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CHAPTER 2

DETERMINANTS AND
MATRICES

2.1 DETERMINANTS

We begin the study of matrices by solving linear equations that will lead us to determi-
nants and matrices. The concept of determinant and the notation were introduced by the
renowned German mathematician and philosopher Gottfried Wilhelm von Leibniz.

Homogeneous Linear Equations

One of the major applications of determinants is in the establishment of a condition for
the existence of a nontrivial solution for a set of linear homogeneous algebraic equations.
Suppose we have three unknowns x1, x2, x3 (or n equations with n unknowns):

a1x1 + a2x2 + a3x3 = 0,

b1x1 + b2x2 + b3x3 = 0, (2.1)

c1x1 + c2x2 + c3x3 = 0.

The problem is to determine under what conditions there is any solution, apart from
the trivial one x1 = 0, x2 = 0, x3 = 0. If we use vector notation x = (x1, x2, x3) for the
solution and three rows a = (a1,a2,a3),b = (b1,b2,b3), c = (c1, c2, c3) of coefficients,
then the three equations, Eqs. (2.1), become

a · x= 0, b · x= 0, c · x= 0. (2.2)

These three vector equations have the geometrical interpretation that x is orthogonal
to a,b, and c. If the volume spanned by a,b, c given by the determinant (or triple scalar
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product, see Eq. (3.12) of Section 3.2)

D3 = (a× b) · c= det(a,b, c)=

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ (2.3)

is not zero, then there is only the trivial solution x = 0. For an introduction to the cross
product of vectors, see Chapter 3: Vector Analysis, Section 3.2: Vectors in 3-D Space.

Conversely, if the aforementioned determinant of coefficients vanishes, then one of
the row vectors is a linear combination of the other two. Let us assume that c lies in the
plane spanned by a and b, that is, that the third equation is a linear combination of the
first two and not independent. Then x is orthogonal to that plane so that x∼ a× b. Since
homogeneous equations can be multiplied by arbitrary numbers, only ratios of the xi are
relevant, for which we then obtain ratios of 2× 2 determinants

x1

x3
=

a2b3 − a3b2

a1b2 − a2b1
,

x2

x3
=−

a1b3 − a3b1

a1b2 − a2b1
(2.4)

from the components of the cross product a× b, provided x3 ∼ a1b2 − a2b1 6= 0. This is
Cramer’s rule for three homogeneous linear equations.

Inhomogeneous Linear Equations

The simplest case of two equations with two unknowns,

a1x1 + a2x2 = a3, b1x1 + b2x2 = b3, (2.5)

can be reduced to the previous case by imbedding it in three-dimensional (3-D) space with
a solution vector x = (x1, x2,−1) and row vectors a = (a1,a2,a3),b = (b1,b2,b3). As
before, Eqs. (2.5) in vector notation, a · x= 0 and b · x= 0, imply that x∼ a× b, so the
analog of Eq. (2.4) holds. For this to apply, though, the third component of a× b must not
be zero, that is, a1b2 − a2b1 6= 0, because the third component of x is −1 6= 0. This yields
the xi as

x1 =
a3b2 − b3a2

a1b2 − a2b1
=

∣∣∣∣a3 a2
b3 b2

∣∣∣∣∣∣∣∣a1 a2
b1 b2

∣∣∣∣ , (2.6)

x2 =
a1b3 − a3b1

a1b2 − a2b1
=

∣∣∣∣a1 a3
b1 b3

∣∣∣∣∣∣∣∣a1 a2
b1 b2

∣∣∣∣ . (2.7)

The determinant in the numerator of x1(x2) is obtained from the determinant of the coef-

ficients
∣∣∣∣∣a1 a2
b1 b2

∣∣∣∣∣ by replacing the first (second) column vector by the vector
(

a3
b3

)
of the

inhomogeneous side of Eq. (2.5). This is Cramer’s rule for a set of two inhomogeneous
linear equations with two unknowns.

A full understanding of the above exposition requires now that we introduce a formal
definition of the determinant and show how it relates to the foregoing.
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Definitions

Before defining a determinant, we need to introduce some related concepts and definitions.

• When we write two-dimensional (2-D) arrays of items, we identify the item in the nth
horizontal row and the mth vertical column by the index set n,m; note that the row
index is conventionally written first.

• Starting from a set of n objects in some reference order (e.g., the number sequence
1, 2, 3, . . . , n), we can make a permutation of them to some other order; the total
number of distinct permutations that are possible is n! (choose the first object n ways,
then choose the second in n − 1 ways, etc.).

• Every permutation of n objects can be reached from the reference order by a succession
of pairwise interchanges (e.g., 1234→ 4132 can be reached by the successive steps
1234→ 1432→ 4132). Although the number of pairwise interchanges needed for a
given permutation depends on the path (compare the above example with 1234→
1243→ 1423→ 4123→ 4132), for a given permutation the number of interchanges
will always either be even or odd. Thus a permutation can be identified as having either
even or odd parity.

• It is convenient to introduce the Levi-Civita symbol, which for an n-object system is
denoted by εi j ..., where ε has n subscripts, each of which identifies one of the objects.
This Levi-Civita symbol is defined to be +1 if i j . . . represents an even permutation
of the objects from a reference order; it is defined to be −1 if i j . . . represents an odd
permutation of the objects, and zero if i j . . . does not represent a permutation of the
objects (i.e., contains an entry duplication). Since this is an important definition, we set
it out in a display format:

εi j ... =+1, i j . . . an even permutation,

=−1, i j . . . an odd permutation,

= 0, i j . . . not a permutation. (2.8)

We now define a determinant of order n to be an n×n square array of numbers (or func-
tions), with the array conventionally written within vertical bars (not parentheses, braces,
or any other type of brackets), as follows:

Dn =

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

a31 a32 . . . a3n

. . . . . . . . . . . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
. (2.9)

The determinant Dn has a value that is obtained by

1. Forming all n! products that can be formed by choosing one entry from each row in
such a way that one entry comes from each column,

2. Assigning each product a sign that corresponds to the parity of the sequence in which
the columns were used (assuming the rows were used in an ascending sequence),

3. Adding (with the assigned signs) the products.
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More formally, the determinant in Eq. (2.9) is defined to have the value

Dn =
∑
i j ...

εi j ...a1i a2 j · · · . (2.10)

The summations in Eq. (2.10) need not be restricted to permutations, but can be assumed
to range independently from 1 through n; the presence of the Levi-Civita symbol will
cause only the index combinations corresponding to permutations to actually contribute to
the sum.

Example 2.1.1 DETERMINANTS OF ORDERS 2 AND 3

To make the definition more concrete, we illustrate first with a determinant of order 2. The
Levi-Civita symbols needed for this determinant are ε12 = +1 and ε21 = −1 (note that
ε11 = ε22 = 0), leading to

D2 =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣= ε12a11a22 + ε21a12a21 = a11a22 − a12a21.

We see that this determinant expands into 2! = 2 terms. A specific example of a determi-
nant of order 2 is ∣∣∣∣a1 a2

b1 b2

∣∣∣∣= a1b2 − b1a2.

Determinants of order 3 expand into 3! = 6 terms. The relevant Levi-Civita symbols
are ε123 = ε231 = ε312 =+1, ε213 = ε321 = ε132 =−1; all other index combinations have
εi jk = 0, so

D3 =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣=
∑
i jk

εi jka1i a2 j a3k

= a11a22a33 − a11a23a32 − a13a22a31 − a12a21a33 + a12a23a31 + a13a21a32.

The expression in Eq. (2.3) is the determinant of order 3∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1.

Note that half of the terms in the expansion of a determinant bear negative signs. It is
quite possible that a determinant of large elements will have a very small value. Here is
one example: ∣∣∣∣∣∣

8 11 7
9 11 5
8 12 9

∣∣∣∣∣∣= 1.

�
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Properties of Determinants

The symmetry properties of the Levi-Civita symbol translate into a number of symme-
tries exhibited by determinants. For simplicity, we illustrate with determinants of order 3.
The interchange of two columns of a determinant causes the Levi-Civita symbol multi-
plying each term of the expansion to change sign; the same is true if two rows are inter-
changed. Moreover, the roles of rows and columns may be interchanged; if a determinant
with elements ai j is replaced by one with elements bi j = a j i , we call the bi j determi-
nant the transpose of the ai j determinant. Both these determinants have the same value.
Summarizing:

Interchanging two rows (or two columns) changes the sign of the value of a determi-
nant. Transposition does not alter its value.

Thus, ∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣=−
∣∣∣∣∣∣
a12 a11 a13
a22 a21 a23
a32 a31 a33

∣∣∣∣∣∣=
∣∣∣∣∣∣
a11 a21 a31
a12 a22 a32
a13 a23 a33

∣∣∣∣∣∣. (2.11)

Further consequences of the definition in Eq. (2.10) are:

(1) Multiplication of all members of a single column (or a single row) by a constant k
causes the value of the determinant to be multiplied by k,

(2) If the elements of a column (or row) are actually sums of two quantities, the deter-
minant can be decomposed into a sum of two determinants.

Thus,

k

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣=
∣∣∣∣∣∣
ka11 a12 a13
ka21 a22 a23
ka31 a32 a33

∣∣∣∣∣∣=
∣∣∣∣∣∣
ka11 ka12 ka13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣, (2.12)

∣∣∣∣∣∣
a11 + b1 a12 a13
a21 + b2 a22 a23
a31 + b3 a32 a33

∣∣∣∣∣∣=
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣. (2.13)

These basic properties and/or the basic definition mean that

• Any determinant with two rows equal, or two columns equal, has the value zero. To
prove this, interchange the two identical rows or columns; the determinant both remains
the same and changes sign, and therefore must have the value zero.

• An extension of the above is that if two rows (or columns) are proportional, the deter-
minant is zero.

• The value of a determinant is unchanged if a multiple of one row is added (column
by column) to another row or if a multiple of one column is added (row by row) to
another column. Applying Eq. (2.13), the addition does not contribute to the value of
the determinant.

• If each element in a row or each element in a column is zero, the determinant has the
value zero.
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Laplacian Development by Minors

The fact that a determinant of order n expands into n! terms means that it is important to
identify efficient means for determinant evaluation. One approach is to expand in terms of
minors. The minor corresponding to ai j , denoted Mi j , or Mi j (a) if we need to identify M
as coming from the ai j , is the determinant (of order n − 1) produced by striking out row i
and column j of the original determinant. When we expand into minors, the quantities to
be used are the cofactors of the (i j) elements, defined as (−1)i+ j Mi j . The expansion can
be made for any row or column of the original determinant. If, for example, we expand the
determinant of Eq. (2.9) using row i , we have

Dn =

n∑
j=1

ai j (−1)i+ j Mi j . (2.14)

This expansion reduces the work involved in evaluation if the row or column selected for
the expansion contains zeros, as the corresponding minors need not be evaluated.

Example 2.1.2 EXPANSION IN MINORS

Consider the determinant (arising in Dirac’s relativistic electron theory)

D ≡

∣∣∣∣∣∣∣∣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

∣∣∣∣∣∣∣∣.
Expanding across the top row, only one 3× 3 matrix survives:

D = (−1)1+2a12 M12(a)= (−1) · (1)

∣∣∣∣∣∣
−1 0 0

0 0 1
0 −1 0

∣∣∣∣∣∣≡ (−1)

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣.
Expanding now across the second row, we get

D = (−1)(−1)2+3b23 M23(b)=

∣∣∣∣−1 0
0 −1

∣∣∣∣= 1.

When we finally reached a 2× 2 determinant, it was simple to evaluate it without further
expansion. �

Linear Equation Systems

We are now ready to apply our knowledge of determinants to the solution of systems of
linear equations. Suppose we have the simultaneous equations

a1x1 + a2x2 + a3x3 = h1,

b1x1 + b2x2 + b3x3 = h2,

c1x1 + c2x2 + c3x3 = h3. (2.15)
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To use determinants to help solve this equation system, we define

D =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣. (2.16)

Starting from x1 D, we manipulate it by (1) moving x1 to multiply the entries of the first
column of D, then (2) adding to the first column x2 times the second column and x3 times
the third column (neither of these operations change the value). We then reach the second
line of Eq. (2.17) by substituting the right-hand sides of Eqs. (2.15). These operations are
illustrated here:

x1 D =

∣∣∣∣∣∣
a1 x1 a2 a3
b1 x1 b2 b3
c1 x1 c2 c3

∣∣∣∣∣∣=
∣∣∣∣∣∣
a1 x1 + a2 x2 + a3 x3 a2 a3
b1 x1 + b2 x2 + b3 x3 b2 b3
c1 x1 + c2 x2 + c3 x3 c2 c3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
h1 a2 a3
h2 b2 b3
h3 c2 c3

∣∣∣∣∣∣. (2.17)

If D 6= 0, Eq. (2.17) may now be solved for x1:

x1 =
1

D

∣∣∣∣∣∣
h1 a2 a3
h2 b2 b3
h3 c2 c3

∣∣∣∣∣∣. (2.18)

Analogous procedures starting from x2 D and x3 D give the parallel results

x2 =
1

D

∣∣∣∣∣∣
a1 h1 a3
b1 h2 b3
c1 h3 c3

∣∣∣∣∣∣, x3 =
1

D

∣∣∣∣∣∣
a1 a2 h2
b1 b2 h2
c1 c2 h3

∣∣∣∣∣∣.
We see that the solution for xi is 1/D times a numerator obtained by replacing the i th
column of D by the right-hand-side coefficients, a result that can be generalized to an arbi-
trary number n of simultaneous equations. This scheme for the solution of linear equation
systems is known as Cramer’s rule.

If D is nonzero, the above construction of the xi is definitive and unique, so that there
will be exactly one solution to the equation set. If D 6= 0 and the equations are homoge-
neous (i.e., all the hi are zero), then the unique solution is that all the xi are zero.

Determinants and Linear Dependence

The preceding subsections go a long way toward identifying the role of the determi-
nant with respect to linear dependence. If n linear equations in n variables, written as
in Eq. (2.15), have coefficients that form a nonzero determinant, the variables are uniquely
determined, meaning that the forms constituting the left-hand sides of the equations must
in fact be linearly independent. However, we would still like to prove the property illus-
trated in the introduction to this chapter, namely that if a set of forms is linearly depen-
dent, the determinant of their coefficients will be zero. But this result is nearly immediate.
The existence of linear dependence means that there exists one equation whose coefficients
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are linear combinations of the coefficients of the other equations, and we may use that fact
to reduce to zero the row of the determinant corresponding to that equation.

In summary, we have therefore established the following important result:

If the coefficients of n linear forms in n variables form a nonzero determinant, the forms
are linearly independent; if the determinant of the coefficients is zero, the forms exhibit
linear dependence.

Linearly Dependent Equations

If a set of linear forms is linearly dependent, we can distinguish three distinct situations
when we consider equation systems based on these forms. First, and of most importance
for physics, is the case in which all the equations are homogeneous, meaning that the
right-hand side quantities hi in equations of the type Eq. (2.15) are all zero. Then, one or
more of the equations in the set will be equivalent to linear combinations of others, and
we will have less than n equations in our n variables. We can then assign one (or in some
cases, more than one) variable an arbitrary value, obtaining the others as functions of the
assigned variables. We thus have a manifold (i.e., a parameterized set) of solutions to our
equation system.

Combining the above analysis with our earlier observation that if a set of homogeneous
linear equations has a nonvanishing determinant it has the unique solution that all the xi
are zero, we have the following important result:

A system of n homogeneous linear equations in n unknowns has solutions that are not
identically zero only if the determinant of its coefficients vanishes. If that determinant
vanishes, there will be one or more solutions that are not identically zero and are
arbitrary as to scale.

A second case is where we have (or combine equations so that we have) the same linear
form in two equations, but with different values of the right-hand quantities hi . In that case
the equations are mutually inconsistent, and the equation system has no solution.

A third, related case, is where we have a duplicated linear form, but with a common
value of hi . This also leads to a solution manifold.

Example 2.1.3 LINEARLY DEPENDENT HOMOGENEOUS EQUATIONS

Consider the equation set

x1 + x2 + x3 = 0,

x1 + 3 x2 + 5 x3 = 0,

x1 + 2 x2 + 3 x3 = 0.

Here

D =

∣∣∣∣∣∣
1 1 1
1 3 5
1 2 3

∣∣∣∣∣∣= 1(3)(3)− 1(5)(2)− 1(3)(1)− 1(1)(3)+ 1(5)(1)+ 1(1)(2)= 0.
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The third equation is half the sum of the other two, so we drop it. Then,

second equation minus first: 2x2 + 4x3 = 0−→ x2 =−2x3,

(3× first equation) minus second: 2x1 − 2x3 = 0−→ x1 = x3.

Since x3 can have any value, there is an infinite number of solutions, all of the form
(x1, x2, x3)= constant× (1,−2,1).

Our solution illustrates an important property of homogeneous linear equations, namely
that any multiple of a solution is also a solution. The solution only becomes less arbitrary
if we impose a scale condition. For example, in the present case we could require the
squares of the xi to add to unity. Even then, the solution would still be arbitrary as to
overall sign. �

Numerical Evaluation

There is extensive literature on determinant evaluation. Computer codes and many refer-
ences are given, for example, by Press et al.1 We present here a straightforward method
due to Gauss that illustrates the principles involved in all the modern evaluation methods.
Gauss elimination is a versatile procedure that can be used for evaluating determinants,
for solving linear equation systems, and (as we will see later) even for matrix inversion.

Example 2.1.4 GAUSS ELIMINATION

Our example, a 3×3 linear equation system, can easily be done in other ways, but it is used
here to provide an understanding of the Gauss elimination procedure. We wish to solve

3x + 2y + z = 11

2x + 3y + z = 13

x + y + 4z = 12. (2.19)

For convenience and for the optimum numerical accuracy, the equations are rearranged so
that, to the extent possible, the largest coefficients run along the main diagonal (upper left
to lower right).

The Gauss technique is to use the first equation to eliminate the first unknown, x , from
the remaining equations. Then the (new) second equation is used to eliminate y from the
last equation. In general, we work down through the set of equations, and then, with one un-
known determined, we work back up to solve for each of the other unknowns in succession.

1W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd ed. Cambridge, UK: Cambridge
University Press (1992), Chapter 2.
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It is convenient to start by dividing each row by its initial coefficient, converting
Eq. (2.19) to

x +
2

3
y +

1

3
z =

11

3

x +
3

2
y +

1

2
z =

13

2

x + y + 4z = 12. (2.20)

Now, using the first equation, we eliminate x from the second and third equations by
subtracting the first equation from each of the others:

x +
2

3
y +

1

3
z =

11

3
5

6
y +

1

6
z =

17

6
1

3
y +

11

3
z =

25

3
. (2.21)

Then we divide the second and third rows by their initial coefficients:

x +
2

3
y +

1

3
z =

11

3

y +
1

5
z =

17

5

y + 11z = 25. (2.22)

Repeating the technique, we use the new second equation to eliminate y from the third
equation, which can then be solved for z:

x +
2

3
y +

1

3
z =

11

3

y +
1

5
z =

17

5
54

5
z =

108

5
−→ z = 2. (2.23)

Now that z has been determined, we can return to the second equation, finding

y +
1

5
× 2=

17

5
−→ y = 3,

and finally, continuing to the first equation,

x +
2

3
× 3+

1

3
× 2=

11

3
−→ x = 1.

The technique may not seem as elegant as the use of Cramer’s rule, but it is well adapted
to computers and is far faster than the time spent with determinants.

If we had not kept the right-hand sides of the equation system, the Gauss elimination
process would have simply brought the original determinant into triangular form (but note
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that our processes for making the leading coefficients unity cause corresponding changes
in the value of the determinant). In the present problem, the original determinant

D =

∣∣∣∣∣∣
3 2 1
2 3 1
1 1 4

∣∣∣∣∣∣
was divided by 3 and by 2 going from Eq. (2.19) to (2.20), and multiplied by 6/5 and
by 3 going from Eq. (2.21) to (2.22), so that D and the determinant represented by the
left-hand side of Eq. (2.23) are related by

D = (3)(2)

(
5

6

)(
1

3

)
∣∣∣∣∣∣∣∣∣∣∣∣

1
2

3

1

3

0 1
1

5

0 0
54

5

∣∣∣∣∣∣∣∣∣∣∣∣
=

5

3

54

5
= 18 . (2.24)

Because all the entries in the lower triangle of the determinant explicitly shown in
Eq. (2.24) are zero, the only term that contributes to it is the product of the diagonal
elements: To get a nonzero term, we must use the first element of the first row, then the
second element of the second row, etc. It is easy to verify that the final result obtained in
Eq. (2.24) agrees with the result of evaluating the original form of D. �

Exercises

2.1.1 Evaluate the following determinants:

(a)

∣∣∣∣∣∣
1 0 1
0 1 0
1 0 0

∣∣∣∣∣∣, (b)

∣∣∣∣∣∣
1 2 0
3 1 2
0 3 1

∣∣∣∣∣∣, (c)
1
√

2

∣∣∣∣∣∣∣∣
0
√

3 0 0
√

3 0 2 0
0 2 0

√
3

0 0
√

3 0

∣∣∣∣∣∣∣∣.
2.1.2 Test the set of linear homogeneous equations

x + 3y + 3z = 0, x − y + z = 0, 2x + y + 3z = 0

to see if it possesses a nontrivial solution. In any case, find a solution to this equation
set.

2.1.3 Given the pair of equations

x + 2y = 3, 2x + 4y = 6,

(a) Show that the determinant of the coefficients vanishes.

(b) Show that the numerator determinants, see Eq. (2.18), also vanish.

(c) Find at least two solutions.

2.1.4 If Ci j is the cofactor of element ai j , formed by striking out the i th row and j th column
and including a sign (−1)i+ j, show that
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(a)
∑

i ai j Ci j =
∑

i a j i C j i = |A|, where |A| is the determinant with the elements ai j ,

(b)
∑

i ai j Cik =
∑

i a j i Cki = 0, j 6= k.

2.1.5 A determinant with all elements of order unity may be surprisingly small. The Hilbert
determinant Hi j = (i + j − 1)−1, i, j = 1,2, . . . ,n is notorious for its small values.

(a) Calculate the value of the Hilbert determinants of order n for n = 1,2, and 3.

(b) If an appropriate subroutine is available, find the Hilbert determinants of order n
for n = 4,5, and 6.

ANS. n Det(Hn)

1 1.
2 8.33333× 10−2

3 4.62963× 10−4

4 1.65344× 10−7

5 3.74930× 10−12

6 5.36730× 10−18.

2.1.6 Prove that the determinant consisting of the coefficients from a set of linearly dependent
forms has the value zero.

2.1.7 Solve the following set of linear simultaneous equations. Give the results to five decimal
places.

1.0x1 + 0.9x2 + 0.8x3 + 0.4x4 + 0.1x5 = 1.0

0.9x1 + 1.0x2 + 0.8x3 + 0.5x4 + 0.2x5 + 0.1x6 = 0.9

0.8x1 + 0.8x2 + 1.0x3 + 0.7x4 + 0.4x5 + 0.2x6 = 0.8

0.4x1 + 0.5x2 + 0.7x3 + 1.0x4 + 0.6x5 + 0.3x6 = 0.7

0.1x1 + 0.2x2 + 0.4x3 + 0.6x4 + 1.0x5 + 0.5x6 = 0.6

0.1x2 + 0.2x3 + 0.3x4 + 0.5x5 + 1.0x6 = 0.5.

Note. These equations may also be solved by matrix inversion, as discussed in
Section 2.2.

2.1.8 Show that (in 3-D space)

(a)
∑

i

δi i = 3,

(b)
∑

i j

δi jεi jk = 0,

(c)
∑
pq

εi pqε j pq = 2δi j ,

(d)
∑
i jk

εi jkεi jk = 6.
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Note. The symbol δi j is the Kronecker delta, defined in Eq. (1.164), and εi jk is the
Levi-Civita symbol, Eq. (2.8).

2.1.9 Show that (in 3-D space) ∑
k

εi jkεpqk = δi pδ jq − δiqδ j p.

Note. See Exercise 2.1.8 for definitions of δi j and εi jk .

2.2 MATRICES

Matrices are 2-D arrays of numbers or functions that obey the laws that define matrix
algebra. The subject is important for physics because it facilitates the description of
linear transformations such as changes of coordinate systems, provides a useful formu-
lation of quantum mechanics, and facilitates a variety of analyses in classical and rel-
ativistic mechanics, particle theory, and other areas. Note also that the development of
a mathematics of two-dimensionally ordered arrays is a natural and logical extension of
concepts involving ordered pairs of numbers (complex numbers) or ordinary vectors (one-
dimensional arrays).

The most distinctive feature of matrix algebra is the rule for the multiplication of
matrices. As we will see in more detail later, the algebra is defined so that a set of lin-
ear equations such as

a1x1 + a2x2 = h1

b1x1 + b2x2 = h2

can be written as a single matrix equation of the form(
a1 a2
b1 b2

)(
x1
x2

)
=

(
h1
h2

)
.

In order for this equation to be valid, the multiplication indicated by writing the two
matrices next to each other on the left-hand side has to produce the result(

a1x1 + a2x2
b1x1 + b2x2

)
and the statement of equality in the equation has to mean element-by-element agreement of
its left-hand and right-hand sides. Let’s move now to a more formal and precise description
of matrix algebra.

Basic Definitions

A matrix is a set of numbers or functions in a 2-D square or rectangular array. There are
no inherent limitations on the number of rows or columns. A matrix with m (horizontal)
rows and n (vertical) columns is known as an m × n matrix, and the element of a matrix A
in row i and column j is known as its i, j element, often labeled ai j . As already observed
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u1
u2
u3
u4


 4 2
−1 3

0 1

 (
6 7 0
1 4 3

) (
0 1
1 0

) (
a11 a12

)
FIGURE 2.1 From left to right, matrices of dimension 4× 1 (column vector),

3× 2, 2× 3, 2× 2 (square), 1× 2 (row vector).

when we introduced determinants, when row and column indices or dimensions are men-
tioned together, it is customary to write the row indicator first. Note also that order matters,
in general the i, j and j, i elements of a matrix are different, and (if m 6= n) n × m and
m × n matrices even have different shapes. A matrix for which n = m is termed square;
one consisting of a single column (an m×1 matrix) is often called a column vector, while
a matrix with only one row (therefore 1 × n) is a row vector. We will find that identi-
fying these matrices as vectors is consistent with the properties identified for vectors in
Section 1.7.

The arrays constituting matrices are conventionally enclosed in parentheses (not vertical
lines, which indicate determinants, or square brackets). A few examples of matrices are
shown in Fig. 2.1. We will usually write the symbols denoting matrices as upper-case
letters in a sans-serif font (as we did when introducing A); when a matrix is known to be a
column vector we often denote it by a lower-case boldface letter in a Roman font (e.g., x).

Perhaps the most important fact to note is that the elements of a matrix are not combined
with one another. A matrix is not a determinant. It is an ordered array of numbers, not a
single number. To refer to the determinant whose elements are those of a square matrix A
(more simply, “the determinant of A”), we can write det(A).

Matrices, so far just arrays of numbers, have the properties we assign to them. These
properties must be specified to complete the definition of matrix algebra.

Equality

If A and B are matrices, A= B only if ai j = bi j for all values of i and j . A necessary but
not sufficient condition for equality is that both matrices have the same dimensions.

Addition, Subtraction

Addition and subtraction are defined only for matrices A and B of the same dimensions, in
which case A±B= C, with ci j = ai j±bi j for all values of i and j , the elements combining
according to the law of ordinary algebra (or arithmetic if they are simple numbers). This
means that C will be a matrix of the same dimensions as A and B. Moreover, we see that
addition is commutative: A+ B = B+ A. It is also associative, meaning that (A+ B)+
C = A+ (B+ C). A matrix with all elements zero, called a null matrix or zero matrix,
can either be written as O or as a simple zero, with its matrix character and dimensions
determined from the context. Thus, for all A,

A+ 0= 0+ A= A. (2.25)
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Multiplication (by a Scalar)

Here what we mean by a scalar is an ordinary number or function (not another matrix).
The multiplication of matrix A by the scalar quantity α produces B= αA, with bi j = α ai j

for all values of i and j. This operation is commutative, with αA= Aα.
Note that the definition of multiplication by a scalar causes each element of matrix A to

be multiplied by the scalar factor. This is in striking contrast to the behavior of determinants
in which α det(A) is a determinant in which the factor α multiplies only one column or
one row of det(A) and not every element of the entire determinant. If A is an n× n square
matrix, then

det(αA)= αn det(A).

Matrix Multiplication (Inner Product)

Matrix multiplication is not an element-by-element operation like addition or multiplica-
tion by a scalar. Instead, it is a more complicated operation in which each element of the
product is formed by combining elements of a row of the first operand with correspond-
ing elements of a column of the second operand. This mode of combination proves to be
that which is needed for many purposes, and gives matrix algebra its power for solving
important problems. This inner product of matrices A and B is defined as

A B= C, with ci j =
∑

k

aikbk j . (2.26)

This definition causes the i j element of C to be formed from the entire i th row of A and
the entire j th column of B. Obviously this definition requires that A have the same number
of columns (n) as B has rows. Note that the product will have the same number of rows
as A and the same number of columns as B. Matrix multiplication is defined only if these
conditions are met. The summation in Eq. (2.26) is over the range of k from 1 to n, and,
more explicitly, corresponds to

ci j = ai1 b1 j + ai2 b2 j + · · · + a1n bnj .

This combination rule is of a form similar to that of the dot product of the vectors
(ai1,ai2, . . . ,ain) and (b1 j ,b2 j , . . . ,bnj ). Because the roles of the two operands in a matrix
multiplication are different (the first is processed by rows, the second by columns), the
operation is in general not commutative, that is, A B 6= B A. In fact, A B may even have a
different shape than B A. If A and B are square, it is useful to define the commutator of
A and B,

[A,B] = A B− B A, (2.27)

which, as stated above, will in many cases be nonzero.
Matrix multiplication is associative, meaning that (AB)C = A(BC). Proof of this state-

ment is the topic of Exercise 2.2.26.
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Example 2.2.1 MULTIPLICATION, PAULI MATRICES

These three 2× 2 matrices, which occurred in early work in quantum mechanics by Pauli,
are encountered frequently in physics contexts, so a familiarity with them is highly advis-
able. They are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.28)

Let’s form σ1σ2. The 1,1 element of the product involves the first row of σ1 and the first
column of σ2; these are shaded and lead to the indicated computation:

(
0 1
1 0

)(
0 −i
i 0

)
→ 0(0)+ 1(i)= i.

Continuing, we have

σ1σ2 =

(
0(0)+ 1(i) 0(−i)+ 1(0)
1(0)+ 0(i) 1(−i)+ 0(0)

)
=

(
i 0
0 −i

)
. (2.29)

In a similar fashion, we can compute

σ2σ1 =

(
0 −i
i 0

)(
0 1
1 0

)
=

(
−i 0

0 i

)
. (2.30)

It is clear that σ1 and σ2 do not commute. We can construct their commutator:

[σ1, σ2] = σ1σ2 − σ2σ1 =

(
i 0
0 −i

)
−

(
−i 0

0 i

)
= 2i

(
1 0
0 −1

)
= 2iσ3. (2.31)

Note that not only have we verified that σ1 and σ2 do not commute, we have even evaluated
and simplified their commutator. �

Example 2.2.2 MULTIPLICATION, ROW AND COLUMN MATRICES

As a second example, consider

A=

1
2
3

, B=
(
4 5 6

)
.

Let us form A B and B A:

A B=

 4 5 6
8 10 12

12 15 18

, B A= (4× 1+ 5× 2+ 6× 3)= (32).

The results speak for themselves. Often when a matrix operation leads to a 1 × 1 ma-
trix, the parentheses are dropped and the result is treated as an ordinary number or
function. �
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Unit Matrix

By direct matrix multiplication, it is possible to show that a square matrix with elements
of value unity on its principal diagonal (the elements (i, j) with i = j ), and zeros every-
where else, will leave unchanged any matrix with which it can be multiplied. For example,
the 3× 3 unit matrix has the form 1 0 0

0 1 0
0 0 1

;
note that it is not a matrix all of whose elements are unity. Giving such a matrix the name 1,

1A= A1= A. (2.32)

In interpreting this equation, we must keep in mind that unit matrices, which are square
and therefore of dimensions n × n, exist for all n; the n values for use in Eq. (2.32) must
be those consistent with the applicable dimension of A. So if A is m × n, the unit matrix in
1A must be m ×m, while that in A1 must be n × n.

The previously introduced null matrices have only zero elements, so it is also obvious
that for all A,

O A= A O=O. (2.33)

Diagonal Matrices

If a matrix D has nonzero elements di j only for i = j , it is said to be diagonal; a 3× 3
example is

D =

1 0 0
0 2 0
0 0 3

.
The rules of matrix multiplication cause all diagonal matrices (of the same size) to com-
mute with each other. However, unless proportional to a unit matrix, diagonal matrices
will not commute with nondiagonal matrices containing arbitrary elements.

Matrix Inverse

It will often be the case that given a square matrix A, there will be a square matrix B such
that A B = B A = 1. A matrix B with this property is called the inverse of A and is given
the name A−1. If A−1 exists, it must be unique. The proof of this statement is simple: If B
and C are both inverses of A, then

A B= B A= A C= C A= 1.

We now look at

C A B= (C A)B= B , but also C A B= C(A B)= C .

This shows that B= C.



ArfKen_Ch02-9780123846549.tex

100 Chapter 2 Determinants and Matrices

Every nonzero real (or complex) number α has a nonzero multiplicative inverse, often
written 1/α. But the corresponding property does not hold for matrices; there exist nonzero
matrices that do not have inverses. To demonstrate this, consider the following:

A=

(
1 1
0 0

)
, B=

(
1 0
−1 0

)
, so A B=

(
0 0
0 0

)
.

If A has an inverse, we can multiply the equation A B = O on the left by A−1, thereby
obtaining

AB=O −→ A−1AB= A−1O −→ B=O.

Since we started with a matrix B that was nonzero, this is an inconsistency, and we are
forced to conclude that A−1 does not exist. A matrix without an inverse is said to be singu-
lar, so our conclusion is that A is singular. Note that in our derivation, we had to be careful
to multiply both members of A B= O from the left, because multiplication is noncommu-
tative. Alternatively, assuming B−1 to exist, we could multiply this equation on the right
by B−1, obtaining

AB=O −→ ABB−1
=OB−1

−→ A=O.

This is inconsistent with the nonzero A with which we started; we conclude that B is also
singular. Summarizing, there are nonzero matrices that do not have inverses and are iden-
tified as singular.

The algebraic properties of real and complex numbers (including the existence of
inverses for all nonzero numbers) define what mathematicians call a field. The properties
we have identified for matrices are different; they form what is called a ring.

The numerical inversion of matrices is another topic that has been given much attention,
and computer programs for matrix inversion are widely available. A closed, but cumber-
some formula for the inverse of a matrix exists; it expresses the elements of A−1 in terms of
the determinants that are the minors of det(A); recall that minors were defined in the para-
graph immediately before Eq. (2.14). That formula, the derivation of which is in several of
the Additional Readings, is

(A−1)i j =
(−1)i+ j M j i

det(A)
. (2.34)

We describe here a well-known method that is computationally more efficient than
Eq. (2.34), namely the Gauss-Jordan procedure.

Example 2.2.3 GAUSS-JORDAN MATRIX INVERSION

The Gauss-Jordan method is based on the fact that there exist matrices ML such that the
product MLA will leave an arbitrary matrix A unchanged, except with

(a) one row multiplied by a constant, or

(b) one row replaced by the original row minus a multiple of another row, or

(c) the interchange of two rows.

The actual matrices ML that carry out these transformations are the subject of Exercise 2.2.21.
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By using these transformations, the rows of a matrix can be altered (by matrix multipli-
cation) in the same ways we were able to change the elements of determinants, so we can
proceed in ways similar to those employed for the reduction of determinants by Gauss elim-
ination. If A is nonsingular, the application of a succession of ML, i.e., M= (. . .M′′LM′LML),
can reduce A to a unit matrix:

M A= 1, or M= A−1.

Thus, what we need to do is apply successive transformations to A until these transforma-
tions have reduced A to 1, keeping track of the product of these transformations. The way
in which we keep track is to successively apply the transformations to a unit matrix.

Here is a concrete example. We want to invert the matrix

A=

3 2 1
2 3 1
1 1 4

.
Our strategy will be to write, side by side, the matrix A and a unit matrix of the same size,
and to perform the same operations on each until A has been converted to a unit matrix,
which means that the unit matrix will have been changed to A−1. We start with

3 2 1
2 3 1
1 1 4

 and

1 0 0
0 1 0
0 0 1

.
We multiply the rows as necessary to set to unity all elements of the first column of the left
matrix:


1

2

3

1

3

1
3

2

1

2
1 1 4

 and


1

3
0 0

0
1

2
0

0 0 1

.

Subtracting the first row from the second and third rows, we obtain


1

2

3

1

3

0
5

6

1

6

0
1

3

11

3

 and



1

3
0 0

−
1

3

1

2
0

−
1

3
0 1

.
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Then we divide the second row (of both matrices) by 5
6 and subtract 2

3 times it from the
first row and 1

3 times it from the third row. The results for both matrices are
1 0

1

5

0 1
1

5

0 0
18

5

 and



3

5
−

2

5
0

−
2

5

3

5
0

−
1

5
−

1

5
1

.

We divide the third row (of both matrices) by 18
5 . Then as the last step, 1

5 times the third
row is subtracted from each of the first two rows (of both matrices). Our final pair is

1 0 0
0 1 0
0 0 1

 and A−1
=



11

18
−

7

18
−

1

18

−
7

18

11

18
−

1

18

−
1

18
−

1

18

5

18

.

We can check our work by multiplying the original A by the calculated A−1 to see if we
really do get the unit matrix 1. �

Derivatives of Determinants

The formula giving the inverse of a matrix in terms of its minors enables us to write a
compact formula for the derivative of a determinant det(A) where the matrix A has ele-
ments that depend on some variable x . To carry out the differentiation with respect to the
x dependence of its element ai j , we write det(A) as its expansion in minors Mi j about the
elements of row i , as in Eq. (2.14), so, appealing also to Eq. (2.34), we have

∂ det(A)

∂ai j
= (−1)i+ j Mi j = (A

−1) j i det(A).

Applying now the chain rule to allow for the x dependence of all elements of A, we get

d det(A)

dx
= det(A)

∑
i j

(A−1) j i
dai j

dx
. (2.35)

Systems of Linear Equations

Using the matrix inverse, we can write down formal solutions to linear equation systems.
To start, we note that if A is a n × n square matrix, and x and h are n × 1 column vectors,
the matrix equation Ax= h is, by the rule for matrix multiplication,

Ax=


a11x1 + a12x2 + · · · + a1n xn

a21x1 + a22x2 + · · · + a2n xn

· · · · · · · · · · · ·

an1x1 + an2x2 + · · · + ann xn

= h=


h1
h2
· · ·

hn

,



ArfKen_Ch02-9780123846549.tex

2.2 Matrices 103

which is entirely equivalent to a system of n linear equations with the elements of A as
coefficients. If A is nonsingular, we can multiply Ax= h on the left by A−1, obtaining the
result x= A−1h.

This result tells us two things: (1) that if we can evaluate A−1, we can compute the
solution x; and (2) that the existence of A−1 means that this equation system has a
unique solution. In our study of determinants we found that a linear equation system had a
unique solution if and only if the determinant of its coefficients was nonzero. We therefore
see that the condition that A−1 exists, i.e., that A is nonsingular, is the same as the condi-
tion that the determinant of A, which we write det(A), be nonzero. This result is important
enough to be emphasized:

A square matrix A is singular if and only if det(A)= 0. (2.36)

Determinant Product Theorem

The connection between matrices and their determinants can be made deeper by estab-
lishing a product theorem which states that the determinant of a product of two n × n
matrices A and B is equal to the products of the determinants of the individual matrices:

det(A B)= det(A)det(B). (2.37)

As an initial step toward proving this theorem, let us look at det(A B) with the elements of
the matrix product written out. Showing the first two columns explicitly, we have

det(A B)=

∣∣∣∣∣∣∣∣∣∣
a11b11 + a12b21 + · · · + a1nbn1 a11b12 + a12b22 + · · · + a1nbn2 · · ·

a21b11 + a22b21 + · · · + a2nbn1 a21b12 + a22b22 + · · · + a2nbn2 · · ·

· · · · · · · · ·

· · · · · · · · ·

an1b11 + an2b21 + · · · + annbn1 an1b12 + an2b22 + · · · + annbn2 · · ·

∣∣∣∣∣∣∣∣∣∣
.

Introducing the notation

a j =


a1 j

a2 j

· · ·

anj

, this becomes det(A B)=

∣∣∣∣∣∣
∑

j1

a j1b j1,1

∑
j2

a j2b j2,2 · · ·

∣∣∣∣∣∣,
where the summations over j1, j2, . . . , jn run independently from 1 though n. Now, calling
upon Eqs. (2.12) and (2.13), we can move the summations and the factors b outside the
determinant, reaching

det(A B)=
∑

j1

∑
j2

· · ·

∑
jn

b j1,1b j2,2 · · ·b jn ,n det(a j1a j2 · · · a jn ). (2.38)

The determinant on the right-hand side of Eq. (2.38) will vanish if any of the indices jµ
are equal; if all are unequal, that determinant will be ±det(A), with the sign corresponding
to the parity of the column permutation needed to put the a j in numerical order. Both
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of these conditions are met by writing det(a j1a j2 · · · a jn ) = ε j1... jn det(A), where ε is the
Levi-Civita symbol defined in Eq. (2.8). The above manipulations bring us to

det(A B)= det(A)
∑
j1... jn

ε j1... jn b j1,1b j2,2 · · ·b jn ,n = det(A)det(B),

where the final step was to invoke the definition of the determinant, Eq. (2.10). This result
proves the determinant product theorem.

From the determinant product theorem, we can gain additional insight regarding singular
matrices. Noting first that a special case of the theorem is that

det(A A−1)= det(1)= 1= det(A)det(A−1),

we see that

det(A−1)=
1

det(A)
. (2.39)

It is now obvious that if det(A)= 0, then det(A−1) cannot exist, meaning that A−1 cannot
exist either. This is a direct proof that a matrix is singular if and only if it has a vanishing
determinant.

Rank of a Matrix

The concept of matrix singularity can be refined by introducing the notion of the rank
of a matrix. If the elements of a matrix are viewed as the coefficients of a set of linear
forms, as in Eq. (2.1) and its generalization to n variables, a square matrix is assigned a
rank equal to the number of linearly independent forms that its elements describe. Thus, a
nonsingular n × n matrix will have rank n, while a n × n singular matrix will have a rank
r less than n. The rank provides a measure of the extent of the singularity; if r = n − 1,
the matrix describes one linear form that is dependent on the others; r = n − 2 describes
a situation in which there are two forms that are linearly dependent on the others, etc. We
will in Chapter 6 take up methods for systematically determining the rank of a matrix.

Transpose, Adjoint, Trace

In addition to the operations we have already discussed, there are further operations that
depend on the fact that matrices are arrays. One such operation is transposition. The
transpose of a matrix is the matrix that results from interchanging its row and column
indices. This operation corresponds to subjecting the array to reflection about its principal
diagonal. If a matrix is not square, its transpose will not even have the same shape as the
original matrix. The transpose of A, denoted Ã or sometimes AT , thus has elements

(Ã)i j = a j i . (2.40)
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Note that transposition will convert a column vector into a row vector, so

if x=


x1
x2
. . .

xn

, then x̃= (x1 x2 . . . xn).

A matrix that is unchanged by transposition (i.e., Ã= A) is called symmetric.
For matrices that may have complex elements, the complex conjugate of a matrix is

defined as the matrix resulting if all elements of the original matrix are complex conju-
gated. Note that this does not change the shape or move any elements to new positions.
The notation for the complex conjugate of A is A∗.

The adjoint of a matrix A, denoted A†, is obtained by both complex conjugating and
transposing it (the same result is obtained if these operations are performed in either order).
Thus,

(A†)i j = a∗j i . (2.41)

The trace, a quantity defined for square matrices, is the sum of the elements on the
principal diagonal. Thus, for an n × n matrix A,

trace(A)=
n∑

i=1

ai i . (2.42)

From the rule for matrix addition, is is obvious that

trace(A+ B)= trace(A)+ trace(B). (2.43)

Another property of the trace is that its value for a product of two matrices A and B is
independent of the order of multiplication:

trace(AB)=
∑

i

(AB)i i =
∑

i

∑
j

ai j b j i =
∑

j

∑
i

b j i ai j

=

∑
j

(BA) j j = trace(BA). (2.44)

This holds even if AB 6= BA. Equation (2.44) means that the trace of any commutator
[A,B] = AB − BA is zero. Considering now the trace of the matrix product ABC, if we
group the factors as A(BC), we easily see that

trace(ABC)= trace(BCA).

Repeating this process, we also find trace(ABC) = trace(CAB). Note, however, that we
cannot equate any of these quantities to trace(CBA) or to the trace of any other noncyclic
permutation of these matrices.
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Operations on Matrix Products

We have already seen that the determinant and the trace satisfy the relations

det(AB)= det(A)det(B)= det(BA), trace(AB)= trace(BA),

whether or not A and B commute. We also found that trace(A+ B)= trace(A)+ trace(B)
and can easily show that trace(αA) = α trace(A), establishing that the trace is a linear
operator (as defined in Chapter 5). Since similar relations do not exist for the determinant,
it is not a linear operator.

We consider now the effect of other operations on matrix products. The transpose of a
product, (AB)T, can be shown to satisfy

(AB)T = B̃Ã, (2.45)

showing that a product is transposed by taking, in reverse order, the transposes of its fac-
tors. Note that if the respective dimensions of A and B are such as to make AB defined, it
will also be true that B̃Ã is defined.

Since complex conjugation of a product simply amounts to conjugation of its individual
factors, the formula for the adjoint of a matrix product follows a rule similar to Eq. (2.45):

(AB)† = B†A†. (2.46)

Finally, consider (AB)−1. In order for AB to be nonsingular, neither A nor B can be
singular (to see this, consider their determinants). Assuming this nonsingularity, we have

(AB)−1
= B−1A−1. (2.47)

The validity of Eq. (2.47) can be demonstrated by substituting it into the obvious equation
(AB)(AB)−1

= 1.

Matrix Representation of Vectors

The reader may have already noted that the operations of addition and multiplication by a
scalar are defined in identical ways for vectors (Section 1.7) and the matrices we are calling
column vectors. We can also use the matrix formalism to generate scalar products, but in
order to do so we must convert one of the column vectors into a row vector. The operation
of transposition provides a way to do this. Thus, letting a and b stand for vectors in IR3,

a · b −→ (a1 a2 a3)

b1
b2
b3

= a1b1 + a2b2 + a3b3.

If in a matrix context we regard a and b as column vectors, the above equation assumes
the form

a · b −→ aT b. (2.48)

This notation does not really lead to significant ambiguity if we note that when dealing with
matrices, we are using lower-case boldface symbols to denote column vectors. Note also
that because aT b is a 1× 1 matrix, it is synonymous with its transpose, which is bT a. The
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matrix notation preserves the symmetry of the dot product. As in Section 1.7, the square of
the magnitude of the vector corresponding to a will be aT a.

If the elements of our column vectors a and b are real, then an alternate way of writing
aT b is a†b. But these quantities are not equal if the vectors have complex elements, as will
be the case in some situations in which the column vectors do not represent displacements
in physical space. In that situation, the dagger notation is the more useful because then a†a
will be real and can play the role of a magnitude squared.

Orthogonal Matrices

A real matrix (one whose elements are real) is termed orthogonal if its transpose is equal
to its inverse. Thus, if S is orthogonal, we may write

S−1
= ST, or SST

= 1 (S orthogonal). (2.49)

Since, for S orthogonal, det(SST )= det(S)det(ST )= [det(S)]2 = 1, we see that

det(S)=±1 (S orthogonal). (2.50)

It is easy to prove that if S and S′ are each orthogonal, then so also are SS′ and S′S.

Unitary Matrices

Another important class of matrices consists of matrices U with the property that U†
=

U−1, i.e., matrices for which the adjoint is also the inverse. Such matrices are identified as
unitary. One way of expressing this relationship is

U U†
= U†U= 1 (U unitary). (2.51)

If all the elements of a unitary matrix are real, the matrix is also orthogonal.
Since for any matrix det(AT )= det(A), and therefore det(A†)= det(A)∗, application of

the determinant product theorem to a unitary matrix U leads to

det(U)det(U†)= |det(U)|2 = 1, (2.52)

showing that det(U) is a possibly complex number of magnitude unity. Since such numbers
can be written in the form exp(iθ), with θ real, the determinants of U and U† will, for
some θ , satisfy

det(U)= eiθ , det(U†)= e−iθ .

Part of the significance of the term unitary is associated with the fact that the determinant
has unit magnitude. A special case of this relationship is our earlier observation that if U is
real, and therefore also an orthogonal matrix, its determinant must be either +1 or −1.

Finally, we observe that if U and V are both unitary, then UV and VU will be unitary as
well. This is a generalization of our earlier result that the matrix product of two orthogonal
matrices is also orthogonal.
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Hermitian Matrices

There are additional classes of matrices with useful characteristics. A matrix is identified as
Hermitian, or, synonymously, self-adjoint, if it is equal to its adjoint. To be self-adjoint,
a matrix H must be square, and in addition, its elements must satisfy

(H†)i j = (H)i j −→ h∗j i = hi j (H is Hermitian). (2.53)

This condition means that the array of elements in a self-adjoint matrix exhibits a reflection
symmetry about the principal diagonal: elements whose positions are connected by reflec-
tion must be complex conjugates. As a corollary to this observation, or by direct reference
to Eq. (2.53), we see that the diagonal elements of a self-adjoint matrix must be real.

If all the elements of a self-adjoint matrix are real, then the condition of self-adjointness
will cause the matrix also to be symmetric, so all real, symmetric matrices are self-adjoint
(Hermitian).

Note that if two matrices A and B are Hermitian, it is not necessarily true that AB or BA
is Hermitian; however, AB+ BA, if nonzero, will be Hermitian, and AB− BA, if nonzero,
will be anti-Hermitian, meaning that (AB− BA)† =−(AB− BA).

Extraction of a Row or Column

It is useful to define column vectors êi which are zero except for the (i,1) element, which
is unity; examples are

ê1 =


1
0
0
· · ·

0

, ê2 =


0
1
0
· · ·

0

, etc. (2.54)

One use of these vectors is to extract a single column from a matrix. For example, if A is a
3× 3 matrix, then

Aê2 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

0
1
0

=
a12

a22
a32

.
The row vector êT

i can be used in a similar fashion to extract a row from an arbitrary
matrix, as in

êT
i A= (ai1 ai2 ai3).

These unit vectors will also have many uses in other contexts.

Direct Product

A second procedure for multiplying matrices, known as the direct tensor or Kronecker
product, combines a m × n matrix A and a m′ × n′ matrix B to make the direct product
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matrix C= A⊗ B, which is of dimension mm′ × nn′ and has elements

Cαβ = Ai j Bkl , (2.55)

with α = m′(i − 1)+ k, β = n′( j − 1)+ l . The direct product matrix uses the indices of
the first factor as major and those of the second factor as minor; it is therefore a noncom-
mutative process. It is, however, associative.

Example 2.2.4 DIRECT PRODUCTS

We give some specific examples. If A and B are both 2× 2 matrices, we may write, first in
a somewhat symbolic and then in a completely expanded form,

A⊗ B=

(
a11B a12B
a21B a22B

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

.
Another example is the direct product of two two-element column vectors, x and y.

Again writing first in symbolic, and then expanded form,

(
x1
x2

)
⊗

(
y1
y2

)
=

(
x1y
x2y

)
=


x1 y1
x1 y2
x2 y1
x2 y2

.
A third example is the quantity AB from Example 2.2.2. It is an instance of the special

case (column vector times row vector) in which the direct and inner products coincide:
AB= A⊗ B. �

If C and C′ are direct products of the respective forms

C= A⊗ B and C′ = A′ ⊗ B′, (2.56)

and these matrices are of dimensions such that the matrix inner products AA′ and BB′ are
defined, then

CC′ = (AA′)⊗ (BB′). (2.57)

Moreover, if matrices A and B are of the same dimensions, then

C⊗ (A+ B)= C⊗ A+C⊗ B and (A+ B)⊗C= A⊗C+ B⊗C. (2.58)

Example 2.2.5 DIRAC MATRICES

In the original, nonrelativistic formulation of quantum mechanics, agreement between
theory and experiment for electronic systems required the introduction of the concept of
electron spin (intrinsic angular momentum), both to provide a doubling in the number of
available states and to explain phenomena involving the electron’s magnetic moment. The
concept was introduced in a relatively ad hoc fashion; the electron needed to be given
spin quantum number 1/2, and that could be done by assigning it a two-component wave
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function, with the spin-related properties described using the Pauli matrices, which were
introduced in Example 2.2.1:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Of relevance here is the fact that these matrices anticommute and have squares that are unit
matrices:

σ 2
i = 12, and σiσ j + σ jσi = 0, i 6= j. (2.59)

In 1927, P. A. M. Dirac developed a relativistic formulation of quantum mechanics
applicable to spin-1/2 particles. To do this it was necessary to place the spatial and time
variables on an equal footing, and Dirac proceeded by converting the relativistic expression
for the kinetic energy to an expression that was first order in both the energy and the
momentum (parallel quantities in relativistic mechanics). He started from the relativistic
equation for the energy of a free particle,

E2
= (p2

1 + p2
2 + p2

3)c
2
+m2c4

= p2c2
+m2c4, (2.60)

where pi are the components of the momentum in the coordinate directions, m is the
particle mass, and c is the velocity of light. In the passage to quantum mechanics, the
quantities pi are to be replaced by the differential operators −i h̄∂/∂xi , and the entire
equation is applied to a wave function.

It was desirable to have a formulation that would yield a two-component wave function
in the nonrelativistic limit and therefore might be expected to contain the σi . Dirac made
the observation that a key to the solution of his problem was to exploit the fact that the
Pauli matrices, taken together as a vector

σ = σ1ê1 + σ2ê2 + σ3ê3, (2.61)

could be combined with the vector p to yield the identity

(σ · p)2 = p212, (2.62)

where 12 denotes a 2× 2 unit matrix. The importance of Eq. (2.62) is that, at the price of
going to 2×2 matrices, we can linearize the quadratic occurrences of E and p in Eq. (2.60)
as follows. We first write

E212 − c2(σ · p)2 =m2c412. (2.63)

We then factor the left-hand side of Eq. (2.63) and apply both sides of the resulting equation
(which is a 2× 2 matrix equation) to a two-component wave function that we will call ψ1:

(E12 + c σ · p)(E12 − c σ · p)ψ1 =m2c4ψ1. (2.64)

The meaning of this equation becomes clearer if we make the additional definition

(E12 − c σ · p)ψ1 =mc2ψ2. (2.65)
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Substituting Eq. (2.65) into Eq. (2.64), we can then write the modified Eq. (2.64) and the
(unchanged) Eq. (2.65) as the equation set

(E12 + c σ · p)ψ2 =mc2ψ1,

(E12 − c σ · p)ψ1 =mc2ψ2;
(2.66)

both these equations will need to be satisfied simultaneously.
To bring Eqs. (2.66) to the form actually used by Dirac, we now make the substitution

ψ1 = ψA + ψB , ψ2 = ψA − ψB , and then add and subtract the two equations from each
other, reaching a set of coupled equations in ψA and ψB :

EψA − cσ · pψB =mc2ψA,

cσ · pψA − EψB =mc2ψB .

In anticipation of what we will do next, we write these equations in the matrix form[(
E12 0

0 −E12

)
−

(
0 cσ · p

−cσ · p 0

)](
ψA

ψB

)
=mc2

(
ψA

ψB

)
. (2.67)

We can now use the direct product notation to condense Eq. (2.67) into the simpler form

[(σ3 ⊗ 12)E − γ ⊗ c(σ · p)]9 =mc29, (2.68)

where 9 is the four-component wave function built from the two-component wave
functions:

9 =

(
ψA

ψB

)
,

and the terms on the left-hand side have the indicated structure because

σ3 =

(
1 0
0 −1

)
and we define γ =

(
0 1
−1 0

)
. (2.69)

It has become customary to identify the matrices in Eq. (2.68) as γ µ and to refer to them
as Dirac matrices, with

γ 0
= σ3 ⊗ 12 =

(
12 0
0 −12

)
=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

. (2.70)

The matrices resulting from the individual components of σ in Eq. (2.68) are (for
i = 1,2,3)

γ i
= γ ⊗ σi =

(
0 σi

−σi 0

)
. (2.71)
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Expanding Eq. (2.71), we have

γ 1
=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

, γ 2
=


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

,

γ 3
=


0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0

. (2.72)

Now that the γ µ have been defined, we can rewrite Eq. (2.68), expanding σ · p into
components: [

γ 0 E − c(γ 1 p1 + γ
2 p2 + γ

3 p3)
]
9 =mc29.

To put this matrix equation into the specific form known as the Dirac equation we multiply
both sides of it (on the left) by γ 0. Noting that (γ 0)2 = 1 and giving γ 0γ i the new name
αi , we reach [

γ 0mc2
+ c(α1 p1 + α2 p2 + α3 p3)

]
9 = E9. (2.73)

Equation (2.73) is in the notation used by Dirac with the exception that he used β as the
name for the matrix here called γ 0.

The Dirac gamma matrices have an algebra that is a generalization of that exhibited
by the Pauli matrices, where we found that the σ 2

i = 1 and that if i 6= j , then σi and
σ j anticommute. Either by further analysis or by direct evaluation, it is found that, for
µ= 0,1,2,3 and i = 1,2,3,

(γ 0)2 = 1, (γ i )2 =−1, (2.74)

γ µγ i
+ γ iγ µ = 0, µ 6= i. (2.75)

In the nonrelativistic limit, the four-component Dirac equation for an electron reduces
to a two-component equation in which each component satisfies the Schrödinger equation,
with the Pauli and Dirac matrices having completely disappeared. See Exercise 2.2.48.
In this limit, the Pauli matrices reappear if we add to the Schrödinger equation an addi-
tional term arising from the intrinsic magnetic moment of the electron. The passage to
the nonrelativistic limit provides justification for the seemingly arbitrary introduction of a
two-component wavefunction and use of the Pauli matrices for discussions of spin angular
momentum.

The Pauli matrices (and the unit matrix 12) form what is known as a Clifford algebra,2

with the properties shown in Eq. (2.59). Since the algebra is based on 2× 2 matrices, it
can have only four members (the number of linearly independent such matrices), and is
said to be of dimension 4. The Dirac matrices are members of a Clifford algebra of dimen-
sion 16. A complete basis for this Clifford algebra with convenient Lorentz transformation

2D. Hestenes, Am. J. Phys. 39: 1013 (1971); and J. Math. Phys. 16: 556 (1975).
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properties consists of the 16 matrices

14, γ 5
= iγ 0γ 1γ 2γ 3

=

(
0 12
12 0

)
, γ µ (µ= 0,1,2,3),

γ 5γ µ (µ= 0,1,2,3), σµν = iγ µγ ν (0≤ µ< ν ≤ 3). (2.76)

�

Functions of Matrices

Polynomials with one or more matrix arguments are well defined and occur often. Power
series of a matrix may also be defined, provided the series converges for each matrix ele-
ment. For example, if A is any n × n matrix, then the power series

exp(A)=
∞∑
j=0

1

j !
A j , (2.77)

sin(A)=
∞∑
j=0

(−1) j

(2 j + 1)!
A2 j+1, (2.78)

cos(A)=
∞∑
j=0

(−1) j

(2 j)!
A2 j (2.79)

are well-defined n × n matrices. For the Pauli matrices σk , the Euler identity for real θ
and k = 1, 2, or 3,

exp(iσkθ)= 12 cos θ + iσk sin θ, (2.80)

follows from collecting all even and odd powers of θ in separate series using σ 2
k = 1. For

the 4× 4 Dirac matrices σµν , defined in Eq. (2.76), we have for 1≤ µ< ν ≤ 3,

exp(iσµνθ)= 14 cos θ + iσµν sin θ, (2.81)

while

exp(iσ 0kζ )= 14 cosh ζ + iσ 0k sinh ζ (2.82)

holds for real ζ because (iσ 0k)2 = 1 for k = 1, 2, or 3.
Hermitian and unitary matrices are related in that U, given as

U= exp(iH), (2.83)

is unitary if H is Hermitian. To see this, just take the adjoint: U†
= exp(−iH†) =

exp(−iH)= [exp(iH)]−1
= U−1.

Another result which is important to identify here is that any Hermitian matrix H satisfies
a relation known as the trace formula,

det (exp(H))= exp (trace(H)). (2.84)

This formula is derived at Eq. (6.27).
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Finally, we note that the multiplication of two diagonal matrices produces a matrix that
is also diagonal, with elements that are the products of the corresponding elements of the
multiplicands. This result implies that an arbitrary function of a diagonal matrix will also
be diagonal, with diagonal elements that are that function of the diagonal elements of the
original matrix.

Example 2.2.6 EXPONENTIAL OF A DIAGONAL MATRIX

If a matrix A is diagonal, then its nth power is also diagonal, with the original diagonal
matrix elements raised to the nth power. For example, given

σ3 =

(
1 0
0 −1

)
,

then

(σ3)
n
=

(
1 0
0 (−1)n

)
.

We can now compute

eσ3 =


∞∑

n=0

1

n!
0

0
∞∑

n=0

(−1)n

n!

=
(

e 0
0 e−1

)
.

�

A final and important result is the Baker-Hausdorff formula, which, among other
places is used in the coupled-cluster expansions that yield highly accurate electronic struc-
ture calculations on atoms and molecules3:

exp(−T)A exp(T)= A+ [A,T] +
1

2!
[[A,T],T] +

1

3!
[[[A,T],T],T] + · · · . (2.85)

Exercises

2.2.1 Show that matrix multiplication is associative, (AB)C= A(BC).

2.2.2 Show that

(A+ B)(A− B)= A2
− B2

if and only if A and B commute,

[A, B] = 0.

3F. E. Harris, H. J. Monkhorst, and D. L. Freeman, Algebraic and Diagrammatic Methods in Many-Fermion Theory. New York:
Oxford University Press (1992).



ArfKen_Ch02-9780123846549.tex

2.2 Matrices 115

2.2.3 (a) Complex numbers, a + ib, with a and b real, may be represented by (or are iso-
morphic with) 2× 2 matrices:

a + ib ←→

(
a b
−b a

)
.

Show that this matrix representation is valid for (i) addition and (ii) multiplication.

(b) Find the matrix corresponding to (a + ib)−1.

2.2.4 If A is an n × n matrix, show that

det(−A)= (−1)n det A.

2.2.5 (a) The matrix equation A2
= 0 does not imply A = 0. Show that the most general

2× 2 matrix whose square is zero may be written as(
ab b2

−a2
−ab

)
,

where a and b are real or complex numbers.

(b) If C= A+ B, in general

det C 6= det A+ det B.

Construct a specific numerical example to illustrate this inequality.

2.2.6 Given

K=

 0 0 i
−i 0 0

0 −1 0

,
show that

Kn
= KKK · · · (n factors)= 1

(with the proper choice of n,n 6= 0).

2.2.7 Verify the Jacobi identity,

[A, [B, C]] = [B, [A, C]] − [C, [A, B]].

2.2.8 Show that the matrices

A=

0 1 0
0 0 0
0 0 0

, B=

0 0 0
0 0 1
0 0 0

, C=

0 0 1
0 0 0
0 0 0


satisfy the commutation relations

[A, B] = C, [A, C] = 0, and [B, C] = 0.



ArfKen_Ch02-9780123846549.tex

116 Chapter 2 Determinants and Matrices

2.2.9 Let

i=


0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

, j=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

,
and

k=


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

.
Show that

(a) i2 = j2 = k2
=−1, where 1 is the unit matrix.

(b) ij=−ji= k,
jk=−kj= i,
ki=−ik= j.

These three matrices (i, j, and k) plus the unit matrix 1 form a basis for quaternions. An
alternate basis is provided by the four 2× 2 matrices, iσ1, iσ2,−iσ3, and 1, where the
σi are the Pauli spin matrices of Example 2.2.1.

2.2.10 A matrix with elements ai j = 0 for j < i may be called upper right triangular. The
elements in the lower left (below and to the left of the main diagonal) vanish. Show that
the product of two upper right triangular matrices is an upper right triangular matrix.

2.2.11 The three Pauli spin matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

Show that

(a) (σi )
2
= 12,

(b) σiσ j = iσk , (i, j, k)= (1,2,3) or a cyclic permutation thereof,

(c) σiσ j + σ jσi = 2δi j 12; 12 is the 2× 2 unit matrix.

2.2.12 One description of spin-1 particles uses the matrices

Mx =
1
√

2

0 1 0
1 0 1
0 1 0

, My =
1
√

2

0 −i 0
i 0 −i
0 i 0

,
and

Mz =

1 0 0
0 0 0
0 0 −1

.
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Show that

(a) [Mx ,My] = iMz , and so on (cyclic permutation of indices). Using the Levi-Civita
symbol, we may write

[Mi ,M j ] = i
∑

k

εi jkMk .

(b) M2
≡M2

x +M2
y +M2

z = 2 13, where 13 is the 3× 3 unit matrix.

(c) [M2,Mi ] = 0,
[Mz,L+] = L+,
[L+,L−] = 2Mz ,
where L+ ≡Mx + iMy and L− ≡Mx − iMy .

2.2.13 Repeat Exercise 2.2.12, using the matrices for a spin of 3/2,

Mx =
1

2


0
√

3 0 0
√

3 0 2 0
0 2 0

√
3

0 0
√

3 0

, My =
i

2


0 −

√
3 0 0

√
3 0 −2 0

0 2 0 −
√

3
0 0

√
3 0

,
and

Mz =
1

2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

.
2.2.14 If A is a diagonal matrix, with all diagonal elements different, and A and B commute,

show that B is diagonal.

2.2.15 If A and B are diagonal, show that A and B commute.

2.2.16 Show that trace(ABC)= trace(CBA) if any two of the three matrices commute.

2.2.17 Angular momentum matrices satisfy a commutation relation

[M j ,Mk] = iMl , j, k, l cyclic.

Show that the trace of each angular momentum matrix vanishes.

2.2.18 A and B anticommute: AB = −BA. Also, A2
= 1, B2

= 1. Show that trace(A) =
trace(B)= 0.
Note. The Pauli and Dirac matrices are specific examples.

2.2.19 (a) If two nonsingular matrices anticommute, show that the trace of each one is zero.
(Nonsingular means that the determinant of the matrix is nonzero.)

(b) For the conditions of part (a) to hold, A and B must be n×n matrices with n even.
Show that if n is odd, a contradiction results.

2.2.20 If A−1 has elements

(A−1)i j = a(−1)
i j =

C j i

|A|
,
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where C j i is the j i th cofactor of |A|, show that

A−1A= 1.

Hence A−1 is the inverse of A (if |A| 6= 0).

2.2.21 Find the matrices ML such that the product MLA will be A but with:

(a) The i th row multiplied by a constant k (ai j → kai j , j = 1, 2, 3,. . .);

(b) The i th row replaced by the original i th row minus a multiple of the mth row
(ai j → ai j − K amj , i = 1, 2, 3, . . .);

(c) The i th and mth rows interchanged (ai j → amj , amj → ai j , j = 1,2,3, . . .).

2.2.22 Find the matrices MR such that the product AMR will be A but with:

(a) The i th column multiplied by a constant k (a j i → ka j i , j = 1,2,3, . . .);

(b) The i th column replaced by the original i th column minus a multiple of the mth
column (a j i → a j i − ka jm, j = 1,2,3, . . .);

(c) The i th and mth columns interchanged (a j i → a jm , a jm→ a j i , j = 1, 2, 3, . . .).

2.2.23 Find the inverse of

A=

3 2 1
2 2 1
1 1 4

.
2.2.24 Matrices are far too useful to remain the exclusive property of physicists. They may

appear wherever there are linear relations. For instance, in a study of population move-
ment the initial fraction of a fixed population in each of n areas (or industries or
religions, etc.) is represented by an n-component column vector P. The movement of
people from one area to another in a given time is described by an n × n (stochastic)
matrix T. Here Ti j is the fraction of the population in the j th area that moves to the i th
area. (Those not moving are covered by i = j .) With P describing the initial population
distribution, the final population distribution is given by the matrix equation TP=Q.
From its definition,

∑n
i=1 Pi = 1.

(a) Show that conservation of people requires that

n∑
i=1

Ti j = 1, j = 1,2, . . . ,n.

(b) Prove that

n∑
i=1

Qi = 1

continues the conservation of people.
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2.2.25 Given a 6× 6 matrix A with elements ai j = 0.5|i− j |, i, j = 0,1,2, . . . ,5, find A−1.

ANS. A−1
=

1

3


4 −2 0 0 0 0
−2 5 −2 0 0 0

0 −2 5 −2 0 0
0 0 −2 5 −2 0
0 0 0 −2 5 −2
0 0 0 0 −2 4

.

2.2.26 Show that the product of two orthogonal matrices is orthogonal.

2.2.27 If A is orthogonal, show that its determinant =±1.

2.2.28 Show that the trace of the product of a symmetric and an antisymmetric matrix is zero.

2.2.29 A is 2× 2 and orthogonal. Find the most general form of

A=

(
a b
c d

)
.

2.2.30 Show that

det(A∗)= (det A)∗ = det(A†).

2.2.31 Three angular momentum matrices satisfy the basic commutation relation

[Jx , Jy] = iJz

(and cyclic permutation of indices). If two of the matrices have real elements, show that
the elements of the third must be pure imaginary.

2.2.32 Show that (AB)† = B†A†.

2.2.33 A matrix C= S†S. Show that the trace is positive definite unless S is the null matrix, in
which case trace (C)= 0.

2.2.34 If A and B are Hermitian matrices, show that (AB+ BA) and i(AB− BA) are also Her-
mitian.

2.2.35 The matrix C is not Hermitian. Show that then C+ C† and i(C− C†) are Hermitian.
This means that a non-Hermitian matrix may be resolved into two Hermitian parts,

C=
1

2
(C+C†)+

1

2i
i(C−C†).

This decomposition of a matrix into two Hermitian matrix parts parallels the decompo-
sition of a complex number z into x + iy, where x = (z + z∗)/2 and y = (z − z∗)/2i .

2.2.36 A and B are two noncommuting Hermitian matrices:

AB− BA= iC.

Prove that C is Hermitian.

2.2.37 Two matrices A and B are each Hermitian. Find a necessary and sufficient condition for
their product AB to be Hermitian.

ANS. [A,B] = 0.
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2.2.38 Show that the reciprocal (that is, inverse) of a unitary matrix is unitary.

2.2.39 Prove that the direct product of two unitary matrices is unitary.

2.2.40 If σ is the vector with the σi as components given in Eq. (2.61), and p is an ordinary
vector, show that

(σ · p)2 = p212,

where 12 is a 2× 2 unit matrix.

2.2.41 Use the equations for the properties of direct products, Eqs. (2.57) and (2.58), to show
that the four matrices γ µ, µ= 0,1,2,3, satisfy the conditions listed in Eqs. (2.74) and
(2.75).

2.2.42 Show that γ 5, Eq. (2.76), anticommutes with all four γ µ.

2.2.43 In this problem, the summations are over µ = 0,1,2,3. Define gµν = gµν by the
relations

g00 = 1; gkk =−1, k = 1,2,3; gµν = 0, µ 6= ν;

and define γµ as
∑

gνµγ µ. Using these definitions, show that

(a)
∑
γµγ

αγ µ =−2γ α ,

(b)
∑
γµγ

αγ βγ µ = 4 gαβ ,

(c)
∑
γµγ

αγ βγ νγ µ =−2γ νγ βγ α .

2.2.44 If M= 1
2 (1+ γ 5), where γ 5 is given in Eq. (2.76), show that

M2
=M.

Note that this equation is still satisfied if γ is replaced by any other Dirac matrix listed
in Eq. (2.76).

2.2.45 Prove that the 16 Dirac matrices form a linearly independent set.

2.2.46 If we assume that a given 4× 4 matrix A (with constant elements) can be written as a
linear combination of the 16 Dirac matrices (which we denote here as 0i )

A=
16∑

i=1

ci0i ,

show that

ci ∼ trace(A0i ).

2.2.47 The matrix C = iγ 2γ 0 is sometimes called the charge conjugation matrix. Show that
Cγ µC−1

=− (γ µ)T .

2.2.48 (a) Show that, by substitution of the definitions of the γ µ matrices from Eqs. (2.70)
and (2.72), that the Dirac equation, Eq. (2.73), takes the following form when
written as 2× 2 blocks (with ψL and ψS column vectors of dimension 2). Here
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L and S stand, respectively, for “large” and “small” because of their relative size
in the nonrelativistic limit):(

mc2
− E c(σ1 p1 + σ2 p2 + σ3 p3)

−c(σ1 p1 + σ2 p2 + σ3 p3) −mc2
− E

)(
ψL

ψS

)
= 0.

(b) To reach the nonrelativistic limit, make the substitution E =mc2
+ ε and approx-

imate −2mc2
− ε by −2mc2. Then write the matrix equation as two simultaneous

two-component equations and show that they can be rearranged to yield

1

2m

(
p2

1 + p2
2 + p2

3

)
ψL = εψL ,

which is just the Schrödinger equation for a free particle.

(c) Explain why is it reasonable to call ψL and ψS “large” and “small.”

2.2.49 Show that it is consistent with the requirements that they must satisfy to take the Dirac
gamma matrices to be (in 2× 2 block form)

γ 0
=

(
0 12
12 0

)
, γ i

=

(
0 σi

−σi 0

)
, (i = 1,2,3).

This choice for the gamma matrices is called the Weyl representation.

2.2.50 Show that the Dirac equation separates into independent 2× 2 blocks in the Weyl rep-
resentation (see Exercise 2.2.49) in the limit that the mass m approaches zero. This
observation is important in the ultra relativistic regime where the rest mass is inconse-
quential, or for particles of negligible mass (e.g., neutrinos).

2.2.51 (a) Given r′ = Ur, with U a unitary matrix and r a (column) vector with complex
elements, show that the magnitude of r is invariant under this operation.

(b) The matrix U transforms any column vector r with complex elements into r′,
leaving the magnitude invariant: r†r= r′†r′. Show that U is unitary.
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