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Abstract

A µ–simultaneous edge coloring of graph G is a set of µ proper edge colorings
of G with a same color set such that for each vertex, the sets of colors appearing
on the edges incident to that vertex are the same in each coloring and no edge
receives the same color in any two colorings. The µ–simultaneous edge coloring of
bipartite graphs has a close relation with µ–way Latin trades. Mahdian et al. (2000)
conjectured that every bridgeless bipartite graph is 2–simultaneous edge colorable.
Luo et al. (2004) showed that every bipartite graphic sequence S with all its elements
greater than one, has a realization that admits a 2–simultaneous edge coloring. In
this paper, the µ–simultaneous edge coloring of graphs is studied. Moreover, the
properties of the extermal counterexample to the above conjecture are investigated.
Also, a ralation between 2–simultaneous edge coloring of a graph with a cycle double
cover with certain properties is shown and using this relation, some results about
2–simultaneous edge colorable graphs are obtained.

Keywords: Simultaneous edge coloring; Cycle double cover; Oriented cycle double cover;

Latin trades.

1 Introduction

In this paper all graphs we consider are finite and simple. For notations and definitions we refer

to [4]. This section deals with a brief review of some concepts raleted to the main subject of the

paper.

Let S be a nonempty proper subset of V (G). The subset [S, S] = {uv ∈ E(G) : u ∈ S, v ∈ S}
of E(G) is called an edge cut. A k-edge cut is an edge cut [S, S], where |[S, S]| = k. An edge cut

F , is called trivial if one of the component in G\F be an isolated vertex. The edge connectivity of

G, κ′(G), is the minimum k for which G has a k-edge cut and G is said to be k–edge-connected

if κ′(G) ≥ k. A 2–edge-connected graph is called a bridgeless graph.

A proper edge coloring of a graph G is a labeling from E(G) to the color set [l] = {1, . . . , l}
such that incident edges have different colors. The edge chromatic number of G, χ′(G), is the
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least l such that G admits a proper edge coloring with label set [l]. A k-factor of graph G is

a k-regular spanning subgraph of G, and G is k-factorable if there are edge disjoint k-factors

H1, . . . , Hl such that G = H1 ∪ . . . ∪Hl. Note that an r-regular graph G is 1-factorable if and

only if χ′(G) = r.

We use the term circuit for a connected 2-regular graph and the term cycle for a graph that

all its vertices have even degrees. A cycle double cover (CDC), C, of a graph G is a collection

of its cycles such that every edge of G is contained in precisely two cycles in C and a k-cycle

double cover (k-CDC) of G is a CDC of G such that consisting of at most k cycles of G. Note

that the cycles are not necessarily distinct. A necessary condition for a graph to have a CDC is

the bridgeless property. Seymour [14] in 1979 conjectured that this condition is also sufficient.

Conjecture 1. [14] (CDC conjecture) Every bridgeless graph has a CDC.

No counterexample to the CDC conjecture is known. It is proved that the minimal coun-

terexample to the CDC conjecture is a bridgeless cubic graph with edge chromatic number equal

to 4, which is called a snark. The CDC conjecture has many stronger forms, one of which is

the following conjecture. An oriented cycle double cover (OCDC) of a graph G is a CDC of G

in which every circuit can be oriented in such a way that every edge of the graph is covered by

two directed circuits in two different directions.

Conjecture 2. [9] (OCDC conjecture) Every bridgeless graph has an OCDC.

The concept of cycle double cover has a relation with nowhere-zero flow in graphs. Some

necessary relations of these two concepts are presented in what follows.

Let G be a simple graph and (D, f) be an ordered pair, where D is an orientation of E(G) and

f is a weight on E(G) to Z. For each v ∈ V (G), denote

f+(v) =
∑

f(e) and f−(v) =
∑

f(e),

where the summation is taken over all directed edges of G (under the orientation D) with tails

and heads, respectively, at the vertex v. An integer flow of G is an ordered pair (D, f) such

that for every vertex v ∈ V (G), f+(v) = f−(v). The support of f , supp(f), is the set of the

edge e ∈ E(G) that f(e) ̸= 0. A nowhere-zero k-flow of G is an integer flow (D, f) such that

supp(f) = E(G) and −k < f(e) < k, for every e ∈ E(G) and is denoted by k-NZF.

Theorem A. [15]

(i) If every edge of a graph G is contained in a circuit of length at most 4, then G admits a

4-NZF.

(ii) A graph G admits a 4-NZF if and only if G has a 4-CDC.

(iii) A graph G admits a 4-NZF if and only if G has an OCDC consists of four directed cycles.
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Let G be a bipartite graph with bipartition (X,Y ). The bipartite degree sequence of G is

the sequence (x1, x2, . . . , xn; y1, y2, . . . , ym), where (x1, x2, . . . , xn) are the vertex degrees in X

and (y1, y2, . . . , ym) are the vertex degrees in Y . A sequence S of positive integers is called a

bipartite graphic sequence if there exists a bipartite graph G whose bipartite degree sequence is

S; if so then the graph G is called a realization of S.

Definition 1. [13] A µ–simultaneous edge coloring of graph G is a set of µ proper edge colorings

of G with the color set [l], say (c1, c2, . . . , cµ), such that

• for each vertex, the sets of colors appearing on the edges incident to that vertex are the same

in each coloring;

• no edge receives the same color in any two colorings.

If G has a µ–simultaneous edge coloring, then G is called a µ–simultaneous edge colorable graph.

The minimum l that there exists a µ–simultaneous edge coloring of G with the color set [l], is

called µ− SE chromatic number of G and denoted by χ′
µ−SE(G).

Note that in every µ–simultaneous edge coloring of a graph G, µ ≤ degG(v), for every v ∈ V (G),

because every edge e = uv ∈ E(G) admits µ different colors of colors appeared of the edge

incident to v.

Observation If G is a µ–simultaneous edge colorable graph, then µ ≤ δ(G), where δ(G) is the

minimum degree of G. Moreover,

∆(G) ≤ χ′(G) = χ′
1−SE(G) ≤ χ′

2−SE(G) ≤ · · · ≤ χ′
µ−SE(G).

There are some graphs G that χ′(G) < χ′
µ−SE(G); for example in the next section we show that

for graph G shown in Figure 1, χ′
2−SE(G) ≤ 4, and by a case study, it can be checked that G has

no 2–simultaneous edge coloring with 3 colors. Thus, χ′
2−SE(G) = 4 while χ′(G) = 3. In this

case, χ′
2−SE(G) = ∆(G) + 1. This is a natural question: Is this true that ∆(G) ≤ χ′

2−SE(G) ≤
∆(G) + 1?

Figure 1: χ′(G) = 3 and χ′
2−SE(G) = 4.

At the 16th British Combinatorial Conference (1997), Cameron introduced the concept 2–

simultaneous edge coloring. He use this concept to reformulate a conjecture of Keedwell (1994)
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on the existence of critical partial Latin squares of given type. In fact he conjectured (called

SE conjecture) that for each bipartite graphic sequence S with all its elements greater than one,

there exists a 2–simultaneous edge colorable realization.

Mahdian et al. in [13] showed that the 2–simultaneous edge coloring of every bipartite graph

is equivalent to an OCDC of that graph. Also, they conjectured that every bridgeless bipartite

graph is 2–simultaneous edge colorable.

Theorem B. [13] Every bipartite graph G is 2-simultaneous edge colorable if and only if G has

an OCDC.

Conjecture 3. [13] (strong SE conjecture) Every bridgeless bipartite graph is 2–simultaneous

edge colorable.

Luo et al. in [11] showed that every bipartite graphic sequence S with all its elements greater

than one, has a realization that admits a 4-NZF. Thus, by Theorems A (iii) and B, they proved

that the SE conjecture is true.

In Section 2, we see the relation between µ–simultaneous edge coloring and µ–way Latin

trade, also, we give some sufficient conditions for graphs to be µ–simultaneous edge colorable.

In Section 3, we consider the case µ = 2. First, some properties for the extermal counterexample

to the strong SE conjecture are given; then, we discusse on 2–simultaneous edge coloring for

general graphs and introduce some 2–simultaneous edge colorable graphs and some graphs which

has no 2–simultaneous edge coloring.

2 µ–simultaneous edge coloring and µ–way Latin trade

A partial Latin square P of order n is an n × n array of elements from the set [n] = {1, . . . , n},
where each element of [n] appears at most once in each row and at most once in each column.

We can represent each partial Latin square, P , as a subset of [n]× [n]× [n],

P = {(i, j; k) : element k is located in position (i, j)}.

The set SP = {(i, j) : (i, j; k) ∈ P, 1 ≤ k ≤ n} of the partial Latin square P is called the shape

of P and |SP | is called the volume of P . By Ri
P and Cj

P we mean the set of entries in row i and

column j, respectively of P .

A µ–way Latin trade, (T1, . . . , Tµ), of volume s is a collection of µ partial Latin squares

T1, . . . , Tµ, containing exactly the same s filled cells, such that if cell (i, j) is filled, it contains a

different entry in each of the µ partial Latin squares, and row i in each of the µ partial Latin

squares contains, set-wise, the same symbols and column j, likewise. If µ = 2, (T1, T2) is called a

Latin bitrade. The volume spectrum Sµ for all µ–way Latin trades is the set of possible volumes

of µ–way Latin trades. For a survey on this topic see [3], [5], and [10].

For every µ–way Latin trade T = (T1, . . . , Tµ) of volume s there exists a µ–simultaneous

edge colorable bipartite graph G with s edges and bipartite degree sequence S = (|R1
T |, . . . ,
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|Rn
T |; |C1

T |, . . . , |Cm
T |). In fact G = (X,Y ) is a bipartite graph, where X = {x1, . . . , xn} and

Y = {y1, . . . , ym} such that for every filled cell (i, j) in T , there is an edge between xi and yj
and the element that located in position (i, j) of Tk is the color of edge xiyj in the kth coloring

of µ–simultaneous edge coloring of G, for 1 ≤ k ≤ µ.

In Figure 2 a Latin bitrade, T = (T1, T2), of volume 10 is demonstrated. (• means the cell is

empty.) In fact, T is the Latin bitrade corresponding to a 2–simultaneous edge coloring of the

graph G that showed in Figure 1. Therefore, χ′
2−SE(G) ≤ 4.

1 2 • •
2 4 3 •
• 1 4 3

3 • • 1

2 1 • •
3 2 4 •
• 4 3 1

1 • • 3

Figure 2: T = (T1, T2) a Latin bitrade of volume 10.

Since Luo et al. in [11] showed that each bipartite graphic sequence S with all its elements

greater than 1, has a 2–simultaneous edge colorable bipartite realization, we have

S2 = N \ {1, 2, 3, 5}.

Theorem C. [1, 2] The volume spectrums for all µ–way Latin trades, µ = 3, 4, 5 are

S3 = N \ ([1, 8] ∪ {10, 11, 13, 14});

S4 = N \ ([1, 15] ∪ {17, 18, 19, 21, 22, 26});

S5 = N \ ([1, 24] ∪ [26, 29] ∪ {31, 32, 33, 37, 38}).

Let S = (3, 3, 3, 4; 3, 3, 3, 4) be a bipartite graphic sequence. By Theorem C, there is no

3–way Latin trade of volume 3 + 3 + 3 + 4 = 13. Thus, the bipartite graph G = (X,Y ) with

X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4} and E(G) = {xiyj : 1 ≤ i ̸= j ≤ 4} ∪ {x4y4} is not

3–simultaneous edge colorable. Note that G is a 3–edge-connected bipartite graph. Therefore,

the generalization of the strong SE conjecture and SE conjecture are not true.

One can be asked the following two natural questions related to this concept.

Question 1. Is there a positive integer sµ such that every µ–edge-connected bipartite graph with

at least sµ edges admits a µ–simultaneous edge coloring?

Question 2. Is there a positive integer sµ such that each bipartite graphic sequence S =

(x1, . . . , xn; y1, . . . , ym) with all its elements greater than µ− 1 and
∑

1≤i≤n xi ≥ sµ, there exists

a µ–simultaneous edge colorable bipartite realization?
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In [6], Edmonds showed that every graphic degree sequence, with all degrees at least µ ≥ 2,

has a µ–edge-connected realization. In [8], Hajiaghaee et al. proved that every bipartite graphic

sequence, with all degrees at least 2µ (µ ≥ 1), has a 2µ–edge-connected realization. In the

following theorem we prove a generalization of these theorems; every bipartite graphic sequence,

with all elements greater than µ− 1, has a µ–edge-connected bipartite realization. Therefore, if

the response of Question 1 is positive, then the response of Question 2 is also positive. For this

purpose we need the following theorem.

Theorem D. [13] For every bipartite graphic sequence S with all its elements greater than one,

there exists a 2–edge-connected realization.

Theorem 1. Every bipartite graphic sequence S with all its elements greater than µ− 1, µ ≥ 3,

has a µ–edge-connected realization.

Proof. Let r be the maximum edge connectivity among all realizations of the bipartite graphic

sequence S and r ≤ µ−1. By Theorem D, r ≥ 2. Also, let G = (X,Y ) be a bipartite realization

of S with the edge connectivity κ
′
(G) = r, and G has the minimum number of r-edge cuts.

Assume that F = {e1, e2, . . . , er} is an r-edge cut of G. Therefore, G \ F has exactly two

components G1 and G2.

First, we show that G1 and G2 are bridgeless. Otherwise, without loss of generality, assume

that e = uv ∈ E(G1) is a cut edge of G1 and G11 and G12 are components of G1 \ {e}.
If r = 2 and S1 is the bipartite degree sequence of G1, then by Theorem D, there is a bridgeless

bipartite graph G′
1 with the degree sequence S1. Thus, G

′ = (G\E(G1))∪E(G′
1) is a realization

of S with the same edge connectivity as G and the number of its r-edge cuts is less than the

number of r-edge cuts of G, which is a contradiction.

If r ≥ 3 and Fi is the edges between G1i and G2, i = 1, 2, then F = F1 ∪ F2 and for some i,

say i = 2, |F2| ≥ 2. Therefore, F ′ = F1 ∪ {e} is an edge cut of size at most r − 1, which is a

contradiction. Thus, G1 and G2 are bridgeless. Hence, in the bridgless components G1 and G2,

every edge lies in a circuit.

Since δ(G) ≥ µ, for every vi ∈ V (Gi), i = 1, 2, there exists a vertex v′i ∈ V (Gi) ∩ NG(v) such

that NG(v
′
i) ⊆ V (Gi); so, there exists a vertex v′′i ∈ V (Gi)∩NG(v

′
i) such that NG(v

′′
i ) ⊆ V (Gi).

Let vi ∈ V (Gi) ∩ X and Ci be a circuit in Gi such that ei = v′iv
′′
i ∈ E(Ci), i = 1, 2. Now by

switching two edges e1 and e2 with two edges v′1v
′′
2 and v′2v

′′
1 , we obtain a bipartite graph G′ with

the same degree sequence as G in which F is not an r-edge cut anymore, and no new r-edge

cut is appeared. This contradicts the minimality of the number of r-edge cuts in G. Therefore,

r ≥ µ and this complete the proof.

Mahdian et al. showed that there exists an infinite family of µ–simultaneous edge colorable

graphs. In the rest of this section we consider µ–simultaneous edge colorings of complete graphs,

complete bipartite graphs and some graph operations such as join and graph product.

Theorem E. [13] Every r-regular 1-factorable graph is µ–simultaneous edge colorable for every

µ ≤ r.
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For example every complete graph K2l, l ≥ 2, is µ–simultaneous edge colorable for every

µ ≤ 2l − 1; every complete bipartite graph Kn,n, n ≥ 2, is µ–simultaneous edge colorable for

every µ ≤ n; every complete multipartite graph Kr1,r2,...,rn , when r1 = · · · = rn = r, n ≥ 2, and

rn is even, is µ–simultaneous edge colorable for every µ ≤ (n− 1)r; and every hypercube graph

Qn, n ≥ 1, is µ–simultaneous edge colorable for every µ ≤ n.

Theorem F. [1] If min{m,n} ≥ µ, then there exists an m×n µ-way Latin trade of volume mn.

Corollary 1. Every Kn,m admits a µ–simultaneous edge coloring, for µ ≤ min{m,n} and

n,m ≥ 2. Moreover, χ′
µ−SE(Kn,m) = max{m,n}.

The join of two simple graphs G and H, G∨H, is the graph obtained from the disjoint union

of G and H by adding the edges {uv : u ∈ V (G), v ∈ V (H)}.

Theorem 2. Let Gi be a µ–simultaneous edge colorable graph of order ni ≥ 2. The join graph

G1 ∨G2 has a µ–simultaneous edge coloring.

Proof. Since Gi’s has a µ–simultaneous edge coloring, for µ ≤ min{n1, n2}, by Corollary 1,

Kn1,n2 has a µ–simultaneous edge coloring. Now we define a µ–simultaneous edge coloring

of G1 ∨ G2 by a µ–simultaneous edge coloring of the copy Gi in G1 ∨ G2 with the color set

{1, . . . , χ′
µ−SE(Gi)}, i = 1, 2, and a µ–simultaneous edge coloring of the copy Kn1,n2 in G1 ∨G2

with the color set {r + 1, . . . , r +∆(Kn1,n2)}, where r = max{χ′
µ−SE(G1), χ

′
µ−SE(G2)}.

Proposition 1. The complete graph K7 admits a µ–simultaneous edge coloring, for µ = 2, 3.

Proof. Let V (K7) = {v1, v2, . . . , v7} be the vertex set ofK7. The following colorings, (c1, c2, c3),

is a 3–simultaneous edge coloring of K7, where cµ, is a proper edge coloring of K7 with color set

{1, 2, . . . , 7}, and vivj : l1, l2, l3 means cµ(vivj) = lµ, µ = 1, 2, 3.

v1v2 : 5, 7, 6; v1v3 : 2, 3, 1; v1v4 : 3, 2, 7; v1v5 : 6, 1, 5; v1v6 : 7, 6, 3; v1v7 : 1, 5, 2;

v2v3 : 7, 2, 5; v2v4 : 6, 1, 4; v2v5 : 1, 6, 7; v2v6 : 4, 5, 2; v2v7 : 2, 4, 1;

v3v4 : 1, 7, 2; v3v5 : 4, 5, 3; v3v6 : 5, 4, 7; v3v7 : 3, 1, 4;

v4v5 : 7, 4, 1; v4v6 : 2, 3, 6; v4v7 : 4, 6, 3;

v5v6 : 3, 7, 4; v5v7 : 5, 3, 6;

v6v7 : 6, 2, 5.

Theorem 3. Every complete graph Kn, except for n = 2, 3, 5 and possibly for n = 9 admits a

µ–simultaneous edge coloring, for µ = 2, 3.

Proof. It is easy to check that K2 and K3 are not 2–simultaneous edge colorable. In Propo-

sition 2, we will show that K5, has no 2–simultaneous edge coloring. By Theorem E, K2l,

l ≥ 2 admits a µ–simultaneous edge coloring, µ = 2, 3. Thus, by Proposition 1 and Theorem 2,

K11 = K7 ∨ K4 and K13 = K7 ∨ K6 are µ–simultaneous edge colorable, µ = 2, 3. For every

n ≥ 14, we have Kn = Kn−4 ∨ K4; hence by induction on n, and Theorem 2, Kn admits a

µ–simultaneous edge coloring, µ = 2, 3.
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The Cartesian product of two graphs G and H, denoted by G□H, is the graph with vertex

set V (G)×V (H) and two vertices (u, v) and (u′, v′) are adjacent if and only if either u = u′ and

vv′ ∈ E(H) or uu′ ∈ E(G) and v = v′.

In the following theorems we present some sufficient conditions for µ–simultaneous edge

colorable of G□H in general.

Theorem 4. Let G and H be r-regular and s-regular graphs, respectively. If H is 1-factorable,

then G□H is µ–simultaneous edge colorable for every µ ≤ r + s.

Proof. Suppose that G and H are r-regular and s-regular graphs, respectively. Therefore,

G□H is an (r + s)-regular graph. Since H is 1-factorable, we have χ′(H) = ∆(H) and by a

theorem in [12], χ′(G□H) = ∆(G□H) = r + s. Thus by Theorem E, G□H is µ–simultaneous

edge colorable for every µ ≤ r + s.

Corollary 2.

(i) For every positive integers n ≥ 2 and m ≥ 3, C2n□Cm is µ–simultaneous edge colorable for

every µ ≤ 4.

(ii) Let G be r-regular. Then, G□K2n, n ≥ 1, is µ–simultaneous edge colorable for every

µ ≤ r + 2n− 1.

Theorem 5. Let G and H be two µ–simultaneous edge colorable graphs. The cartesian prod-

uct G□H is also µ–simultaneous edge colorable. In particular, χ′
µ−SE(G□H) ≤ χ′

µ−SE(G) +

χ′
µ−SE(H).

Proof. Suppose that G and H be two µ–simultaneous edge colorable graphs. It is suffi-

cient to consider for each copy of G in G□H a µ–simultaneous edge coloring with color set

{1, . . . , χ′
µ−SE(G)} and for each copy of H in G□H a µ–simultaneous edge coloring with color

set {χ′
µ−SE(G)+1, χ′

µ−SE(G)+2, . . . , χ′
µ−SE(G)+χ′

µ−SE(H)}. Obviously, these colorings form

a µ–simultaneous edge coloring of G□H.

The lexicographic product of two simple graphs G and H is the simple graph G[H] whose

vertex set is V (G) × V (H), and two vertices (u, v) and (u′, v′) are adjacent if and only if

uu′ ∈ E(G), or u = u′ and vv′ ∈ E(H).

Theorem 6. If H is µ–simultaneous edge colorable, then for every simple graph G, G[H] is

also µ–simultaneous edge colorable.

Proof. Let G and H be two simple graphs, V (G) = {u1, . . . , um}, and V (H) = {v1, . . . , vn}.
The graph G[H] consists of copies H1, . . . , Hm of H, in which the edge between H i and Hj are

isomorph to a copy of Kn,n, whenever uiuj ∈ E(G). Let Jij denote the copy of Kn,n corresponds
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to the edges between H i and Hj and cG : E(G) → {1, . . . , χ′(G)} be a proper edge coloring of

G. Now define µ edge colorings of G[H]. For every H i, 1 ≤ i ≤ m, define a µ–simultaneous

edge coloring the same as µ–simultaneous edge coloring of H by color set {1, . . . , χ′
µ−SE(H)}.

Since by Corollary 1, every Kn,n has a µ–simultaneous edge coloring, for every Jij define a µ–

simultaneous edge coloring by color set {χ′
µ−SE(H) + (cG(uiuj)− 1)n, χ′

µ−SE(H) + (cG(uiuj)−
1)n+ 1, . . . , χ′

µ−SE(H) + (cG(uiuj)− 1)n+ (n− 1)}. It is easy to check these colorings form a

µ–simultaneous edge coloring of G[H].

3 2–Simultaneous edge coloring

In this section we concern on the 2–Simultaneous edge coloring. First, we study the properties of

the extermal counterexample to the strong SE conjecture. Then, we consider the 2–Simultaneous

edge coloring for graphs in general.

If the strong SE conjecture is false, then it must have a minimal counterexample. We consider

the family of counterexamples to the strong SE conjecture with maximum number of vertices

among ones with minimum number of edges.

Theorem 7. Let G be a bridgeless bipartite graph that is not 2–simultaneous edge colorable with

maximum number of vertices among ones with minimum number of edges, then

(i) G is 2-connected;

(ii) δ(G) = 2 and ∆(G) = 3;

(iii) G has no nontrivial edge cut of size 2;

(iv) for each v ∈ V (G), which deg(v) = 2, G− v is bridgeless;

(v) for each v ∈ V (G), if N(v) = {u,w}, then N(u) ∩N(w) = {v}.

Proof. Let V (G) = X ∪ Y . By Theorem B, G is a bridgeless bipartite graph with no OCDC

while every bridgeless bipartite graph G′ with |E(G′)| < |E(G)| or |E(G′)| = |E(G)| and

|V (G′)| > |V (G)| has an OCDC.

(i) Let v ∈ V (G) be a cut vertex of G. By the minimality of G, every block B of G has an

OCDC, CB. Therefore,
C =

∪
B is a block of G

CB

is an OCDC of G, which is a contradiction.

(ii) Let v ∈ V (G) be a vertex of degree greater than 3. By H. Fleischner’s vertex-splitting

lemma [7], there exist two edges e1 = uv and e2 = wv ∈ E(G) such that G ∪ {uw} \ {e1, e2}
is bridgeless. Let G′ be the new graph obtained by subdividing the edge uw in vertex v′.

Thus, G′ is bridgeless bipartite graph such that |V (G′)| = |V (G)| + 1 and |E(G′)| = |E(G)|.
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Therefore, G′ has an OCDC, C′. Let C ′
1 and C ′

2 be two directed circuits in C′ that include

the directed paths uv′w and wv′u, respectively. Define C1 = C ′
1 ∪ {uv, vw} \ {uv′, v′w} and

C2 = C ′
2 ∪ {wv, vu} \ {wv′, v′u}. Then,

C = C′ ∪ {C1, C2} \ {C ′
1, C

′
2},

is an OCDC of G, which is a contradiction.

If δ(G) ̸= 2, since G is a bridgeless graph and ∆(G) ≤ 3, G is 3-regular. Therefore, G

is 1-factorable. Thus by Theorem E, G is 2–simultaneous colorable, which is a contradiction.

Hence, δ(G) = 2 and by the same reason ∆(G) = 3.

(iii) Let F = {e1 = ab, e2 = cd} be a disjoint vertex edge cut of G and G1 and G2 be two

nontrivial components of G \ F such that a, c ∈ V (G1). Note that the case a = c or b = d does

not occure because if so then we get a bridge in G. We consider two following cases.

• a, d ∈ X and b, c ∈ Y . Let G′
1 = G1 ∪ {ac} and G′

2 = G2 ∪ {bd}. By the edge minimality of

G, G′
1 and G′

2 have OCDCs, C1 and C2, respectively. Let C1
1 and C2

1 be two directed circuits

in C1 that include the directed edge ac and ca, respectively. Assume that C1
2 and C2

2 be two

directed circuits in C2 that include the directed edges db and bd, respectively. Define C1 =

C1
1 ∪C1

2 ∪ {ab, dc} \ {ac, db} and C2 = C2
1 ∪C2

2 ∪ {ba, cd} \ {ca, bd}, where uv means a directed

edge from u to v. Thus,

C = C1 ∪ C2 ∪ {C1, C2} \ {C1
1 , C

2
1 , C

1
2 , C

2
2},

is an OCDC of G, which is a contradiction.

• a, c ∈ X and b, d ∈ Y . Let G′
1 be the graph obtained from G1 by joining a new vertex v1 to

a and c, and G′
2 be the graph obtained from G2 by joining a new vertex v2 to b and d. By

the edge minimality of G, bipartite graphs G′
1 and G′

2 have OCDCs, C1 and C2, respectively.
Let C1

1 and C2
1 be two directed circuits in C1 that include the directed paths av1c and cv1a,

respectively. Assume that C1
2 and C2

2 be two directed circuits in C2 that include the directed

paths dv2b and bv2d, respectively. Define C1 = C1
1 ∪ C1

2 ∪ {ab, dc} \ {av1, v1c, dv2, v2b} and

C2 = C2
1 ∪C2

2 ∪{ba, cd}\{v1a, cv1, v2d, bv2}, where uv means a directed edge from u to v. Thus,

C = C1 ∪ C2 ∪ {C1, C2} \ {C1
1 , C

2
1 , C

1
2 , C

2
2},

is an OCDC of G, which is a contradiction.

(iv) If deg(v) = 2, then every bridge in G − v with one of the edges incident on v forms an

nontrivial edge cut of size 2, which is a contradiction.

(v) Suppose that N(v) = {u,w} and v′ ∈ (N(u)∩N(w))\{v}. By (iv) and the minimality of G,

G − v has an OCDC, C′. Since degG(v
′) ≤ 3, without loss of generality, there exists a directed

circuit C ∈ C′ that include the directed edges uv′ and v′w. Let C1 = C ∪ {uv, vw} \ {v′} and

C2 = vuv′wv. Then,

C = C′ ∪ {C1, C2} \ {C},

is an OCDC of G, which is a contradiction.
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In the rest of this section, we consider the 2–simultaneous edge coloring for graphs in general.

For example the following two colorings is a 2–simultaneous edge coloring for wheel Wn, n ≥ 3.

Assume that V (Wn) = {u, v1, . . . , vn} and E(Wn) = {uvi, vivi+1(mod n) : 1 ≤ i ≤ n}. Define

two edge coloring fj : E(Wn) → [n], j = 1, 2, f1(uvi) = i, f1(vivi+1) = i+2, and f2(uvi) = i+2,

f2(vivi+1) = i + 1, where the colors and subscripts are reduced modulo n. It is easy to check

that (f1, f2) forms a 2–simultaneous edge coloring of Wn.

Theorem 8. Let G be a 2–simultaneous edge colorable graph. If G′ is a graph obtained from G

by replacing an edge xy ∈ E(G) with simple path xv1v2 . . . v2ky such that vi /∈ V (G), 1 ≤ i ≤ 2k,

then G′ is also 2–simultaneous edge colorable.

Proof. Let (f1, f2) be a 2–simultaneous edge coloring of G. Without loss of generality, suppose

that fj(xy) = j, j = 1, 2. Define two proper edge colorings f ′
1 and f ′

2 of G′ as follows. f ′
j(xv1) =

f ′
j(v2iv2i+1) = f ′

j(v2ky) = j, f ′
j(v2i−1v2i) = j + 1 (mod 2), and f ′

j(e) = fj(e) for e ∈ E(G) \
{xy}, 1 ≤ i ≤ k − 1, and j = 1, 2. Therefore, (f ′

1, f
′
2) is a 2–simultaneous edge coloring of G′.

Theorem 9. Let G be a bridgeless graph with girth at least 2k−1, k ≥ 2. If G is 2–simultaneous

edge colorable, then |E(G)| ≥ kχ′(G).

Proof. Let (f1, f2) be a 2–simultaneous edge coloring of G and f j
i = {e ∈ E(G) : fi(e) = j},

i = 1, 2. Since χ′(G) ≤ χ′
2−SE(G), if |E(G)| < kχ′(G), then for some j, 1 ≤ j ≤ χ′

2−SE(G),

|f j
i | ≤ k − 1 for i = 1, 2. Therefore, the induced subgraph by f j

1 ∪ f j
2 is a union of even circuits

of length at most 2k − 2, which is a contradiction.

In the following, we provide a relation between 2–simultaneous edge coloring of a graph with

a CDC with certain properties. Then, using this relation, we show some 2–simultaneous edge

colorable graph and also some graph which has no 2–simultaneous edge coloring.

Theorem 10. A bridgeless graph G is a 2–simultaneous edge colorable if and only if G has a

CDC, C, that satisfies in the following properties.

(i) Every circuit of C is an even circuit.

(ii) C has a partition to at least χ′(G) classes, such that every class is 2-regular.

(iii) Every circuit in C has a proper 2-edge coloring, such that each edge e ∈ E(G) in different

circuits admits two different colors.

Proof. Suppose that (f1, f2) is a 2–simultaneous edge coloring of graph G. Let f j
i = {e ∈

E(G) : fi(e) = j} for 1 ≤ j ≤ χ′
2−SE(G) and i = 1, 2. The induced subgraph by Cj = f j

1 ∪ f j
2 is

a disjoint union of even circuits, for 1 ≤ j ≤ χ′
2−SE(G). Therefore, C = {Cj : 1 ≤ j ≤ χ′

2−SE(G)}
is a CDC of G with properties (i) and (ii). Now for every edge e in a circuit of Cj , let cj(e) = i,

where fi(e) = j, i = 1, 2, one can see that cj satisfies the property (iii).
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Conversly, let C be a CDC, where C1, C2, . . . , Ct is a partition of C such that Ci, 1 ≤ i ≤ t,

is 2-regular and ci is a proper edge coloring of Ci satisfies in condition (iii). Now we define two

edge colorings (f1, f2) as follows. For every edge e, if e ∈ Cj and cj(e) = i, then set fi(e) = j.

By the assumption, it is clear that fi, i = 1, 2, is a proper edge colorings and f1(e) ̸= f2(e) for

every e ∈ E(G). It is enough to show that the set of colors appear on the edges incident to each

vertex are the same. Let v be an arbitrary vertex of G and u ∈ V (G) be an arbitrary neighbor of

v. Without loss of generality, suppose that f1(uv) = j, 1 ≤ j ≤ t, uv ∈ Cj and cj(uv) = 1. Since

Cj is 2-regular and cj is a proper 2-edge coloring, there exists an edge vw ∈ Cj that cj(vw) = 2.

Therefore, f2(vw) = j. Thus, (f1, f2) is a 2–simultaneous edge coloring of G.

If G has an even circuit decomposition, then two copies of this decomposition satisfies in three

conditions of Theorem 10. Hence, G is 2–simultaneous edge colorable. In other words, by

Theorem 10, an even graph, G is 2–simultaneous edge colorable if and only if G has an even

circuit decomposition.

Theorem 11. Let C be an even Hamiltonian circuit of G and G \ E(C) be a bipartite graph.

If G \E(C) has an OCDC, then G has a 2–simultaneous edge coloring.

Proof. By Theorem B, G \E(C) is 2–simultaneous edge colorable. Therefore by Theorem 10,

it has a CDC, C′, of even circuits that has a partition to even 2-regular subgraphs and a

proper 2-edge coloring such that each edge of G \ E(C) admits two different colors. Now let

C = C′ ∪ {C,C}. It is easily seen that, C satisfies in three conditions of Theorem 10. Thus, G is

2–simultaneous edge colorable.

By Theorem A (i) and (iii), we have the following corollary.

Corollary 3. Let C be an even Hamiltonian circuit of G and G \E(C) be a bipartite graph. If

every edge of G\E(C) is contained in a circuit of length 4 in G\E(C), then G is a 2–simultaneous

edge colorable graph.

Proposition 2. The complete graph K5 has no 2–simultaneous edge coloring.

Proof. Let (f1, f2) be a 2–simultaneous edge coloring of K5 and f j
i = {e ∈ E(G) : fi(e) = j},

i = 1, 2 and 1 ≤ j ≤ 5. Since χ′(K5) = 5 and |E(K5)| = 10, the induced subgraph by f j
1 ∪ f j

2

is a circuit of length 4, for 1 ≤ j ≤ 5. By the isomorphic, there is exactly one CDC of K5 with

even circuits, see Figure 3. It is easy to check that the condition (iii) of Theorem 10 does not

hold for this CDC, which is a contradiction.

Since the Petersen graph has no 4-NZF [15], we conclude the following Theorem.

Proposition 3. The Petersen graph is not 2–simultaneous edge colorable.

12



Figure 3: A CDC of K5 with even circuits.

Proof. By the contrary, let the Petersen graph, P , is 2–simultaneous edge colorable. Let

(f1, f2) be a 2–simultaneous edge coloring of P and f j
i = {e ∈ E(G) : fi(e) = j}, i = 1, 2. Thus,

P has a CDC of even cicuits. Since C6 and C8 are only even circuits in P and |E(P )| = 15,

without loss of generality, the induced subgraph by f j
1 ∪ f j

2 is a circuit of length 8 for j = 1, 2, 3

and the induced subgraph by f4
1 ∪ f4

2 is a circuit of length 6 or the induced subgraph by f j
1 ∪ f j

2

is a circuit of length 6 for j = 1, . . . , 5. It is easy to check that the second case is not possible. In

the first case, C = {Cj = f j
1 ∪ f j

2 : 1 ≤ j ≤ 4} is a 4-CDC of P . Therefore by Theorem A (ii),

P admits a 4-NZF, while it has not [15].
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