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CHAPTER 7

ORDINARY DIFFERENTIAL
EQUATIONS

Much of theoretical physics is originally formulated in terms of differential equations in the
three-dimensional physical space (and sometimes also time). These variables (e.g., x , y, z,
t ) are usually referred to as independent variables, while the function or functions being
differentiated are referred to as dependent variable(s). A differential equation involving
more than one independent variable is called a partial differential equation, often abbre-
viated PDE. The simpler situation considered in the present chapter is that of an equation
in a single independent variable, known as an ordinary differential equation, abbreviated
ODE. As we shall see in a later chapter, some of the most frequently used methods for solv-
ing PDEs involve their expression in terms of the solutions to ODEs, so it is appropriate to
begin our study of differential equations with ODEs.

7.1 INTRODUCTION

To start, we note that the taking of a derivative is a linear operation, meaning that

d

dx

(
aϕ(x)+ bψ(x)

)
= a

dϕ

dx
+ b

dψ

dx
,

and the derivative operation can be viewed as defining a linear operator: L= d/dx . Higher
derivatives are also linear operators, as for example

d2

dx2

(
aϕ(x)+ bψ(x)

)
= a

d2ϕ

dx2
+ b

d2ψ

dx2
.
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Note that the linearity under discussion is that of the operator. For example, if we define

L= p(x)
d

dx
+ q(x),

it is identified as linear because

L
(
aϕ(x)+ bψ(x)

)
= a

(
p(x)

dϕ

dx
+ q(x)ϕ

)
+ b

(
p(x)

dψ

dx
+ q(x)ψ

)
= aLϕ + bLψ.

We see that the linearity of L imposes no requirement that either p(x) or q(x) be a linear
function of x . Linear differential operators therefore include those of the form

L≡
n∑
ν=0

pν(x)

(
dν

dxν

)
,

where the functions pν(x) are arbitrary.
An ODE is termed homogeneous if the dependent variable (here ϕ) occurs to the same

power in all its terms, and inhomogeneous otherwise; it is termed linear if it can be written
in the form

Lϕ(x)= F(x), (7.1)

where L is a linear differential operator and F(x) is an algebraic function of x (i.e., not
a differential operator). An important class of ODEs are those that are both linear and
homogeneous, and thereby of the form Lϕ = 0.

The solutions to ODEs are in general not unique, and if there are multiple solutions it
is useful to identify those that are linearly independent (linear dependence is discussed in
Section 2.1). Homogeneous linear ODEs have the general property that any multiple of a
solution is also a solution, and that if there are multiple linearly independent solutions, any
linear combination of those solutions will also solve the ODE. This statement is equivalent
to noting that if L is linear, then, for all a and b,

Lϕ = 0 and Lψ = 0 −→ L(aϕ + bψ)= 0.

The Schrödinger equation of quantum mechanics is a homogeneous linear ODE (or if in
more than one dimension, a homogeneous linear PDE), and the property that any linear
combination of its solutions is also a solution is the conceptual basis for the well-known
superposition principle in electrodynamics, wave optics and quantum theory.

Notationally, it is often convenient to use the symbols x and y to refer, respectively,
to independent and dependent variables, and a typical linear ODE then takes the form
Ly = F(x). It is also customary to use primes to indicate derivatives: y′ ≡ dy/dx . In
terms of this notation, the superposition property of solutions y1 and y2 of a homogeneous
linear ODE tells us that the ODE also has as solutions c1 y1, c2 y2, and c1 y1 + c2 y2, with
the ci arbitrary constants.

Some physically important problems (particularly in fluid mechanics and in chaos the-
ory) give rise to nonlinear differential equations. A well-studied example is the Bernoulli
equation

y′ = p(x)y + q(x)yn, n 6= 0, 1,

which cannot be written in terms of a linear operator applied to y.
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Further terms used to classify ODEs include their order (highest derivative appear-
ing therein), and degree (power to which the highest derivative appears after the ODE is
rationalized if that is necessary). For many applications, the concept of linearity is more
relevant than that of degree.

7.2 FIRST-ORDER EQUATIONS

Physics involves some first-order differential equations. For completeness it seems desir-
able to touch upon them briefly. We consider the general form

dy

dx
= f (x, y)=−

P(x, y)

Q(x, y)
. (7.2)

While there is no systematic way to solve the most general first-order ODE, there are
a number of techniques that are often useful. After reviewing some of these techniques,
we proceed to a more detailed treatment of linear first-order ODEs, for which systematic
procedures are available.

Separable Equations

Frequently Eq. (7.2) will have the special form

dy

dx
=−

P(x)

Q(y)
. (7.3)

Then it may be rewritten as

P(x)dx + Q(y)dy = 0.

Integrating from (x0, y0) to (x, y) yields
x∫

x0

P(x)dx +

y∫
y0

Q(y)dy = 0.

Since the lower limits, x0 and y0, contribute constants, we may ignore them and simply add
a constant of integration. Note that this separation of variables technique does not require
that the differential equation be linear.

Example 7.2.1 PARACHUTIST

We want to find the velocity of a falling parachutist as a function of time and are partic-
ularly interested in the constant limiting velocity, v0, that comes about by air drag, taken
to be quadratic, −bv2, and opposing the force of the gravitational attraction, mg, of the
Earth on the parachutist. We choose a coordinate system in which the positive direction
is downward so that the gravitational force is positive. For simplicity we assume that the
parachute opens immediately, that is, at time t = 0, where v(t)= 0, our initial condition.
Newton’s law applied to the falling parachutist gives

mv̇ =mg− bv2, (7.4)

where m includes the mass of the parachute.
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The terminal velocity, v0, can be found from the equation of motion as t→∞; when
there is no acceleration, v̇ = 0, and

bv2
0 =mg, or v0 =

√
mg

b
.

It simplifies further work to rewrite Eq. (7.4) as

m

b
v̇ = v2

0 − v
2.

This equation is separable, and we write it in the form

dv

v2
0 − v

2
=

b

m
dt. (7.5)

Using partial fractions to write

1

v2
0 − v

2
=

1

2v0

(
1

v + v0
−

1

v − v0

)
,

it is straightforward to integrate both sides of Eq. (7.5) (the left-hand side from v = 0 to v,
the right-hand side from t = 0 to t ), yielding

1

2v0
ln
v0 + v

v0 − v
=

b

m
t.

Solving for the velocity, we have

v =
e2t/T

− 1

e2t/T + 1
v0 = v0

sinh(t/T )

cosh(t/T )
= v0 tanh

t

T
,

where T =
√

m/gb is the time constant governing the asymptotic approach of the velocity
to its limiting value, v0.

Inserting numerical values, g = 9.8 m/s2, and taking b = 700 kg/m, m = 70 kg, gives
v0 =

√
9.8/10 ≈ 1 m/s ≈ 3.6 km/h ≈ 2.234 mi/h, the walking speed of a pedestrian at

landing, and T =
√

m/bg = 1/
√

10 · 9.8 ≈ 0.1 s. Thus, the constant speed v0 is reached
within a second. Finally, because it is always important to check the solution, we verify
that our solution satisfies the original differential equation:

v̇ =
cosh(t/T )

cosh(t/T )

v0

T
−

sinh2(t/T )

cosh2(t/T )

v0

T
=
v0

T
−

v2

T v0
= g−

b

m
v2.

A more realistic case, where the parachutist is in free fall with an initial speed v(0) > 0
before the parachute opens, is addressed in Exercise 7.2.16. �
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Exact Differentials

Again we rewrite Eq. (7.2) as

P(x, y)dx + Q(x, y)dy = 0. (7.6)

This equation is said to be exact if we can match the left-hand side of it to a differential
dϕ, and thereby reach

dϕ =
∂ϕ

∂x
dx +

∂ϕ

∂y
dy = 0. (7.7)

Exactness therefore implies that there exists a function ϕ(x, y) such that

∂ϕ

∂x
= P(x, y) and

∂ϕ

∂y
= Q(x, y), (7.8)

because then our ODE corresponds to an instance of Eq. (7.7), and its solution will be
ϕ(x, y)= constant.

Before seeking to find a function ϕ satisfying Eq. (7.8), it is useful to determine whether
such a function exists. Taking the two formulas from Eq. (7.8), differentiating the first with
respect to y and the second with respect to x , we find

∂2ϕ

∂y∂x
=
∂P(x, y)

∂y
and

∂2ϕ

∂x∂y
=
∂Q(x, y)

∂x
,

and these are consistent if and only if

∂P(x, y)

∂y
=
∂Q(x, y)

∂x
. (7.9)

We therefore conclude that Eq. (7.6) is exact only if Eq. (7.9) is satisfied. Once exactness
has been verified, we can integrate Eqs. (7.8) to obtain ϕ and therewith a solution to the
ODE.

The solution takes the form

ϕ(x, y)=

x∫
x0

P(x, y)dx +

y∫
y0

Q(x0, y)dy = constant. (7.10)

Proof of Eq. (7.10) is left to Exercise 7.2.7.
We note that separability and exactness are independent attributes. All separable ODEs

are automatically exact, but not all exact ODEs are separable.

Example 7.2.2 A NONSEPARABLE EXACT ODE

Consider the ODE

y′ +
(

1+
y

x

)
= 0.

Multiplying by x dx , this ODE becomes

(x + y)dx + x dy = 0,
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which is of the form

P(x, y)dx + Q(x, y)dy = 0,

with P(x, y) = x + y and Q(x, y) = x . The equation is not separable. To check if it is
exact, we compute

∂P

∂y
=
∂(x + y)

∂y
= 1,

∂Q

∂x
=
∂x

∂x
= 1.

These partial derivatives are equal; the equation is exact, and can be written in the form

dϕ = P dx + Q dy = 0.

The solution to the ODE will be ϕ = C , with ϕ computed according to Eq. (7.10):

ϕ =

x∫
x0

(x + y)dx +

y∫
y0

x0dy =

(
x2

2
+ xy −

x2
0

2
− x0 y

)
+ (xo y − x0 y0)

=
x2

2
+ xy + constant terms.

Thus, the solution is

x2

2
+ xy = C,

which if desired can be solved to give y as a function of x . We can also check to make sure
that our solution actually solves the ODE. �

It may well turn out that Eq. (7.6) is not exact and that Eq. (7.9) is not satisfied. However,
there always exists at least one and perhaps an infinity of integrating factors α(x, y) such
that

α(x, y)P(x, y)dx + α(x, y)Q(x, y)dy = 0

is exact. Unfortunately, an integrating factor is not always obvious or easy to find. A sys-
tematic way to develop an integrating factor is known only when a first-order ODE is
linear; this will be discussed in the subsection on linear first-order ODEs.

Equations Homogeneous in x and y

An ODE is said to be homogeneous (of order n) in x and y if the combined powers of
x and y add to n in all the terms of P(x, y) and Q(x, y) when the ODE is written as in
Eq. (7.6). Note that this use of the term “homogeneous” has a different meaning than when
it was used to describe a linear ODE as given in Eq. (7.1) with the term F(x) equal to zero,
because it now applies to the combined power of x and y.

A first-order ODE, which is homogeneous of order n in the present sense (and not nec-
essarily linear), can be made separable by the substitution y = xv, with dy = x dv+ v dx .
This substitution causes the x dependence of all the terms of the equation containing dv to
be xn+1, with all the terms containing dx having x-dependence xn . The variables x and v
can then be separated.
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Example 7.2.3 AN ODE HOMOGENEOUS IN x AND y

Consider the ODE

(2x + y)dx + x dy = 0,

which is homogeneous in x and y. Making the substitution y = xv, with dy = x dv+v dx ,
the ODE becomes

(2v + 2)dx + x dv = 0,

which is separable, with solution ln x+ 1
2 ln(v+1)= C , which is equivalent to x2(v+1)=

C . Forming y = xv, the solution can be rearranged into

y =
C

x
− x .

�

Isobaric Equations

A generalization of the preceding subsection is to modify the definition of homogeneity by
assigning different weights to x and y (note that corresponding weights must then also be
assigned to dx and dy). If assigning unit weight to each instance of x or dx and a weight
m to each instance of y or dy makes the ODE homogeneous as defined here, then the
substitution y = xmv will make the equation separable. We illustrate with an example.

Example 7.2.4 AN ISOBARIC ODE

Here is an isobaric ODE:

(x2
− y)dx + x dy = 0.

Assigning x weight 1, and y weight m, the term x2dx has weight 3; the other two terms
have weight 1+m. Setting 3= 1+m, we find that all terms can be assigned equal weight
if we take m = 2. This means that we should make the substitution y= x2v. Doing so,
we get

(1− v)dx + x dv = 0,

which separates into

dx

x
+

dv

v + 1
= 0 −→ ln x + ln(v + 1)= ln C, or x(v + 1)= C.

From this, we get v =
C

x
− 1. Since y = x2v, the ODE has solution y = Cx − x2. �
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Linear First-Order ODEs

While nonlinear first-order ODEs can often (but not always) be solved using the strategies
already presented, the situation is different for the linear first-order ODE because proce-
dures exist for solving the most general equation of this type, which we write in the form

dy

dx
+ p(x)y = q(x). (7.11)

If our linear first-order ODE is exact, its solution is straightforward. If it is not exact, we
make it exact by introducing an integrating factor α(x), so that the ODE becomes

α(x)
dy

dx
+ α(x)p(x)y = α(x)q(x). (7.12)

The reason for multiplication by α(x) is to cause the left-hand side of Eq. (7.12) to become
a perfect differential, so we require that α(x) be such that

d

dx

[
α(x)y

]
= α(x)

dy

dx
+ α(x)p(x)y. (7.13)

Expanding the left-hand side of Eq. (7.13), that equation becomes

α(x)
dy

dx
+

dα

dx
y = α(x)

dy

dx
+ α(x)p(x)y,

so α must satisfy

dα

dx
= α(x)p(x). (7.14)

This is a separable equation and therefore soluble. Separating the variables and integrat-
ing, we obtain

α∫
dα

α
=

x∫
p(x)dx .

We need not consider the lower limits of these integrals because they combine to yield a
constant that does not affect the performance of the integrating factor and can be set to
zero. Completing the evaluation, we reach

α(x)= exp

 x∫
p(x)dx

. (7.15)

With α now known we proceed to integrate Eq. (7.12), which, because of Eq. (7.13),
assumes the form

d

dx
[α(x)y(x)] = α(x)q(x),

which can be integrated (and divided through by α) to yield

y(x)=
1

α(x)

 x∫
α(x)q(x)dx +C

≡ y2(x)+ y1(x). (7.16)
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The two terms of Eq. (7.16) have an interesting interpretation. The term y1 = C/α(x)
is the general solution of the homogeneous equation obtained by replacing q(x) with zero.
To see this, write the homogeneous equation as

dy

y
=−p(x)dx,

which integrates to

ln y =−

x∫
p(x)dx +C =− lnα +C.

Taking the exponential of both sides and renaming eC as C , we get just y = C/α(x). The
other term of Eq. (7.16),

y2 =
1

α(x)

x∫
α(x)q(x)dx (7.17)

corresponds to the right-hand side (source) term q(x), and is a solution of the original
inhomogeneous equation (as is obvious because C can be set to zero). We thus have the
general solution to the inhomogeneous equation presented as a particular solution (or,
in ODE parlance, a particular integral) plus the general solution to the corresponding
homogeneous equation.

The above observations illustrate the following theorem:

The solution of an inhomogeneous first-order linear ODE is unique except for an arbi-
trary multiple of the solution of the corresponding homogeneous ODE.

To show this, suppose y1 and y2 both solve the inhomogeneous ODE, Eq. (7.11). Then,
subtracting the equation for y2 from that for y1, we have

y′1 − y′2 + p(x)(y1 − y2)= 0.

This shows that y1− y2 is (at some scale) a solution of the homogeneous ODE. Remember
that any solution of the homogeneous ODE remains a solution when multiplied by an
arbitrary constant.

We also have the theorem:

A first-order linear homogeneous ODE has only one linearly independent solution.

Two functions y1(x) and y2(x) are linearly dependent if there exist two constants a and
b, both nonzero, that cause ay1 + by2 to vanish for all x . In the present situation, this is
equivalent to the statement that y1 and y2 are linearly dependent if they are proportional to
each other.

To prove the theorem, assume that the homogeneous ODE has the linearly independent
solutions y1 and y2. Then, from the homogeneous ODE, we have

y′1
y1
=−p(x)=

y′2
y2
.

Integrating the first and last members of this equation, we obtain

ln y1 = ln y2 +C, equivalent to y1 = Cy2,

contradicting our assumption that y1 and y2 are linearly independent.
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Example 7.2.5 RL CIRCUIT

For a resistance-inductance circuit Kirchoff’s law leads to

L
d I (t)

dt
+ RI (t)= V (t),

where I (t) is the current, L and R are, respectively, constant values of the inductance and
the resistance, and V (t) is the time-dependent input voltage.

From Eq. (7.15), our integrating factor α(t) is

α(t)= exp

t∫
R

L
dt = eRt/L .

Then, by Eq. (7.16),

I (t)= e−Rt/L

 t∫
eRt/L V (t)

L
dt +C

,
with the constant C to be determined by an initial condition.

For the special case V (t)= V0, a constant,

I (t)= e−Rt/L
[

V0

L
.
L

R
eRt/L

+C

]
=

V0

R
+Ce−Rt/L .

If the initial condition is I (0)= 0, then C =−V0/R and

I (t)=
V0

R

[
1− e−Rt/L

]
.

�

We close this section by pointing out that the inhomogeneous linear first-order ODE can
also be solved by a method called variation of the constant, or alternatively variation of
parameters, as follows. First, we solve the homogeneous ODE y′+ py = 0 by separation
of variables as before, giving

y′

y
=−p, ln y =−

x∫
p(X)d X + ln C, y(x)= C exp

− x∫
p(X)d X

.
Next we allow the integration constant to become x-dependent, that is, C→ C(x). This is
the reason the method is called “variation of the constant.” To prepare for substitution into
the inhomogeneous ODE, we calculate y′:

y′ = exp

− x∫
p(X)d X

[−pC(x)+C ′(x)
]
=−py(x)+C ′(x) exp

− x∫
p(X)d X

.
Making the substitution for y′ into the inhomogeneous ODE y′ + py = q , some cancella-
tion occurs, and we are left with

C ′(x) exp

− x∫
p(X)d X

= q,
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which is a separable ODE for C(x) that integrates to yield

C(x)=

x∫
exp

 X∫
p(Y )dY

q(X)d X and y = C(x) exp

− x∫
p(X)d X

.
This particular solution of the inhomogeneous ODE is in agreement with that called y2 in
Eq. (7.17).

Exercises

7.2.1 From Kirchhoff’s law the current I in an RC (resistance-capacitance) circuit (Fig. 7.1)
obeys the equation

R
d I

dt
+

1

C
I = 0.

(a) Find I (t).

(b) For a capacitance of 10,000 µF charged to 100 V and discharging through a resis-
tance of 1 M�, find the current I for t = 0 and for t = 100 seconds.

Note. The initial voltage is I0 R or Q/C , where Q =
∫
∞

0 I (t)dt .

7.2.2 The Laplace transform of Bessel’s equation (n = 0) leads to

(s2
+ 1) f ′(s)+ s f (s)= 0.

Solve for f (s).

7.2.3 The decay of a population by catastrophic two-body collisions is described by

d N

dt
=−k N 2.

This is a first-order, nonlinear differential equation. Derive the solution

N (t)= N0

(
1+

t

τ0

)−1

,

where τ0 = (k N0)
−1. This implies an infinite population at t =−τ0.

C+

−
R

FIGURE 7.1 RC circuit.
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7.2.4 The rate of a particular chemical reaction A+ B→ C is proportional to the concentra-
tions of the reactants A and B:

dC(t)

dt
= α[A(0)−C(t)][B(0)−C(t)].

(a) Find C(t) for A(0) 6= B(0).

(b) Find C(t) for A(0)= B(0).

The initial condition is that C(0)= 0.

7.2.5 A boat, coasting through the water, experiences a resisting force proportional to vn, v

being the boat’s instantaneous velocity. Newton’s second law leads to

m
dv

dt
=−kvn .

With v(t = 0) = v0, x(t = 0) = 0, integrate to find v as a function of time and v as a
function of distance.

7.2.6 In the first-order differential equation dy/dx = f (x, y), the function f (x, y) is a func-
tion of the ratio y/x :

dy

dx
= g(y/x).

Show that the substitution of u = y/x leads to a separable equation in u and x .

7.2.7 The differential equation

P(x, y)dx + Q(x, y)dy = 0

is exact. Show that its solution is of the form

ϕ(x, y)=

x∫
x0

P(x, y)dx +

y∫
y0

Q(x0, y)dy = constant.

7.2.8 The differential equation

P(x, y)dx + Q(x, y)dy = 0

is exact. If

ϕ(x, y)=

x∫
x0

P(x, y)dx +

y∫
y0

Q(x0, y)dy,

show that
∂ϕ

∂x
= P(x, y),

∂ϕ

∂y
= Q(x, y).

Hence, ϕ(x, y)= constant is a solution of the original differential equation.

7.2.9 Prove that Eq. (7.12) is exact in the sense of Eq. (7.9), provided that α(x) satisfies
Eq. (7.14).
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7.2.10 A certain differential equation has the form

f (x)dx + g(x)h(y)dy = 0,

with none of the functions f (x), g(x),h(y) identically zero. Show that a necessary and
sufficient condition for this equation to be exact is that g(x)= constant.

7.2.11 Show that

y(x)= exp

− x∫
p(t)dt


x∫

exp

 s∫
p(t)dt

q(s)ds +C


is a solution of

dy

dx
+ p(x)y(x)= q(x)

by differentiating the expression for y(x) and substituting into the differential equation.

7.2.12 The motion of a body falling in a resisting medium may be described by

m
dv

dt
=mg− bv

when the retarding force is proportional to the velocity, v. Find the velocity. Evaluate
the constant of integration by demanding that v(0)= 0.

7.2.13 Radioactive nuclei decay according to the law
d N

dt
=−λN ,

N being the concentration of a given nuclide and λ, the particular decay constant. In
a radioactive series of two different nuclides, with concentrations N1(t) and N2(t), we
have

d N1

dt
=−λ1 N1,

d N2

dt
= λ1 N1 − λ2 N2.

Find N2(t) for the conditions N1(0)= N0 and N2(0)= 0.

7.2.14 The rate of evaporation from a particular spherical drop of liquid (constant density) is
proportional to its surface area. Assuming this to be the sole mechanism of mass loss,
find the radius of the drop as a function of time.

7.2.15 In the linear homogeneous differential equation

dv

dt
=−av

the variables are separable. When the variables are separated, the equation is exact.
Solve this differential equation subject to v(0)= v0 by the following three methods:

(a) Separating variables and integrating.

(b) Treating the separated variable equation as exact.
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(c) Using the result for a linear homogeneous differential equation.

ANS. v(t)= v0e−at .

7.2.16 (a) Solve Example 7.2.1, assuming that the parachute opens when the parachutist’s
velocity has reached vi = 60 mi/h (regard this time as t = 0). Find v(t).

(b) For a skydiver in free fall use the friction coefficient b = 0.25 kg/m and mass
m = 70 kg. What is the limiting velocity in this case?

7.2.17 Solve the ODE

(xy2
− y)dx + x dy = 0.

7.2.18 Solve the ODE

(x2
− y2ey/x )dx + (x2

+ xy)ey/x dy = 0.

Hint. Note that the quantity y/x in the exponents is of combined degree zero and does
not affect the determination of homogeneity.

7.3 ODES WITH CONSTANT COEFFICIENTS

Before addressing second-order ODEs, the main topic of this chapter, we discuss a special-
ized, but frequently occurring class of ODEs that are not constrained to be of specific order,
namely those that are linear and whose homogeneous terms have constant coefficients. The
generic equation of this type is

dn y

dxn
+ an−1

dn−1 y

dxn−1
+ · · · + a1

dy

dx
+ a0 y = F(x). (7.18)

The homogeneous equation corresponding to Eq. (7.18) has solutions of the form y = emx,
where m is a solution of the algebraic equation

mn
+ an−1mn−1

+ · · · + a1m + a0 = 0,

as may be verified by substitution of the assumed form of the solution.
In the case that the m equation has a multiple root, the above prescription will not yield

the full set of n linearly independent solutions for the original n th order ODE. If one then
considers the limiting process in which two roots approach each other, it is possible to
conclude that if emx is a solution, then so is d emx/dm = xemx. A triple root would have
solutions emx, xemx, x2emx, etc.

Example 7.3.1 HOOKE’S LAW SPRING

A mass M attached to a Hooke’s Law spring (of spring constant k) is in oscillatory motion.
Letting y be the displacement of the mass from its equilibrium position, Newton’s law of
motion takes the form

M
d2 y

dt2
=−ky,
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which is an ODE of the form y′′+ a0 y = 0, with a0 =+k/M . The general solution to this
ODE is of the form C1em1t

+ C2em2t, where m1 and m2 are the solutions of the algebraic
equation m2

+ a0 = 0.
The values of m1 and m2 are ±iω, where ω=

√
k/M , so the ODE has solution

y(t)= C1e+iωt
+C2e−iωt .

Since the ODE is homogeneous, we may alternatively describe its general solution using
arbitrary linear combinations of the above two terms. This permits us to combine them to
obtain forms that are real and therefore appropriate to the current problem. Noting that

eiωt
+ e−iωt

2
= cosωt and

eiωt
− e−iωt

2i
= sinωt,

a convenient alternate form is

y(t)= C1 cosωt +C2 sinωt.

The solution to a specific oscillation problem will now involve fitting the coefficients
C1 and C2 to the initial conditions, as for example y(0) and y′(0). �

Exercises

Find the general solutions to the following ODEs. Write the solutions in forms that are
entirely real (i.e., that contain no complex quantities).

7.3.1 y′′′ − 2y′′ − y′ + 2y = 0.

7.3.2 y′′′ − 2y′′ + y′ − 2y = 0.

7.3.3 y′′′ − 3y′ + 2y = 0.

7.3.4 y′′ + 2y′ + 2y = 0.

7.4 SECOND-ORDER LINEAR ODES

We now turn to the main topic of this chapter, second-order linear ODEs. These are of
particular importance because they arise in the most frequently used methods for solving
PDEs in quantum mechanics, electromagnetic theory, and other areas in physics. Unlike
the first-order linear ODE, we do not have a universally applicable closed-form solution,
and in general it is found advisable to use methods that produce solutions in the form of
power series. As a precursor to the general discussion of series-solution methods, we begin
by examining the notion of singularity as applied to ODEs.

Singular Points

The concept of singularity of an ODE is important to us for two reasons: (1) it is useful
for classifying ODEs and identifying those that can be transformed into common forms
(discussed later in this subsection), and (2) it bears on the feasibility of finding series
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solutions to the ODE. This feasibility is the topic of Fuchs’ theorem (to be discussed
shortly).

When a linear homogeneous second-order ODE is written in the form

y′′ + P(x)y′ + Q(x)y = 0, (7.19)

points x0 for which P(x) and Q(x) are finite are termed ordinary points of the ODE.
However, if either P(x) or Q(x) diverge as x→ x0, the point x0 is called a singular point.
Singular points are further classified as regular or irregular (the latter also sometimes
called essential singularities):

• A singular point x0 is regular if either P(x) or Q(x) diverges there, but (x − x0)P(x)
and (x − x0)

2 Q(x) remain finite.

• A singular point x0 is irregular if P(x) diverges faster than 1/(x − x0) so that (x −
x0)P(x) goes to infinity as x→ x0, or if Q(x) diverges faster than 1/(x − x0)

2 so that
(x − x0)

2 Q(x) goes to infinity as x→ x0.

These definitions hold for all finite values of x0. To analyze the behavior at x→∞, we
set x = 1/z, substitute into the differential equation, and examine the behavior in the limit
z→ 0. The ODE, originally in the dependent variable y(x), will now be written in terms
of w(z), defined as w(z)= y(z−1). Converting the derivatives,

y′ =
dy(x)

dx
=

dy(z−1)

dz

dz

dx
=

dw(z)

dz

(
−

1

x2

)
=−z2w′, (7.20)

y′′ =
dy′

dz

dz

dx
= (−z2)

d

dz

[
− z2w′

]
= z4w′′ + 2z3w′. (7.21)

Using Eqs. (7.20) and (7.21), we transform Eq. (7.19) into

z4w′′ +
[
2z3
− z2 P(z−1)

]
w′ + Q(z−1)w = 0. (7.22)

Dividing through by z4 to place the ODE in standard form, we see that the possibility of a
singularity at z = 0 depends on the behavior of

2z − P(z−1)

z2
and

Q(z−1)

z4
.

If these two expressions remain finite at z = 0, the point x =∞ is an ordinary point. If
they diverge no more rapidly than 1/z and 1/z2, respectively, x =∞ is a regular singular
point; otherwise it is an irregular singular point (an essential singularity).

Example 7.4.1 BESSEL’S EQUATION

Bessel’s equation is

x2 y′′ + xy′ + (x2
− n2)y = 0.
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Comparing it with Eq. (7.19), we have

P(x)=
1

x
, Q(x)= 1−

n2

x2
,

which shows that the point x = 0 is a regular singularity. By inspection we see that there
are no other singularities in the finite range. As x→∞ (z→ 0), from Eq. (7.22) we have
the coefficients

2z − z

z2
and

1− n2z2

z4
.

Since the latter expression diverges as 1/z4, the point x =∞ is an irregular, or essential,
singularity. �

Table 7.1 lists the singular points of a number of ODEs of importance in physics. It
will be seen that the first three equations in Table 7.1, the hypergeometric, Legendre, and
Chebyshev, all have three regular singular points. The hypergeometric equation, with reg-
ular singularities at 0, 1, and∞, is taken as the standard, the canonical form. The solutions
of the other two may then be expressed in terms of its solutions, the hypergeometric func-
tions. This is done in Chapter 18.

In a similar manner, the confluent hypergeometric equation is taken as the canonical
form of a linear second-order differential equation with one regular and one irregular sin-
gular point.

Table 7.1 Singularities of Some Important ODEs.

Equation Regular Irregular
Singularity Singularity

x = x =

1. Hypergeometric 0,1,∞ ·· ·

x(x − 1)y′′ + [(1+ a + b)x + c]y′ + aby = 0

2. Legendrea
−1,1,∞ ·· ·

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0

3. Chebyshev −1,1,∞ ·· ·

(1− x2)y′′ − xy′ + n2 y = 0

4. Confluent hypergeometric 0 ∞

xy′′ + (c− x)y′ − ay = 0

5. Bessel 0 ∞

x2 y′′ + xy′ + (x2
− n2)y = 0

6. Laguerrea 0 ∞

xy′′ + (1− x)y′ + ay = 0

7. Simple harmonic oscillator · · · ∞

y′′ +ω2 y = 0

8. Hermite · · · ∞

y′′ − 2xy′ + 2αy = 0

a The associated equations have the same singular points.
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Exercises

7.4.1 Show that Legendre’s equation has regular singularities at x =−1, 1, and∞.

7.4.2 Show that Laguerre’s equation, like the Bessel equation, has a regular singularity at
x = 0 and an irregular singularity at x =∞.

7.4.3 Show that Chebyshev’s equation, like the Legendre equation, has regular singularities
at x =−1, 1, and∞.

7.4.4 Show that Hermite’s equation has no singularity other than an irregular singularity at
x =∞.

7.4.5 Show that the substitution

x→
1− x

2
, a =−l, b= l + 1, c= 1

converts the hypergeometric equation into Legendre’s equation.

7.5 SERIES SOLUTIONS—FROBENIUS’ METHOD

In this section we develop a method of obtaining solution(s) of the linear, second-order,
homogeneous ODE. For the moment, we develop the mechanics of the method. After
studying examples, we return to discuss the conditions under which we can expect these
series solutions to exist.

Consider a linear, second-order, homogeneous ODE, in the form

d2 y

dx2
+ P(x)

dy

dx
+ Q(x)y = 0. (7.23)

In this section we develop (at least) one solution of Eq. (7.23) by expansion about the point
x = 0. In the next section we develop the second, independent solution and prove that
no third, independent solution exists. Therefore the most general solution of Eq. (7.23)
may be written in terms of the two independent solutions as

y(x)= c1 y1(x)+ c2 y2(x). (7.24)

Our physical problem may lead to a nonhomogeneous, linear, second-order ODE,

d2 y

dx2
+ P(x)

dy

dx
+ Q(x)y = F(x). (7.25)

The function on the right, F(x), typically represents a source (such as electrostatic charge)
or a driving force (as in a driven oscillator). Methods for solving this inhomogeneous
ODE are also discussed later in this chapter and, using Laplace transform techniques, in
Chapter 20. Assuming a single particular integral (i.e., specific solution), yp , of the in-
homogeneous ODE to be available, we may add to it any solution of the corresponding
homogeneous equation, Eq. (7.23), and write the most general solution of Eq. (7.25) as

y(x)= c1 y1(x)+ c2 y2(x)+ yp(x). (7.26)

In many problems, the constants c1 and c2 will be fixed by boundary conditions.
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For the present, we assume that F(x)= 0, and that therefore our differential equation is
homogeneous. We shall attempt to develop a solution of our linear, second-order, homoge-
neous differential equation, Eq. (7.23), by substituting into it a power series with undeter-
mined coefficients. Also available as a parameter is the power of the lowest nonvanishing
term of the series. To illustrate, we apply the method to two important differential equa-
tions.

First Example—Linear Oscillator

Consider the linear (classical) oscillator equation

d2 y

dx2
+ω2 y = 0, (7.27)

which we have already solved by another method in Example 7.3.1. The solutions we
found there were y = sinωx and cosωx .

We try

y(x)= x s(a0 + a1x + a2x2
+ a3x3

+ · · · )

=

∞∑
j=0

a j x s+ j , a0 6= 0, (7.28)

with the exponent s and all the coefficients a j still undetermined. Note that s need not be
an integer. By differentiating twice, we obtain

dy

dx
=

∞∑
j=0

a j (s + j)x s+ j−1,

d2 y

dx2
=

∞∑
j=0

a j (s + j)(s + j − 1)x s+ j−2.

By substituting into Eq. (7.27), we have
∞∑
j=0

a j (s + j)(s + j − 1)x s+ j−2
+ω2

∞∑
j=0

a j x s+ j
= 0. (7.29)

From our analysis of the uniqueness of power series (Chapter 1), we know that the coef-
ficient of each power of x on the left-hand side of Eq. (7.29) must vanish individually, x s

being an overall factor.
The lowest power of x appearing in Eq. (7.29) is x s−2, occurring only for j = 0 in the

first summation. The requirement that this coefficient vanish yields

a0s(s − 1)= 0.

Recall that we chose a0 as the coefficient of the lowest nonvanishing term of the series in
Eq. (7.28), so that, by definition, a0 6= 0. Therefore we have

s(s − 1)= 0. (7.30)
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This equation, coming from the coefficient of the lowest power of x , is called the indicial
equation. The indicial equation and its roots are of critical importance to our analysis.
Clearly, in this example it informs us that either s = 0 or s = 1, so that our series solution
must start either with an x0 or an x1 term.

Looking further at Eq. (7.29), we see that the next lowest power of x , namely x s−1, also
occurs uniquely (for j = 1 in the first summation). Setting the coefficient of x s−1 to zero,
we have

a1(s + 1)s = 0.

This shows that if s = 1, we must have a1 = 0. However, if s = 0, this equation imposes
no requirement on the coefficient set.

Before considering further the two possibilities for s, we return to Eq. (7.29) and demand
that the remaining net coefficients vanish. The contributions to the coefficient of x s+ j ,
( j ≥ 0), come from the term containing a j+2 in the first summation and from that with a j

in the second. Because we have already dealt with j = 0 and j = 1 in the first summation,
when we have used all j ≥ 0, we will have used all the terms of both series. For each value
of j , the vanishing of the net coefficient of x s+ j results in

a j+2(s + j + 2)(s + j + 1)+ω2a j = 0,

equivalent to

a j+2 =−a j
ω2

(s + j + 2)(s + j + 1)
. (7.31)

This is a two-term recurrence relation.1 In the present problem, given a j , Eq. (7.31)
permits us to compute a j+2 and then a j+4,a j+6, and so on, continuing as far as desired.
Thus, if we start with a0, we can make the even coefficients a2, a4, . . . , but we obtain no
information about the odd coefficients a1, a3, a5, . . . . But because a1 is arbitrary if s = 0
and necessarily zero if s = 1, let us set it equal to zero, and then, by Eq. (7.31),

a3 = a5 = a7 = · · · = 0;

the result is that all the odd-numbered coefficients vanish.
Returning now to Eq. (7.30), our indicial equation, we first try the solution s = 0. The

recurrence relation, Eq. (7.31), becomes

a j+2 =−a j
ω2

( j + 2)( j + 1)
, (7.32)

1In some problems, the recurrence relation may involve more than two terms; its exact form will depend on the functions P(x)
and Q(x) of the ODE.
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which leads to

a2 =−a0
ω2

1 · 2
=−

ω2

2!
a0,

a4 =−a2
ω2

3 · 4
=+

ω4

4!
a0,

a6 =−a4
ω2

5 · 6
=−

ω6

6!
a0, and so on.

By inspection (and mathematical induction, see Section 1.4),

a2n = (−1)n
ω2n

(2n)!
a0, (7.33)

and our solution is

y(x)s=0 = a0

[
1−

(ωx)2

2!
+
(ωx)4

4!
−
(ωx)6

6!
+ · · ·

]
= a0 cosωx . (7.34)

If we choose the indicial equation root s = 1 from Eq. (7.30), the recurrence relation of
Eq. (7.31) becomes

a j+2 =−a j
ω2

( j + 3)( j + 2)
. (7.35)

Evaluating this successively for j = 0, 2, 4, . . . , we obtain

a2 =−a0
ω2

2 · 3
=−

ω2

3!
a0,

a4 =−a2
ω2

4 · 5
=+

ω4

5!
a0,

a6 =−a4
ω2

6 · 7
=−

ω6

7!
a0, and so on.

Again, by inspection and mathematical induction,

a2n = (−1)n
ω2n

(2n + 1)!
a0. (7.36)

For this choice, s = 1, we obtain

y(x)s=1 = a0x

[
1−

(ωx)2

3!
+
(ωx)4

5!
−
(ωx)6

7!
+ · · ·

]
=

a0

ω

[
(ωx)−

(ωx)3

3!
+
(ωx)5

5!
−
(ωx)7

7!
+ · · ·

]
=

a0

ω
sinωx . (7.37)



ArfKen_Ch07-9780123846549.tex

350 Chapter 7 Ordinary Differential Equations

I II III IV

a0k(k − 1) a1(k + 1)k a2(k + 2)(k + 1)
a0ω2

a3(k + 3)(k + 2)
a1ω2

xk+
xk+

xk + 1+ …xk −2+ xk + 1+
+ xk + 1+ … = 0

= 0= 0
= 0= 0

FIGURE 7.2 Schematics of series solution.

For future reference we note that the ODE solution from the indicial equation root s = 0
consisted only of even powers of x , while the solution from the root s = 1 contained only
odd powers.

To summarize this approach, we may write Eq. (7.29) schematically as shown in
Fig. 7.2. From the uniqueness of power series (Section 1.2), the total coefficient of
each power of x must vanish—all by itself. The requirement that the first coefficient
vanish (I) leads to the indicial equation, Eq. (7.30). The second coefficient is han-
dled by setting a1= 0 (II). The vanishing of the coefficients of xs (and higher pow-
ers, taken one at a time) is ensured by imposing the recurrence relation, Eq. (7.31),
(III), (IV).

This expansion in power series, known as Frobenius’ method, has given us two series
solutions of the linear oscillator equation. However, there are two points about such series
solutions that must be strongly emphasized:

1. The series solution should always be substituted back into the differential equation, to
see if it works, as a precaution against algebraic and logical errors. If it works, it is a
solution.

2. The acceptability of a series solution depends on its convergence (including asymp-
totic convergence). It is quite possible for Frobenius’ method to give a series solution
that satisfies the original differential equation when substituted in the equation but
that does not converge over the region of interest. Legendre’s differential equation
(examined in Section 8.3) illustrates this situation.

Expansion about x0

Equation (7.28) is an expansion about the origin, x0 = 0. It is perfectly possible to replace
Eq. (7.28) with

y(x)=
∞∑
j=0

a j (x − x0)
s+ j , a0 6= 0. (7.38)

Indeed, for the Legendre, Chebyshev, and hypergeometric equations, the choice x0 = 1
has some advantages. The point x0 should not be chosen at an essential singularity, or
Frobenius’ method will probably fail. The resultant series (x0 an ordinary point or regular
singular point) will be valid where it converges. You can expect a divergence of some sort
when |x − x0| = |z1− x0|, where z1 is the ODE’s closest singularity to x0 (in the complex
plane).
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Symmetry of Solutions

Let us note that for the classical oscillator problem we obtained one solution of even sym-
metry, y1(x)= y1(−x), and one of odd symmetry, y2(x)=−y2(−x). This is not just an
accident but a direct consequence of the form of the ODE. Writing a general homogeneous
ODE as

L(x)y(x)= 0, (7.39)

in which L(x) is the differential operator, we see that for the linear oscillator equation,
Eq. (7.27), L(x) is even under parity; that is,

L(x)= L(−x).

Whenever the differential operator has a specific parity or symmetry, either even or odd,
we may interchange +x and −x , and Eq. (7.39) becomes

±L(x)y(−x)= 0.

Clearly, if y(x) is a solution of the differential equation, y(−x) is also a solution. Then,
either y(x) and y(−x) are linearly dependent (i.e., proportional), meaning that y is either
even or odd, or they are linearly independent solutions that can be combined into a pair of
solutions, one even, and one odd, by forming

yeven = y(x)+ y(−x), yodd = y(x)− y(−x).

For the classical oscillator example, we obtained two solutions; our method for finding
them caused one to be even, the other odd.

If we refer back to Section 7.4 we can see that Legendre, Chebyshev, Bessel, simple har-
monic oscillator, and Hermite equations are all based on differential operators with even
parity; that is, their P(x) in Eq. (7.19) is odd and Q(x) even. Solutions of all of them
may be presented as series of even powers of x or separate series of odd powers of x .
The Laguerre differential operator has neither even nor odd symmetry; hence its solutions
cannot be expected to exhibit even or odd parity. Our emphasis on parity stems primarily
from the importance of parity in quantum mechanics. We find that in many problems wave
functions are either even or odd, meaning that they have a definite parity. Most interac-
tions (beta decay is the big exception) are also even or odd, and the result is that parity is
conserved.

A Second Example—Bessel’s Equation

This attack on the linear oscillator was perhaps a bit too easy. By substituting the power
series, Eq. (7.28), into the differential equation, Eq. (7.27), we obtained two independent
solutions with no trouble at all.

To get some idea of other things that can happen, we try to solve Bessel’s equation,

x2 y′′ + xy′ + (x2
− n2)y = 0. (7.40)
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Again, assuming a solution of the form

y(x)=
∞∑
j=0

a j x s+ j,

we differentiate and substitute into Eq. (7.40). The result is
∞∑
j=0

a j (s + j)(s + j − 1)x s+ j
+

∞∑
j=0

a j (s + j)x s+ j

+

∞∑
j=0

a j x s+ j+2
−

∞∑
j=0

a j n
2x s+ j

= 0. (7.41)

By setting j = 0, we get the coefficient of x s, the lowest power of x appearing on the
left-hand side,

a0
[
s(s − 1)+ s − n2]

= 0, (7.42)

and again a0 6= 0 by definition. Equation (7.42) therefore yields the indicial equation

s2
− n2
= 0, (7.43)

with solutions s =±n.
We need also to examine the coefficient of x s+1. Here we obtain

a1[(s + 1)s + s + 1− n2
] = 0,

or

a1(s + 1− n)(s + 1+ n)= 0. (7.44)

For s =±n, neither s + 1− n nor s + 1+ n vanishes and we must require a1 = 0.
Proceeding to the coefficient of x s+ j for s = n, we see that it is the term containing a j

in the first, second, and fourth terms of Eq. (7.41), but is that containing a j−2 in the third
term. By requiring the overall coefficient of x s+ j to vanish, we obtain

a j [(n + j)(n + j − 1)+ (n + j)− n2
] + a j−2 = 0.

When j is replaced by j + 2, this can be rewritten for j ≥ 0 as

a j+2 =−a j
1

( j + 2)(2n + j + 2)
, (7.45)

which is the desired recurrence relation. Repeated application of this recurrence relation
leads to

a2 =−a0
1

2(2n + 2)
=−

a0n!

221!(n + 1)!
,

a4 =−a2
1

4(2n + 4)
=

a0n!

242!(n + 2)!
,

a6 =−a4
1

6(2n + 6)
=−

a0n!

263!(n + 3)!
, and so on,
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and in general,

a2p = (−1)p a0n!

22p p!(n + p)!
. (7.46)

Inserting these coefficients in our assumed series solution, we have

y(x)= a0xn
[

1−
n! x2

221!(n + 1)!
+

n! x4

242!(n + 2)!
− · · ·

]
. (7.47)

In summation form,

y(x)= a0

∞∑
j=0

(−1) j n! xn+2 j

22 j j !(n + j)!

= a0 2nn!
∞∑
j=0

(−1) j 1

j !(n + j)!

( x

2

)n+2 j
. (7.48)

In Chapter 14 the final summation (with a0 = 1/2nn!) is identified as the Bessel function
Jn(x):

Jn(x)=
∞∑
j=0

(−1) j 1

j !(n + j)!

( x

2

)n+2 j
. (7.49)

Note that this solution, Jn(x), has either even or odd symmetry,2 as might be expected
from the form of Bessel’s equation.

When s = −n and n is not an integer, we may generate a second distinct series, to be
labeled J−n(x). However, when−n is a negative integer, trouble develops. The recurrence
relation for the coefficients a j is still given by Eq. (7.45), but with 2n replaced by −2n.
Then, when j + 2 = 2n or j = 2(n − 1), the coefficient a j+2 blows up and Frobenius’
method does not produce a solution consistent with our assumption that the series starts
with x−n .

By substituting in an infinite series, we have obtained two solutions for the linear oscil-
lator equation and one for Bessel’s equation (two if n is not an integer). To the questions
“Can we always do this? Will this method always work?” the answer is “No, we cannot
always do this. This method of series solution will not always work.’’

Regular and Irregular Singularities

The success of the series substitution method depends on the roots of the indicial equation
and the degree of singularity of the coefficients in the differential equation. To understand
better the effect of the equation coefficients on this naive series substitution approach,

2Jn(x) is an even function if n is an even integer, and an odd function if n is an odd integer. For nonintegral n, Jn has no such
simple symmetry.
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consider four simple equations:

y′′ −
6

x2
y = 0, (7.50)

y′′ −
6

x3
y = 0, (7.51)

y′′ +
1

x
y′ −

b2

x2
y = 0, (7.52)

y′′ +
1

x2
y′ −

b2

x2
y = 0. (7.53)

The reader may show easily that for Eq. (7.50) the indicial equation is

s2
− s − 6= 0,

giving s = 3 and s = −2. Since the equation is homogeneous in x (counting d2/dx2 as
x−2), there is no recurrence relation. However, we are left with two perfectly good solu-
tions, x3 and x−2.

Equation (7.51) differs from Eq. (7.50) by only one power of x , but this sends the indicial
equation to

−6a0 = 0,

with no solution at all, for we have agreed that a0 6= 0. Our series substitution worked for
Eq. (7.50), which had only a regular singularity, but broke down at Eq. (7.51), which has
an irregular singular point at the origin.

Continuing with Eq. (7.52), we have added a term y′/x . The indicial equation is

s2
− b2
= 0,

but again, there is no recurrence relation. The solutions are y = xb and x−b , both perfectly
acceptable one-term series.

When we change the power of x in the coefficient of y′ from −1 to −2, in Eq. (7.53),
there is a drastic change in the solution. The indicial equation (with only the y′ term con-
tributing) becomes

s = 0.

There is a recurrence relation,

a j+1 =+a j
b2
− j ( j − 1)

j + 1
.

Unless the parameter b is selected to make the series terminate, we have

lim
j→∞

∣∣∣∣a j+1

a j

∣∣∣∣= lim
j→∞

j ( j + 1)

j + 1

= lim
j→∞

j2

j
=∞.
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Hence our series solution diverges for all x 6= 0. Again, our method worked for
Eq. (7.52) with a regular singularity but failed when we had the irregular singularity of
Eq. (7.53).

Fuchs’ Theorem

The answer to the basic question as to when the method of series substitution can be
expected to work is given by Fuchs’ theorem, which asserts that we can always obtain
at least one power-series solution, provided that we are expanding about a point which is
an ordinary point or at worst a regular singular point.

If we attempt an expansion about an irregular or essential singularity, our method may
fail as it did for Eqs. (7.51) and (7.53). Fortunately, the more important equations of mathe-
matical physics, listed in Section 7.4, have no irregular singularities in the finite plane.
Further discussion of Fuchs’ theorem appears in Section 7.6.

From Table 7.1, Section 7.4, infinity is seen to be a singular point for all the equations
considered. As a further illustration of Fuchs’ theorem, Legendre’s equation (with infinity
as a regular singularity) has a convergent series solution in negative powers of the argu-
ment (Section 15.6). In contrast, Bessel’s equation (with an irregular singularity at infinity)
yields asymptotic series (Sections 12.6 and 14.6). Although only asymptotic, these solu-
tions are nevertheless extremely useful.

Summary

If we are expanding about an ordinary point or at worst about a regular singularity, the
series substitution approach will yield at least one solution (Fuchs’ theorem).

Whether we get one or two distinct solutions depends on the roots of the indicial
equation.

1. If the two roots of the indicial equation are equal, we can obtain only one solution by
this series substitution method.

2. If the two roots differ by a nonintegral number, two independent solutions may be
obtained.

3. If the two roots differ by an integer, the larger of the two will yield a solution, while the
smaller may or may not give a solution, depending on the behavior of the coefficients.

The usefulness of a series solution for numerical work depends on the rapidity of con-
vergence of the series and the availability of the coefficients. Many ODEs will not yield
nice, simple recurrence relations for the coefficients. In general, the available series will
probably be useful for very small |x | (or |x − x0|). Computers can be used to determine
additional series coefficients using a symbolic language, such as Mathematica3 or Maple.4

Often, however, for numerical work a direct numerical integration will be preferred.

3S. Wolfram, Mathematica: A System for Doing Mathematics by Computer. Reading, MA. Addison Wesley (1991).
4A. Heck, Introduction to Maple. New York: Springer (1993).
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Exercises

7.5.1 Uniqueness theorem. The function y(x) satisfies a second-order, linear, homogeneous
differential equation. At x = x0, y(x)= y0 and dy/dx = y′0. Show that y(x) is unique,
in that no other solution of this differential equation passes through the points (x0, y0)

with a slope of y′0.

Hint. Assume a second solution satisfying these conditions and compare the Taylor
series expansions.

7.5.2 A series solution of Eq. (7.23) is attempted, expanding about the point x = x0. If x0 is
an ordinary point, show that the indicial equation has roots s = 0,1.

7.5.3 In the development of a series solution of the simple harmonic oscillator (SHO) equa-
tion, the second series coefficient a1 was neglected except to set it equal to zero. From
the coefficient of the next-to-the-lowest power of x, x s−1, develop a second-indicial
type equation.

(a) (SHO equation with s = 0). Show that a1, may be assigned any finite value
(including zero).

(b) (SHO equation with s = 1). Show that a1 must be set equal to zero.

7.5.4 Analyze the series solutions of the following differential equations to see when a1 may
be set equal to zero without irrevocably losing anything and when a1 must be set equal
to zero.

(a) Legendre, (b) Chebyshev, (c) Bessel, (d) Hermite.

ANS. (a) Legendre, (b) Chebyshev, and (d) Hermite: For s = 0, a1
may be set equal to zero; for s = 1, a1 must be set equal to zero.

(c) Bessel: a1 must be set equal to zero (except for s =±n =− 1
2 ).

7.5.5 Obtain a series solution of the hypergeometric equation

x(x − 1)y′′ + [(1+ a + b)x − c]y′ + aby = 0.

Test your solution for convergence.

7.5.6 Obtain two series solutions of the confluent hypergeometric equation

xy′′ + (c− x)y′ − ay = 0.

Test your solutions for convergence.

7.5.7 A quantum mechanical analysis of the Stark effect (parabolic coordinates) leads to the
differential equation

d

dξ

(
ξ

du

dξ

)
+

(
1

2
Eξ + α −

m2

4ξ
−

1

4
Fξ2

)
u = 0.

Here α is a constant, E is the total energy, and F is a constant such that Fz is the
potential energy added to the system by the introduction of an electric field.
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Using the larger root of the indicial equation, develop a power-series solution about
ξ = 0. Evaluate the first three coefficients in terms of ao.

ANS. Indicial equation s2
−

m2

4 = 0,

u(ξ)= a0ξ
m/2

{
1−

α

m + 1
ξ +

[
α2

2(m + 1)(m + 2)
−

E

4(m + 2)

]
ξ2
+ · · ·

}
.

Note that the perturbation F does not appear until a3 is included.

7.5.8 For the special case of no azimuthal dependence, the quantum mechanical analysis of
the hydrogen molecular ion leads to the equation

d

dη

[
(1− η2)

du

dη

]
+ αu + βη2u = 0.

Develop a power-series solution for u(η). Evaluate the first three nonvanishing coeffi-
cients in terms of a0.

ANS. Indicial equation s(s − 1)= 0,

uk=1 = a0η

{
1+

2− α

6
η2
+

[
(2− α)(12− α)

120
−
β

20

]
η4
+ · · ·

}
.

7.5.9 To a good approximation, the interaction of two nucleons may be described by a
mesonic potential

V =
Ae−ax

x
,

attractive for A negative. Show that the resultant Schrödinger wave equation

h̄2

2m

d2ψ

dx2
+ (E − V )ψ = 0

has the following series solution through the first three nonvanishing coefficients:

ψ = a0

{
x +

1

2
A′x2
+

1

6

[
1

2
A′2 − E ′ − a A′

]
x3
+ · · ·

}
,

where the prime indicates multiplication by 2m/h̄2.

7.5.10 If the parameter b2 in Eq. (7.53) is equal to 2, Eq. (7.53) becomes

y′′ +
1

x2
y′ −

2

x2
y = 0.

From the indicial equation and the recurrence relation, derive a solution y = 1+ 2x +
2x2. Verify that this is indeed a solution by substituting back into the differential
equation.
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7.5.11 The modified Bessel function I0(x) satisfies the differential equation

x2 d2

dx2
I0(x)+ x

d

dx
I0(x)− x2 I0(x)= 0.

Given that the leading term in an asymptotic expansion is known to be

I0(x)∼
ex

√
2πx

,

assume a series of the form

I0(x)∼
ex

√
2πx

{
1+ b1x−1

+ b2x−2
+ · · ·

}
.

Determine the coefficients b1 and b2.

ANS. b1 =
1
8 , b2 =

9
128 .

7.5.12 The even power-series solution of Legendre’s equation is given by Exercise 8.3.1. Take
a0 = 1 and n not an even integer, say n = 0.5. Calculate the partial sums of the series
through x200, x400, x600, . . ., x2000 for x = 0.95(0.01)1.00. Also, write out the individ-
ual term corresponding to each of these powers.

Note. This calculation does not constitute proof of convergence at x = 0.99 or diver-
gence at x = 1.00, but perhaps you can see the difference in the behavior of the sequence
of partial sums for these two values of x .

7.5.13 (a) The odd power-series solution of Hermite’s equation is given by Exercise 8.3.3.
Take a0 = 1. Evaluate this series for α = 0, x = 1,2,3. Cut off your calculation
after the last term calculated has dropped below the maximum term by a factor of
106 or more. Set an upper bound to the error made in ignoring the remaining terms
in the infinite series.

(b) As a check on the calculation of part (a), show that the Hermite series yodd(α = 0)
corresponds to

∫ x
0 exp(x2)dx .

(c) Calculate this integral for x = 1,2,3.

7.6 OTHER SOLUTIONS

In Section 7.5 a solution of a second-order homogeneous ODE was developed by substi-
tuting in a power series. By Fuchs’ theorem this is possible, provided the power series is
an expansion about an ordinary point or a nonessential singularity.5 There is no guarantee
that this approach will yield the two independent solutions we expect from a linear second-
order ODE. In fact, we shall prove that such an ODE has at most two linearly independent
solutions. Indeed, the technique gave only one solution for Bessel’s equation (n an integer).
In this section we also develop two methods of obtaining a second independent solution:
an integral method and a power series containing a logarithmic term. First, however, we
consider the question of independence of a set of functions.

5This is why the classification of singularities in Section 7.4 is of vital importance.
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Linear Independence of Solutions

In Chapter 2 we introduced the concept of linear dependence for forms of the type a1x1 +

a2x2+ . . . , and identified a set of such forms as linearly dependent if any one of the forms
could be written as a linear combination of others. We need now to extend the concept to
a set of functions ϕλ. The criterion for linear dependence of a set of functions of a variable
x is the existence of a relation of the form∑

λ

kλϕλ(x)= 0, (7.54)

in which not all the coefficients kλ are zero. The interpretation we attach to Eq. (7.54) is that
it indicates linear dependence if it is satisfied for all relevant values of x . Isolated points or
partial ranges of satisfaction of Eq. (7.54) do not suffice to indicate linear dependence. The
essential idea being conveyed here is that if there is linear dependence, the function space
spanned by the ϕλ(x) can be spanned using less than all of them. On the other hand, if the
only global solution of Eq. (7.54) is kλ = 0 for all λ, the set of functions ϕλ(x) is said to
be linearly independent.

If the members of a set of functions are mutually orthogonal, then they are automatically
linearly independent. To establish this, consider the evaluation of

S =

〈∑
λ

kλϕλ

∣∣∣∣∣∑
µ

kµϕµ

〉
for a set of orthonormal ϕλ and with arbitrary values of the coefficients kλ. Because of the
orthonormality, S evaluates to

∑
λ |kλ|

2, and will be nonzero (showing that
∑
λ kλϕλ 6= 0)

unless all the kλ vanish.
We now proceed to consider the ramifications of linear dependence for solutions of

ODEs, and for that purpose it is appropriate to assume that the functions ϕλ(x) are differ-
entiable as needed. Then, differentiating Eq. (7.54) repeatedly, with the assumption that it
is valid for all x , we generate a set of equations∑

λ

kλϕ
′
λ(x)= 0,

∑
λ

kλϕ
′′
λ(x)= 0,

continuing until we have generated as many equations as the number of λ values. This
gives us a set of homogeneous linear equations in which kλ are the unknown quantities.
By Section 2.1 there is a solution other than all kλ = 0 only if the determinant of the
coefficients of the kλ vanishes. This means that the linear dependence we have assumed by
accepting Eq. (7.54) implies that∣∣∣∣∣∣∣∣∣∣

ϕ1 ϕ2 . . . ϕn

ϕ′1 ϕ′2 . . . ϕ′n

. . . . . . . . . . . .

ϕ
(n−1)
1 ϕ

(n−1)
2 . . . ϕ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
= 0. (7.55)
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This determinant is called the Wronskian, and the analysis leading to Eq. (7.55) shows
that:

1. If the Wronskian is not equal to zero, then Eq. (7.54) has no solution other than kλ = 0.
The set of functions ϕλ is therefore linearly independent.

2. If the Wronskian vanishes at isolated values of the argument, this does not prove linear
dependence. However, if the Wronskian is zero over the entire range of the variable,
the functions ϕλ are linearly dependent over this range.6

Example 7.6.1 LINEAR INDEPENDENCE

The solutions of the linear oscillator equation, Eq. (7.27), are ϕ1 = sinωx , ϕ2 = cosωx .
The Wronskian becomes ∣∣∣∣∣ sinωx cosωx

ω cosωx −ω sinωx

∣∣∣∣∣=−ω 6= 0.

These two solutions, ϕ1 and ϕ2, are therefore linearly independent. For just two functions
this means that one is not a multiple of the other, which is obviously true here.

Incidentally, you know that

sinωx =±(1− cos2ωx)1/2,

but this is not a linear relation, of the form of Eq. (7.54). �

Example 7.6.2 LINEAR DEPENDENCE

For an illustration of linear dependence, consider the solutions of the ODE

d2ϕ(x)

dx2
= ϕ(x).

This equation has solutions ϕ1 = ex and ϕ2 = e−x , and we add ϕ3 = cosh x , also a solution.
The Wronskian is ∣∣∣∣∣∣∣

ex e−x cosh x

ex
−e−x sinh x

ex e−x cosh x

∣∣∣∣∣∣∣= 0.

The determinant vanishes for all x because the first and third rows are identical. Hence
ex, e−x, and cosh x are linearly dependent, and, indeed, we have a relation of the form of
Eq. (7.54):

ex
+ e−x

− 2 cosh x = 0 with kλ 6= 0.

�

6Compare H. Lass, Elements of Pure and Applied Mathematics, New York: McGraw-Hill (1957), p. 187, for proof of this
assertion. It is assumed that the functions have continuous derivatives and that at least one of the minors of the bottom row of
Eq. (7.55) (Laplace expansion) does not vanish in [a,b], the interval under consideration.
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Number of Solutions

Now we are ready to prove the theorem that a second-order homogeneous ODE has two
linearly independent solutions.

Suppose y1, y2, y3 are three solutions of the homogeneous ODE, Eq. (7.23). Then we
form the Wronskian W jk = y j y′k − y′j yk of any pair y j , yk of them and note also that

W ′jk = (y
′

j y′k + y j y′′k )− (y
′′

j yk + y′j y′k)

= y j y′′k − y′′j yk . (7.56)

Next we divide the ODE by y and move Q(x) to its right-hand side (where it becomes
−Q(x)), so, for solutions y j and yk :

y′′j
y j
+ P(x)

y′j
y j
=−Q(x)=

y′′k
yk
+ P(x)

y′k
yk
.

Taking now the first and third members of this equation, multiplying by y j yk and rearrang-
ing, we find that

(y j y′′k − y′′j yk)+ P(x)(y j y′k − y′j yk)= 0,

which simplifies for any pair of solutions to

W ′jk =−P(x)W jk . (7.57)

Finally, we evaluate the Wronskian of all three solutions, expanding it by minors along the
second row and identifying each term as containing a W ′i j as given by Eq. (7.56):

W =

∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣∣=−y′1W ′23 + y′2W ′13 − y′3W ′12.

We now use Eq. (7.57) to replace each W ′i j by −P(x)Wi j and then reassemble the minors
into a 3× 3 determinant, which vanishes because it contains two identical rows:

W = P(x)
(
y′1W23 − y′2W13 + y′3W12

)
=−P(x)

∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3
y′1 y′2 y′3

∣∣∣∣∣∣∣= 0.

We therefore have W = 0, which is just the condition for linear dependence of the solutions
y j . Thus, we have proved the following:

A linear second-order homogeneous ODE has at most two linearly independent solu-
tions. Generalizing, a linear homogeneous nth-order ODE has at most n linearly inde-
pendent solutions yj, and its general solution will be of the form y(x)=

∑n
j=1 c j y j (x).
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Finding a Second Solution

Returning to our linear, second-order, homogeneous ODE of the general form

y′′ + P(x)y′ + Q(x)y = 0, (7.58)

let y1 and y2 be two independent solutions. Then the Wronskian, by definition, is

W = y1 y′2 − y′1 y2. (7.59)

By differentiating the Wronskian, we obtain, as already demonstrated in Eq. (7.57),

W ′ =−P(x)W. (7.60)

In the special case that P(x)= 0, that is,

y′′ + Q(x)y = 0, (7.61)

the Wronskian

W = y1 y′2 − y′1 y2 = constant. (7.62)

Since our original differential equation is homogeneous, we may multiply the solutions y1
and y2 by whatever constants we wish and arrange to have the Wronskian equal to unity
(or −1). This case, P(x)= 0, appears more frequently than might be expected. Recall that
∇2(ψ/r) in spherical polar coordinates contains no first radial derivative. Finally, every
linear second-order differential equation can be transformed into an equation of the form
of Eq. (7.61) (compare Exercise 7.6.12).

For the general case, let us now assume that we have one solution of Eq. (7.58) by a
series substitution (or by guessing). We now proceed to develop a second, independent
solution for which W 6= 0. Rewriting Eq. (7.60) as

dW

W
=−Pdx,

we integrate over the variable x , from a to x, to obtain

ln
W (x)

W (a)
=−

x∫
a

P(x1)dx1,

or7

W (x)=W (a) exp

− x∫
a

P(x1)dx1

. (7.63)

7If P(x) remains finite in the domain of interest, W (x) 6= 0 unless W (a) = 0. That is, the Wronskian of our two solutions is
either identically zero or never zero. However, if P(x) does not remain finite in our interval, then W (x) can have isolated zeros
in that domain and one must be careful to choose a so that W (a) 6= 0.
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Now we make the observation that

W (x)= y1 y′2 − y′1 y2 = y2
1

d

dx

(
y2

y1

)
, (7.64)

and, by combining Eqs. (7.63) and (7.64), we have

d

dx

(
y2

y1

)
=W (a)

exp[−
∫ x

a P(x1)dx1]

y2
1

. (7.65)

Finally, by integrating Eq. (7.65) from x2 = b to x2 = x we get

y2(x)= y1(x)W (a)

x∫
b

exp
[
−
∫ x2

a P(x1)dx1
]

[y1(x2)]2
dx2. (7.66)

Here a and b are arbitrary constants and a term y1(x)y2(b)/y1(b) has been dropped,
because it is a multiple of the previously found first solution y1. Since W (a), the Wronskian
evaluated at x = a, is a constant and our solutions for the homogeneous differential equa-
tion always contain an arbitrary normalizing factor, we set W (a)= 1 and write

y2(x)= y1(x)

x∫
exp[−

∫ x2 P(x1)dx1]

[y1(x2)]2
dx2. (7.67)

Note that the lower limits x1 = a and x2 = b have been omitted. If they are retained,
they simply make a contribution equal to a constant times the known first solution, y1(x),
and hence add nothing new. If we have the important special case P(x) = 0, Eq. (7.67)
reduces to

y2(x)= y1(x)

x∫
dx2

[y1(x2)]2
. (7.68)

This means that by using either Eq. (7.67) or Eq. (7.68) we can take one known solution and
by integrating can generate a second, independent solution of Eq. (7.58). This technique is
used in Section 15.6 to generate a second solution of Legendre’s differential equation.

Example 7.6.3 A SECOND SOLUTION FOR THE LINEAR OSCILLATOR EQUATION

From d2 y/dx2
+ y = 0 with P(x) = 0 let one solution be y1 = sin x . By applying

Eq. (7.68), we obtain

y2(x)= sin x

x∫
dx2

sin2 x2
= sin x(−cot x)=−cos x,

which is clearly independent (not a linear multiple) of sin x . �
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Series Form of the Second Solution

Further insight into the nature of the second solution of our differential equation may be
obtained by the following sequence of operations.

1. Express P(x) and Q(x) in Eq. (7.58) as

P(x)=
∞∑

i=−1

pi x i, Q(x)=
∞∑

j=−2

q j x j. (7.69)

The leading terms of the summations are selected to create the strongest possible
regular singularity (at the origin). These conditions just satisfy Fuchs’ theorem and
thus help us gain a better understanding of that theorem.

2. Develop the first few terms of a power-series solution, as in Section 7.5.

3. Using this solution as y1, obtain a second series-type solution, y2, from Eq. (7.67), by
integrating it term by term.

Proceeding with Step 1, we have

y′′ + (p−1x−1
+ p0 + p1x + · · · )y′ + (q−2x−2

+ q−1x−1
+ · · · )y = 0, (7.70)

where x = 0 is at worst a regular singular point. If p−1 = q−1 = q−2 = 0, it reduces to an
ordinary point. Substituting

y =
∞∑
λ=0

aλx s+λ

(Step 2), we obtain
∞∑
λ=0

(s + λ)(s + λ− 1)aλx s+λ−2
+

∞∑
i=−1

pi x i
∞∑
λ=0

(s + λ)aλx s+λ−1

+

∞∑
j=−2

q j x j
∞∑
λ=0

aλx s+λ
= 0. (7.71)

Assuming that p−1 6= 0, our indicial equation is

s(s − 1)+ p−1k + q−2 = 0,

which sets the net coefficient of x s−2 equal to zero. This reduces to

s2
+ (p−1 − 1)s + q−2 = 0. (7.72)

We denote the two roots of this indicial equation by s = α and s = α − n, where n is zero
or a positive integer. (If n is not an integer, we expect two independent series solutions by
the methods of Section 7.5 and we are done.) Then

(s − α)(s − α + n)= 0, (7.73)

or

s2
+ (n − 2α)s + α(α − n)= 0,
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and equating coefficients of s in Eqs. (7.72) and (7.73), we have

p−1 − 1= n − 2α. (7.74)

The known series solution corresponding to the larger root s = α may be written as

y1 = xα
∞∑
λ=0

aλxλ.

Substituting this series solution into Eq. (7.67) (Step 3), we are faced with

y2(x)= y1(x)

x∫ (
exp

(
−
∫ x2

a

∑
∞

i=−1 pi x i
1 dx1

)
x2α

2

(∑
∞

λ=0 aλxλ2
)2

)
dx2, (7.75)

where the solutions y1 and y2 have been normalized so that the Wronskian W (a) = 1.
Tackling the exponential factor first, we have

x2∫
a

∞∑
i=−1

pi x i
1dx1 = p−1 ln x2 +

∞∑
k=0

pk

k + 1
xk+1

2 + f (a), (7.76)

with f (a) an integration constant that may depend on a. Hence,

exp

− x2∫
a

∑
i

pi x i
1dx1

= exp[− f (a)]x−p−1
2 exp

(
−

∞∑
k=0

pk

k + 1
xk+1

2

)

= exp[− f (a)]x−p−1
2

1−
∞∑

k=0

pk

k + 1
xk+1

2 +
1

2!

(
−

∞∑
k=0

pk

k + 1
xk+1

2

)2

+ · · ·

. (7.77)

This final series expansion of the exponential is certainly convergent if the original expan-
sion of the coefficient P(x) was uniformly convergent.

The denominator in Eq. (7.75) may be handled by writingx2α
2

(
∞∑
λ=0

aλxλ2

)2
−1

= x−2α
2

(
∞∑
λ=0

aλxλ2

)−2

= x−2α
2

∞∑
λ=0

bλxλ2 . (7.78)

Neglecting constant factors, which will be picked up anyway by the requirement that
W (a)= 1, we obtain

y2(x)= y1(x)

x∫
x−p−1−2α

2

(
∞∑
λ=0

cλxλ2

)
dx2. (7.79)

Applying Eq. (7.74),

x−p−1−2α
2 = x−n−1

2 , (7.80)
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and we have assumed here that n is an integer. Substituting this result into Eq. (7.79), we
obtain

y2(x)= y1(x)

x∫ (
c0x−n−1

2 + c1x−n
2 + c2x−n+1

2 + · · · + cn x−1
2 + · · ·

)
dx2. (7.81)

The integration indicated in Eq. (7.81) leads to a coefficient of y1(x) consisting of two
parts:

1. A power series starting with x−n .

2. A logarithm term from the integration of x−1 (when λ= n). This term always appears
when n is an integer, unless cn fortuitously happens to vanish.8

If we choose to combine y1 and the power series starting with x−n , our second solution
will assume the form

y2(x)= y1(x) ln |x | +
∞∑

j=−n

d j x j+α. (7.82)

Example 7.6.4 A SECOND SOLUTION OF BESSEL’S EQUATION

From Bessel’s equation, Eq. (7.40), divided by x2 to agree with Eq. (7.59), we have

P(x)= x−1 Q(x)= 1 for the case n = 0.

Hence p−1 = 1, q0 = 1; all other pi and q j vanish. The Bessel indicial equation, Eq. (7.43)
with n = 0, is

s2
= 0.

Hence we verify Eqs. (7.72) to (7.74) with n and α set to zero.
Our first solution is available from Eq. (7.49). It is9

y1(x)= J0(x)= 1−
x2

4
+

x4

64
− O(x6). (7.83)

Now, substituting all this into Eq. (7.67), we have the specific case corresponding to
Eq. (7.75):

y2(x)= J0(x)

x∫  exp
[
−
∫ x2 x−1

1 dx1

]
[

1−
x2

2
4 +

x4
2

64 − · · ·

]2

dx2. (7.84)

8For parity considerations, ln x is taken to be ln |x |, even.
9The capital O (order of) as written here means terms proportional to x6 and possibly higher powers of x .
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From the numerator of the integrand,

exp

− x2∫
dx1

x1

= exp[− ln x2] =
1

x2
.

This corresponds to the x−p−1
2 in Eq. (7.77). From the denominator of the integrand, using

a binomial expansion, we obtain[
1−

x2
2

4
+

x4
2

64

]−2

= 1+
x2

2

2
+

5x4
2

32
+ · · · .

Corresponding to Eq. (7.79), we have

y2(x)= J0(x)

x∫
1

x2

[
1+

x2
2

2
+

5x4
2

32
+ · · ·

]
dx2

= J0(x)

{
ln x +

x2

4
+

5x4

128
+ · · ·

}
. (7.85)

Let us check this result. From Eq. (14.62), which gives the standard form of the second
solution, which is called a Neumann function and designated Y0,

Y0(x)=
2

π

[
ln x − ln 2+ γ

]
J0(x)+

2

π

{
x2

4
−

3x4

128
+ · · ·

}
. (7.86)

Two points arise: (1) Since Bessel’s equation is homogeneous, we may multiply y2(x) by
any constant. To match Y0(x), we multiply our y2(x) by 2/π . (2) To our second solution,
(2/π)y2(x), we may add any constant multiple of the first solution. Again, to match Y0(x)
we add

2

π

[
− ln 2+ γ

]
J0(x),

where γ is the Euler-Mascheroni constant, defined in Eq. (1.13).10 Our new, modified
second solution is

y2(x)=
2

π

[
ln x − ln 2+ γ

]
J0(x)+

2

π
J0(x)

{
x2

4
+

5x4

128
+ · · ·

}
. (7.87)

Now the comparison with Y0(x) requires only a simple multiplication of the series for
J0(x) from Eq. (7.83) and the curly bracket of Eq. (7.87). The multiplication checks,
through terms of order x2 and x4, which is all we carried. Our second solution from
Eqs. (7.67) and (7.75) agrees with the standard second solution, the Neumann function
Y0(x). �

The analysis that indicated the second solution of Eq. (7.58) to have the form given in
Eq. (7.82) suggests the possibility of just substituting Eq. (7.82) into the original differen-
tial equation and determining the coefficients d j . However, the process has some features
different from that of Section 7.5, and is illustrated by the following example.

10The Neumann function Y0 is defined as it is in order to achieve convenient asymptotic properties; see Sections 14.3 and 14.6.
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Example 7.6.5 MORE NEUMANN FUNCTIONS

We consider here second solutions to Bessel’s ODE of integer orders n > 0, using the
expansion given in Eq. (7.82). The first solution, designated Jn and presented in Eq. (7.49),
arises from the value α = n from the indicial equation, while the quantity called n in
Eq. (7.82), the separation of the two roots of the indicial equation, has in the current context
the value 2n. Thus, Eq. (7.82) takes the form

y2(x)= Jn(x) ln |x | +
∞∑

j=−2n

d j x j+n, (7.88)

where y2 must, apart from scale and a possible multiple of Jn , be the second solution
Yn of the Bessel equation. Substituting this form into Bessel’s equation, carrying out the
indicated differentiations and using the fact that Jn(x) is a solution of our ODE, we get
after combining similar terms

x2 y′′2 + xy′2 + (x
2
− n2)y2 =

2x J ′n(x)+
∑

j≥−2n

j ( j + 2n)d j x j+n
+

∑
j≥−2n

d j x j+n+2
= 0. (7.89)

We next insert the power-series expansion

2x J ′n(x)=
∑
j≥0

a j x j+n, (7.90)

where the coefficients can be obtained by differentiation of the expansion of Jn , see
Eq. (7.49), and have the values (for j ≥ 0)

a2 j =
(−1) j (n + 2 j)

j !(n + j)!2n+2 j−1
,

a2 j+1 = 0. (7.91)

This, and a redefinition of the index j in the last term, bring Eq. (7.89) to the form∑
j≥0

a j x j+n
+

∑
j≥−2n

j ( j + 2n)d j x j+n
+

∑
j≥−2n+2

d j−2x j+n
= 0. (7.92)

Considering first the coefficient of x−n+1 (corresponding to j = −2n + 1), we note that
its vanishing requires that d−2n+1 vanish, as the only contribution comes from the middle
summation. Since all a j of odd j vanish, the vanishing of d−2n+1 implies that all other d j

of odd j must also vanish. We therefore only need to give further consideration to even j .
We next note that the coefficient d0 is arbitrary, and may without loss of generality

be set to zero. This is true because we may bring d0 to any value by adding to y2 an
appropriate multiple of the solution Jn , whose expansion has an xn leading term. We have
then exhausted all freedom in specifying y2; its scale is determined by our choice of its
logarithmic term.

Now, taking the coefficient of xn (terms with j = 0), and remembering that d0 = 0, we
have

d−2 =−a0,
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and we may recur downward in steps of 2, using formulas based on the coefficients of
xn−2, xn−4, . . . , corresponding to

d j−2 =− j (2n + j)d j , j =−2,−4, . . . ,−2n + 2.

To obtain d j with positive j , we recur upward, obtaining from the coefficient of xn+ j

d j =
−a j − d j−2

j (2n + j)
, j = 2,4, . . . ,

again remembering that d0 = 0.
Proceeding to n = 1 as a specific example, we have from Eq. (7.91) a0 = 1, a2 =−3/8,

and a4 = 5/192, so

d−2 =−1, d2 =−
a2

8
=

3

64
, d4 =

−a4 − d2

24
=−

7

2304
;

thus

y2(x)= J1(x) ln |x | −
1

x
+

3

64
x3
−

7

2304
x5
+ · · · ,

in agreement (except for a multiple of J1 and a scale factor) with the standard form of the
Neumann function Y1:

Y1(x)=
2

π

[
ln
∣∣∣ x
2

∣∣∣+ γ − 1

2

]
J1(x)+

2

π

[
−

1

x
+

3

64
x3
−

7

2304
x5
+ · · ·

]
. (7.93)

�

As shown in the examples, the second solution will usually diverge at the origin because
of the logarithmic factor and the negative powers of x in the series. For this reason y2(x) is
often referred to as the irregular solution. The first series solution, y1(x), which usually
converges at the origin, is called the regular solution. The question of behavior at the
origin is discussed in more detail in Chapters 14 and 15, in which we take up Bessel
functions, modified Bessel functions, and Legendre functions.

Summary

The two solutions of both sections (together with the exercises) provide a complete solu-
tion of our linear, homogeneous, second-order ODE, assuming that the point of expansion
is no worse than a regular singularity. At least one solution can always be obtained by
series substitution (Section 7.5). A second, linearly independent solution can be con-
structed by the Wronskian double integral, Eq. (7.67). This is all there are: No third,
linearly independent solution exists (compare Exercise 7.6.10).

The inhomogeneous, linear, second-order ODE will have a general solution formed by
adding a particular solution to the complete inhomogeneous equation to the general solu-
tion of the corresponding homogeneous ODE. Techniques for finding particular solutions
of linear but inhomogeneous ODEs are the topic of the next section.
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Exercises

7.6.1 You know that the three unit vectors êx , êy , and êz are mutually perpendicular
(orthogonal). Show that êx , êy , and êz are linearly independent. Specifically, show that
no relation of the form of Eq. (7.54) exists for êx , êy , and êz .

7.6.2 The criterion for the linear independence of three vectors A, B, and C is that the
equation

aA+ bB+ cC= 0,

analogous to Eq. (7.54), has no solution other than the trivial a = b = c = 0. Using
components A= (A1, A2, A3), and so on, set up the determinant criterion for the exis-
tence or nonexistence of a nontrivial solution for the coefficients a,b, and c. Show that
your criterion is equivalent to the scalar triple product A ·B×C 6= 0.

7.6.3 Using the Wronskian determinant, show that the set of functions{
1,

xn

n!
(n = 1,2, . . . , N )

}
is linearly independent.

7.6.4 If the Wronskian of two functions y1 and y2 is identically zero, show by direct integra-
tion that

y1 = cy2,

that is, that y1 and y2 are linearly dependent. Assume the functions have continuous
derivatives and that at least one of the functions does not vanish in the interval under
consideration.

7.6.5 The Wronskian of two functions is found to be zero at x0−ε ≤ x ≤ x0+ε for arbitrarily
small ε > 0. Show that this Wronskian vanishes for all x and that the functions are
linearly dependent.

7.6.6 The three functions sin x, ex, and e−x are linearly independent. No one function can be
written as a linear combination of the other two. Show that the Wronskian of sin x, ex,
and e−x vanishes but only at isolated points.

ANS. W = 4 sin x,
W = 0 for x =±nπ , n = 0,1,2, . . . .

7.6.7 Consider two functions ϕ1 = x and ϕ2 = |x |. Since ϕ′1 = 1 and ϕ′2 = x/|x |, W (ϕ1, ϕ2)=

0 for any interval, including [−1,+1]. Does the vanishing of the Wronskian over
[−1,+1] prove that ϕ1 and ϕ2 are linearly dependent? Clearly, they are not. What is
wrong?

7.6.8 Explain that linear independence does not mean the absence of any dependence. Illus-
trate your argument with cosh x and ex .

7.6.9 Legendre’s differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0
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has a regular solution Pn(x) and an irregular solution Qn(x). Show that the Wronskian
of Pn and Qn is given by

Pn(x)Q
′
n(x)− P ′n(x)Qn(x)=

An

1− x2
,

with An independent of x .

7.6.10 Show, by means of the Wronskian, that a linear, second-order, homogeneous ODE of
the form

y′′(x)+ P(x)y′(x)+ Q(x)y(x)= 0

cannot have three independent solutions.

Hint. Assume a third solution and show that the Wronskian vanishes for all x .

7.6.11 Show the following when the linear second-order differential equation py′′+qy′+r y =
0 is expressed in self-adjoint form:

(a) The Wronskian is equal to a constant divided by p:

W (x)=
C

p(x)
.

(b) A second solution y2(x) is obtained from a first solution y1(x) as

y2(x)= Cy1(x)

x∫
dt

p(t)[y1(t)]2
.

7.6.12 Transform our linear, second-order ODE

y′′ + P(x)y′ + Q(x)y = 0

by the substitution

y = z exp

−1

2

x∫
P(t)dt


and show that the resulting differential equation for z is

z′′ + q(x)z = 0,

where

q(x)= Q(x)−
1

2
P ′(x)−

1

4
P2(x).

Note. This substitution can be derived by the technique of Exercise 7.6.25.

7.6.13 Use the result of Exercise 7.6.12 to show that the replacement of ϕ(r) by rϕ(r) may be
expected to eliminate the first derivative from the Laplacian in spherical polar coordi-
nates. See also Exercise 3.10.34.
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7.6.14 By direct differentiation and substitution show that

y2(x)= y1(x)

x∫
exp[−

∫ s P(t)dt]

[y1(s)]2
ds

satisfies, like y1(x), the ODE

y′′2 (x)+ P(x)y′2(x)+ Q(x)y2(x)= 0.

Note. The Leibniz formula for the derivative of an integral is

d

dα

h(α)∫
g(α)

f (x, α)dx =

h(α)∫
g(α)

∂ f (x, α)

∂α
dx + f [h(α), α]

dh(α)

dα
− f [g(α), α]

dg(α)

dα
.

7.6.15 In the equation

y2(x)= y1(x)

x∫
exp[−

∫ s P(t)dt]

[y1(s)]2
ds,

y1(x) satisfies

y′′1 + P(x)y′1 + Q(x)y1 = 0.

The function y2(x) is a linearly independent second solution of the same equation.
Show that the inclusion of lower limits on the two integrals leads to nothing new, that
is, that it generates only an overall constant factor and a constant multiple of the known
solution y1(x).

7.6.16 Given that one solution of

R′′ +
1

r
R′ −

m2

r2
R = 0

is R = rm , show that Eq. (7.67) predicts a second solution, R = r−m .

7.6.17 Using

y1(x)=
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1

as a solution of the linear oscillator equation, follow the analysis that proceeds through
Eq. (7.81) and show that in that equation cn = 0, so that in this case the second solution
does not contain a logarithmic term.

7.6.18 Show that when n is not an integer in Bessel’s ODE, Eq. (7.40), the second solution of
Bessel’s equation, obtained from Eq. (7.67), does not contain a logarithmic term.
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7.6.19 (a) One solution of Hermite’s differential equation

y′′ − 2xy′ + 2αy = 0

for α = 0 is y1(x)= 1. Find a second solution, y2(x), using Eq. (7.67). Show that
your second solution is equivalent to yodd (Exercise 8.3.3).

(b) Find a second solution for α = 1, where y1(x) = x , using Eq. (7.67). Show that
your second solution is equivalent to yeven (Exercise 8.3.3).

7.6.20 One solution of Laguerre’s differential equation

xy′′ + (1− x)y′ + ny = 0

for n = 0 is y1(x)= 1. Using Eq. (7.67), develop a second, linearly independent solu-
tion. Exhibit the logarithmic term explicitly.

7.6.21 For Laguerre’s equation with n = 0,

y2(x)=

x∫
es

s
ds.

(a) Write y2(x) as a logarithm plus a power series.
(b) Verify that the integral form of y2(x), previously given, is a solution of Laguerre’s

equation (n = 0) by direct differentiation of the integral and substitution into the
differential equation.

(c) Verify that the series form of y2(x), part (a), is a solution by differentiating the
series and substituting back into Laguerre’s equation.

7.6.22 One solution of the Chebyshev equation

(1− x2)y′′ − xy′ + n2 y = 0

for n = 0 is y1 = 1.

(a) Using Eq. (7.67), develop a second, linearly independent solution.
(b) Find a second solution by direct integration of the Chebyshev equation.

Hint. Let v = y′ and integrate. Compare your result with the second solution given in
Section 18.4.

ANS. (a) y2 = sin−1 x .
(b) The second solution, Vn(x), is not defined for n = 0.

7.6.23 One solution of the Chebyshev equation

(1− x2)y′′ − xy′ + n2 y = 0

for n = 1 is y1(x) = x . Set up the Wronskian double integral solution and derive a
second solution, y2(x).

ANS. y2 =−(1− x2)1/2.
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7.6.24 The radial Schrödinger wave equation for a spherically symmetric potential can be writ-
ten in the form [

−
h̄2

2m

d2

dr2
+ l(l + 1)

h̄2

2mr2
+ V (r)

]
y(r)= Ey(r).

The potential energy V (r) may be expanded about the origin as

V (r)=
b−1

r
+ b0 + b1r + · · · .

(a) Show that there is one (regular) solution y1(r) starting with r l+1.

(b) From Eq. (7.69) show that the irregular solution y2(r) diverges at the origin as r−l .

7.6.25 Show that if a second solution, y2, is assumed to be related to the first solution, y1,
according to y2(x)= y1(x) f (x), substitution back into the original equation

y′′2 + P(x)y′2 + Q(x)y2 = 0

leads to

f (x)=

x∫
exp[−

∫ s P(t)dt]

[y1(s)]2
ds,

in agreement with Eq. (7.67).

7.6.26 (a) Show that

y′′ +
1− α2

4x2
y = 0

has two solutions:

y1(x)= a0x (1+α)/2,

y2(x)= a0x (1−α)/2.

(b) For α = 0 the two linearly independent solutions of part (a) reduce to the single
solution y1′ = a0x1/2. Using Eq. (7.68) derive a second solution,

y2′(x)= a0x1/2 ln x .

Verify that y2′ is indeed a solution.

(c) Show that the second solution from part (b) may be obtained as a limiting case
from the two solutions of part (a):

y2′(x)= lim
α→0

(
y1 − y2

α

)
.
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7.7 INHOMOGENEOUS LINEAR ODES

We frame the discussion in terms of second-order ODEs, although the methods can be
extended to equations of higher order. We thus consider ODEs of the general form

y′′ + P(x)y′ + Q(x)y = F(x), (7.94)

and proceed under the assumption that the corresponding homogeneous equation, with
F(x)= 0, has been solved, thereby obtaining two independent solutions designated y1(x)
and y2(x).

Variation of Parameters

The method of variation of parameters (variation of the constant) starts by writing a par-
ticular solution of the inhomogeneous ODE, Eq. (7.94), in the form

y(x)= u1(x)y1(x)+ u2(x)y2(x). (7.95)

We have specifically written u1(x) and u2(x) to emphasize that these are functions of the
independent variable, and not constant coefficients. This, of course, means that Eq. (7.95)
does not constitute a restriction to the functional form of y(x). For clarity and compactness,
we will usually write these functions just as u1 and u2.

In preparation for inserting y(x), from Eq. (7.95), into the inhomogeneous ODE, we
compute its derivative:

y′ = u1 y′1 + u2 y′2 + (y1u′1 + y2u′2),

and take advantage of the redundancy in the form assumed for y by choosing u1 and u2 in
such a way that

y1u′1 + y2u′2 = 0, (7.96)

where Eq. (7.96) is assumed to be an identity (i.e., to apply for all x). We will shortly show
that requiring Eq. (7.96) does not lead to an inconsistency.

After applying Eq. (7.96), y′, and its derivative y′′, are found to be

y′ = u1 y′1 + u2 y′2,

y′′ = u1 y′′1 + u2 y′′2 + u′1 y′1 + u′2 y′2,

and substitution into Eq. (7.94) yields

(u1 y′′1 + u2 y′′2 + u′1 y′1 + u′2 y′2)+ P(x)(u1 y′1 + u2 y′2)+ Q(x)(u1 y1 + u2 y2)= F(x),

which, because y1 and y2 are solutions of the homogeneous equation, reduces to

u′1 y′1 + u′2 y′2 = F(x). (7.97)

Equations (7.96) and (7.97) are, for each value of x , a set of two simultaneous algebraic
equations in the variables u′1 and u′2; to emphasize this point we repeat them here:

y1u′1 + y2u′2 = 0,

y′1u′1 + y′2u′2 = F(x).
(7.98)
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The determinant of the coefficients of these equations is∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ ,
which we recognize as the Wronskian of the linearly independent solutions to the homo-
geneous equation. That means this determinant is nonzero, so there will, for each x , be
a unique solution to Eqs. (7.98), i.e., unique functions u′1 and u′2. We conclude that the
restriction implied by Eq. (7.96) is permissible.

Once u′1 and u′2 have been identified, each can be integrated, respectively yielding u1
and u2, and, via Eq. (7.95), a particular solution of our inhomogeneous ODE.

Example 7.7.1 AN INHOMOGENEOUS ODE

Consider the ODE

(1− x)y′′ + xy′ − y = (1− x)2. (7.99)

The corresponding homogeneous ODE has solutions y1 = x and y2 = ex. Thus, y′1 = 1,
y′2 = ex, and the simultaneous equations for u′1 and u′2 are

x u′1 + ex u′2 = 0,

u′1 + ex u′2 = F(x).
(7.100)

Here F(x) is the inhomogeneous term when the ODE has been written in the standard
form, Eq. (7.94). This means that we must divide Eq. (7.99) through by 1− x (the coeffi-
cient of y′′), after which we see that F(x)= 1− x .

With the above choice of F(x), we solve Eqs. (7.100), obtaining

u′1 = 1, u′2 =−xe−x ,

which integrate to

u1 = x, u2 = (x + 1)e−x .

Now forming a particular solution to the inhomogeneous ODE, we have

yp(x)= u1 y1 + u2 y2 = x(x)+
(
(x + 1)e−x) ex

= x2
+ x + 1.

Because x is a solution to the homogeneous equation, we may remove it from the above
expression, leaving the more compact formula yp = x2

+ 1.
The general solution to our ODE therefore takes the final form

y(x)= C1x +C2ex
+ x2
+ 1.

�
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Exercises

7.7.1 If our linear, second-order ODE is inhomogeneous, that is, of the form of Eq. (7.94),
the most general solution is

y(x)= y1(x)+ y2(x)+ yp(x),

where y1 and y2 are independent solutions of the homogeneous equation.
Show that

yp(x)= y2(x)

x∫
y1(s)F(s)ds

W {y1(s), y2(s)}
− y1(x)

x∫
y2(s)F(s)ds

W {y1(s), y2(s)}
,

with W {y1(x), y2(x)} the Wronskian of y1(s) and y2(s).

Find the general solutions to the following inhomogeneous ODEs:

7.7.2 y′′ + y = 1.

7.7.3 y′′ + 4y = ex.

7.7.4 y′′ − 3y′ + 2y = sin x .

7.7.5 xy′′ − (1+ x)y′ + y = x2.

7.8 NONLINEAR DIFFERENTIAL EQUATIONS

The main outlines of large parts of physical theory have been developed using mathe-
matics in which the objects of concern possessed some sort of linearity property. As a
result, linear algebra (matrix theory) and solution methods for linear differential equations
were appropriate mathematical tools, and the development of these mathematical topics
has progressed in the directions illustrated by most of this book. However, there is some
physics that requires the use of nonlinear differential equations (NDEs). The hydrodynam-
ics of viscous, compressible media is described by the Navier-Stokes equations, which are
nonlinear. The nonlinearity evidences itself in phenomena such as turbulent flow, which
cannot be described using linear equations. Nonlinear equations are also at the heart of
the description of behavior known as chaotic, in which the evolution of a system is so
sensitive to its initial conditions that it effectively becomes unpredictable.

The mathematics of nonlinear ODEs is both more difficult and less developed than that
of linear ODEs, and accordingly we provide here only an extremely brief survey. Much of
the recent progress in this area has been in the development of computational methods for
nonlinear problems; that is also outside the scope of this text.

In this final section of the present chapter we discuss briefly some specific NDEs, the
classical Bernoulli and Riccati equations.
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Bernoulli and Riccati Equations

Bernoulli equations are nonlinear, having the form

y′(x)= p(x)y(x)+ q(x)[y(x)]n, (7.101)

where p and q are real functions and n 6= 0, 1 to exclude first-order linear ODEs. However,
if we substitute

u(x)= [y(x)]1−n,

then Eq. (7.101) becomes a first-order linear ODE,

u′ = (1− n)y−n y′ = (1− n)
[

p(x)u(x)+ q(x)
]
, (7.102)

which we can solve (using an integrating factor) as described in Section 7.2.
Riccati equations are quadratic in y(x):

y′ = p(x)y2
+ q(x)y + r(x), (7.103)

where we require p 6= 0 to exclude linear ODEs and r 6= 0 to exclude Bernoulli equations.
There is no known general method for solving Riccati equations. However, when a special
solution y0(x) of Eq. (7.103) is known by a guess or inspection, then one can write the
general solution in the form y = y0 + u, with u satisfying the Bernoulli equation

u′ = pu2
+ (2py0 + q)u, (7.104)

because substitution of y = y0 + u into Eq. (7.103) removes r(x) from the resulting
equation.

There are no general methods for obtaining exact solutions of most nonlinear ODEs.
This fact makes it more important to develop methods for finding the qualitative behavior
of solutions. In Section 7.5 of this chapter we mentioned that power-series solutions of
ODEs exist except (possibly) at essential singularities of the ODE. The coefficients in
the power-series expansions provide us with the asymptotic behavior of the solutions. By
making expansions of solutions to NDEs and retaining only the linear terms, it will often
be possible to understand the qualitative behavior of the solutions in the neighborhood of
the expansion point.

Fixed and Movable Singularities, Special Solutions

A first step in analyzing the solutions of NDEs is to identify their singularity structures.
Solutions of NDEs may have singular points that are independent of the initial or bound-
ary conditions; these are called fixed singularities. But in addition they may have spon-
taneous, or movable, singularities that vary with the initial or boundary conditions. This
feature complicates the asymptotic analysis of NDEs.
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Example 7.8.1 MOVEABLE SINGULARITY

Compare the linear ODE

y′ +
y

x − 1
= 0,

(which has an obvious regular singularity at x = 1), with the NDE y′ = y2. Both have the
same solution with initial condition y(0)= 1, namely y(x)= 1/(1− x). But for y(0)= 2,
the linear ODE has solution y = 1+ 1/(1− x), while the NDE now has solution y(x)=
2/(1− 2x). The singularity in the solution of the NDE has moved to x = 1/2. �

For a linear second-order ODE we have a complete description of its solutions and their
asymptotic behavior when two linearly independent solutions are known. But for NDEs
there may still be special solutions whose asymptotic behavior is not obtainable from two
independent solutions. This is another characteristic property of NDEs, which we illustrate
again by an example.

Example 7.8.2 SPECIAL SOLUTION

The NDE y′′ = yy′/x has two linearly independent solutions that define the two-parameter
family of curves

y(x)= 2c1 tan(c1 ln x + c2)− 1, (7.105)

where the ci are integration constants. However, this NDE also has the special solution y =
c3 = constant, which cannot be obtained from Eq. (7.105) by any choice of the parameters
c1, c2.

The “general solution” in Eq. (7.105) can be obtained by making the substitution x = et,
and then defining Y (t) ≡ y(et ) so that x(dy/dx) = dY/dt , thereby obtaining the ODE
Y ′′ = Y ′(Y + 1). This ODE can be integrated once to give Y ′ = 1

2 Y 2
+ Y + c with c =

2(c2
1 + 1/4) an integration constant. The equation for Y ′ is separable and can be integrated

again to yield Eq. (7.105). �

Exercises

7.8.1 Consider the Riccati equation y′ = y2
− y − 2. A particular solution to this equation is

y = 2. Find a more general solution.

7.8.2 A particular solution to y′ = y2/x3
− y/x + 2x is y = x2. Find a more general solution.

7.8.3 Solve the Bernoulli equation y′ + xy = xy3.

7.8.4 ODEs of the form y = xy′ + f (y′) are known as Clairaut equations. The first step in
solving an equation of this type is to differentiate it, yielding

y′ = y′ + xy′′ + f ′(y′)y′′, or y′′
(
x + f ′(y′)

)
= 0.

Solutions may therefore be obtained both from y′′ = 0 and from f ′(y′) = −x . The
so-called general solution comes from y′′ = 0.
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For f (y′)= (y′)2,

(a) Obtain the general solution (note that it contains a single constant).
(b) Obtain the so-called singular solution from f ′(y′)=−x . By substituting back into

the original ODE show that this singular solution contains no adjustable constants.

Note. The singular solution is the envelope of the general solutions.
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