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CHAPTER 3

VECTOR ANALYSIS

The introductory section on vectors, Section 1.7, identified some basic properties that are
universal, in the sense that they occur in a similar fashion in spaces of different dimension.
In summary, these properties are (1) vectors can be represented as linear forms, with oper-
ations that include addition and multiplication by a scalar, (2) vectors have a commutative
and distributive dot product operation that associates a scalar with a pair of vectors and
depends on their relative orientations and hence is independent of the coordinate system,
and (3) vectors can be decomposed into components that can be identified as projections
onto the coordinate directions. In Section 2.2 we found that the components of vectors
could be identified as the elements of a column vector and that the scalar product of two
vectors corresponded to the matrix multiplication of the transpose of one (the transposition
makes it a row vector) with the column vector of the other.

The current chapter builds on these ideas, mainly in ways that are specific to three-
dimensional (3-D) physical space, by (1) introducing a quantity called a vector cross
product to permit the use of vectors to represent rotational phenomena and volumes in 3-D
space, (2) studying the transformational properties of vectors when the coordinate system
used to describe them is rotated or subjected to a reflection operation, (3) developing math-
ematical methods for treating vectors that are defined over a spatial region (vector fields),
with particular attention to quantities that depend on the spatial variation of the vector field,
including vector differential operators and integrals of vector quantities, and (4) extending
vector concepts to curvilinear coordinate systems, which are very useful when the sym-
metry of the coordinate system corresponds to a symmetry of the problem under study (an
example is the use of spherical polar coordinates for systems with spherical symmetry).

A key idea of the present chapter is that a quantity that is properly called a vector
must have the transformation properties that preserve its essential features under coordinate
transformation; there exist quantities with direction and magnitude that do not transform
appropriately and hence are not vectors. This study of transformation properties will, in a
subsequent chapter, ultimately enable us to generalize to related quantities such as tensors.
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Finally, we note that the methods developed in this chapter have direct application in
electromagnetic theory as well as in mechanics, and these connections are explored through
the study of examples.

3.1 REVIEW OF BASIC PROPERTIES

In Section 1.7 we established the following properties of vectors:

1. Vectors satisfy an addition law that corresponds to successive displacements that can
be represented by arrows in the underlying space. Vector addition is commutative
and associative: A+B= B+A and (A+B)+C=A+ (B+C).

2. A vector A can be multiplied by a scalar k; if k > 0 the result will be a vector in the
direction of A but with its length multiplied by k; if k < 0 the result will be in the
direction opposite to A but with its length mutiplied by |k|.

3. The vector A−B is interpreted as A+ (−1)B, so vector polynomials, e.g., A−2B+
3C, are well-defined.

4. A vector of unit length in the coordinate direction xi is denoted êi . An arbitrary vector
A can be written as a sum of vectors along the coordinate directions, as

A= A1ê1 + A2ê2 + · · · .
The Ai are called the components of A, and the operations in Properties 1 to 3 cor-
respond to the component formulas

G=A− 2B+ 3C =⇒ Gi = Ai − 2Bi + 3Ci , (each i).

5. The magnitude or length of a vector A, denoted |A| or A, is given in terms of its
components as

|A| = (A2
1 + A2

2 + · · ·
)1/2

.

6. The dot product of two vectors is given by the formula

A ·B= A1 B1 + A2 B2 + · · · ;
consequences are

|A|2 =A ·A, A ·B= |A| |B| cos θ,

where θ is the angle between A and B.
7. If two vectors are perpendicular to each other, their dot product vanishes and they are

termed orthogonal. The unit vectors of a Cartesian coordinate system are orthogonal:

êi · êj = δi j , (3.1)

where δi j is the Kronecker delta, Eq. (1.164).
8. The projection of a vector in any direction has an algebraic magnitude given by its

dot product with a unit vector in that direction. In particular, the projection of A on
the êi direction is Ai êi , with

Ai = êi ·A.
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9. The components of A in R3 are related to its direction cosines (cosines of the angles
that A makes with the coordinate axes) by the formulas

Ax = A cosα, Ay = A cosβ, Az = A cosγ,

and cos2 α + cos2 β + cos2 γ = 1.

In Section 2.2 we noted that matrices consisting of a single column could be used to
represent vectors. In particular, we found, illustrating for the 3-D space R3, the following
properties.

10. A vector A can be represented by a single-column matrix a whose elements are the
components of A, as in

A =⇒ a=
A1

A2
A3

.
The rows (i.e., individual elements Ai ) of a are the coefficients of the individual
members of the basis used to represent A, so the element Ai is associated with the
basis unit vector êi .

11. The vector operations of addition and multiplication by a scalar correspond exactly
to the operations of the same names applied to the single-column matrices represent-
ing the vectors, as illustrated here:

G=A− 2B+ 3C =⇒
G1

G2
G3

=
A1

A2
A3

− 2

B1
B2
B3

+ 3

C1
C2
C3


=
A1 − 2B1 + 3C1

A2 − 2B2 + 3C2
A3 − 2B3 + 3C3

, or g= a− 2b+ 3c.

It is therefore appropriate to call these single-column matrices column vectors.
12. The transpose of the matrix representing a vector A is a single-row matrix, called a

row vector:

aT = (A1 A2 A3).

The operations illustrated in Property 11 also apply to row vectors.
13. The dot product A ·B can be evaluated as aT b, or alternatively, because a and b are

real, as a†b. Moreover, aT b= bT a.

A ·B= aT b= (A1 A2 A3)

B1
B2
B3

= A1 B1 + A2 B2 + A3 B3.
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3.2 VECTORS IN 3-D SPACE

We now proceed to develop additional properties for vectors, most of which are applicable
only for vectors in 3-D space.

Vector or Cross Product

A number of quantities in physics are related to angular motion or the torque required to
cause angular acceleration. For example, angular momentum about a point is defined as
having a magnitude equal to the distance r from the point times the component of the
linear momentum p perpendicular to r—the component of p causing angular motion (see
Fig. 3.1). The direction assigned to the angular momentum is that perpendicular to both
r and p, and corresponds to the axis about which angular motion is taking place. The
mathematical construction needed to describe angular momentum is the cross product,
defined as

C=A×B= (AB sin θ)êc. (3.2)

Note that C, the result of the cross product, is stated to be a vector, with a magnitude that
is the product of the magnitudes of A, B and the sine of the angle θ ≤ π between A and B.
The direction of C, i.e., that of êc , is perpendicular to the plane of A and B, such that A, B,
and C form a right-handed system.1 This causes C to be aligned with the rotational axis,
with a sign that indicates the sense of the rotation.

From Fig. 3.2, we also see that A×B has a magnitude equal to the area of the parallel-
ogram formed by A and B, and with a direction normal to the parallelogram.

Other places the cross product is encountered include the formulas

v= ω× r and FM = qv×B.

The first of these equations is the relation between linear velocity v and and angular veloc-
ity ω, and the second equation gives the force FM on a particle of charge q and velocity v
in the magnetic induction field B (in SI units).

y

p sinθ

x

r

θ

p

FIGURE 3.1 Angular momentum about the origin, L= r× p.
L has magnitude r p sin θ and is directed out of the plane of the paper.

1The inherent ambiguity in this statement can be resolved by the following anthropomorphic prescription: Point the right hand
in the direction A, and then bend the fingers through the smaller of the two angles that can cause the fingers to point in the
direction B; the thumb will then point in the direction of C.
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FIGURE 3.2 Parallelogram of A×B.

We can get our right hands out of the analysis by compiling some algebraic properties of
the cross product. If the roles of A and B are reversed, the cross product changes sign, so

B×A=−A×B (anticommutation). (3.3)

The cross product also obeys the distributive laws

A× (B+C)=A×B+A×C, k(A×B)= (kA)×B, (3.4)

and when applied to unit vectors in the coordinate directions, we get

êi × ê j =
∑

k

εi jk êk . (3.5)

Here εi jk is the Levi-Civita symbol defined in Eq. (2.8); Eq. (3.5) therefore indicates, for
example, that êx × êx = 0, êx × êy = êz , but êy × êx =−êz .

Using Eq. (3.5) and writing A and B in component form, we can expand A×B to obtain

C=A×B= (Ax êx + Ay êy + Az êz)× (Bx êx + By êy + Bz êz)

= (Ax By − Ay Bx )(êx × êy)+ (Ax Bz − Az Bx )(êx × êz)

+ (Ay Bz − Az By)(êy × êz)

= (Ax By − Ay Bx )êz + (Ax Bz − Az Bx )(−êy)+ (Ay Bz − Az By)êx . (3.6)

The components of C are important enough to be displayed prominently:

Cx = Ay Bz − Az By, Cy = Az Bx − Ax Bz, Cz = Ax By − Ay Bx , (3.7)

equivalent to

Ci =
∑

jk

εi jk A j Bk . (3.8)
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Yet another way of expressing the cross product is to write it as a determinant. It is
straightforward to verify that Eqs. (3.7) are reproduced by the determinantal equation

C=

∣∣∣∣∣∣∣
êx êy êz

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣ . (3.9)

when the determinant is expanded in minors of its top row. The anticommutation of the
cross product now clearly follows if the rows for the components of A and B are inter-
changed.

We need to reconcile the geometric form of the cross product, Eq. (3.2), with the alge-
braic form in Eq. (3.6). We can confirm the magnitude of A× B by evaluating (from the
component form of C)

(A×B) · (A×B)= A2 B2 − (A ·B)2 = A2 B2 − A2 B2 cos2 θ

= A2 B2 sin2 θ. (3.10)

The first step in Eq. (3.10) can be verified by expanding its left-hand side in component
form, then collecting the result into the terms constituting the central member of the first
line of the equation.

To confirm the direction of C= A× B, we can check that A ·C= B ·C= 0, showing
that C (in component form) is perpendicular to both A and B. We illustrate for A ·C:

A ·C= Ax (Ay Bz − Az By)+ Ay(Az Bx − Ax Bz)+ Az(Ax By − Ay Bx )= 0. (3.11)

To verify the sign of C, it suffices to check special cases (e.g., A = êx , B = êy , or Ax =
By = 1, all other components zero).

Next, we observe that it is obvious from Eq. (3.2) that if C=A×B in a given coordinate
system, then that equation will also be satisfied if we rotate the coordinates, even though
the individual components of all three vectors will thereby be changed. In other words, the
cross product, like the dot product, is a rotationally invariant relationship.

Finally, note that the cross product is a quantity specifically defined for 3-D space. It is
possible to make analogous definitions for spaces of other dimensionality, but they do not
share the interpretation or utility of the cross product in R3.

Scalar Triple Product

While the various vector operations can be combined in many ways, there are two combi-
nations involving three operands that are of particular importance. We call attention first
to the scalar triple product, of the form A · (B×C). Taking (B×C) in the determinantal
form, Eq. (3.9), one can see that taking the dot product with A will cause the unit vector êx

to be replaced by Ax , with corresponding replacements to êy and êz . The overall result is

A · (B×C)=

∣∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣∣. (3.12)

We can draw a number of conclusions from this highly symmetric determinantal form.
To start, we see that the determinant contains no vector quantities, so it must evaluate
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FIGURE 3.3 A · (B×C) parallelepiped.

to an ordinary number. Because the left-hand side of Eq. (3.12) is a rotational invariant,
the number represented by the determinant must also be rotationally invariant, and can
therefore be identified as a scalar. Since we can permute the rows of the determinant (with
a sign change for an odd permutation, and with no sign change for an even permutation),
we can permute the vectors A, B, and C to obtain

A ·B×C= B ·C×A=C ·A×B=−A ·C×B, etc. (3.13)

Here we have followed common practice and dropped the parentheses surrounding the
cross product, on the basis that they must be understood to be present in order for the
expressions to have meaning. Finally, noting that B×C has a magnitude equal to the area
of the BC parallelog ram and a direction perpendicular to it, and that the dot product with
A will multiply that area by the projection of A on B × C, we see that the scalar triple
product gives us (±) the volume of the parallelepiped defined by A, B, and C; see Fig. 3.3.

Example 3.2.1 RECIPROCAL LATTICE

Let a, b, and c (not necessarily mutually perpendicular) represent the vectors that define a
crystal lattice. The displacements from one lattice point to another may then be written

R= naa+ nbb+ ncc, (3.14)
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with na , nb , and nc taking integral values. In the band theory of solids,2 it is useful to
introduce what is called a reciprocal lattice a′, b′, c′ such that

a · a′ = b · b′ = c · c′ = 1, (3.15)

and with

a · b′ = a · c′ = b · a′ = b · c′ = c · a′ = c · b′ = 0. (3.16)

The reciprocal-lattice vectors are easily constructed by calling on the fact that for any u
and v, u× v is perpendicular to both u and v; we have

a′ = b× c
a · b× c

, b′ = c× a
a · b× c

, c′ = a× b
a · b× c

. (3.17)

The scalar triple product causes these expressions to satisfy the scale condition of
Eq. (3.15). �

Vector Triple Product

The other triple product of importance is the vector triple product, of the form A ×
(B×C). Here the parentheses are essential since, for example, (êx × êx)× êy = 0, while
êx × (êx× êy)= êx × êz =−êy . Our interest is in reducing this triple product to a simpler
form; the result we seek is

A× (B×C)= B(A ·C)−C(A ·B). (3.18)

Equation (3.18), which for convenience we will sometimes refer to as the BAC–CAB rule,
can be proved by inserting components for all vectors and evaluating all the products, but it
is instructive to proceed in a more elegant fashion. Using the formula for the cross product
in terms of the Levi-Civita symbol, Eq. (3.8), we write

A× (B×C)=
∑

i

êi

∑
jk

εi jk A j

(∑
pq

εkpq BpCq

)

=
∑

i j

∑
pq

êi A j BpCq

∑
k

εi jkεkpq . (3.19)

The summation over k of the product of Levi-Civita symbols reduces, as shown in
Exercise 2.1.9, to δi pδ jq − δiqδ j p ; we are left with

A× (B×C)=
∑

i j

êi A j (Bi C j − B j Ci )=
∑

i

êi

Bi

∑
j

A j C j −Ci

∑
j

A j B j

,
which is equivalent to Eq. (3.18).

2It is often chosen to require a · a′ , etc., to be 2π rather than unity, because when Bloch states for a crystal (labeled by k) are
set up, a constituent atomic function in cell R enters with coefficient exp(ik ·R), and if k is changed by a reciprocal lattice step
(in, say, the a′ direction), the coefficient becomes exp(i[k+ a′] · R), which reduces to exp(2π ina) exp(ik · R) and therefore,
because exp(2π ina)= 1, to its original value. Thus, the reciprocal lattice identifies the periodicity in k. The unit cell of the k
vectors is called the Brillouin zone
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Exercises

3.2.1 If P= êx Px + êy Py and Q= êx Qx + êy Q y are any two nonparallel (also nonantiparal-
lel) vectors in the xy-plane, show that P×Q is in the z-direction.

3.2.2 Prove that (A×B) · (A×B)= (AB)2 − (A ·B)2.
3.2.3 Using the vectors

P= êx cos θ + êy sin θ,

Q= êx cosϕ − êy sinϕ,

R= êx cosϕ + êy sinϕ,

prove the familiar trigonometric identities

sin(θ + ϕ)= sin θ cosϕ + cos θ sinϕ,

cos(θ + ϕ)= cos θ cosϕ − sin θ sinϕ.

3.2.4 (a) Find a vector A that is perpendicular to

U= 2êx + êy − êz,

V= êx − êy + êz .

(b) What is A if, in addition to this requirement, we demand that it have unit
magnitude?

3.2.5 If four vectors a,b, c, and d all lie in the same plane, show that

(a× b)× (c× d)= 0.

Hint. Consider the directions of the cross-product vectors.

3.2.6 Derive the law of sines (see Fig. 3.4):

sinα

|A| =
sinβ

|B| =
sinγ

|C| .

3.2.7 The magnetic induction B is defined by the Lorentz force equation,

F= q(v×B).

A

C

B

β

α

γ

FIGURE 3.4 Plane triangle.
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Carrying out three experiments, we find that if

v= êx ,
F
q
= 2êz − 4êy,

v= êy,
F
q
= 4êx − êz,

v= êz,
F
q
= êy − 2êx .

From the results of these three separate experiments calculate the magnetic induction B.

3.2.8 You are given the three vectors A, B, and C,

A= êx + êy,

B= êy + êz,

C= êx − êz .

(a) Compute the scalar triple product, A · B × C. Noting that A = B + C, give a
geometric interpretation of your result for the scalar triple product.

(b) Compute A× (B×C).

3.2.9 Prove Jacobi’s identity for vector products:

a× (b× c)+ b× (c× a)+ c× (a× b)= 0.

3.2.10 A vector A is decomposed into a radial vector Ar and a tangential vector At . If r̂ is a
unit vector in the radial direction, show that

(a) Ar = r̂(A · r̂) and

(b) At =−r̂× (r̂×A).

3.2.11 Prove that a necessary and sufficient condition for the three (nonvanishing) vectors A,
B, and C to be coplanar is the vanishing of the scalar triple product

A ·B×C= 0.

3.2.12 Three vectors A, B, and C are given by

A= 3êx − 2êy + 2ẑ,

B= 6êx + 4êy − 2ẑ,

C=−3êx − 2êy − 4ẑ.

Compute the values of A ·B×C and A× (B×C),C× (A×B) and B× (C×A).

3.2.13 Show that

(A×B) · (C×D)= (A ·C)(B ·D)− (A ·D)(B ·C).
3.2.14 Show that

(A×B)× (C×D)= (A ·B×D)C− (A ·B×C)D.
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3.2.15 An electric charge q1 moving with velocity v1 produces a magnetic induction B
given by

B= µ0

4π
q1

v1 × r̂
r2 (mks units),

where r̂ is a unit vector that points from q1 to the point at which B is measured (Biot
and Savart law).

(a) Show that the magnetic force exerted by q1 on a second charge q2, velocity v2, is
given by the vector triple product

F2 = µ0

4π

q1q2

r2 v2 ×
(
v1 × r̂

)
.

(b) Write out the corresponding magnetic force F1 that q2 exerts on q1. Define your
unit radial vector. How do F1 and F2 compare?

(c) Calculate F1 and F2 for the case of q1 and q2 moving along parallel trajectories
side by side.

ANS.

(b) F1 =−µ0

4π

q1q2

r2 v1 ×
(
v2 × r̂

)
.

In general, there is no simple relation between

F1 and F2. Specifically, Newton’s third law,

F1 =−F2, does not hold.

(c) F1 = µ0

4π

q1q2

r2 v2r̂=−F2.

Mutual attraction.

3.3 COORDINATE TRANSFORMATIONS

As indicated in the chapter introduction, an object classified as a vector must have specific
transformation properties under rotation of the coordinate system; in particular, the com-
ponents of a vector must transform in a way that describes the same object in the rotated
system.

Rotations

Considering initially R2, and a rotation of the coordinate axes as shown in Fig. 3.5, we
wish to find how the components Ax and Ay of a vector A in the unrotated system are
related to A′x and A′y , its components in the rotated coordinate system. Perhaps the easiest
way to answer this question is by first asking how the unit vectors êx and êy are represented
in the new coordinates, after which we can perform vector addition on the new incarnations
of Ax êx and Ay êy .

From the right-hand part of Fig. 3.5, we see that

êx = cosϕê′x − sinϕê′y, and êy = sinϕê′x + cosϕê′y, (3.20)
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exˆ
exˆ

eyˆ eyˆ

ϕ ϕ

ϕϕ

ê′
y

ê′
x

sinϕ− ê′
y

cosϕê′
x

sinϕê′
x

cosϕê′
y

FIGURE 3.5 Left: Rotation of two-dimensional (2-D) coordinate axes through angle ϕ.
Center and right: Decomposition of êx and êy into their components in the rotated system.

so the unchanged vector A now takes the changed form

A= Ax êx + Ay êy = Ax (cosϕê′x − sinϕê′y)+ Ay(sinϕê′x + cosϕê′y)

= (Ax cosϕ + Ay sinϕ)ê′x + (−Ax sinϕ + Ay cosϕ)ê′y . (3.21)

If we write the vector A in the rotated (primed) coordinate system as

A= A′x ê′x + A′y ê′y,

we then have

A′x = Ax cosϕ + Ay sinϕ, A′y =−Ax sinϕ + Ay cosϕ, (3.22)

which is equivalent to the matrix equation

A′ =
(

A′x
A′y

)
=
(

cosϕ sinϕ
−sinϕ cosϕ

)(
Ax

Ay

)
. (3.23)

Suppose now that we start from A as given by its components in the rotated system,
(A′x , A′y), and rotate the coordinate system back to its original orientation. This will entail
a rotaton in the amount −ϕ, and corresponds to the matrix equation(

Ax

Ay

)
=
(

cos(−ϕ) sin(−ϕ)
−sin(−ϕ) cos(−ϕ)

)(
A′x
A′y

)
=
(

cosϕ −sinϕ
sinϕ cosϕ

)(
A′x
A′y

)
. (3.24)

Assigning the 2× 2 matrices in Eqs. (3.23) and (3.24) the respective names S and S′, we
see that these two equations are equivalent to A′ = SA and A= S′A′, with

S=
(

cosϕ sinϕ
−sinϕ cosϕ

)
and S′ =

(
cosϕ −sinϕ
sinϕ cosϕ

)
. (3.25)

Now, applying S to A and then S′ to SA (corresponding to first rotating the coordinate
system an amount +ϕ and then an amount −ϕ), we recover A, or

A= S′SA.

Since this result must be valid for any A, we conclude that S′ = S−1. We also see that
S′ = ST . We can check that SS′ = 1 by matrix multiplication:

SS′ =
(

cosϕ sinϕ
−sinϕ cosϕ

)(
cosϕ −sinϕ
sinϕ cosϕ

)
=
(

1 0
0 1

)
.
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Since S is real, the fact that S−1 = ST means that it is orthogonal. In summary, we have
found that the transformation connecting A and A′ (the same vector, but represented in the
rotated coordinate system) is

A′ = SA, (3.26)

with S an orthogonal matrix.

Orthogonal Transformations

It was no accident that the transformation describing a rotation in R2 was orthogonal, by
which we mean that the matrix effecting the transformation was an orthogonal matrix.

An instructive way of writing the transformation S is, returning to Eq. (3.20), to rewrite
those equations as

êx = (ê′x · êx )ê′x + (ê′y · êx )ê′y, êy = (ê′x · êy)ê′x + (ê′y · êy)ê′y . (3.27)

This corresponds to writing êx and êy as the sum of their projections on the orthogonal
vectors ê′x and ê′y . Now we can rewrite S as

S=
(

ê′x · êx ê′x · êy

ê′y · êx ê′y · êy

)
. (3.28)

This means that each row of S contains the components (in the unprimed coordinates) of
a unit vector (either ê′x or ê′y) that is orthogonal to the vector whose components are in the
other row. In turn, this means that the dot products of different row vectors will be zero,
while the dot product of any row vector with itself (because it is a unit vector) will be unity.
That is the deeper significance of an orthogonal matrix S; the µν element of SST is the
dot product formed from the µth row of S and the νth column of ST (which is the same as
the νth row of S). Since these row vectors are orthogonal, we will get zero if µ 6= ν, and
because they are unit vectors, we will get unity if µ= ν. In other words, SST will be a unit
matrix.

Before leaving Eq. (3.28), note that its columns also have a simple interpretation: Each
contains the components (in the primed coordinates) of one of the unit vectors of the
unprimed set. Thus the dot product formed from two different columns of S will van-
ish, while the dot product of any column with itself will be unity. This corresponds to the
fact that, for an orthogonal matrix, we also have ST S= 1.

Summarizing part of the above,

The transformation from one orthogonal Cartesian coordinate system to another Carte-
sian system is described by an orthogonal matrix.

In Chapter 2 we found that an orthogonal matrix must have a determinant that is real
and of magnitude unity, i.e., ±1. However, for rotations in ordinary space the value of the
determinant will always be +1. One way to understand this is to consider the fact that any
rotation can be built up from a large number of small rotations, and that the determinant
must vary continuously as the amount of rotation is changed. The identity rotation (i.e.,
no rotation at all) has determinant +1. Since no value close to +1 except +1 itself is a
permitted value for the determinant, rotations cannot change the value of the determinant.
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Reflections

Another possibility for changing a coordinate system is to subject it to a reflection
operation. For simplicity, consider first the inversion operation, in which the sign of each
coordinate is reversed. In R3, the transformation matrix S will be the 3 × 3 analog of
Eq. (3.28), and the transformation under discussion is to set ê′µ = −êµ, with µ = x , y,
and z. This will lead to

S=
−1 0 0

0 −1 0
0 0 −1

,
which clearly results in det S = −1. The change in sign of the determinant corresponds
to the change from a right-handed to a left-handed coordinate system (which obviously
cannot be accomplished by a rotation). Reflection about a plane (as in the image produced
by a plane mirror) also changes the sign of the determinant and the handedness of the
coordinate system; for example, reflection in the xy-plane changes the sign of êz , leaving
the other two unit vectors unchanged; the transformation matrix S for this transformation is

S=
1 0 0

0 1 0
0 0 −1

.
Its determinant is also −1.

The formulas for vector addition, multiplication by a scalar, and the dot product are
unaffected by a reflection transformation of the coordinates, but this is not true of the cross
product. To see this, look at the formula for any one of the components of A×B, and how
it would change under inversion (where the same, unchanged vectors in physical space
now have sign changes to all their components):

Cx : Ay Bz − Az By −→ (−Ay)(−Bz)− (−Az)(−By)= Ay Bz − Az By .

Note that this formula says that the sign of Cx should not change, even though it must in
order to describe the unchanged physical situation. The conclusion is that our transforma-
tion law fails for the result of a cross-product operation. However, the mathematics can
be salvaged if we classify B×C as a different type of quantity than B and C. Many texts
on vector analysis call vectors whose components change sign under coordinate reflec-
tion polar vectors, and those whose components do not then change sign axial vectors.
The term axial doubtless arises from the fact that cross products frequently describe phe-
nomena associated with rotation about the axis defined by the axial vector. Nowadays, it
is becoming more usual to call polar vectors just vectors, because we want that term to
describe objects that obey for all S the transformation law

A′ = SA (vectors), (3.29)

(and specifically without a restriction to S whose determinants are +1). Axial vectors, for
which the vector transformation law fails for coordinate reflections, are then referred to
as pseudovectors, and their transformation law can be expressed in the somewhat more
complicated form

C′ = det(S)SC (pseudovectors). (3.30)
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FIGURE 3.6 Inversion (right) of original coordinates (left) and the effect
on a vector A and a pseudovector B.

The effect of an inversion operation on a coordinate system and on a vector and a pseu-
dovector are shown in Fig. 3.6.

Since vectors and pseudovectors have different transformation laws, it is in general with-
out physical meaning to add them together.3 It is also usually meaningless to equate quan-
tities of different transformational properties: in A = B, both quantities must be either
vectors or pseudovectors.

Pseudovectors, of course, enter into more complicated expressions, of which an example
is the scalar triple product A ·B×C. Under coordinate reflection, the components of B×C
do not change (as observed earlier), but those of A are reversed, with the result that
A · B × C changes sign. We therefore need to reclassify it as a pseudoscalar. On the
other hand, the vector triple product, A × (B × C), which contains two cross products,
evaluates, as shown in Eq. (3.18), to an expression containing only legitimate scalars and
(polar) vectors. It is therefore proper to identify A × (B × C) as a vector. These cases
illustrate the general principle that a product with an odd number of pseudo quantities is
“pseudo,” while those with even numbers of pseudo quantities are not.

Successive Operations

One can carry out a succession of coordinate rotations and/or reflections by applying the
relevant orthogonal transformations. In fact, we already did this in our introductory discus-
sion forR2 where we applied a rotation and then its inverse. In general, if R and R′ refer to
such operations, the application to A of R followed by the application of R′ corresponds to

A′ = S(R′)S(R)A, (3.31)

and the overall result of the two transformations can be identified as a single transformation
whose matrix S(R′R) is the matrix product S(R′)S(R).

3The big exception to this is in beta-decay weak interactions. Here the universe distinguishes between right- and left-handed
systems, and we add polar and axial vector interactions.
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Two points should be noted:

1. The operations take place in right-to-left order: The rightmost operator is the one
applied to the original A; that to its left then applies to the result of the first opera-
tion, etc.

2. The combined operation R′R is a transformation between two orthogonal coordinate
systems and therefore can be described by an orthogonal matrix: The product of two
orthogonal matrices is orthogonal.

Exercises

3.3.1 A rotation ϕ1 + ϕ2 about the z-axis is carried out as two successive rotations ϕ1 and
ϕ2, each about the z-axis. Use the matrix representation of the rotations to derive the
trigonometric identities

cos(ϕ1 + ϕ2)= cosϕ1 cosϕ2 − sinϕ1 sinϕ2,

sin(ϕ1 + ϕ2)= sinϕ1 cosϕ2 + cosϕ1 sinϕ2.

3.3.2 A corner reflector is formed by three mutually perpendicular reflecting surfaces. Show
that a ray of light incident upon the corner reflector (striking all three surfaces) is
reflected back along a line parallel to the line of incidence.
Hint. Consider the effect of a reflection on the components of a vector describing the
direction of the light ray.

3.3.3 Let x and y be column vectors. Under an orthogonal transformation S, they become
x′ = Sx and y′ = Sy. Show that (x′)T y′ = xT y, a result equivalent to the invariance of
the dot product under a rotational transformation.

3.3.4 Given the orthogonal transformation matrix S and vectors a and b,

S=
 0.80 0.60 0.00
−0.48 0.64 0.60

0.36 −0.48 0.80

, a=
1

0
1

, b=
 0

2
−1

,
(a) Calculate det(S).
(b) Verify that a · b is invariant under application of S to a and b.
(c) Determine what happens to a× b under application of S to a and b. Is this what

is expected?

3.3.5 Using a and b as defined in Exercise 3.3.4, but with

S=
 0.60 0.00 0.80
−0.64 −0.60 0.48
−0.48 0.80 0.36

 and c=
2

1
3

,
(a) Calculate det(S).

Apply S to a, b, and c, and determine what happens to

(b) a× b,
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(c) (a× b) · c,
(d) a× (b× c).
(e) Classify the expressions in (b) through (d) as scalar, vector, pseudovector, or pseu-

doscalar.

3.4 ROTATIONS IN R3

Because of its practical importance, we discuss now in some detail the treatment of
rotations in R3. An obvious starting point, based on our experience in R2, would be to
write the 3× 3 matrix S of Eq. (3.28), with rows that describe the orientations of a rotated
(primed) set of unit vectors in terms of the original (unprimed) unit vectors:

S=

ê′1 · ê1 ê′1 · ê2 ê′1 · ê3

ê′2 · ê1 ê′2 · ê2 ê′2 · ê3

ê′3 · ê1 ê′3 · ê2 ê′3 · ê3

 (3.32)

We have switched the coordinate labels from x , y, z to 1, 2, 3 for convenience in some of
the formulas that use Eq. (3.32). It is useful to make one observation about the elements
of S, namely sµν = ê′µ · êν . This dot product is the projection of ê′µ onto the êν direction,
and is therefore the change in xν that is produced by a unit change in x ′µ. Since the relation
between the coordinates is linear, we can identify ê′µ · êν as ∂xν/∂x ′µ, so our transformation
matrix S can be written in the alternate form

S=

∂x1/∂x ′1 ∂x2/∂x ′1 ∂x3/∂x ′1
∂x1/∂x ′2 ∂x2/∂x ′2 ∂x3/∂x ′2
∂x1/∂x ′3 ∂x2/∂x ′3 ∂x3/∂x ′3

. (3.33)

The argument we made to evaluate ê′µ · êν could as easily have been made with the roles
of the two unit vectors reversed, yielding instead of ∂xν/∂x ′µ the derivative ∂x ′µ/∂xν . We
then have what at first may seem to be a surprising result:

∂xν
∂x ′µ
= ∂x ′µ
∂xν

. (3.34)

A superficial look at this equation suggests that its two sides would be reciprocals. The
problem is that we have not been notationally careful enough to avoid ambiguity: the
derivative on the left-hand side is to be taken with the other x ′ coordinates fixed, while that
on the right-hand side is with the other unprimed coordinates fixed. In fact, the equality in
Eq. (3.34) is needed to make S an orthogonal matrix.

We note in passing that the observation that the coordinates are related linearly restricts
the current discussion to Cartesian coordinate systems. Curvilinear coordinates are treated
later.

Neither Eq. (3.32) nor Eq. (3.33) makes obvious the possibility of relations among the
elements of S. In R2, we found that all the elements of S depended on a single variable,
the rotation angle. In R3, the number of independent variables needed to specify a general
rotation is three: Two parameters (usually angles) are needed to specify the direction of
ê′3; then one angle is needed to specify the direction of ê′1 in the plane perpendicular to ê′3;
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at this point the orientation of ê′2 is completely determined. Therefore, of the nine elements
of S, only three are in fact independent. The usual parameters used to specify R3 rotations
are the Euler angles.4 It is useful to have S given explicitly in terms of them, as the
Lagrangian formulation of mechanics requires the use of a set of independent variables.

The Euler angles describe an R3 rotation in three steps, the first two of which have
the effect of fixing the orientation of the new ê3 axis (the polar direction in spherical
coordinates), while the third Euler angle indicates the amount of subsequent rotation about
that axis. The first two steps do more than identify a new polar direction; they describe
rotations that cause the realignment. As a result, we can obtain the matrix representations
of these (and the third rotation), and apply them sequentially (i.e., as a matrix product) to
obtain the overall effect of the rotation.

The three steps describing rotation of the coordinate axes are the following (also illus-
trated in Fig. 3.7):

1. The coordinates are rotated about the ê3 axis counterclockwise (as viewed from posi-
tive ê3) through an angle α in the range 0≤ α < 2π , into new axes denoted ê′1, ê′2, ê′3.
(The polar direction is not changed; the ê3 and ê′3 axes coincide.)

2. The coordinates are rotated about the ê′2 axis counterclockwise (as viewed from posi-
tive ê′2) through an angle β in the range 0≤ β ≤ π , into new axes denoted ê′′1 , ê′′2 , ê′′3 .
(This tilts the polar direction toward the ê′1 direction, but leaves ê′2 unchanged.)

3. The coordinates are now rotated about the ê′′3 axis counterclockwise (as viewed from
positive ê′′3) through an angle γ in the range 0≤ γ < 2π , into the final axes, denoted
ê′′′1 , ê′′′2 , ê′′′3 . (This rotation leaves the polar direction, ê′′3 , unchanged.)

In terms of the usual spherical polar coordinates (r, θ, ϕ), the final polar axis is at the
orientation θ = β , ϕ = α. The final orientations of the other axes depend on all three Euler
angles.

We now need the transformation matrices. The first rotation causes ê′1 and ê′2 to
remain in the xy-plane, and has in its first two rows and columns exactly the same form

(b) (c)

x ′′
3

x ′′
1 x2

x2

x1 x ′
1

x ′
1

x ′
2

ββ

β
α

α
α

x3= x ′
3

x3= x ′
3 x3= x ′

3

x ′
2 =

(a)

γ

γ

=x ′′
3

x ′′
1x ′′

2

x ′′′
3

=x ′
2 x ′′

2x ′′′
1

FIGURE 3.7 Euler angle rotations: (a) about ê3 through angle α; (b) about ê′2 through
angle β; (c) about ê′′3 through angle γ .

4There are almost as many definitions of the Euler angles as there are authors. Here we follow the choice generally made by
workers in the area of group theory and the quantum theory of angular momentum.
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as S in Eq. (3.25):

S1(α)=
 cosα sinα 0
−sinα cosα 0

0 0 1

. (3.35)

The third row and column of S1 indicate that this rotation leaves unchanged the ê3 com-
ponent of any vector on which it operates. The second rotation (applied to the coordinate
system as it exists after the first rotation) is in the ê′3ê′1 plane; note that the signs of sinβ
have to be consistent with a cyclic permutation of the axis numbering:

S2(β)=
cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

.
The third rotation is like the first, but with rotation amount γ :

S3(γ )=
 cosγ sinγ 0
−sinγ cosγ 0

0 0 1

.
The total rotation is described by the triple matrix product

S(α,β, γ )= S3(γ )S2(β)S1(α). (3.36)

Note the order: S1(α) operates first, then S2(β), and finally S3(γ ). Direct multiplication
gives

S(α,β, γ )= cosγ cosβ cosα − sinγ sinα cosγ cosβ sinα + sinγ cosα −cosγ sinβ
−sinγ cosβ cosα − cosγ sinα −sinγ cosβ sinα + cosγ cosα sinγ sinβ

sinβ cosα sinβ sinα cosβ

.
(3.37)

In case they are wanted, note that the elements si j in Eq. (3.37) give the explicit forms of
the dot products ê′′′i · ê j (and therefore also the partial derivatives ∂xi/∂x ′′′j ).

Note that each of S1, S2, and S3 are orthogonal, with determinant+1, so that the overall
S will also be orthogonal with determinant +1.

Example 3.4.1 AN R3 ROTATION

Consider a vector originally with components (2,−1,3). We want its components in
a coordinate system reached by Euler angle rotations α = β = γ = π/2. Evaluating
S(α,β, γ ):

S(α,β, γ )=
−1 0 0

0 0 1
0 1 0

.
A partial check on this value of S is obtained by verifying that det(S)=+1.
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Then, in the new coordinates, our vector has components−1 0 0
0 0 1
0 1 0

 2
−1

3

=
−2

3
−1

.
The reader should check this result by visualizing the rotations involved. �

Exercises

3.4.1 Another set of Euler rotations in common use is

(1) a rotation about the x3-axis through an angle ϕ, counterclockwise,
(2) a rotation about the x ′1-axis through an angle θ , counterclockwise,
(3) a rotation about the x ′′3 -axis through an angle ψ , counterclockwise.

If

α = ϕ − π/2 ϕ = α + π/2
β = θ or θ = β
γ =ψ + π/2 ψ = γ − π/2,

show that the final systems are identical.

3.4.2 Suppose the Earth is moved (rotated) so that the north pole goes to 30◦ north, 20◦ west
(original latitude and longitude system) and the 10◦ west meridian points due south
(also in the original system).

(a) What are the Euler angles describing this rotation?
(b) Find the corresponding direction cosines.

ANS. (b) S=
0.9551 −0.2552 −0.1504

0.0052 0.5221 −0.8529
0.2962 0.8138 0.5000

.
3.4.3 Verify that the Euler angle rotation matrix, Eq. (3.37), is invariant under the transfor-

mation

α→ α + π, β→−β, γ → γ − π.

3.4.4 Show that the Euler angle rotation matrix S(α,β, γ ) satisfies the following relations:

(a) S−1(α,β, γ )= S̃(α,β, γ ),
(b) S−1(α,β, γ )= S(−γ,−β,−α).

3.4.5 The coordinate system (x, y, z) is rotated through an angle8 counterclockwise about an
axis defined by the unit vector n̂ into system (x ′, y′, z′). In terms of the new coordinates
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the radius vector becomes

r′ = r cos8+ r× n sin8+ n̂(n̂ · r)(1− cos8).

(a) Derive this expression from geometric considerations.

(b) Show that it reduces as expected for n̂= êz . The answer, in matrix form, appears
in Eq. (3.35).

(c) Verify that r ′2 = r2.

3.5 DIFFERENTIAL VECTOR OPERATORS

We move now to the important situation in which a vector is associated with each point
in space, and therefore has a value (its set of components) that depends on the coordinates
specifying its position. A typical example in physics is the electric field E(x, y, z), which
describes the direction and magnitude of the electric force if a unit “test charge” was placed
at x, y, z. The term field refers to a quantity that has values at all points of a region; if the
quantity is a vector, its distribution is described as a vector field. While we already have
a standard name for a simple algebraic quantity which is assigned a value at all points of
a spatial region (it is called a function), in physics contexts it may also be referred to as a
scalar field.

Physicists need to be able to characterize the rate at which the values of vectors (and also
scalars) change with position, and this is most effectively done by introducing differential
vector operator concepts. It turns out that there are a large number of relations between
these differential operators, and it is our current objective to identify such relations and
learn how to use them.

Gradient, ∇

Our first differential operator is that known as the gradient, which characterizes the change
of a scalar quantity, here ϕ, with position. Working in R3, and labeling the coordinates x1,
x2, x3, we write ϕ(r) as the value of ϕ at the point r= x1ê1 + x2ê2 + x3ê3, and consider
the effect of small changes dx1, dx2, dx3, respectively, in x1, x2, and x3. This situation
corresponds to that discussed in Section 1.9, where we introduced partial derivatives to
describe how a function of several variables (there x , y, and z) changes its value when these
variables are changed by respective amounts dx , dy, and dz. The equation governing this
process is Eq. (1.141).

To first order in the differentials dxi , ϕ in our present problem changes by an amount

dϕ =
(
∂ϕ

∂x1

)
dx1 +

(
∂ϕ

∂x2

)
dx2 +

(
∂ϕ

∂x3

)
dx3, (3.38)

which is of the form corresponding to the dot product of

∇ϕ =
∂ϕ/∂x1
∂ϕ/∂x2
∂ϕ/∂x3

 and dr=
dx1

dx2
dx3

.



ArfKen_Ch03-9780123846549.tex

144 Chapter 3 Vector Analysis

These quantities can also be written

∇ϕ =
(
∂ϕ

∂x1

)
ê1 +

(
∂ϕ

∂x2

)
ê2 +

(
∂ϕ

∂x3

)
ê3, (3.39)

dr= dx1ê1 + dx2ê2 + dx3ê3, (3.40)

in terms of which we have

dϕ = (∇ϕ) · dr. (3.41)

We have given the 3× 1 matrix of derivatives the name ∇ϕ (often referred to in speech as
“del phi” or “grad phi”); we give the differential of position its customary name dr.

The notation of Eqs. (3.39) and (3.41) is really only appropriate if ∇ϕ is actually a
vector, because the utility of the present approach depends on our ability to use it in coor-
dinate systems of arbitrary orientation. To prove that ∇ϕ is a vector, we must show that it
transforms under rotation of the coordinate system according to

(∇ϕ)′ = S (∇ϕ). (3.42)

Taking S in the form given in Eq. (3.33), we examine S(∇ϕ). We have

S(∇ϕ)=

∂x1/∂x ′1 ∂x2/∂x ′1 ∂x3/∂x ′1
∂x1/∂x ′2 ∂x2/∂x ′2 ∂x3/∂x ′2
∂x1/∂x ′3 ∂x2/∂x ′3 ∂x3/∂x ′3


∂ϕ/∂x1
∂ϕ/∂x2
∂ϕ/∂x3



=



3∑
ν=1

∂xν
∂x ′1

∂ϕ

∂xν
3∑
ν=1

∂xν
∂x ′2

∂ϕ

∂xν
3∑
ν=1

∂xν
∂x ′3

∂ϕ

∂xν


. (3.43)

Each of the elements in the final expression in Eq. (3.43) is a chain-rule expression for
∂ϕ/∂x ′µ, µ = 1,2,3, showing that the transformation did produce (∇ϕ)′, the representa-
tion of ∇ϕ in the rotated coordinates.

Having now established the legitimacy of the form ∇ϕ, we proceed to give ∇ a life of
its own. We therefore define (calling the coordinates x , y, z)

∇ = êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
. (3.44)

We note that ∇ is a vector differential operator, capable of operating on a scalar (such
as ϕ) to produce a vector as the result of the operation. Because a differential operator
only operates on what is to its right, we have to be careful to maintain the correct order in
expressions involving ∇, and we have to use parentheses when necessary to avoid ambi-
guity as to what is to be differentiated.
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The gradient of a scalar is extremely important in physics and engineering, as it
expresses the relation between a force field F(r) experienced by an object at r and the
related potential V (r),

F(r)=−∇V (r). (3.45)

The minus sign in Eq. (3.45) is important; it causes the force exerted by the field to be in
a direction that lowers the potential. We consider later (in Section 3.9) the conditions that
must be satisfied if a potential corresponding to a given force can exit.

The gradient has a simple geometric interpretation. From Eq. (3.41), we see that, if
dr is constrained to have a fixed magnitude, the direction of dr that maximizes dϕ will
be when ∇ϕ and dr are collinear. So, the direction of most rapid increase in ϕ is the
gradient direction, and the magnitude of the gradient is the directional derivative of ϕ in
that direction. We now see that −∇V, in Eq. (3.45), is the direction of most rapid decrease
in V, and is the direction of the force associated with the potential V.

Example 3.5.1 GRADIENT OF rn

As a first step toward computation of ∇rn , let’s look at the even simpler ∇r. We begin by
writing r = (x2 + y2 + z2)1/2, from which we get

∂r

∂x
= x

(x2 + y2 + z2)1/2
= x

r
,

∂r

∂y
= y

r
,

∂r

∂z
= z

r
. (3.46)

From these formulas we construct

∇r = x

r
êx + y

r
êy + z

r
êz = 1

r
(x êx + yêy + zêz)= r

r
. (3.47)

The result is a unit vector in the direction of r, denoted r̂. For future reference, we note
that

r̂= x

r
êx + y

r
êy + z

r
êz (3.48)

and that Eq. (3.47) takes the form

∇r = r̂. (3.49)

The geometry of r and r̂ is illustrated in Fig. 3.8.

y

ϕ x

r y

r̂

x

x/r

y/r

FIGURE 3.8 Unit vector r̂ (in xy-plane).
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Continuing now to ∇rn , we have

∂rn

∂x
= nrn−1 ∂r

∂x
,

with corresponding results for the y and z derivatives. We get

∇rn = nrn−1
∇r = nrn−1r̂. (3.50)

�

Example 3.5.2 COULOMB’S LAW

In electrostatics, it is well known that a point charge produces a potential proportional
to 1/r , where r is the distance from the charge. To check that this is consistent with the
Coulomb force law, we compute

F=−∇

(
1

r

)
.

This is a case of Eq. (3.50) with n =−1, and we get the expected result

F= 1

r2 r̂.

�

Example 3.5.3 GENERAL RADIAL POTENTIAL

Another situation of frequent occurrence is that the potential may be a function only of the
radial distance from the origin, i.e., ϕ = f (r). We then calculate

∂ϕ

∂x
= d f (r)

dr

∂r

∂x
, etc.,

which leads, invoking Eq. (3.49), to

∇ϕ = d f (r)

dr
∇r= d f (r)

dr
r̂. (3.51)

This result is in accord with intuition; the direction of maximum increase in ϕ must be
radial, and numerically equal to dϕ/dr . �

Divergence, ∇·
The divergence of a vector A is defined as the operation

∇ ·A= ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
. (3.52)

The above formula is exactly what one might expect given both the vector and differential-
operator character of ∇.

After looking at some examples of the calculation of the divergence, we will discuss its
physical significance.
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Example 3.5.4 DIVERGENCE OF COORDINATE VECTOR

Calculate ∇ · r:

∇ · r=
(

êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z

)
· (êx x + êy y + êzz

)
= ∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
,

which reduces to ∇ · r= 3. �

Example 3.5.5 DIVERGENCE OF CENTRAL FORCE FIELD

Consider next ∇ · f (r)r̂. Using Eq. (3.48), we write

∇ · f (r)r̂=
(

êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z

)
·
(

x f (r)

r
êx + y f (r)

r
êy + z f (r)

r
êz

)
.

= ∂

∂x

(
x f (r)

r

)
+ ∂

∂y

(
y f (r)

r

)
+ ∂

∂z

(
z f (r)

r

)
.

Using

∂

∂x

(
x f (r)

r

)
= f (r)

r
− x f (r)

r2

∂r

∂x
+ x

r

d f (r)

dr

∂r

∂x
= f (r)

[
1

r
− x2

r3

]
+ x2

r2

d f (r)

dr

and corresponding formulas for the y and z derivatives, we obtain after simplification

∇ · f (r)r̂= 2
f (r)

r
+ d f (r)

dr
. (3.53)

In the special case f (r)= rn , Eq. (3.53) reduces to

∇ · rn r̂= (n + 2)rn−1. (3.54)

For n = 1, this reduces to the result of Example 3.5.4. For n = −2, corresponding to the
Coulomb field, the divergence vanishes, except at r = 0, where the differentiations we
performed are not defined. �

If a vector field represents the flow of some quantity that is distributed in space, its
divergence provides information as to the accumulation or depletion of that quantity at the
point at which the divergence is evaluated. To gain a clearer picture of the concept, let us
suppose that a vector field v(r) represents the velocity of a fluid5 at the spatial points r,
and that ρ(r) represents the fluid density at r at a given time t . Then the direction and
magnitude of the flow rate at any point will be given by the product ρ(r)v(r).

Our objective is to calculate the net rate of change of the fluid density in a volume
element at the point r. To do so, we set up a parallelepiped of dimensions dx , dy, dz
centered at r and with sides parallel to the xy, xz, and yz planes. See Fig. 3.9. To first
order (infinitesimal dr and dt ), the density of fluid exiting the parallelepiped per unit time

5It may be helpful to think of the fluid as a collection of molecules, so the number per unit volume (the density) at any point is
affected by the flow in and out of a volume element at the point.
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−ρvx⏐x−dx/2

+ρvx⏐x + dx/2

dx

dydz

FIGURE 3.9 Outward flow of ρv from a volume element in the ±x directions. The
quantities ±ρvx must be multiplied by dy dz to represent the total flux through the

bounding surfaces at x ± dx/2.

through the yz face located at x − (dx/2) will be

Flow out, face at x − dx

2
: − (ρvx )

∣∣∣
(x−dx/2,y,z)

dy dz.

Note that only the velocity component vx is relevant here. The other components of v
will not cause motion through a yz face of the parallelepiped. Also, note the following:
dy dz is the area of the yz face; the average of ρvx over the face is to first order its value at
(x−dx/2, y, z), as indicated, and the amount of fluid leaving per unit time can be identified
as that in a column of area dy dz and height vx . Finally, keep in mind that outward flow
corresponds to that in the −x direction, explaining the presence of the minus sign.

We next compute the outward flow through the yz planar face at x + dx/2. The result is

Flow out, face at x + dx

2
: + (ρvx )

∣∣∣
(x+dx/2,y,z)

dy dz.

Combining these, we have for both yz faces(
−(ρvx )

∣∣∣
x−dx/2

+ (ρvx )

∣∣∣
x+dx/2

)
dy dz =

(
∂(ρvx )

∂x

)
dx dy dz.

Note that in combining terms at x − dx/2 and x + dx/2 we used the partial derivative
notation, because all the quantities appearing here are also functions of y and z. Finally,
adding corresponding contributions from the other four faces of the parallelepiped, we
reach

Net flow out
per unit time =

[
∂

∂x
(ρvx )+ ∂

∂y
(ρvy)+ ∂

∂z
(ρvz)

]
dx dy dz

=∇ · (ρv)dx dy dz. (3.55)

We now see that the name divergence is aptly chosen. As shown in Eq. (3.55), the
divergence of the vector ρv represents the net outflow per unit volume, per unit time. If
the physical problem being described is one in which fluid (molecules) are neither created
or destroyed, we will also have an equation of continuity, of the form

∂ρ

∂t
+∇ · (ρv)= 0. (3.56)

This equation quantifies the obvious statement that a net outflow from a volume element
results in a smaller density inside the volume.

When a vector quantity is divergenceless (has zero divergence) in a spatial region, we
can interpret it as describing a steady-state “fluid-conserving” flow (flux) within that region
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A
B

C

(b)(a)

FIGURE 3.10 Flow diagrams: (a) with source and sink; (b) solenoidal. The divergence
vanishes at volume elements A and C, but is negative at B.

(even if the vector field does not represent material that is moving). This is a situation that
arises frequently in physics, applying in general to the magnetic field, and, in charge-free
regions, also to the electric field. If we draw a diagram with lines that follow the flow paths,
the lines (depending on the context) may be called stream lines or lines of force. Within a
region of zero divergence, these lines must exit any volume element they enter; they cannot
terminate there. However, lines will begin at points of positive divergence (sources) and
end at points where the divergence is negative (sinks). Possible patterns for a vector field
are shown in Fig. 3.10.

If the divergence of a vector field is zero everywhere, its lines of force will consist
entirely of closed loops, as in Fig. 3.10(b); such vector fields are termed solenoidal. For
emphasis, we write

∇ ·B= 0 everywhere −→ B is solenoidal. (3.57)

Curl, ∇×
Another possible operation with the vector operator ∇ is to take its cross product with a
vector. Using the established formula for the cross product, and being careful to write the
derivatives to the left of the vector on which they are to act, we obtain

∇×V= êx

(
∂

∂y
Vz − ∂

∂z
Vy

)
+ êy

(
∂

∂z
Vx − ∂

∂x
Vz

)
+ êz

(
∂

∂x
Vy − ∂

∂y
Vx

)

=

∣∣∣∣∣∣∣
êx êy êz

∂/∂x ∂/∂y ∂/∂z

Vx Vy Vz

∣∣∣∣∣∣∣. (3.58)

This vector operation is called the curl of V. Note that when the determinant in Eq. (3.58)
is evaluated, it must be expanded in a way that causes the derivatives in the second row to
be applied to the functions in the third row (and not to anything in the top row); we will
encounter this situation repeatedly, and will identify the evaluation as being from the top
down.

Example 3.5.6 CURL OF A CENTRAL FORCE FIELD

Calculate ∇× [ f (r)r̂]. Writing

r̂= x

r
êx + y

r
êy + z

r
êz,
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and remembering that ∂r/∂y = y/r and ∂r/∂z = z/r , the x-component of the result is
found to be [

∇× [ f (r)r̂]]x =
∂

∂y

z f (r)

r
− ∂

∂z

y f (r)

r

= z

(
d

dr

f (r)

r

)
∂r

∂y
− y

(
d

dr

f (r)

r

)
∂r

∂z

= z

(
d

dr

f (r)

r

)
y

r
− y

(
d

dr

f (r)

r

)
z

r
= 0.

By symmetry, the other components are also zero, yielding the final result

∇× [ f (r)r̂] = 0. (3.59)

�

Example 3.5.7 A NONZERO CURL

Calculate F = ∇ × (−yêx + x êy), which is of the form ∇ × b, where bx = −y, by = x ,
bz = 0. We have

Fx = ∂bz

∂y
− ∂by

∂z
= 0, Fy = ∂bx

∂z
− ∂vz

∂x
= 0, Fz = ∂by

∂x
− ∂bx

∂y
= 2,

so F= 2êz . �

The results of these two examples can be better understood from a geometric interpreta-
tion of the curl operator. We proceed as follows: Given a vector field B, consider the line
integral

∮
B · ds for a small closed path. The circle through the integral sign is a signal

that the path is closed. For simplicity in the computations, we take a rectangular path in
the xy-plane, centered at a point (x0, y0), of dimensions 1x ×1y, as shown in Fig. 3.11.
We will traverse this path in the counterclockwise direction, passing through the four seg-
ments labeled 1 through 4 in the figure. Since everywhere in this discussion z = 0, we do
not show it explicitly.

x

y

4

3

2

1

2 2
x0− Δx , y0− Δy

2 2
x0+ Δx , y0− Δy

2 2
x0+ Δx , y0+ Δy

2 2
x0− Δx , y0+ Δy

FIGURE 3.11 Path for computing circulation at (x0, y0).
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Segment 1 of the path contributes to the integral

Segment 1=
x0+1x/2∫

x0−1x/2

Bx (x, y0 −1y/2)dx ≈ Bx (x0, y0 −1y/2)1x,

where the approximation, replacing Bx by its value at the middle of the segment, is good
to first order. In a similar fashion, we have

Segment 2=
y0+1y/2∫

y0−1y/2

By(x0 +1x/2, y)dy ≈ By(x0 +1x/2, y0)1y,

Segment 3=
x0−1x/2∫

x0+1x/2

Bx (x, y0 +1y/2)dx ≈−Bx (x0, y0 +1y/2)1x,

Segment 4=
y0−1y/2∫

y0+1y/2

By(x0 −1x/2, y)dy ≈−By(x0 −1x/2, y0)1y.

Note that because the paths of segments 3 and 4 are in the direction of decrease in the value
of the integration variable, we obtain minus signs in the contributions of these segments.
Combining the contributions of Segments 1 and 3, and those of Segments 2 and 4, we have

Segments 1+ 3= (Bx (x0, y0 −1y/2)− Bx (x0, y0 +1y/2)
)
1x ≈−∂Bx

∂y
1y1x,

Segments 2+ 4= (By(x0 +1x/2, y0)− By(x0 −1x/2, y0)
)
1y ≈+∂By

∂x
1x1y.

Combining these contributions to obtain the value of the entire line integral, we have∮
B · ds≈

(
∂By

∂x
− ∂Bx

∂y

)
1x1y ≈ [∇×B]z1x1y. (3.60)

The thing to note is that a nonzero closed-loop line integral of B corresponds to a nonzero
value of the component of ∇ × B normal to the loop. In the limit of a small loop, the line
integral will have a value proportional to the loop area; the value of the line integral per
unit area is called the circulation (in fluid dynamics, it is also known as the vorticity).
A nonzero circulation corresponds to a pattern of stream lines that form closed loops.
Obviously, to form a closed loop, a stream line must curl; hence the name of the ∇×
operator.

Returning now to Example 3.5.6, we have a situation in which the lines of force must
be entirely radial; there is no possibility to form closed loops. Accordingly, we found this
example to have a zero curl. But, looking next at Example 3.5.7, we have a situation in
which the stream lines of −yêx + x êy form counterclockwise circles about the origin, and
the curl is nonzero.
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We close the discussion by noting that a vector whose curl is zero everywhere is termed
irrotational. This property is in a sense the opposite of solenoidal, and deserves a parallel
degree of emphasis:

∇×B= 0 everywhere −→ B is irrotational. (3.61)

Exercises

3.5.1 If S(x, y, z)= (x2 + y2 + z2
)−3/2

, find

(a) ∇S at the point (1,2,3),
(b) the magnitude of the gradient of S, |∇S| at (1,2,3), and
(c) the direction cosines of ∇S at (1,2,3).

3.5.2 (a) Find a unit vector perpendicular to the surface

x2 + y2 + z2 = 3

at the point (1,1,1).
(b) Derive the equation of the plane tangent to the surface at (1,1,1).

ANS. (a)
(
êx + êy + êz

)
/
√

3, (b) x + y + z = 3.

3.5.3 Given a vector r12 = êx (x1− x2)+ êy(y1− y2)+ êz(z1− z2), show that ∇1r12 (gradient
with respect to x1, y1, and z1 of the magnitude r12) is a unit vector in the direction of
r12.

3.5.4 If a vector function F depends on both space coordinates (x, y, z) and time t , show that

dF= (dr ·∇)F+ ∂F
∂t

dt.

3.5.5 Show that ∇(uv) = v∇u + u∇v, where u and v are differentiable scalar functions of
x, y, and z.

3.5.6 For a particle moving in a circular orbit r= êxr cosωt + êyr sinωt :

(a) Evaluate r× ṙ, with ṙ= dr/dt = v.

(b) Show that r̈+ω2r= 0 with r̈= dv/dt .

Hint. The radius r and the angular velocity ω are constant.

ANS. (a) êzωr2.

3.5.7 Vector A satisfies the vector transformation law, Eq. (3.26). Show directly that its time
derivative dA/dt also satisfies Eq. (3.26) and is therefore a vector.

3.5.8 Show, by differentiating components, that

(a)
d

dt
(A ·B)= dA

dt
·B+A · dB

dt
,
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(b)
d

dt
(A×B)= dA

dt
×B+A× dB

dt
,

just like the derivative of the product of two algebraic functions.

3.5.9 Prove ∇ · (a× b)= b · (∇× a)− a · (∇× b).

Hint. Treat as a scalar triple product.

3.5.10 Classically, orbital angular momentum is given by L = r × p, where p is the lin-
ear momentum. To go from classical mechanics to quantum mechanics, p is replaced
(in units with h̄ = 1) by the operator −i∇. Show that the quantum mechanical angular
momentum operator has Cartesian components

Lx =−i

(
y
∂

∂z
− z

∂

∂y

)
,

L y =−i

(
z
∂

∂x
− x

∂

∂z

)
,

L z =−i

(
x
∂

∂y
− y

∂

∂x

)
.

3.5.11 Using the angular momentum operators previously given, show that they satisfy com-
mutation relations of the form

[Lx , L y] ≡ Lx L y − L y Lx = i L z

and hence

L×L= iL.

These commutation relations will be taken later as the defining relations of an angular
momentum operator.

3.5.12 With the aid of the results of Exercise 3.5.11, show that if two vectors a and b commute
with each other and with L, that is, [a,b] = [a,L] = [b,L] = 0, show that

[a ·L,b ·L] = i(a× b) ·L.
3.5.13 Prove that the stream lines of b in of Example 3.5.7 are counterclockwise circles.

3.6 DIFFERENTIAL VECTOR OPERATORS: FURTHER
PROPERTIES

Successive Applications of ∇

Interesting results are obtained when we operate with ∇ on the differential vector operator
forms we have already introduced. The possible results include the following:

(a) ∇ ·∇ϕ (b) ∇×∇ϕ (c) ∇(∇ ·V)
(d) ∇ · (∇×V) (e) ∇× (∇×V).
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All five of these expressions involve second derivatives, and all five appear in the
second-order differential equations of mathematical physics, particularly in electromag-
netic theory.

Laplacian

The first of these expressions, ∇ · ∇ϕ, the divergence of the gradient, is named the
Laplacian of ϕ. We have

∇ ·∇ϕ =
(

êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z

)
·
(

êx
∂ϕ

∂x
+ êy

∂ϕ

∂y
+ êz

∂ϕ

∂z

)
= ∂

2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2 . (3.62)

When ϕ is the electrostatic potential, we have

∇ ·∇ϕ = 0 (3.63)

at points where the charge density vanishes, which is Laplace’s equation of electrostatics.
Often the combination ∇ ·∇ is written ∇2, or 1 in the older European literature.

Example 3.6.1 LAPLACIAN OF A CENTRAL FIELD POTENTIAL

Calculate ∇2ϕ(r). Using Eq. (3.51) to evaluate ∇ϕ and then Eq. (3.53) for the divergence,
we have

∇
2ϕ(r)=∇ ·∇ϕ(r)=∇ · dϕ(r)

dr
êr = 2

r

dϕ(r)

dr
+ d2ϕ(r)

dr2 .

We get a term in addition to d2ϕ/dr2 because êr has a direction that depends on r.
In the special case ϕ(r)= rn , this reduces to

∇
2rn = n(n + 1)rn−2.

This vanishes for n = 0 (ϕ =constant) and for n =−1 (Coulomb potential). For n =−1,
our derivation fails for r= 0, where the derivatives are undefined. �

Irrotational and Solenoidal Vector Fields

Expression (b), the second of our five forms involving two ∇ operators, may be written as
a determinant:

∇×∇ϕ =

∣∣∣∣∣∣∣
êx êy êz

∂/∂x ∂/∂y ∂/∂z

∂ϕ/∂x ∂ϕ/∂y ∂ϕ/∂z

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

êx êy êz

∂/∂x ∂/∂y ∂/∂z

∂/∂x ∂/∂y ∂/∂z

∣∣∣∣∣∣∣ϕ = 0.

Because the determinant is to be evaluated from the top down, it is meaningful to move
ϕ outside and to its right, leaving a determinant with two identical rows and yielding the
indicated value of zero. We are thereby actually assuming that the order of the partial
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differentiations can be reversed, which is true so long as these second derivatives of ϕ are
continuous.

Expression (d) is a scalar triple product that may be written

∇ · (∇×V)=

∣∣∣∣∣∣∣
∂/∂x ∂/∂y ∂/∂z

∂/∂x ∂/∂y ∂/∂z

Vx Vy Vz

∣∣∣∣∣∣∣= 0.

This determinant also has two identical rows and yields zero if V has sufficient continuity.
These two vanishing results tell us that any gradient has a vanishing curl and is therefore

irrotational, and that any curl has a vanishing divergence, and is therefore solenoidal.
These properties are of such importance that we set them out here in display form:

∇×∇ϕ = 0, all ϕ, (3.64)

∇ · (∇×V)= 0, all V. (3.65)

Maxwell’s Equations

The unification of electric and magnetic phenomena that is encapsulated in Maxwell’s
equations provides an excellent example of the use of differential vector operators. In SI
units, these equations take the form

∇ ·B= 0, (3.66)

∇ ·E= ρ

ε0
, (3.67)

∇×B= ε0µ0
∂E
∂t
+µ0J, (3.68)

∇×E=−∂B
∂t
. (3.69)

Here E is the electric field, B is the magnetic induction field, ρ is the charge density, J is
the current density, ε0 is the electric permittivity, and µ0 is the magnetic permeability, so
ε0µ0 = 1/c2, where c is the velocity of light.

Vector Laplacian

Expressions (c) and (e) in the list at the beginning of this section satisfy the relation

∇× (∇×V)=∇(∇ ·V)−∇ ·∇V. (3.70)

The term ∇ ·∇V, which is called the vector Laplacian and sometimes written ∇2V, has
prior to this point not been defined; Eq. (3.70) (solved for ∇2V) can be taken to be its
definition. In Cartesian coordinates, ∇2V is a vector whose i component is ∇2Vi , and that
fact can be confirmed either by direct component expansion or by applying the BAC–CAB
rule, Eq. (3.18), with care always to place V so that the differential operators act on it.
While Eq. (3.70) is general, ∇2V separates into Laplacians for the components of V only
in Cartesian coordinates.
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Example 3.6.2 ELECTROMAGNETIC WAVE EQUATION

Even in vacuum, Maxwell’s equations can describe electromagnetic waves. To derive an
electromagnetic wave equation, we start by taking the time derivative of Eq. (3.68) for the
case J= 0, and the curl of Eq. (3.69). We then have

∂

∂t
∇×B= ε0µ0

∂2E
∂t2 ,

∇× (∇×E)=− ∂
∂t

∇×B=−ε0µ0
∂2E
∂t2 .

We now have an equation that involves only E; it can be brought to a more convenient
form by applying Eq. (3.70), dropping the first term on the right of that equation because,
in vacuum, ∇ ·E= 0. The result is the vector electromagnetic wave equation for E,

∇
2E= ε0µ0

∂2E
∂t2 =

1

c2

∂2E
∂t2 . (3.71)

Equation (3.71) separates into three scalar wave equations, each involving the (scalar)
Laplacian. There is a separate equation for each Cartesian component of E. �

Miscellaneous Vector Identities

Our introduction of differential vector operators is now formally complete, but we present
two further examples to illustrate how the relationships between these operators can be
manipulated to obtain useful vector identities.

Example 3.6.3 DIVERGENCE AND CURL OF A PRODUCT

First, simplify ∇ · ( f V), where f and V are, respectively, scalar and vector functions.
Working with the components,

∇ · ( f V)= ∂

∂x
( f Vx )+ ∂

∂y
( f Vy)+ ∂

∂z
( f Vz)

= ∂ f

∂x
Vx + f

∂Vx

∂x
+ ∂ f

∂y
Vy + f

∂Vy

∂y
+ ∂ f

∂z
Vz + f

∂Vz

∂z

= (∇ f ) ·V+ f ∇ ·V. (3.72)

Now simplify ∇× ( f V). Consider the x-component:

∂

∂y
( f Vz)− ∂

∂z
( f Vy)= f

[
∂Vz

∂y
− ∂Vy

∂z

]
+
[
∂ f

∂y
Vz − ∂ f

∂z
Vy

]
.

This is the x-component of f (∇×V)+ (∇ f )×V, so we have

∇× ( f V)= f (∇×V)+ (∇ f )×V. (3.73)

�
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Example 3.6.4 GRADIENT OF A DOT PRODUCT

Verify that

∇(A ·B)= (B ·∇)A+ (A ·∇)B+B× (∇×A)+A× (∇×B). (3.74)

This problem is easier to solve if we recognize that ∇(A ·B) is a type of term that appears
in the BAC–CAB expansion of a vector triple product, Eq. (3.18). From that equation,
we have

A× (∇×B)=∇B(A ·B)− (A ·∇)B,
where we placed B at the end of the final term because ∇ must act on it. We write ∇B to
indicate an operation our notation is not really equipped to handle. In this term, ∇ acts only
on B, because A appeared to its left on the left-hand side of the equation. Interchanging
the roles of A and B, we also have

B× (∇×A)=∇A(A ·B)− (B ·∇)A,
where ∇A acts only on A. Adding these two equations together, noting that ∇B + ∇A is
simply an unrestricted ∇, we recover Eq. (3.74). �

Exercises

3.6.1 Show that u× v is solenoidal if u and v are each irrotational.

3.6.2 If A is irrotational, show that A× r is solenoidal.

3.6.3 A rigid body is rotating with constant angular velocity ω. Show that the linear velocity
v is solenoidal.

3.6.4 If a vector function V(x, y, z) is not irrotational, show that if there exists a scalar func-
tion g(x, y, z) such that gV is irrotational, then

V ·∇×V= 0.

3.6.5 Verify the vector identity

∇× (A×B)= (B ·∇)A− (A ·∇)B−B(∇ ·A)+A(∇ ·B).
3.6.6 As an alternative to the vector identity of Example 3.6.4 show that

∇(A ·B)= (A×∇)×B+ (B×∇)×A+A(∇ ·B)+B(∇ ·A).
3.6.7 Verify the identity

A× (∇×A)= 1

2
∇(A2)− (A ·∇)A.

3.6.8 If A and B are constant vectors, show that

∇(A ·B× r)=A×B.
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3.6.9 Verify Eq. (3.70),

∇× (∇×V)=∇(∇ ·V)−∇ ·∇V,

by direct expansion in Cartesian coordinates.

3.6.10 Prove that ∇× (ϕ∇ϕ)= 0.

3.6.11 You are given that the curl of F equals the curl of G. Show that F and G may differ by
(a) a constant and (b) a gradient of a scalar function.

3.6.12 The Navier-Stokes equation of hydrodynamics contains a nonlinear term of the form
(v ·∇)v. Show that the curl of this term may be written as −∇× [v× (∇× v)].

3.6.13 Prove that (∇u)× (∇v) is solenoidal, where u and v are differentiable scalar functions.

3.6.14 The function ϕ is a scalar satisfying Laplace’s equation, ∇2ϕ = 0. Show that ∇ϕ is
both solenoidal and irrotational.

3.6.15 Show that any solution of the equation

∇× (∇×A)− k2A= 0

automatically satisfies the vector Helmholtz equation

∇
2A+ k2A= 0

and the solenoidal condition

∇ ·A= 0.

Hint. Let ∇ · operate on the first equation.

3.6.16 The theory of heat conduction leads to an equation

∇
29 = k |∇8|2 ,

where 8 is a potential satisfying Laplace’s equation: ∇28 = 0. Show that a
solution of this equation is 9 = k82/2.

3.6.17 Given the three matrices

Mx =
0 0 0

0 0 −i
0 i 0

, My =
 0 0 i

0 0 0
−i 0 0

,
and

Mz =
0 −i 0

i 0 0
0 0 0

,
show that the matrix-vector equation(

M ·∇+ 13
1

c

∂

∂t

)
ψ = 0
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reproduces Maxwell’s equations in vacuum. Here ψ is a column vector with compo-
nents ψ j = B j − i E j/c, j = x, y, z. Note that ε0µ0 = 1/c2 and that 13 is the 3× 3 unit
matrix.

3.6.18 Using the Pauli matrices σ i of Eq. (2.28), show that

(σ · a)(σ · b)= (a · b)12 + iσ · (a× b).

Here

σ ≡ êxσ 1 + êyσ 2 + êzσ 3,

a and b are ordinary vectors, and 12 is the 2× 2 unit matrix.

3.7 VECTOR INTEGRATION

In physics, vectors occur in line, surface, and volume integrals. At least in principle, these
integrals can be decomposed into scalar integrals involving the vector components; there
are some useful general observations to make at this time.

Line Integrals

Possible forms for line integrals include the following:∫
C

ϕdr,
∫
C

F · dr,
∫
C

V× dr. (3.75)

In each of these the integral is over some path C that may be open (with starting and
endpoints distinct) or closed (forming a loop). Inserting the form of dr, the first of these
integrals reduces immediately to∫

C

ϕdr= êx

∫
C

ϕ(x, y, z)dx + êy

∫
C

ϕ(x, y, z)dy + êz

∫
C

ϕ(x, y, z)dz. (3.76)

The unit vectors need not remain within the integral beause they are constant in both mag-
nitude and direction.

The integrals in Eq. (3.76) are one-dimensional scalar integrals. Note, however, that
the integral over x cannot be evaluated unless y and z are known in terms of x ; similar
observations apply for the integrals over y and z. This means that the path C must be
specified. Unless ϕ has special properties, the value of the integral will depend on the path.

The other integrals in Eq. (3.75) can be handled similarly. For the second integral, which
is of common occurrence, being that which evaluates the work associated with displace-
ment on the path C , we have:

W =
∫
C

F · dr=
∫
C

Fx (x, y, z)dx +
∫
C

Fy(x, y, z)dy +
∫
C

Fz(x, y, z)dz. (3.77)
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Example 3.7.1 LINE INTEGRALS

We consider two integrals in 2-D space:

IC =
∫
C

ϕ(x, y)dr, with ϕ(x, y)= 1,

JC =
∫
C

F(x, y) · dr, with F(x, y)=−yêx + x êy .

We perform integrations in the xy-plane from (0,0) to (1,1) by the two different paths
shown in Fig. 3.12:

Path C1 is (0,0)→ (1,0)→ (1,1),
Path C2 is the straight line (0,0)→ (1,1).

For the first segment of C1, x ranges from 0 to 1 while y is fixed at zero. For the second
segment, y ranges from 0 to 1 while x = 1. Thus,

IC1 = êx

1∫
0

dxϕ(x,0)+ êy

1∫
0

dyϕ(1, y)= êx

1∫
0

dx + êy

1∫
0

dy = êx + êy,

JC1 =
1∫

0

dx Fx (x,0)+
1∫

0

dy Fy(1, y)=
1∫

0

=
1∫

0

dx(0)+
1∫

0

dy(1)= 1.

On Path 2, both dx and dy range from 0 to 1, with x = y at all points of the path. Thus,

IC2 = êx

1∫
0

dx ϕ(x, x)+ êy

1∫
0

dy ϕ(y, y)= êx + êy,

JC2 =
1∫

0

dx Fx (x, x)+
1∫

0

dyFy(y, y)=
1∫

0

dx(−x)+
1∫

0

dy(y)=−1

2
+ 1

2
= 0.

We see that integral I is independent of the path from (0,0) to (1,1), a nearly trivial special
case, while the integral J is not. �

y

1

1
x

C2

C1

C1

FIGURE 3.12 Line integration paths.
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FIGURE 3.13 Positive normal directions: left, disk; right, spherical surface with hole.

Surface Integrals

Surface integrals appear in the same forms as line integrals, the element of area being a
vector, dσ , normal to the surface:∫

ϕdσ ,
∫

V · dσ ,
∫

V× dσ .

Often dσ is written n̂ dA, where n̂ is a unit vector indicating the normal direction. There are
two conventions for choosing the positive direction. First, if the surface is closed (has no
boundary), we agree to take the outward normal as positive. Second, for an open surface,
the positive normal depends on the direction in which the perimeter of the surface is tra-
versed. Starting from an arbitrary point on the perimeter, we define a vector u to be in the
direction of travel along the perimeter, and define a second vector v at our perimeter point
but tangent to and lying on the surface. We then take u×v as the positive normal direction.
This corresponds to a right-hand rule, and is illustrated in Fig. 3.13. It is necessary to define
the orientation carefully so as to deal with cases such as that of Fig. 3.13, right.

The dot-product form is by far the most commonly encountered surface integral, as it
corresponds to a flow or flux through the given surface.

Example 3.7.2 A SURFACE INTEGRAL

Consider a surface integral of the form I = ∫S B · dσ over the surface of a tetrahe-
dron whose vertices are at the origin and at the points (1,0,0), (0,1,0), and (0,0,1), with
B= (x + 1)êx + yêy − zêz . See Fig. 3.14.

The surface consists of four triangles, which can be identified and their contributions
evaluated, as follows:

1. On the xy-plane (z = 0), vertices at (x, y) = (0,0), (1,0), and (0,1); direction of out-
ward normal is −êz , so dσ = −êzd A (d A = element of area on this triangle). Here,
B= (x + 1)êx + yêy , and B · dσ = 0. So there is no contribution to I .

2. On the xz plane (y = 0), vertices at (x, z) = (0,0), (1,0), and (0,1); direction of out-
ward normal is −êy , so dσ =−êyd A. On this triangle, B= (x + 1)êx − zêz , Again,
B · dσ = 0. There is no contribution to I .

3. On the yz plane (x = 0), vertices at (y, z) = (0,0), (1,0), and (0,1); direction
of outward normal is −êx , so dσ = −êx d A. Here, B = êx + yêy − zêz , and
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FIGURE 3.14 Tetrahedron, and detail of the oblique face.

B · dσ = (−1)d A; the contribution to I is −1 times the area of the triangle (=1/2),
or I3 =−1/2.

4. Obliquely oriented, vertices at (x, y, z) = (1,0,0), (0,1,0), (0,0,1); direction of out-
ward normal is n̂= (êx + êy + êz)/

√
3, and dσ = n̂d A. Using also B= (x + 1)êx +

yêy − zêz , this contribution to I becomes

I4 =
∫
14

x + 1+ y − z√
3

d A=
∫
14

2(1− z)√
3

d A,

where we have used the fact that on this triangle, x + y + z = 1.
To complete the evaluation, we note that the geometry of the triangle is as shown

in Fig. 3.14, that the width of the triangle at height z is
√

2 (1− z), and a change dz in
z produces a displacement

√
3/2dz on the triangle. I4 therefore can be written

I4 =
1∫

0

2(1− z)2dz = 2

3
.

Combining the nonzero contributions I3 and I4, we obtain the final result

I =−1

2
+ 2

3
= 1

6
.

�

Volume Integrals

Volume integrals are somewhat simpler, because the volume element dτ is a scalar
quantity. Sometimes dτ is written d3r , or d3x when the coordinates were designated
(x1, x2, x3). In the literature, the form dr is frequently encountered, but in contexts that
usually reveal that it is a synonym for dτ , and not a vector quantity. The volume integrals
under consideration here are of the form∫

V dτ = êx

∫
Vx dτ + êy

∫
Vy dτ + êz

∫
Vz dτ.

The integral reduces to a vector sum of scalar integrals.
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Some volume integrals contain vector quantities in combinations that are actually scalar.
Often these can be rearranged by applying techniques such as integration by parts.

Example 3.7.3 INTEGRATION BY PARTS

Consider an integral over all space of the form
∫

A(r)∇ · f (r)d3r in the frequently occur-
ring special case in which either f or A vanish sufficiently strongly at infinity. Expanding
the integrand into components,∫

A(r) ·∇ f (r)d3r =
x

dy dz

[
Ax f

∣∣∞
x=−∞ −

∫
f
∂Ax

∂x
dx

]
+ · · ·

= −
y

f
∂Ax

∂x
dx dy dz−

y
f
∂Ay

∂y
dx dy dz−

y
f
∂Az

∂z
dx dy dz

=−
∫

f (r)∇ ·A(r)d3r. (3.78)

For example, if A = eikz p̂ describes a photon with a constant polarization vector in the
direction p̂ and ψ(r) is a bound-state wave function (so it vanishes at infinity), then∫

eikz p̂ ·∇ψ(r)d3r =−(p̂ · êz)

∫
ψ(r)

deikz

dz
d3r =−ik(p̂ · êz)

∫
ψ(r)eikzd3r.

Only the z-component of the gradient contributes to the integral.
Analogous rearrangements (assuming the integrated terms vanish at infinity) include∫

f (r)∇ ·A(r)d3r =−
∫

A(r) ·∇ f (r)d3r, (3.79)∫
C(r) · (∇×A(r

)
d3r =

∫
A(r) · (∇×C(r)

)
d3r. (3.80)

In the cross-product example, the sign change from the integration by parts combines with
the signs from the cross product to give the result shown. �

Exercises

3.7.1 The origin and the three vectors A, B, and C (all of which start at the origin) define a
tetrahedron. Taking the outward direction as positive, calculate the total vector area of
the four tetrahedral surfaces.

3.7.2 Find the work
∮

F ·dr done moving on a unit circle in the xy-plane, doing work against
a force field given by

F= −êx y

x2 + y2 +
êy x

x2 + y2 :

(a) Counterclockwise from 0 to π ,
(b) Clockwise from 0 to −π .
Note that the work done depends on the path.
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3.7.3 Calculate the work you do in going from point (1,1) to point (3,3). The force you exert
is given by

F= êx(x − y)+ êy(x + y).

Specify clearly the path you choose. Note that this force field is nonconservative.

3.7.4 Evaluate
∮

r · dr for a closed path of your choosing.

3.7.5 Evaluate
1

3

∫
s

r · dσ

over the unit cube defined by the point (0,0,0) and the unit intercepts on the positive
x-, y-, and z-axes. Note that r · dσ is zero for three of the surfaces and that each of the
three remaining surfaces contributes the same amount to the integral.

3.8 INTEGRAL THEOREMS

The formulas in this section relate a volume integration to a surface integral on its boundary
(Gauss’ theorem), or relate a surface integral to the line defining its perimeter (Stokes’
theorem). These formulas are important tools in vector analysis, particularly when the
functions involved are known to vanish on the boundary surface or perimeter.

Gauss’ Theorem

Here we derive a useful relation between a surface integral of a vector and the volume
integral of the divergence of that vector. Let us assume that a vector A and its first deriva-
tives are continuous over a simply connected region of R3 (regions that contain holes,
like a donut, are not simply connected). Then Gauss’ theorem states that∮

∂V

A · dσ =
∫
V

∇ ·A dτ. (3.81)

Here the notations V and ∂V respectively denote a volume of interest and the closed sur-
face that bounds it. The circle on the surface integral is an additional indication that the
surface is closed.

To prove the theorem, consider the volume V to be subdivided into an arbitrary large
number of tiny (differential) parallelepipeds, and look at the behavior of ∇ ·A for each. See
Fig. 3.15. For any given parallelepiped, this quantity is a measure of the net outward flow
(of whatever A describes) through its boundary. If that boundary is interior (i.e., is shared
by another parallelepiped), outflow from one parallelepiped is inflow to its neighbor; in a
summation of all the outflows, all the contributions of interior boundaries cancel. Thus, the
sum of all the outflows in the volume will just be the sum of those through the exterior
boundary. In the limit of infinite subdivision, these sums become integrals: The left-hand
side of Eq. (3.81) becomes the total outflow to the exterior, while its right-hand side is the
sum of the outflows of the differential elements (the parallelepipeds).
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FIGURE 3.15 Subdivision for Gauss’ theorem.

A simple alternate explanation of Gauss’ theorem is that the volume integral sums the
outflows ∇ · A from all elements of the volume; the surface integral computes the same
thing, by directly summing the flow through all elements of the boundary.

If the region of interest is the complete R3, and the volume integral converges, the
surface integral in Eq. (3.81) must vanish, giving the useful result∫

∇ ·A dτ = 0, integration over R3 and convergent. (3.82)

Example 3.8.1 TETRAHEDRON

We check Gauss’ theorem for a vector B= (x + 1)êx + yêy − zêz , comparing∫
V

∇ ·B dτ vs.
∫
∂V

B · dσ ,

where V is the tetrahedron of Example 3.7.2. In that example we computed the surface
integral needed here, obtaining the value 1/6. For the integral over V , we take the diver-
gence, obtaining ∇ · B = 1. The volume integral therefore reduces to the volume of the
tetrahedron that, with base of area 1/2 and height 1, has volume 1/3 × 1/2 × 1= 1/6.
This instance of Gauss’ theorem is confirmed. �

Green’s Theorem

A frequently useful corollary of Gauss’ theorem is a relation known as Green’s theorem.
If u and v are two scalar functions, we have the identities

∇ · (u∇v)= u∇
2v + (∇u) · (∇v), (3.83)

∇ · (u∇v)= u∇
2v + (∇u) · (∇v). (3.84)



ArfKen_Ch03-9780123846549.tex

166 Chapter 3 Vector Analysis

Subtracting Eq. (3.84) from Eq. (3.83), integrating over a volume V on which u, v, and
their derivatives are continuous, and applying Gauss’ theorem, Eq. (3.81), we obtain∫

V

(u∇
2v − v∇2u)dτ =

∮
∂V

(u∇v − v∇u) · dσ . (3.85)

This is Green’s theorem. An alternate form of Green’s theorem, obtained from Eq. (3.83)
alone, is ∮

∂V

u∇v · dσ =
∫
V

u∇
2v dτ +

∫
V

∇u ·∇v dτ. (3.86)

While the results already obtained are by far the most important forms of Gauss’ theo-
rem, volume integrals involving the gradient or the curl may also appear. To derive these,
we consider a vector of the form

B(x, y, z)= B(x, y, z)a, (3.87)

in which a is a vector with constant magnitude and constant but arbitrary direction. Then
Eq. (3.81) becomes, applying Eq. (3.72),

a ·
∮
∂V

B dσ =
∫
V

∇ · (Ba)dτ = a
∫
V

∇B dτ.

This may be rewritten

a ·
 ∮
∂V

B dσ −
∫
V

∇B dτ

= 0. (3.88)

Since the direction of a is arbitrary, Eq. (3.88) cannot always be satisfied unless the quan-
tity in the square brackets evaluates to zero.6 The result is∮

∂V

B dσ =
∫
V

∇B dτ. (3.89)

In a similar manner, using B= a× P in which a is a constant vector, we may show∮
∂V

dσ × P=
∫
V

∇× P dτ. (3.90)

These last two forms of Gauss’ theorem are used in the vector form of Kirchoff diffraction
theory.

6This exploitation of the arbitrary nature of a part of a problem is a valuable and widely used technique.
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Stokes’ Theorem

Stokes’ theorem is the analog of Gauss’ theorem that relates a surface integral of a deriva-
tive of a function to the line integral of the function, with the path of integration being the
perimeter bounding the surface.

Let us take the surface and subdivide it into a network of arbitrarily small rectangles.
In Eq. (3.60) we saw that the circulation of a vector B about such a differential rectan-
gles (in the xy-plane) is ∇ × Bz êz dx dy. Identifying dx dy êz as the element of area dσ ,
Eq. (3.60) generalizes to ∑

four sides

B · dr=∇×B · dσ . (3.91)

We now sum over all the little rectangles; the surface contributions, from the right-hand
side of Eq. (3.91), are added together. The line integrals (left-hand side) of all interior
line segments cancel identically. See Fig. 3.16. Only the line integral around the perimeter
survives. Taking the limit as the number of rectangles approaches infinity, we have∮

∂S

B · dr=
∫
S

∇×B · dσ . (3.92)

Here ∂S is the perimeter of S. This is Stokes’ theorem. Note that both the sign of the
line integral and the direction of dσ depend on the direction the perimeter is traversed,
so consistent results will always be obtained. For the area and the line-integral direction
shown in Fig. 3.16, the direction of σ for the shaded rectangle will be out of the plane of
the paper.

Finally, consider what happens if we apply Stokes’ theorem to a closed surface. Since it
has no perimeter, the line integral vanishes, so∫

S

∇× B · dσ = 0, for S a closed surface. (3.93)

As with Gauss’ theorem, we can derive additional relations connecting surface integrals
with line integrals on their perimeter. Using the arbitrary-vector technique employed to

FIGURE 3.16 Direction of normal for the shaded rectangle when perimeter of the surface
is traversed as indicated.
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reach Eqs. (3.89) and (3.90), we can obtain∫
S

dσ ×∇ϕ =
∮
∂S

ϕdr, (3.94)

∫
S

(dσ ×∇)× P=
∮
∂S

dr× P. (3.95)

Example 3.8.2 OERSTED’S AND FARADAY’S LAWS

Consider the magnetic field generated by a long wire that carries a time-independent cur-
rent I (meaning that ∂E/∂t = ∂B/∂t = 0). The relevant Maxwell equation, Eq. (3.68),
then takes the form ∇×B= µ0J. Integrating this equation over a disk S perpendicular to
and surrounding the wire (see Fig. 3.17), we have

I =
∫
S

J · dσ = 1

µ0

∫
S

(∇×B) · dσ .

Now we apply Stokes’ theorem, obtaining the result I = (1/µ0)
∮
∂S B · dr, which is

Oersted’s law.
Similarly, we can integrate Maxwell’s equation for ∇×E, Eq. (3.69). Imagine moving

a closed loop (∂S) of wire (of area S) across a magnetic induction field B. We have∫
S

(∇×E) · dσ =− d

dt

∫
S

B · dσ =−d8

dt
,

where 8 is the magnetic flux through the area S. By Stokes’ theorem, we have∫
∂S

E · dr=−d8

dt
.

This is Faraday’s law. The line integral represents the voltage induced in the wire loop; it is
equal in magnitude to the rate of change of the magnetic flux through the loop. There is no
sign ambiguity; if the direction of ∂S is reversed, that causes a reversal of the direction of
dσ and thereby of 8. �

B

I

FIGURE 3.17 Direction of B given by Oersted’s law.
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Exercises

3.8.1 Using Gauss’ theorem, prove that ∮
S

dσ = 0

if S = ∂V is a closed surface.

3.8.2 Show that

1

3

∮
S

r · dσ = V,

where V is the volume enclosed by the closed surface S = ∂V.
Note. This is a generalization of Exercise 3.7.5.

3.8.3 If B=∇×A, show that ∮
S

B · dσ = 0

for any closed surface S.

3.8.4 From Eq. (3.72), with V the electric field E and f the electrostatic potential ϕ, show
that, for integration over all space,∫

ρϕdτ = ε0

∫
E2dτ.

This corresponds to a 3-D integration by parts.
Hint. E = −∇ϕ,∇ · E = ρ/ε0. You may assume that ϕ vanishes at large r at least as
fast as r−1.

3.8.5 A particular steady-state electric current distribution is localized in space. Choosing a
bounding surface far enough out so that the current density J is zero everywhere on the
surface, show that ∫

Jdτ = 0.

Hint. Take one component of J at a time. With ∇ · J= 0, show that Ji =∇ · (xi J) and
apply Gauss’ theorem.

3.8.6 Given a vector t=−êx y+ êyx , show, with the help of Stokes’ theorem, that the integral
of t around a continuous closed curve in the xy-plane satisfies

1

2

∮
t · dλ= 1

2

∮
(x dy − y dx)= A,

where A is the area enclosed by the curve.
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3.8.7 The calculation of the magnetic moment of a current loop leads to the line integral∮
r× dr.

(a) Integrate around the perimeter of a current loop (in the xy-plane) and show that
the scalar magnitude of this line integral is twice the area of the enclosed surface.

(b) The perimeter of an ellipse is described by r= êxa cos θ + êyb sin θ . From part (a)
show that the area of the ellipse is πab.

3.8.8 Evaluate
∮

r× dr by using the alternate form of Stokes’ theorem given by Eq. (3.95):∫
S

(dσ ×∇)× P=
∮

dλ× P.

Take the loop to be entirely in the xy-plane.

3.8.9 Prove that ∮
u∇v · dλ=−

∮
v∇u · dλ.

3.8.10 Prove that ∮
u∇v · dλ=

∫
S

(∇u)× (∇v) · dσ .

3.8.11 Prove that ∮
∂V

dσ × P=
∫
V

∇× Pdτ.

3.8.12 Prove that ∫
S

dσ ×∇ϕ =
∮
∂S

ϕdr.

3.8.13 Prove that ∫
S

(dσ ×∇)× P=
∮
∂S

dr× P.

3.9 POTENTIAL THEORY

Much of physics, particularly electromagnetic theory, can be treated more simply by intro-
ducing potentials from which forces can be derived. This section deals with the definition
and use of such potentials.
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Scalar Potential

If, over a given simply connected region of space (one with no holes), a force can be
expressed as the negative gradient of a scalar function ϕ,

F=−∇ϕ, (3.96)

we call ϕ a scalar potential, and we benefit from the feature that the force can be described
in terms of one function instead of three. Since the force is a derivative of the scalar poten-
tial, the potential is only determined up to an additive constant, which can be used to adjust
its value at infinity (usually zero) or at some other reference point. We want to know what
conditions F must satisfy in order for a scalar potential to exist.

First, consider the result of computing the work done against a force given by −∇ϕ

when an object subject to the force is moved from a point A to a point B. This is a line
integral of the form

−
B∫

A

F · dr=
B∫

A

∇ϕ · dr. (3.97)

But, as pointed out in Eq. (3.41), ∇ϕ · dr= dϕ, so the integral is in fact independent of the
path, depending only on the endpoints A and B. So we have

−
B∫

A

F · dr= ϕ(rB)− ϕ(rA), (3.98)

which also means that if A and B are the same point, forming a closed loop,∮
F · dr= 0. (3.99)

We conclude that a force (on an object) described by a scalar potential is a conservative
force, meaning that the work needed to move the object between any two points is inde-
pendent of the path taken, and that ϕ(r) is the work needed to move to the point r from a
reference point where the potential has been assigned the value zero.

Another property of a force given by a scalar potential is that

∇× F=−∇×∇ϕ = 0 (3.100)

as prescribed by Eq. (3.64). This observation is consistent with the notion that the lines of
force of a conservative F cannot form closed loops.

The three conditions, Eqs. (3.96), (3.99), and (3.100), are all equivalent. If we take
Eq. (3.99) for a differential loop, its left side and that of Eq. (3.100) must, according
to Stokes’ theorem, be equal. We already showed both these equations followed from
Eq. (3.96). To complete the establishment of full equivalence, we need only to derive
Eq. (3.96) from Eq. (3.99). Going backward to Eq. (3.97), we rewrite it as

B∫
A

(F+∇ϕ) · dr= 0,
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which must be satisfied for all A and B. This means its integrand must be identically zero,
thereby recovering Eq. (3.96).

Example 3.9.1 GRAVITATIONAL POTENTIAL

We have previously, in Example 3.5.2, illustrated the generation of a force from a scalar
potential. To perform the reverse process, we must integrate. Let us find the scalar potential
for the gravitational force

FG =−Gm1m2r̂
r2 =−kr̂

r2 ,

radially inward. Setting the zero of scalar potential at infinity, we obtain by integrating
(radially) from infinity to position r,

ϕG(r)− ϕG(∞)=−
r∫
∞

FG · dr=+
∞∫

r

FG · dr.

The minus sign in the central member of this equation arises because we are calculating
the work done against the gravitational force. Evaluating the integral,

ϕG(r)=−
∞∫

r

kdr

r2 =−
k

r
=−Gm1m2

r
.

The final negative sign corresponds to the fact that gravity is an attractive force. �

Vector Potential

In some branches of physics, especially electrodynamics, it is convenient to introduce a
vector potential A such that a (force) field B is given by

B=∇×A. (3.101)

An obvious reason for introducing A is that it causes B to be solenoidal; if B is the mag-
netic induction field, this property is required by Maxwell’s equations. Here we want to
develop a converse, namely to show that when B is solenoidal, a vector potential A exists.
We demonstrate the existence of A by actually writing it.

Our construction is

A= êy

x∫
x0

Bz(x, y, z)dx + êz

 y∫
y0

Bx (x0, y, z)dy −
x∫

x0

By(x, y, z)dx

. (3.102)
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Checking the y- and z-components of ∇×A first, noting that Ax = 0,

(∇×A)y =−∂Az

∂x
=+ ∂

∂x

x∫
x0

By(x, y, z)dx = By,

(∇×A)z =+∂Ay

∂x
== ∂

∂x

x∫
x0

Bz(x, y, z)dx = Bz .

The x-component of ∇×A is a bit more complicated. We have

(∇×A)x = ∂Az

∂y
− ∂Ay

∂z

= ∂

∂y

 y∫
y0

Bx (x0, y, z)dy −
x∫

x0

By(x, y, z)dx

− ∂

∂z

x∫
x0

Bz(x, y, z)dx

= Bx (x0, y, z)−
x∫

x0

[
∂By(x, y, z)

∂y
+ ∂Bz(x, y, z)

∂z

]
dx .

To go further, we must use the fact that B is solenoidal, which means ∇ · B= 0. We can
therefore make the replacement

∂By(x, y, z)

∂y
+ ∂Bz(x, y, z)

∂z
=−∂Bx (x, y, z)

∂x
,

after which the x integration becomes trivial, yielding

+
∫ x

x0

∂Bx (x, y, z)

∂x
dx = Bx (x, y, z)− Bx (x0, y, z),

leading to the desired final result (∇×A)x = Bx .
While we have shown that there exists a vector potential A such that ∇×A= B subject

only to the condition that B be solenoidal, we have in no way established that A is unique.
In fact, A is far from unique, as we can add to it not only an arbitrary constant, but also the
gradient of any scalar function, ∇ϕ, without affecting B at all. Moreover, our verification
of A was independent of the values of x0 and y0, so these can be assigned arbitrarily
without affecting B. In addition, we can derive another formula for A in which the roles of
x and y are interchanged:

A=−êx

y∫
y0

Bz(x, y, z)dy − êz

 x∫
x0

By(x, y0, z)dx −
y∫

y0

Bx (x, y, z)dy

. (3.103)
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Example 3.9.2 MAGNETIC VECTOR POTENTIAL

We consider the construction of the vector potential for a constant magnetic induction field

B= Bz êz . (3.104)

Using Eq. (3.102), we have (choosing the arbitrary value of x0 to be zero)

A= êy

x∫
0

Bz dx = êy x Bz . (3.105)

Alternatively, we could use Eq. (3.103) for A, leading to

A′ =−êx y Bz . (3.106)

Neither of these is the form for A found in many elementary texts, which for B from
Eq. (3.104) is

A′′ = 1

2
(B× r)= Bz

2
(x êy − yêx ). (3.107)

These disparate forms can be reconciled if we use the freedom to add to A any expression
of the form ∇ϕ. Taking ϕ = Cxy, the quantity that can be added to A will be of the form

∇ϕ = C(yêx + x êy).

We now see that

A− Bz

2
(yêx + x êy)=A′ + Bz

2
(yêx + x êy)=A′′,

showing that all these formulas predict the same value of B. �

Example 3.9.3 POTENTIALS IN ELECTROMAGNETISM

If we introduce suitably defined scalar and vector potentials ϕ and A into Maxwell’s
equations, we can obtain equations giving these potentials in terms of the sources of the
electromagnetic field (charges and currents). We start with B = ∇ × A, thereby assuring
satisfaction of the Maxwell’s equation ∇ ·B= 0. Substitution into the equation for ∇×E
yields

∇×E=−∇× ∂A
∂t

−→ ∇×
(

E+ ∂A
∂t

)
= 0,

showing that E+ ∂A/∂t is a gradient and can be written as −∇ϕ, thereby defining ϕ. This
preserves the notion of an electrostatic potential in the absence of time dependence, and
means that A and ϕ have now been defined to give

B=∇×A, E=−∇ϕ − ∂A
∂t
. (3.108)

At this point A is still arbitrary to the extent of adding any gradient, which is equivalent to
making an arbitrary choice of ∇ ·A. A convenient choice is to require

1

c2

∂ϕ

∂t
+∇ ·A= 0. (3.109)
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This gauge condition is called the Lorentz gauge, and transformations of A and ϕ to
satisfy it or any other legitimate gauge condition are called gauge transformations. The
invariance of electromagnetic theory under gauge transformation is an important precursor
of contemporary directions in fundamental physical theory.

From Maxwell’s equation for ∇ ·E and the Lorentz gauge condition, we get

ρ

ε0
=∇ ·E=−∇

2E− ∂

∂t
∇ ·A=−∇

2ϕ + 1

c2

∂2ϕ

∂t2 , (3.110)

showing that the Lorentz gauge permitted us to decouple A and ϕ to the extent that we
have an equation for ϕ in terms only of the charge density ρ; neither A nor the current
density J enters this equation.

Finally, from the equation for ∇×B, we obtain

1

c2

∂2A
∂t2 −∇

2A= µ0J. (3.111)

Proof of this formula is the subject of Exercise 3.9.11. �

Gauss’ Law

Consider a point charge q at the origin of our coordinate system. It produces an electric
field E, given by

E= q r̂
4πε0r2 . (3.112)

Gauss’ law states that for an arbitrary volume V,∮
∂V

E · dσ =
{ q

ε0
if ∂V encloses q,

0 if ∂V does not enclose q .
(3.113)

The case that ∂V does not enclose q is easily handled. From Eq. (3.54), the r−2 central
force E is divergenceless everywhere except at r = 0, and for this case, throughout the
entire volume V . Thus, we have, invoking Gauss’ theorem, Eq. (3.81),∫

V

∇ ·E= 0 −→ E · dσ = 0.

If q is within the volume V , we must be more devious. We surround r = 0 by a small
spherical hole (of radius δ), with a surface we designate S′, and connect the hole with the
boundary of V via a small tube, thereby creating a simply connected region V ′ to which
Gauss’ theorem will apply. See Fig. 3.18. We now consider

∮
E · dσ on the surface of

this modified volume. The contribution from the connecting tube will become negligible
in the limit that it shrinks toward zero cross section, as E is finite everywhere on the
tube’s surface. The integral over the modified ∂V will thus be that of the original ∂V (over
the outer boundary, which we designate S), plus that of the inner spherical surface (S′).
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FIGURE 3.18 Making a multiply connected region simply connected.

But note that the “outward” direction for S′ is toward smaller r , so dσ ′ =−r̂ d A. Because
the modified volume contains no charge, we have∮

∂V ′

E · dσ =
∮
S

E · dσ + q

4πε0

∮
S′

r̂ · dσ ′
δ2 = 0, (3.114)

where we have inserted the explicit form of E in the S′ integral. Because S′ is a sphere of
radius δ, this integral can be evaluated. Writing d� as the element of solid angle, so d A=
δ2d�, ∮

S′

r̂ · dσ ′
δ2 =

∫
r̂
δ2 · (−r̂ δ2 d�)=−

∫
d�=−4π,

independent of the value of δ. Returning now to Eq. (3.114), it can be rearranged into∮
S

E · dσ =− q

4πε0
(−4π)=+ q

ε0
,

the result needed to confirm the second case of Gauss’ law, Eq. (3.113).
Because the equations of electrostatics are linear, Gauss’ law can be extended to collec-

tions of charges, or even to continuous charge distributions. In that case, q can be replaced
by
∫

V ρ dτ , and Gauss’ law becomes∫
∂V

E · dσ =
∫
V

ρ

ε0
dτ. (3.115)

If we apply Gauss’ theorem to the left side of Eq. (3.115), we have∫
V

∇ ·E dτ =
∫
V

ρ

ε0
dτ.

Since our volume is completely arbitrary, the integrands of this equation must be equal, so

∇ ·E= ρ

ε0
. (3.116)

We thus see that Gauss’ law is the integral form of one of Maxwell’s equations.
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Poisson’s Equation

If we return to Eq. (3.116) and, assuming a situation independent of time, write E=−∇ϕ,
we obtain

∇
2ϕ =− ρ

ε0
. (3.117)

This equation, applicable to electrostatics,7 is called Poisson’s equation. If, in addition,
ρ = 0, we have an even more famous equation,

∇
2ϕ = 0, (3.118)

Laplace’s equation.
To make Poisson’s equation apply to a point charge q , we need to replace ρ by a con-

centration of charge that is localized at a point and adds up to q . The Dirac delta function
is what we need for this purpose. Thus, for a point charge q at the origin, we write

∇
2ϕ =− q

ε0
δ(r), (charge q at r= 0). (3.119)

If we rewrite this equation, inserting the point-charge potential for ϕ, we have

q

4πε0
∇

2
(

1

r

)
=− q

ε0
δ(r),

which reduces to

∇
2
(

1

r

)
=−4π δ(r). (3.120)

This equation circumvents the problem that the derivatives of 1/r do not exist at r = 0,
and gives appropriate and correct results for systems containing point charges. Like the
definition of the delta function itself, Eq. (3.120) is only meaningful when inserted into an
integral. It is an important result that is used repeatedly in physics, often in the form

∇
2
1

(
1

r12

)
=−4π δ(r1 − r2). (3.121)

Here r12 = |r1 − r2|, and the subscript in ∇1 indicates that the derivatives apply to r1.

Helmholtz’s Theorem

We now turn to two theorems that are of great formal importance, in that they establish
conditions for the existence and uniqueness of solutions to time-independent problems in
electromagnetic theory. The first of these theorems is:

A vector field is uniquely specified by giving its divergence and its curl within a simply
connected region and its normal component on the boundary.

7For general time dependence, see Eq. (3.110).
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Note that both for this theorem and the next (Helmholtz’s theorem), even if there are points
in the simply connected region where the divergence or the curl is only defined in terms of
delta functions, these points are not to be removed from the region.

Let P be a vector field satisfying the conditions

∇ · P= s, ∇× P= c, (3.122)

where s may be interpreted as a given source (charge) density and c as a given circulation
(current) density. Assuming that the normal component Pn on the boundary is also given,
we want to show that P is unique.

We proceed by assuming the existence of a second vector, P′, which satisfies Eq. (3.122)
and has the same value of Pn . We form Q= P− P′, which must have ∇ ·Q, ∇ ×Q, and
Qn all identically zero. Because Q is irrotational, there must exist a potential ϕ such that
Q=−∇ϕ, and because ∇ ·Q= 0, we also have

∇
2ϕ = 0.

Now we draw on Green’s theorem in the form given in Eq. (3.86), letting u and v each
equal ϕ. Because Qn = 0 on the boundary, Green’s theorem reduces to∫

V

(∇ϕ) · (∇ϕ)dτ =
∫
V

Q ·Q dτ = 0.

This equation can only be satisfied if Q is identically zero, showing that P′ = P, thereby
proving the theorem.

The second theorem we shall prove, Helmholtz’s theorem, is

A vector P with both source and circulation densities vanishing at infinity may be writ-
ten as the sum of two parts, one of which is irrotational, the other of which is solenoidal.

Helmholtz’s theorem will clearly be satisfied if P can be written in the form

P=−∇ϕ +∇×A, (3.123)

since −∇ϕ is irrotational, while ∇ × A is solenoidal. Because P is known, so are also s
and c, defined as

s =∇ · P, c=∇× P.

We proceed by exhibiting expressions for ϕ and A that enable the recovery of s and c.
Because the region here under study is simply connected and the vector involved vanishes
at infinity (so that the first theorem of this subsection applies), having the correct s and c
guarantees that we have properly reproduced P.

The formulas proposed for ϕ and A are the following, written in terms of the spatial
variable r1:

ϕ(r1)= 1

4π

∫
s(r2)

r12
dτ2, (3.124)

A(r1)= 1

4π

∫
c(r2)

r12
dτ2. (3.125)

Here r12 = |r1 − r2|.
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If Eq. (3.123) is to be satisfied with the proposed values of ϕ and A, it is necessary that

∇ · P=−∇ ·∇ϕ +∇ · (∇×A)=−∇
2ϕ = s,

∇× P=−∇×∇ϕ +∇× (∇×A)=∇× (∇×A)= c.

To check that −∇2ϕ = s, we examine

−∇
2
1 ϕ(r1)=− 1

4π

∫
∇

2
1

(
1

r12

)
s(r2)dτ2

=− 1

4π

∫ [− 4πδ(r1 − r2)
]
s(r2)dτ2 = s(r1). (3.126)

We have written ∇1 to make clear that it operates on r1 and not r2, and we have used the
delta-function property given in Eq. (3.121). So s has been recovered.

We now check that ∇ × (∇ × A) = c. We start by using Eq. (3.70) to convert this
condition to a more easily utilized form:

∇× (∇×A)=∇(∇ ·A)−∇
2A= c.

Taking r1 as the free variable, we look first at

∇1
(
∇1 ·A(r1)

)= 1

4π
∇1

∫
∇1 ·

(
c(r2)

r12

)
dτ2

= 1

4π
∇1

∫
c(r2) ·∇1

(
1

r12

)
dτ2

= 1

4π
∇1

∫
c(r2) ·

[
−∇2

(
1

r12

)]
dτ2.

To reach the second line of this equation, we used Eq. (3.72) for the special case that the
vector in that equation is not a function of the variable being differentiated. Then, to obtain
the third line, we note that because the ∇1 within the integral acts on a function of r1− r2,
we can change ∇1 into ∇2 and introduce a sign change.

Now we integrate by parts, as in Example 3.7.3, reaching

∇1
[
∇1 ·A(r1)

]= 1

4π
∇1

∫ (
∇2 · c(r2)

)( 1

r12

)
dτ2.

At last we have the result we need: ∇2 · c(r2) vanishes, because c is a curl, so the entire
∇(∇ ·A) term is zero and may be dropped. This reduces the condition we are checking to
−∇2A= c.

The quantity−∇2A is a vector Laplacian and we may individually evaluate its Cartesian
components. For component j ,

−∇
2
1 A j (r1)=− 1

4π

∫
c j (r2)∇

2
1

(
1

r12

)
dτ2

=− 1

4π

∫
c j (r2)

[− 4πδ(r1 − r2)
]
dτ2 = c j (r1).

This completes the proof of Helmholtz’s theorem.
Helmholtz’s theorem legitimizes the division of the quantities appearing in electromag-

netic theory into an irrotational vector field E and a solenoidal vector field B, together
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with their respective representations using scalar and vector potentials. As we have seen
in numerous examples, the source s is identified as the charge density (divided by ε0) and
the circulation c is the current density (multiplied by µ0).

Exercises

3.9.1 If a force F is given by

F= (x2 + y2 + z2)n(êxx + êy y + êzz),

find

(a) ∇ · F.
(b) ∇× F.
(c) A scalar potential ϕ(x, y, z) so that F=−∇ϕ.
(d) For what value of the exponent n does the scalar potential diverge at both the

origin and infinity?

ANS. (a) (2n + 3)r2n (b) 0
(c) −r2n+2/(2n + 2), n 6= −1 (d) n =−1, ϕ =− ln r.

3.9.2 A sphere of radius a is uniformly charged (throughout its volume). Construct the elec-
trostatic potential ϕ(r) for 0≤ r <∞.

3.9.3 The origin of the Cartesian coordinates is at the Earth’s center. The moon is on the
z-axis, a fixed distance R away (center-to-center distance). The tidal force exerted by
the moon on a particle at the Earth’s surface (point x, y, z) is given by

Fx =−G Mm
x

R3 , Fy =−G Mm
y

R3 , Fz =+2G Mm
z

R3 .

Find the potential that yields this tidal force.

ANS. −G Mm

R3

(
z2 − 1

2
x2 − 1

2
y2
)

.

3.9.4 A long, straight wire carrying a current I produces a magnetic induction B with com-
ponents

B= µ0 I

2π

(
− y

x2 + y2 ,
x

x2 + y2 ,0

)
.

Find a magnetic vector potential A.

ANS. A=−ẑ(µ0 I/4π) ln(x2 + y2). (This solution is not unique.)

3.9.5 If

B= r̂
r2 =

( x

r3 ,
y

r3 ,
z

r3

)
,

find a vector A such that ∇×A= B.

ANS. One possible solution is A= êx yz

r(x2 + y2)
− êy xz

r(x2 + y2)
.
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3.9.6 Show that the pair of equations

A= 1

2
(B× r), B=∇×A,

is satisfied by any constant magnetic induction B.

3.9.7 Vector B is formed by the product of two gradients

B= (∇u)× (∇v),
where u and v are scalar functions.

(a) Show that B is solenoidal.
(b) Show that

A= 1

2
(u ∇v − v∇u)

is a vector potential for B, in that

B=∇×A.

3.9.8 The magnetic induction B is related to the magnetic vector potential A by B=∇ ×A.
By Stokes’ theorem ∫

B · dσ =
∮

A · dr.

Show that each side of this equation is invariant under the gauge transformation, A→
A+∇ϕ.
Note. Take the function ϕ to be single-valued.

3.9.9 Show that the value of the electrostatic potential ϕ at any point P is equal to the average
of the potential over any spherical surface centered on P , provided that there are no
electric charges on or within the sphere.
Hint. Use Green’s theorem, Eq. (3.85), with u = r−1, the distance from P , and v = ϕ.
Equation (3.120) will also be useful.

3.9.10 Using Maxwell’s equations, show that for a system (steady current) the magnetic vector
potential A satisfies a vector Poisson equation,

∇
2A=−µJ,

provided we require ∇ ·A= 0.

3.9.11 Derive, assuming the Lorentz gauge, Eq. (3.109):

1

c2

∂2A
∂t2 −∇

2A= µ0J.

Hint. Eq. (3.70) will be helpful.



ArfKen_Ch03-9780123846549.tex

182 Chapter 3 Vector Analysis

3.9.12 Prove that an arbitrary solenoidal vector B can be described as B=∇×A, with

A=−êx

y∫
y0

Bz(x, y, z)dy − êz

 x∫
x0

By(x, y0, z)dx −
y∫

y0

Bx (x, y, z)dy

.
3.10 CURVILINEAR COORDINATES

Up to this point we have treated vectors essentially entirely in Cartesian coordinates; when
r or a function of it was encountered, we wrote r as

√
x2 + y2 + z2, so that Cartesian

coordinates could continue to be used. Such an approach ignores the simplifications that
can result if one uses a coordinate system that is appropriate to the symmetry of a problem.
Central force problems are frequently easiest to deal with in spherical polar coordinates.
Problems involving geometrical elements such as straight wires may be best handled in
cylindrical coordinates. Yet other coordinate systems (of use too infrequent to be described
here) may be appropriate for other problems.

Naturally, there is a price that must be paid for the use of a non-Cartesian coordinate sys-
tem. Vector operators become different in form, and their specific forms may be position-
dependent. We proceed here to examine these questions and derive the necessary formulas.

Orthogonal Coordinates inR3

In Cartesian coordinates the point (x0, y0, z0) can be identified as the intersection of three
planes: (1) the plane x = x0 (a surface of constant x), (2) the plane y = y0 (constant y), and
(3) the plane z = z0 (constant z). A change in x corresponds to a displacement normal to
the surface of constant x ; similar remarks apply to changes in y or z. The planes of constant
coordinate value are mutually perpendicular, and have the obvious feature that the normal to
any given one of them is in the same direction, no matter where on the plane it is constructed
(a plane of constant x has a normal that is, of course, everywhere in the direction of êx ).

Consider now, as an example of a curvilinear coordinate system, spherical polar coor-
dinates (see Fig. 3.19). A point r is identified by r (distance from the origin), θ (angle of
r relative to the polar axis, which is conventionally in the z direction), and ϕ (dihedral
angle between the zx plane and the plane containing êz and r). The point r is therefore at
the intersection of (1) a sphere of radius r , (2) a cone of opening angle θ , and (3) a half-
plane through equatorial angle ϕ. This example provides several observations: (1) general

θ

ϕ y

r

z

x

FIGURE 3.19 Spherical polar coordinates.
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θ

keθˆ

r

r ′

FIGURE 3.20 Effect of a “large” displacement in the direction êθ . Note that r ′ 6= r .

coordinates need not be lengths, (2) a surface of constant coordinate value may have a
normal whose direction depends on position, (3) surfaces with different constant values of
the same coordinate need not be parallel, and therefore also (4) changes in the value of a
coordinate may move r in both an amount and a direction that depends on position.

It is convenient to define unit vectors êr , êθ , êϕ in the directions of the normals to the
surfaces, respectively, of constant r , θ , and ϕ. The spherical polar coordinate system has
the feature that these unit vectors are mutually perpendicular, meaning that, for example, êθ
will be tangent to both the constant-r and constant-ϕ surfaces, so that a small displacement
in the êθ direction will not change the values of either the r or the ϕ coordinate. The
reason for the restriction to “small” displacements is that the directions of the normals
are position-dependent; a “large” displacement in the êθ direction would change r (see
Fig. 3.20). If the coordinate unit vectors are mutually perpendicular, the coordinate system
is said to be orthogonal.

If we have a vector field V (so we associate a value of V with each point in a region of
R3), we can write V(r) in terms of the orthogonal set of unit vectors that are defined for
the point r; symbolically, the result is

V(r)= Vr êr + Vθ êθ + Vϕ êϕ .

It is important to realize that the unit vectors êi have directions that depend on the value
of r. If we have another vector field W(r) for the same point r, we can perform algebraic
processes8 on V and W by the same rules as for Cartesian coordinates. For example, at the
point r,

V ·W= Vr Wr + VθWθ + VϕWϕ .

However, if V and W are not associated with the same r, we cannot carry out such opera-
tions in this way, and it is important to realize that

r 6= r êr + θ êθ + ϕêϕ .

Summarizing, the component formulas for V or W describe component decompositions
applicable to the point at which the vector is specified; an attempt to decompose r as
illustrated above is incorrect because it uses fixed unit-vector orientations where they do
not apply.

Dealing for the moment with an arbitrary curvilinear system, with coordinates labeled
(q1,q2,q3), we consider how changes in the qi are related to changes in the Cartesian
coordinates. Since x can be thought of as a function of the qi , namely x(q1,q2,q3), we have

dx = ∂x

∂q1
dq1 + ∂x

∂q2
dq2 + ∂x

∂q3
dq3, (3.127)

with similar formulas for dy and dz.

8Addition, multiplication by a scalar, dot and cross products (but not application of differential or integral operators).
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We next form a measure of the differential displacement, dr, associated with changes
dqi . We actually examine

(dr)2 = (dx)2 + (dy)2 + (dz)2.

Taking the square of Eq. (3.127), we get

(dx)2 =
∑

i j

∂x

∂qi

∂x

∂q j
dqi dq j

and similar expressions for (dy)2 and (dz)2. Combining these and collecting terms with
the same dqi dq j , we reach the result

(dr)2 =
∑

i j

gi j dqi dq j , (3.128)

where

gi j (q1,q2,q3)= ∂x

∂qi

∂x

∂q j
+ ∂y

∂qi

∂y

∂q j
+ ∂z

∂qi

∂z

∂q j
. (3.129)

Spaces with a measure of distance given by Eq. (3.128) are called metric or Riemannian.
Equation (3.129) can be interpreted as the dot product of a vector in the dqi direction, of

components (∂x/∂qi , ∂y/∂qi , ∂z/∂qi ), with a similar vector in the dq j direction. If the
qi coordinates are perpendicular, the coefficients gi j will vanish when i 6= j .

Since it is our objective to discuss orthogonal coordinate systems, we specialize
Eqs. (3.128) and (3.129) to

(dr)2 = (h1 dq1)
2 + (h2 dq2)

2 + (h3 dq3)
2, (3.130)

h2
i =

(
∂x

∂qi

)2

+
(
∂y

∂qi

)2

+
(
∂y

∂qi

)2

. (3.131)

If we consider Eq. (3.130) for a case dq2 = dq3 = 0, we see that we can identify h1dq1
as dr1, meaning that the element of displacement in the q1 direction is h1dq1. Thus, in
general,

dri = hi dqi , or
∂r
∂qi
= hi êi . (3.132)

Here êi is a unit vector in the qi direction, and the overall dr takes the form

dr= h1dq1 ê1 + h2dq2 ê2 + h3dq3 ê3. (3.133)

Note that hi may be position-dependent and must have the dimension needed to cause
hi dqi to be a length.

Integrals in Curvilinear Coordinates

Given the scale factors hi for a set of coordinates, either because they have been tabulated
or because we have evaluated them via Eq. (3.131), we can use them to set up formulas for
integration in the curvilinear coordinates. Line integrals will take the form∫

C

V · dr=
∑

i

∫
C

Vi hi dqi . (3.134)
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Surface integrals take the same form as in Cartesian coordinates, with the exception that
instead of expressions like dx dy we have (h1dq1)(h2dq2)= h1h2 dq1 dq2 etc. This means
that ∫

S

V · dσ =
∫
S

V1h2h3 dq2dq3 +
∫
S

V2h3h1 dq3dq1 +
∫
S

V3h1h2 dq1dq2. (3.135)

The element of volume in orthogonal curvilinear coordinates is

dτ = h1h2h3 dq1dq2dq3, (3.136)

so volume integrals take the form∫
V

ϕ(q1,q2,q3)h1h2h3dq1dq2dq3, (3.137)

or the analogous expression with ϕ replaced by a vector V(q1,q2,q3).

Differential Operators in Curvilinear Coordinates

We continue with a restriction to orthogonal coordinate systems.

Gradient—Because our curvilinear coordinates are orthogonal, the gradient takes the
same form as for Cartesian coordinates, providing we use the differential displacements
dri = hi dqi in the formula. Thus, we have

∇ϕ(q1,q2,q3)= ê1
1

h1

∂ϕ

∂q1
+ ê2

1

h2

∂ϕ

∂q2
+ ê3

1

h3

∂ϕ

∂q3
, (3.138)

this corresponds to writing ∇ as

∇ = ê1
1

h1

∂

∂q1
+ ê2

1

h2

∂

∂q2
+ ê3

1

h3

∂

∂q3
. (3.139)

Divergence—This operator must have the same meaning as in Cartesian coordinates,
so ∇ · V must give the net outward flux of V per unit volume at the point of evaluation.
The key difference from the Cartesian case is that an element of volume will no longer be
a parallelepiped, as the scale factors hi are in general functions of position. See Fig. 3.21.
To compute the net outflow of V in the q1 direction from a volume element defined by

+B1h2dq2h3dq3|q1+ dq1/2

h2dq2

−B1h2dq2h3dq3|q1− dq1/2

h3dq3

FIGURE 3.21 Outflow of B1 in the q1 direction from a curvilinear volume element.
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dq1, dq2, dq3 and centered at (q1,q2,q3), we must form

Net q1 outflow=−V1h2h3 dq2dq3

∣∣∣
q1−dq1/2,q2,q3

+ V1h2h3 dq2dq3

∣∣∣
q1+dq1/2,q2,q3

.

(3.140)

Note that not only V1, but also h2h3 must be evaluated at the displaced values of q1; this
product may have different values at q1+ dq1/2 and q1− dq1/2. Rewriting Eq. (3.140) in
terms of a derivative with respect to q1, we have

Net q1 outflow= ∂

∂q1
(V1h2h3)dq1dq2dq3.

Combining this with the q2 and q3 outflows and dividing by the differential volume
h1h2h3 dq1dq2dq3, we get the formula

∇ ·V(q1,q2,q3)= 1

h1h2h3

[
∂

∂q1
(V1h2h3)+ ∂

∂q2
(V2h3h1)+ ∂

∂q3
(V3h1h2)

]
. (3.141)

Laplacian—From the formulas for the gradient and divergence, we can form the Laplacian
in curvilinear coordinates:

∇
2ϕ(q1,q2,q3)=∇ ·∇ϕ =

1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂ϕ

∂q1

)
+ ∂

∂q2

(
h3h1

h2

∂ϕ

∂q2

)
+ ∂

∂q3

(
h1h2

h3

∂ϕ

∂q3

)]
. (3.142)

Note that the Laplacian contains no cross derivatives, such as ∂2/∂q1∂q2. They do not
appear because the coordinate system is orthogonal.

Curl—In the same spirit as our treatment of the divergence, we calculate the circulation
around an element of area in the q1q2 plane, and therefore associated with a vector in
the q3 direction. Referring to Fig. 3.22, the line integral

∮
B · dr consists of four segment

−B1h1dq1|q2+ dq2/2

B2h2dq2|q1+ dq1/2

−B2h2dq2|q1−dq1/2

+B1h1dq1|q2−dq2/2

FIGURE 3.22 Circulation
∮

B · dr around curvilinear element of area on
a surface of constant q3.
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contributions, which to first order are

Segment 1= (h1 B1)

∣∣∣
q1,q2−dq2/2,q3

dq1,

Segment 2= (h2 B2)

∣∣∣
q1+dq1/2,q2,q3

dq2,

Segment 3=−(h1 B1)

∣∣∣
q1,q2+dq2/2,q3

dq1,

Segment 4=−(h2 B2)

∣∣∣
q1−dq1/2,q2,q3

dq2.

Keeping in mind that the hi are functions of position, and that the loop has area
h1h2 dq1dq2, these contributions combine into a circulation per unit area

(∇×B)3 =
1

h1h2

[
− ∂

∂q2
(h1 B1)+ ∂

∂q1
(h2 B2)

]
.

The generalization of this result to arbitrary orientation of the circulation loop can be
brought to the determinantal form

∇×B= 1

h1h2h3

∣∣∣∣∣∣∣∣
ê1h1 ê2h2 ê3h3
∂

∂q1

∂

∂q2

∂

∂q3

h1 B1 h2 B2 h3 B3

∣∣∣∣∣∣∣∣. (3.143)

Just as for Cartesian coordinates, this determinant is to be evaluated from the top down, so
that the derivatives will act on its bottom row.

Circular Cylindrical Coordinates

Although there are at least 11 coordinate systems that are appropriate for use in solving
physics problems, the evolution of computers and efficient programming techniques have
greatly reduced the need for most of these coordinate systems, with the result that the dis-
cussion in this book is limited to (1) Cartesian coordinates, (2) spherical polar coordinates
(treated in the next subsection), and (3) circular cylindrical coordinates, which we discuss
here. Specifications and details of other coordinate systems will be found in the first two
editions of this work and in Additional Readings at the end of this chapter (Morse and
Feshbach, Margenau and Murphy).

In the circular cylindrical coordinate system the three curvilinear coordinates are labeled
(ρ,ϕ, z). We use ρ for the perpendicular distance from the z-axis because we reserve r for
the distance from the origin. The ranges of ρ, ϕ, and z are

0≤ ρ <∞, 0≤ ϕ < 2π, −∞< z <∞.
For ρ = 0, ϕ is not well defined. The coordinate surfaces, shown in Fig. 3.23, follow:

1. Right circular cylinders having the z-axis as a common axis,

ρ =
(

x2 + y2
)1/2 = constant.
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ρ

ϕ

y

x

z

FIGURE 3.23 Cylindrical coordinates ρ, ϕ, z.

2. Half-planes through the z-axis, at an angle ϕ measured from the x direction,

ϕ = tan−1
( y

x

)
= constant.

The arctangent is double valued on the range of ϕ, and the correct value of ϕ must be
determined by the individual signs of x and y.

3. Planes parallel to the xy-plane, as in the Cartesian system,

z = constant.

Inverting the preceding equations, we can obtain

x = ρ cosϕ, y = ρ sinϕ, z = z. (3.144)

This is essentially a 2-D curvilinear system with a Cartesian z-axis added on to form
a 3-D system.

The coordinate vector r and a general vector V are expressed as

r= ρ êρ + z êz, V= Vρ êρ + Vϕ êϕ + Vz êz .

From Eq. (3.131), the scale factors for these coordinates are

hρ = 1, hϕ = ρ, hz = 1, (3.145)
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so the elements of displacement, area, and volume are

dr= êρ dρ + ρ êϕ dϕ + êz dz,

dσ = ρ êρ dϕ dz + êϕdρ dz + ρ êz dρ dϕ, (3.146)

dτ = ρ dρ dϕ dz.

It is perhaps worth emphasizing that the unit vectors êρ and êϕ have directions that vary
with ϕ; if expressions containing these unit vectors are differentiated with respect to ϕ, the
derivatives of these unit vectors must be included in the computations.

Example 3.10.1 KEPLER’S AREA LAW FOR PLANETARY MOTION

One of Kepler’s laws states that the radius vector of a planet, relative to an origin at the
sun, sweeps out equal areas in equal time. It is instructive to derive this relationship using
cylindrical coordinates. For simplicity we consider a planet of unit mass and motion in the
plane z = 0.

The gravitational force F is of the form f (r) êr , and hence the torque about the origin,
r× F, vanishes, so angular momentum L = r× dr/dt is conserved. To evaluate dr/dt ,
we start from dr as given in Eq. (3.146), writing

dr
dt
= êρ ρ̇ + êϕρϕ̇,

where we have used the dot notation (invented by Newton) to indicate time derivatives.
We now form

L= ρ êρ ×
(
êρ ρ̇ + êϕρϕ̇

)= ρ2ϕ̇êz .

We conclude that ρ2 ϕ̇ is constant. Making the identification ρ2 ϕ̇ = 2 d A/dt , where A is
the area swept out, we confirm Kepler’s law. �

Continuing now to the vector differential operators, using Eqs. (3.138), (3.141), (3.142),
and (3.143), we have

∇ψ(ρ,ϕ, z)= êρ
∂ψ

∂bρ
+ êϕ

1

ρ

∂ψ

∂ϕ
+ êz

∂ψ

∂z
, (3.147)

∇ ·V= 1

ρ

∂

∂ρ
(ρVρ)+ 1

ρ

∂Vϕ
∂ϕ
+ ∂Vz

∂z
, (3.148)

∇
2ψ = 1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1

ρ2

∂2ψ

∂ϕ2 +
∂2ψ

∂z2 , (3.149)

∇× V = 1

ρ

∣∣∣∣∣∣∣∣∣
êρ ρêϕ êz

∂

∂ρ

∂

∂ϕ

∂

∂z

Vρ ρVϕ Vz

∣∣∣∣∣∣∣∣∣. (3.150)
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Finally, for problems such as circular wave guides and cylindrical cavity resonators, one
needs the vector Laplacian ∇2V. From Eq. (3.70), its components in cylindrical coordi-
nates can be shown to be

∇
2V
∣∣∣
ρ
=∇

2Vρ − 1

ρ2 Vρ − 2

ρ2

∂Vϕ
∂ϕ

,

∇
2V
∣∣∣
ϕ
=∇

2Vϕ − 1

ρ2 Vϕ + 2

ρ2

∂Vρ
∂ϕ

, (3.151)

∇
2V
∣∣∣

z
=∇

2Vz .

Example 3.10.2 A NAVIER-STOKES TERM

The Navier-Stokes equations of hydrodynamics contain a nonlinear term

∇× [v× (∇× v)
]
,

where v is the fluid velocity. For fluid flowing through a cylindrical pipe in the z direction,

v= êzv(ρ).

From Eq. (3.150),

∇× v= 1

ρ

∣∣∣∣∣∣∣∣∣
êρ ρêϕ êz

∂

∂ρ

∂

∂ϕ

∂

∂z

0 0 v(ρ)

∣∣∣∣∣∣∣∣∣=−êϕ
∂v

∂ρ
,

v× (∇× v)=

∣∣∣∣∣∣∣∣∣
êρ êϕ êz

0 0 v

0 −∂v
∂ρ

0

∣∣∣∣∣∣∣∣∣= êρ v(ρ)
∂v

∂ρ
.

Finally,

∇× (v× (∇× v)
)= 1

ρ

∣∣∣∣∣∣∣∣∣∣∣

êρ ρêϕ êz

∂

∂ρ

∂

∂ϕ

∂

∂z

v
∂v

∂ρ
0 0

∣∣∣∣∣∣∣∣∣∣∣
= 0.

For this particular case, the nonlinear term vanishes. �

Spherical Polar Coordinates

Spherical polar coordinates were introduced as an initial example of a curvilinear coordi-
nate system, and were illustrated in Fig. 3.19. We reiterate: The coordinates are labeled
(r, θ, ϕ). Their ranges are

0≤ r <∞, 0≤ θ ≤ π, 0≤ ϕ < 2π.
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For r = 0, neither θ nor ϕ is well defined. Additionally, ϕ is ill-defined for θ = 0 and
θ = π . The coordinate surfaces follow:

1. Concentric spheres centered at the origin,

r =
(

x2 + y2 + z2
)1/2 = constant.

2. Right circular cones centered on the z (polar) axis with vertices at the origin,

θ = arccos
z

r
= constant.

3. Half-planes through the z (polar) axis, at an angle ϕ measured from the x direction,

ϕ = arctan
y

x
= constant.

The arctangent is double valued on the range of ϕ, and the correct value of ϕ must be
determined by the individual signs of x and y.

Inverting the preceding equations, we can obtain

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (3.152)

The coordinate vector r and a general vector V are expressed as

r= r êr , V= Vr êr + Vθ êθ + Vϕ êϕ .

From Eq. (3.131), the scale factors for these coordinates are

hr = 1, hθ = r, hϕ = r sin θ, (3.153)

so the elements of displacement, area, and volume are

dr= êr dr + r êθ dθ + r sin θ êϕ dϕ,

dσ = r2 sin θ êr dθ dϕ + r sin θ êθ dr dϕ + r êϕ dr dθ, (3.154)

dτ = r2 sin θ dρ dθ dϕ.

Frequently one encounters a need to perform a surface integration over the angles, in which
case the angular dependence of dσ reduces to

d�= sin θ dθ dϕ, (3.155)

where d� is called an element of solid angle, and has the property that its integral over all
angles has the value ∫

d�= 4π.

Note that for spherical polar coordinates, all three of the unit vectors have directions that
depend on position, and this fact must be taken into account when expressions containing
the unit vectors are differentiated.
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The vector differential operators may now be evaluated, using Eqs. (3.138), (3.141),
(3.142), and (3.143):

∇ψ(r, θ, ϕ)= êr
∂ψ

∂r
+ êθ

1

r

∂ψ

∂θ
+ êϕ

1

r sin θ

∂ψ

∂ϕ
, (3.156)

∇ ·V= 1

r2 sin θ

[
sin θ

∂

∂r
(r2Vr )+ r

∂

∂θ
(sin θ Vθ )+ r

∂Vϕ
∂ϕ

]
, (3.157)

∇
2ψ = 1

r2 sin θ

[
sin θ

∂

∂r

(
r2 ∂ψ

∂r

)
+ ∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

sin θ

∂2ψ

∂ϕ2

]
, (3.158)

∇× V = 1

r2 sin θ

∣∣∣∣∣∣∣∣
êr r êθ r sin θ êϕ
∂

∂r

∂

∂θ

∂

∂ϕ

Vr r Vθ r sin θVϕ

∣∣∣∣∣∣∣∣. (3.159)

Finally, again using Eq. (3.70), the components of the vector Laplacian ∇2V in spherical
polar coordinates can be shown to be

∇
2V
∣∣∣

r
=∇

2Vr − 2

r2 Vr − 2

r2 cot θVθ − 2

r2

∂Vθ
∂θ
− 2

r2 sin θ

∂Vϕ
∂ϕ

,

∇
2V
∣∣∣
θ
=∇

2Vθ − 1

r2 sin2 θ
Vθ + 2

r2

∂Vr

∂θ
− 2 cos θ

r2 sin2 θ

∂Vϕ
∂ϕ

, (3.160)

∇
2V
∣∣∣
ϕ
=∇

2Vϕ − 1

r2 sin2 θ
Vϕ + 2

r2 sin θ

∂Vr

∂ϕ
+ 2 cos θ

r2 sin2 θ

∂Vϕ
∂ϕ

.

Example 3.10.3 ∇, ∇·, ∇× FOR A CENTRAL FORCE

We can now easily derive some of the results previously obtained more laboriously in
Cartesian coordinates:

From Eq. (3.156),

∇ f (r)= êr
d f

dr
, ∇rn = êr nrn−1. (3.161)

Specializing to the Coulomb potential of a point charge at the origin, V = Ze/(4πε0r), so
the electric field has the expected value E=−∇V = (Ze/4πε0r2)êr .

Taking next the divergence of a radial function, we have from Eq. (3.157),

∇ · (êr f (r)
)= 2

r
f (r)+ d f

dr
, ∇ · (êr rn)= (n + 2)rn−1. (3.162)

Specializing the above to the Coulomb force (n = −2), we have (except for r = 0)
∇ · r−2 = 0, which is consistent with Gauss’ law.

Continuing now to the Laplacian, from Eq. (3.158) we have

∇
2 f (r)= 2

r

d f

dr
+ d2 f

dr2 , ∇
2rn = n(n + 1)rn−2, (3.163)

in contrast to the ordinary second derivative of rn involving n − 1.
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Finally, from Eq. (3.159),

∇× (êr f (r)
)= 0, (3.164)

which confirms that central forces are irrotational. �

Example 3.10.4 MAGNETIC VECTOR POTENTIAL

A single current loop in the xy-plane has a vector potential A that is a function only of r
and θ , is entirely in the êϕ direction and is related to the current density J by the equation

µ0J=∇×B=∇× [∇× êϕ Aϕ(r, θ)
]
.

In spherical polar coordinates this reduces to

µ0J=∇× 1

r2 sin θ

∣∣∣∣∣∣∣∣∣
êr r êθ r sin θ êϕ
∂

∂r

∂

∂θ

∂

∂ϕ

0 0 r sin θ Aϕ

∣∣∣∣∣∣∣∣∣
=∇× 1

r2 sin θ

[
êr
∂

∂θ
(r sin θ Aϕ)− r êθ

∂

∂r
(r sin θ Aϕ)

]
.

Taking the curl a second time, we obtain

µ0J= 1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣

êr r êθ r sin θ êϕ
∂

∂r

∂

∂θ

∂

∂ϕ

1

r sin θ

∂

∂θ
(sin θ Aϕ) −1

r

∂

∂r
(r Aϕ) 0

∣∣∣∣∣∣∣∣∣∣
.

Expanding this determinant from the top down, we reach

µ0J=−êϕ

[
∂2 Aϕ
∂r2 +

2

r

∂Aϕ
∂r
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂Aϕ
∂θ

)
− 1

r2 sin2 θ
Aϕ

]
. (3.165)

Note that we get, in addition to ∇2 Aϕ , one more term: −Aϕ/r2 sin2 θ . �

Example 3.10.5 STOKES’ THEOREM

As a final example, let’s compute
∮

B · dr for a closed loop, comparing the result with
integrals

∫
(∇ × B) · dσ for two different surfaces having the same perimeter. We use

spherical polar coordinates, taking B= e−r êϕ .
The loop will be a unit circle about the origin in the xy-plane; the line integral about

it will be taken in a counterclockwise sense as viewed from positive z, so the normal to
the surfaces it bounds will pass through the xy-plane in the direction of positive z. The
surfaces we consider are (1) a circular disk bounded by the loop, and (3) a hemisphere
bounded by the loop, with its surface in the region z < 0. See Fig. 3.24.
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n
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n

FIGURE 3.24 Surfaces for Example 3.10.5: (left) S1, disk; (right) S2, hemisphere.

For the line integral, dr= r sin θ êϕ dϕ, which reduces to dr= êϕ dϕ since θ = π/2 and
r = 1 on the entire loop. We then have

∮
B · dr=

2π∫
ϕ=0

e−1 êϕ · êϕ dϕ = 2π

e
.

For the surface integrals, we need ∇×B:

∇×B= 1

r2 sin θ

[
∂

∂θ
(r sin θ e−r )êr − r

∂

∂r
(r sin θ e−r )êθ

]
= e−r cos θ

r sin θ
êr − (1− r)e−r êθ .

Taking first the disk, at all points of which θ = π/2, with integration range 0 ≤ r ≤ 1,
and 0≤ ϕ < 2π , we note that dσ =−êθ r sin θ dr dϕ =−êθ r dr dϕ. The minus sign arises
because the positive normal is in the direction of decreasing θ . Then,

∫
S1

−(∇×B) · êθ r dr dϕ =
2π∫

0

dϕ

1∫
0

dr (1− r) e−r = 2π

e
.

For the hemisphere, defined by r = 1, π/2 ≤ θ < π , and 0 ≤ ϕ < 2π , we have dσ =
−êr r2 sin θ dθ dϕ =−êr sin θ dθ dϕ (the normal is in the direction of decreasing r ), and

∫
S2

−(∇×B) · êr sin θ dθ dϕ =−
π∫

π/2

dθe−1 cos θ

2π∫
0

dϕ = 2π

e
.

The results for both surfaces agree with that from the line integral of their common
perimeter. Because ∇ × B is solenoidal, all the flux that passes through the disk in the
xy-plane must continue through the hemispherical surface, and for that matter, through
any surface with the same perimeter. That is why Stokes’ theorem is indifferent to features
of the surface other than its perimeter. �
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Rotation and Reflection in Spherical Coordinates

It is infrequent that rotational coordinate transformations need be applied in curvilinear
coordinate systems, and they usually arise only in contexts that are compatible with the
symmetry of the coordinate system. We limit the current discussion to rotations (and
reflections) in spherical polar coordinates.

Rotation—Suppose a coordinate rotation identified by Euler angles (α,β, γ ) converts the
coordinates of a point from (r, θ, ϕ) to (r, θ ′, ϕ′). It is obvious that r retains its original
value. Two questions arise: (1) How are θ ′ and ϕ′ related to θ and ϕ? and (2) How do the
components of a vector A, namely (Ar , Aθ , Aϕ), transform?

It is simplest to proceed, as we did for Cartesian coordinates, by analyzing the three
consecutive rotations implied by the Euler angles. The first rotation, by an angle α about
the z-axis, leaves θ unchanged, and converts ϕ into ϕ − α. However, it causes no change
in any of the components of A.

The second rotation, which inclines the polar direction by an angle β toward the (new)
x-axis, does change the values of both θ and ϕ and, in addition, changes the directions
of êθ and êϕ . Referring to Fig. 3.25, we see that these two unit vectors are subjected to
a rotation χ in the plane tangent to the sphere of constant r , thereby yielding new unit
vectors ê′θ and ê′ϕ such that

êθ = cosχ ê′θ − sinχ ê′ϕ, êϕ = sinχ ê′θ + cosχ ê′ϕ .

This transformation corresponds to

S2 =
(

cosχ sinχ
−sinχ cosχ

)
.

Carrying out the spherical trigonometry corresponding to Fig. 3.25, we have the new
coordinates

cos θ ′ = cosβ cos θ + sinβ sin θ cos(ϕ − α), cosϕ′ = cosβ cos θ ′ − cos θ

sinβ sin θ ′
, (3.166)

P

xx

z

z ′

ϕ − α θ

θ ′

ϕ ′

β

π − ϕ ′

êϕ ′

êϕ

êθ ′

eθ

FIGURE 3.25 Rotation and unit vectors in spherical polar coordinates, shown on a sphere
of radius r . The original polar direction is marked z; it is moved to the direction z′, at an

inclination given by the Euler angle β . The unit vectors êθ and êϕ at the point P are
thereby rotated through the angle χ .
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and

cosχ = cosβ − cos θ cos θ ′

sin θ sin θ ′
. (3.167)

The third rotation, by an angle γ about the new z-axis, leaves the components of A
unchanged but requires the replacement of ϕ′ by ϕ′ − γ .

Summarizing, A′r
A′θ
A′ϕ

=
1 0 0

0 cosχ sinχ
0 −sinχ cosχ

Ar

Aθ
Aϕ

. (3.168)

This equation specifies the components of A in the rotated coordinates at the point
(r, θ ′, ϕ′ − γ ) in terms of the original components at the same physical point, (r, θ, ϕ).

Reflection—Inversion of the coordinate system reverses the sign of each Cartesian coor-
dinate. Taking the angle ϕ as that which moves the new+x coordinate toward the new +y
coordinate, the system (which was originally right-handed) now becomes left-handed. The
coordinates (r, θ, ϕ) of a (fixed) point become, in the new system, (r,π − θ,π + ϕ). The
unit vectors êr and êϕ are invariant under inversion, but êθ changes sign, soA′r

A′θ
A′ϕ

=
 Ar

−Aθ
Aϕ

, coordinate inversion. (3.169)

Exercises

3.10.1 The u-, v-, z-coordinate system frequently used in electrostatics and in hydrodynamics
is defined by

xy = u, x2 − y2 = v, z = z.

This u-, v-, z-system is orthogonal.

(a) In words, describe briefly the nature of each of the three families of coordinate
surfaces.

(b) Sketch the system in the xy-plane showing the intersections of surfaces of constant
u and surfaces of constant v with the xy-plane.

(c) Indicate the directions of the unit vectors êu and êv in all four quadrants.
(d) Finally, is this u-, v-, z-system right-handed (êu × êv =+êz) or left-handed (êu ×

êv =−êz)?

3.10.2 The elliptic cylindrical coordinate system consists of three families of surfaces:

(1)
x2

a2 cosh2 u
+ y2

a2 sinh2 u
= 1; (2)

x2

a2 cos2 v
− y2

a2 sin2 v
= 1; (3) z = z.

Sketch the coordinate surfaces u = constant and v = constant as they intersect the first
quadrant of the xy-plane. Show the unit vectors êu and êv . The range of u is 0≤ u <∞.
The range of v is 0≤ v ≤ 2π .
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3.10.3 Develop arguments to show that dot and cross products (not involving ∇) in orthogonal
curvilinear coordinates inR3 proceed, as in Cartesian coordinates, with no involvement
of scale factors.

3.10.4 With ê1 a unit vector in the direction of increasing q1, show that

(a) ∇ · ê1 = 1

h1h2h3

∂(h2h3)

∂q1

(b) ∇× ê1 = 1

h1

[
ê2

1

h3

∂h1

∂q3
− ê3

1

h2

∂h1

∂q2

]
.

Note that even though ê1 is a unit vector, its divergence and curl do not necessarily
vanish.

3.10.5 Show that a set of orthogonal unit vectors êi may be defined by

êi = 1

hi

∂r
∂qi

.

In particular, show that êi · êi = 1 leads to an expression for hi in agreement with
Eq. (3.131).
The above equation for êi may be taken as a starting point for deriving

∂ êi

∂q j
= ê j

1

hi

∂h j

∂qi
, i 6= j

and

∂ êi

∂qi
=−

∑
j 6=i

ê j
1

h j

∂hi

∂q j
.

3.10.6 Resolve the circular cylindrical unit vectors into their Cartesian components (see
Fig. 3.23).

ANS. êρ = êx cosϕ + êy sinϕ,
êϕ = −êx sinϕ + êy cosϕ,
êz = êz .

3.10.7 Resolve the Cartesian unit vectors into their circular cylindrical components (see
Fig. 3.23).

ANS. êx = êρ cosϕ − êϕ sinϕ,
êy = êρ sinϕ + êϕ cosϕ,
êz = êz .

3.10.8 From the results of Exercise 3.10.6, show that

∂ êρ
∂ϕ
= êϕ,

∂ êϕ
∂ϕ
=−êρ

and that all other first derivatives of the circular cylindrical unit vectors with respect to
the circular cylindrical coordinates vanish.
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3.10.9 Compare ∇ ·V as given for cylindrical coordinates in Eq. (3.148) with the result of its
computation by applying to V the operator

∇ = êρ
∂

∂ρ
+ êϕ

1

ρ

∂

∂ϕ
+ êz

∂

∂z

Note that ∇ acts both on the unit vectors and on the components of V.

3.10.10 (a) Show that r= êρρ + êzz.

(b) Working entirely in circular cylindrical coordinates, show that

∇ · r= 3 and ∇× r= 0.

3.10.11 (a) Show that the parity operation (reflection through the origin) on a point (ρ,ϕ, z)
relative to fixed x-, y-, z-axes consists of the transformation

ρ→ ρ, ϕ→ ϕ ± π, z→−z.

(b) Show that êρ and êϕ have odd parity (reversal of direction) and that êz has even
parity.
Note. The Cartesian unit vectors êx , êy, and êz remain constant.

3.10.12 A rigid body is rotating about a fixed axis with a constant angular velocity ω. Take ω
to lie along the z-axis. Express the position vector r in circular cylindrical coordinates
and using circular cylindrical coordinates,

(a) calculate v= ω× r,
(b) calculate ∇× v.

ANS. (a) v= êϕωρ
(b) ∇× v= 2ω.

3.10.13 Find the circular cylindrical components of the velocity and acceleration of a moving
particle,

vρ = ρ̇, aρ = ρ̈ − ρϕ̇2,

vϕ = ρϕ̇, aϕ = ρϕ̈ + 2ρ̇ϕ̇,

vz = ż, az = z̈.

Hint. r(t)= êρ(t)ρ(t)+ êzz(t)

= [êx cosϕ(t)+ êy sinϕ(t)]ρ(t)+ êzz(t).

Note. ρ̇ = dρ/dt , ρ̈ = d2ρ/dt2, and so on.

3.10.14 In right circular cylindrical coordinates, a particular vector function is given by

V(ρ,ϕ)= êρVρ(ρ,ϕ)+ êϕVϕ(ρ,ϕ).

Show that ∇×V has only a z-component. Note that this result will hold for any vector
confined to a surface q3 = constant as long as the products h1V1 and h2V2 are each
independent of q3.
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3.10.15 A conducting wire along the z-axis carries a current I . The resulting magnetic vector
potential is given by

A= êz
µI

2π
ln

(
1

ρ

)
.

Show that the magnetic induction B is given by

B= êϕ
µI

2πρ
.

3.10.16 A force is described by

F=−êx
y

x2 + y2 + êy
x

x2 + y2 .

(a) Express F in circular cylindrical coordinates.
Operating entirely in circular cylindrical coordinates for (b) and (c),

(b) Calculate the curl of F and
(c) Calculate the work done by F in encircling the unit circle once counter-clockwise.
(d) How do you reconcile the results of (b) and (c)?

3.10.17 A calculation of the magnetohydrodynamic pinch effect involves the evaluation of
(B ·∇)B. If the magnetic induction B is taken to be B= êϕBϕ(ρ), show that

(B ·∇)B=−êρB2
ϕ/ρ.

3.10.18 Express the spherical polar unit vectors in terms of Cartesian unit vectors.

ANS. êr = êx sin θ cosϕ + êy sin θ sinϕ + êz cos θ,
êθ = êx cos θ cosϕ + êy cos θ sinϕ − êz sin θ,
êϕ = −êx sinϕ + êy cosϕ.

3.10.19 Resolve the Cartesian unit vectors into their spherical polar components:

êx = êr sin θ cosϕ + êθ cos θ cosϕ − êϕ sinϕ,

êy = êr sin θ sinϕ + êθ cos θ sinϕ + êϕ cosϕ,

êz = êr cos θ − êθ sin θ.

3.10.20 (a) Explain why it is not possible to relate a column vector r (with components x ,
y, z) to another column vector r′ (with components r , θ , ϕ), via a matrix equation
of the form r′ = Br.

(b) One can write a matrix equation relating the Cartesian components of a vector to
its components in spherical polar coordinates. Find the transformation matrix and
determine whether it is orthogonal.

3.10.21 Find the transformation matrix that converts the components of a vector in spherical
polar coordinates into its components in circular cylindrical coordinates. Then find the
matrix of the inverse transformation.

3.10.22 (a) From the results of Exercise 3.10.18, calculate the partial derivatives of êr , êθ , and
êϕ with respect to r , θ , and ϕ.
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(b) With ∇ given by

êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êϕ

1

r sin θ

∂

∂ϕ

(greatest space rate of change), use the results of part (a) to calculate ∇ ·∇ψ . This
is an alternate derivation of the Laplacian.

Note. The derivatives of the left-hand ∇ operate on the unit vectors of the right-hand ∇

before the dot product is evaluated.

3.10.23 A rigid body is rotating about a fixed axis with a constant angular velocity ω. Take ω to
be along the z-axis. Using spherical polar coordinates,

(a) calculate v= ω× r.
(b) calculate ∇× v.

ANS. (a) v= êϕωr sin θ.
(b) ∇× v= 2ω.

3.10.24 A certain vector V has no radial component. Its curl has no tangential components.
What does this imply about the radial dependence of the tangential components of V?

3.10.25 Modern physics lays great stress on the property of parity (whether a quantity remains
invariant or changes sign under an inversion of the coordinate system). In Cartesian
coordinates this means x→−x , y→−y, and z→−z.

(a) Show that the inversion (reflection through the origin) of a point (r, θ, ϕ) relative
to fixed x-, y-, z-axes consists of the transformation

r→ r, θ→ π − θ, ϕ→ ϕ ± π.
(b) Show that êr and êϕ have odd parity (reversal of direction) and that êθ has even

parity.

3.10.26 With A any vector,

A ·∇r=A.

(a) Verify this result in Cartesian coordinates.
(b) Verify this result using spherical polar coordinates. Equation (3.156) provides ∇.

3.10.27 Find the spherical coordinate components of the velocity and acceleration of a moving
particle:

vr = ṙ , ar = r̈ − r θ̇2 − r sin2 θϕ̇2,

vθ = r θ̇ , aθ = r θ̈ + 2ṙ θ̇ − r sin θ cos θϕ̇2,

vϕ = r sin θϕ̇, aϕ = r sin θϕ̈ + 2ṙ sin θϕ̇ + 2r cos θ θ̇ ϕ̇.
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Hint. r(t)= êr (t)r(t)

= [êx sin θ(t) cosϕ(t)+ êy sin θ(t) sinϕ(t)+ êz cos θ(t)]r(t).
Note. The dot in ṙ , θ̇ , ϕ̇ means time derivative: ṙ = dr/dt, θ̇ = dθ/dt,
ϕ̇ = dϕ/dt .

3.10.28 Express ∂/∂x , ∂/∂y, ∂/∂z in spherical polar coordinates.

ANS.
∂

∂x
= sin θ cosϕ

∂

∂r
+ cos θ cosϕ

1

r

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ
,

∂

∂y
= sin θ sinϕ

∂

∂r
+ cos θ sinϕ

1

r

∂

∂θ
+ cosϕ

r sin θ

∂

∂ϕ
,

∂

∂z
= cos θ

∂

∂r
− sin θ

1

r

∂

∂θ
.

Hint. Equate ∇xyz and ∇rθϕ .

3.10.29 Using results from Exercise 3.10.28, show that

−i

(
x
∂

∂y
− y

∂

∂x

)
=−i

∂

∂ϕ
.

This is the quantum mechanical operator corresponding to the z-component of orbital
angular momentum.

3.10.30 With the quantum mechanical orbital angular momentum operator defined as L =
−i(r×∇), show that

(a) Lx + i L y = eiϕ
(
∂

∂θ
+ i cot θ

∂

∂ϕ

)
,

(b) Lx − i L y =−e−iϕ
(
∂

∂θ
− i cot θ

∂

∂ϕ

)
.

3.10.31 Verify that L × L = iL in spherical polar coordinates. L = −i(r × ∇), the quantum
mechanical orbital angular momentum operator.
Written in component form, this relation is

L y L z − L z L y = i Lx , L z Lx − Lx L z =−L y, Lx L y − L y Lx = i L z .

Using the commutator notation, [A, B] = AB − B A, and the definition of the Levi-
Civita symbol εi jk , the above can also be written

[L i , L j ] = i εi jk Lk,

where i , j , k are x, y, z in any order.
Hint. Use spherical polar coordinates for L but Cartesian components for the cross
product.
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3.10.32 (a) Using Eq. (3.156) show that

L=−i(r×∇)= i

(
êθ

1

sin θ

∂

∂ϕ
− êϕ

∂

∂θ

)
.

(b) Resolving êθ and êϕ into Cartesian components, determine Lx , L y , and L z in
terms of θ , ϕ, and their derivatives.

(c) From L2 = L2
x + L2

y + L2
z show that

L2 =− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2

=−r2
∇

2 + ∂

∂r

(
r2 ∂

∂r

)
.

3.10.33 With L=−ir×∇, verify the operator identities

(a) ∇ = êr
∂

∂r
− i

r×L
r2 ,

(b) r∇2 −∇

(
1+ r

∂

∂r

)
= i∇×L.

3.10.34 Show that the following three forms (spherical coordinates) of ∇2ψ(r) are equivalent:

(a)
1

r2

d

dr

[
r2 dψ(r)

dr

]
; (b)

1

r

d2

dr2 [rψ(r)]; (c)
d2ψ(r)

dr2 + 2

r

dψ(r)

dr
.

The second form is particularly convenient in establishing a correspondence between
spherical polar and Cartesian descriptions of a problem.

3.10.35 A certain force field is given in spherical polar coordinates by

F= êr
2P cos θ

r3 + êθ
P

r3 sin θ, r ≥ P/2.

(a) Examine ∇× F to see if a potential exists.
(b) Calculate

∮
F · dr for a unit circle in the plane θ = π/2. What does this indicate

about the force being conservative or nonconservative?
(c) If you believe that F may be described by F = −∇ψ , find ψ . Otherwise simply

state that no acceptable potential exists.

3.10.36 (a) Show that A=−êϕ cot θ/r is a solution of ∇×A= êr/r2.
(b) Show that this spherical polar coordinate solution agrees with the solution given

for Exercise 3.9.5:

A= êx
yz

r(x2 + y2)
− êy

xz

r(x2 + y2)
.

Note that the solution diverges for θ = 0, π corresponding to x , y = 0.
(c) Finally, show that A=−êθϕ sin θ/r is a solution. Note that although this solution

does not diverge (r 6= 0), it is no longer single-valued for all possible azimuth
angles.
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3.10.37 An electric dipole of moment p is located at the origin. The dipole creates an electric
potential at r given by

ψ(r)= p · r
4πε0r3 .

Find the electric field, E=−∇ψ at r.
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