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Abstract

A k-edge-weighting of a graph G is a function w : E(G) — {1,...,k}. An edge-
weighting naturally induces a vertex coloring ¢, where for every vertex v € V(G),
c(v) = >,., w(e). If the induced coloring c is a proper vertex coloring, then w is
called a vertex-coloring k-edge-weighting (VC k-EW). Karonski et al. (J. Combin.
Theory Ser. B, 91 (2004) 151-157) conjectured that every graph admits a VC 3-EW.
This conjecture is known as the 1-2-3-conjecture. In this paper, first, we study the
vertex-coloring edge-weighting of the Cartesian product of graphs. We prove that
if the 1-2-3-conjecture holds for two graphs G and H, then it also holds for GUH.
Also we prove that the Cartesian product of connected bipartite graphs admits a
VC 2-EW. Moreover, we present several sufficient conditions for a graph to admit
a VC 2-EW. Finally, we explore some bipartite graphs which do not admit a VC
2-EW.

Keywords: Vertex-coloring edge-weighting; 1-2-3-conjecture; Edge weighting; Vertex-
coloring 2-edge-weighting.
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1 Introduction

In this paper, we consider finite and simple graphs. An r-vertex coloring ¢ of G is a
function ¢ : V(G) — {1,...,r}. The coloring c is called a proper vertex coloring if for
every two adjacent vertices u and v, c¢(u) # c(v). A graph G is r-colorable if G has a
proper r-vertex coloring.

A k-edge-weighting of a graph G is a function w : E(G) — {1,...,k}. An edge-
weighting naturally induces a vertex coloring ¢, where for every vertex v € V(G), ¢(v) =
Y o, w(e), where e ~ v means that e is an edge incident to vertex v. If the induced
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coloring c¢ is a proper vertex coloring, then w is called a vertex-coloring k-edge-weighting
(VC k-EW). The minimum £ which G has a VC k-EW is denoted by u(G).
Obviously for a graph G with components Gy, Ga, ..., Gy; p(G) = max{u(G;) : 1 <
i <t}. Also, note that the vertex-coloring k-edge-weighting is defined for graphs without
K5 as a component. Thus, we consider connected graphs with at least three vertices.
Karoniski et al. in [8] introduced the concept of vertex-coloring k-edge-weighting and
they proposed the following conjecture.

Conjecture 1.1. [8] (1-2-3-conjecture) For every connected graph G with at least three
vertices, u(G) < 3.

Addario-Berry et al. [1] showed that for every connected graph with at least three
vertices, p(G) < 30. Then Addario-Berry et al. [2] improved the bound to 16. Later,
Wang and Yu [12] improved this bound to 13. Recently, Kalkowski et al. [7] showed that
for every connected graph G with at least three vertices, u(G) < 5.

It is proved that for every 3-colorable graph G, p(G) < 3 [8]. In general the similar
fact for 2-colorable graphs is not true. The only known families of bipartite graphs with
1(G) = 3 are theta graphs 60(1,4ky + 1,4k3 + 1,..., 4k, + 1), which are graphs obtained
by identifying the end-vertices of r paths of length 4k; + 1 [3].

In [2] Addario-Berry et al. proved that almost all graphs admit a VC 2-EW. Moreover,
in [5] it was proved that the problem of existence of a VC 2-EW for a given graph is
an NP-complete problem. The problem of classifying graphs which admit a VC 2-EW
is an open problem. As a more general problem to VC 2-EW, in [9] Khatirinejad et
al. considered the vertex-coloring {a,b}-edge-weighting, where a and b are arbitrary
real numbers. They explore classes of graphs which admit a vertex-coloring {a, b}-edge-
weighting. Furthermore, among some sufficient conditions for a bipartite graph to admit
a VC {a,b}-EW, they proposed the following question.

Question 1.2. [9] Is it true that every bipartite graph except (1, 4ks+1,4ks+1, ... 4k, +
1) and Clypro admits a VC {a, b}-EW, for some real numbers a and b7

Toward this problem, Havet et al. proved that every bipartite graph with minimum
degree at least 3 has a VC {a, b}-EW, for some a and b [6].

In this paper, we establish more sufficient conditions for a graph to admit a VC 2-
EW, Moreover, we construct infinite family of bipartite graphs which do not admit a VC
{a,b}-EW. Thus, the answer to the question is negative.

In the following we present some theorems which are necessary to get our main results.

Theorem 1.3. [3] If G 2 K is a connected bipartite graph satisfying one of the following
conditions, then p(G) < 2.

i) 0(G) =1, where §(GQ) is the minimum degree of G.

it) G has a part with an even number of vertices,

Moreover, in (i) there exists a VC 2-EW for G such that the color of every vertez in
the even part is odd and the colors of other vertices are even.

The notion N[v] denotes the set N(v) U{v} ={u : u € V(G),uv € E(G)} U{v}.
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Theorem 1.4. [10] Let G 2 K5 be a connected bipartite graph. If one of the following
conditions holds, then pu(G) < 2.
i) There exists a vertex v such that deg(v) ¢ {deg(u) : v € N(v)} and G — N[v] is
connected.
ii) There exists a vertex v of degree §(G) such that deg(v) ¢ {deg(u) : u € N(v)} and
G — v is connected.
iii) G is 3-connected.

Theorem 1.5. [3] Let P,, C,, and K,, n > 3, denote the path, cycle and complete graph
with n vertices, respectively. Then

1 n=3 [ 2 n=0(mod 4) B
() _{ 2 n>4" #(Cn) _{ 3 otherwise s and p(Ky) = 3.

The structure of this paper is as follows. In Section 2, we consider the 1-2-3-conjecture
for the Cartesian product of graphs. First, we prove that if the 1-2-3-conjecture holds for
two graphs GG and H, then it also holds for GLJH. Then, we show that this fact concludes
the trueness of 1-2-3-conjecture for the Cartesian product of some well known families
of graphs. Moreover, we prove that the Cartesian product of connected bipartite graphs
admits a VC 2-EW. Then, we determine u(G) for some well known families of graphs.
In Section 3, we present several sufficient conditions for a graph to admit a VC 2-EW.
In section 4, we answer Question 1.2 in the negative by showing a new class of graphs
admitting no VC 2-EW.

2 Cartesian product of graphs

The Cartesian product of two graphs G and H, written GLH, is the graph with vertex
set V(G) x V(H) specified by putting (u,v) adjacent to (v/,v") if and only if u = «" and
v’ € E(H), or v =2"and uu’ € E(G).

The vertex-coloring {a, b}-edge-weighting of Cartesian product of graphs are studied
in [9] and through several theorems, the following result is obtained.

Theorem 2.1. [9] If G and H are regular bipartite graphs, then the following graphs
admit a VC 2-EW.

o K, ,UIH, if n > 4;
e C,UH, ifn>4 and n # 5;
e GUH.

In this section, we prove that if the 1-2-3-conjecture holds for two graphs G and H,
then it also holds for GLIH. Moreover, we prove that if G and H are bipartite graphs,
then p(GOH) < 2.

Theorem 2.2. For every two graphs G and H, p(GOH) < max{u(G),u(H)}.
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Proof. Let k = max{u(GQ), uw(H)} and wy : E(G) — {1,2,...,k},we: E(H) — {1,2,...,k}
be VC k-EW for graphs G and H, respectively. We define w : E(GOH) — {1,2,...,k},
w((u,v)(v,v)) = wy(ur') and w((u,v)(u,v")) = wy(vv’), where u, v’ € V(G) and v,v" €
V(H). It is easy to see that w is a VC k-EW for GOH. O

We need the following lemma to prove our main theorem in this section. In what
follows n(G) and k(G) denote the order and the vertex connectivity of G, respectively.

Lemma 2.3. [11] For every two graphs G and H,
k(GOH) = min{d(GOH), x(H)n(G), k(G)n(H)}.

In the following theorem we prove that the Cartesian product of every two bipartite
graphs admits a VC 2-EW.

Theorem 2.4. If G and H are two connected bipartite graphs and GOH # K, then
w(GOH) < 2.

Proof. Tt can be seen that GLJH is a connected bipartite graph if and only if G and H are
connected bipartite graphs. If n(G) = n(H) = 2, then GOH = C, and by Theorem 1.5,
w(GOH) = 2. If n(G),n(H) > 2 and both have a leaf vertex, then by Theorems 1.3(7)
and 2.2, u(GOH) < 2, otherwise §(G) + 0(H) > 3. Hence, by Lemma 2.3, x(GOH) > 3
and by Theorem 1.4(4), p(GOH) < 2.

Now, let n = n(G) > 2 and n(H) = 2. Thus, GOH = GOK,. Let GV and G® be
the induced subgraphs representing the first and the second copy of G, respectively. To
give a VC 2-EW for GOK,, first we assign weight 1 to all the edges in G and weight 2
to all the edges in G®. We denote the unweighted edge e incident to vertex u € V(GW)
by e,. Thus, for every two adjacent vertices u and v, where v € G and v € G®,
independently to the weight of e,, we have c¢(u) # ¢(v). Now we assign a proper weight
to the unweighted edges so that for every uv € E(GW) U E(G?), c(u) # c(v). We do
this as follows.

Suppose (V1, V,) is the bipartition of V(G) and define

(e) = 1, if u € V| with deg(u) even or u € V5 with deg(u) odd;
W) =9 2, if u € V; with deg(u) odd or u € V, with deg(u) even.

Then, for vertex u in the first copy, »___, w(e) is odd for v € V; and is even for u € Va.
Also, for vertex u in the second copy, > .., w(e) is 0 or 1 (mod 4) for u € V; and is 2 or
3 (mod 4) for u € V5. O

Obviously, for every nontrivial graph G, u(G) = 1 if and only if G has no adjacent
vertices with a same degree.

Proposition 2.5. For every two graphs G and H, pn(GOH) =1 if and only if un(G) =1
and p(H) = 1.

Proof. By Theorem 2.2, the condition is sufficient. Conversely, if u(GOH) = 1, then
deop(u,v) # deop (v, v), where wu' € E(G). On the other hand deop(u, v) = degq(u) +

degy(v). Therefore, for every edge uu' € E(G), degs(u) # degq(w'). This implies
w(G) = 1. Similarly, u(H) = 1. O



3 Graphs with u(G) <2

In this section, following to investigating the properties of graphs which admit a VC 2-
EW, we present several sufficient conditions for a graph to admit a VC 2-EW. In the
following, we consider separable graphs.

Theorem 3.1. Let G be a graph which is the union of two simple connected graphs G,
and Gy such that V(G1) NV (Gy) = {v}. If for all u € N(v), 2deg(u) < deg(v) and for
i=1,2 G; is a cycle or u(G;) < 2, then u(G) < 2.

Proof. For each G; which is not a cycle, there is a 2-edge-weighting such that > w(e) #
> eu, W(e) whenever ujuy € E(G; —v). For the case of a cycle, we can weight the edges
starting from one adjacent to v by 2,2, 1, 1 periodically, such that the last edge be incident
to v.

U

Corollary 3.2. Let GG be a simple connected graph with the blocks By, Bs,...,B,, r > 2,
and cut vertices vy, vy, ..., ve. If for every j, 1 < j <'t, for all u € N(v;) 2deg(u) <

deg(v;) and for every i, 1 <i <r B;is a cycle or u(B;) < 2, then pu(G) < 2.

A simple path in graph G is a path P in GG which the degree of each vertex of P in G
is two except the two end-vertices of P. The edge set of G is disjoint union of maximal
simple paths. Note that a cycle in a graph G with at most one vertex of degree greater
than two in G is considered as a maximal simple path in G. In the following theorem we
give several sufficient conditions for a graph to admit a VC 2-EW with respect to length
of maximal simple paths in G.

Theorem 3.3. Let G be a connected graph which is not a cycle. If one of the following
conditions holds, then u(G) < 2.
i) G contains no mazimal simple path of length 3 (mod 4) and for every edge e = xy
which is a mazimal simple path of G, deg(x) # deg(y).
it) G contains no edge as a mazximal simple path.

Proof. In each case, we show that there exist a 2-edge-weighting for maximal simple paths
in G which induces a proper coloring of G.

i) Starting from an end-edge, we assign the weight 1 and 2 to the edges of maximal
simple paths of length 2 (mod 4), according to the pattern 2,2, 1, 1, periodically. Also for
maximal simple paths of length 0,1 (mod 4), we follow the pattern 2,1, 1, 2.

According to the given weighting, for two arbitrary adjacent vertices u and v, clearly
if the degree of one of these vertices is one, then c(u) # c(v). Moreover, if the degrees
of both vertices u and v are two, then either u and v are internal vertices of a maximal
simple path and c(u) # ¢(v).

Now, assume that deg(v) > 3 that means v is end-vertex of a maximal simple path.
By the given patterns and by the assumption, every edge incident to v has weight 2,
thus c(v) = 2deg(v) > 6. If u is an internal vertex for a maximal simple path, then
clu) € {3,4} and c(u) # c(v). If e = wv is a maximal simple path of G, then by
assumption c(u) = 2deg(u) # 2deg(v) = ¢(v).
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i1) In this case, similar to above, we weight the edges of maximal simple paths of
length 0,1,3 (mod 4), by the pattern 2,1,1,2. For maximal simple paths of length 2
(mod 4), we follow the pattern 1,1,2,2.

With a similar discussion as the above one for adjacent vertices u and v both of degree
less than three, we have done. Thus, let deg(v) > 3. By the assumption, for every vertex
u € N(v), deg(u) = 2, hence c(u) € {2,3,4}. Clearly if deg(v) > 4 or ¢(v) > 4, then
c(u) # c(v). If deg(v) = ¢(v) = 4, then by the given patterns, c(x) = 2 for every x € N(v).
Thus, particularly c¢(u) # c(v). If deg(v) = 3, then there are two possibilities c¢(v) = 3
and c(v) = 4. If ¢(v) = 3, then again by the given patterns, c¢(u) = 2 # ¢(v). For the case
deg(v) = 3 and ¢(v) = 4, one of the edges incident to v belongs to a maximal simple path,
say po, has weight 2 and two other edges incident to v, have weight 1. Now, ¢(u) # ¢(v)
unless u € py and py is of length 1 (mod 4). Note that the two other paths incident to v,
say p1 and po, are of length 2 or 3 (mod 4).

If pg is of length 1 (mod 4) and ¢(u) = ¢(v) and one of the paths p; or po, say p, is of
length 3 (mod 4), then by reweighting the edges of p; by the same pattern but starting
from v, we get c(v) =5 > ¢(z) for every vertex x € N(v). In this process no new adjacent
vertices with a same color occurs.

If uw € pg, po is of length 1 (mod 4), ¢(u) = ¢(v) and both p; and p, are of length 2
(mod 4), then we reweight the edges of py by the same pattern as before but starting from
v, thus we get c¢(v) # c(x) for every vertex x € N(v). We have no new adjacent vertices
with the same color, unless the other end-vertex of pg, say v/, has the conditions exactly
the same as v. That means deg(v') = 3 and ¢(v') = 4. By the same argument, we solve
the problem when at least one of the paths incident to v’ is of length 3 (mod 4).

Otherwise, both of the other paths incident to v’ are of length 2 (mod 4). In this case
we choose one of them and change its edge weight pattern from 1,1,2,2 to 2,2,1,1. If
the other end of this path, say v”, is not of color 4 or is not of degree 3, we have done as
above. Otherwise we do this process for v”.

Since the graph is finite, after iterating this process we face to an end-vertex of a
maximal simple path for the second time. While the color of this vertex, after changing
the weights according to the given pattern in the second visit is at least five. Thus, this
process terminates and in this manner, we reduce the number of adjacent vertices with
the same color to get the desired weighting. [

For the case that GG contains an edge as a maximal simple path there are graphs with
u(G) =2 and pu(G) = 3. The complete graph K, is an example of graphs in which every
maximal simple path is of length 1 and p(K,) = 3. The following proposition gives an
example of graphs in which every maximal simple path is of length 1 and u(G) = 2.

Proposition 3.4. For every complete r-partite graph Kun, 7, > 2, (1K) = 2.



Proof. Let A be a weighted adjacency matrix of G = K,.,, defined as follows.

O B -+ B 11 ...1
T -, .. :
A= B ' - ,where B = : .
: . . B 11 ... 1
BT ... BT o 2 2 ... 2
rnxrn nxn

Note that the induced color on every vertex is the sum of entries in it’s corresponding
row in A. Thus, for every two arbitrary vertices v and v in i-th part and j-th part of G,
clu) e{(r—in+@GE—1)(n+1),2(r—i)n+ (G —1)(n+1)} and ¢(v) € {(r—j)n+ (j —
(n+1),2(r—j)n+ (j — 1)(n+1)}. Since i # j we have

r—im+@G—1n+1)#@r—Fjn+(G-1n+1)

and

2r—in+ (i —1)n+1)#2(r—jin+ (G —1(n+1)
On the other hand, j < r hence, j — ¢ < n(r — i) with equality if and only if n = 1
and j = r. Thus (r —j)n+(j — )(n+1) # 2(r —i)n + (i — 1)(n + 1). Similarly
(r—i)n+(@—1)(n+1)#2(r—j)n+ (G —1)(n+1). Therefore, A is a desired edge-
weighting. O

We end this section with the following conjecture.

Conjecture 3.5. Let G % Cyyr, 7 € {1,2,3}, be a connected graph. If u(G) > 2, then
G has two adjacent vertices of a same degree greater than two.

4 Bipartite graphs

It is known that every 3-colorable graph admits a VC 3-EW [8], and there are bipartite
graph G with pu(G) = 2 and also bipartite graph G with u(G) = 3. The only known
bipartite graphs with u(G) = 3 are Cyi1o and the theta graphs 0(1,4ky +1,... 4k, + 1)
[3]. The theta graph 6(ly,1a,...,1.) is the graph obtains from r disjoint paths, of lengths
ly,ls, ..., 1., respectively, by identifying their end-vertices called the roots of the graph.
Notice that 0(ly) = P14y, and 0(ly, 1) = Cp 4y,

Theorem 4.1. 3| Let G = 0(ly,1a, ..., 1), wherer >3 and 1 <1y <ly <--- <. Then,

1 ;=2 foralli
w(G)=< 3 lh=1and l;=1 (mod 4) foralli #1

2 otherwise.

In this section, we consider a generalization of theta graphs, called generalized polygon
trees, and answer to Question 1.2 in negative.

The class of generalized polygon trees is defined recursively as follows. A cycle C,
(p > 3) is a generalized polygon tree. Next, suppose H is a generalized polygon tree
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containing a simple path Py, where k£ > 1. The graph obtained from the disjoint union of
H and a cycle C,., where r > k, by identifying P, in H with a path of length %k in C,, is
also a generalized polygon tree.[4]

In Theorem 4.1, u(G) is determined whenever G is a generalized polygon tree with
two interior regions.

In this section, we determine the p(G) for bipartite generalized polygon trees with
three interior regions (see Figure 1).

We need the following sufficient condition to guarantee that a bipartite graph admits
a VC 2-EW.

Theorem 4.2. Let G be a connected bipartite graph. If G contains a vertex v such that
deg(v) > deg(u) for every u € N(v) and G — v is connected, then u(G) < 2.

Proof. Let U and W be the parts of G. If either |U| or |W| is even, then by Theorem
1.3(4i), the result follows. Thus, we assume that both parts of G are of odd size. Let
v € U satisty deg(v) > deg(u) for every u € N(v) and G — v is connected. Since |U — v|
is even, by Theorem 1.3(7i), G — v admits a VC 2-EW such that ¢(z) is odd for every
x € U —wv and c(y) is even for every y € W. Now we assign weight 2 to all the edges
that are adjacent to vertex v. Clearly ¢(x) is odd for every x € U — v and ¢(y) is even for
every y € W. Also ¢(v) = 2degq(v) > 2degq(u) > ¢(u) for every u € N(v). O

Fact 4.3. In every VC 2-EW of a path, the weight of one edge forces the weights of every
second edge. Thus, if P is a path of length I, | = 1 (mod 4), then two end-edges of P get
a same weight and if | = 3 (mod 4), then they get different weights. Furthermore, when
[ # 1,3 (mod 4) every arbitrary assignment of the end-edges of P with {1,2}, could be
extended to a VC 2-EW for P.

Theorem 4.4. Let G be a bipartite generalized polygon tree with at most three interior
regions shown in Figure 1, where pi,ps,...,ps are paths of length a, b, ¢, d, e and f,
respectively. Then p(G) = 3 if and only if one of the following conditions holds.

ea=b=c=d=0ande+ f =2 (mod 4).
eb=1c=d=0anda,e+ f=1 (mod 4).
eb=1e=f=0anda,c,d=1 (mod 4).
eb=c=1,a,de=1 (mod 4) and f =3 (mod 4).

Proof. We know that a graph admits a vertex-coloring 1-edge-weighting if and only if
every two adjacent vertices have different degrees. It can be verified that this condition
holdsifand onlyifa=b=c=d=e=f=20ora=d=f=2,b=c=1and e=0 or
a=d=f=2,b=c=2ande=0ora=b=c=d=2ande= f =0.

For b and ¢ there are three possibilities b =c=0o0r b# 0, c =0 or b,c # 0.

Let b =c=0. If a =d = 0, then G is an even cycle C.; ¢ and by Theorem 1.5,
if e+ f = 0 (mod 4), then u(G) = 2, otherwise, u(G) = 3. If a # 0 or d # 0, by
Corollary 3.2, u(G) = 2.



Figure 1: A generalized polygon tree with three interior regions.

Now let b # 0 and ¢ = 0. Since d # 0, G is a graph with two blocks: a 6(a,b,e + f)
and a cycle Cy. Thus by Theorem 3.1, u(G) = 2 unless p(6(a,b,e + f)) = 3. In this case
we give a VC 2-EW for G in Figure 2(i). In the figures the edges and paths are denoted
by straight lines and curves, respectively, and every path is weighted periodically by the
given pattern through the denoted direction.

Otherwise b, ¢ # 0. In this case, we consider three possibilities b,c > 1orb=1,¢>1
orb=c=1.

Now let b,c > 1. In this case if e # 1 or f # 1, then there exists a vertex = with
deg(x) > 3 such that deg(z) > deg(y) for all y € N(x) and G — z is connected. Thus
by Theorem 4.2, u(G) < 2. Therefore we assume that e = f = 1. Notice that if a = 0
or d = 0, then G is a theta graph and we have done. Now, since G is bipartite b + ¢ is
even. Hence, b+c¢ =0 (mod 4) or b+c =2 (mod 4). For the first possibility if there is a
part of even order, by Theorem 1.3(ii), we have done. Otherwise we have two odd parts
and a +d =2 (mod 4). In this case we have four possibilities a = 2 (mod 4), b,¢,d =0
(mod 4) or a,b,c =2 (mod 4), d =0 (mod 4) or a,b,d =1 (mod 4), ¢ =3 (mod 4) or
a,c,d =3 (mod 4),b=1 (mod 4), in which in each case the given pattern in Figure 2(ii)
is a VC 2-EW for G. For the latter case, a+d =2 (mod 4) give a part with even number
of vertices and if both parts have odd number of vertices and a + d = 0 (mod 4) by the
symmetry of b, ¢ and a, d with the same discussion we get the desired result.

Now let b = 1,¢ > 1. If e = f = 0, then G = 0(a,1,c,d). Thus, we assume that
{e, f} # {0}. In this case if e # 1 or f # 1, then there exists a vertex z with deg(z) > 3
such that deg(z) > deg(y) for all y € N(x) and G —z is connected. Thus by Theorem 4.2,
1(G) < 2. Therefore, we assume e = f = 1. Since G is bipartite a, ¢ and d are odd. For
the cases a,c,d =3 (mod 4) and a = 3 (mod 4), ¢,d =1 (mod 4) and a,c =1 (mod 4),
d =3 (mod 4) in Figure 2(iii) is given a VC 2-EW. Otherwise, G has a part of even order
and by Theorem 1.3(ii), p(G) < 2.

Now if b = ¢ = 1, then since G is bipartite, e + f is even and a, d are odd.

Case 1. a,d =1 (mod 4). If e+ f =2 (mod 4), then G has a part of even number of
vertices and by Theorem 1.3(4i), u(G) < 2. Thus, we assume e+ f =0 (mod 4). For the
cases e, f =0 (mod 4) and e, f =2 (mod 4) we give a VC 2-EW for G in Figures 2(iv)
and 2(v), respectively.

For the case e = 1,f = 3 (mod 4) first we show that p(G) > 3. Suppose to the



contrary that G admits a VC 2-EW. Since a =1 (mod 4), by Fact 4.3, in p; the incidence
edges on v and v have a same weight. Similarly incidence edges on «’ and v’ in py. Thus,
the incidence edges on u, v through ps and pg must have different weights. On the other
hand, since e = 1 (mod 4), two end-edges on ps get the same weight but two edges on pg
get different weights, because f =3 (mod 4). Therefore c¢(u') = ¢(v’). This contradiction
implies p(G) > 3. On the other hand, G is bipartite, thus is 3-colorable and u(G) < 3.
Therefore, u(G) = 3.

Case 2. a,d =3 (mod 4). If e+ f =2 (mod 4), then by Theorem 1.3(7i), u(G) < 2.
Thus, we assume e + f =0 (mod 4). Now one of the three possibilities e, f =0 (mod 4)
ore, f =2 (mod4) ore =1,f =3 (mod 4) occurs, in which in each case the given
pattern in Figure 2(iv) is a VC 2-EW for G.

Case 3. a=1,d=3 (mod 4). If e+ f =0 (mod 4), then by Theorem 1.3(ii), u(G) < 2.
Thus, we assume e+ f = 2 (mod 4) and for the cases e, f =1 (mod 4) or e =0 (mod 4),
f =2 (mod 4) and the case e, f =3 (mod 4) we give a VC 2-EW for G in Figures 2(v)
and 2(iv), respectively. Notice that in the case e = 0 (mod 4), f =2 (mod 4) if e = 0,
then by Theorem 4.2, u(G) < 2. Also in the case e, f = 1 (mod 4) if e = 1, we can
replace weight of the edge uv with 1 to get a VC 2-EW.

2211 1122 2211

22
1129 1122 112
122 - _ e

v v

Figure 2: A VC 2-EW for G.
O

In Theorem 4.4 we obtained infinite classes of bipartite graphs with u(G) = 3. It
can be seen that the first three cases of such graphs are Cyyio, 0(1,4ky + 1,4ks + 1) and
0(1,4ko +1,4ks + 1,4ks + 1), respectively. Furthermore, The graphs satisfying the fourth
condition can be generalize to the following example which provides more bipartite graphs

with u(G) = 3.
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Remark 4.5. Fact 4.3 is true the edges are weighted with every two arbitrary real num-
bers a and b. Thus, the proof of Theorem 4.4 can be applied to characterize generalized
polygon trees with at most three interior regions that has no VC {a, b}-EW.

Example 4.6. Let G be a graph shown in Figure 3, in which @;, 1 <17 < n + 1, are
paths of length 1 (mod 4) and R;, S;, 1 < ¢ < n, are paths of odd lengths 7;, s;, where
ri+s; =0 (mod 4). By Remark 4.5, it is easy to see that G has no VC {a, b}-EW. Thus
since G is bipartite, u(G) = 3.

Rl R2 Rn

Q. - >

Sl 52 Sn
Figure 3: A family of 2-connected bipartite graphs with no VC {a, b}-EW.

Note that in graph in Figure 3, we can add any number of paths of length 1 (mod 4) to
G with the same end-vertices with @; to get more bipartite graphs with no VC {a, b}-EW.

The structures of known bipartite graphs with no VC {a, b}-EW, encourage us to ask
the following question.

Question 4.7. Is it true that every bipartite graph except 6(1, 4ks+1,4ks+1, ..., 4k, +1),
Cur+2 and generalized polygon trees described in Example 4.6 admits a VC {a, b}-EW,
for some real numbers a and b?
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