
Discrete Mathematics 255 (2002) 249–258
www.elsevier.com/locate/disc

Linear spaces with projective lines

Alexander Kreuzer
Mathematisches Seminar, Universit�at Hamburg, Bundesstr. 55, 20146 Hamburg, Germany

Received 5 April 1999; received in revised form 13 November 2000; accepted 22 December 2000

Abstract

A line L of a linear space (P;L) is a projective line, if L intersects every line G of the plane
L ∪ {x} for every x∈P\L. In this paper a linear space (P;L) with projective lines is considered.
We assume that for any two planes E1; E2 which intersect in a line G, there are two projective
lines Li; Ki ⊂ Ei with distinct intersection points p = L1 ∩ L2; q = K1 ∩ K2 ∈G. Furthermore, it
is assumed that for two intersecting lines H1; H2 of a plane F and a point x∈F there exists a
line G through x with ∅ 	=G ∩ H1 	=G ∩ H2 	= ∅. Then the Bundle Theorem holds and (P;L)
is locally projective. Therefore (P;L) is embeddable in a projective space (cf. Theorem 4:1).
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In order to embed absolute planes in pappian projective planes, Karzel introduced in
[2] the kinematic space which points are de;ned by motions of the absolute plane. The
aim is to embed the kinematic space in a projective space (cf. [3,4,6]). A characteristic
property is that the kinematic space contains projective lines. This situation suggests
to consider linear spaces with projective lines. But we remark that the assumptions of
this paper di=ers from that of [3,4]. We assume only a few projective lines, but in
every plane, while in [3,4] there are many projective lines, but not necessarily in every
plane.
Now we give some de;nitions and recall some notations. A linear space (P; L; I)

will be de;ned as a set P of elements, called points, a distinct set L of elements,
called lines, and an incidence relation I such that any two distinct points are incident
with exactly one line and every line is incident with at least two points. Usually one
identi;es every line L∈L with the set of points which are incident with L, hence the
lines of (P; L; I)= (P; L) are subsets of P.
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A subspace is a subset U ⊂P such that for all distinct points x; y∈U the unique
line passing through x and y is contained in U . Let U denote the set of all subspaces.
For every subset X ⊂P we de;ne the following closure operation:

F: P(P)→U :X �→ FX :=
⋂

U∈U
X⊂U

U: (1.1)

For U ∈U we call dimU := inf{|X | − 1 :X ⊂U and FX =U} the dimension of U . A
subspace of dimension two is a plane.
A linear space (P; L) satis;es the exchange condition if for S ⊂P and x; y∈P with

x∈ S ∪{y}\ FS, it follows that y∈ S ∪{x}.
A line L∈L is a projective line if |L|¿3 and if for every point x∈P\L every line

G⊂L∪{x} has a non-empty intersection with L.
A linear space (P; L) is called locally projective, if for every point x∈P the lines

and planes of (P; L) containing x form the points and lines of a projective space.
The Bundle Theorem states that for four lines A; B; C; D∈L, no three in a common

plane, the coplanarities of {A; B}; {A; C}; {A; D}; {B; C}; {B; D} imply the coplanarity
of {C; D}.
The Theorem of Kahn states that every locally projective linear space (P; L) of

dim P¿3 satisfying the Bundle Theorem is embeddable into a projective space [1,5,9].
In this paper we consider the following properties for a linear space (P; L):

(E) For any two intersecting lines H1; H2 and every point x∈H1 ∪H2 there exists a
line G through x with ∅ �=G ∩H1 �=G ∩H2 �= ∅.

(P1) Let E1; E2 be planes which intersect in a non-projective line G=E1 ∩E2. Then
there exists a point p∈G and projective lines L1⊂E1; L2⊂E2 with p=L1 ∩L2.

(P2) Let E1; E2 be planes which intersect in a line G=E1 ∩E2. Then there are two dis-
tinct points p; q∈G and projective lines Li; Ki ⊂Ei with p=L1 ∩L2; q=K1 ∩K2
and G �=Li; Ki for i=1; 2.

Clearly (P2) implies (P1). We will show that (E) and (P1) imply the Bundle Theorem
(Section 2), and, if |L|¿3 for every line L∈L, the Bundle Theorem and (P2) imply
that (P; L) is locally projective (Section 3). Hence we can use the Theorem of Kahn
and we summarize that (E) and (P2) imply that (P; L) is embeddable in a projective
space (P′; L′) with dim P= dim P′.

2. Bundle Theorem

In this section we assume that (E) and (P1) are satis;ed. By (P1) we have:

Lemma 2.1. Every plane contains a projective line.

Lemma 2.2. Every plane satis4es the exchange condition.



A. Kreuzer / Discrete Mathematics 255 (2002) 249–258 251

Proof. By Lemma 2.1 every plane E contains a projective line L⊂E. Hence E=
⋃

x∈L

x; p=L∪{p} for a point p∈E\L. For non-collinear points a; b; c∈E there are xa; xb; xc

∈L with a∈ xa; p; b∈ xb; p; c∈ xc; p. Since L∩ a; b �= ∅; L∩ a; c �= ∅ and L∩ b; c �= ∅,
it follows that L∪{p}⊂ a; b; c, hence E=L∪{p}=a; b; c.

Remark. One can ;nd this result in [4, (1:1)] where it is shown that for any three
non-collinear points a; b; c of a plane E we have E= a; b; c.

Lemma 2.3. Let A; B; C be three lines, not in a common plane, which are pairwise
coplanar. If x=A∩C, then x=A∩B=B∩C.

Proof. It holds x∈A∪B; B∪C. Since by Lemma 2.2 the planes satisfy the exchange
condition, we have x∈A∪B∩B∪C =B. Since the lines are pairwise distinct the as-
sertion follows.

Lemma 2.4. Let X; Y; Z; L be four lines, no three in a common plane, let X; Y; Z be
pairwise coplanar and let X; Y; L be pairwise coplanar. If L is a projective line, then
Z and L are coplanar.

Proof. Since L is a projective line, the point x :=Y ∩L exists. By Lemma 2.3, x=X ∩Y
and again by Lemma 2.3, x=X ∩Z . Therefore x=Z ∩L and Z; L are coplanar.

Lemma 2.5. Let A; B; C; D be four lines, no three in a common plane, let A; B; C be
pairwise coplanar and let A; B; D be pairwise coplanar. If there exists a projective
line L with c=L∩C; d=L∩D, then C and D are coplanar.

Proof. If any two of the lines A; B; C; D have a non-empty intersection, Lemma 2.3
implies the assertion. Hence we may assume that A; B; C; D have pairwise an empty
intersection.

Case I. Assume that there exists a projective line M ⊂A∪C through c. Let a :=
M ∩A. By Lemma 2.1 there is a projective line Ñ ⊂B∪D.

Case Ia. If d∈ Ñ , let denote N := Ñ and b :=N ∩B. Choose a point c′ ∈C\{c}. By
(E) there is a line G′ ⊂B∪C through c′ with x := c; b∩G′ �= b′ :=B∩G′. Again by
(E) a line H ′ ⊂A∪B through b′ exists with u :=H ′ ∩ a; b �= a′ :=H ′ ∩A, and a line
K ′ ⊂A∪D through a′ with y′ := a; d∩K ′ �=d′ :=K ′ ∩D. Since M = a; c; N = b; d are
projective lines, the points y :=M ∩ a′; c′ and x′ :=N ∩ b′; d′ exist (see Fig. 1).

Case Ib. If d =∈ Ñ , let denote N ′ := Ñ ; d′ :=N ′ ∩D and b′ :=N ′ ∩B. By (E) there
is a line K ′ ⊂A∪D through d′ with y′ :=K ′ ∩ a; d �= a′ :=K ′ ∩A. Again by (E) a line
H ⊂A∪B through a exists with u :=H ∩ a′; b′ and b :=H ∩B, and a line G′ ⊂B∪C
through b′ with x :=G′ ∩ b; c �= c′ :=G′ ∩C. Since M = a; c; N ′= b′; d′ are projective
lines, y :=M ∩ a′; c′ and x′ :=N ′ ∩ b; d exist.

Case II. If there is no projective line in A∪C passing through c, by (P1) projective
lines M ′ ⊂A∪C and H ′ ⊂A∪B exist with a′ :=A∩M ′=A∩H ′. Let b′ :=B∩H ′ and
c′ :=C ∩M ′. By the assumption of this case, we have c′ �= c. By (E) there is a line
G⊂B∪C through c with x := c′; b′ ∩G �= b :=G ∩B. Again by (E) a line N ′ ⊂B∪D
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Fig. 1.

through b′ exists with x′ :=N ′ ∩ b; d �=d′:=N ′ ∩D, and a line K ⊂A∪D through d
with y′ :=K ∩ a′; d′ �= a :=K ∩A. Since M ′= a′; c′ and H ′= a′; b′ are projective lines,
y :=M ′ ∩ a; c and u :=H ′∩ a; b exist.
In all cases we have the same ;gure. Since the lines A; B; C; D have pairwise an

empty intersection and since no three of these lines are contained in a plane we have
x �= x′; y �=y′; c �=d and c′ �=d′. Because the planes satisfy the exchange condition by
Lemma 2.2, the points u; x; y∈ a; b; c; a′; b′; c′ are contained in the intersection of two
distinct planes, hence u; x; y are collinear. Also u; x′; y′ ∈ a; b; d∩ a′; b′; d′ are collinear.
Therefore the lines X := x; x′; Y :=y; y′ are coplanar. Let L= c; d and Z := c′; d′. Since
X; L⊂b; c; d and X; Z ⊂ b′; c′; d′ as well as Y; L⊂ a; c; d and Y; Z ⊂ a′; c′; d′, the three
lines X; Y; Z and also X; Y; L, respectively, are pairwise coplanar. Because L is a projec-
tive line by Lemma 2.4 the coplanarity of L; Z follows and therefore also the coplanarity
of C and D.

Theorem 2.6. Let (P; L) be a linear space satisfying (E) and (P1). Then the Bundle
Theorem holds.

Proof. Let A; B; C; D be four lines, no three in a common plane and let A; B; C be
pairwise coplanar and also A; B; D. We have to show that C; D are coplanar. By
Lemma 2.1 there is a projective line M ⊂A∪C with a :=A∩M; c :=C ∩M . Also
in the plane {c}∪D there exists a projective line L̃. Let d′ := L̃∩D. If c∈ L̃, it fol-
lows by Lemma 2.5 that C; D are coplanar. Hence we may assume c =∈ L̃.
Since L̃ is a projective line, for every d∈D\{d′} we have L̃∩ c; d �= ∅. For every

c′ ∈C\{c} it holds that d′= L̃∩ c′; d′, hence the projective line L̃ intersects c; d and
c′; d′. We will show by Lemma 2.5 that c; d and c′; d′ are coplanar. Then it will follow
that also C; D are coplanar (see Fig. 2).
Let Ñ ⊂B∪D be a projective line.
Case I. If d′ ∈ Ñ , denote N ′ := Ñ and b′ :=N ′ ∩B. Choose any point d∈D\{d′}.
Case II. If d′ =∈ Ñ , denote N := Ñ ; d :=N ∩D and b :=N ∩B.
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Fig. 2.

In both cases by (E), there is a line K ′ ⊂A∪D through d′ with y′ :=
K ′ ∩ a; d �= a′ :=K ′ ∩A.
For case I by (E) a line H ⊂A∪B through a with u :=H ∩ a′; b′ �= b :=H ∩B exists.

For case II we have a line H ′ ⊂A∪B through a′ with u :=H ′ ∩ a; b �= b′ :=H ′ ∩B. In
both cases there is a line G′ ⊂B∪C through b′ with x :=G′ ∩ b; c �= c′ :=G′ ∩C. Since
M = a; c and Ñ are projective lines, the points y :=M ∩ a′; c′ and x′ := b; d∩ b′; d′ exist
(cf. Fig. 1).
Again the points u; x; y∈ a; b; c∩ a′; b′; c′ and u; x′; y′ ∈ a; b; d∩ a′; b′; d′ are collinear,

hence x; x′; y; y′ are coplanar. It follows that c; d; x; x′; y; y′ are pairwise coplanar and
also c′; d′; x; y′; y; y′ are pairwise coplanar. Since L̃ is a projective line meeting c; d
and c′; d′, by Lemma 2.5 c; d; c′; d′ are coplanar.

3. Intersections of planes

Now let (P; L) be a linear space with dim P¿3 and |L|¿3 for every line L∈L. In
this section we assume the Bundle Theorem and the property (P2).

Lemma 3.1. Every plane E contains three projective lines. For every point x∈E there
is a projective line L⊂E with x =∈L.

Proof. By Lemma 2.1, E contains a projective line H . Since dim P¿3, by (P2) there
are two distinct points p; q∈H which are incident with projective lines L; K ⊂E. The
lines H; L; K do not contain a common point.

Theorem 3.2. Let (P; L) be a linear space with dim P¿3 and |L|¿3 for every line
L∈L which satis4es (P2) and the Bundle Theorem. Then for two coplanar lines G; H
and z ∈P\G ∪H , the intersection of the planes G ∪{z}; H ∪{z} is a line.

Proof. If G or H is a projective line, then for x :=G ∩H we have G ∪{z}∩H ∪{z}=
x; z. Hence we assume in what follows that G and H are not projective lines.
By (P2) there are projective lines L1⊂G ∪{z}; L2⊂G ∪H with a :=L1 ∩L2 ∩G. Let

b :=L2 ∩H . We give the proof in six steps. In what follows we denote the projective
lines which we need in the proof by Li or L′

i ; i=1; 2; : : : ; 5. We assume the existence
of intersecting points (for example the points a; b; c; d; : : :) of a projective line Li with
a coplanar line without further explanation.



254 A. Kreuzer / Discrete Mathematics 255 (2002) 249–258

Fig. 3.

Fig. 4.

Step 1. There exists a line G′ ⊂G ∪{z}\G which is coplanar to H :
By Lemma 3.1 there is a projective line L3⊂G ∪{z} with c :=L3 ∩G �= a. Let d :=

L3 ∩L1. For a point e∈H\{b}, the point f := c; e∩L2 exists, since L2 is a projective
line. Let g∈d; f\{d; f}, then the points b′ :=L1 ∩ b; g and e′ :=L3 ∩ e; g exist and
G′ := b′; e′ is coplanar to H (see Fig. 3).
By (P2) there are projective lines L4⊂G ∪H and L5⊂L1 ∪L2, and a point p∈L2\{a}

with p=L2 ∩L4 ∩L5. Let q :=L4 ∩G and r :=L5 ∩L1. If b �=p, i.e. if p =∈H , we con-
tinue with step 3. If p∈H we need step 2.

Step 2. There exists a line H ′ ⊂G ∪H with p =∈H ′ which is coplanar to G′:
For e′ ∈G′ the point u := e′; q∩L1 �= e′ exists. For v∈ u; p\{u; p} also e′′ :=L4 ∩ v; e′

and b′′ :=L2 ∩ v; b′ exist and H ′ := b′′; e′′ is coplanar to G′ (see Fig. 4).
Since H; G′; H ′ are pairwise coplanar, any line K ⊂G ∪{z}=G ∪G′ which is copla-

nar to H ′ is also coplanar to H by the Bundle Theorem. Hence we could use H ′ instead
of H . Because of this we may assume in the following that p =∈H .
Let s :=L2 ∩H and t :=L4 ∩H .
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Fig. 5.

Fig. 6.

Step 3. There is a line G′′ ⊂G ∪{z} with s′=G′′ ∩L1 �= t′=G′′ ∩ q; r which is
coplanar to H :
Choose any t′ ∈ q; r\{q; r}. Then the points w := t; t′ ∩L5 and s′ := s; w∩L1 exist and

G′′ := s′; t′ is coplanar to H (see Fig. 5).
Step 4. Through every x∈L4\{p} there exists a line H ′′ ⊂G ∪H which is coplanar

to G′′:
For x∈L4\{p} the points w′ := x; t′ ∩L5 and y := s′; w′ ∩L2 exist. De;ne H ′′ := x; y

(see Fig. 6).
Step 5. If z =∈L1, then the line K :=G ∪{z}∩H ∪{z} exists:
We have z =∈G, hence the point h := q; z ∩L1 exists. For h′ ∈ h; p\{h; p} let x := z; h′

∩L4. By step 4 a line H ′′ with x=H ′′ ∩L4 and y :=H ′′ ∩L2 exists which is coplanar
to G′′. Let y′ := h′; y∩L1. Then K := z; y′ ⊂G ∪{z} is coplanar to G′′ and H ′′. Since
also H is coplanar to G′′ and H ′′, by the Bundle Theorem it follows that H and K are
coplanar, hence K ⊂H ∪{z}. Because z =∈G ∪H it follows that K =G ∪{z}∩H ∪{z}
(see Fig. 7).

Step 6. The case z ∈L1:
By (P2) there is a second point a′ ∈G\{a} incident with projective lines L′

2⊂G ∪H
and L′

1⊂G ∪{z}. For every point y∈G ∪{z} distinct from z̃ :=L1 ∩L′
1 the line
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Fig. 7.

Fig. 8.

G ∪{y}∩H ∪{y} exists by step 5. Also for every point x∈G ∪H distinct from
x̃ :=L2 ∩L′

2 the line G′′ ∪{x}∩G ∪{x} exists (see Fig. 8).
By Lemma 3.1 there is a projective line L̃1⊂G ∪{z} with z̃ =∈ L̃1 and k :=G ∩ L̃1.

Let x∈G ∪H with x̃ =∈ x; k. By Lemma 3.1 we have a projective line L̃2⊂ L̃1 ∪{x}
with ã := L̃2 ∩ L̃1 �= b̃ := L̃2 ∩ x; k. By step 2 we may assume that b̃ =∈H . Since z̃ =∈ L̃1
and x̃ =∈ x; k the lines G̃ :=G ∪{ã}∩H ∪{ã} and H̃ :=G′′ ∪{b̃}∩H ∪{b̃} exist. Since
G′′; G⊂G ∪{ã}=G ∪{c}, by the Bundle Theorem applied on the lines G′′; H; G̃; H̃ ,
the lines G̃ and H̃ are coplanar.
Now step 5 for G̃; H̃ ; z̃ implies the existence of the line K̃ := G̃ ∪{z̃}∩ H̃ ∪{z̃}.

The line K̃ and H , respectively, are coplanar to H̃ ; G̃. By the Bundle Theorem K̃ is
coplanar to H , hence K̃ =G ∪{z̃}∩H ∪{z̃}.

We remark that the hypotheses IG1, IG2 and IG3 made by Wyler [9] imply that the
incidence geometry of Wyler is a linear space. The Theorem 3.2 coincide with IG4 and
for dim P¿3 there are four distinct points not on a plane, i.e., the last hypothesis IG5
made by Wyler is also satis;ed. Therefore by [9, Theorem 2:5], we get the following
theorem which is also proved by Teirlinck in [8, Proposition 1]:
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Theorem 3.3. Let (P; L) be a linear space with |L|¿3 for every line L∈L which
satis4es (P2) and the Bundle Theorem. Then (P; L) is locally projective.

We remark that for dim P62 the assertion is trivial.

Corollary 3.4. Let (P; L) be a linear space with |L|¿3 for every line L∈L which
satis4es (E) and (P2). Then (P; L) is locally projective.

Proof. By Theorem 2.6, (P; L) satis;es the Bundle Theorem, since (P2) implies (P1).
Hence Theorem 3.3 proves the assertion.

For Theorem 4.1 we do not need to know how the closure of a linear space (P; L) sat-
isfying (P2) and (E) works, but for completness we will show it for a three-dimensional
subspace. (Then by induction one get the closure of any subspace.)

Lemma 3.5. Let E be a plane and a∈P\E. Then for the set

T :=
⋃

{a; z: z ∈P\{a} for which a; z is coplanar to a line G⊂E}

we have T =E ∪{a}.

Proof. We show that T is a subspace of P. Then E ∪{a}⊂T implies E ∪{a}⊂T . By
de;nition of T and by Lemma 2.2 clearly T ⊂E ∪{a}.
Let x; y∈T\{a} with y =∈ a; x and let z ∈ x; y. We will show that z ∈T . For this we

have to prove the existence of a line Z ⊂E which is coplanar to a; z.
By de;nition there are lines G; H ⊂E such that a; x; G are coplanar and a; y; H are

coplanar. We may assume b :=G ∩H �= ∅, since for b∈G\H the line H ′ :=E ∩ a; y; b=
H ∪{b}∩ a; y∪{b} exists by Theorem 3.2, and then H ′; a; y are coplanar with b∈H ′

(see Fig. 9).
Let g∈G\{b}. Then by Theorem 3.2 the lines K := x; g; y∩ a; b; y and L :=x; g; z ∩

a; b; z exist, since x; g and a; b are coplanar. Because K; H ⊂ a; b; y the lines K; H are
coplanar and by Theorem 3.2 the line M :=K ∪{g}∩H ∪{g} exists.
Notice that M ⊂E=H ∪{g}=M ∪{b} and that L; M ⊂ x; y; g are coplanar. Let

denote Z :=L∪{b}∩M ∪{b}= a; b; z ∩E. Then a; z and Z ⊂E are coplanar, hence
z ∈T .

4. Embedding Theorem

Theorem 4.1. Let (P; L) be a linear space with |L|¿3 for every line L∈L and
dim P¿3. Assume that (P; L) satis4es the properties (E) and (P2). Then (P; L) is
embeddable in a projective space (P′; L′) with dim P= dim P′.

Proof. By Theorem 2.6 and Corollary 3.4, (P; L) satis;es the Bundle Theorem
and is locally projective. Hence (P; L) is embeddable by the Theorem of Kahn
(cf. [1,5]).
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Fig. 9.
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