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Abstract

A line L of a linear space (P, £) is a projective line, if L intersects every line G of the plane
L U {x} for every x € P\ L. In this paper a linear space (P, £) with projective lines is considered.
We assume that for any two planes E|, E; which intersect in a line G, there are two projective
lines L;, K; C E; with distinct intersection points p = L; N L,, ¢ = Ki N K> € G. Furthermore, it
is assumed that for two intersecting lines Hi,H> of a plane ' and a point x € F there exists a
line G through x with )% G N H; # G N H, #(. Then the Bundle Theorem holds and (P, £)
is locally projective. Therefore (P, £) is embeddable in a projective space (cf. Theorem 4.1).
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In order to embed absolute planes in pappian projective planes, Karzel introduced in
[2] the kinematic space which points are defined by motions of the absolute plane. The
aim is to embed the kinematic space in a projective space (cf. [3,4,6]). A characteristic
property is that the kinematic space contains projective lines. This situation suggests
to consider linear spaces with projective lines. But we remark that the assumptions of
this paper differs from that of [3,4]. We assume only a few projective lines, but in
every plane, while in [3,4] there are many projective lines, but not necessarily in every
plane.

Now we give some definitions and recall some notations. A linear space (P,L,1)
will be defined as a set P of elements, called points, a distinct set £ of clements,
called /ines, and an incidence relation / such that any two distinct points are incident
with exactly one line and every line is incident with at least two points. Usually one
identifies every line L € £ with the set of points which are incident with L, hence the
lines of (P,£,1)=(P, L) are subsets of P.
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A subspace is a subset U C P such that for all distinct points x, y € U the unique
line passing through x and y is contained in U. Let 4l denote the set of all subspaces.
For every subset X C P we define the following closure operation:

TRP) U XX =) U (1.1)

veu
XCcu

For U € we call dim U := inf{|X| — 1:X CU and X =U} the dimension of U. A
subspace of dimension two is a plane.

A linear space (P, £) satisfies the exchange condition if for S C P and x, y € P with
xeSU{yNS, it follows that y € S U {x}.

A line L€ £ is a projective line if |L| >3 and if for every point x € P\L every line
G C LU{x} has a non-empty intersection with L.

A linear space (P, £) is called locally projective, if for every point x € P the lines
and planes of (P, £) containing x form the points and lines of a projective space.

The Bundle Theorem states that for four lines 4,B,C,D € £, no three in a common
plane, the coplanarities of {4,B},{4,C},{4,D},{B,C},{B,D} imply the coplanarity
of {C,D}.

The Theorem of Kahn states that every locally projective linear space (P, L) of
dim P >3 satisfying the Bundle Theorem is embeddable into a projective space [1,5,9].

In this paper we consider the following properties for a linear space (P, £):

(E) For any two intersecting lines H,H, and every point x € H; U H, there exists a
line G through x with § £ GNH; #GNHy # 0.

(P) Let Ey,E, be planes which intersect in a non-projective line G=E; NE,. Then
there exists a point p € G and projective lines L C Ey, L, C E;, with p=L;NL,.

(P,) Let Ey, E, be planes which intersect in a line G = E| N E,. Then there are two dis-
tinct points p, ¢ € G and projective lines L;, K; CE; with p=LNLy, =K, NK;
and G#L;,K; for i=1,2.

Clearly (P,) implies (P;). We will show that (E) and (P;) imply the Bundle Theorem
(Section 2), and, if |L|>3 for every line L € £, the Bundle Theorem and (P,) imply
that (P, £) is locally projective (Section 3). Hence we can use the Theorem of Kahn
and we summarize that (E) and (P,) imply that (P, £) is embeddable in a projective
space (P’,£) with dim P = dim P’.

2. Bundle Theorem
In this section we assume that (E) and (P;) are satisfied. By (P;) we have:
Lemma 2.1. Every plane contains a projective line.

Lemma 2.2. Every plane satisfies the exchange condition.
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Proof. By Lemma 2.1 every plane £ contains a projective line L C E. Hence E = J,¢,

X, p=LU{p} for a point p € E\L. For non-collinear points , b, c €F there are x,, Xy, X,
€L with aex,, p, beXp, p, c€X,, p. Since LNa,b#0, LNa,c#( and LNb,c#1,
it follows that LU{p} Ca,b,c, hence E=LU{p}=a,b,c. O

Remark. One can find this result in [4, (1.1)] where it is shown that for any three
non-collinear points a,b,c of a plane E we have £ =a,b,c.

Lemma 2.3. Let A,B,C be three lines, not in a common plane, which are pairwise
coplanar. If x=ANC, then x=ANB=BNC.

Proof. It holds x€ 4UB, BUC. Since by Lemma 2.2 the planes satisfy the exchange
condition, we have x e 4UBNBUC =B. Since the lines are pairwise distinct the as-
sertion follows. [

Lemma 2.4. Let X,Y,Z,L be four lines, no three in a common plane, let X,Y,Z be
pairwise coplanar and let X,Y,L be pairwise coplanar. If L is a projective line, then
Z and L are coplanar.

Proof. Since L is a projective line, the point x := Y N L exists. By Lemma 2.3, x=XNY
and again by Lemma 2.3, x=X NZ. Therefore x=ZNL and Z L are coplanar. [J]

Lemma 2.5. Let A,B,C,D be four lines, no three in a common plane, let A,B,C be
pairwise coplanar and let A,B,D be pairwise coplanar. If there exists a projective
line L with c=LNC, d=LND, then C and D are coplanar.

Proof. If any two of the lines 4,B,C,D have a non-empty intersection, Lemma 2.3
implies the assertion. Hence we may assume that 4, B, C,D have pairwise an empty
intersection.

Case 1. Assume that there exists a projective line M C AUC through c. Let a:=
MNA. By Lemma 2.1 there is a projective line N C BUD.

Case Ta. If d € N, let denote N := N and b:=N N B. Choose a point ¢’ € C\{c}. By
(E) there is a line G' C BUC through ¢’ with x:=c,bN G’ #b :=BNG'. Again by
(E) a line H' C AUB through b’ exists with u:=H'Na,b#a :=H'NA, and a line
K’ c AUD through o’ with y':=a,dNK'#d':=K'ND. Since M =a,c, N=>b,d are
projective lines, the points y:=M Na’,c’ and x' ;=N NP ,d" exist (see Fig. 1).

Case Tb. If d ¢ N, let denote N':=N, d':=N'ND and ¥ :=N'NB. By (E) there
is a line K’ C AUD through d’ with y':=K'Na,d #a' :=K'NA. Again by (E) a line
H C AUB through a exists with u:=H Na’,b’ and b:=HNB, and a line G'CBUC
through " with x:=G' ' Nb,c#c :=G' NC. Since M =a,¢, N'=0b',d’" are projective
lines, y:=M Na’,c’ and x' :=N'Nb,d exist.

Case 11. If there is no projective line in 4 U C passing through ¢, by (P;) projective
lines M' CAUC and H' CAUB exist with @’ :=ANM'=ANH'. Let b’ :=BNH’ and
¢ :=CNM’'. By the assumption of this case, we have ¢’ #c. By (E) there is a line
G C BUC through ¢ with x:=c’,b' NG #b:=GNB. Again by (E) a line N'CBUD
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through »’ exists with x’:=N'Nb,d#d":=N'ND, and a line K CAUD through d
with y' ;=K Na',d' #a:=KNA. Since M' =a’,c’ and H' =a’,b’ are projective lines,
y:=M'Na,c and u:=H'Na,b exist.

In all cases we have the same figure. Since the lines 4,B,C,D have pairwise an
empty intersection and since no three of these lines are contained in a plane we have
x#x,y#y,c#d and ¢’ #d’. Because the planes satisfy the exchange condition by
Lemma 2.2, the points u,x, y €a,b,c, a’,b’,c’ are contained in the intersection of two
distinct planes, hence u,x, y are collinear. Also u,x’,y’ €a,b,dNa’,b’,d" are collinear.
Therefore the lines X :=x,x/,Y :=y, )’ are coplanar. Let L=c,d and Z:=¢',d’. Since
X,LCbh,c,d and X,Z Cb',c',d’" as well as Y,LCa,c,d and Y,Z Ca’',c’,d’, the three
lines X, Y,Z and also X, Y, L, respectively, are pairwise coplanar. Because L is a projec-
tive line by Lemma 2.4 the coplanarity of L, Z follows and therefore also the coplanarity
of C and D. J

Theorem 2.6. Let (P, L) be a linear space satisfying (E) and (P). Then the Bundle
Theorem holds.

Proof. Let 4,B,C,D be four lines, no three in a common plane and let 4,B,C be
pairwise coplanar and also 4,B,D. We have to show that C,D are coplanar. By
Lemma 2.1 there is a projective line M CAUC with a:=ANM, c:=CNM. Also
in the plane {c}UD there exists a projective line L. Let d’:=LND. If c€ L, it fol-
lows by Lemma 2.5 that C,D are coplanar. Hence we may assume c ¢ L.

Since L is a projective line, for every d € D\{d'} we have LNc,d # (). For every
¢’ € C\{c} it holds that d’=LNc’,d’, hence the projective line L intersects c,d and
c’,d'. We will show by Lemma 2.5 that ¢,d and ¢/,d’ are coplanar. Then it will follow
that also C,D are coplanar (see Fig. 2).

Let N C BUD be a projective line.

Case 1. If ' € N, denote N':=N and b’ := N’ N B. Choose any point d € D\{d'}.

Case 1. If d’ ¢ N, denote N :=N, d:=NND and b:=NNB.
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C d’

Fig. 2.

In both cases by (E), there is a line K'CAUD through d’' with y':=
K'Na,d#d :=K'NA.

For case I by (E) a line H C AU B through a with u:=H Na’,b’ #b:=H N B exists.
For case Il we have a line H' C AUB through @’ with u:=H'Na,b#b :=H' NB. In
both cases there is a line G’ C BU C through ' with x := G’ Nb,c# ¢ :=G' N C. Since
M =g and N are projective lines, the points y: =M Na',c’ and x' :=b,d Nb,d" exist
(cf. Fig. 1).

Again the points u,x, y €a,b,cNa’,b’,c¢" and u,x’,y' €a,b,dNad’,b',d’" are collinear,
hence x,x’,y, )’ are coplanar. It follows that c,d,x,x’,y, )’ are pairwise coplanar and
also ¢/,d',x,y’, v,y are pairwise coplanar. Since L is a projective line meeting c¢,d
and ¢’,d’, by Lemma 2.5 c, d,c'.d are coplanar. [J

3. Intersections of planes

Now let (P, £) be a linear space with dimP>3 and |L|>3 for every line L€ £. In
this section we assume the Bundle Theorem and the property (P;).

Lemma 3.1. Every plane E contains three projective lines. For every point x € E there
is a projective line L CE with x ¢ L.

Proof. By Lemma 2.1, E contains a projective line H. Since dim P >3, by (P,) there
are two distinct points p,q € H which are incident with projective lines L,K C E. The
lines H,L,K do not contain a common point. []

Theorem 3.2. Let (P,£) be a linear space with dimP>=3 and |L|=3 for every line
L € £ which satisfies (Py) and the Bundle Theorem. Then for two coplanar lines G, H
and z € P\GUH, the intersection of the planes GU{z}, HU{z} is a line.

Proof. If G or H is a projective line, then for x:=GNH we have GU{z}NHU{z} =
X,z. Hence we assume in what follows that G and H are not projective lines.

By (P;) there are projective lines L1 CGU{z}, L, CGUH witha:=L; NL;NG. Let
b:=L,NH. We give the proof in six steps. In what follows we denote the projective
lines which we need in the proof by L; or L], i=1,2,...,5. We assume the existence
of intersecting points (for example the points @, b,c,d,...) of a projective line L; with
a coplanar line without further explanation.
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Step 1. There exists a line G’ C GU{z}\G which is coplanar to H:

By Lemma 3.1 there is a projective line L3 C GU{z} with c:=L; NG #a. Let d :=
L3N L. For a point e € H\{b}, the point f :=¢,eN L, exists, since L, is a projective
line. Let g€d, f\{d, f}, then the points b':=L;Nb,g and ¢ :=L3Ne,g exist and
G’ :=b,e' is coplanar to H (see Fig. 3).

By (P,) there are projective lines Ly CGUH and Ls C Ly UL,, and a point p € L,\{a}
with p=L,NLsNLs. Let g:=LsNG and r:=LsNLy. If b# p, i.e. if p¢ H, we con-
tinue with step 3. If p€ H we need step 2.

Step 2. There exists a line H' C GUH with p¢ H’ which is coplanar to G':

For ¢’ € G’ the point u:=e’,q N L; # €' exists. For v €, p\{u, p} also ¢’ :=LyNv,e
and b :=L,Nuv,b exist and H' :=b",¢" is coplanar to G’ (see Fig. 4).

Since H,G', H' are pairwise coplanar, any line K C GU{z} =G UG’ which is copla-
nar to H' is also coplanar to H by the Bundle Theorem. Hence we could use H' instead
of H. Because of this we may assume in the following that p ¢ H.

Let s:=L,NH and t:=LsNH.
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Fig. 6.

Step 3. There is a line G” C GU{z} with s'=G"NL,#¢ =G" Ng,7 which is
coplanar to H:

Choose any ¢’ €¢,7\{q,7}. Then the points w:=1¢ NLs and s’ :=5,wN L, exist and
G":=s',t' is coplanar to H (see Fig. 5).

Step 4. Through every x € Ls\{ p} there exists a line H” C G UH which is coplanar
to G”:

For x € Ly\{ p} the points w':=x,# NLs and y:=s',w' NL, exist. Define H" :=x,y
(see Fig. 6).

Step 5. If z ¢ Ly, then the line K:=GU{z} NH U{z} exists:

We have z ¢ G, hence the point 4:=g,zN L, exists. For ' € h, p\{h, p} let x:=z, i/
NLy. By step 4 a line H” with x=H" NL4 and y:=H" N L, exists which is coplanar
to G”. Let y':=h', yNLy. Then K :=z,)’ C GU{z} is coplanar to G’ and H". Since
also H is coplanar to G” and H”, by the Bundle Theorem it follows that A and K are
coplanar, hence K C H U{z}. Because z ¢ GUH it follows that K =GU{z} NH U {z}
(see Fig. 7).

Step 6. The case z€ L;:

By (P2) there is a second point @’ € G\{a} incident with projective lines L) C GUH
and L} CGU{z}. For every point y€ GU{z} distinct from Z:=L;NL]| the line
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Fig. 8.

GU{yINHU{y} exists by step 5. Also for every point x€ GUH distinct from
%:=L,NLj the line G"U{x} NG U {x} exists (see Fig. 8).

By Lemma 3.1 there is a projective line L; C GU {z} with ¢ L; and k:=GNL,.
Let x€ GUH with ¢ x,k. By Lemma 3.1 we have a projective line L, C Z; U{x}
with d:=L,NL; #b:=L,Nx,k. By step 2 we may assume that b¢ H. Since Z¢ L,
and % ¢ x, k the lines G:=GU{a}NH U{a} and H :=G" U {b}NH U{h} exist. Since
G", GCGU{d} =GU{c}, by the Bundle Theorem applied on the lines G”, H, G,H,
the lines G and H are coplanar.

Now step 5 for G,H,% implies the existence of the line K :=GU{}NH U{z}
The line K and H, respectively, are_coplanar to H,G. By the Bundle Theorem K is
coplanar to H, hence K=GU{Z}NnHU{z}. [

We remark that the hypotheses IG1, IG2 and IG3 made by Wyler [9] imply that the
incidence geometry of Wyler is a linear space. The Theorem 3.2 coincide with 1G4 and
for dim P >3 there are four distinct points not on a plane, i.e., the last hypothesis 1G5
made by Wyler is also satisfied. Therefore by [9, Theorem 2.5], we get the following
theorem which is also proved by Teirlinck in [8, Proposition 1]:
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Theorem 3.3. Let (P, L) be a linear space with |L| =3 for every line L€ £ which
satisfies (Py) and the Bundle Theorem. Then (P,L) is locally projective.

We remark that for dim P <2 the assertion is trivial.

Corollary 3.4. Let (P,L£) be a linear space with |L|=3 for every line L€ £ which
satisfies (E) and (Py). Then (P,£) is locally projective.

Proof. By Theorem 2.6, (P, £) satisfies the Bundle Theorem, since (P,) implies (P;).
Hence Theorem 3.3 proves the assertion. [

For Theorem 4.1 we do not need to know how the closure of a linear space (P, £) sat-
isfying (P,) and (E) works, but for completness we will show it for a three-dimensional
subspace. (Then by induction one get the closure of any subspace.)

Lemma 3.5. Let E be a plane and a € P\E. Then for the set
T:= U{ﬁ: ze P\{a} for which @,z is coplanar to a line G CE}

we have T =FE U {a}.

Proof. We show that 7 is a subspace of P. Then EU{a} C T implies EU{a}C T. By
definition of 7" and by Lemma 2.2 clearly 7 C E U {a}.

Let x, y€ T\{a} with y ¢ a,x and let z €X, y. We will show that z € T. For this we
have to prove the existence of a line Z C £ which is coplanar to a,z.

By definition there are lines G,H C E such that @,x, G are coplanar and @, y,H are
coplanar. We may assume b:= G N H #(, since for b€ G\H the line H' :=ENa, y,b=
HU{b}Na,yU{b} exists by Theorem 3.2, and then H’,@, y are coplanar with b€ H’
(see Fig. 9).

Let g € G\{b}. Then by Theorem 3.2 the lines K :=x,g,yNa,b,y and L:=X,g,zN
a,b,z exist, since X,g and a,b are coplanar. Because K, H Cm the lines K, H are
coplanar and by Theorem 3.2 the line M :=K U {g} NH U{g} exists.

Notice that M CE=HU{g} =M U{b} and that L,M CX,y,g are coplanar. Let
denote Z:=LU{b}NMU{b}=a,b,zNE. Then @,z and Z CE are coplanar, hence
zeT. O

4. Embedding Theorem

Theorem 4.1. Let (P,£) be a linear space with |L|=3 for every line L€ £ and
dim P >3. Assume that (P,£) satisfies the properties (E) and (P;). Then (P,£) is
embeddable in a projective space (P',£') with dim P= dim P’.

Proof. By Theorem 2.6 and Corollary 3.4, (P,£) satisfies the Bundle Theorem
and is locally projective. Hence (P,£) is embeddable by the Theorem of Kahn
(cf. [L,5]). O



258 A. Kreuzer | Discrete Mathematics 255 (2002) 249-258

X

Fig. 9.
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