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Abstract

This paper is aimed to investigate some computational aspects of different isoperi-
metric problems on weighted trees. In this regard, we consider different connectivity pa-
rameters called minimum normalized cuts/isoperimetric numbers defined through tak-
ing minimum of the maximum or the mean of the normalized outgoing flows from a set
of subdomains of vertices, where these subdomains constitute a partition/subpartition.
We show that the decision problem for the case of taking k-partitions and the maxi-
mum (called the max normalized cut problem NCPM ) as well as the other two decision
problems for the mean version (referred to as IPPm and NCPm) are NP -complete
problems for weighted trees. On the other hand, we show that the decision problem
for the case of taking k-subpartitions and the maximum (called the max isoperimetric
problem IPPM ) can be solved in linear time for any weighted tree and any k ≥ 2.
Based on this fact, we provide polynomial time O(k)-approximation algorithms for all
different versions of kth isoperimetric numbers considered.

Moreover, when the number of partitions/subpartitions, k, is a fixed constant, as
an extension of a result of B. Mohar (1989) for the case k = 2 (usually referred to as
the Cheeger constant), we prove that max and mean isoperimetric numbers of weighted
trees as well as their max minimum normalized cut can be computed in polynomial time.
We also prove some hardness results for the case of simple unweighted graphs and trees.

Key words: isoperimetric number, Cheeger constant, normalized cut, graph partition-

ing, computational complexity, approximation algorithms, weighted trees.

Subject classification: 05C85, 68Q25, 68R10.

1 Introduction

The classical isoperimetric problem is a well-known and well-studied subject in Riemannian
geometry, while the analogous problems in discrete case have recently been at the center of
attention. Different aspects of these problems have been extensively studied in the literature
and variety of relations to many important concepts have been discovered. The significance
of the isoperimetric problem is due to its relation to the central theoretical concepts and
also its varied real world applications (e.g. see [2,5,14,17–19,24,25] for motivations and the
background).

Isoperimetric numbers can be considered as geometric tools to measure the connectivity
of graphs. To begin, let us recall (e.g. see [19]) the definition of the classical isoperimetric

∗A preliminary version of this article is available at arXiv:1009.0706.
†Correspondence should be addressed to daneshgar@sharif.ac.ir.
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number (Cheeger constant) of a simple graph G = (V,E) as

h(G)
def
= min
|Q|≤ |V |

2

c(Q)

|Q|
= min

Q⊆V

max

{
c(Q)

|Q|
,
c(Q)

|Qc|

}
,

where
c(Q)

def
= |{uv ∈ E : u ∈ Q & v 6∈ Q}|,

and the not so common mean version as follows

ι(G)
def
= min

Q⊆V

c(Q)

|Q||Qc|
. (1)

Higher isoperimetric numbers, as generalizations of the classical isoperimetric numbers,
have been defined for a general Markov chain on a directed base-graph and their properties
has been studied extensively (e.g. see [7] and references therein). These problems deal with
minimizing the max/mean of the normalized outgoing flows over all subpartitions (disjoint
nonempty subsets) of the vertex set. One may also define similar parameters based on
minimizing this value over all partitions of the vertex set usually known as the minimum
normalized cuts (see e.g. [24, 25]). Following the main result of [7], it is known that the
isoperimetric numbers can be described as {0, 1}-optimization programs which admit a re-
laxation to the reals, while this is not the case for the minimum normalized cuts. This fact
can be considered as a clue that the normalized cut problem is likely to be harder than the
isoperimetric problem, which is almost approved by the results of this article.

The main objective of this article is to investigate computational aspects of these pa-
rameters on weighted trees. Our motivations for this study are twofold. On the one hand,
tree partitioning and in particular solving isoperimetric problems on weighted trees has its
own importance due to the existence of many applications in the practical problems such
as image segmentation and pattern recognition (e.g. see [3, 4, 11, 13, 16]). On the other
hand, the study of isoperimetric problems on trees is important from a computational point
of view, since they provide a universe in which by small perturbations of conditions, these
problems change their computational hardness from simple (i.e. polynomial time) to hard
(i.e. NP -complete) and vise versa. In this regard, our results provide compelling evidence
to consider as a general belief that changing the problem from subpartitions to partitions
or taking the mean instead of the maximum, usually makes the problem computationally
harder.

Let us begin with a description of our general setup. Our framework is a weighted graph
which is a simple graph G = (V,E) along with two weight functions on the vertex and the
edge sets as, ω : V → Q+ and c : E → Q+, which is usually denoted by G = (V,E, ω, c). By
an unweighted graph we mean a weighted graph where all the vertex and edge weights are
equal to 1. For every nonvoid subsets A,B ⊆ V , we define

E(A,B)
def
= {e = uv ∈ E : u ∈ A, v ∈ B},

ω(A)
def
=
∑
u∈A

ω(u), c(A,B)
def
=

∑
e∈E(A,B)

c(e), c(A)
def
= c(A,Ac).

The normalized outgoing flow of the set A is defined as the quotient c(A)/ω(A). The set

Dk(V ) is defined to be the set of all k-subpartitions {A1, . . . , Ak}
def
= {Ai}k1 of V , where Ai’s

are nonempty disjoint subsets of V . The set of all k-partitions of a set V , which is denoted
by Pk(V ), is the subclass of Dk(V ) containing all k-sets {Ai}k1 for which ∪ki=1Ai = V . Also,
for every positive integer n, the notation [n] stands for the set {1, . . . , n}.

Now, we define the mean and max isoperimetric numbers as well as the minimum nor-
malized cuts as follows.
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Definition 1. Given a weighted graph G = (V,E, ω, c), for each k, 1 ≤ k ≤ |V |, the kth
mean and max isoperimetric numbers of G, denoted by ιm

k
(G) and ιM

k
(G), respectively, are

defined as

ιm
k

(G)
def
= min

{Ai}k1∈Dk(V )

1

k

(
k∑
i=1

c(Ai)

ω(Ai)

)
,

ιM
k

(G)
def
= min

{Ai}k1∈Dk(V )
max
1≤i≤k

c(Ai)

ω(Ai)
.

Furthermore, considering the partitions, we define the following related constants as the kth
(mean and max) minimum normalized cuts of G,

ι̃m
k

(G)
def
= min

{Ai}k1∈Pk(V )

1

k

(
k∑
i=1

c(Ai)

ω(Ai)

)
,

ι̃M
k

(G)
def
= min

{Ai}k1∈Pk(V )
max
1≤i≤k

c(Ai)

ω(Ai)
.

We call a weighted graph G, mean (resp. max) k-geometric, if ιmk (G) = ι̃mk (G) (resp.
ιMk (G) = ι̃Mk (G)). Also, G is called mean (resp. max) supergeometric, if it is mean (resp.
max) k-geometric for all 2 ≤ k ≤ |V |. We call a vertex v ∈ V , a (mean or max) k-
outlier, if there exists a minimizing subpartition achieving ιk(G), where v lies outside of the
subpartition. It is well-known that ι2 = ι̃2 (see [7]) and the common value is usually called
the Cheeger constant or edge expansion in the literature. ♠

In order to investigate computational complexity of these optimization problems, as is
traditional for complexity results, we consider the corresponding decision problems. Further-
more, since the isoperimetric parameters as operators on weight functions preserve scalar
multiplication, without loss of generality, we assume that the range of all weight functions
is Z (instead of Q). Moreover, for simplicity we use a couple of notations. The acronyms
IPP and NCP stand, respectively, for the isoperimetric and normalized cut problems. As
before, the superscripts m or M determine the mean or max version of these problems,
respectively1, and subscript k is used whenever k is a constant and does not appear as part
of the input. For instance, NCPMk refers to the following problem,

NCPM
k

CONSTANTS: An integer k.

INSTANCE: A weighted graph G = (V,E, ω, c) and a positive rational number N ∈ Q+.
QUERY: Is it true that ι̃Mk (G) ≤ N? In other words, is there a k-partition {Ai}k1 ∈

Pk(V ) such that max
1≤i≤k

{
c(Ai)

ω(Ai)

}
≤ N?

By the following results, the equivalent problems IPP2 and NCP2 are known to be NP -
complete.

Theorem A.

(i) [19] The problem NCP2 is NP -complete for (unweighted) graphs with multiple edges.

(ii) [24] The problem NCP2 is NP -complete for bipartite planar weighted graphs.

Note that, however, the planarity and the bipartiteness in Theorem A(ii) is not mentioned
explicitly in [24], the above statement clearly follows from the reduction provided in the
proof.

1Note that whenever the superscripts m and M are omitted, it means that the statement is true for both
versions.
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For a long time, it has been an open and challenging problem how well ι2 = ι̃2 can be
approximated in polynomial time for general graphs. The best current known result is due
to Arora et al. which gives a polynomial time approximation algorithm that computes ι2
up to a factor of O(

√
log n) for an n-vertex simple graph using semidefinite programming

and geometric embedding (see [1, 23, 26]). Moreover, Wu et. al. present a polynomial time
((4 + o(1)) log n)-approximation algorithm for the minimum normalized cut on an n-vertex
weighted graph [27].

It is instructive to note that the non-normalized counterparts of the (mean) isoperimet-
ric problem and the (mean) normalized cut problem are already known as the minimum
k-subpartition problem and minimum k-way cut problem, respectively (e.g. see [21] for
details and the background). Particularly, we know that there exists a polynomial time
2(1 − 1/k)-approximation algorithm for the minimum k-way cut problem which is based
on computation of the minimum k-subpartition problem [22]. In Section 2, along the same
lines, we prove a couple of basic inequalities (Theorem 1) which show that the isoperimetric
numbers can be considered as an approximation for the minimum normalized cuts. In Sec-
tion 3 we consider the computational aspects of this approximation on weighted trees and we
determine the computational complexity of the four main isoperimetric and normalized cut
problems. There we prove that IPPm, NCPm, and NCPM are all NP -complete for weighted
trees, however, quite unexpectedly, it turns out that IPPM is a linear time solvable problem
in this case. This is used to provide polynomial time O(k)-approximation algorithms for the
kth isoperimetric number and the kth minimum normalized cuts on weighted trees.

In Section 4 we focus on the case when the number of parts, k, is fixed and does not
appear as part of the input. For k = 2, B. Mohar [19] has proved that there exists a linear
time algorithm that computes ι2 for trees. In this section as a generalization of Mohar’s
result we prove that, for each k ≥ 2, all parameters ιMk , ιmk and ι̃Mk can be computed in
polynomial time for weighted trees. We also show that this fact can not be extended to
weighted graphs with bounded tree-width (unless P = NP !) by proving that for every fixed
k ≥ 2, IPPk and NCPk (in both max and mean versions) are NP -complete for bipartite
weighted graphs with tree-width 2.

In Section 5, we try to improve the hardness results to the case of unweighted (sim-
ple) graphs or trees. In this regard, we provide a general reduction method that can be
used to improve any known strong NP -completeness result for weighted graphs to an NP -
completeness result for unweighted graphs. Particularly, we use this reduction to prove
the NP -completeness of NCPM for unweighted trees and IPPk and NCPk for unweighted
graphs.

Finally, throughout this article the runtime of a graph algorithm is the function describing
the number of operations executed in terms of the number of vertices. Also, we assume that
weighted trees are represented in a succinct data structure in which standard navigational
operations, such as finding the parent, can be performed in constant time (e.g. see [20]).

2 A Basic Inequality

Our main result in this section is the following inequalities, which are counterparts of a
similar result for the minimum k-way cut problem, that has already been proved in [22].

Theorem 1. For every connected weighted graph G and every integer 3 ≤ k ≤ |V (G)|,

ιMk (G) ≤ ι̃Mk (G) < (k − 1) ιMk (G),

ιmk (G) ≤ ι̃mk (G) < 2(1− 1

k
) ιmk (G).

Note that, when k = 2, we have ι2(G) = ι̃2(G) for both max and mean versions [7]. Moreover,
the result shows that the parameters ιmk (G) and ιMk (G) can be seen as approximations of
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the parameters ι̃mk (G) and ι̃Mk (G), respectively. Therefore, from this point of view, the
isoperimetric numbers can be considered as approximations for the minimum normalized
cuts. We shall elaborate the computational aspects of these approximations in the next
section. To prove Theorem 1, we need the following lemma.

Lemma 1. Given an integer k ≥ 1 and nonnegative numbers λ, ai, bi (1 ≤ i ≤ k), such that
0 < λ < k and

∑
i ai = 1, the following inequality holds,

k∑
i=1

aibi ≤ max
j

(
λajbj + (1− λ

k
)bj

)
. (2)

Equality holds if and only if either for each i, bi = 0, or for each i and some constant b,
ai = 1/k and bi = b.

Proof. Let I :=
∑
i aibi and for every 1 ≤ j ≤ k, let cj := λajbj + (1 − λ/k)bj and

tj := k2aj/λ+ k/(k − λ). Then k∑
j=1

tj

max
j

(cj − I) ≥
k∑
j=1

tj(cj − I)

=

(
k(k − λ)

λ
+

kλ

k − λ
− k2

λ
− k2

k − λ

)
I +

∑
j

(
k2a2jbj + bj

)
=

∑
j

(
k2a2jbj + bj − 2kajbj

)
=
∑
j

(kaj − 1)2bj ≥ 0.

Thus, maxj(cj − I) ≥ 0, as desired. Also, the equality conditions follow immediately from
the proof. �

Proof of Theorem 1. Lower bounds are trivial from the definitions. To prove the upper
bounds, let {Ai}k1 ∈ Dk(V ) be a k-subpartition of the vertices and define A∗ := V \(∪iAi).
For simplicity let wi := ω(Ai), ci := c(Ai) and C :=

∑
i ci. For a fixed j (1 ≤ j ≤ k) define

the k-partition πj := {Bji }k1 as Bji := Ai for all i 6= j and Bjj := Aj ∪A∗. Then, we have

c(Bjj ) ≤
∑
i:i6=j

c(Ai) = C − cj .

Thus, for every 1 ≤ j ≤ k,

max
i

(
c(Bji )

ω(Bji )

)
≤ max

i:i 6=j

(
ci
wi
,

C − cj
wj + ω(A∗)

)
, (3)

∑
i

c(Bji )

ω(Bji )
≤ C − cj

wj + ω(A∗)
+
∑
i:i 6=j

ci
wi
. (4)

In order to prove the first inequality, assume that G is not k-geometric (if G is k-
geometric the results are trivial) and let {Ai}k1 be a subpartition which achieves ιMk (G) and
let cj0 = maxi ci. By Inequality (3), we have

ι̃Mk (G) ≤ C − cj0
wj0 + ω(A∗)

<

∑
i:i 6=j0 ci

wj0
≤ (k − 1)

cj0
wj0
≤ (k − 1) ιMk (G).
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In order to prove the second inequality, assume that {Ai}k1 be a subpartition which
achieves ιmk (G). By Inequality (4), we have

k ι̃mk (G) ≤ min
j

 C − cj
wj + ω(A∗)

+
∑
i:i 6=j

ci
wi

 < min
j

(
C − 2cj
wj

)
+
∑
i

ci
wi
. (5)

Now, let C∗ :=
∑
i(ci/wi), then applying Lemma 1 with aj :=

cj/wj

C∗ , bj := wj and λ := 2,
yields

C

C∗
≤ max

j

(
2cj
C∗

+ (1− 2

k
)wj

)
.

Therefore,

min
j

(
C − 2cj
wj

)
≤ (1− 2

k
)
∑
i

ci
wi
, (6)

and the result follows from Inequalities (5) and (6). �

Example 1. In this example we show that the bounds in Theorem 1 are sharp, in the
sense that for every fixed k ≥ 3, there is a family of weighted graphs {Gt}t∈N such that
ι̃Mk (Gt)/ι

M
k (Gt) tends to (k− 1) and ι̃mk (Gt)/ι

m
k (Gt) tends to 2(1− 1

k ) as t tends to infinity.
Let k be a constant. For every positive integer t ≥ k, define the graph Gt as a star with
a central vertex v of degree k and k vertices v1, . . . , vk each of degree 1. Also, define the
weight functions ω and c as follows,

ω(v) := k, ω(vi) := t, c(vvi) := 1 ∀ 1 ≤ i ≤ k.

Then, by the definitions we have

ιMk (Gt) =
1

t
, ι̃Mk (Gt) = max

(
1

t
,
k − 1

t+ k

)
=
k − 1

t+ k
,

ιmk (Gt) =
1

k

k∑
i=1

1

t
=

1

t
, ι̃mk (Gt) =

1

k

(
k − 1

t+ k
+

k−1∑
i=1

1

t

)
= (1− 1

k
)(

1

t+ k
+

1

t
),

where ιMk (Gt) and ιmk (Gt) are achieved for the disjoint sets Ai := {vi}, 1 ≤ i ≤ k, and
ι̃Mk (Gt) and ι̃mk (Gt) are achieved for the k-partition {Bi}k1 , with Bi := {vi}, 1 ≤ i ≤ k − 1
and Bk := {vk, v}. The claim immediately follows from the above equalities. ♣

3 Algorithms, Complexity and Approximation Results

In this section we consider IPP, NCP and their approximations for weighted trees. In this
regard, we shall prove that NCPM for weighted trees is NP -complete in the strong sense.
Furthermore, as a bit of a surprise, we show that the corresponding problem on subpartitions,
i.e. IPPM , happen be solved in linear time using dynamic programming, where this can be
used to obtain a polynomial time approximation for the minimum normalized cut of weighted
trees.

Let us recall that a problem with numerical parameters is said to be NP -complete in
the strong sense, when it remains NP -complete, even when all of its numerical parameters
are bounded by a polynomial in terms of the length of the input. In other words, a strongly
NP -complete problem remains NP -complete even when the input parameters are given in
unary codes (instead of binary codes).

Theorem 2. The problem NCPM is NP -complete in the strong sense for weighted trees.
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Proof. Clearly, NCPM is in NP . To prove the strong NP -completeness of the problem
we prove a sequence of reductions as follows,

3-PARTITION ≤
p

m
SUBSET AVERAGE ≤

p

m
NCPM ,

where the well-known 3-PARTITION problem and the SUBSET AVERAGE problem are
defined as,

3-PARTITION

INSTANCE: A positive integer B ∈ Z+ and 3m positive integers x1, . . . , x3m ∈ Z+, such
that B/4 < xi < B/2, for each 1 ≤ i ≤ 3m and

∑3m
i=1 xi = mB.

QUERY: Is there an m-partition {Si}m1 ∈ Pm([3m]) such that, for each 1 ≤ j ≤ m,∑
i∈Sj

xi = B?

SUBSET AVERAGE

INSTANCE: Positive integers y1, . . . , yn ∈ Z+, where their average is an integer α along
with a positive integer m ≤ n.

QUERY: Is there an m-partition {Ti}m1 ∈ Pm([n]) such that, for each 1 ≤ j ≤ m,
average of the elements with indices in Tj is equal to α, i.e.

∑
i∈Tj

yi = α|Tj |?

Note that the 3-PARTITION problem is known to be strongly NP -complete [12], and con-
sequently, the claim follows from the above reductions.

Step 1. 3-PARTITION ≤p

m
SUBSET AVERAGE.

In the first step, we show that SUBSET AVERAGE is NP -complete in the strong sense, by
a reduction from 3-PARTITION. Given 3m positive integers x1, . . . , x3m as an instance of 3-
PARTITION, define for 1 ≤ i ≤ 3m, yi := xi+B+1 and for 3m+1 ≤ i ≤ 4m, yi := 1. Now,
consider {y1, . . . , y4m} together with the integer m as an instance of SUBSET AVERAGE.
The average of yi’s is equal to B+1. If the answer to 3-PARTITION is yes, then there exists
an m-partition {Si}m1 ∈ Pm([3m]) such that, for each 1 ≤ j ≤ m,

∑
i∈Sj

xi = B. Since

B/4 < xi < B/2, each Sj contains exactly 3 elements. Now, by defining Tj := Sj∪{3m+j},
we have

∑
i∈Tj

yi = 4B + 4 = (B + 1)|Tj |. Hence, the answer to SUBSET AVERAGE is
also yes.

On the other hand, assume that the answer to SUBSET AVERAGE is yes, then there
exists an m-partition {T ′i}m1 ∈ Pm([4m]) such that, for each 1 ≤ j ≤ m,

∑
i∈T ′j

yi = (B +

1)|T ′j |. Since xi’s are positive, each T ′j contains at least one of the elements y3m+1, . . . , y4m
and since there are m disjoint subsets T ′j ’s, each T ′j contains exactly one of them. Thus,
by defining S′j := T ′j\{3m + 1, . . . , 4m}, we have

∑
i∈S′j

xi = B. Hence, the answer to 3-

PARTITION is also yes. This completes the reduction.

Step 2. SUBSET AVERAGE ≤p

m
NCPM .

In the second step, we give a reduction from SUBSET AVERAGE to NCPM on weighted
trees, where all the edge weights are equal to 1. Consider positive integers y1, . . . , yn with
the average α and a positive integer m ≤ n as an instance of SUBSET AVERAGE. Let l be
an arbitrary positive fixed integer and construct a weighted tree T = (V,E, ω, c) as follows
(see Figure 1).

V := {u, ui, vij | i = 1, . . . , n, j = 1, . . . , l − 1},
E := {uui, uivij | i = 1, . . . , n, j = 1, . . . , l − 1},

ω(u) := nα, ω(ui) := lyi, ω(vij) := α, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ l − 1.

Also, let all the edge weights be equal to 1. The weighted tree T together with the constants
k := n(l − 1) + m + 1 and N := 1/α constitute an instance of NCPM . By assuming the
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Figure 1: A weighted tree corresponding to an instance of SUBSET AVERAGE.

partition {Ti}m1 ∈ Pm([n]) as a positive answer to SUBSET AVERAGE, we define the
k-partition

{A0} ∪ {At}m1 ∪ {Aij | 1 ≤ i ≤ n, 1 ≤ j ≤ l − 1} ∈ Pk(V )

as follows,

A0 := {u}, At := {ui|i ∈ Tt}, ∀ 1 ≤ t ≤ m, Aij := {vij}, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ l − 1.

Now, we have

c(A0)

ω(A0)
=

n

nα
,

c(At)

ω(At)
=

l|Tt|∑
i∈Tt

lyi
=

1

α
,

c(Aij)

ω(Aij)
=

1

α
,

and consequently, the answer to NCPM is also yes.
On the other hand, assume that {A′i}k1 be a positive answer to NCPM . We should find

a positive answer to SUBSET AVERAGE. In this regard, we come up with a partition
of [n] into at least m subsets, each of which with an average equal to α (then, if it is
necessary, we may merge some subsets and find an m-partition). Since |V | = nl + 1, we
have |A′j | ≤ n −m + 1 and there are at least m sets A′j which has non-empty intersection
with the set {ui}n1 . Now, define T ′j := {i| ui ∈ A′j}. Among T ′j ’s, the non-empty ones form
a partition of the set [n]. We claim that the average of each set in this partition is equal to
α. Fix j, where T ′j is non-empty and let σ(T ′j) :=

∑
i∈T ′j

yi. Since |A′j | ≤ n−m+ 1, we have

1

α
≥
c(A′j)

ω(A′j)
≥

l|T ′j | − (n−m)

lσ(T ′j) + (2n−m− 1)α
. (7)

Now, we choose l sufficiently larger than m,n, α, such that

|T ′j |
σ(T ′j)

−
l|T ′j | − (n−m)

lσ(T ′j) + (2n−m− 1)α
<

1

nα2
. (8)

Note that l depends only on n,m,α and does not depend on j and T ′j , because |T ′j | and σ(T ′j)

are respectively bounded by n and nα (for instance one may choose l = α3n2(3n−2m−1)).
Since σ(T ′j) ≤ nα, Equations (7) and (8) yield

|T ′j |
σ(T ′j)

<
1

α
+

1

nα2
≤ 1

α
+

1

α σ(T ′j)
.

Hence, |T ′j |/σ(T ′j) ≤ 1/α and this shows that the average of integers (yi : i ∈ T ′j) is at
least α. Finally, since non-empty sets T ′j ’s form a partition of [n], the average of integers

(yi : i ∈ T ′j) is exactly equal to α. This completes the reduction and hence NCPM is
NP -complete in the strong sense. �
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Although Theorem 2 can be considered as an evidence for hardness of NCPM for weighted
trees, it turns out that the corresponding problem for subpartitions, i.e. IPPM , is surpris-
ingly a tractable problem. To prove this, we begin by the following lemma.

Lemma 2. Given a weighted graph G = (V,E, ω, c) and integer k ≥ 2, there exists a
minimizing subpartition {Ai}k1 ∈ Dk(V ) attaining ιk(G) such that the induced graph on each
Ai is connected.

Proof. Let {Ai}k1 be a minimizing subpartition achieving ιk(G) and assume that the
induced graph G on A1 is not connected. Therefore A1 = A t B, where there is no edges
between A and B, we have

min

{
c(A)

ω(A)
,
c(B)

ω(B)

}
≤ c(A) + c(B)

ω(A) + ω(B)
=
c(A1)

ω(A1)
.

Hence, we may remove one of the sets A or B from A1, such that the resulting subpartition
remains minimizing. By continuing this process, we can find a minimizing subpartition with
connected components. �

Theorem 3. There is a polynomial time algorithm that decides IPPM for every weighted
tree whose runtime is in O(n).

Proof. We prove a stronger version of the theorem. We assume that in addition to the
vertex and the edge weight functions, ω, c, there exists another weight function γ : V (T )→ Q
that intuitively can be considered as outgoing flows to the ground.2 Therefore, for every
A ⊂ V , we define the outgoing flow from A as c(A) :=

∑
e∈E(A,Ac) c(e) +

∑
v∈A γ(v) and

we consider IPPM for these new weighted trees. It is clear that when γ(v) = 0 for each
v ∈ V (T ), the problem is the same as the classical IPPM introduced before. Now, given
a weighted tree T = (V,E, ω, c, γ) on n vertices, an integer k ≥ 2 and a number N as the
input of IPPM , we perform the following algorithm on T to decide if ιMk (T ) ≤ N and to
find a proof (affirmative subpartition) if there exists any.

Let v ∈ V be an arbitrary vertex and consider the rooted tree T rooted at v. Sort the
vertices of T as v1, . . . , vn = v, in a way that the vertices at level i+ 1 precede the vertices
at level i, for each i. This can be done in linear time by a breadth-first search.

Algorithm 1 Solve IPPM

Initialize the set function η : V → P (V ) by η(vi) := {vi} for each 1 ≤ i ≤ n.
Define i = j := 1.
while j < k and i ≤ n do

Let u be the unique parent of vi and e := uvi ∈ E (if i = n, then define c(e) := 0)
if γ(vi) + c(e) ≤ Nω(vi) then
j ← j + 1, Aj ← η(vi), ω(Aj)← ω(vi), c(Aj)← c(e) + γ(vi), γ(u)← γ(u) + c(e)

else if γ(vi)− c(e) < Nω(vi) then
η(u)← η(u) ∪ η(vi), ω(u)← ω(u) + ω(vi), γ(u)← γ(u) + γ(vi)

else {i.e. γ(vi)− c(e) ≥ Nω(vi)}
γ(u)← γ(u) + c(e)

end if
end while
if j = k then

return YES and {A1, . . . , Ak}
else

return NO
end if

2It can also be considered as outgoing flows to the boundary in the setup of graphs with boundary (see
Section 6).
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Now, we prove the correctness of the algorithm. First, we adopt a couple of notions.
We say two instances (G1, k1, N1) and (G2, k2, N2) are equivalent if the answer to IPPM

for both of them are the same. Given a weighted graph G = (V,E, ω, c, γ) and a vertex
v ∈ V , G\v = (V ′, E′, ω′, c′, γ′) denotes the weighted graph obtained from G by deleting the
vertex v, where ω′ := ω|V ′ , c′ := c|E′ and for each u ∈ V ′, γ′(u) := γ(u) +

∑
e=uv∈E c(e).

Furthermore, for an edge e ∈ E, G/e denotes the weighted graph obtained from G by
contracting the edge e, where the weight of the new vertex is defined as sum of the weights
of the two old vertices. (If it is necessary we put together multiple edges and sum up their
weights to get a simple graph.) Let v be a leaf in V (T ) and e = vu be the pendant edge.

1. If γ(v) + c(e) ≤ Nω(v), then (T, k,N) is clearly equivalent to (T\v, k − 1, N).

2. If (1) is not the case and γ(v) − c(e) < Nω(v), then (T, k,N) is equivalent to
(T/e, k,N). To see this, let π := {Ai}k1 ∈ Dk(V ) be an affirmative answer for T ,
where the induced graph on each Ai is connected (see Lemma 2). If u 6∈ ∪Ai, then
v 6∈ ∪Ai (because Ai’s are connected) and hence, π is also an affirmative answer for
T/e. Now, assume that u ∈ A1 and v 6∈ ∪Ai. Define A′1 := A1 ∪ {v}, then,

c(A′1)−Nω(A′1) = c(A1)−Nω(A1) + γ(v)− c(e)−Nω(v) < 0.

Thus, the answer to (T/e, k,N) is also yes.

3. Finally, if γ(v)−c(e) ≥ Nω(v), then (T, k,N) is equivalent to (T\v, k,N). To see this,
as before let π := {Ai}k1 ∈ Dk(V ) be an affirmative answer for T , where the induced
graph on each Ai is connected. If v 6∈ ∪Ai, there is nothing to prove. If v ∈ A1, then
u ∈ A1 (because A1 is connected). Define A′1 := A1\v, then,

c(A′1)−Nω(A′1) = c(A1)−Nω(A1)− γ(v) + c(e) +Nω(v) ≤ 0.

Thus, the answer to (T\v, k,N) is also yes.

This shows that IPPM for weighted trees is self-reducible. Moreover, note that the runtime
of the algorithm is clearly of order O(n). �

For an optimization problem, a fully polynomial time approximation scheme (FPTAS)
is an algorithm that takes an instance of the problem together with a number ε > 0 and
outputs a feasible solution within a factor (1 + ε) of the optimal solution and its running
time is bounded by a polynomial in the size of the instance and 1/ε. By using Algorithm 1
as well as a standard iterative method, we can find an FPTAS to approximate ιMk (T ). Also,
using Theorem 1, we can find polynomial time approximation algorithms for the parameters
ι̃Mk (T ), ιmk (T ) and ι̃mk (T ).

Corollary 1. Let T be a weighted tree and 2 ≤ k ≤ |V (T )| be an integer.

(i) There exists an FPTAS that approximates the parameter ιMk (T ).

(ii) For every ε > 0, there exists a polynomial time approximation algorithm that approx-
imates the parameters ι̃Mk (T ), ιmk (T ) and ι̃mk (T ), within factors k − 1 + ε, k + ε and
2k − 2 + ε, respectively.

Proof. Given a weighted tree T = (V,E, ω, c), an integer 2 ≤ k ≤ |V | and a number
ε > 0, define w0 := minv∈V w(v), W :=

∑
v∈V w(v), c0 := mine∈E c(e) and C :=

∑
e∈E c(e).

Therefore, ιMk (T ) is within the interval [2c0/W,C/w0]. We start with this interval and do
the following iteratively.

Let [ai, bi] be the interval obtained in step i. Then, in step i+1, using Algorithm 1, check
if ιMk (T ) ≤ (ai+ bi)/2 and find an interval containing ιMk (T ) whose length is (bi−ai)/2. We
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continue this process for t steps, where t := log(1/(2ε)) + log(CW/c0w0 − 2). Finally, we
come to an interval [at, bt] containing ιMk (T ) whose length is (C/w0−2c0/W )/2t = ε 2c0/W .
We output bt as the approximation for ιMk (T ). We have

ιMk (T ) ≤ bt = at + ε
2c0
W
≤ (1 + ε)ιMk (T ).

Also, the runtime of this algorithm is

O(nt) = O

(
n

(
log(

1

2ε
) + log(

CW

c0w0
− 2)

))
,

and consequently, this is an FPTAS that approximates ιMk (T ).
Part (ii) follows from Part (i), Theorem 1 and the fact that ιmk (T ) ≤ ιMk (T ) ≤ k ιmk (T ). �

The next result (Theorem 4) shows that the approximation method previously used to
approximate ι̃Mk by ιMk can not be applied to approximate ι̃mk by ιmk , since, contrary to the
max version, IPPm appears to be an NP -complete problem for weighted trees. To prove this,
first we need the following simple lemma that will also be used in the proof of Theorem 6.

Lemma 3. Let G = (V,E, ω, c) be a connected weighted graph and S = {v1, . . . , vs} ⊂ V be a
fixed subset of vertices. Define W :=

∑
u∈V \S ω(u), C :=

∑
e∈E c(e) and c0 := mine∈E c(e).

If s ≤ k ≤ |V | is an integer and for each 1 ≤ i ≤ s, ω(vi) ≥ (2CW/c0), then there exists
a minimizing partition (resp. subpartition) achieving ι̃k(G) (resp. ιk(G)) in which all the
vertices v1, . . . , vs are in different parts. Also, none of the vertices in S are k-outlier.

Proof. We prove the lemma for ιmk (G). The other cases are similar. Let {Ai}k1 be a
minimizing subpartition achieving ιmk (G) and assume that A1 contains two vertices in S,
say v1, v2 and ω(v1) ≥ ω(v2) ≥ (2CW/c0). Then there is a subset, say A2, which contains
no vertex of S. Now, move v2 from A1 to A2 and call the new subsets A′1 and A′2. Thus

c(A′1)

ω(A′1)
+
c(A′2)

ω(A′2)
≤ 2C

ω(v2)
≤ c(A2)

ω(A2)
<
c(A1)

ω(A1)
+
c(A2)

ω(A2)
.

This contradicts the fact that {Ai}k1 is a minimizing subpartition. Therefore, all of the ver-
tices v1, . . . , vs are in different parts. Moreover, if a vertex vi does not lie in the subpartition,
we may add it to a subset Aj which has no intersection with S to find a new subpartition
contradicting the minimality of {Ai}k1 . Hence, no vertex in S can be a k-outlier. �

Theorem 4. The problems IPPm and NCPm are NP -complete for weighted trees.

Proof. We verify a reduction from the NP -complete problem EQUIPARTITION [12].

EQUIPARTITION

INSTANCE: 2n positive integers x1, . . . , x2n such that
∑2n
i=1 xi = 2B.

QUERY: Is there a subset I ⊂ [2n] such that |I| = n and
∑
i∈I xi = B?

Consider positive integers x1, . . . , x2n with the sum 2B as an instance of EQUIPARTITION.
Define Q := (1/2)

∑2n
i=1 x

2
i which is an integer and construct a weighted tree T = (V,E, ω, c),

where V := {v0, v1, . . . , v2n, u1, . . . , u2n} and E := {v0ui, uivi, i = 1, . . . , 2n}. Also, let
k := 3n+ 1 and for arbitrary positive integers d,D, define the weight functions as follows.

ω(v0) := 2dB, ω(vi) := 2D, ω(ui) := 2xi, ∀ 1 ≤ i ≤ 2n,

ci := c(v0vi) = c(uivi) = xi
(
(d+ 1)2B2 +Q−Bxi

)
.
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Suppose that d,D be sufficiently larger than B. Then by Lemma 3, none of the vertices
v0, v1, . . . , v2n are k-outlier. Also, if for some i, the vertex ui is k-outlier, then we can move
ui to the set containing vi, without increasing the normalized outgoing flow of that set.
Thus, the tree T is k-geometric (i.e. ιk(T ) = ι̃k(T )) and in every minimizing k-partition,
the vertices v0, v1, . . . , v2n lie in different parts. Moreover, suppose that D is sufficiently
larger than d, then there exists a minimizing k-partition in which each vertex vi forms a
single part in the partition. Thus, the minimizing partition which achieves ιmk (T ) = ι̃mk (T )
is of the form

πI := { {v1}, . . . , {v2n}, {v0, ui, i ∈ I}, {uj}, j 6∈ I },

for some subset I ⊂ [2n] with |I| = n. Therefore, k ιmk (T ) = k ι̃mk (T ) ≤ N if and only if
there exists an n-subset I ⊂ [2n], where

2n∑
i=1

ci
ω(vi)

+

∑2n
i=1 ci

ω(v0) +
∑
i∈I ω(ui)

+
∑
i 6∈I

2ci
ω(ui)

≤ N. (9)

On the other hand,
2n∑
i=1

ci =
(
(d+ 1)2B2 +Q

)∑
i

xi −B
∑
i

x2i = 2(d+ 1)2B3.

Consequently, Inequality (9) is equivalent to

(d+ 1)2B3

D
+

(d+ 1)2B3

dB +
∑
i∈I xi

+
∑
i 6∈I

(
(d+ 1)2B2 +Q−Bxi

)
≤ N.

If we define

N := n(d+ 1)2B2 + nQ+ dB2 +
(d+ 1)2B3

D
, (10)

then by substituting N from (10) and simplifying, we have the following inequality.

(d+ 1)2B2 ≤

(
dB +

∑
i∈I

xi

)dB +
∑
i6∈I

xi

 .

Now, since
∑2n
i=1 xi = 2B, we have (dB +

∑
i∈I xi)(dB +

∑
i 6∈I xi) ≤ (d + 1)2B2 and

equality holds if and only if there exists some I such that
∑
i∈I xi =

∑
i 6∈I xi = B. Hence,

ιmk (T ) = ι̃mk (T ) ≤ N/k if and only if there exists some subset I with |I| = n, where∑
i∈I xi = B. This completes the proof. �

4 The Case of Fixed k

In this section we concentrate on the computation of the isoperimetric parameters when k
is assumed to be a constant. In fact the main theorem that we shall prove in this section is
the following.

Theorem 5. Let k ≥ 2 be a constant integer.

(i) There exists a polynomial time algorithm that computes parameters ιMk (T ) and ιmk (T )
for every weighted tree T , whose runtime is in O(nb(3k−3)/2c).

(ii) There exists a polynomial time algorithm that computes ι̃M3 (T ) for every weighted tree
T , whose runtime is in O(n2).

(iii) If k ≥ 4, there exists a polynomial time algorithm that computes ι̃Mk (T ) for every

weighted tree T , whose runtime is in O(n(2k
2−6k−3)).
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Note that the runtimes of the algorithms presented in Theorem 5 are exponential in k,
but polynomial in n, when k is a constant. Nevertheless, this exponential inefficiency is
likely to be unavoidable duo to Theorems 2 and 4.

In order to prove this theorem we go through two basic stages. Firstly, by proving
Lemmas 4, 5 and 6 we restrict the search space of all k-subpartitions (or k-partitions) to a
space of partitions with connected parts whose number of parts is bounded by a polynomial
of k. Secondly, we provide a search procedure that generates all these partitions and for
each partition computes the normalized outgoing flows of its parts in constant time (see
lemma 7). This is done through adopting a succinct tree representation that allows constant
time navigation operations on the corresponding tree.

To begin, we introduce the concept of the quotient of a graph G = (V,E) with respect
to a k-partition of V .

Definition 2. Given a weighted graph G = (V,E, ω, c) and a k-partition π = {Ai}k1 ∈
Pk(V ), for each 1 ≤ i ≤ k, let {A1

i , . . . , A
ni
i } be the set of connected components of the

induced graph of G on Ai. The quotient graph of G with respect to π, denoted by G/π, is
defined to be a weighted graph G/π = (V ′, E′, ω′, c′), where

V ′ := {vri : 1 ≤ i ≤ k, 1 ≤ r ≤ ni},

E′ := {vri vsj : E(Ari , A
s
j) 6= ∅},

ω′(vri ) := ω(Ari ), c′(vri v
s
j ) :=

∑
e∈E(Ar

i ,A
s
j)

c(e).

It is clear that the quotient graph G/π is a minor of G as a graph. Thus, if G is planar,
then G/π is planar as well. Moreover, if G is acyclic, then G/π is also acyclic. For a subset
F ⊆ E, the graph obtained from G by deleting the edges in F , is denoted by G\F . ♠

Lemma 4. Let G = (V,E, ω, c) be a weighted graph and π = {Ai}k1 ∈ Dk(V ) be a minimizing
subpartition for ιk(G). Define the (k + 1)-partition π := {Ai}k+1

1 , where Ak+1 = V \(∪k1Ai)
and let G/π be the quotient graph of G with respect to π. Then, we have ιk(G) = ιk(G/π).
(Similar statements are also true for the other parameters ι̃mk and ι̃Mk .)

Proof. We prove the lemma for ιmk . The other cases follow similarly. Let V ′, c′, ω′ be as
in Definition 2 and for every 1 ≤ i ≤ k, define A′i := {vri : 1 ≤ r ≤ ni}. Then,

ιmk (G) =
1

k

k∑
i=1

c(Ai)

ω(Ai)
=

1

k

k∑
i=1

c′(A′i)

ω′(A′i)
≥ ιmk (G/π).

Also, if π′ = {B′i}k1 ∈ Dk(V ′) is a minimizing subpartition for ιmk (G/π) and Bi := ∪{Asj :
vsj ∈ B′i}, then,

1

k

k∑
i=1

c′(B′i)

ω′(B′i)
=

1

k

k∑
i=1

c(Bi)

ω(Bi)
≥ ιmk (G).

�

Lemma 5. Let G = (V,E, ω, c) be a weighted graph and 2 ≤ k ≤ |V | be an integer. Then,
there exists a subpartition π = {Ai}k1 ∈ Dk(V ) attaining ιk(G) such that the number of
connected components of G\ ∪i E(Ai, A

c
i ) is

(i) at most b(3k − 1)/2c, if G is acyclic.
(ii) at most 3k − 4, if G is planar.
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Proof. Consider the nonempty set Ck(V ) of all the minimizing subpartitions {Ai}k1 ∈
Dk(V ) where the induced graph on each Ai is connected (see Lemma 2), and for each such
subpartition, let {A1

k+1, . . . , A
d
k+1} be the set of all connected components of the induced

graph on Ak+1 := V \(∪k1Ai). Now, choose an extremal subpartition π = {Ai}k1 ∈ Ck(V )
for which d is minimized. Let π := {Ai}k+1

1 and V (G/π) = {v1, . . . , vk, v1k+1, . . . , v
d
k+1} as

in Definition 2. First, we claim that deg(vpk+1) ≥ 3 for each 1 ≤ p ≤ d. By contradiction,
assume that deg(vpk+1) ≤ 2. Then, Apk+1 is connected to at most two subsets in π, say A1, A2.
Without loss of generality, assume that c(Apk+1, A1) ≥ c(Apk+1, A2). Define B1 := A1∪Apk+1

and Bi := Ai for all 2 ≤ i ≤ k. Therefore, π′ = {Bi}k1 ∈ Dk(G) is a subpartition and

c(B1)

ω(B1)
=
c(A1)− c(A1, A

p
k+1) + c(Apk+1, A2)

ω(A1) + ω(Apk+1)
<
c(A1)

ω(A1)
,

that contradicts the minimality of π. Hence, deg(vp
k+1

) ≥ 3, for each 1 ≤ p ≤ d and the set
of vertices of G/π with degree less than 3 is a subset of {v

1
, . . . , v

k
}.

Let G′ be the graph obtained from G/π by deleting all the edges e = vivj ∈ E(G/π), for
every 1 ≤ i, j ≤ k. Then,

|E(G′)| =
d∑
p=1

deg(vpk+1) ≥ 3(|V (G′)| − k). (11)

On the other hand, if G is acyclic, then G′ is also acyclic and |E(G′)| ≤ |V (G′)| − 1. This
fact along with (11) yields |V (G/π)| = |V (G′)| ≤ (3k − 1)/2.
Now, if G is planar, then G′ is also planar. Furthermore, G′ is bipartite with independent
parts {v1, . . . , vk} and {v1k+1, . . . , v

d
k+1}. Therefore, G′ is a bipartite planar graph and

|E(G′)| ≤ 2|V (G′)| − 4. This fact along with Inequality (11) yields |V (G/π)| = |V (G′)| ≤
3k − 4. �

Lemma 6. Let T = (V,E, ω, c) be a weighted tree and 3 ≤ k ≤ |V | be an integer. Then,
there exists a minimizing partition π = {Ai}k1 ∈ Pk(V ) for ι̃Mk (T ) such that the number of
connected components of T\ ∪i E(Ai, A

c
i ) is at most max{2k2 − 6k − 2, k}.

Proof. Let π = {Ai}k1 ∈ Pk(V ) be a minimizing k-partition achieving ι̃Mk (T ) for which
the number of vertices of T/π is minimal. Let {A1

i , . . . , A
ni
i } be the set of connected

components of the induced graph T on Ai and V ′ be the set of vertices of T/π as in
Definition 2. For each i, partition the set [ni] into two subsets Li and Lci , where Li :={
r | 2 ≤ r ≤ ni, c(Ar

i )
ω(Ar

i )
≥ c(Ai)

ω(Ai)

}
.

Firstly, we prove that for each r ∈ Li, deg(vri ) ≥ 3. By contradiction, assume that r ∈ Li
and deg(vri ) ≤ 2. Therefore, Ari is connected to at most two sets, say Asj , A

t
l . Without loss

of generality assume that c(Ari , A
s
j) ≥ c(Ari , A

t
l). Now, let Bi := Ai\Ari , Bj := Aj ∪ Ari and

Bh := Ah for h 6= i, j. Thus, {Bi}k1 is a k-partition of V and since r ∈ Li,

c(Bi)

ω(Bi)
=

c(Ai)− c(Ari )
ω(Ai)− ω(Ari )

≤ c(Ai)

ω(Ai)
,

c(Bj)

ω(Bj)
=

c(Aj)− c(Ari , Asj) + c(Ari , A
t
l)

ω(Aj) + ω(Ari )
<
c(Aj)

ω(Aj)
.

Hence, maxi

(
c(Bi)
ω(Bi)

)
≤ ι̃Mk (T ) that contradicts the minimality of |V (T/π)|. Therefore,

deg(vri ) ≥ 3, as long as r ∈ Li. Moreover, the above argument shows that if k = 3, then for
each i, Li = ∅ and |V (T/π)| = k = 3.

Secondly, provided k ≥ 4, we prove that for each i, |Lci | ≤ k−3. By contradiction, assume
that |Lc1| ≥ k − 2 and define A′ := A2 and A′′ := ∪3≤i≤kAi. For each r ∈ L1, as before, we
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transfer the vertices in Ar1 into A′ or A′′, without increasing the normalized outgoing flow
of these subsets. Call the new subsets as B′ and B′′. Hence, π′ := {B′, B′′, Ar1 | r ∈ Lc1}
is a k-partition that achieves ι̃Mk (T ) whereas |V (T/π′)| < |V (T/π)|. This contradicts the
minimality of |V (T/π)| and therefore, |Lci | ≤ k − 3, for each i, whenever k ≥ 4.

These facts show that the number of vertices in V ′ = V (T/π) whose degrees are less
than 3, is at most k(k − 3). Hence,

2(|V ′| − 1) = 2|E(T/π)| =
∑
v∈V ′

deg(v) ≥ 3(|V ′| − k(k − 3)) + k(k − 3),

and consequently, |V (T/π)| ≤ 2k(k − 3)− 2, as long as k ≥ 4. �

Given a rooted tree T = (V,E), one can represent T by a string of 2n balanced parenthe-
ses, ordered from 1 to 2n, in which the matched pairs of these parentheses are in one to one
correspondence with the vertices. Based on this correspondence, one may define a labeling
of the vertex set3 in a way that the ith open parenthesis corresponds to the vertex with the
label i − 1. Therefore, 0 is the root of the tree and we add this labeling to the string of
parentheses along with its ordering to form a representation called the balanced parenthesis
representation (or the BP representation) of T . An example of such a representation is
depicted in Figure 2. The (induced) BP representation of a subset X ⊂ V \{0} is defined to
be the subarray of the BP representation of T consisting of columns corresponding to the
vertices in X ∪ {0}. It is easy to check, using a DFS algorithm, that one may extract the
BP representation of a rooted tree in linear time.

0

1

2

3 4

5

6

7 8

9

positition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

parenthesis ( ( ( ( ) ( ) ) ( ) ) ( ( ) ( ( ) ) ) )
label 0 1 2 3 3 4 4 2 5 5 1 6 7 7 8 9 9 8 6 0

positition 1 3 6 7 8 15 18 20

parenthesis ( ( ( ) ) ( ) )
label 0 2 4 4 2 8 8 0

Figure 2: The BP representations of a rooted tree and the subset {2, 4, 8}.

In [20] it is proved that for every 2n balanced parentheses one may effectively construct
a succinct representation, using 2n+o(n) bits, in such a way that the following navigational
operations can be performed in constant time. Given the position of an open parenthesis,

• find the position of the its matched closing parenthesis, and vise versa.

• find the number i where this parenthesis is the ith open parenthesis of the sequence.

• find the position of next open parenthesis.

Henceforth, by abuse of language, we may assume that in any given BP representation of
a rooted tree the above navigational operations can be performed in constant time (this
clearly can be done using the succinct version of the given BP representation).

Lemma 7. Let R(T ) and R(X) be, respectively, the BP representation of the rooted tree
T = (V,E) on n vertices and the subset of vertices X = {a1, . . . , at} ⊂ {1, . . . , n − 1} with
a1 ≤ a2 ≤ . . . ≤ at. Define i0 to be the largest number i such that ai + 1 6∈ X. Then, we can
find the BP representation of the set {a1, . . . , ai0−1, ai0 + 1, ai0 + 2, . . . , ai0 + t− i0 + 1} in
time O(t).

3Hereafter, each vertex is identified with its label.
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Proof. The proof is a direct consequence of applying constant time navigational opera-
tions. In particular, we find the position of the vertex ai0 in R(X), the position of the next
open parenthesis with the label ai0 + 1 in R(T ) and the position of the its corresponding
closed parenthesis in R(T ). Then in R(X), we exclude the columns with label ai0 and insert
the columns of R(T ) with labels ai0 + 1 according to the prescribed ordering. The claim is
proved by application of a series of this procedure to the representation R(X). �

Proof of Theorem 5. Now, we are ready to provide algorithms to compute ιmk (T ), ιMk (T )
and ι̃Mk (T ) for a weighted tree T and to find the corresponding minimizing partitions and
subpartitions. We use Lemmas 5, 6, 7 and the fact that removing t edges from a tree yields
a forest with exactly t+ 1 connected components.

Let T = (V,E, ω, c) be a weighted rooted tree on the vertex set V = {0, 1, . . . , n − 1}
rooted at 0. For each vertex v 6= 0, let epar(v) be the edge uv where u is the parent of v in
T and for every v ∈ V let Tv stand for the subtree of T rooted at v. Also, define

ω(v)
def
= ω(V (Tv)), c(v)

def
=

∑
u is a child of v

c(vu).

By traversing the vertices upwards, we find and save the quantities ω(v) and c(v) for every
v ∈ V in time O(n). Our algorithm is as follows.

Algorithm 2 Compute ιmk (T ), ιMk (T )

1: Let IM = Im :=
∑
e∈E c(e) and a0 := 0.

2: for t := k − 1 to b(3k − 3)/2c do
3: Let (a1, a2, . . . , at) ← (1, 2, . . . , t), generate the BP representation of the subset X =

{a1, . . . , at} and its corresponding tree T ′ on the vertex set X ∪ {0}.
4: while (a1, a2, . . . , at) 6= ((n− t+ 1), . . . , (n− 2), (n− 1)) do
5: For each 0 ≤ i ≤ t, compute ωi := ω(ai)−

∑
aj
ω(aj) and ci := c(uai) +

∑
aj
c(aj),

where the sums run over all children aj of ai in T ′ and u is the parent of ai in T .
Also, compute the quantities fi := ci/ωi for each 0 ≤ i ≤ t.

6: Sort f0, . . . , ft in increasing order, say fn0
≤ fn1

≤ . . . ≤ fnt
and define JM := fnk−1

and Jm := (fn0
+ . . .+ fnk−1

)/k.
7: if JM < IM (resp. Jm < Im) then
8: IM ← JM (resp. Im ← Jm) and define πM := (an0 , . . . , ant) (resp. πm :=

(an0 , . . . , ant)).
9: end if

10: Define i0 to be the largest number i such that ai + 1 6∈ X and set

(a1, a2, . . . , at)← (a1, . . . , ai0−1, ai0 + 1, ai0 + 2, . . . , ai0 + t− i0 + 1)

11: Using Lemma 7, find the BP representation of the new subset and its corresponding
tree T ′.

12: end while
13: end for
14: Define F ⊂ E, as F := ∪06=v∈πMepar(v) and compute the connected components of

T\F . For each 0 ≤ i ≤ k − 1, let Ai be the set of vertices of the connected component
containing ani to form the k-subpartition {A0, . . . , Ak−1}. Do the same thing for πm to
obtain the k-subpartition {B0, . . . , Bk−1}.
return IM and {Ai}k−10 and also Im and {Bi}k−10

We can also compute ι̃Mk (T ) by a slight modification of Lines 2, 6–9 and 14 in Algorithm 2
as follows.
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Algorithm 3 Compute ι̃Mk (T )

1′:
...

2′: for t := k − 1 to max{2k2 − 6k − 3, k − 1} do

3′:
...

6′: Consider all possible proper k-coloring of the tree T ′ by colors 0, 1, . . . , k−1 with color
classes C = {C0, . . . , Ck−1} and define gi(C) := (

∑
j∈Ci

cj)/(
∑
j∈Ci

ωj), 0 ≤ i ≤ k − 1

and JM := minC maxi gi(C) = maxi gi(C0) for some C0.
7′: if JM < IM then
8′: IM ← JM and define CM := C0.
9′: end if

10′:
...

13′: end for
14′: For CM = {CM0 , . . . , CMk−1}, define F ⊂ E, as F := ∪k−1i=0 ∪06=v∈CM

i
epar(v) and compute

the connected components of T\F as A0, . . . , At. For each 0 ≤ i ≤ k − 1, define
Bi := ∪j∈CM

i
Aj .

return IM and {Bi}k−10

Now, it is easy to verify that by Lemma 7 all computations appearing within the while
loop are performed in constant time (for constant k). Also, all computations outside
the for loop are performed in linear time. Hence, the runtime of Algorithm 2 is of or-
der O(nb(3k−3)/2c) and the runtime of Algorithm 3 is of order O(n2) when k = 3 and

O(n2k
2−6k−3) when k ≥ 4. �

Theorem 5 as a generalization of B. Mohar’s result for k = 2 [19] shows that for every
fixed integer k ≥ 2, computing the mentioned kth isoperimetric parameters is polynomially
solvable for weighted trees. However, the following theorem shows that this result can not
be generalized to the case of weighted graphs with bounded tree-width (for the general
background and definition of tree-width, see e.g. [9] and references therein).

Theorem 6. For every fixed integer k ≥ 2, IPPk and NCPk (in both max and mean versions)
are NP -complete for bipartite weighted graphs with tree-width two.4

Proof. First we show that it is enough to prove the theorem for k = 2. For this, assume
that k > 2 is an integer and G is a weighted graph. Add k − 2 new isolated vertices of
weight 1 to obtain a new weighted graph G′. For every k-subpartition of V (G′), there
are two subsets completely included in V (G). Thus, solving IPP2 (equivalently NCP2) for
the graph G is equivalent to solving IPPk and NCPk for the graph G′. Henceforth, we
concentrate on NCPM2 , mentioning that the proof of the mean version is similar.

Consider the following NP -complete problem in the class of KNAPSACK problems,
known as the PARTITION problem [12].

PARTITION

INSTANCE: n positive integers x1, . . . , xn such that
∑n
i=1 xi = 2B.

QUERY: Is there a subset I ⊂ [n] such that
∑
i∈I xi = B?

We shall propose a polynomial reduction from PARTITION to NCPM2 . Let x1, . . . , xn be
n positive integers where

∑n
i=1 xi = 2B. Then, define the bipartite weighted graph G as

follows.
V (G) := {u1, u2, v1, . . . , vn}, E(G) := {u1vi, u2vi, 1 ≤ i ≤ n},

4Note that tree-width at most two implies planarity.
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ω(u1) = ω(u2) = M, ω(vi) := xi, ∀ 1 ≤ i ≤ n,

where M is an arbitrary positive integer. Also, let all the edge weights be equal to 1. It is
clear that the graph G has tree-width equal to 2. Assume M is sufficiently larger than B,
then by Lemma 3, there exists a minimizing 2-partition (A1, A2) achieving ι̃2(G) where u1
and u2 are in different parts. Thus

ι̃M2 (G) = max

{
c(A1)

ω(A1)
,
c(A2)

ω(A2)

}
= max

{
n

M +
∑
vi∈A1

xi
,

n

M +
∑
vi∈A2

xi

}
.

Hence, ιM2 (G) ≤ n/(M +B) if and only if
∑
vi∈A1

xi = B. This completes the proof. �

5 The Unitarization Process

In this section we establish a machinery to convert the hardness results from weighted graphs
to unweighted (simple) graphs, i.e. graphs whose all the vertex and edge weights are equal
to 1. In fact this method that we call the unitarization process, is a polynomial reduction
and will be used to prove some hardness results for unweighted graphs and trees. Define the
class ISO to be the set of all problems IPP, NCP, IPPk and NCPk for the maximum and
the mean version.

Proposition 1. If P is a problem in the class ISO which is NP -complete in the strong
sense for weighted graphs, then it is NP -complete for unweighted (simple) graphs as well.

Proof. We prove the proposition for NCPM and the other cases are similar. Assume
that NCPM is NP -complete in the strong sense and let G = (V,E, ω, c) together with the
integer k ≥ 2 and the number N = M/L be an instance of NCPM , where all the weights
and integers M,L are given in unary codes. We apply a unitarization process on G which
is a polynomial reduction to obtain a simple graph G′ with all the weights equal to 1 and a
constant N ′, such that for NCPM , (G, k,N) is a positive instance if and only if (G′, k,N ′)
is a positive instance. This implies the NP -completeness of NCPM for unweighted graphs.
The process is described in two steps.

Step 1. Unitarization of the vertex weights.
In this step, we propose a method to make all the vertex weights equal to 1. First, multiply
all the vertex weights by a sufficiently large constant χ such that for every vertex u ∈ V ,
χω(u) ≥

∑
e=uv∈E c(e). Then, for every A ⊂ V , we have c(A)/ω(A) ≤ χ. Now, to construct

the graph G′ = (V ′, E′, c) from G, for each vertex u ∈ V , add a set Wu of exactly χω(u)− 1
new vertices and join all of the vertices in Wu to u (see Figure 3). Furthermore, let the
new edges ux, x ∈ Wu, have weights equal to 1. We claim that ι̃Mk (G) = χι̃Mk (G′). Let
{Ai}k1 be a minimizing partition for ι̃Mk (G). Then, by defining A′i := Ai ∪ (∪u∈AiWu), it
is clear that c(A′i)/|A′i| = (1/χ)c(Ai)/ω(Ai). Therefore, ι̃Mk (G′) ≤ (1/χ)ι̃Mk (G). To prove
the equality, let {B′i}k1 be a minimizing partition achieving ι̃Mk (G′). For a vertex u ∈ V ,
assume u ∈ B′i, for some i. If there exists x ∈ Wu, such that x ∈ B′j , for some j 6= i,
then we transfer x from B′j to B′i and define B′′i := B′i ∪ {x} and B′′j := B′j\{x}. Since

c(B′j)/|B′j | ≤ ι̃Mk (G′) ≤ (1/χ)ι̃Mk (G) ≤ 1, we have

c(B′′j )

|B′′j |
=
c(B′j)− 1

|B′j | − 1
≤
c(B′j)

|B′j |
,

c(B′′i )

|B′′i |
=
c(B′i)− 1

|B′i|+ 1
≤ c(B′i)

|B′i|
.

By continuing this process, we get a minimizing partition {B′′i }k1 achieving ι̃Mk (G′) with the
property that for every vertex u ∈ V , u and the vertices in Wu all are in the same part. Thus,
by defining Bi := V ∩B′′i , we have c(Bi)/ω(Bi) = χc(B′′i )/|B′′i |. Hence, ι̃Mk (G) ≤ χι̃Mk (G′).
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It remains to let N ′ := N/χ.

Step 2. Unitarization of the edge weights.
Let n := |V | and assume that all the vertex weights are equal to 1 and replace every edge
e ∈ E by exactly c(e) multiple edges. Then subdivide all the edges to obtain a simple graph
G′ and let the new edge weight function c′ be the constant function 1 (see Figure 3). For
each edge e ∈ E, let the set of new vertices obtained from the subdivisions be denoted by
Se and define S := ∪e∈ESe. Also, for a constant ψ, define the vertex weight function ω′ to
be equal to 1 on the set S and equal to ψ on the set V .

u 1

1111
. . .

u
ω(u)

−→
c(e)1

−→
1 ψ ψ

1

1

1

1
...

Figure 3: The vertex and edge gadgets used in the unitarization process.

We claim that if ψ is sufficiently larger than n,L and |S|, then ι̃Mk (G) ≤ N if and
only if ι̃Mk (G′) ≤ (N/ψ). For this, first assume that ι̃Mk (G) ≤ N and let {Ai}k1 be a
minimizing k-partition for ι̃Mk (G). Define A′i := Ai ∪ (∪e∈E(Ai,Aj),1≤j≤iSe). It is clear that

c′(A′i) = c(Ai) and ω′(A′i) ≥ ψ|Ai|. Therefore, ι̃Mk (G′) ≤ (N/ψ). On the other hand, assume
that ι̃Mk (G′) ≤ (N/ψ) and let {B′i}k1 be a minimizing partition achieving ι̃Mk (G′). By defining
Bi := B′i ∩V , we have c(Bi) ≤ c′(B′i). Moreover, if ψ is sufficiently larger than n,L and |S|,
then

c(Bi)

|Bi|
<

ψc(Bi)

ψ|Bi|+ |S|
+

1

nL
≤ ψc′(B′i)

ω′(B′i)
+

1

nL
.

Thus,

max
1≤i≤k

{
c(Bi)

|Bi|

}
=
c(Bi0)

|Bi0 |
< ψ ι̃Mk (G′) +

1

nL
≤ M

L
+

1

nL
≤ M

L
+

1

L|Bi0 |
.

And consequently, ι̃Mk (G) ≤ maxi(c(Bi)/|Bi|) ≤M/L = N. This completes the second step.
Finally, by repeating Step 1, we may find a simple graph all of whose edge and vertex

weights are equal to 1. Note that since the edge and vertex weights of G and also M,L are
given in unary codes, the obtained simple graph is polynomial time computable. �

By Theorem A (i), we know that NCP2 is NP -complete for graphs with multiple edges.
Thus, NCP2 is NP -complete in the strong sense for weighted graphs. The following corollary
is deduced from this fact along with Theorem 2 and Proposition 1. Part (i) can be seen
as a generalization of B. Mohar’s result (Theorem A (i)). Also, note that for Part (ii) we
do not use Step 2 of the unitarization process, because within the reduction in the proof of
Theorem 2, all the edge weights are equal to 1. Hence, this process preserves the property
of being acyclic.

Corollary 2.
(i) For every fixed k ≥ 2, IPPk and NCPk (in both max and mean versions) are NP -complete
for unweighted (simple) graphs.
(ii) The problem NCPM is NP -complete for unweighted trees.
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6 Concluding Remarks

Our results show that the study of isoperimetric numbers and minimum normalized cuts on
weighted trees is not only important because of its wide range of applications, but also the
scope of weighted trees provide a vast arena to test the computational complexity of these
problems in which these isoperimetric problems change their computational behavior by a
very slight perturbation of conditions. This fact, on the one hand, is quite interesting from a
complexity theoretic point of view, where one is quite eager to investigate problems close to
the borders of the classes P and NP -complete, and on the other hand, is also interesting from
the point of view of approximation algorithms for applications. In this regard, according
to our results, intuitively, passing from taking the maximum to the mean or restricting the
space of subpartitions to partitions will generally make the problem computationally harder.
These observations provide enough evidence for the fact that the study of the following open
problems ought to be challenging.

• Does there exist a polynomial time algorithm that given the number k ≥ 2 and a
weighted tree T , computes the parameter ιMk (T )?

• Given a constant number k ≥ 4, does there exist a polynomial time algorithm that
computes the parameter ι̃mk for weighted trees? (It can be verified that an argument
similar to what has appeared in the proof of Lemma 6 implies that this problem is
solvable for k = 3 in time O(n2).)

• Determine the computational complexity of IPPm and NCPm for unweighted trees.

• Determine the computational complexity of IPPk and NCPk for bipartite planar un-
weighted graphs.

Also, it should be noted that from a parameterized complexity point of view Theorem 5
does not imply that the corresponding computational problems are in the class FPT with
respect to the parameter k. Hence, the following question also seems to be interesting.

• Do the computational problems discussed in Theorem 5 fall in the class FPT as pa-
rameterized problems with respect to the parameter k?

Moreover, one may consider a number of different variants of isoperimetric problems on
graphs and study their computational properties. As a couple of these variants we propose
the following setups.

Firstly, we may consider all isoperimetric numbers and problems in the more general
framework of graphs with boundary. For instance, the proof of Theorem 3 is presented in
this framework where there is an extra weight function γ on vertices that represents the
outgoing flows to the boundary. Therefore, Theorem 3 is also valid for the Dirichlet version
of the problem IPPM . In this regard, the study of computational aspects of the Dirichlet
isoperimetric problems is an area to be explored (e.g. see [6, 8, 10]).

Secondly, considering the maximum and mean versions of the introduced parameters
as ‖.‖∞ and ‖.‖

1
counterparts of the isoperimetric problem, respectively, it is interesting

to study the ‖.‖
p

versions of these parameters and the computational complexity of the
corresponding problems. In this setting, it is important to try to characterize the properties
that are responsible for the change of hardness from NP -completeness of IPPm to the
tractability of IPPM in the limit.

Thirdly, the semisupervised variant of these partitioning problems can be formulated
as the multiterminal isoperimetric problems, in which given a weighted graph along with k
specified vertices v1, . . . , vk, we look for a k-subpartition (k-partition) such that vi’s appear
in different parts and the corresponding cost functions (see Definition 1) are minimized. For
instance, using a similar argument as in the proof of Theorem 6, one may prove that for
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any k ≥ 2 the multiterminal versions of IPPk and NCPk are NP -complete for weighted
trees [15].

As another variant of these problems, one may focus on the approach through (k, b)-
subpartitions (see [21, 22]) that can be considered as a combination of the max and the
mean approach and follow the same line of study.
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