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Abstract

A small oriented cycle double cover (SOCDC) of a bridgeless graph G on
n vertices is a collection of at most n − 1 directed cycles of the symmetric
orientation, Gs, of G such that each arc of Gs lies in exactly one of the cycles.
It is conjectured that every 2-connected graph except two complete graphs
K4 and K6 has an SOCDC. In this paper, we study graphs with SOCDC and
obtain some properties of the minimal counterexample to this conjecture.
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1 Introduction

We denote by G a finite undirected graph with vertex set V and edge set E with
no loops or multiple edges. The symmetric orientation of G, denoted by Gs, is an
oriented graph obtained from G by replacing each edge of G by a pair of opposite
directed arcs. An even graph (odd graph) is a graph such that each vertex is incident
to an even (odd) number of edges. A directed even graph is a graph such that for
each vertex its out-degree equals to its in-degree. A cycle (a directed cycle) is a
minimal non-empty even graph (directed even graph). We denote every directed
cycle C and directed path P on n vertices with vertex set {v1, . . . , vn} and directed
edge set E(C) = {vivi+1, vnv1 : 1 ≤ i ≤ n− 1} and E(P ) = {vivi+1 : 1 ≤ i ≤ n− 1}
by C = [v1, . . . , vn], and P = (v1, . . . , vn), respectively.

A cycle double cover (CDC) C of a graph G is a collection of cycles in G such
that every edge of G belongs to exactly two cycles of C. Note that the cycles
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are not necessarily distinct. It can be easily seen that a necessary condition for a
graph to have a CDC is that the graph has no cut edge which is called a bridgeless
graph. Seymour [17] in 1979 conjectured that every bridgeless graph has a CDC.
No counterexample to the CDC conjecture is known. It is proved that the mini-
mal counterexample to the CDC conjecture is a bridgeless cubic graph with edge
chromatic number equal to 4, which is called a snark.

A small cycle double cover (SCDC) of a graph on n vertices is a CDC with at most
n − 1 cycles. There exist simple graphs of order n for which any CDC requires at
least n−1 cycles (e.g., Kn, n ≥ 3). Furthermore, no simple bridgeless graph of order
n is known to require more than n−1 cycles in a CDC. Note that clearly it is false if
not restricted to simple graphs. Bondy [3] conjectured that every simple bridgeless
graph has an SCDC. For more results on the CDC conjecture see [7, 19].

The CDC conjecture has many stronger forms. In this paper, we consider the
oriented version of these conjectures.

An oriented cycle double cover (OCDC) is a CDC in which every cycle can be
oriented in such a way that every edge of the graph is covered by two directed cycles
in two different directions.

Conjecture 1.1 [8] (Oriented CDC conjecture) Every bridgeless graph has an
OCDC.

No counterexample to this conjecture is known. It is clear that the validity of
the OCDC conjecture implies the validity of the CDC conjecture. While there is a
CDC of the Petersen graph that can not be oriented in such a way that forms an
OCDC.

Definition 1.2 A small oriented cycle double cover (SOCDC) of a graph on n vertices
is an OCDC with at most n− 1 directed cycles.

A perfect path double cover (PPDC) of a graph G is a collection P of paths in G
such that each edge of G belongs to exactly two members of P and each vertex of
G occurs exactly twice as an end of a path in P [2]. In [11] it is proved that every
simple graph has a PPDC.

An oriented perfect path double cover (OPPDC) of a graph G is a collection of
directed paths in the symmetric orientation Gs such that each arc of Gs lies in
exactly one of the paths and each vertex of G appears just once as a beginning and
just once as end of a directed path. Maxová and Nešetřil in [14] showed that two
complete graphs K3 and K5 have no OPPDC and in [13], they conjectured every
connected graph except K3 and K5 has an OPPDC.

The join of two simple graphs G and H, G ∨H, is the graph obtained from the
disjoint union of G and H by adding the edges {uv : u ∈ V (G), v ∈ V (H)}.
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The existence of a PPDC for graphs in general is equivalent to the existence
of an SCDC for the bridgeless graph obtained by joining a new vertex to all other
vertices [2]. The following theorem denotes a relation between OPPDC and SOCDC.

Theorem 1.3 [14] Let G be a connected graph. The graph G has an OPPDC if
and only if G ∨K1 has an SOCDC.

In the following theorem a list of some families of graphs that admit an OPPDC
is provided. Therefore by Theorem 1.3, the join of graphs satisfying at least one of
the conditions in below and K1 admit an SOCDC.

Theorem 1.4 [1, 14] Let G ̸= K3 be a graph. In each of the following cases, G
has an OPPDC.

(i) G is a union of two arbitrary trees.

(ii) G is an odd graph.

(iii) G has no adjacent vertices of degree greater than two.

(iv) G is a 2-connected graph of order n and |E(G)| ≤ 2n− 1.

(v) G = L(T ), for some tree T .

(vi) G = L(H), where the degree of no adjacent vertices in H have the same parity.

(vii) G is a graph with ∆(G) ≤ 4 and δ(G) ≤ 3.

(viii) G is a separable 4-regular graph. (A separable graph is a graph contains cut
vertex.)

In what follows we have three sections. Section 2 deals with certain families
of graphs with a small oriented cycle double cover. It is conjectured that every
2-connected graph except two complete graphs K4 and K6 has an SOCDC. In
Section 3, we study the properties of the minimal counterexample to this conjecture.
Finally in Section 4, some more relations between OPPDC and SOCDC are given.

2 The small oriented cycle double cover

The natural question is that which simple bridgeless graphs of order n have an
OCDC with at most n− 1 cycles (SOCDC)?
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Since K3 and K5 have no OPPDC, by Theorem 1.3, K4 and K6 have no SOCDC.
It is known that every K2n−1, n ≥ 4, has an OPPDC [1], thus by Theorem 1.3, every
K2n, n ≥ 4, has an SOCDC. Moreover, every K2n+1 has an SOCDC, since K2n+1

has a Hamiltonian cycle decomposition [18].

The following observation shows that if every block of a graph G has an SOCDC,
then G has also an SOCDC.

Observation 2.1 If G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v} which Gi is a graph
with an SOCDC, i = 1, 2; then G also has an SOCDC.

Moreover, Observation 2.1 directly concludes the following corollaries. A block
graph is a graph for which each block is a clique.

Corollary 2.2 Every block graph with no block of order 2, 4 and 6 has an SOCDC.

Since the line graph of every tree is a block graph, the following result obtained
which is an oriented version of existence of SCDC of line graph of trees [12].

Corollary 2.3 If T is a tree without vertices of degree 2, 4 or 6, then L(T ) has an
SOCDC.

In the following proposition, we construct some graphs with no SOCDC. In fact,
we show that the difference |C| − (n− 1) could be large enough for every OCDC, C
of some bridgeless graph of order n.

Let V (K4) = {v1, v2, v3, v4}. The collection C = {[v1, v2, v4], [v2, v1, v3], [v3, v4, v2],
[v4, v3, v1]} is an OCDC of K4. Since K4 has six edges, if C is an arbitrary OCDC
of K4, then |C| ≤ (2× 6)/3 = 4. Thus, every OCDC of K4 is of size 4.

Let V (K6) = {v1, . . . , v6}. The collection C = {[v1, v2, v3, v4, v5, v6], [v2, v6, v3, v5, v4],
[v1, v5, v2, v4, v3], [v1, v4, v6, v2, v5], [v1, v6, v5, v3, v2], [v1, v3, v6, v4]} is an OCDC of K6

of size 6.

Proposition 2.4 For every integer r ≥ 1, there exists a bridgeless graph G of order
n such that every OCDC of G has (n− 1) + r directed cycles.

Proof. Let P be a path of length r with V (P ) = {v1, . . . , vr+1} and E(P ) =
{vivi+1 : 1 ≤ i ≤ r}. Assume that G is a graph obtained from P by replacing
each edge vivi+1 of P with a clique K4, say Ki

4, where V (Ki
4) = {vi, v′i, vi+1, v

′
i+1},

1 ≤ i ≤ r. Every OCDC of G is decomposable to r OCDC of K4. Moreover, every
OCDC of K4 has four cycles. Therefore, every OCDC of G has 4r cycles. Note that
|V (G)| = 3r + 1, thus every OCDC of G has (|V (G)| − 1) + r cycles.

This fact motivates us to present the following conjecture.
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Conjecture 2.5 (SOCDC conjecture) Every simple 2-connected graph except K4

and K6 admits an SOCDC.

The above conjecture has a close relation to the following conjecture.

Conjecture 2.6 [4] (Hajós’ conjecture) If G is a simple, even graph of order n,
then G can be decomposed into ⌊(n− 1)/2⌋ cycles.

If the Hajós’ conjecture holds, then every even graph has an SOCDC obtained by
taking two copies of the cycles used in its decomposition, in two opposite directions.

An edge of a graph G is said to be contracted if it is deleted and its two ends are
identified. A minor of G is a graph obtained from G by deletions of vertices, and
deletions and contractions of edges. The graph obtained from K6 by deleting an
edge is denoted K−

6 . A K−
6 -minor free graph is a graph that does not contain K−

6 as
a minor.

As the Hajós’ conjecture is true for even graphs with maximum degree four [5],
planar graphs [16], projective graphs (a projective graph is a graph G which is
embeddable on the projective plane.), and K−

6 -minor free graphs [4], these graphs
have an SOCDC.

Proposition 2.7 Let G be an even graph. In each of the following cases, G has an
SOCDC.

(i) ∆(G) = 4.

(ii) G is planar.

(iii) G is a projective graph.

(iv) G is K−
6 -minor free.

Klimmek [9] proved that every even line graph of order n has a cycle decomposi-
tion into ⌊(n− 1)/2⌋ cycles, thus the Hajós’ conjecture holds for such graphs. Since
a line graph, L(G), is even if and only if every component of G is either even or odd,
the line graph of every even graph and of every odd graph has an SOCDC.

Proposition 2.8 If G is an even or an odd graph, then L(G) has an SOCDC.

The following proposition considers another class of graphs with OCDC which
also has SOCDC.

Proposition 2.9 If G has an OCDC, C, and the girth of G, g(G), is greater than
average degree, d̄(G), then C is also an SOCDC of G.
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Proof. Let C be an OCDC of G. Note that each edge of G is covered twice by
elements of C, therefore,

g(G)|C| ≤
∑
C∈C

|E(C)| = 2|E(G)| =
∑

v∈V (G)

d(v) = |V (G)|d̄(G).

Since g(G) > d̄(G), we have |C| ≤ |V (G)| − 1. Hence, C is an SOCDC of G.

It can be proved that an OCDC for planar graphs can be obtained from their
planar embedding and some planar graph has also SOCDC.

Proposition 2.10 Every bridgeless planar graph G with |E(G)| < 2|V (G)|−2, has
an SOCDC.

Proof. Let G be a bridgeless planar graph. Since we can orient the edges of each
face of G in such a way that the collection of the boundary of its faces, F , is an
OCDC. By Euler’s formula, |F| = 2+ |E(G)|−|V (G)|. Since |E(G)| < 2|V (G)|−2,
we conclude |F| < |V (G)|. Hence, G has an SOCDC.

Since in every simple triangle-free planar graph G with at least three vertices,
|E(G)| ≤ 2|V (G)| − 4, we obtain the following corollary.

Corollary 2.11 Let G be a bridgeless planar graph. If G is triangle-free, then G
admits an SOCDC.

The following proposition presents an SOCDC for the well-known non-planar
triangle-free graphs.

Proposition 2.12 Every Kn,m, n,m ≥ 2, has an SOCDC.

Proof. Assume that V (Kn,m) = {v1, . . . , vn;w1, . . . , wm}, n ≤ m. Let

Ci = [v1, wi, v2, wi+1, v3, wi+2, . . . , vn−1, wi+n−2, vn, wi+n−1],

be a directed cycle, where subscripts are reduced modulo m. It is easy to check that
C = {Ci : 1 ≤ i ≤ m} is an SOCDC of Kn,m, n,m ≥ 2.

Let G be a simple graph and (D, f) be an ordered pair where D is an orientation
of E(G) and f is a weight on E(G) to Z. For each v ∈ V (G), denote

f+(v) =
∑

f(e) and f−(v) =
∑

f(e),

where the summation is taken over all directed edges of G (under the orientation D)
with tails and heads, respectively, at the vertex v. An integer flow of G is an ordered
pair (D, f) such that for every vertex v ∈ V (G), f+(v) = f−(v). A nowhere-zero k-
flow of G is an integer flow (D, f) such that 0 < |f(e)| < k, for every edge e ∈ E(G)
and is denoted by k-NZF [19].
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Theorem 2.13 [19] Every cubic graph G admits a 4-NZF if and only if χ′(G) = 3.

Theorem 2.14 [19] A graph G admits a 4-NZF if and only if G has an OCDC
consists of four directed even subgraphs.

The following theorem concludes from Theorems 2.13 and 2.14.

Theorem 2.15 Every cubic graph with edge chromatic number 3 admits an OCDC.

Theorem 2.16 [10] If C is a CDC of a cubic graph G of order n, then |C| ≤ n/2+2.

Since from every OCDC of a graph a CDC for the graph is obtained, we have the
following corollary.

Corollary 2.17 Every OCDC, C, of a cubic graph of order n ≥ 6, is an SOCDC.

The following corollary concludes directly from Theorem 2.15 and Corollary 2.17.

Corollary 2.18 Every cubic graph with edge chromatic number 3, G ̸= K4, has an
SOCDC.

3 The minimal counterexample to the SOCDC conjecture

If the CDC conjecture is false, then it must have a minimal counterexample. In
this section, we study the properties of the minimal counterexample to the SOCDC
conjecture.

Observation 3.1 If G is a graph with an SOCDC and G′ is the graph obtained
from G by subdividing one edge of G, then G′ also admits an SOCDC.

Corollary 3.2 Let G be the minimal counterexample to the SOCDC conjecture,
then the minimum degree of G is at least 3.

Theorem 3.3 The minimal counterexample to the SOCDC conjecture is 3-connected.

Proof. Let G, the minimal counterexample to the SOCDC conjecture be a 2-
connected graph of order n with vertex cut {v1, v2} and G = G1∪G2, where V (G1)∩
V (G2) = {v1, v2} and |V (Gi)| = ni, i = 1, 2. Assume that Gi ∪ {v1v2} has an
SOCDC, Ci, i = 1, 2. Let Cj

i , j = 1, 2, be the two directed cycles in Ci, i = 1, 2,
which include the directed edge vjvj+1, where subscripts are reduced modulo 2.
In each of the following cases, we show that G admits an SOCDC, which is a
contradiction.
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(I) If v1v2 ∈ E(G), then we define

C = C1 ∪ C2 ∪ {C1
1∆C2

2} \ {C1
1 , C

2
2}.

The collection C is an OCDC of G, where

|C| = |C1|+ |C2| − 1 ≤ (n1 − 1) + (n2 − 1)− 1

≤ (n1 + n2)− 3

≤ (n+ 2)− 3 = n− 1.

If G1 ∪ {v1v2} = K4 with V (K4) = {v1, v2, v3, v4}, and G2 ∪ {v1v2} has an
SOCDC, say C2, then let C1 = [v1, v2, v4], C2 = [v1, v4, v3, v2], C3 = C1

2 ∪
(v1, v3, v4, v2) \ {v1v2}, and C4 = C2

2 ∪ (v2, v3, v1) \ {v2v1}. Therefore,

C = C2 ∪ {C1, C2, C3, C4} \ {C1
1 , C

2
2}

is an SOCDC of G.

If G1∪{v1v2} = K6 with V (K6) = {v1, v2, v3, v4, v5, v6}, and G2∪{v1v2} has an
SOCDC, say C2, then let C1 = [v1, v2, v4, v6, v3, v5], C2 = [v1, v3, v6, v2], C3 =
[v1, v4, v2, v5, v6], C4 = [v1, v5, v2, v3, v4], C5 = C1

2 ∪(v1, v6, v5, v4, v3, v2)\{v1v2},
and C6 = C2

2 ∪ (v2, v6, v4, v5, v3, v1) \ {v2v1}. Therefore,

C = C2 ∪ {C1, C2, C3, C4, C5, C6} \ {C1
1 , C

2
2}

is an SOCDC of G.

If G1 ∪{v1v2} = G2 ∪{v1v2} = K4 or G1 ∪{v1v2} = K4 and G2 ∪{v1v2} = K6

or G1 ∪ {v1v2} = G2 ∪ {v1v2} = K6, then by Theorem 1 in [1], G \ v1 admits
an OPPDC, thus by Theorem 1.3, G has an SOCDC.

(II) If v1v2 /∈ E(G), then we define

C = C1 ∪ C2 ∪ {C1
1∆C2

2 , C
2
1∆C1

2} \ {C1
1 , C

2
1 , C

1
2 , C

2
2}.

The collection C is an OCDC of G, where |C| ≤ n− 2.
Furthermore, if G1 ∪ {v1v2} = K4 or K6, v1v2 /∈ E(G), and G2 ∪ {v1v2} has
an SOCDC, by the similar argument in above using the given SOCDC for K4

and K6 of size 4 and 6, an SOCDC for G is obtained.

If G1 ∪ {v1v2} = G2 ∪ {v1v2} = K4 with V (G1) = {v1, v2, v3, v4} and V (G2) =
{v1, v2, v5, v6}, then
C = {[v1, v4, v3, v2, v5, v6], [v1, v5, v2, v3], [v1, v3, v4, v2, v6, v5], [v1, v6, v2, v4]}
is an SOCDC of G.
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If G1 ∪ {v1v2} = K4 with V (G1) = {v1, v2, v3, v4} and G2 ∪ {v1v2} = K6

V (G2) = {v1, v2, v5, v6, v7, v8}, then
C = {[v1, v6, v5, v7, v8, v2, v3], [v1, v3, v4, v2, v8], [v1, v7, v6, v8, v5, v2, v4], [v1, v5, v8,

v7, v2, v6], [v1, v8, v6, v2, v7, v5], [v1, v4, v3, v2, v5, v6, v7]}
is an SOCDC of G.

If G1 ∪ {v1v2} = G2 ∪ {v1v2} = K6 with V (G1) = {v1, v2, v3, v4, v5, v6} and
V (G2) = {v1, v2, v7, v8, v9, v10}, then
C = {[v1, v6, v4, v5, v3, v2, v7, v9, v8, v10], [v1, v3, v5, v4, v6, v2, v10, v8, v9, v7], [v1, v4,

v3, v6, v5, v2, v9, v10, v7, v8], [v1, v5, v6, v3, v4, v2, v8, v7, v10, v9], [v1, v8, v2, v4],

[v1, v10, v2, v6], [v1, v9, v2, v5], [v1, v7, v2, v3]}
is an SOCDC of G.

Corollary 3.4 The minimal counterexample to the SOCDC conjecture is 3-edge-
connected.

An edge cut F , is called trivial if one of the component in G \ F be an isolated
vertex.

Theorem 3.5 The minimal counterexample to the SOCDC conjecture has no non-
trivial edge cut of size 3.

Proof. Let G be the minimal counterexample to the SOCDC conjecture. We know
that G is 2-connected and 3-edge-connected. Assume that G has a non-trivial edge
cut of size 3. We consider the following cases.

(I) G = G1∪G2∪{u1v1, u2v2, u3v3}, where G1∩G2 = ∅, the vertices ui are distinct
vertices of G1, and the vertices vi are distinct vertices of G2, i = 1, 2, 3.

Denote by Hi the graph obtained by contracting the subgraph Gi+1 to a single
vertex wi, i = 1, 2, where subscripts are reduced modulo 2. Since deg(wi) = 3, Hi ̸=
K6, i = 1, 2. By the minimality of G, Hi has an SOCDC or Hi = K4. Therefore,
Hi has an OCDC, Ci, i = 1, 2. Let Cj

i , j = 1, 2, 3, be the three directed cycles in
Ci which include wi, i = 1, 2, where without loss of generality, we assume that Cj

1

includes directed path (uj−1, w1, uj+1), and Cj
2 includes directed path (vj+1, w2, vj−1),

where subscripts are reduced modulo 3, j = 1, 2, 3. Let P j
i = Cj

i \ wi, i = 1, 2, j =
1, 2, 3. Define Cj = P j

1 ∪ P j
2 ∪ {uj−1vj−1, vj+1uj+1}, C

′
= {Cj : j = 1, 2, 3}, and

C ′′
= {Cj

i : i = 1, 2, j = 1, 2, 3}. Thus, C = C1∪C2∪C ′ \C ′′
is an OCDC of G, where

|C| = |C1| + |C2| − 3. Note that every OCDC of K4 has 4 cycles, therefore, in both
cases |C| ≤ |V (G)| − 1, which is a contradiction.
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(II) G = G1 ∪ G2 ∪ {u1v1, u1v2, u2v3}, where G1 ∩ G2 = ∅, the vertices u1 and u2

are distinct vertices of G1, and the vertices vi are distinct vertices of G2, i = 1, 2, 3.

Denote by Hi the graph obtained by contracting the subgraph Gi+1 to a single
vertex wi, i = 1, 2, and removing the multiple edge in H1, where subscripts are
reduced modulo 2. Since deg(wi) = 2 or 3, H1 ̸= K4 and Hi ̸= K6, i = 1, 2. By
the minimality of G, Hi has an SOCDC or H2 = K4. Therefore, Hi has an OCDC,
Ci, i = 1, 2. Let C1

1 and C2
1 be two directed cycles in C1 which include w1, where

without loss of generality, we assume that Cj
1 includes directed path (uj, w1, uj+1),

where subscripts are reduced modulo 2, j = 1, 2, and Ck
2 , k = 1, 2, 3, be the three

directed cycles in C2 which include w2, where without loss of generality, we assume
that Ck

2 includes directed path (vk, w2, vk−1), where subscripts are reduced modulo
3, k = 1, 2, 3. Let P j

1 = Cj
1 \ w1, j = 1, 2, and P k

2 = Ck
2 \ w2, k = 1, 2, 3. Define

C1 = P 1
1 ∪P 3

2 ∪{u1v2, v3u2}, C2 = P 2
1 ∪P 1

2 ∪{u2v3, v1u1}, and C3 = P 2
2 ∪{u1v1, v2u1}.

Let C ′
= {C1, C2, C3}, and C ′′

= {C1
1 , C

2
1 , C

1
2 , C

2
2 , C

3
2}. Thus, C = C1 ∪ C2 ∪ C ′ \ C ′′

is an OCDC of G, where |C| = |C1| + |C2| − 2. Note that every OCDC of K4 has 4
cycles, therefore, in both cases |C| ≤ |V (G)| − 1, which is a contradiction.

(III) G = G1 ∪ G2 ∪ {u1v1, u1v2, u2v2}, where G1 ∩ G2 = ∅, the vertices u1 and u2

are distinct vertices of G1, and the vertices v1 and v2 are distinct vertices of G2.

Denote by Hi the graph obtained by contracting the subgraph Gi+1 to a single
vertex wi, i = 1, 2, and removing the multiple edges, where subscripts are reduced
modulo 2. Since deg(wi) = 2, Hi ̸= K4 or K6, i = 1, 2. By the minimality of G, Hi

has an SOCDC, Ci, i = 1, 2.

Let Cj
i , j = 1, 2, be the two directed cycles in Ci which include wi, i = 1, 2, where

without loss of generality, we assume that Cj
1 includes directed path (uj, w1, uj+1),

and Cj
2 includes directed path (vj, w2, vj+1), where subscripts are reduced modulo 2,

j = 1, 2. Let P j
i = Cj

i \ wi, i = 1, 2, j = 1, 2. Define C1 = P 1
1 ∪ P 2

2 ∪ {u1v1, v2u2},
C2 = P 2

1 ∪ {u2v2, v2u1}, and C3 = P 1
2 ∪ {u1v2, v1u1}. Let C ′

= {C1, C2, C3},
and C ′′

= {C1
1 , C

2
1 , C

1
2 , C

2
2}. Thus, C = C1 ∪ C2 ∪ C ′ \ C ′′

is an OCDC of G, where
|C| = |C1|+ |C2| − 1. Therefore, |C| ≤ |V (G)| − 1, which is a contradiction.

The properties of the minimal counterexample to the OPPDC conjecture is stud-
ied in [1, 13], and it is shown that this counterexample is a 2-connected and 3-
edge-connected graph with minimum degree at least 4. Regarding to the relation
between existence of an OPPDC for a graph and an SOCDC (Theorem 1.3), the
following relation between the order and the number of edges of these two minimal
counterexamples can be obtained.

Assume that Gp and Gc are the minimal counterexamples to the OPPDC conjec-
ture and the SOCDC conjecture, respectively. Let G′

p be a graph obtained from Gp

by joining a new vertex to all vertex of Gp. By Theorem 1.3, G′
p has no SOCDC.

Note that Gp is connected, so G′
p is 2-connected. Thus, G′

p is a counterexample to
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the SOCDC conjecture. Therefore by the minimality of Gc,

|V (Gc)|+ |E(Gc)| ≤ |V (G′
p)|+ |E(G′

p)| = 2|V (Gp)|+ |E(Gp)|+ 1.

Since δ(Gc) ≥ 3 ,

|V (Gc)| ≤
2

5
(2|V (Gp)|+ |E(Gp)|+ 1).

4 SOCDC and the Cartesian product

In [15] infinite classes of graphs with an SCDC are obtained using the Cartesian
product of graphs. In this section, we proved the similar results in the oriented
version.

The Cartesian product of two graphs G and H, denoted by G□H, is the graph
with vertex set V (G)× V (H) and two vertices (u, v) and (x, y) are adjacent if and
only if either u = x and vy ∈ E(H) or ux ∈ E(G) and v = y.

Theorem 4.1 If G has an OPPDC, then G□P2 has an SOCDC with |V (G)| directed
cycles. Furthermore, if G has an SOCDC, then G□Pn, n ≥ 3, has an SOCDC with
at most |V (G□Pn)| − 1 directed cycles.

Proof. The proof is similar to the proof of Theorem 1 in [15].

Now we need a theorem about the existence of OPPDC for the Cartesian product
of graphs.

Theorem 4.2 [1] If G and H have an OPPDC, then G□H also has an OPPDC.

The following corollary follows directly from Theorems 4.1 and 4.2.

Corollary 4.3 If G has an OPPDC, then for all l ≥ 2, Gl□P2 has an SOCDC,

where Gl =

l times︷ ︸︸ ︷
G□ · · ·□G.

Corollary 4.4 Every hypercube graph Qn, n ≥ 2, has an SOCDC.

With the similar argument as above, the following theorems, which are the ori-
ented version of some results in [15] for SCDC, can be proved.

Theorem 4.5 If G has an OPPDC and an SOCDC, then for any tree, T , G□T
has an SOCDC.
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Theorem 4.6 If G has an OPPDC, then for all k ≥ 2, G□C2k has an SOCDC.
Furthermore, if G has an SOCDC, then G□C2k−1 has an SOCDC.

The following corollary concludes directly from Theorems 4.2 and 4.6.

Corollary 4.7 If G has an OPPDC, then for all k, l ≥ 2, Gl□C2k has an SOCDC,

where Gl =

l times︷ ︸︸ ︷
G□ · · ·□G.

Theorem 4.8 If G has an SOCDC, then for n ≥ 2|V (G)| + 1, G□Cn has an
SOCDC.

Proof. Let F be the union of the corresponding SOCDC’s of copies of G and
the corresponding SOCDC’s of copies of Cn. Since every OCDC of Cn has two
directed cycles, and n ≥ 2|V (G)| + 1, we have |F| ≤ n(|V (G)| − 1) + 2|V (G)| ≤
n(|V (G)|−1)+(n−1) ≤ n|V (G)|−1 = |V (G□Cn)|−1. Therefore, F is an SOCDC
of G□Cn.
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