperbolic plane (i.e. also the continuity axiom
is assumed), let o € E be fixed, let (E, +) be the corresponding K-loop and let a,b <
E \ {0} with 0,a # o, b then each point p € E can be written uniquely as a quasilinear
R-combination of aand b, i.e.: YVp e E (o, ) e RxR:p=a-a+B-b.
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