Chapter 11
Linear Algebra

Linear algebra involves the systematic solving of linear algebraic or
differential equations. These equations arise in a wide variety of situa-
tions. They usually involve some system, either electrical, mechanical,
or even human, where two or more components are interacting with each
other. In this chapter we present efficient techniques for expressing these
systems and their solution.

11.1 FUNDAMENTALS OF LINEAR ALGEBRA

In this chapter we shall study the solution of m simultaneous linear
equations in n unknowns z, s, 23, ..., &, of the form:

a2y + a122a + -+ a1ntp = b
a1 + @22%2 + - -+ AT, = by

(11.1.1)

Am121 + am2z2 + - -+ GmnTn = by,
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where the a’s and b’s are known real or complex numbers. Matriz algebra
allows us to solve these systems. First, succinct notation is introduced
so that we can replace (11.1.1) with rather simple expressions. Then
a set of rules is used to manipulate these simple expressions. In this
section we focus on developing these simple expressions.

The fundamental quantity in linear algebra is the matriz. A matrix
is an ordered rectangular array of numbers or mathematical expressions.
We shall use upper case letters to denote them. The m x n matrix

11 a2 a3 - : * Q1in

a1 @22 azz - : © Q2n
A= (11 1 .2)
. . . . aij . .
mi1 Gm2 Q4m3 : * Qmn

has m rows and n columns. The order (or size) of a matrix is determined
by the number of rows and columns; (11.1.2) is of order m by n. If
m = n, the matrix is a square matrix; otherwise, A is rectangular. The
numbers or expressions in the array a;; are the elements of A and may
be either real or complex. When all of the elements are real, A is a real
matriz. If some or all of the elements are complex, then A is a complez
matriz. For a square matrix, the diagonal from the top left corner to
the bottom right corner is the principal diagonal.

From the limitless number of possible matrices, certain ones appear
with sufficient regularity that they are given special names. A zero
matrix (sometimes called a null matrix) has all of its elements equal to
zero. It fulfills the role in matrix algebra that is analogous to that of zero
in scalar algebra. The unit or identity matrix is a n x n matrix having 1’s
along its principal diagonal and zero everywhere else. The unit matrix
serves essentially the same purpose in matrix algebra as does the number
one in scalar algebra. A symmetric matrix is one where a;; = a;; for all
1 and j.

o Example 11.1.1

Examples of zero, identity, and symmetric matrices are

0 00 10 3 2 4
O=]0 0 0 ’I=<0 1),andA: 21 0], (111.3)
0 00 4 0 5

respectively.
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A special class of matrices are column vectors and row vectors:

I

T2
x=| ., y=(n v - ). (11.1.4)

Im

We denote row and column vectors by lower case, boldface letters. The
length or norm of the vector x of n elements is

n 1/2
1x|| = <Z z§> . (11.1.5)
k=1

Two matrices A and B are equal if and only if a;; = b;; for all
possible ¢ and j and they have the same dimensions.

Having defined a matrix, let us explore some of its arithmetic prop-
erties. For two matrices A and B with the same dimensions (con-
formable for addition), the matrix C = A + B contains the elements
cij = a;j+b;j. Similarly, C = A— B contains the elements ¢;; = a;; —b;;.
Because the order of addition does not matter, addition is commutative:
A+B=B+A

Consider now a scalar constant k. The product kA is formed by
multiplying every element of A by k. Thus the matrix ¥4 has elements
k'a,:j.

So far the rules for matrix arithmetic have conformed to their scalar
counterparts. However, there are several possible ways of multiplying
two matrices together. For example, we might simply multiply together
the corresponding elements from each matrix. As we will see, the mul-
tiplication rule is designed to facilitate the solution of linear equations.

We begin by requiring that the dimensions of A be m x n while
for B they are n x p. That is, the number of columns in A must equal
the number of rows in B. The matrices A and B are then said to be
conformable for multiplication. If this is true, then C = AB will be a
matrix m X p, where its elements equal

n

cij = Eaik by;j - (11.1.6)
k=1

The right side of (11.1.6) is referred to as an inner product of the ith
row of A and the jth column of B. Although (11.1.6) is the method
used with a computer, an easier method for human computation is as
a running sum of the products given by successive elements of the ith
row of A and the corresponding elements of the jth column of B.

The product AA is usually written A?; the product AAA, A%, and
so forth.



562 Advanced Engineering Mathematics

o Example 11.1.2

-1 4 1 2
A_(2 _3) and B_(3 4>, (11.1.7)

If

then

_ (=DM +@E) (D) + (@)
AB = <[(2)(1) +(=3)(3)] [(2)(2) + (=3)(4)] ) (11.1.8)

- (2 i‘;) (11.1.9)

Matrix multiplication is associative and distributive with respect to ad-
dition:

(kA)B = k(AB) = A(kB), (11.1.10)
A(BC) = (AB)C, (11.1.11)
(A+ B)C = AC+ BC (11.1.12)
and
C(A+B)=CA+CB. (11.1.13)

On the other hand, matrix multiplication is not commutative. In general,
AB # BA.

o Example 11.1.3

Does AB = BA if

10 11
A:(O 0) and B:(1 0)? (11.1.14)

Because

AB = ((1) 8) (i (1)> = (é é) (11.1.15)
BA:(} (1)) ((1) g>=(} 8) (11.1.16)

AB # BA. (11.1.17)

and
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e Example 11.1.4

Given

11 _ (-1 1
A-(3 3) and B—<1 _1), (11.1.18)

find the product AB.
Performing the calculation, we find that

AB = <§ ;) (_11 _11) = (g 8). (11.1.19)

The point here is that just because AB = 0, this does not imply that
either A or B equals the zero matrix.

We cannot properly speak of division when we are dealing with
matrices. Nevertheless, a matrix A is said to be nonsingular or invertible
if there exists a matrix B such that AB = BA = I. This matrix B is
the multiplicative inverse of A or simply the inverse of A, written AL
A n x n matrix is singular if it does not have a multiplicative inverse.

o Example 11.1.5

If

1 01
A=13 3 4], (11.1.20)
2 2 3

1 2 -3
Al=|-1 1 -1]. (11.1.21)
0 -2 3

We perform the check by finding AA™! or A71A,

1 01 1 2 -3 100
AAT!=1|3 3 4 -1 1 ~1]=|01 0]. (11.1.22)
2 2 3 0 -2 3 001

In a later section we will show how to compute the inverse, given A.

Another matrix operation is transposition. The transpose of a ma-
trix A with dimensions m x n is another matrix, written AT, where we
have interchanged the rows and columns from A. Clearly, (ATYT = A
as well as (A + B)T = AT 4+ BT and (k4)T = kAT. If A and B are
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conformable for multiplication, then (AB)T = BT AT. Note the rever-
sal of order between the two sides. To prove this last result, we first
show that the results are true for two 3 x 3 matrices A and B and then
generalize to larger matrices.

Having introduced some of the basic concepts of linear algebra, we
are ready to rewrite (11.1.1) in a canonical form so that we may present
techniques for its solution. We begin by writing (11.1.1) as a single
column vector:

anzr + a13x2 + - 4+ aipTa by
a2121 + a3z + - 4+  az, by

: : : : =1 :]. (11.1.23)
AGm1T1 + am2T2 + - 4+ Ayunln bm

On the left side of (11.1.23) we can use the multiplication rule to write

anr @ - a4 T by
a1 azz - @y | | o2 b2
: : = (11.1.24)
Am1 Gm2 -+ QAmn Tn bm
or
Ax = b, (11.1.25)

where x is the solution vector. If b = 0, we have a homogeneous set of
equations; otherwise, we have a nonhomogeneous set. In the next few
sections, we will give a number of methods for finding x.

o Example 11.1.6: Solution of a tridiagonal system

A common problem in linear algebra involves solving systems such
as

biyi + c1y2 = dy (11.1.26)
a2yt + bay2 + coys = d (11.1.27)

aN-1YN-2 +bn_ayn—1 + envoiyn = dyog (11.1.28)
bNyN_1 +enyn = dn. (11.1.29)

Such systems arise in the numerical solution of ordinary and partial
differential equations.
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We begin our analysis by rewriting (11.1.26)—(11.1.29) in the matrix
notation:

bl 1 0 ce 0 0 0 Y1 d1

as bg Co 0 0 0 Y2 dz

0 as b3 e 0 0 0 Y3 d3

0 0 0 -+ anv—1 bn-1 eN-1 YN -1 dy-1

o 06 0 - 0 an bn YN dn
(11.1.30)

The matrix in (11.1.30) is an example of a banded matriz: a matrix
where all of the elements in each row are zero except for the diagonal
element and a limited number on either side of it. In our particular case,
we have a tridiagonal matrix in which only the diagonal element and
the elements immediately to its left and right in each row are nonzero.

Consider the nth equation. We can eliminate a, by multiplying the
(n — 1)th equation by a, /b, and subtracting this new equation from
the nth equation. The values of b, and d, become

bl, = by — ancn_1/bn_1 (11.1.31)
and

d;, = dn — andn_l/bn_l (11132)
for n = 2,3,...,N. The coefficient ¢, is unaffected. Because elements

a; and ¢y are never involved, their values can be anything or they can
be left undefined. The new system of equations may be written

bll (5] 0 -+ 0 0 0 Y1 d’l

0 blz cy 0 0 0 Y2 '2

0 0 b --- 0 0 0 v A

0 0 0 --- 0 by_; env-1] | unva e

0 0 0 --- 0 0 by yN dly
(11.1.33)

The matrix in (11.1.33) is in upper triangular form because all of
the elements below the principal diagonal are zero. This is particularly
useful because y, may be computed by back substitution. That is, we
first compute yy. Next, we calculate yy—; in terms of yx. The solution
yN—2 may then be computed in terms of yy and yny-1. We continue

this process until we find y; in terms of yn,yn—1,...,y2. In the present
case, we have the rather simple:

ynv = dy /by (11.1.34)
and

Yn = (d, — cndlyy )/, (11.1.35)
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forn=N-1,N-2,...,2,1.

As we shall show shortly, this is an example of solving a system
of linear equations by Gaussian elimination. For a tridiagonal case, we
have the advantage that the solution can be expressed in terms of a
recurrence relationship, a very convenient feature from a computational
point of view. This algorithm is very robust, being stable! as long as
la; + ¢;i| < |b;]. By stability, we mean that if we change b by Ab so that
x changes by Ax, then ||Ax|| < Me, where € > ||Ab]|, 0 < M < oo, for
any N.

Problems
Given A = (i’ ;) and B = (; ;),ﬁnd
1. A+ B,B+ A 2. A-B,B-A 3.34-2B, 324 - B)
4. AT BT (BT - 5. (A+B)T,AT+BT 6. B+BT, B— BT
7. AB,ATB,BABTA 8. A2 B? 9 BBT BTR
10. A2 -3A+1 11. A3+ 24 12. A* —4A% 4 21

Can multiplication occur between the following matrices? If so, compute
it.

2 1 —2 4
13.(_32‘;’» 41 4. (-4 6|1 2 3)
13 —6 1
2\ (32 4 6\ (1 3 6
a1 1 6. (7 5) (1 o %
2) \2 1
2\ (3 1 4
3)\2 0 6

11
IfA= (1 2) verify that
3

1

18. TA=4A+34, 19. 104 = 5(24), 20. (AT)T = A.

! Torii, T., 1966: Inversion of tridiagonal matrices and the stability
of tridiagonal systems of linear systems. Tech. Rep. Osaka Univ., 16,
403-414.



Linear Algebra 567

21 1 -2 11 .
IfA—-(3 1>,B—<4 0),andC.—<1 1>,ver1fythat

91. (A+B)+C=A+(B+C), 22.(AB)C = A(BC),
93. A(B +C) = AB + AC, 24. (A + B)C = AC + BC.

Verify that the following A~! are indeed the inverse of A:
(3 -1 (21
was(3 7)) a=(2 )
0 10 010
26.A=1{1 0 0 A"l=11 0 0
0 01 0 01

Write the following linear systems of equations in matrix form: Ax = b.

27.
T — 21’2 =5
3z +x2=1
28.
2z, + x9 + 423 =2
4z + 229 + 53 =6
6z, —3z2 +Dx3 =2
29.

zo+ 223+ 324 =2

3z; —4z3—4x4=5
r1+ro+aT3t+ags=-3
20y — 3o+ 23— 324 =1T.

11.2 DETERMINANTS

Determinants appear naturally during the solution of simultaneous
equations. Consider, for example, two simultaneous equations with two
unknowns z; and 2o,

a1 +apxy = by (11.2.1)

and
az1z1 + azex2 = bs. (11.2.2)

The solution to these equations for the value of x; and z2 is

b —ajqb
2 = 01822 — 41292 (11.2.3)
a110d22 — Q124a21
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and
boaiy —az1 by

Ty = (11.2.4)

a11az2 — a1202;
Note that the denominator of (11.2.3) and (11.2.4) are the same. This
term, which will always appear in the solution of 2 x 2 systems, is
formally given the name of deferminant and written

a1 G112

= 11022 — @12021. (11.2.5)
az @z

det(A) =

Although determinants have their origin in the solution of systems
of equations, any square array of numbers or expressions possesses a
unique determinant, independent of whether it is involved in a system of
equations or not. This determinant is evaluated (or expanded) according
to a formal rule known as Laplace’s ezpansion of cofactors.? The process
revolves around expanding the determinant using any arbitrary column
or row of A. If the ith row or jth column is chosen, the determinant is
given by

det(4) = a;1An + aizAiz + - + ainAin (11.2.6)
= a1jA1j + azjAzj + - -+ anjAnj, (11.2.7)

where A;;, the cofactor of a;;, equals (-—1)i+j M;;. The minor M;; is the
determinant of the (n — 1) x (n — 1) submatrix obtained by deleting row
¢, column j of A. This rule, of course, was chosen so that determinants
are still useful in solving systems of equations.

e Example 11.2.1

Let us evaluate

2 -1 2
1 3 2
5 1 6
by an expansion in cofactors.
Using the first column,
2 -1 2
13 2|=20-17|3 Z41=12|t 2|ascn)r| Tt 2
1 6 1 6 3 2
5 1 6
(11.2.8)
= 2(16) — 1(—8) + 5(—8) = 0. (11.2.9)

2 Laplace, P. S., 1772: Recherches sur le calcul intégral et sur le
systéme du monde. Hist. Acad. R. Sci., II® Partie, 267-376. (Euvres,
8, pp. 369-501. See Muir, T., 1960: The Theory of Determinants in the
Historical Order of Development, Vol. I, Part 1, General Determinants
Up to 1841, Dover Publishers, Mineola, NY, pp. 24-33.
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The greatest source of error is forgetting to take the factor (-=1)**7 into
account during the expansion.

Although Laplace’s expansion does provide a method for calculating
det(A), the number of calculations equals (n!). Consequently, for hand
calculations, an obvious strategy is to select the column or row that
has the greatest number of zeros. An even better strategy would be
to manipulate a determinant with the goal of introducing zeros into a
particular column or row. In the remaining portion of section, we show
some operations that may be performed on a determinant to introduce
the desired zeros. Most of the properties follow from the expansion of
determinants by cofactors.

o . For every square matrix A, det(A7) = det(A).

The proof is left as an exercise.
. . If any two rows or columns of A are identical, det(A4) = 0.

To see that this is true, consider the following 3 x 3 matrix:

b1 b1 (45}
by by c2| = ci{babs — b3by) — ca(brbz — b3b1)
b3 b3 c3
+ C3(b1b2 — bzbl) =0. (11210)

. : The determinant of a triangular matrix is equal to the
product of its diagonal elements.

If A is lower triangular, successive expansions by elements in the
first column give

ai 0 N 0 try - 0

az; az --- 0 ) ) )

an1 QAn2 - Gpn n2 c1r Gnn
=.--=Q11022" " Ann. (11212)

If A is upper triangular, successive expansions by elements of the first
row proves the property.

° . If a square matrix A has either a row or a column of all
zeros, then det(A) = 0.
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The proof is left as an exercise.

. : If each element in one row (column) of a determinant is
multiplied by a number ¢, the value of the determinant is multiplied by
c.

Suppose |B| has been obtained from |A| by multiplying row i (col-
umn j) of |A| by ¢. Upon expanding |B| in terms of row i (column
J) each term in the expansion contains ¢ as a factor. Factor out the
common c, the result is just ¢ times the expansion |A| by the same row
(column).

° : If each element of a row (or a column) of a determinant
can be expressed as a binomial, the determinant can be written as the
sum of two determinants.

To understand this property, consider the following 3 x 3 determi-
nant:

aj+dy b ¢ a b o dy b o
as+dy by cnf= az by co|+|ds by co). (11213)
az+ds b3 c3 az b3 c3 dz b3 c3

The proof follows by expanding the determinant by the row (or column)
that contains the binomials.

° : If B is a matrix obtained by interchanging any two rows
(columns) of a square matrix A, then det(B) = — det(A).

The proof is by induction. It is easily shown for any 2 x 2 matrix.
Assume that this rule holds of any (n — 1) x (n — 1) matrix. If 4 is
n X n, then let B be a matrix formed by interchanging rows ¢ and j.
Expanding | B| and |A| by a different row, say k, we have that

Bl =Y (1) b, My, and  |A] = (1) **ap Ny, (11.2.14)

s=1 s=1

where My, and Ny, are the minors formed by deleting row k, column
s from |B| and |A|, respectively. For s = 1,2,...,n, we obtain N,
and M, by interchanging rows : and j. By the induction hypothesis
and recalling that Ny, and M;, are (n — 1) x (n — 1) determinants,
Ngs = =My for s = 1,2,...,n. Hence, |B| = —|A|. Similar arguments
hold if two columns are interchanged.

° : If one row (column) of a square matrix A equals to a number
¢ times some other row (column), then det(A) = 0.
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Suppose one row of a square matrix A is equal to ¢ times some
other row. If ¢ = 0, then |[A] = 0. If ¢ # 0, then |A| = c|B|, where
|B| = 0 because |B| has two identical rows. A similar argument holds
for two columns.

° : The value of det(A) is unchanged if any arbitrary multiple
of any line (row or column) is added to any other line.

To see that this is true, consider the simple example:

ag h chy b o ai+chy by a
a, by cof+ chy by coj=laz+ cby by c2], (11.2.15)
az bz c3 cbz b3z ¢3 az+cbs b3 c3

where ¢ # 0. The first determinant on the left side is our original
determinant. In the second determinant, we can again expand the first
column and find that

by b c by b
Cbz bg c2|=¢C bz bg Ca| = 0. (11.2.16)
cbs b3z c3 bz bz c3

o Example 11.2.2

Let us evaluate

1 2 3 4
-1 1 2 3
1 -1 1 2
-1 1 -1 5

using a combination of the properties stated above and expansion by
cofactors.
By adding or subtracting the first row to the other rows, we have

that
1 2 3 4; |1 2 3 4
11 2 3/ lo 3 5 7
1 -1 1 2[T|o -3 —2 -2 (11.2.17)
101 -15 lo 3 2 9

7
5|  (11.2.18)
2

\ = 63. (11.2.19)
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Problems

Evaluate the following determinants:

3 5 5 -1
1. 28 2. _84’
3 1 9 4 3 0
3. 2 4 5 4. 3 2 9
1 4 5 5 —2 _4
13 2 9 —1 9
5 411 6. 1 3 3
2 1 3 5 1 6
20 0 1 2 1 2 1
01 0 0 3 0 2 2
£ 16 1 0 8. -1 92 -1 1
11 -2 3 3 9 3 1

9. Using the properties of determinants, show that

1 1 1 1

b d
@y ¢ |=0-a-ad-al-b)d-bd-o).
a® b» 3 48

This determinant is called Vandermonde’s determinant.

10. Show that

a b+c
b a+ec
¢c a+b

e
il
e

11. Show that if all of the elements of a row or column are zero, then
det(A) = 0.

12. Prove that det(AT) = det(A).
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11.3 CRAMER’S RULE

One of the most popular methods for solving simple systems of
linear equations is Cramer’s rule.® It is very useful for 2 x 2 systems,
acceptable for 3 x 3 systems, and of doubtful use for 4 x 4 or larger
systems.

Let us have n equations with n unknowns, Ax = b. Cramer’s rule
states that

_ det(Al)

1= 7 74N 2

det(A)’

_ det(Az)

e det(An)
T det(A)’ o

det(4)’

(11.3.1)

where A; is a matrix obtained from A by replacing the ith column with
band n =1,2,3,.... Obviously, det(A) # 0 if Cramer’s rule is to work.
To prove Cramer’s rule, consider

a;jry @12 @13 - Gin
a»xr; a2 az3 -+ QG

z)det(4) = | 931%1 a3z @33 - O3n (11.3.2)
apiT1 Gn2 @n3 ' GOnn

by Rule 5 from the previous section. By adding 2 times the second
column to the first column,

a;nry +a12x¢2 a1z a1z -+ Gin
ag1xy + Qa2 G2z @23 - O2n

£y det(A) = | @31%1 + a32%2 az2 433 o0 O3n (11.3.3)
An1ZT1 + An2T2 Gn2 Qp3 - 4nn

Multiplying each of the columns by the corresponding z; and adding it
to the first column yields,

a1z + aizx2+ -+ ain&n 12 13 Gin
a2ty + a2+ -+ amTy a2z @23 Q2n
2, det(A) = | @121 +@32T2 + *- -+ d3nTs 432 033 a3n
Ap1Z1 + an2Za+ -+ Gunln An2 An3 Gnn
(11.3.4)

3 Cramer, G., 1750: Introduction d I’analyse des lignes courbes algé-

briques, Geneva, p. 657.
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The first column of (11.3.4) equals Ax and we replace it with b. Thus,

b1 a1z a3 -+ ai
bz azy a3 .- az
zidet(A) = |03 @z as oo asn | = det(4;) (11.3.5)
bn Gn2 @n3z - Gpn
o det(A4y)
€ 1
= 11.3.6
1 det(A) ( )
provided det(A) # 0. To complete the proof we do exactly the same
procedure to the jth column. nj

e Example 11.3.1

Let us solve the following system of equations by Cramer’s rule:

2z + 29 + 223 = —1, (1137)
ry+x3=-1 (1138)

and
—z1+ 329 — 223 =1T. (1139)

From the matrix form of the equations,

2 1 2 ) -1
1 0 1 o | = -1], (11.3.10)
-1 3 -2/ \z3 7

we have that

2 1 2

det(A)=(1 0 1 |=1, (11.3.11)
-1 3 -2
-1 1 2

det(A1)={-1 0 1 |=2, (11.3.12)
7T 3 -2
2 -1 2

det(A2)=|1 -1 1 (=1 (11.3.13)
-1 7 =2

and

2 1 -1

det(Az)=f1 0 -1|=-3. (11.3.14)

-1 3 7
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Finally,

L2 1 -3
171

=2, z»= 1= 1 and z3= T = —3. (11.3.15)

Problems
Solve the following systems of equations by Cramer’s rule:

1.21+229=3, 3z14+22=6

2. 281+ x9==3, z1—z2=1

3. 214 2z5—223=4, 221+ 23+ T3=—2, —zi+ro—23=2
4. 221+ 3z —23=—1, =21 — 2z + 23 =5, 3r; —T2= —2.

11.4 ROW ECHELON FORM AND GAUSSIAN ELIMINATION

So far, we have assumed that every system of equations has a unique
solution. This is not necessary true as the following examples show.

o Example 11.4.1

Consider the system
T+ T2 =2 (11.4.1)

and
2z + 2z, = —1. (1142)

This system is inconsistent because the second equation does not follow
after multiplying the first by 2. Geometrically (11.4.1) and (11.4.2) are
parallel lines; they never intersect to give a unique z; and z».

o Example 11.4.2

Even if a system is consistent, it still may not have a unique solu-
tion. For example, the system

1 +29=2 (1143)

and
2x1 + 2z, =4 (11.4.4)

is consistent, the second equation formed by multiplying the first by 2.
However, there are an infinite number of solutions.

Our examples suggest the following:
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Theorem: A system of m linear equation in n unknowns may: (1)
have no solution, in which case it is called an inconsistent system, or
(2) have ezactly one solution (called a unique solution), or (3) have an
infinite number of solutions. In the latter two cases, the system is said
to be consistent.

Before we can prove this theorem at the end of this section, we need
to introduce some new concepts.

The first one is equivalent systems. Two systems of equations in-
volving the same variables are equivalent if they have the same solution
set. Of course, the only reason for introducing equivalent systems is the
possibility of transforming one system of linear systems into another
which is easier to solve. But what operations are permissible? Also
what is the ultimate goal of our transformation?

From a complete study of possible operations, there are only three
operations for transforming one system of linear equations into another.
These three elementary row operations are

(1) interchanging any two rows in the matrix,
(2) multiplying any row by a nonzero scalar, and

(3) adding any arbitrary multiple of any row to any other
row.

Armed with our elementary row operations, let us now solve the
following set of linear equations:

Ty — 304 Teg =2, (11.4.5)
2z + 4o — deg = —1 (11.4.6)
and
-z + 13(82 - 211‘3 = 2. (1147)
We begin by writing (11.4.5)-(11.4.7) in matrix notation:
1 -3 7 T 2
2 4 3 {az]=(-1]. (11.4.8)
-1 13 -21 T3 2

The matrix in (11.4.8) is called the coefficient matriz of the system.
We now introduce the concept of the augmented matriz: a matrix
B composed of A plus the column vector b or

1 -3 7|2
B=[2 4 =-3|-1]. (11.4.9)
-1 13 -21| 2



Linear Algebra 577

We can solve our original system by performing elementary row opera-
tions on the augmented matrix. Because the z;’s function essentially as
placeholders, we can omit them until the end of the computation.

Returning to the problem, the first row may be used to eliminate
the elements in the first column of the remaining rows. For this reason
the first row is called the pivotal row and the element aj; is the pivot.
By using the third elementary row operation twice (to eliminate the 2
and —1 in the first column), we finally have the equivalent system

1 -3 7|2
B=1[0 10 —17|-5]. (11.4.10)
0 10 —14| 4

At this point we choose the second row as our new pivotal row and
again apply the third row operation to eliminate the last element in the
second column. This yields

1 -3 7|2
B=1|0 10 -17|-5]. (11.4.11)
0 0 319

Thus, elementary row operations have transformed (11.4.5)~(11.4.7) into
the triangular system:

Iy - 31‘2 + 71‘3 = 2, (11412)
102y — 1723 = -5, (11.4.13)
3z3=9, (11.4.14)

which is equivalent to the original system. The final solution is obtained
by back substitution, solving from (11.4.14) back to (11.4.12). In the
present case, £3 = 3. Then, 10z2 = 17(3) — 5 or z3 = 4.6. Finally,
21 =3zy—Tzs+2=-5.2.

In general, if an n x n linear system can be reduced to triangular
form, then it will have a unique solution that we can obtain by per-
forming back substitution. This reduction involves n — 1 steps. In the
first step, a pivot element, and thus the pivotal row, is chosen from the
nonzero entries in the first column of the matrix. We interchange rows
(if necessary) so that the pivotal row is the first row. Multiples of the
pivotal row are then subtracted from each of the remaining n — 1 rows
so that there are 0’s in the (2, 1), ...,(n, 1) positions. In the second step,
a pivot element is chosen from the nonzero entries in column 2, rows 2
through n, of the matrix. The row containing the pivot is then inter-
changed with the second row (if necessary) of the matrix and is used as
the pivotal row. Multiples of the pivotal row are then subtracted from
the remaining n — 2 rows, eliminating all entries below the diagonal
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in the second column. The same procedure is repeated for columns 3
through n — 1. Note that in the second step, row 1 and column 1 remain
unchanged, in the third step the first two rows and first two columns
remain unchanged, and so on.

If elimination is carried out as described, we will arrive at an equiv-
alent upper triangular system after n — 1 steps. However, the procedure
will fail if, at any step, all possible choices for a pivot element equal
zero. Let us now examine such cases.

Consider now the system

1+ 229+ 23 = -1, (11415)
2z, + 429 + 223 = -2, (11416)
z1 +4xs + 23 = 2. (11417)
Its augmented matrix is
1 2 1|-1
B=1[|2 4 2|-2]. (11.4.18)
' 1 4 2| 2
Choosing the first row as our pivotal row, we find that
1 2 1|-1
B=|0 0 0} 0 (11.4.19)
0 2 1] 3
or
1 2 1|-1
B=[0 2 1| 3 |. (11.4.20)
0 0 00

The difficulty here is the presence of the zeros in the third row. Clearly
any finite numbers will satisfy the equation 0z; + 0xz + 0x3 = 0 and we
have an infinite number of solutions. Closer examination of the original
system shows a underdetermined system; (11.4.15) and (11.4.16) differ
by a factor of 2. An important aspect of this problem is the fact that
the final augmented matrix is of the form of a staircase or echelon form
rather than of triangular form.
Let us modify (11.4.15)—(11.4.17) to read

Ty + 229 + 23 = -1, (11421)
2z + 4z + 223 = 3, (11.4.22)
z1+4xs + 23 =2, (11423)

then the final augmented matrix is

1 2 1|-1
B=1]0 2 1|3 }. (11.4.24)
0 0 0|5
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We again have a problem with the third row because 0z;+0x,+0z3 = 5,
which is impossible. There is no solution in this case and we have an
overdetermined system. Note, once again, that our augmented matrix
has a row echelon form rather than a triangular form.

In summary, to include all possible situations in our procedure, we
must rewrite the augmented matrix in row echelon form. Row echelon
form consists of:

(1) The first nonzero entry in each row is 1.

(2) If row k does not consist entirely of zeros, the number of leading
zero entries in row k + 1 is greater than the number of leading zero
entries in row k.

(3) If there are rows whose entries are all zero, they are below the
rows having nonzero entries.

The number of nonzero rows in the row echelon form of a matrix is
known as its rank. Gaussian elimination is the process of using ele-
mentary row operations to transform a linear system into one whose
augmented matrix is in row echelon form.

e Example 11.4.3

Each of the following matrices is not of row echelon form because
they violate one of the conditions for row echelon form:

2 2 3
02 1 <8 g 8)(‘1’ 3) (11.4.25)
0 0 4

e Example 11.4.4

The following matrices are in row echelon form:

1 2 3 1 4 6 1 3 40
o1 1],f00 1),[{0o 0 1 3]. (11.4.26)
00 1 000 0000
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o Example 11.4.5

Gaussian elimination may also be used to solve the general problem
AX = B. One of the most common applications is in finding the inverse.
For example, let us find the inverse of the matrix

4 -2 2
A=|-2 -4 4 (11.4.27)
-4 2 8

by Gaussian elimination.
Because the inverse is defined by AA~! = I, our augmented matrix

4 -2 2
-2 —4 4
-4 2 8

Then, by elementary row operations,

4 -2 2(1 0 0 -2 —4 4
-2 -4 4|0 1 0] = 4 -2 2
-4 2 8|0 0 1 -4 2 8
4
2

is

100
01 0]. (11.4.28)
001

010
100 (11.4.29)
0 0 1

-2 -4 010
= 4 -2 10 0] (11.4.30)
0 0 10|10 1
—2 —4 4|0 1 0
= 0 -10 10{1 2 0} (11.4.31)
0 0 10{1 0 1
(-2 -4 4]0 1 0
=| 0 =10 0|0 2 -1} (11.4.32)
0 0 10{1 0 1
[—2 -4 0]-2/5 1 -2/5
- -10 0| 0 2 -1
0 0 10 1 o0 1
(11.4.33)
(-2 0 —2/5 1/5 0
={ 0 =10 0] 0 2 -1
0 o 100 1 0 1
(11.4.34)
1 0 0|1/5 -1/10 0
=010 0 -1/5 1/10].
0 0 1[1/10 0  1/10

(11.4.35)
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Thus, the right half of the augmented matrix yields the inverse and it
equals
1/5 -1/10 0
A=} 0 -1/5 1/10]. (11.4.36)
1/10 0 1/10

Of course, we can always check our answer by multiplying A~! by A.

Gaussian elimination may be used with overdetermined systems.
Overdetermined systems are linear systems where there are more equa-
tions than unknowns (m > n). These systems are usually (but not
always) inconsistent.

o Example 11.4.6

Consider the linear system

21 +z2=1, (11.4.37)
—z1 + 225 = =2, (11.4.38)
1 — 29 = 4. (11.4.39)

After several row operations, the augmented matrix

1 111
-1 2]-2 (11.4.40)
( 1 =11 4
becomes
1 1|1
0 1] 2 }. (11.4.41)
0 0f-7

From the last row of the augmented matrix (11.4.41) we see that the
system is inconsistent. However, if we change the system to

214+ x2 =1, (11442)
—z1 + 2z9 =5, (11.4.43)
r; = -1, (11.4.44)

the final form of the augmented matrix is

1 1)1
0 1]/2]. (11.4.45)
0 0}0

which has the unique solution z; = —1 and z2 = 2.
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Finally, by introducing the set:

T+ o =1, (11.4.46)
2, + 2z0 = 2, (11.4.47)
3z, + 323 = 3, (11.4.48)

the final form of the augmented matrix is

1 1|1
0 0]/0]. (11.4.49)
0 0]o0

There are an infinite number of solutions: ; =1 — o and z5 = a.

Gaussian elimination can also be employed with underdetermined
systems. An underdetermined linear system is one where there are fewer
equations than unknowns (m < n). These systems usually have an
infinite number of solutions although they can be inconsistent.

o Example 11.4.7
Consider the underdetermined system:

221 + 229 + 23 = —1, (11.4.50)
4z + 49 + 223 = 3. (11.4.51)

Its augmented matrix may be transformed into the form:

2 2 1| -1

(22 17). aras

Clearly this case corresponds to an inconsistent set of equations. On
the other hand, if (11.4.51) is changed to

4z, + 429 + 223 = -2, (11.4.53)

then the final form of the augmented matrix is

2 2 1|-1
(0 0 0‘ 0) (11.4.54)

and we have an infinite number of solutions, namely z3 = a, 2 = 8,
and 2z; = -1 — a — 20.

Consider now one of most important classes of linear equations: the
homogeneous equations Ax = 0. If det(A) # 0, then by Cramer’s rule



Linear Algebra 583

Ty =xy=2x3=--=&, = 0. Thus, the only possibility for a nontrivial
solution is det(A) = 0. In this case, A is singular, no inverse exists, and
nontrivial solutions exist but they are not unique.

e Example 11.4.8

Consider the two homogeneous equations:
T +z2=0 (11.4.55)
z; —x2=0. (11.4.56)

Note that det{A) = —2. Solving this system yields z; = x5 = 0.
However, if we change the system to

Ty +z2=0 (11.4.57)
o1 +z2=0 (11.4.58)
which has the det(A) = 0 so that A is singular. Both equations yield

r, = —2s = «, any constant. Thus, there is an infinite number of
solutions for this set of homogeneous equations.

We close this section by outlining the proof of the theorem which
we introduced at the beginning.

Consider the system Ax = b. By elementary row operations, the
first equation in this system can be reduced to

1+ aas+ -+ ainy = P (11.4.59)
The second equation has the form
Tp+ Q2 pi1Tpy1 + -+ QonTn = P, (11.4.60)
where p > 1. The third equation has the form
Tq+ 03 g418g41 + -+ a3 = B3, (11.4.61)

where ¢ > p, and so on. To simplify the notation, we introduce z; where
we choose the first k values so that 21 = &1, 22 = &p, 23 = x,, ...
Thus, the question of the existence of solutions depends upon the three
integers: m, n, and k. The resulting set of equations have the form:

1 y2 -+ Tk 7T1k41 0 Yin o5
0 1 - 721 Y241 - Yon B

. 21 .

. Z9 :

0 0 - 1 Yer+r -0 Vin 1= B
0 0 --- 0 0 e 0 : Br+1

. Zn .

\o 0 - 0 0 - 0 ' B

(11.4.62)
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Note that Bx41, ..., Bm need not be all zero.

There are three possibilities:

(a) k < m and at least one of the elements Bry1, ..., On 1s nonzero.
Suppose that an element 3, is nonzero (p > k). Then the pth equation
1s

021 + 0294+ -- -+ 0z, = ,Bp #0. (11.4.63)

However, this is a contradiction and the equations are inconsistent.

(b) £ = n and either (i) ¥ < m and all of the elements Bi41,...,0mn
are zero, or (i) k = m. Then the equations have a unique solution which
can be obtained by back-substitution.

(¢) £ < n and either (i) k¥ < m and all of the elements Bk41, ..., 0m
are zero, or (ii) k = m. Then, arbitrary values can be assigned to the n—
k variables zg41,...,2z,. The equations can be solved for 21, 22,..., 2
and there is an infinity of solutions.

For homogeneous equations b = 0, all of the 3; are zero. In this
case, we have only two cases:

(b’) k = n, then (11.4.62) has the solution z = 0 which leads to the
trivial solution for the original system Ax = 0.

(c') ¥ < n, the equations possess an infinity of solutions given by
assigning arbitrary values to zg41,..., 2n. O

Problems

Solve the following systems of linear equations by Gaussian elimination:

1. 2.’L‘1+.’L‘2=4, 5171—21,‘2:1
2. 21+22=0, 3y —4x, =1
3. —z1+xo+223=0, 3r1+4dro+23=0, —a27+x2+223=0
4. 42y +6xo+23=2, 2x3+x9—403=3, 3r;—222+bx3=28
5. 321+ x93 —-203=-3, v —x2+203=-1, —4x, +325—6x3=4
6. 1 — 3x2+ Txz = 2, 22y + 420 — 323 = —1,

—3z1+ 729 +223=3
7. 21— z2+4 323 =5, 201 — 4z + Tz =17,

421 — 929 + 223 = —15
8. xy+ a2+ a3+ 24 =—1, 2z) — 22+ 3x3 =1,

229 + 324 = 15, ~21+ 229 + 24 = -2

Find the inverse of each of the following matrices by Gaussian elimina-
tion:

o (31) o (5 7)
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199 2 -9 1 2 5
11. -4 -1 2 12. 0 -1 2

-2 0 1
13. Does (A?)~! = (A~1)?? Justify your answer.
11.5 EIGENVALUES AND EIGENVECTORS

One of the classic problems of linear algebra* is finding all of the
A’s which satisfy the n x n system

Ax = Ax. (11.5.1)

The nonzero quantity A is the eigenvalue or characteristic value of A.
The vector x is the eigenvector or characteristic vector belonging to A.
The set of the eigenvalues of A is called the spectrum of A. The largest
of the absolute values of the eigenvalues of A is called the spectral radius
of A.
To find A and x, we first rewrite (11.5.1) as a set of homogeneous
equations:
(A= ADx = 0. (11.5.2)

From the theory of linear equations, (11.5.2) has trivial solutions unless
its determinant equals zero. On the other hand, if

det(A — AI) =0, (11.5.3)

there are an infinity of solutions.

The expansion of the determinant (11.5.3) yields an nth-degree
polynomial in A, the characteristic polynomial. The roots of the charac-
teristic polynomial are the eigenvalues of A. Because the characteristic
polynomial has exactly n roots, A will have n eigenvalues, some of which
may be repeated (with multiplicity ¥ < n) and some of which may be
complex numbers. For each eigenvalue A;, there will be a correspond-
ing eigenvector x;. This eigenvector is the solution of the homogeneous
equations (A — A; I)x; = 0.

An important property of eigenvectors is their linear independence
if there are n distinct eigenvalues. Vectors are linearly independent if
the equation

a1X1 +asXo+ -+ apx, =0 (11.5.4)

can be satisfied only by taking all of the a’s equal to zero.

4 The standard reference is Wilkinson, J. H., 1965: The Algebraic
Figenvalue Problem, Clarendon Press, Oxford.
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To show that this is true in the case of n distinct eigenvalues
A1, A2,..., A, each eigenvalue A; having a corresponding eigenvector
x;, we first write down the linear dependence condition

a1Xy + aoXs + -+ apXx, = 0. (11.5.5)
Premultiplying (11.5.5) by A,
a1 Ax] +FasAxs + - -+ anAX, = a1 X1 FasAeXa + - - +ap,Anx, = 0.
(11.5.6)
Premultiplying (11.5.5) by A2,

a1 A%x a2 A%xo+- - Ha, A%x, = a1/\3x1+a2)\§xz+- . ~+an/\,21xn =0.

(11.5.7)
In similar manner, we obtain the system of equations:
1 1 1 o1X, 0
A1 Ay e A, Qa2X2 0
A A asxs | =1 0], (11.5.8)
APt oAt o ant CnXn 0
Because
1 1 1
A Xa A,
,\% ,\% . ’\?1 _ (/\2 - )\1)()\3 - /\2)(/\3 — )\1)()\4 - /\3)
: : : : (A= A2) (A = A1) #0,
/\;1—1 /\;L—l . /\2—1

(11.5.9)
since it i1s a Vandermonde determinant, a1X; = a9Xs = agXg = ---
apXn, = 0. Because the eigenvectors are nonzero, &y =az =az = ---
a, = 0 and the eigenvectors are linearly independent.

This property of eigenvectors allows us to express any arbitrary
vector x as a linear sum of the eigenvectors x; or

a

X =C1X] + CoXg+ -+ CnXp. (11.5.10)
We will make good use of this property in Example 11.5.3.

o Example 11.5.1

Let us find the eigenvalues and corresponding eigenvectors of the
matrix

A= (:‘11 _21) : (11.5.11)
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We begin by setting up the characteristic equation:

—4-A 2

det(A—-/\I)zl R

=0. (11.5.12)

Expanding the determinant,
(=4 =N (=1=X+2=22+5X1+6=(A+3)(A+2) =0. (11.5.13)

Thus, the eigenvalues of the matrix A are A; = —3 and Ay = —2.
To find the corresponding eigenvectors, we must solve the linear

system:
—4— A 2 z1y_ (0
(2 (E)=(). ms
For example, for Ay = -3,
-1 2 Iy _ 0
(3 (=)=() (1510
or
21 = 22 (11.5.16)
Thus, any nonzero multiple of the vector ? is an eigenvector belong-
ing to Ay = —3. Similarly, for A, = —2, the eigenvector is any nonzero
multiple of the vector (i

o Example 11.5.2

Let us now find the eigenvalues and corresponding eigenvectors of

the matrix
-4 5 5
A=}1-5 6 5. (11.5.17)
-5 5 6
Setting up the characteristic equation:
det(A — AI)
—4 - 5 5 -4 —A 5 5
={ -5 6—A 5 |=]| -5 6—A 5
=5 5 6—A 0 A-1 1-2A
- (11.5.18)
—4-Xx 5 5 -1 o
=A=1] -5 6-Xx 5 |=(A=-1%*-5 6-X {5
0 1 -1 0 1 -1
(11.5.19)
-1 (00 0

—(A=1)?|=5 6= (0|=(r—1)>%*6-1) =0. (11.5.20)
o 1 -1
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Thus, the eigenvalues of the matrix A are A; 2 = 1 (twice) and A3 = 6.
To find the corresponding eigenvectors, we must solve the linear
system:

(-—-4 - /\)1‘1 + 529 4+ 5z3 =0, (11.5.21)

—b521 4+ (6 — Nza + 523 =0 (11.5.22)
and

—bxy + bxoy + (6 - /\)(L‘s =0. (11523)

For A3 = 6, (11.5.21)—(11.5.23) become

—10z1 + 522 + 5x3 =0, (11.5.24)
—5z1+52z3=0 (11.5.25)

and
—bz1 + Hxy = 0. (11.5.26)

Thus, ; = 22 = z3 and the eigenvector is any nonzero multiple of the

1
vector | 1 .
1

The interesting aspect of this example involves finding the eigen-
vector for the eigenvalue Ay 2 = 1. If A\; ; = 1, then (11.5.21)-(11.5.23)
collapses into one equation

-1+ Lo+ T3 = 0 (11527)

and we have fwo free parameters at our disposal. Let us take z3 = o

1 1
and z3 = . Then the eigenvector equals « 1) +610 | for A =1

0 1
In this example our 3 x 3 matrix has three linearly independent
1 1
eigenvectors: 1 ] associated with Ay = 1, | 0 | associated with
0 1
1
Az =1, and | 1 | associated with A3 = 6. However, with repeated
1

eigenvalues this is not always true. For example,

a=(1 1 11.5.28
(s 1) (11.5.28)

has the repeated eigenvalues A; » = 1. However, there is only a single

eigenvector <(1)> for both Ay and A,.
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o Example 11.5.3

When we discussed the stability of numerical schemes for the wave
equation in Section 7.6, we examined the behavior of a prototypical
Fourier harmonic to variation in the parameter cAt/Az. In this exam-
ple we shall show another approach to determining the stability of a
numerical scheme via matrices.

Consider the explicit scheme for the numerical integration of the
wave equation (7.6.11). We can rewrite that single equation as the
coupled difference equations:

u:]+1 = 2(1 — Tz)’ll:‘n + T'Z(U::H.l + u:‘n—l) - U:;, (11529)
and
JiH =yt (11.5.30)

where 7 = cAt/Az. Let ul,, = eP2%u? and ul_; = e~P2%u],
where 3 is real. Then (11.5.29)-(11.5.30) becomes

n M ﬂAI n
uptl =2 [1 — 2r?sin? (—2— Uy — Uy (11.5.31)
and
ot = ol (11.5.32)
or in the matrix form
— 9p2gin? [ B8Z -
wiHl = (2 [1 2r Sl‘“ ( 2 )] 01> u? (11.5.33)

n
where u}, = (z,'{‘ ) The eigenvalues A of this amplification matriz are
m

given by

PL [1—2r2sin2 (ﬂ‘;’”)] A+1=0 (11.5.34)

)i )

(11.5.35)

Because each successive time step consists of multiplying the so-

lution from the previous time step by the amplification matrix, the

solution will be stable only if u?, remains bounded. This will occur only
if all of the eigenvalues have a magnitude less or equal to one because

ul =5 e Amxy = > adix, (11.5.36)
k k

or

Alg=1— 2r? sin? (E—Z;—x) + 2rsin (ﬂAI
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where A denotes the amplification matrix and x; denotes the eigen-
vectors corresponding to the eigenvalues Ax. Equation (11.5.36) follows
from our ability to express any initial condition in terms of an eigenvec-
tor expansion:

ul, = crxx. (11.5.37)
k

In our particular example, two cases arise. If r?sin?(8Az/2) < 1,

A1z =1-2r%sin? (ﬂ_?_a:) + 2risin (ﬂ?z) \/1 — r2sin? (ﬂ?w)

(11.5.38)
and |A;2] = 1. On the other hand, if r?sin®(3Az/2) > 1, |A\1 2| > 1.
Thus, we will have stability only if cAt/Az < 1.

Problems

Find the eigenvalues and corresponding eigenvectors for the following
matrices:

3 2
RN
2 -3 1
3.A=1]1 -2 1
1 -3 2
1 11
5 A=1]10 2 1 6.
0 01
4 -5 1 -2 0 1
7. A=]1 0 -1 8. A= 3 0 -1
6 1 -1 0 1 1

Project: Numerical Solution of ‘the Sturm-Liouville Problem

N
S
I

b
Il

b

S

it
/\/—\/'\

OO OO0 =W

ST N O O =
'»—lo—A <

[y

N

You may have been struck by the similarity of the algebraic eigen-
value problem to the Sturm-Liouville problem. In both cases nontrivial
solutions exist only for characteristic values of A. The purpose of this
project is to further deepen your insight into these similarities.

Consider the Sturm-Liouville problem:

Y +dy=0, y0)=y(r)=0. (11.5.39)
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- Ax -

Figure 11.5.1: Schematic for finite-differencing a Sturm-Liouville
problem into a set of difference equations.

We know that it has the nontrivial solutions Ay, = m?, ym(2) = sin(me),
where m=1,2,3,...

Step 1: Let us solve this problem numerically. Introducing centered
finite differencing and the grid shown in Figure 11.5.1, show that

y" o~ Un+1 — 2Yn + Yn-1
Az '

n=12,...,N, (11.5.40)

where Az = m/(N+1). Show that the finite-differenced form of (11.5.39)
is

—h%Yns1 + 20y — BPyn_1 = Ay (11.5.41)
with yo = yv41 = 0 and h = 1/(Az).

Step 2: Solve (11.5.41) as an algebraic eigenvalue problem using N =
1,2,.... Show that (11.5.41) can be written in the matrix form of

th —h2 0 e 0 0 0 )1 Y1
—h% 2h%2 —AZ ... 0 0 0 Yo Ya
0 -—h% 2n%2 ... 0 0 0 Y3 \ Y3
0 O 0 M '—h2 2h2 —h2 yN—l YN-1
o 0 0 -~ 0 —h* 2A? YN YN
(11.5.42)

Note that the coefficient matrix is symmetric. Except for very small
N, computing the values of A using determinants is very difficult. Con-
sequently you must use one of the numerical schemes that have been
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Table 11.5.1: Eigenvalues computed from (11.5.42) as a numerical
approximation of the Sturm-Liouville problem (11.5.39).

N A A2 A3 A4 As g A7

1 0.81057

2 0.91189 2.73567

3 0.94964 3.24228 5.53491

4 0.96753 3.50056 6.63156 9.16459

5 0.97736 3.64756 7.29513 10.94269 13.61289

6 0.98333 3.73855 7.71996 12.13899 16.12040 18.87563

7 0.98721 3.79857 8.00605 12.96911 17.93217 22.13966 24.95100

8 0.98989 3.84016 8.20702 13.56377 19.26430 24.62105 28.98791
20 0.99813 3.97023 8.84993 15.52822 23.85591 33.64694 44.68265
50 0.99972 3.99498 8.97438 15.91922 24.80297 35.59203 48.24538

developed for the efficient solution of the algebraic eigenvalue problem.®
Packages for numerically solving the algebraic eigenvalue problem may
already exist on your system or you may find code in a numerical meth-
ods book.

In Table 11.5.1 1 have given the computed values of A as a function
of N using the IMSL routine EVLSF so that you may check your an-
swers. How do your computed eigenvalues compare to the eigenvalues
given by the Sturm-Liouville problem? What happens as you increase
N7 Which computed eigenvalues agree best with those given by the
Sturm-Liouville problem? Which ones compare the worst?

Step 3: Let us examine the eigenfunctions now. First, reorder (if nec-
essary) your eigenvectors so that each consecutive eigenvalue increases
in magnitude. Starting with the smallest eigenvalue, construct an zy
plot for each consecutive eigenvectors where r; = iAz, i =1,2,..., N,
and y; are the corresponding element from the eigenvector. On the
same plot, graph ym(z) = sin(mz). Which eigenvectors and eigenfunc-
tions agree the best? Which eigenvectors and eigenfunctions agree the
worst? Why? Why are there N eigenvectors and an infinite number of
eigenfunctions?

Step 4: The most important property of eigenfunctions is orthogonality.
But what do we mean by orthogonality in the case of eigenvectors?
Recall from three-dimensional vectors we had the scalar dot product:

a-b=ajb + asby + azbs. (11.5.43)

5 See Press, W. H., Flannery, B. F., Teukolsky, S. A., and Vetter-
ling, W. T., 1986: Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, Cambridge, chap. 11.
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For n-dimensional vectors, this dot product is generalized to the inner
product

n
X y= Z:ckyk. (11.5.44)
k=1

Orthogonality implies that x -y = 0 if x # y. Are your eigenvectors
orthogonal? How might you use this property with eigenvectors?

11.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

In this section we show how we may apply the classic algebraic
eigenvalue problem to solve a system of ordinary differential equations.
Let us solve the following system:

1"1 =z + 3z, (1161)

and
x5y = 3z + z2, (11.6.2)

where the primes denote the time derivative.
We begin by rewriting (11.6.1)-(11.6.2) in linear algebra notation:

x' = Ax, (11.6.3)

x = (2) and A= (; ?) (11.6.4)

1',1 _i 1\ __ s
(5) -4 (2) ¢ .

Assuming a solution of the form

where

Note that

x = xge*?, where Xg = (Z) (11.6.6)

is a constant vector, we substitute (11.6.6) into (11.6.3) and find that
Ae*ixg = Ae*xo. (11.6.7)
Because e*! does not generally equal zero, we have that
(A—-2ADxe =0, (11.6.8)

which we solved in the previous section. This set of homogeneous equa-
tions is the classic eigenvalue problem. In order for this set not to have
trivial solutions,

1-2A 3

det(A—-AI):‘ 3 1— 2

l =0. (11.6.9)
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Expanding the determinant,
(1-2)%-9=0 or A=-2/4. (11.6.10)

Thus, we have two real and distinct eigenvalues: A = —2 and 4.
We must now find the corresponding xq or eigenvector for each
eigenvalue. From (11.6.8),

(1-Na+3b=0 (11.6.11)

and
3a+ (1 —A)b=0. (11.6.12)

If X = 4, these equations are consistent and yielda = b =¢;. If A = -2,
we have that a = —b = c¢;. Therefore, the general solution in matrix
notation is

x=c (i) e* +co (_11> e~ 2t (11.6.13)

To evaluate ¢; and ¢y, we must have initial conditions. For example,
if £1(0) = x2(0) = 1, then

(i)zcl(})”z(_ll)- (11.6.14)

Solving for ¢; and ¢2, ¢4 = 1 and ¢ = 0 and the solution with this
particular set of initial conditions is

x = (}) e*. (11.6.15)

o Example 11.6.1

Let us solve the following set of linear ordinary differential equa-
tions:

z) = —zo + z3, (11.6.16)
rh =4z, — z2 — 423 (11.6.17)

and
.’C% = =3z, — x9 + 4z3; (11.6.18)

or in matrix form,

0 -1 1 1
xX=|4 -1 —-4]x, x=|z|. (11.6.19)
-3 -1 4 I3
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Assuming the solution x = xge*?,
0 -1 1
4 —1 —4|x0=x (11.6.20)
-3 -1 4
or
-A -1 1
4 —1-) -4 |xe=0. (11.6.21)
-3 -1 4-A

For nontrivial solutions,

- -1 1 0 0 1
4 —-1-X -4 |= 4 —4x —5—-X -4 (=0
-3 -1 4— ) ~34+4XA—=2%2 33— 4-)
(11.6.22)
and
A-DA=-3)(A+1)=0 or 2=-1,1,3. (11.6.23)

To determine the eigenvectors, we rewrite (11.6.21) as

—da—b+c=0, (11.6.24)
4a—(14+X2)b—4c=0 (11.6.25)

and
~3a—b+(4-A)c=0. (11.6.26)

For example, if A =1,

—a—b+c=0, (11.6.27)
4a—2b—4c=0 (11.6.28)

and
—3a—~b+3c=0; (11.6.29)

1
or a = c and b = 0. Thus, the eigenfunction for A = 1 is xo = 0) .
1

1 1
Similarly, for A = -1, xo = (2) and for A = 3, xo = (—1). Thus,

1 2
the most general solution is

1 1 1
X=c (0) el + ¢y (2) et 4¢3 (—1)63’. (11.6.30)
1 1 2
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o Example 11.6.2

Let us solve the following set of linear ordinary differential equa-
tions:
=z — 229 (11.6.31)

and
zh = 2z — 3zo; (11.6.32)

or in matrix form,

x = (; _g)x, x = (zl) (11.6.33)
- 2

Assuming the solution x = xge*?,

<1;’\ _3_2)\)::0 =0. (11.6.34)

For nontrivial solutions,

I-2A -2
2 -3-2A

‘: A+1)2=0. (11.6.35)
Thus, we have the solution

X =rc (}) e t. (11.6.36)

The interesting aspect of this example is the single solution that
the traditional approach yields because we have repeated roots. To find
the second solution, we try a solution of the form

_ a+ct —t
X = <b+dt) e ", (11.6.37)

Equation (11.6.37) was guessed based upon our knowledge of solutions
to differential equations when the characteristic polynomial has repeated
roots. Substituting (11.6.37) into (11.6.33), we find that ¢ = d = 2¢;
and a — b = ¢3. Thus, we have one free parameter, which we will choose
to be b, and set it equal to zero. This is permissible because (11.6.37)

/
can be broken into two terms: b k}) e~ ! and c; (1;%) e~!. The

first term may be incorporated into the ¢; } e~* term. Thus, the

general solution is

X =c (i)e_t+62 ((1))6"+262 (i)te"’. (11.6.38)
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o Example 11.6.3
Let us solve the system of linear differential equations:
) =2z — 3z, (11.6.39)

and
zh = 3z + 2295 (11.6.40)

or in matrix form,

’_ 2 -3 _ T
x = (3 9 )x, X = (12). (11.6.41)

Assuming the solution x = xqe*?,
(2 g A 2‘_3/\) Xo = 0. (11.6.42)
For nontrivial solutions,
Pg'\ 2—_3)\‘ —(2-A2+9=0 (11.6.43)

(5

A = 2 — 3i. Thus, the general solution is

X =c (_11) e2 3t 4 ¢y (:) eZt-3it (11.6.44)

and A =2+ 3i. If x9 = >,thenb:—aiif/\:2+3iandb:aiif

where ¢; and ¢ are arbitrary complex constants. Using Euler relation-
ships, we can rewrite (11.6.44) as

X=c3 [Z?jgg ] 2t + ey [_s‘c’(‘)(j?t)] e2t, (11.6.45)

where ¢3 = ¢1 + ¢2 and ¢4 = i{c; — ¢2).
Problems

Find the general solution of the following sets of ordinary differential
equations using matrix techniques:

1 z) =z + 222 zh =2z + z5.

2. 2 =2, — 4z, zh = 31 — 6z2.
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3. 1"1=131+.’L‘2

cx) =z + 5z
2] = -3z, — 2z,
i = =321 — 2z,

) =z — 22

z) =321 + 225

© ® N> oo

) = -2z, — 13z,

10. 2} = 32y — 2z

11. 2} = 421 — 2z,

12. z{ = =3z; — 4z,

13. 2} = 3z, + 42,

14. 2] + 521+ 24 + 322 =0

15. 2} —2y + 2 — 22, =0
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zh = 2z, + z4.

Th =z + 3z,.

zh = —2z; — zs.

1:’2 =) + 4z,.

(L’f«z = 51!1 - 31’2.

zh = 25z; — 10zs.

17,2 =2z1 + z4.

(8/2 = —2131 — 2.
21"1+1'1+17’2+1‘2=0.

z] —bxy + 224 — Tzo = 0.

16. z = 21 — 2z, zh = zh = =5z + Tzs.
17. 2 = 224 zh = 21 + 223 zh = z3.
18. 2} = 3z, — 223 Th = —x; + 2x9 + 23 z5 = 4z — 3x3
1 2 3
19. 2} = 32y — 23 zh = =22, + 2x2 + 3 zh = 8z — 3z3



