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[. PREFACE

Here, we address the linearization techniques employed in
the paper titled, “PEV Fast-Charging Station Sizing and
Placement in Coupled Transportation-Distribution Networks
Considering Power Line Conditioning Capability”. At first, the
MINLP model is represented. Then, the employed linearization
techniques are described. Finally, the resulted MILP model is
expressed.

The notation used here are similar to that of the original
paper. As needed, other symbols are defined throughout the

text.
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III. LINEARIZATION TECHNIQUES

In model (1)-(38), equations (12), (13), (20), (21), (25), (26)
, (28), (29), (31), (32) and (34)-(38) are nonlinear. In following
subsections, we express linearization techniques.

A. Linearization of Harmonic Power Flow Constraints

((10)-(23))

Within the harmonic power flow constraints, (12), (13), (20)
and (21) are nonlinear. To linearize the harmonic power flow
constraints the method proposed in [1] is used. In [1], by using
Taylor series for inverse of voltage on the complex plane, a
linear approximation is presented. By using this method, (12)-
(17) are replaced by (39) and (40).
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The bus connected to the upstream network is considered as
the reference bus. We assume that the magnitude and phase of
the first (fundamental frequency) harmonic of reference bus
voltage are 1 and 0, respectively. Thus, (12) and (13) for the
reference bus can be formulated as (41) and (42), respectively.
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Therefore, (10), (11), (39)-(42), (18), (19), (43), (44), (22)
and (23) are the linear representation of harmonic power flow
constraints (10)-(23).

B. Linearization of PEVFCS Constraints ((33)-(38))

Among the PEVFCS constraints, (34)-(38) are nonlinear.
Equation (34) has two terms that are the product of two
variables. In order to linearize this equation, the method
presented in [2], piecewise linear approximation of a function
of two nonseparable variables, is used. This method is
explained in appendix A. By this method, piecewise linear
approximation of (34) is as (45)-(62).
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where, A, ={1, .., log}}, A, ={1, ..., logy}, n and m are total

number of breakpoints on each axis, and 7, ; €[0,1] and

;/gf”svt‘ij e [0, 1] are auxiliary variables. Also, a,", ,, and &, , ,

are binary variables used for implementation of SOS2
constraints for the first coordinate, a,', ,, and a; ., arebinary



variables used for implementation of SOS2 constraints for the
second coordinate, a;’, and &', are binary variables used to

select one of the two triangle inside the square selected in the
grid induced by triangulation. dv,", dv,", dIStr and dls“m

the breakpoints on each axis.

Equation (35) also has non-linear terms like (34). However,
since current-based equations are used for DN power flow
implementation in MILP model (according to (39) and (40)),
(35) is not used in our formulation. Therefore, we do not need
to linearize it.

The next non-linear equations are (36)-(38). In order to
linearize them, at first, by some manipulations, (63) is obtained.
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The right hand side of (63) include the product of a binary
variable and a continuous variable. In order to get rid of this
nonlinear term, (63) is substituted by (64) and (65).
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where, M is a large positive value.

The method utilized in [3], linear approximation of a circle,
is generalized to linearize (65). This method is described in
appendix B. Thus, (65) is substituted by (66), as a linear
approximation
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where o'y ooy Bloeer Vinse and 75, o, are auxiliary variables

used for expressing (65) as a circle equation.
Therefore (33), (45)-(62), (64) and (66) are the linear
representation of PEVFCS constraints (33)-(38).

C. Linearization of Operation and Security Constraints

((24)-(32))

Among the operation and security constraints, (25), (26),
(28), (29), (31) and (32) are nonlinear.

In order to linearize (25) and (26), (24)-(26) are merged
together and (67)-(68) are obtained.
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is used. Therefore, (69) is obtained as the linear approximation
of (67).
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where @, o, Blysis Vibse and 73, ., areauxiliary variables

used for piecewise linear expression.

For linearizing (68) we can use another method. According
to (68) and (27), we can see two extreme conditions of (68) as
follow:
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Therefore, (68) can be simplified and rewritten as (70).
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We should linearize (70) instead of (68). In order to linearize
the left hand side of (70), the variables used in (45) can be
employed. Therefore, (70) can be replaced by (71).
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where actually the left hand side of (71) is (vhl b.s, D%

Equation (28) is another non-linear constraint among the
operation and security constraints. For linearizing it, (27) and
(28) are merged together. By some manipulations, (72) is
obtained that is the substitute for (27) and (28).
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To linearize (72), the same method explained for (65) and

(67) can be utilized. To do this, first we need to definev;, . ..

As mentioned before, the left hand side of (71) is linear
approximation of (vrhb t) . Therefore, in order to obtain

Vs We use the first order Taylor series approximation of

Jx about X=1, as follow.
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can be obtained as (74).

]+05 Vb, S, t (74)

s %5 <1.05 (according to (67) and

(70)), the relative percentage error of this Taylor approximation
is less than 0.13% which is acceptable. So we substitute (72) by
(75), as a linear approximation.
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where o, Blis ., vaa, and y,-  are auxiliary variables

used for piecewise linear approximation.

The next non-linear constraint among the operation and
security constraints is (29). For linearizing (29), first it is
rewritten as follow.

(Vo) + (U, )7 S (IHD™ Y (W%, ), Vh=h, b, st (76)

Given the form of (76), it can be linearized using the piecewise
linear approximation of a circle, that is described in the
appendix B. Therefore, (76) can be stated as (77).
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The last non-linear constraints among the operation and
security constraints is (30)-(32). For the piecewise linear
expression of them, the method mentioned for (65) is used.
Therefore, (78) are the piecewise linear approximation of (30)-
(32).
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where @y, ., Blios 7iisx and 75, ., are auxiliary variables

used for piecewise linear approximation.
Therefore, (69), (71), (74), (75), (77) and (78) are the linear
approximation of operation and security constraints (24)-(32).

IvV. MILP MoDEL

Using the linearization techniques presented in section IlI,
the MINLP model introduced in section Il, can be recast as the
MILP model (79)-(105).
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APPENDIX A

PIECEWISE LINEAR APPROXIMATION OF A FUNCTION OF TWO
NONSEPARABLE VARIABLES

In [4], three methods for piecewise linear approximation of
a function of two nonseparable variables are presented. In this
paper we use the triangulation method. In this method each
coordinates of the function are divided into several pieces, and
the space of the two coordinates is divided into a number of
triangles, as shown in Fig. 1. Then, by using convex
combination of the function values, evaluated at the vertices of
one of the triangles, the function is approximated. For this
purpose, the following equations are created.

1 2 3 4 n
Fig. 1. Triangulations of the space of the two coordinates.

:Zn:zm‘iuf (%)
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x= ZZ}/X (22)
y:g%yi,jyj (a.3)
iZfoljZ:yi,j =1 (a.4)

where, x; and y; are the breakpoints on X axis and Y axis
respectively, and f(x;, y;) is the function value at each break
points. n and m are the number of considered breakpoints on
each coordinates. F(x, y) is the approximated function and
7., €[0,1] is the coefficient of the convex combination of the
vertices of the selected triangle, in which only three value of

that can be nonzero and these values should be corresponding
to one of the triangles. In order to apply these conditions on y,

, [4] uses O(nxm) binary and continuous variables and

O(nxm) constraints.  Therefore, it imposes a high
computational burden on the problem, in cases with a large
number of pieces. In order to reduce the use of binary variables
and extra constraints, in [2] a formulation is proposed, that uses
O(nxm) continuous variables and O(log, n+log, m) binary
variables and constraints. This formulation is shown in (a.5)-
(a. 10)

Z z v.;<a, k=12, logy (a.5)
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> > oy, <1l-a, k=12..,log;] (a.6)
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Consider N ={0,1, 2,...,n} and i M , in which M is the
set of breakpoints and i is the index of breakpoints. A function
B:{L 2, .., n}—{0, 1}
constraint on (y;);_, if itis bijective and forall ie{l, .., n-1}

(2.10)

is compatible with an SOS2

the vectors B(i) and B(i+1) differ in at most one component.
Also, let B(i):(al,az,...,alogn), for all a, e{0,1} and

B(0)=B() . Then according to this compatible function,
" (i, k) and I°(i, k) are defined as follow.
(@i, k)={i|vB(i) &B(i+1), a, =1,
i={L 2, ..., n-0u{i|vB(i), a, =1,i={0, n}}
@i, k) ={i|VB(i) &B(i +1), a, =0,
i={1 2, .., n=-3U{i|vB(i), a, =0,i={0, n}}
Equations (a.5), (a.6) and (a.7), (a.8) are created to
implement SOS2 condition on each coordinate, and (a.5)-(a.8)
are used to select a square in the grid induced by the
triangulation. Then, one of the two triangles is selected inside
this square, by using (a.9), (a.10) and defining p and o as

follow.
p=1{(@ j)e{0,...,n}{0, ..., m}: (i iseven)&(j isodd)}

o={(, j)e{0,...,n}{0,...,m}: (i isodd)&(j iseven)}

APPENDIX B

GENERALIZATION OF PIECEWISE LINEAR MODELING OF A
CIRCLE

In [3] a method for piecewise linear approximation of areas
outside a circle is presented, as shown in Fig. 2. According to
this model, a non-linear equation (b.1) is converted to (b.2).

A’ + B? <C? (b.1)
k . k
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In this paper, we generalize this method to piecewise linear
approximation of (b.3).
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According to (b.3), (b.4)-(b.7) can be extracted.

A2+ B% <F? (b.4)

C’+D?*<F; (b.5)

F?+F?<F/ (b.6)

E*’+F2<F? (b.7)

Thus, (b.8)-(b.11) can be considered as piecewise linear
approximation of (b.3).
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n n

Note that the number of k’s in (b.10) are a quarter of number
of that in (b.8), since in (b.10), F, and F, are positive and so
(b.10) is sufficient to express only for a quarter of circle.
Therefore, the number of extra equations are reduced.

Similarly, these formulations can be further expanded for
equations with more square terms in the left hand side of (b.3).
AB

~L

\!>
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Fig. 2. Piecewise linearization of a circle.
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