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ON K-LOOPS OF FINITE ORDER

To the memory of Hans Zassenhaus

Alexander Kreuzer and Heinrich Wefelscheid

Abstract. In this note we undertake an axiomatic investigation of K-loops (or gyro-
groups, as A.A. Ungar used to name them) and provide new construction methods for
finite K-loops. It is shown how, more or less, the axioms are independent from each
other. Especially (K6) is independent as A.A. Ungar already had conjectured.

We begin with right loops (L,®) and add step by step further properties. So the con-
nection between K-loops, Bol-loops, Bruck-loops and the homogeneous loops of Kik-
kawa became clear. The smallest examples of proper K-loops possess 8 elements;
there are exactly 3 non-isomorphic of these.

At last it is shown that one gets quite naturally a Frobenius-group as a quasidirect
product of a K-loop (L,®) and a group D of automorphisms of (L,®) if D is fixed
point free except from O.

1. INTRODUCTION

In order to describe sharply 2-transitive groups, H. Karzel introduced in [9] the

notion of a neardomain (F,®,- )(cf. [331). The crucial difficulty of a neardomain is the
additive structure (F,®), which need not be associative. A neardomain (F,®,-) with an
associative addition is already a nearfield. In many notes neardomains are investigated
(cf. [10,13,14, 15, 16,17, 19, 33, 341), but until today no example of a proper neardomain
is known. To obtain partial results, W. Kerby and H. Wefelscheid considered separately
the additive structure (F,®) and called such loops K-loops ( see definition in section2),

but since they could not find a proper example of a K-loop no further theoretical

investigations were done. The interest on K-loops has been revived grown since A. A.

Ungar 1988 has found a famous physical example.

A.A. Ungar investigated the relativistic addition ® of the velocities IR% ={veR3: |v| <c}
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(c speed of light). He showed that (IR%,@) is a non-associative and non- commutative
loop with characteristic automorphisms, the socalled Thomas rotations. He proved that
for any two velocities a,bEIRg there is a Thomas rotation Sa.b fulfilling a®(bex)=

(a®b)es, p(x) (cf. [29,30,311). H. Wefelscheid recognized then that (IR?:,(B) is a K-loop.

But there is also a close connection between K-loops and Bruck loops, which is dis-
covered first by G. Kist [19]. Bruck loops are Bol loops satisfying the automorphic
inverse property (K5) (cf. section 2). Bol loops are introduced by G. Bol in 1937 in order
to coordinatize webs (cf. [1]), and are investigated in later years in many papers
[2 to 6, 12, 25 to 281. The examples in Bol's paper are due to Zassenhaus. Bol also
seemed having had difficulties in finding proper examples. In [19, §1.31 G. Kist remarks,
that already from Lemma 6 of G. Glauberman [6] one can deduce that every finite
Bruck loop of odd order satisfies (K3). As a generalisation it is proved in [21, Theo-
rem1] that every Bruck loop with no element of order 2 is a K-loop. Hence many
examples of Bruck loops turns out to be examples of K-loops (cf. [12,251). Other

examples are given by A. Kreuzer in [21, 22].

In this note we consider right loops with the axiom (K3), not necessarily finite, and
add step by step the other axioms of a K-loop if necessary for stronger results. In
section 2 a comprehensive list of properties of right loops is presented. Let D denote
the group of automorphisms of a right loop (L,®) with (K3) and (K4), generated by
the maps Sa,b' Then one can introduce on G:=LxD a group operation (cf. (3.5)). In
section3 we consider the inverse of that process, starting with a group G and an exact
decomposition G=K-A. In section 4 a new construction method for a loop operation on
the set GxH for commutative groups G,H is given. In section 5 and 6 we consider
finite examples of K—loops constructed with that method. If any automorphism $€ D\{id}
of a K-loop (L,®) has only the fixed point O, then L determines a Frobenius group.
In the finite case that fact implies that for proper finite K-loops there always does

exist an automorphism 1€ D\{id} having fixed point distinct form O (cf. section 7).

2. DEFINITIONS AND PROPERTIES OF LOOPS

Let L be a set with a binary operation ® . We call (L,®) a right loop if (Kir),(K2) are
valid , and a loop, if (Kir),(K1Z4) and (K2) are valid for all a,b €L.
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(K1r) The equation a®x =b has a unique solution x€L.

(K1¢) The equation y®a = b has a unique solution y€L.

(K2) There is a two-sided neutral element 0€L with a®0=a=0®a.

In the following let (L,®) always denote a right loop. By (K1ir), for a€L the map
AgiL— L, x=2(x)=a®x

is bijective. Therefore for a,b€L also 3§, = k;;bo)\ao Ap is a bijection.

(2.1) For all a,b€L, the map 8, ,:L=L, x = 3§, p(X) is a bijection with the properties
a®(box)=(a®b)®s, p(x) , §, ,(0)=0 , and 3, 5=3g 5=id.

Proof. Clearly (a@b)‘%a,b(x):la@bo)\;elabo)\ao Mp(x)=a®(bdx). Since a®b=ao(be0)=
(a@b)@Sa,b(O), by (Kir) 8a,b(0)=0' Since aeb=aﬂ>(O€Bb)=(an)€B8a'O(b)=aGBSa,O(b) for
every beL it follows that, Sa‘0=id, and by a®b=00(adb)=(00a)e3d ,(b)=addy 4(b),

also 80,3 =id.

(2.2) For a,b,x,y€L:
(a) (a@b)eax=ae(bea8a1‘)(x)).

_ -1
(b) 3, p(x@y)= 3, p(x) ® 8a(Bb,SaL,b(x)osa,b@xosb,x(y)'

(c) For every automorphism o of (L,0), °‘°8a,b°°‘—1 = aoc(a),oc(b)'

Proof. (a).aea(beasajt‘)(x))=(a@b)@sa’bosajé(x)=(ae>b)@x.

(b). a®(be(x0y))= (ab)es, y(xey), and on the other hand ae(be(xey))=

a0 ((b0x)®5p, () = (a0(bOx)) 05, 1ex00p x(1)=((@0b)O3, (X)) 05, poxodh x(¥) 2
(a@b)e(ﬁa_b(x)@ 8;€éb,83,b(x)°5a,b®x° Sb,x(y))' Hence by (K1r) Ba,b(xey) =

52b(%) @ 326b5_  (x)°%a,boxb,x (¥

(c). For a€L , we have ocoXaooc_l(x)=oc(a&)oc'l(x))=oz(a)®x=)\a(a)(x). Hence aOSa'boa_1=

-1 -1 -1 -1_4"1 _
AOXg@phO% OAOXZ0U TOAOXLOU "= X (2)p(b)° M a(a)® P a(b) = du(a),a(b)

(2.3) 8a,b is an automorphism of (L,®), if and only if 83®b,8a u(x)° E‘a,b= 2. box° b.x -

Proof. By (K1r) and (2.2.b) Sa’b(x)EBSa by) '—!——Sa b{x®y)= 84 b(x)@Sa—éb 5 b(x)osa box° b x(y)

. _ el . -
iff Sa,b(Y) = 8a®b,8a,b(x)°5a,bex° 8b,x(y) for every y€L, i.e., Sab= Saééb,Sa’b(x)o 52, box° Sb,X'




2 Kreuzer and Wefelscheid

We consider the following properties for a,b€L :

(n 1If aéb=0, then b®a=0.

(K3) 8, p is an automorphism of (L,®).

(K4) If a®b=0 then Sa,b = id.

(K49 5, ,=id.

(K5) (®@a)e(eb)=©(ad®b) (Automorphic inverse property)
(K6) %2 b= %, boa

(KB) aéB(be)(aec)) = (a@(b@a))@c (Bol-identity).

If (I) is fulfilled, then b€L is the right and left inverse element of an element a€L,

and we write ®a:=b. (K5) is only efficient, if (I) is satisfied and means that the map
©: L - L; x—> ©x

is an automorphism. Furthermore we have ®oa=a0® for any «€ Aut(L,®) (cf. (2.5.c)).

We remark that for a right loop, (K4), or (Ké6) and (K1¢), or (KB), respectively, imply

(1) (cf. (2.5),(2.10), (2.13) ). Then we write x©y for xo(©y).

A loop (L,®) is called a WK-1loop , if (K3) is fulfilled and a K-loop , if (K3),(KS5),
and (K6) are fulfilled. We will show that a K-loop satisfies all of the above axioms, i.e.

a K-loop fulfils also (I), (K4) and (KB).

A loop (L,®) is called a Bol loop, if (KB) is fulfilled and a Bruck loop, if (KB) and
(K5) is fulfilled (cf. [2, 6, 26]).

M. Kikkawa called a loop homogeneous, if (K3) and (K4) are fulfilled, and homogeneous
with the symmetric property, if (K3), (K4), and (K5) are fulfilled (cf [181).

(2.4) Let (L,®) be a right loop with (K3). Then for a,b,c€L:

8adb,5, (c)®%,b = 3a,bec b,

The proof follows by (2.3).

(2.5) Let (L,®) be a right loop with (K4). Then for a,b€L:
(a) (1) is satisfied, i.e. a®b= 0 implies b®a=0.
(b) ao®bs= esa’b(ebea).

(c) o(®x)=© a(x) for every x€L and every o€ Aut(L,®).
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Proof. (a). For a,beL with aeb=0 we get a®(boa) = (a@b)e&a,b(a)“g)OGa:a, ie.,
b®a=0 by (Kir). '

(K4)
(b). (a®b)es, |, (0bea) = ae(be(eboa)) = ae((be(eb))esbqeb(@a)) ==

ae(0e(©a))= 0, ie. by (i), aéb=05, | (0boa).

(é). (ex)+x=0=a(0)=a((©x)+x)= a(®x)+a(x), hence * a(©x)=0u«(x) by (K12).

A right loop (L,®) is said to have the left inverse property, if for any a€L there exists

an element ©@a€Ll with (©a)®(a®x)=x for every x€L.

(2.6) For a right loop (L,®) the following assertions are equivalent:
() (K4).

(B) The left inverse property .

(v) () and aeb= @8a,b(@b®a) for a,b€L.

'
Proof. (¢) <= (B). (@a)®(ad®x )= ((@a)@a)(BB@a‘a(x)ﬁx for every x€L iff Sb,a=id for
bel with b®a=0, i.e., iff (K4) is fulfilled.
(x) = (y) follows by (2.5).
(v) = (B). 0=(a®b)e® 84 b(@b@a)=a®(b®(@b@a)). Hence by the definition of ©a it

follows that ©®a= bo(eboa)

A right loop (L,®) is called left altermative, if a®(a®b)=(a®a)ob for all a,beL.
(2.7) A right loop (L,®) is left alternative, if and only if (K4°) is fulfilled

'
Proof. a€B(a€Bb)=(a®a)®Sa a(b)'=(a€B a)ob, iff 8aa(b) =b for all beL, ie., §, ,=id.

(2.8) Let (L,®) be a right loop with (K3) and (K4). Then for a,b,c €L:
-

(a) %ab “%©a,adb -
-

(b) 8a,b’seb’@a,

(K4) .

Proof. (a). We set in (2.4) b=©a, hence 2 020%0ac=%80. 5 b(C)OSa oa— id.
, , 284, ,

K4
(b). We set c=©b in (2.4) , hence id (K4) Sa,OOSb,eb= Saeb,éa'b(@b)osa,b' By (a)

the inverse of the right side is $g, aeb°5®(ae>b) (a®b)os, L(©b) =
y , a'

Sea,aeboae(a&)b),a@(b@b): $0a.20b° So(adb),a=1d- By (Kir) for every y€L, there is
an element-beL with a®b=y. Hence with x:=@a, 8xy08®y ox =id.
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(2.9) Let (L,®) be a right loop which satisfies (K3), (K4) and (K5). Then for a,b,c €L:

(a) 5a,b(b@a)= a®b. (f) aa,b=8@b,b€9a

(b) 8, b=%@a, ob (g8) S,p(b)=(aeb)e@a

(e) 3, b *%ba (h) 3a,boc®%b.c =5a,b°8bea,c

(d) ae(bec)=5a’b((b®a)®c) (i) 32.b7%2,2°%26a, ©26b°% 0z, b
(e) 3,157 %eb.a (j) @adi, p(b)=be ab.a(a)

Proof. (a). By (2.5.b)acb=03, , (obeoa)ED o5, (e(bea) B2 5, | (bea).
(b) follows from (K5), (2.2c), and (2.5.c). (c) follows from (b) and (2.8.b).
(

a) (K3)

(d). as(bac)= (aéBb)EBSab(c) = 3§

ab beaa)esab() = _sayb((beaa)eac).

bl
(e) follows from (2.8.a) and (c). (f). Put in (2.4) a:=©b, b:=b and c:=a and use (c).
(

(e)
(g). We have (a0b)oa @ 5,01 o.(©a®(adb)) = 5,1 (b), using (2:6) .
(@ (22.9)
(h). By (2.4),5, b O c = 8a(%)b,Ba,b(c)OSa,b = 6Ba_b(bfi)a),Sa,b(c)oga,b %2,b°%b@a,c

(i). Using (c), we write (h) in the form Shoa,c = Sb,aosa,bﬂacogb,cand replace b by ©z,

c by b and a by z®a. Since $g,6(26a) b %.b 2 37 7027 %2 (f ), (i) follows.

‘ (2.2.a)(c)
(i). @aos, o (b) & can((asb)ea)ZZ2E

©a0(ad (b ®8ba(a)) beSba( a).

(2.10) Let (L,®) be a right loop. Then:
(a) (K6) implies (K4°).

(b) (K6) and (K1£) imply (I).

(c) (K6) and (I) imply (K4).

Proof. (a). By (2.1) id= 8, o= 5, ,. (b). Let a0b=0, then 5, X5 o\ =5, (Elid,

hence b=b®(a®b)‘(b®a)®6b’a(b)= (bda)eb, ie.,by (K1£) boa=0. (c). Let a®b=0.

(K6) B (21),

It follows that, Bab Sa.b®a=%0 — id.

Remark 1. The inversions of the assertions of (2.10) are not true. Since there are
examples of loops satisfying (K3),(K4) , (K4°) and (K5), but not (K6), i.e., there exists
homogeneous loops with the symmetric property which are not K-loops (cf. (5.3))
Furthermore there are examples of right loops, fulfilling (I) and (K5), but not (K1¢4)
(cf. (5.1)). But we remark that in a right loop (K3), (K4), (K5), and (K6) imply (K1¢)
and (I) (cf. (2.15)).
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(2.11) Let (L,®) be a right loop. Then the Bol identity (KB) and aa,bea=8t;,1a are equivalent.

Proof. a®(be(adc))= ae((bea)esba(c)> (a@(b@a))@Sa b&)aoab a(c)— (ae(bea))ec iff

%2, b©a%b,a =id, ie. 8a,b&)azab,a'

By (2.9.c), it follows from (2.11):

(2.12) If for a right loop (L,®) the properties (K3) (K4) and (K5) are valid or if
8;1b= b4 then (K6) and the Bol identity (KB) are equivalent.

(2.13) Let for a right loop (L,®) the Bol identity (KB) be valid. Then:
(@) (1) is fulfilled .

(b) (K4) is fulfilled .

(c) (K12) is fulfilled .

Proof. By (2.11), (KB) implies 82 boa* Sb a- Now let a® b=0. Hence by (2.1) 8a, 1 (KE) b,a®b

=8 0=id and therefore Sa,b=‘d’ i.e. (b) is valid. By (2.5.a) , (a) follows.
(c). By (b) and (2.6) the left inverse property is fulfilled. Let a,beL. For
y=(@a)e((aob)oa), we get yoa =((@a)e((a0b)oa))oa B2 (0a)e((avb)e (oa)ea))=

(2.6)

(@a) ®(ad®b) b. If for y'€L it holds y ®a=b, then y'6a=y®a, hence a®(y'®a)=ad(yda)

and (a&)(y'&)a))ea (aﬂ)(y &)a))ea By (KB) we get a®y's a@(y&)(a@a))(=B)

(

(a@(y'&)a))ea ( o(y ®a )@a KB) ady and by (Kir) it follows y=y"

This proof together with (2.9.g.j) gives also an explicit solution y of y®a =b for a,b€eL.

(2.14) In a right loop (L,®) with the Bol identity (KB) the solution of y®a =b can be

written as: y =(ea)®((a$b)®a) = (@a) 03, b(b) =bo Sba(a)
By (2.12) we get:
(2.15) A right loop with the properties (K3), (K4), (K5), and (K6) fulfills (K12).

Remark 2. There are examples of right loops with the properties (I) and (K5) which do

not fulfill (K1£) (cf (5.1)). A simple proof shows that this examples satisfy also (K4).

Remark 3. By (2.12), every K-loop is a Bol loop and a Bruck loop.
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By [21, Theoremi] (cf. also [6, 191):

(2.16) Every Bruck loop (L,®) with xexz0 for every x€L\{0} is a K-loop.
It means that for a right loop (L.,®) with x&x20 for every x€L\{0}, (KB) and (K5)
imply (K12Z), (K3), and (K6).

(2.17) Let (L,®) be a K-loop. Then for a,b,x€L:

(a) S%ab=330b b
(b) x®©a=b if and only if x©b=a.

(2.9.c) -y (K6) _; (2.9.0)
%pa — Opaob —— daeb,b

2.6
(K5) x6((ex) @a)(z) a. On the other hand

Proof. (a). By (K6), Sab
(b). Let x®a =b, then x©®b=x0(x®a)

X ©b=a implies x®a = x©(x©b)= b.

(2.18) Let (L,®) be a K-loop. With the new operation
alb:=a®dg, p(b)

for a,beL, (L,0) is a commutative loop.

Proof. We replace in (2.9.j) a by ©a and use Sob.,a"%b,@a bY (2.9.b). This implies
aOb= aeg@a,b(b)=b®8b,@a(a)=b @Seb,a(a) =boa.

By (2.14) for x:=b®a it follows b=a@8®a’x(x)=a0b, hence x=b®a is a solution
of aox=b. Let for y€L, aoy=adx=b, Then b= a(BSeayy(y)=a€B Sea,x(x)' Hence by
(Kir) Sea’y(y)=8@a’x(x). By (29.g), ((@a)@y)®a=((®a)®x)®a and by (Kir) and

(K1Z), y=x. Thus there exists an unique solution of abx=b and (L,0) is a loop.

3. LOOP OPERATIONS ON SUBSETS OF GROUPS

Let (G,") be a group with the neutral element e, and let A<G be a subgroup and KCG

be a subset of G with the following properties.

(Lir) G=K-A is an exact decomposition, i.e. for every a€G, there are unique elements

a€K and a€A with a=a-«.

(L2) ee€K.
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Remark 4. (L1r) is obviously equivalent to

Lir' G = l‘! ‘A.

(Lir') -t

We remark that for any z€G, G= z:G = xkélJ(Z'XAA = H' y-A for K' := z-K. Hence if

(L1r) is valid, we can always find a set K' with G = %' y-A and e€K’, i.e. (L2) is fulfilled.
y

Remark 5. By (Lir) it follows that,|KNA|= 1, since e=y - «€K-A for an element y€K,
hence y=o '€ A. Let zEKNA, then z=y-(y !-z)=z-e€K-A and (Lir) implies z=y. If we
assume (L1ir) and (L2), then KNA={e}.

(3.1) Example of an exact decomposition G=K-A for subsets K,ACG with KNA=4.

(This example was found by J. Grater [7] after a discussion in Luminy.)

Let G be a finite group with a subgroup U which is not normal, i.e. there exists an
element a€G with all# Ua. Then gU#Ua for any gelU, because the existence of an
element g,€G with g,U=Ua would imply gyu,=a with an appropriate u,elU and Ua=
g0U=au61U= al in contradiction to the assumption. ‘

Let G=g, U U g,u U... Ugnu be the union of disjoint cosets. Then there exists v;eU
such that g;v,¢Ua, since otherwise g;UcUa and our finiteness condition would imply
Igilll =|Ual, hence g;U=Ua, contradicting g;UzUa. Therefore we may assume g; ¢ Ua, and

G = Ga =g,Ua U g,Ua U ... UgnUa
is a disjoint decomposition of G with K={g,,g,,...,8,} and A=Ua. But clearly, in this

example A is not a subgroup of G.

In the following let (L1r) and (L2) be always satisfied. Then obviously it holds K () A ={e},
since A is a subgroup. By (L1r) for a, b€K there are unique elements z€K and d, p€A

with a~b=z'da,b. Therefore
®: Kx K- K, (a,b) = adb:= z =a-b-d;1b

is a binary operation on K. We note: a-b=(a®b)-dab
(3.2) (K,®) is a right loop.

Proof. For a,beK by (Lir) there exists x€K and «€A with a™''b=x-«, hence a-x= b-a"!,

ie., adx=b. Let yeK with a®y=b, i.e., a-y=b-p7! for beA. It follows a'y-f=b=a-x-q,
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hence y ‘B=x-o. This implies by (Lir), x=y and «= 8. By (L2) e€K and a=a-e=ade=

ed®a=e-a, i.e., e is the neutral element of (K,®).

Now we consider the following properties:

(L12) |K'aN b-Al=1 for all a,beK.

(L3) o-K:a"!cK for every a€A.

(L4) K'l'cK.

(L58) 1If a,beK and «€A with a-b-a €K, then there exists B€A with B -b-a=a‘b-a.
(LB) a‘K-acCK for every a€K.

(3.3) (LB) implies (L1¢) and (L4).

Proof. For a€K, by (Lir) there are a’€K and «€A with a™'=a’-a. By (LB), a‘aa' =
a“a-a”l'a”!=a"a "' €K and by (L1r) we get « 'z =e, ie., a l=a'€K. For a,b€eK let d, €A
with a-b-da_,i)eK. By (LB)a !eK andy:= a—l-a'b-da_j)'a_lEK, hence b-d;‘lb =y-a= (y@a)‘dy‘a
and therefore b=y®a by (L1r). Now let x€K with x®a=b, thus x-a=b-a with «€K. It

follows by (LB) a-x-a=a'b-a€K, ie. by (Lir), 0(=da—’i) and x-a=b-da_’é), hence x=y.
(3.4) For a,b€kK, (a®b)?=a-b%-a implies (L5).

Proof. (a®b)? =(a-b-d;1b)2 = a‘b-d;Ib-a-bfd;lb < abZa if and only if a-b‘d;1b=
da,b'b‘a’ i.e., (L5) is fulfilled with Bzda,b'

(3.5) Example. Let (L,®) be a right loop with (K3) and (K4), and let D be a sub-
group of the automorphismgroup of (L,®) containing {3, p:a,beL). For example let
D¢:<{8a’b:a,b€L}> be the subgroup which is generated by the automorphisms sa,b’

called the structure group of L. Then for G:=Lx D and the operation
(a,oc)-(b,B)::(aGBoc(b),Sa,a(b)oaoﬁ) (cf. [19, page 281),

(G,') is a group with the properties (L1r), (L2), (L3), called the quasidirect product
of L and D. For the centralizer

CG(I )={(x,0)€G: (x,a)(a,id)=(a,id) (x,«) for every a€l }
of L =Lx{id} in G, it holds Cg(L) N ((0,5,4):abeL) = {(0.,id)}.

(G,") fulfilles (L1#), if (L.®) is a loop, i.e. if additionally (K1¢) is valid.
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Proof. (G.-) is associative: Let (a,x),(b,B),(c,7)€G. We compute((a,a)-(b,B))-(c,Y) =
((a0a(©)05, 4 (5)°x0B (). Sapa(b), 5, o yoxoB(c) *Pa,alb)°xoBoT) and (a.)-((b.6)-(c,7))=
(ae(oz(b)eo(oﬁ(c)), éa.a(beﬁ(c))oo‘osb,ﬁ(c)oBoY)‘ By definition of Sa,a(b) we get

a®u(b))®s (a(B(c)))= adla(b)oa(p(c))) By (2.4) with for a:=a, b:=af(b) and
a,a(b)

x:=a(B(c)) it follows Sag4(b) 5, _(py0a0B(c) ©2a,a(b)°% = 3a,a(b)ow(p(c)) °Pu(b),a(B(c))°%

(2:2¢) Ba,a(b@ﬁ(c))oo‘ogb,ﬁ(c)* which proves the assertion.

e=(0,id) is the neutral element and (¢"}(®a),a”!) is the inverse element of (a,x), since

(a,a)o (o Y®@a),a”!)= (a®(®@a),$ oxoa ')= (0,id) by (K4), hence (G.-) is a group.

a,®a
(L1r): For (0,x),(0,B)€G, (0,a)0(0,3) =(0€3o¢(0),807000c08)= (0,00B) by (2.1), ie., A:=
{(0,a) : €D} is a subgroup of (G,-) which is isomorphic to (D ,0). For K:={(a,id):a€L}CG
we obtain (a,a)=(a,id)-(O,oz)=(a®id(0),8a,001doo¢)=(a,oc)GK-A(cf.(Z.l)) and (a,id),(0,«)
are unique, i.e. (L1r) is fulfilled.

Obviously (L2) is valid, i.e., (0,id)€eK.

(L3): Let (0,a)€A and (a,id)€K. Then (0,a)-(a,id)-(0,0) '=(a(a),a) (0,a"!) = («(a), aoa™l)=
(afa),id)€K, since «(0)=0 and S0(a),0 = id by (2.1). Hence (L3) is fulfilled.

(L1£): For (a,id),(b,id)€K, K-(a,id)={(x®a,dy ;) : x€L} and (b,id)-A={(b,a):x€D}. By
(K1) there is a unique element x€K with x®a=b, hence also °‘=Bx,a is uniquely deter-
mined, i.e. |K-(a,id)N(b,id)-Al=1 and (L1¢) is valid.

For (0,0)€ A, we compute (O,oc)-(a,id)=(a(a),&oya(a)ocx) =(a(a),a) and (a,id) (0,x)=(a,a).
We have (0,a)-(a,id) = (a,id)(0,) for every a€K if and (;nly if «(a)=a for every a€k,
i.e. if a=id. Hence CG(K)O {(O,Sa,b):a,bEL}= {(0,id)}.

(3.6) (K,®) satisfies (K1¢) if and only if (L1Z) is satisfied. Hence (K,®) is a loop, if
(L1r), (L1£) and (L2) are fulfilled.

Proof. For a,b€K, there exists an unique element yeK with y®a=b, i.e., yra=b-a with

a€A if and only if |K-a Nb-A|=1.

If (L3) is valid, for a,b €K and da,bEA with a-b=(a€Bb)~dab ,
: ~ -1
Sa,b: K—-=K , X > Sa‘b(x) = da’b'X . da,b y

is a bijective map with the property a®(béx) = (aeb)eéa b(x), since a®(box)=

a®(b-x-dp)\ )=a'b-xdpd, hex and (a®b) s, p(x)=a'b-dyp d, pxdy b diph s (x)
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We get (ae(b@x))‘da,bex'db,x= ab'x = ((aeb)esa.b(x))'daeb,Sa,b(x)'da,beK'A' Since

by (L1r) the decomposition is exact, it follows di bexdpx = dieb s b(x)'dab' Hence:
) 1< 1 Pa, ’

(3.7) If (L3) is satisfied, then for every a,bek, §, b is an automorphism of (K,®) with

the properties a®(box) = (a®b)eos, p(X) and d box dbx = dasb s b(x)'dab'
b . s 9 a‘ L4 il

Proof. It remains only to show that 83 b is an automorphism. Obviously 5a,b(x)$8a,b(y)=
dab Xy dabds ()5, o(y) 2nd Sab(x@y)=d, px-ydgydyh. We get by (L3),
(aaﬁb(x)eaa;b(y)) A5, o(x).5, 1(y) = dab XY Ay = 52,b(x@y) ds pdy di} € K-A and
by (Lir) it follows Sa,b(x)esa,b(y)z Ba,b(X@y)'

Remark 6. If d, y=e, obviously 94 p=id. But for &, =id, it need not be d, p=e. For

93 p=id we get only d; p€ Co(K)={¢€G : y-a=af for every a€k).

Remark 7. Let (L1¢), (L2), and (L3) be fulfilled. Then (K,®) is not associative if and
only if {d;,: ab€K} ¢ C(K)={y€G : gra=a'g for every a€K}. Since then there exist

a,b € K with 5, y#id (cf. Remark6) and by (3.7), (K,®) is non associative.

(3.8) Theorem. Let A<G be a subgroup and KCG be a subset of a group (G,-), fulfil-
ling (L1r) and (L2). Then (K,®) with aﬂ)b:a-b-dab for a,beK and da,bGA is a right loop.
(Lx) imply (Kx) for x €{ 14,3, 4,B).

If (L4) is valid, then (L5) and (K5) are equivalent.

Hence (K,®) is a Bruck loop if (L5) and (LB) are fulfilled , and a K-loop if (L3), (L5)
and (LB) are valid.

Proof. The first part follows by (3.4), (3.6), (3.7) , (3.9), (3.12), and (3.13). By (2.12)

and (2.13) we obtain the second part.

Remark 8. If
(*) {d, p: ab€K} 1 Cq(K)={r€G : g-a=a-g for every a€K) = (e}

then 85 p=id if and only if d, p=e. and (Lx) and (Kx) are equivalent for x€{3,4, B)}.

(3.9) (L4) implies (K4). If (), then (L4) and (K4) are equivalent.
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Proof. For a€K let béK and «€A with a™'=b-a (cf. (Lir)). Then e=a-a '=a-b-«, hence
(a®b)=e= a'-b-oz_1=a-b-da-i) . Therefore a™!€K if and only if a=d, p=e. It follows §_  =id.

If (%), then S4p =id and d, ,=e are equivalent (cf. Remark6).

(3.10) Let (L4) be valid. Then for a,beK :

(i) @a=a"l (i) dyp = da-1 aeb
Let (L3) and (L4) be valid, then for a,bekK:

(i) dyp = dp-1am (iv) (a®b) '=5, (b lea™)

Proof. (i). Since a '€K, a®a™'=a-a"!=e. (ii). Since (L4) implies (K4), by (26)
b=a"l®(a®b)=a "l-ab- da—,i)'dgl’l,a@b hence by (L1r) d;t -d.;l—l’a@b ze.
(iii). Since da,e =e and db,b“ =e by (L4), (3.7) implies daeb,sa’b(b") 'da,bzda,e'db,b" ze.

Gi) -1 _ 3i) ;-1 _ -t
Hence d -1 a0b = dab = daob,5, (b7 = daeb) !, (a0b)es, p(b™!) =d(aob) ! a-

(iv). (a0 b)'=d, b a0 d b lahd gl id ) =5, pbTea).

(3.11) If a-a€K for a€K, then (K,®) fulfilles (K4°) and a®a=a-a.
Proof. By (L1ir) for a€K, a-a=(a®a)-d, ,. Hence a-a€K implies da,a=e and Sa‘a=id.

(3.12) Let (L4) be valid and for a€K let ®a=a"'€K be the right and left inverse of a

with respect to ®, according to (3.10). Then (L5) and (K5) are equivalent.

Proof. For a,b€K, let d, ,€A with a-brd;bel(. Let (K5) be valid. Hence (a '@b 1)} =

(K3) a®b=a'b-da_i) €K implies the existence of B€A

(@b tdySi s ) = dy-1giiebea
with B-ba=a‘b- da—g €K. Now we assume (L5). Let BEA with pf-ba=a-b- dadi)=a@b.
Then a®b=((p-b-a)™!)!=(a™b™1:p7!) €K , and by (L4) a™':b"*-g! € K, and by (Lir)

a l'b™!l-g1=a"leb™!. Hence a®b= (a_1®b_1)_1,
(3.13) (LB) implies (KB). If (*), then (LB) and (KB) are equivalent.

Proof. For a,b€ek, aéB(b@a):a-b-a‘dg}a-d;}beael( , hence a'b-a€K if and only if
db,a’da,b@a =e,i.e., da,béBa = db_,la' It follows Sa,bebazsl;fa' which is equivalent to (KB)

by (2.11). If (%), then d,; boa = dt;,la and 8, po, = Sl;fa are equivalent .
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4. CONSTRUCTION

Let (G,+) and (H,+) be commutative groups with the neutral elements 0€G and O€¢H,
and let U<G be a subgroup of G. We consider the following maps

u: Gx GxH - U ; (a,cd) = u(a,c,d)= Lacd

°o: H x U —U 5 (buycq)=> bouy g

with the properties for a,c,x€G and b,d€H:

(M1r) For every tel, bou, cut d =boy, . 4

(M1¢) For every teU, bousst ¢ d= bous ¢ d

(M2)  Ocuycq= 0 = bouygo=boggg-

(MI) boy, , 4 =0.

(M3) bouy cex,d+y = POUa ¢ d *bouy iy -

(M4) “bouy g =(-blou_y ¢ ¢

(M5) -bou, o d =(_b)ou—a,—c,—d

(MB) (b+d+b)°“a+c+a,x,y :boua,x,y tdope y v+ boua xy -
(M) There are u,v€G and h€ H with houu‘v’_hiO.

(4.1) i) (MB) implies (M4).
ii) (M2), (M3),(M4) and (M5) imply ord(bouayc,d)s 2 for all a,c€G and all b,deH.

Proof. i. We set d=-b and c=-a in (MB), then boua,x,y = bo“a,x,y +(—b)ou_axy +
boua,x,y’ hence 'boua,x,y =(_b)°u-a,x,y' ii. By (M2), 0=b°“a,0,0= bouy cc d-d =

(M4) MS)
=boua,c,d)'bo“a,--c,--d = boua,c,d"(_b)ou—a,—c,--d = boua,c,d +b°“a,c,d'

We set L = GxH and define for (a,b),(c,d)eL

® : L x L - L; (ab)o(cd) ::(a+c+bouacd,b+d).

(4.2) Theorem. Let (M1r) and (M2) be fulfilled. Then (L.,®) is a right loop with the

neutral element (0,0).

Proof. Let (ab),(c,d)€L. Then (a,b)®(x,y)=(c,d) has the solution y=-b+d and
(M1r)

-arcy€Uand vy .0 bou, _avcy ¥~ Ha,-atcy:
We compute (a,b)® (x,y)=(a-a+c- b°“a,—a+c,y +b°“a,—a+c,y' b-b+d)=(c,d). We assume

x=-a+c -bop, _ .. y’ since boy,
b} 9, ,
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that also (x'y) with y=-b+d is a solution, hence (a,b)e(x',—b+d)=(a+x'+bouax,y,d)z

—atc,y €U, since

= (c,d), i.e. x'=-a+c- bo“a,x',y' We compute 'x'+x=b°_“a,x’,y'b°l1a,
boua,x‘,y , bo“a,—a+c,y €U and U is a group. Therefore there is a t€U with x'=x+t
and with (M1ir) we get bOua,xr,y=bo Ha,x,y =bo Ua -a+c,y’ hence x=x" and the solution
is unique. By (M2), Ooyg ,,= 0 = boy, o o , hence (0,0)6(a,b)=(a+0oug , ,,b) =(a,b)=

= (a+boua’0’0,b)= (a,b)® (0,0).

In the following let (Mir) and (M2) be always fulfilled, i.e. that (L,®) is a right loop.
(4.3) If (M12) is fulfilled, (L,®) is a loop.

Proof. For (a,b),(c,d)€L, the equation (x,y)®(a,b)=(c,d) has the unique solution y= d-b
and Xx=c-a-you._ .. Since YoUc-a-you, . .p.ab = YOlc-aab by (M1Z) and
(x.y)®(ab)=(c-a-you._5 4 p*a+youc_aap d-b*b)=(c,d).

(4.4) Let (MI) be fulfilled.
i) Then (L,®) satisfies (I), and ©(a,b) =(-a,-b) is the inverese of (a,b)€L.

ii) If (M) is valid, (L,®) is not assosiative.

Proof. i. Since (MI), bo“a,—a,—bzo=(_b)°“—a,a,b’ thus (—a,-b)éB(a,b)=((—b)ou_a’a‘b,O)=
(0,0) and (a,b)®(-a,-b)= (b°“a,-a,-b’0)= (0,0). ii. By (M), there exist u,v€G and
heH with houu,v’_h:to. Hence we get (u,h)®((v,-h)@(—v,h))~ W (u,h)®(0,0)=(u,h) 2
((wh)e(v,-h))o(-v.h)= (usv+hoyy, , p, 0 )@ (-v,h) B2 (urhopy | _p h).
(4.5) For G'= Gx{0) and H'={0}xH, (G',®) and (H',®) are commutative subgroups of

(L,®) with L=G'®oH". (G',®) is isomorphic to (G,+) and (H '®) is isomorphic to (H,+).

Proof. Let (a,0),(c,0)€Gx{0}. Then (a,O)(B(c,O)=(a+c+0oua’C’O.O)(M=2)(a+c,O). Hence
Gx{0} is closed under ® and f: Gx{0} = G is an isomorphism of (Gx{0},6) onto
(G,+) and (Gx{0},®) is a subgroup of (L,®). For (0,b),(0,d)€{0}xH, it holds
(0,6)6(0,d)=(boug o g.b+d) M(0,b+d)€ (0} xH. Just as ({0}xH,®) is isomorphic to
(H,+). Furthermore for (a,b)eL it holds (a,O)ﬂa(O,b)=(a+Ooua’01b, b)(l\éz)(a,b)EG'éB H"

(4.6) Let (MI) be valid. Then (L,®) fulfills (K5) if and only if (MS5) is fulfilled.
)
Proof. By (4.4.i), &{(a,b)e(c,d))= (-a-c-boy, . 4.~ (b+d)) = (-a-c+(-blou_, o _4.-b-d))=

(-a,-b)@(-c,~d) = ((ab) )e(e(c,d)), if and only if (M5) -boy, .4 =(-blou_, _¢ _q is
valid .
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Now we assume additionaly the properties (M14) and (M3). For a=(a,b),b=(c,d)eL let

Sgp: L= L (xy) = (X+b°“a"<v do*‘cxv (b+d)°“a+C,X,}”}’)

(4.7) For all a,b,geL , ao(bog)=(aob)od, 4(x)

Proof. For a=(a,b), b=(c,d), y=(x.y), ao(boy) —r)(a+c+x +d<>uC Xy bOua cHx, d+y,b+d+y)
(M3) (M12)
(a+c+x+ dopc v y*boug ¢ d+bouy iy - (b+ d)°“a+c,x,yJ'(b‘LC1)°“ex+c,x,y' b+d+y)

=(aeb)ody p(x)

(4.8) Theorem. Let (Mi1r),(M1£),(M2) and (M3) be fulfilled.

i) Then (L,®)is a WK-loop.

ii) (L.®) fulfills (KB) if and only if (MB) is fulfilled.

iii) Let (MI) be valid. Then (L,®) fulfills (K4) if and only if (M4) is fulfilled.

iv) Let (MI) be valid. (L,®) is a Bruck loop if and only if (M5) and (MB) are fulfilled.

Proof. i. By (4.3), (L,®) is a loop. For all a,b€L, the map 3§,y is an automorphism of

(L,®), since for (x,y),(z,w)€L, Sa,b((x,y)(})(z,w)) = Sa’b((x+z+youx,z’w,y+w))(l\ér)

‘ (M3)
()()'Z”'C’“x,z,werou a,x+z,y+w doUc xoz yew” (b+d)°“a+c,x+z,y+w ,y+w) =
(X +Z+y°“x,z,w+b°ua,x,y+b°“a,z,w+d°“c,x,y +d°“c,z,w_(b+d)°“a+c.x,y—(b+d)°ua+c,z,w’y+w)
(M1r,2)
- Sa,b((x’Y))Q’ 8a,b((z*w))'
(M1r)

ii. We compute (a,b)&)[(c,d)@((a,b)&)(x,y))] = (a+c+a+x+boua’x,y +d°“c,a+x,b+y +
(er‘é’)

'
= bou, crasx,dibry- b+d+b+y)=' [(a,b) @((cd ®(a,b) )]GB (a+c+a*x+doucab +

bou, cradib * (b+d+b)ou iy Xy b+d+b+y) if and only if bo“axy +doy, a+x byt

(M3)

bou, crarx,d+b+y — PO x y*dolcap tdouc vy *boy, ciadeb *boU, Xy

= douc 5 b *boUy cra deb *H(DFA*D)oU, iy x,y- This is correct, ie. (KB) is correct, if

and only if (MB) (b+d+b)°“a+c+a,x,y= bo Ma xy +d°“c,x,y + bo“a,x,y is fulfilled.

iii. Since @a= ©(a,b)= (-a,-b) by (4.4.i), we get Savea((x,y))=(x*boua,x’y+(—b)ou_a,x’y—-
(M2) ! . .

(b'b)oua—a,x,y’y) = (X+b°Ua,x,y+(_b)°“—a,x,y ,y) = (x,y), if and only if 'boua,x,y =

(_b)oli—a,x,y .

iv) follows by (4.6) and ii).

(4.9) Let (Mir), (M14), (MI), (M2), (M3), (M5) and (MB) be fulfilled. Then (L,®) is
a K-loop.
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Proof. Since (4.6) and (4.7.i), we have only to prove that (K6), 8q.60a=3q p is fulfilled.
We compute 8a’bea((x,y)) (MLE) x+boy, y y+(d+blouc,, oy - (brd+b JoUsicraxy Y) =
8a,b((x’y )) =(x+ boua,x,y +do“c,x,_v' (b+d )°“a+c,x,y y), if (d+b)°“c+a,x,y +(b**d)ouam,x,y:
2:((b+d)ovzuexy) 4 doug y * (brd*b)op,crny (MB) 2+ (bou, )+

2'(d°“c,x,y)' Since (4.1.ii), both sides of the equation are O, hence (K6) is fulfilled.

5. EXAMPLES

Using the Theorems (4.2) and (4.8), we give examples of loops with additionally pro-
perties. If the map u: GxGxH — U, (a,c,d) Uy cd of section 4 depends only on a,c€G

and not on d€H, i.e. Ka,c,d =Ha,cy for every y € H, then we denote these map with
A: GxG —» U; (a,c) = Xac

Let (G,+) and (H,+) be commutative groups and let always T be a Subgroup of G with
index 2, i.e. for every a€G it follows a+a€G. Let me€T be an element of order 2.

Then U:={0,m} is a subgroup of G of order 2 with UCT.

Let always L:= GxH and for (a,b),(c,d)€L: (a,b)®(c,d):=(a+c+boX, .,b+d).

a,C’

(5.1) Example of a right loop with (I) and (K5)

We define
m for a=0 and c¢T

A: G x G —={0,m} ; (a,c)—»)\a,cz { 0 otherwise

Let V be a subgroup of H with index 2, i.e. for every beH it follows b+beV.

>‘a,c for b¢V

o: Hx {O,m} - {O,m} ; (b')‘a,c)_’ boanC:: { 0" for beV

Then (M),(Mir), (M2),(MI), and (M5) are fulfilled, but not (M1¢), i.e. (L,®) is a

non - associative right loop with (I), and (K5) which is not a loop..

Proof. (M): Let h€e H\V and u€G\T, then ho)‘O,u=m¢0' (M 1r) : Since U is a group,
we get for teUCT, c+t€T iff ceT and Aac™rac+t- Not (M14): For ceG\T and
beH\V, b.o)‘O,c=m:0=b°)‘m,C' (M2): Since O€T and O€V, b°>‘a,0=b00=0=0°>‘a,c-
(MI): If a=0€eG\T, 20,0=0. and if a#0, also Xa,-a=0. hence bodx, _,=0. (M5): Since
T and {0} are subgroups, obviously >‘a,c= k—a,—c' Because b€V iff -b€V and ~-m=m,

it follows -b-X, ;=bo), .= (-b)odr, .=(-b)od_, _..

95
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Hence by (4.2) and (4.4.i). (L,®) is a right loop with (I) and (K5). Now for a€G\T

and beH\V we consider (x,y)e(a,0)=(a,b), hence necessarily y=b and x+a+bo) a.

xa-
If x=0, then O+a+b010 a-atm#a, and if x#0, then Ax 2=0, hence x+a+bo )‘x a=Xtaza.

Therefore (x,y)®(a,0)=(a,b) has no solution.

(5.2) Example of a WK-loop with (1), (K4), and (K5).
We define

A: G x G -»{0,m} ; (a,c)— r, .:=

m for a€Tand c¢T
.

0 otherwise
Let V< H be an arbitrary subset with 0€V and -V =V . We define

)‘a,c for b¢Vv

o: Hx {O,m} - {O,m} ; (b,Xa’C)—* bO)\a'C: {O for beV

Then (M),(er),(Mll),(MI),(M2),(M3),(M4) and (MS5) are fulfilled, ie. (L,®) is a
non -associative WK-1loop with (I), (K4), and (K5) .

i) If there is an element beH with b+b¢V, then (MB) is not fulfilled.

ii) If V is subgroup of H with index?2, i.e. for every beH it holds b+beV, then (MB)
is fulfilled.

Proof. (M): Let be H\V and c€G\T, then bO)\O’C=m¢O. (M1r) and (M1¢) : Since U
is a group, we get for teUCT a+teT iff a€T , and cé¢T iff c+t¢ T, hence )‘a+t,c= ‘
>‘a,c=>‘a,c+t' (M2): Since O€T and O€V, bo)‘a,O:bo():O:OO)‘a,C' (MI): Clearly a€T
iff -a€ T, hence Aa,-a=0 and bod, _ =0. (M3): We have to show Aa,crx=ract hax
Let a€T. If ¢,x€T , then a+c€T, hence 0= >‘a,c+x=)‘a,c+)‘a,x:0+o' If c€T and x¢T or
cé¢T and x€T, respectively, then c+x¢ T, hence m= )‘a,c+x=)‘a,c+)‘a,x=m' If ¢,x¢T, then
c+x€T, since T has index 2. Thus O= )‘a,c+x=>‘a,c+)‘a,x=m+m=o' (M4) and (M5): Since
T is a group, obviously )‘a,c= =>\—a,-c=)‘-—a,C' Because b€V iff -b€V and -m=m, it
follows 'b')‘a,cz bo )‘a,c= (-b)o )‘a,c=('b)°>‘—a,c=(_b)°)‘—a,—c‘ Hence by (4.4.ii) and (4.8),
(L,®) is a WK-loop with (I) (K4), and (K5).

(MB): Since T is a subgroup with index2, a+c+a€T iff c€T . Hence (MB) is equivalent
to (b+d+b)°>‘c,x=d°>‘c,x' since ordm=2. Let béH with b+b¢V and set d=0, c=0,
x€G\T, then (b+d+b)°>‘c,x= (b+b)0)\0,x=m 20 = Oo)‘c,x' i.e., (MB) is not valid.
If V is a subgroup with b+beV for every beH, then b+d+beV iff deV, hence
(b+d+b)°>‘c,x=d°)‘c,x and (MB) is fulfilled.

(5.3) Corollary. There exist WK -loops fulfilling (K4) and (K5), but not (K6).
For n,keN with k 2 3 set for example G=Z,, T 222 41, U:={0, 2n} and set H:=Zk, V={0}.
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Proof. Obviously T is a subgroup of G with index 2, ord U = 2 and V=-V. For 1€H,
clearly 1+1=2¢V. Hence by (5.2.i) the assertion follows.

(5.4) Corollary. Let n,k €N and let G:=Z,,, T:=2Z,,,
Then (L,®) is a K-loop and a Bruck loop of order 8nk.

U:=(0,2n}, H=Zy, V=2Z,.

Proof. Obviously T is a subgroup of G with index 2, ord U = 2 and V is a subgroup

with index 2. Hence by (5.2.ii) the assertion follows.

Now we consider the situation that the map u:GxGxH - U; (acd) — Hacd of
section 4 depends on d€ H.

(5.5) Example of a K- loop and a Bruck loop.
Let V be a subgroup of H with index 2. We define the following maps

m for d€V and c¢T
u:Gx Gx H—->{0m}; (acd) —uycq = m for d¢V and a+c¢T
0 otherwise

Yac.d for b¢V

o: Hx {0,m} = {0,m) ; (b,uy o g) = bou, ¢ 4= { K for beV

Then (L,®) is a non-associative Bruck and K-loop.

Proof. (M): Let h €H\V and ce€G\T, then houp ¢ - =m#0. (Mir) and (M1Z4): For
teUCT, a€T iff a+teT, ce€T iff c+t€T and a+c€T iff a+c+t€T. Hence Ma+t,c.d=Hacd™
Ua crt.d- (M2): Since O€T and 0€V, bou, 00 =bo0=0=bouy g 4=00u, ¢ 4- (MI): For
a€G we get O=a-a€T, hence Ua-a-b= 0 if b¢V and boua,—a,—b=0’ if beVv.

(M3): Let d,y€eV. Since ordm=2, Uac,d*ta,x,y ™ M iff c€T and x¢T or c¢T and x€T,
i.e. iff c+x¢T and Wa,cox,d+y = M- Now let d€V, y¢V. Then Wa,c+x,d+y =M iff atc+x¢ T,
i.e. either c¢ T or a+x¢ T. On the other hand g cd=m iff c¢T, and g x,y=m iff a+x¢T,
thus Ua,c,d*Ma,x,y =M iff a+c+x¢T. In the same way we get Uac,d*Ha,x,y = Ha,cox,d+y
for d¢V and y€V. The last case is d,y¢V. Then Wa,crx,d+y =M iff c+x¢T, ie. iff
2a+c+x¢T. On the other hand y, . g4 =m, iff either a+c¢T or a+x¢T, i.e.
2a+c+x¢T. Hence (M3) is valid.

THa,x,y

(M4) and (M5): Since T and V are groups, Uac.d=¥-acd¥-a,-c,-d- Because ord m=2
and V is a group, it follows 'boua,c,d=('b)°“—a,c,d=(_b)°“-a -c.-d- (MB): Since T and
V are subgroups with index2, (b+d+b)eV iff deV, and a+c+a€T iff c€T, hence
(b+d+b)oua+c+a’x,y= douc’x,y . On the other hand do“c,x,y+b°“a,x,y+d°uc,x,y = bo“a,x,y'

because ordm=2.
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(5.6) Corollary. Let n,KEN and let G:=Z,,, T:=2Z,,, U:={0,2n}, H=Z,, V=2Z,.
Then (L,®) is a K-loop and a Bruck loop of order 8nk.

Remark 9. In [24, (4.7)] it is shown that for k,n€ N with k#2n and for G=Z,,, H=Z, .

the K-loops of example (5.2.ii) and (5.5) are non-isomorphic.

6. K-LOOPS OF ORDER 8

The idea of the following example (6.1) is due to H. Zassenhaus and can be found
by G. Bol in [1, p. 430]. For the case p=2, this example is mentioned by D. A. Robin-
son [26, Example 2.2, p.346] (cf. [21, (1.7)]). Also T. Kepka proves in [12] in a

general context that the following construction defines a Bruck loop.

(6.1) Example. For a prime p we consider the finite ring (Zp,+ ,*). Let L:= prZp xZg.
Then for
®:LxL—>L, (a;,a,,2,) @ (b;,b,,b;):=(a,+b,, a,+b,.a,+b, +a,b,(a,*b,) ).

(L,®) is a Bruck and K-loop of order p® in which every element has order p.

For a=(a,,a,,a;), b=(b,,b,,b,), x= (x,,%,,%3) €L, Sa,b(x) =(x1,x2,x3+(a1b2— azbl)xz).

Proof. Since by [121, (L,®) is a Bruck loop, i.e. in particular the Bol identity is valid,
by (2.12) we have only to prove (K3) and (K4). The third coordinate of (a®b)e Sa,b(x) is
a3 +by *x3+a;b,(a,+by) +(a;+b)x,(a,+b,+x,) + (a;b, - a,b))x, = ag+by+xy +ab,(a,+b,) +

alxz(a2+b2+x2)+b1x2(b +x2) +a,b,x,, and the third coordinate of a®(bex) is ag+by +x, +

2*by*X,) = agtbyrx v bixy(by+x,) +a X, (a,+b,+x,)+ab,(a,+b,) +

a,b,x, = (aﬂ)b)éBSa,b(x . Obviously we have Sa,b(xﬂ)y)=(x1+yl,x2+y2,x3+y3+x1y2(x2+y2)+

(a;b, - azbl)(x2+y2)=Sa’b(x)GBSa’b(y). For b = (-a;,-a,,-a;) we have a$ib=(a1,a2,a3)€9

2
blxz(b2+x2)+ al(b2+x2)(a
)

(-a;,-a,,~a;)= 0 and Sa,b(x)=(x1,x2,x3), i.e. (K4) holds.
(6.2) There are at most three non- isomorphic non-associative K-loops of order 8.

Proof. Since every K-loop is a Bol loop, we can use a result of R. P. Burn, who shows
in [4] that there are exactly six non-isomorphic non-associative Bol loops of order 8.
(Burn uses the dual Bol -identity ((a+b)+c)+b= a+((b+c)+b). ) In [4, p. 382] he gives
4> and I, do

not fulfil (K5), hence there remains at most three non-associative K-loops of order 8.

representations II, ... II, of these Bol loops. We show now that In,,n

Burn gives a representation of a Bool loop B={R,,R,, ...,Rg} as a subset of the

symmetric group (SB,o). With R; he denotes the permutation mapping 1 to i and
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RiORJ-= RR,(i)EB. In all his representations II,,II,,II; it holds R2=(1234)(5678) and

R, = R4;(1432x5876)

In I1,: Ry =(1537)(2648), R;'=R,=(1735)(2846) R, =(1638)(2547) and R;'= R,=(1836)(2745).

“1_p-l_ -1 -1 _ —

Hence (R,0R,) =R, = Ry#zR, oR; =R oR =R,.

In 11, : R, =(15)(26)(37)(48)= R;'. R, =(16)(27)(38)(45)= R, and Ry=(18)(25)(36)(47). Hence
“1_p~1_ -1 -1 _ —

(RyoR;) =R, = Ry #R, oR; "= RioR =R, .

In T;: Ry =(15)(26)(37)(48)= R;', R, =(16)(25)(38)(47)= R, " and Ry=(18)(27)(36)(45). Hence

(RyoR;)'=R.'= R, #R;'oR;' =R oR =Ry

(6.3) Theorem. There exists exactly three non-associative non-isomorphic K-loops

of order 8.

Proof. By (6.2) there are at most three non-associative K-loops of order 8. Now we
give three non-isomorphic examples. For p=2 in (6.1) a K-loop L, of order 8 is given
in which every element has order 2. For n=k=1, in (5.4) and in (5.6) K-loops L, and
L, are constructed, both having elements with order 4, hence L,,L; are not isomorphic
to L,. Further in [24, (4.7)1 it is shown, that L, and L, are not isomorphic (cf. Re-

mark 9 in section 5.).

Remark 10. For p=2, the example (6.1) is isomorphic to the Bruck loop I, of Burn
[4, p. 3821, for n=k=1, example (5.4) is isomorphic to II,, and example (5.6) is iso-

morphic to [I; of Burn.

7. AUTOMORPHISMS OF K-LOOPS

Let (L,®) be a right loop fulfilling (K3) and (K4), and let D::<{Sa bEAut(L,(B):a,bEL))
its so called structure group. With the operation - of example (3.5), the quasidirect
product G:=LxD is a group and the connection between Aut(L,®) and Aut(G,-) is as

follows:

(71) Let (L,®) be a right loop with (K3) and (K4). Then each automorphism o€ Aut(L,®)
can be extended to an automorphism o of the involved quasidirect product G=LxD
with a((k,1))=(a(k),xta™!) for (k,1)€G, a(Lx{id})=Lx{id} and o({0}xD)={0}xD.
Vice versa any automorphism Y€ Aut(G,-) with the properties v(Lx{id})=Lx{id} and
Y({0}xD)={0} xD implies an automorphism y of (L,®) by simply setting y(a)=b for
Y((ax{id})) =bx {id).

Proof. For o € Aut(L,®) we have O‘Sa,b 0‘-1=8a(a),oc(b) by (2.2), hence aD o~! =D.




100 Kreuzer and Wefelscheid

Obviously o« is a bijection. Now for g;=(k;,7; )¢ G, i=1,2 we compute &(gl-g2)=

&'((kletl(kz), Skl,tl(kz)tlt2)) = (oz(kl)@ ottl(kz),ot Skl ,tl(k?)o(‘loc tla—la tza’l ):

(oc(kl)&a(atloc"i)oz(kz) , 80((1(2),0(11 a-la(kz)oztla'loctza"l )= o_t(gl)- E(gz), i.e. o is an auto-
morphism. Furthermore « (L&{id})=(a(L)®{id})=(Lx{id}) and o« ({0}xD)={0}®aDua !=
{0}xD. Now let ¥ € Aut(G,-) with the above properties. Then ((0,1))=(0,t’) for a t'€D
and v ((k,1))= v ((k.id) - (0,1))= ¥ ((k,id))- ¥ ((0,7)) = (v(k),id)-(0,7) = (y(k), ). Hence for
Ky ky €L (vlkyoky) ok g )= (koky by e )= 7k, id)-(y,id) = 7 (kid)) - F(kyeid )=
(v(k,).id)-(v(ky).id)=(v(k)® V(K1) 9(k,) = (kDO v(,). voy K v7). e vEAut(L.@).

The group G=LxD can be considered as a transformation group operating on L in

the following way:
L—- L
g=(a,1) : {

f €G.
x = adt(x) or &
If (L,®) is also a loop, i.e. besides (K1r), (K2), (K3) and (K4) also (K12¢) is valid, then:

(7.2) If each 1€ D\{id} has the only one fixed point O€ L, then G is a Frobeniusgroup , i.e.
-- G acts transitively on L,

- Gy:={g€G: g(x)=x} #{id} and

== GyN Gy ={id} for x#y and x,y €L .

Proof. (G,o) is a group: Let (a,1), (b,6)€T, then (a,1)o(b,s) = (a® t(b), Sa,t(b)t 6) €G, since
(a,t)o(b,s): x>ad®t(bos(x))= (a®1(b)) @ Sa,t(b)m(x)' Notice (a,t)ﬂ:(t_l(@a),T—l)EG‘
G acts transitively on L, since for given x,y€L and t€D by (K1¢) there exists an
element aIEL with a®1(x)=y, i.e. (a,1)€G maps x onto y. Hence for t#id and X=y,
there is an element (a,t)GGX\{id}. Since G acts transitively, GX and GO are isomorphic.
Therefore an automorphism g€ Gx\{id} possess a fixed point y#x if and only if there
is an h=(0,t)€G0\(id} with a fixed point 220, i.e. 1(z)=z. Hence if teD\{id} has no
fixed point except O, then Gy N Gy={id} for xzy.

(7.3) Theorem. Let (L,®) be a finite loop with (K3) and (K4) and let D=<(5, p,:a,beL}>
be its stucture group. If D\{id} operates fixed point free on L\{0}, then (L,®) is a group.
Or with other words: If (L,®) is a proper loop then there exists a t€D with at least

two fixed points.

Proof. Assume that D operates fixed point free on L\{0}, i.e. t(x)=x implies x=0€L
for any teD\{id}. Then G=LxD is a Frobeniusgroup operating on L.
Since (L,®) is a loop, the subset L:=Lx{0}C G except (0,id) operates transitively and

fixed point free on L. Now the Theorem of Frobenius says that in a finite Frobenius-
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group G the set T of fixed point free transformations together with {id} form a normal

subgroup of G which operates regularly. Let TSG be this normal subgroup. Then LcCT.

Since both sets L and T operate regularly on L, the finiteness of G implies L =T

Thus L is a group, i.e. (a,id)-(b,id)=(aeb,5a’b)ef=Lx{id}. hence 3, p=id for any

a,bel and (L,®) is a group.

Remark 11. To our knowledge it seems rather difficult to prove even partial results

in the infinite case (cf. [13 to 171).
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