Practical Density Functional Theory

I. Abdolhosseini Sarsari 1 ,

¹ Department of Physics Isfahan University of Technology

April 29, 2015

Collaborators at IUT : M. Alaei and S. J. Hashemifar

[Reducing the number of k-points](#page-2-0)

² [Irreducible Brillouin zone integration](#page-4-0)

- **•** [Tetrahedron method](#page-14-0)
- [Smearing method parameters](#page-15-0)
- [Right smearing parameters](#page-21-0)

Properties like the electron density, total energy, etc. can be evaluated by integration over k inside the BZ.

Example:

$$
\bar{f}_i = \Sigma_k w_{\vec{k}} f_i(\vec{k})
$$

$$
\bar{f}_i = \frac{1}{4} f_i(\vec{k}_{4,4}) + \frac{1}{4} f_i(\vec{k}_{3,3}) + \frac{1}{2} f_i(\vec{k}_{4,3})
$$

$$
\bar{f}_i = \Sigma_{\vec{k}} w_{\vec{k}} f_i(\vec{k}) \theta(\epsilon_i(\vec{k}) - \epsilon_F)
$$

• In a Semiconductor: density of states vanish smoothly before the gap.

In a Metal: Brillouin zone can be divided into regions that are occupied and \bullet unoccupied by electrons.

$$
\bar{f}_i = \Sigma_{\vec{k}} w_{\vec{k}} f_i(\vec{k}) \theta(\epsilon_i(\vec{k}) - \epsilon_F)
$$

- In a Semiconductor: density of states vanish smoothly before the gap.
- In a Metal: Brillouin zone can be divided into regions that are occupied and unoccupied by electrons.
- Functions that are integrated change discontinuously from nonzero values to zero at the Fermi surface.

$$
\bar{f}_i = \Sigma_{\vec{k}} w_{\vec{k}} f_i(\vec{k}) \theta(\epsilon_i(\vec{k}) - \epsilon_F)
$$

- In a Semiconductor: density of states vanish smoothly before the gap.
- In a Metal: Brillouin zone can be divided into regions that are occupied and unoccupied by electrons.
- Functions that are integrated change discontinuously from nonzero values to zero at the Fermi surface.
- Problem: converging.

$$
\bar{f}_i = \Sigma_{\vec{k}} w_{\vec{k}} f_i(\vec{k}) \theta(\epsilon_i(\vec{k}) - \epsilon_F)
$$

- In a Semiconductor: density of states vanish smoothly before the gap.
- In a Metal: Brillouin zone can be divided into regions that are occupied and unoccupied by electrons.
- Functions that are integrated change discontinuously from nonzero values to zero at the Fermi surface.
- Problem: converging.

$$
\bar{f}_i = \Sigma_{\vec{k}} w_{\vec{k}} f_i(\vec{k}) \theta(\epsilon_i(\vec{k}) - \epsilon_F)
$$

- In a Semiconductor: density of states vanish smoothly before the gap.
- In a Metal: Brillouin zone can be divided into regions that are occupied and unoccupied by electrons.
- Functions that are integrated change discontinuously from nonzero values to zero at the Fermi surface.
- Problem: converging.

Aim: Improving convergence with respect to Brillouin zone sampling in metals

No special efforts: very large numbers of k points are needed to get well-converged results.

- Aim: Improving convergence with respect to Brillouin zone sampling in metals
- No special efforts: very large numbers of k points are needed to get well-converged results.
- Useful algorithms to improve the slow convergence:

- Aim: Improving convergence with respect to Brillouin zone sampling in metals
- No special efforts: very large numbers of k points are needed to get well-converged results.
- Useful algorithms to improve the slow convergence:
	- **•** Tetrahedron method
	- Smearing method= Electronic tempreture

- Aim: Improving convergence with respect to Brillouin zone sampling in metals
- No special efforts: very large numbers of k points are needed to get well-converged results.
- Useful algorithms to improve the slow convergence:
	- **•** Tetrahedron method
	- Smearing method= Electronic tempreture

Trick : replacing step function with a smoother function : partial occupation at the Fermi level

- Aim: Improving convergence with respect to Brillouin zone sampling in metals
- No special efforts: very large numbers of k points are needed to get well-converged results.
- Useful algorithms to improve the slow convergence:
	- **•** Tetrahedron method
	- Smearing method= Electronic tempreture

Trick : replacing step function with a smoother function : partial occupation at the Fermi level

Tetrahedron method

The idea of these methods is to force the function being integrated to be continuous by smearing out the discontinuity.

An example of a smearing function: Fermi-Dirac function.

$$
f(\frac{k - k_0}{\sigma}) = [exp(\frac{k - k_0}{\sigma}) + 1]^{-1}
$$

• Fermi-Dirac smearing

Reduced occupancies below ϵ_F are not compensated new occupancies above ϵ_F .

• Gaussian smearing Smearing parameter, σ has no physical interpretation. Entropy and the free energy cannot be written in terms of f.

• Fermi-Dirac smearing

Reduced occupancies below ϵ_F are not compensated new occupancies above ϵ_F .

• Gaussian smearing Smearing parameter, σ has no physical interpretation. Entropy and the free energy cannot be written in terms of f.

• Method of Methfessel-Paxton Yields negative occupation numbers!

• Fermi-Dirac smearing

Reduced occupancies below ϵ_F are not compensated new occupancies above ϵ_F .

- **Gaussian smearing** Smearing parameter, σ has no physical interpretation. Entropy and the free energy cannot be written in terms of f.
- Method of Methfessel-Paxton Yields negative occupation numbers!
- Marzari-Vanderbilt : cold smearing \bullet

• Fermi-Dirac smearing

Reduced occupancies below ϵ_F are not compensated new occupancies above ϵ_F .

- **Gaussian smearing** Smearing parameter, σ has no physical interpretation. Entropy and the free energy cannot be written in terms of f.
- Method of Methfessel-Paxton Yields negative occupation numbers!
- Marzari-Vanderbilt : cold smearing

• Fermi-Dirac smearing

Reduced occupancies below ϵ_F are not compensated new occupancies above ϵ_F .

- **Gaussian smearing** Smearing parameter, σ has no physical interpretation. Entropy and the free energy cannot be written in terms of f.
- Method of Methfessel-Paxton Yields negative occupation numbers!
- Marzari-Vanderbilt : cold smearing

Figure: Force acting on an iron atom in a 2-atom unit cell, plotted as a function of smearing and for different Monkhorst-Pack samplings of the Brillouin Zone (different colored curves). The 2-atom simple cubic cell breaks symmetry with a displacement along the (111) direction by 5 percent of the initial 1NN atomic distance. Here we use a PAW pseudo potential (pslibrary 0.2.1) with a PBE parametrization for the XC functional and Marzari-Vanderbilt smearing [Marzari Lectures].

