
ArfKen_Ch15-9780123846549.tex

CHAPTER 15

LEGENDRE FUNCTIONS

Legendre functions are important in physics because they arise when the Laplace or
Helmholtz equations (or their generalizations) for central force problems are separated
in spherical coordinates. They therefore appear in the descriptions of wave functions for
atoms, in a variety of electrostatics problems, and in many other contexts. In addition,
the Legendre polynomials provide a convenient set of functions that is orthogonal (with
unit weight) on the interval (−1,+1) that is the range of the sine and cosine functions. And
from a pedagogical viewpoint, they provide a set of functions that are easy to work with and
form an excellent illustration of the general properties of orthogonal polynomials. Several
of these properties were discussed in a general way in Chapter 12. We collect here those
results, expanding them with additional material that is of great utility and importance.

As indicated above, Legendre functions are encountered when an equation written in
spherical polar coordinates (r, θ, ϕ), such as

−∇
2ψ + V (r)ψ = λψ,

is solved by the method of separation of variables. Note that we are assuming that this
equation is to be solved for a spherically symmetric region and that V (r) is a func-
tion of the distance from the origin of the coordinate system (and therefore not a func-
tion of the three-component position vector r). As in Eqs. (9.77) and (9.78), we write
ψ = R(r)2(θ)8(ϕ) and decompose our original partial differential equation (PDE) into
the three one-dimensional ordinary differential equations (ODEs):

d28

dϕ2 =−m28, (15.1)
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716 Chapter 15 Legendre Functions

The quantities m2 and l(l + 1) are constants that occur when the variables are separated;
the ODE in ϕ is easy to solve and has natural boundary conditions (cf. Section 9.4), which
dictate that m must be an integer and that the functions 8 can be written as e±imϕ or as
sin(mϕ), cos(mϕ).

The 2 equation can now be transformed by the substitution x = cos θ , cf. Eq. (9.79),
reaching

(1− x2)P ′′(x)− 2x P ′(x)−
m2

1− x2 P(x)+ l(l + 1)P(x)= 0. (15.4)

This is the associated Legendre equation; the special case with m = 0, which we will
treat first, is the Legendre ODE.

15.1 LEGENDRE POLYNOMIALS

The Legendre equation,

(1− x2)P ′′(x)− 2x P ′(x)+ λP(x)= 0, (15.5)

has regular singular points at x =±1 and x =∞ (see Table 7.1), and therefore has a series
solution about x = 0 that has a unit radius of convergence, i.e., the series solution will
(for all values of the parameter λ) converge for |x | < 1. In Section 8.3 we found that for
most values of λ, the series solutions will diverge at x =±1 (corresponding to θ = 0 and
θ = π ), making the solutions inappropriate for use in central force problems. However, if
λ has the value l(l + 1), with l an integer, the series become truncated after x l, leaving a
polynomial of degree l .

Now that we have identified the desired solutions to the Legendre equations as polyno-
mials of successive degrees, called Legendre polynomials and designated Pl , let us use
the machinery of Chapter 12 to develop them from a generating-function approach. This
course of action will set a scale for the Pl and provide a good starting point for deriving
recurrence relations and related formulas.

We found in Example 12.1.3 that the generating function for the polynomial solutions
of the Legendre ODE is given by Eq. (12.27):

g(x, t)=
1

√
1− 2xt + t2

=

∞∑
n=0

Pn(x)t
n . (15.6)

To identify the scale that is given to Pn by Eq. (15.6), we simply set x = 1 in that equation,
bringing its left-hand side to the form

g(1, t)=
1

√
1− 2t + t2

=
1

1− t
=

∞∑
n=0

tn, (15.7)

where the last step in Eq. (15.7) was to expand 1/(1 − t) using the binomial theorem.
Comparing with Eq. (15.6), we see that the scaling it predicts is Pn(1)= 1.
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Next, consider what happens if we replace x by −x and t by −t . The value of g(x, t) in
Eq. (15.6) is unaffected by this substitution, but the right-hand side takes a different form:

∞∑
n=0

Pn(x)t
n
= g(x, t)= g(−x,−t)=

∞∑
n=0

Pn(−x)(−t)n, (15.8)

showing that

Pn(−x)= (−1)n Pn(x). (15.9)

From this result it is obvious that Pn(−1) = (−1)n , and that Pn(x) will have the same
parity as xn .

Another useful special value is Pn(0). Writing P2n and P2n+1 to distinguish even and
odd index values, we note first that because P2n+1 is odd under parity, i.e., x→−x , we
must have P2n+1(0)= 0. To obtain P2n(0), we again resort to the binomial expansion:

g(0, t)= (1+ t2)−1/2
=

∞∑
n=0

(
−1/2

n

)
t2n
=

∞∑
n=0

P2n(0) t2n . (15.10)

Then, using Eq. (1.74) to evaluate the binomial coefficient, we get

P2n(0)= (−1)n
(2n − 1)!!

(2n)!!
. (15.11)

It is also useful to characterize the leading terms of the Legendre polynomials. Applying
the binomial theorem to the generating function,

(1− 2xt + t2)−1/2
=

∞∑
n=0

(
−1/2

n

)
(−2xt + t2)n, (15.12)

from which we see that the maximum power of x that can multiply tn will be xn , and is
obtained from the term (−2xt)n in the expansion of the final factor. Thus, the

coefficient of xn in Pn(x) is
(
−1/2

n

)
(−2)n =

(2n − 1)!!

n!
. (15.13)

These results are important, so we summarize:

Pn(x) has sign and scaling such that Pn(1) = 1 and Pn(−1) = (−1)n .
P2n(x) is an even function of x; P2n+1(x) is odd. P2n+1(0)= 0, and P2n(0)
is given by Eq. (15.11). Pn(x) is a polynomial of degree n in x , with the
coefficient of xn given by Eq. (15.13); Pn(x) contains alternate powers of
x: xn, xn−2, · · · , (x0 or x1).

From the fact that Pn is of degree n with alternate powers, it is clear that P0(x) =
constant and that P1(x)= (constant) x . From the scaling requirements these must reduce to
P0(x)= 1 and P1(x)= x .

Returning to Eq. (15.12), we can get explicit closed expressions for the Legendre poly-
nomials. All we need to do is expand the quantity (−2xt + t2)n and rearrange the summa-
tions to identify the x dependence associated with each power of t . The result, which is in
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general less useful than the recurrence formulas to be developed in the next subsection, is

Pn(x)=
[n/2]∑
k=0

(−1)k
(2n − 2k)!

2nk! (n − k)! (n − 2k)!
xn−2k . (15.14)

Here [n/2] stands for the largest integer ≤ n/2. This formula is consistent with the
requirement that for n even, Pn(x) has only even powers of x and even parity, while
for n odd, it has only odd powers of x and odd parity. Proof of Eq. (15.14) is the topic of
Exercise 15.1.2.

Recurrence Formulas

From the generating function equation we can generate recurrence formulas by differenti-
ating g(x, t) with respect to x or t . We start from

∂g(x, t)

∂t
=

x − t

(1− 2xt + t2)3/2
=

∞∑
n=0

n Pn(x)t
n−1, (15.15)

which we rearrange to

(1− 2xt + t2)

∞∑
n=0

n Pn(x)t
n−1
+ (t − x)

∞∑
n=0

Pn(x)t
n
= 0, (15.16)

and then expand, reaching

∞∑
n=0

n Pn(x)t
n−1
− 2

∞∑
n=0

nx Pn(x)t
n
+

∞∑
n=0

n Pn(x)t
n+1

+

∞∑
n=0

Pn(x)t
n+1
−

∞∑
n=0

x Pn(x)t
n
= 0. (15.17)

Collecting the coefficients of tn from the various terms and setting the result to zero,
Eq. (15.17) is seen to be equivalent to

(2n + 1)x Pn(x)= (n + 1)Pn+1(x)+ n Pn−1(x), n = 1, 2, 3, . . . . (15.18)

Equation (15.18) permits us to generate successive Pn from the starting values P0 and P1
that we have previously identified. For example,

2P2(x)= 3x P1(x)− P0(x) −→ P2(x)=
1

2

(
3x2
− 1

)
. (15.19)

Continuing this process, we can build the list of Legendre polynomials given in Table 15.1.
We can also obtain a recurrence formula involving P ′n by differentiating g(x, t) with

respect to x . This gives

∂g(x, t)

∂x
=

t

(1− 2xt + t2)3/2
=

∞∑
n=0

P ′n(x)t
n,
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Table 15.1 Legendre Polynomials

P0(x)= 1

P1(x)= x

P2(x)=
1
2 (3x2

− 1)

P3(x)=
1
2 (5x3

− 3x)

P4(x)=
1
8 (35x4

− 30x2
+ 3)

P5(x)=
1
8 (63x5

− 70x3
+ 15x)

P6(x)=
1

16 (231x6
− 315x4

+ 105x2
− 5)

P7(x)=
1
16 (429x7

− 693x5
+ 315x3

− 35x)

P8(x)=
1

128 (6435x8
− 12012x6

+ 6930x4
− 1260x2

+ 35)

or

(1− 2xt + t2)

∞∑
n=0

P ′n(x)t
n
− t

∞∑
n=0

Pn(x)t
n
= 0. (15.20)

As before, the coefficient of each power of t is set to zero and we obtain

P ′n+1(x)+ P ′n−1(x)= 2x P ′n(x)+ Pn(x). (15.21)

A more useful relation may be found by differentiating Eq. (15.18) with respect to x and
multiplying by 2. To this we add (2n + 1) times Eq. (15.21), canceling the P ′n term. The
result is

P ′n+1(x)− P ′n−1(x)= (2n + 1)Pn(x). (15.22)

Starting from Eqs. (15.21) and (15.22), numerous additional relations can be developed,1

including

P ′n+1(x)= (n + 1)Pn(x)+ x P ′n(x), (15.23)

P ′n−1(x)=−n Pn(x)+ x P ′n(x), (15.24)

(1− x2)P ′n(x)= n Pn−1(x)− nx Pn(x), (15.25)

(1− x2)P ′n(x)= (n + 1)x Pn(x)− (n + 1)Pn+1(x). (15.26)

Because we derived the generating function g(x, t) from the Legendre ODE and then
obtained the recurrence formulas using g(x, t), that ODE will automatically be consis-
tent with these recurrence relations. It is nevertheless of interest to verify this consistency,
because then we can conclude that any set of functions satisfying the recurrence formulas
will be a set of solutions to the Legendre ODE, and that observation will be relevant to

1Using the equation numbers in parentheses to indicate how they are to be combined, we may obtain some of these derivative
formulas as follows:

2 · d
dx (15.18)+ (2n + 1) · (15.21)⇒ (15.22), 1

2 {(15.21)+ (15.22)}⇒ (15.23),

1
2 {(15.21)− (15.22)}⇒ (15.24), (15.23)n→n−1 + x (15.24)⇒ (15.25).
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the Legendre functions of the second kind (solutions linearly independent of the polyno-
mials Pl ). A demonstration that functions satisfying the recurrence formulas also satisfy
the Legendre ODE is the topic of Exercise 15.1.1.

Upper and Lower Bounds for Pn(cos θ)

Our generating function can be used to set an upper limit on |Pn(cos θ)|. We have

(1− 2t cos θ + t2)−1/2
= (1− teiθ )−1/2(1− te−iθ )−1/2

=

(
1+

1

2
teiθ
+

3

8
t2e2iθ

+ · · ·

)(
1+

1

2
te−iθ

+
3

8
t2e−2iθ

+ · · ·

)
. (15.27)

We may make two immediate observations from Eq. (15.27). First, when any term within
the first set of parentheses is multiplied by any term from the second set of parentheses,
the power of t in the product will be even if and only if m in the net exponential eimθ is
even. Second, for every term of the form tneimθ, there will be another term of the form
tne−imθ, and the two terms will occur with the same coefficient, which must be positive
(since all the terms in both summations are individually positive). These two observations
mean that:

(1) Taking the terms of the expansion two at a time, we can write the coefficient of tn as
a linear combination of forms

1

2
anm(e

imθ
+ e−imθ )= anm cos mθ

with all the anm positive, and
(2) The parity of n and m must be the same (either they are both even, or both odd).

This, in turn, means that

Pn(cos θ)=
n∑

m=0 or 1

anm cos mθ. (15.28)

This expression is clearly a maximum when θ = 0, where we already know, from the Sum-
mary following Eq. (15.11), that Pn(1)= 1. Thus,

The Legendre polynomial Pn(x) has a global maximum on the inter-
val (−1,+1) at x = 1, with value Pn(1) = 1, and if n is even, also at
x = −1. If n is odd, x = −1 will be a global minimum on this interval
with Pn(−1)=−1.

The maxima and minima of the Legendre polynomials can be seen from the graphs of
P2 through P5, in which are plotted in Fig. 15.1.

Rodrigues Formula

In Section 12.1 we showed that orthogonal polynomials could be described by
Rodrigues formulas, and that the repeated differentiations occurring therein were good
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FIGURE 15.1 Legendre polynomials P2(x) through P5(x).

starting points for developing properties of these functions. Applying Eq. (12.9), we find
that the Rodrigues formula for the Legendre polynomials must be proportional to(

d

dx

)n

(1− x2)n . (15.29)

Equation (12.9) is not sufficient to set the scale of the orthogonal polynomials, and to
bring Eq. (15.29) to the scaling already adopted via Eq. (15.6) we multiply Eq. (15.29) by
(−1)n/2n n!, so

Pn(x)=
1

2n n!

(
d

dx

)n

(x2
− 1)n . (15.30)

To establish that Eq. (15.30) has a scaling in agreement with our earlier analyses, it
suffices to check the coefficient of a single power of x ; we choose xn. From the Rodrigues
formula, this power of x can only arise from the term x2n in the expansion of (x2

− 1)n,
and the

coefficient of xn in Pn(x) (Rodrigues) is
1

2n n!

(2n)!

n!
=
(2n − 1)!!

n!
,

in agreement with Eq. (15.13). This confirms the scale of Eq. (15.30).
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Exercises

15.1.1 Derive the Legendre ODE by manipulation of the Legendre polynomial recurrence
relations. Suggested starting point: Eqs. (15.24) and (15.25).

15.1.2 Derive the following closed formula for the Legendre polynomials Pn(x).

Pn(x)=
[n/2]∑
k=0

(−1)k
(2n − 2k)!

2nk! (n − k)! (n − 2k)!
xn−2k,

where [n/2] stands for the integer part of n/2.

Hint. Further expand Eq. (15.12) and rearrange the resulting double sum.

15.1.3 By differentiation and direct substitution of the series form given in Exercise 15.1.2,
show that Pn(x) satisfies the Legendre ODE. Note that there is no restriction on x . We
may have any x , −∞< x <∞, and indeed any z in the entire finite complex plane.

15.1.4 The shifted Legendre polynomials, designated by the symbol P∗n (x) (where the as-
terisk does not mean complex conjugate) are orthogonal with unit weight on [0,1],
with normalization integral 〈P∗n |P

∗
n 〉 = 1/(2n+ 1). The P∗n through n = 6 are shown in

Table 15.2.

(a) Find the recurrence relation satisfied by the P∗n.
(b) Show that all the coefficients of the P∗n are integers.

Hint. Look at the closed formula in Exercise 15.1.2.

15.1.5 Given the series

α0 + α2 cos2 θ + α4 cos4 θ + α6 cos6 θ = a0 P0 + a2 P2 + a4 P4 + a6 P6,

where the arguments of the Pn are cos θ , express the coefficients αi as a column vector
α and the coefficients ai as a column vector a and determine the matrices A and B such
that

Aα = a and Ba= α.

Table 15.2 Shifted Legendre Polynomials

P∗0 (x)= 1

P∗1 (x)= 2x − 1

P∗2 (x)= 6x2
− 6x + 1

P∗3 (x)= 20x3
− 30x2

+ 12x − 1

P∗4 (x)= 70x4
− 140x3

+ 90x2
− 20x + 1

P∗5 (x)= 252x5
− 630x4

+ 560x3
− 210x2

+ 30x − 1

P∗6 (x)= 924x6
− 2772x5

+ 3150x4
− 1680x3

+ 420x2
− 42x + 1
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Check your computation by showing that AB= 1 (unit matrix). Repeat for the odd case

α1 cos θ + α3 cos3 θ + α5 cos5 θ + α7 cos7 θ = a1 P1 + a3 P3 + a5 P5 + a7 P7.

Note. Pn(cos θ) and cosn θ are tabulated in terms of each other in AMS-55 (see Addi-
tional Readings for the complete reference).

15.1.6 By differentiating the generating function g(x, t) with respect to t , multiplying by 2t ,
and then adding g(x, t), show that

1− t2

(1− 2t x + t2)3/2
=

∞∑
n=0

(2n + 1)Pn(x)t
n .

This result is useful in calculating the charge induced on a grounded metal sphere by a
nearby point charge.

15.1.7 (a) Derive Eq. (15.26),

(1− x2)P ′n(x)= (n + 1)x Pn(x)− (n + 1)Pn+1(x).

(b) Write out the relation of Eq. (15.26) to preceding equations in symbolic form
analogous to the symbolic forms for Eqs. (15.22) to (15.25).

15.1.8 Prove that

P ′n(1)=
d

dx
Pn(x) |x=1=

1

2
n(n + 1).

15.1.9 Show that Pn(cos θ)= (−1)n Pn(− cos θ) by use of the recurrence relation relating Pn ,
Pn+1, and Pn−1 and your knowledge of P0 and P1.

15.1.10 From Eq. (15.27) write out the coefficient of t2 in terms of cos nθ , n ≤ 2. This coeffi-
cient is P2(cos θ).

15.1.11 Derive the recurrence relation

(1− x2)P ′n(x)= n Pn−1(x)− nx Pn(x)

from the Legendre polynomial generating function.

15.1.12 Evaluate

1∫
0

Pn(x) dx .

ANS. n = 2s, 1 for s = 0, 0 for s > 0;

n = 2s + 1, P2s(0)/(2s + 2) = (−1)s(2s − 1)!!/1(2s + 2)!!.

Hint. Use a recurrence relation to replace Pn(x) by derivatives and then integrate by
inspection. Alternatively, you can integrate the generating function.

15.1.13 Show that each term in the summation
n∑

r=[n/2]+1

(
d

dx

)n
(−1)r n!

r ! (n − r)!
x2n−2r

vanishes (r and n integral). Here [n/2] is the largest integer ≤ n/2.
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15.1.14 Show that
∫ 1
−1 xm Pn(x) dx = 0 when m < n.

Hint. Use Rodrigues formula or expand xm in Legendre polynomials.

15.1.15 Show that

1∫
−1

xn Pn(x)dx =
2 n!

(2n + 1)!!
.

Note. You are expected to use the Rodrigues formula and integrate by parts, but also
see if you can get the result from Eq. (15.14) by inspection.

15.1.16 Show that

1∫
−1

x2r P2n(x)dx =
22n+1(2r)! (r + n)!

(2r + 2n + 1)! (r − n)!
, r ≥ n.

15.1.17 As a generalization of Exercises 15.1.15 and 15.1.16, show that the Legendre expan-
sions of x s are

(a) x2r
=

r∑
n=0

22n(4n + 1)(2r)! (r + n)!

(2r + 2n + 1)! (r − n)!
P2n(x), s = 2r ,

(b) x2r+1
=

r∑
n=0

22n+1(4n + 3)(2r + 1)! (r + n + 1)!

(2r + 2n + 3)! (r − n)!
P2n+1(x), s = 2r+1.

15.1.18 In numerical work (for e.g., the Gauss-Legendre quadrature), it is useful to establish
that Pn(x) has n real zeros in the interior of [−1,1]. Show that this is so.

Hint. Rolle’s theorem shows that the first derivative of (x2
− 1)2n has one zero in the

interior of [−1,1]. Extend this argument to the second, third, and ultimately the nth
derivative.

15.2 ORTHOGONALITY

Because the Legendre ODE is self-adjoint and the coefficient of P ′′(x), namely (1− x2),
vanishes at x =±1, its solutions of different n will automatically be orthogonal with unit
weight on the interval (−1,1),

1∫
−1

Pn(x)Pm(x)dx = 0, (n 6=m). (15.31)

Because the Pn are real, no complex conjugation needs to be indicated in the orthogonality
integral. Since Pn is often used with argument cos θ , we note that Eq. (15.31) is equivalent
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to

π∫
0

Pn(cos θ)Pm(cos θ) sin θ dθ = 0, (n 6=m). (15.32)

The definition of the Pn does not guarantee that they are normalized, and in fact they
are not. One way to establish the normalization starts by squaring the generating-function
formula, yielding initially

(1− 2xt + t2)−1
=

[
∞∑

n=0

Pn(x)t
n

]2

. (15.33)

Integrating from x =−1 to x = 1 and dropping the cross terms because they vanish due to
orthogonality, Eq. (15.31), we have

1∫
−1

dx

1− 2t x + t2 =

∞∑
n=0

t2n

1∫
−1

[
Pn(x)

] 2
dx . (15.34)

Making now the substitution y = 1− 2t x + t2, with dy =−2t dx , we obtain

1∫
−1

dx

1− 2t x + t2 =
1

2t

(1+t)2∫
(1−t)2

dy

y
=

1

t
ln

(
1+ t

1− t

)
. (15.35)

Expanding this result in a power series (Exercise 1.6.1),

1

t
ln

(
1+ t

1− t

)
= 2

∞∑
n=0

t2n

2n + 1
, (15.36)

and equating the coefficients of powers of t in Eqs. (15.34) and (15.36), we must have

1∫
−1

[
Pn(x)

] 2
dx =

2

2n + 1
. (15.37)

Combining Eqs. (15.31) and (15.37), we have the orthonormality condition

1∫
−1

Pn(x)Pm(x)dx =
2δnm

2n + 1
. (15.38)

This result can also be obtained using the Rodrigues formulas for Pn and Pm . See Exer-
cise 15.2.1.
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Legendre Series

The orthogonality of the Legendre polynomials makes it natural to use them as a basis for
expansions. Given a function f (x) defined on the range (−1,1), the coefficients in the
expansion

f (x)=
∞∑

n=0

an Pn(x) (15.39)

are given by the formula

an =
2n + 1

2

1∫
−1

f (x)Pn(x)dx . (15.40)

The orthogonality property guarantees that this expansion is unique. Since we can (but
perhaps will not wish to) convert our expansion into a power series by inserting the expan-
sion of Eq. (15.14) and collecting the coefficients of each power of x , we can also obtain a
power series, which we thereby know must be unique.

An important application of Legendre series is to solutions of the Laplace equation. We
saw in Section 9.4 that when the Laplace equation is separated in spherical polar coordi-
nates, its general solution (for spherical symmetry) takes the form

ψ(r, θ, ϕ)=
∑
l,m

(Almr l
+ Blmr−l−1)Pm

l (cos θ)(A′lm sin mϕ + B ′lm cos mϕ), (15.41)

with l required to be an integer to avoid a solution that diverges in the polar directions.
Here we consider solutions with no azimuthal dependence (i.e., with m = 0), so Eq. (15.41)
reduces to

ψ(r, θ)=
∞∑

l=0

(alr
l
+ blr

−l−1)Pl(cos θ). (15.42)

Often our problem is further restricted to a region either within or external to a boundary
sphere, and if the problem is such that ψ must remain finite, the solution will have one of
the two following forms:

ψ(r, θ)=
∞∑

l=0

al r l Pl(cos θ) (r ≤ r0), (15.43)

ψ(r, θ)=
∞∑

l=0

al r−l−1 Pl(cos θ) (r ≥ r0). (15.44)

Note that this simplification is not always appropriate; see Example 15.2.2. Sometimes
the coefficients (al ) are determined from the boundary conditions of a problem rather than
from the expansion of a known function. See the examples to follow.
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Example 15.2.1 EARTH’S GRAVITATIONAL FIELD

An example of a Legendre series is provided by the description of the Earth’s gravitational
potential U at points exterior to the Earth’s surface. Because gravitation is an inverse-
square force, its potential in mass-free regions satisfies the Laplace equation, and therefore
(if we neglect azimuthal effects, i.e., those dependent on longitude) it has the form given
in Eq. (15.44).

To specialize to the current example, we define R to be the Earth’s radius at the equator,
and take as the expansion variable the dimensionless quantity R/r . In terms of the total
mass of the Earth M and the gravitational constant G, we have

R = 6378.1± 0.1 km,

G M

R
= 62.494± 0.001 km2/s2,

and we write

U (r, θ)=
G M

R

[
R

r
−

∞∑
l=2

al

(
R

r

)l+1

Pl(cos θ)

]
. (15.45)

The leading term of this expansion describes the result that would be obtained if the Earth
were spherically symmetric; the higher terms describe distortions. The P1 term is absent
because the origin from which r is measured is the Earth’s center of mass.

Artificial satellite motions have shown that

a2 = (1,082,635± 11)× 10−9,

a3 = (−2,531± 7)× 10−9,

a4 = (−1,600± 12)× 10−9.

This is the famous pear-shaped deformation of the Earth. Other coefficients have been
computed through a20.

More recent satellite data permit a determination of the longitudinal dependence of the
Earth’s gravitational field. Such dependence may be described by a Laplace series (see
Section 15.5). �

Example 15.2.2 SPHERE IN A UNIFORM FIELD

Another illustration of the use of a Legendre series is provided by the problem of a neutral
conducting sphere (radius r0) placed in a (previously) uniform electric field of magnitude
E0 (Fig. 15.2). The problem is to find the new, perturbed electrostatic potential ψ that
satisfies Laplace’s equation,

∇
2ψ = 0.

We select spherical polar coordinates with origin at the center of the conducting sphere and
the polar (z) axis oriented parallel to the original uniform field, a choice that will simplify
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E

V = 0

z

FIGURE 15.2 Conducting sphere in a uniform field.

the application of the boundary condition at the surface of the conductor. Separating vari-
ables, we note that because we require a solution to Laplace’s equation, the potential for
r ≥ r0 will be of the form of Eq. (15.42). Our solution will be independent of ϕ because of
the axial symmetry of the problem.

Because the insertion of the conducting sphere will have an effect that is local, the
asymptotic behavior of ψ must be of the form

ψ(r→∞)=−E0 z =−E0 r cos θ =−E0 r P1(cos θ), (15.46)

equivalent to

an = 0, n > 1, a1 =−E0. (15.47)

Note that if an 6= 0 for any n > 1, that term would dominate at large r and the boundary
condition, Eq. (15.46), could not be satisfied. In addition, the neutrality of the conducting
sphere requires that ψ not contain a contribution proportional to 1/r , so we also must have
b0 = 0.

As a second boundary condition, the conducting sphere must be an equipotential, and
without loss of generality we can set its potential to zero. Then, on the sphere r = r0 we
have

ψ(r0, θ)= a0 +

(
b1

r2
0

− E0r0

)
P1(cos θ)+

∞∑
n=2

bn
Pn(cos θ)

rn+1
0

= 0. (15.48)

In order that Eq. (15.48) may hold for all values of θ , we set

a0 = 0, b1 = E0 r3
0 bn = 0, n ≥ 2. (15.49)
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The electrostatic potential (outside the sphere) is then completely determined:

ψ(r, θ)=−E0 r P1(cos θ)+
E0 r3

0

r2 P1(cos θ)

=−E0 r P1(cos θ)

(
1−

r3
0

r3

)
=−E0 z

(
1−

r3
0

r3

)
. (15.50)

In Section 9.5 we showed that Laplace’s equation with Dirichlet boundary conditions on a
closed boundary (parts of which may be at infinity) had a unique solution. Since we have
now found a solution to our current problem, it must (apart from an additive constant) be
the only solution.

It may further be shown that there is an induced surface charge density

σ =−ε0
∂ψ

∂r

∣∣∣∣
r=r0

= 3ε0 E0 cos θ (15.51)

on the surface of the sphere and an induced electric dipole moment of magnitude

P = 4πr3
0ε0 E0. (15.52)

See Exercise 15.2.11. �

Example 15.2.3 ELECTROSTATIC POTENTIAL FOR A RING OF CHARGE

As a further example, consider the electrostatic potential produced by a thin conducting
ring of radius a placed symmetrically in the equatorial plane of a spherical polar coordinate
system and carrying a total electric charge q (Fig. 15.3). Again we rely on the fact that
the potential ψ satisfies Laplace’s equation. Separating the variables and recognizing that
a solution for the region r > a must go to zero as r →∞, we use the form given by

(r, θ)

y

x

q

θ
r

a

z

FIGURE 15.3 Charged, conducting ring.
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Eq. (15.44), obtaining

ψ(r, θ)=
∞∑

n=0

cn
an

rn+1 Pn(cos θ), r > a. (15.53)

There is no ϕ (azimuthal) dependence because of the cylindrical symmetry of the system.
Note also that by including an explicit factor an we cause all the coefficients cn to have the
same dimensionality; this choice simply modifies the definition of cn and was, of course,
not required.

Our problem is to determine the coefficients cn in Eq. (15.53). This may be done by
evaluating ψ(r, θ) at θ = 0, r = z, and comparing with an independent calculation of the
potential from Coulomb’s law. In effect, we are using a boundary condition along the
z-axis. From Coulomb’s law (using the fact that all the charge is equidistant from any
point on the z axis),

ψ(z,0)=
q

4πε0

1

(z2 + a2)1/2
=

q

4πε0 z

∞∑
s=0

(
−1/2

s

)(
a2

z2

)s

=
q

4πε0z

∞∑
s=0

(−1)s
(2s − 1)!!

(2s)!!

(
a

z

)2s

, z > a, (15.54)

where we have evaluated the binomial coefficient using Eq. (1.74).
Now, evaluating ψ(z,0) from Eq. (15.53), remembering that Pn(1) = 1 for all n,

we have

ψ(z,0)=
∞∑

n=0

cn
an

zn+1 . (15.55)

Since the power series expansion in z is unique, we may equate the coefficients of corre-
sponding powers of z from Eqs. (15.54) and (15.55), reaching the conclusion that cn = 0
for n odd, while for n even and equal to 2s,

c2s =
q

4πε0z
(−1)s

(2s − 1)!!

(2s)!!
, (15.56)

and our electrostatic potential ψ(r, θ) is given by

ψ(r, θ)=
q

4πε0r

∞∑
s=0

(−1)s
(2s − 1)!!

(2s)!!

(a

r

)2s
P2s(cos θ), r > a. (15.57)

The magnetic analog of this problem appears in Example 15.4.2. �

Exercises

15.2.1 Using a Rodrigues formula, show that the Pn(x) are orthogonal and that
1∫
−1

[Pn(x)]
2dx =

2

2n + 1
.

Hint. Integrate by parts.
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15.2.2 You have constructed a set of orthogonal functions by the Gram-Schmidt process
(Section 5.2), taking un(x) = xn , n = 0,1,2, . . . , in increasing order with w(x) = 1
and an interval −1≤ x ≤ 1. Prove that the nth such function constructed in this way is
proportional to Pn(x).

Hint. Use mathematical induction (Section 1.4).

15.2.3 Expand the Dirac delta function δ(x) in a series of Legendre polynomials using the
interval −1≤ x ≤ 1.

15.2.4 Verify the Dirac delta function expansions

δ(1− x)=
∞∑

n=0

2n + 1

2
Pn(x),

δ(1+ x)=
∞∑

n=0

(−1)n
2n + 1

2
Pn(x).

These expressions appear in a resolution of the Rayleigh plane wave expansion
(Exercise 15.2.24) into incoming and outgoing spherical waves.

Note. Assume that the entire Dirac delta function is covered when integrating over
[−1,1].

15.2.5 Neutrons (mass 1) are being scattered by a nucleus of mass A (A > 1). In the center-
of-mass system the scattering is isotropic. Then, in the laboratory system the average of
the cosine of the angle of deflection of the neutron is

〈cosψ〉 =
1

2

π∫
0

A cos θ + 1

(A2 + 2A cos θ + 1)1/2
sin θ dθ.

Show, by expansion of the denominator, that 〈cosψ〉 = 2/(3A).

15.2.6 A particular function f (x) defined over the interval [−1,1] is expanded in a Legendre
series over this same interval. Show that the expansion is unique.

15.2.7 A function f (x) is expanded in a Legendre series f (x)=
∑
∞

n=0 an Pn(x). Show that

1∫
−1

[ f (x)]2 dx =
∞∑

n=0

2a2
n

2n + 1
.

This is a statement that the Legendre polynomials form a complete set.

15.2.8 (a) For

f (x)=

{
+1, 0< x < 1,
−1, − 1< x < 0,
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show that

1∫
−1

[
f (x)

] 2
dx = 2

∞∑
n=0

(4n + 3)

[
(2n − 1)!!

(2n + 2)!!

]2

.

(b) By testing the series, prove that it is convergent.
(c) The value of the integral in part (a) is 2. Check the rate at which the series con-

verges by summing its first 10 terms.

15.2.9 Prove that

1∫
−1

x(1− x2)P ′n P ′m dx =
2n(n2

− 1)

4n2 − 1
δm,n−1 +

2n(n + 2)(n + 1)

(2n + 1)(2n + 3)
δm,n+1.

15.2.10 The coincidence counting rate, W (θ), in a gamma-gamma angular correlation experi-
ment has the form

W (θ)=

∞∑
n=0

a2n P2n(cos θ).

Show that data in the range π/2 ≤ θ ≤ π can, in principle, define the function W (θ)

(and permit a determination of the coefficients a2n). This means that although data in
the range 0≤ θ < π/2 may be useful as a check, they are not essential.

15.2.11 A conducting sphere of radius r0 is placed in an initially uniform electric field, E0.
Show the following:

(a) The induced surface charge density is σ = 3ε0 E0 cos θ ,

(b) The induced electric dipole moment is P = 4πr3
0ε0 E0.

Note. The induced electric dipole moment can be calculated either from the surface
charge [part (a)] or by noting that the final electric field E is the result of superimposing
a dipole field on the original uniform field.

15.2.12 Obtain as a Legendre expansion the electrostatic potential of the circular ring of
Example 15.2.3, for points (r, θ) with r < a.

15.2.13 Calculate the electric field produced by the charged conducting ring of Example 15.2.3
for

(a) r > a, (b) r < a.

15.2.14 As an extension of Example 15.2.3, find the potential ψ(r, θ) produced by a charged
conducting disk, Fig. 15.4, for r > a, where a is the radius of the disk. The charge
density σ (on each side of the disk) is

σ(ρ)=
q

4πa(a2 − ρ2)1/2
, ρ2

= x2
+ y2.
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y

z

x

a

FIGURE 15.4 Charged conducting disk.

Hint. The definite integral you get can be evaluated as a beta function, Section 13.3. For
more details see section 5.03 of Smythe in Additional Readings.

ANS. ψ(r, θ)=
q

4πε0r

∞∑
l=0

(−1)l
1

2l + 1

(a

r

)2l
P2l(cos θ).

15.2.15 The hemisphere defined by r = a, 0 ≤ θ < π/2, has an electrostatic potential +V0.
The hemisphere r = a, π/2< θ ≤ π has an electrostatic potential −V0. Show that the
potential at interior points is

V = V0

∞∑
n=0

4n + 3

2n + 2

( r

a

)2n+1
P2n(0)P2n+1(cos θ)

= V0

∞∑
n=0

(−1)n
(4n + 3)(2n − 1)!!

(2n + 2)!!

( r

a

)2n+1
P2n+1(cos θ).

Hint. You need Exercise 15.1.12.

15.2.16 A conducting sphere of radius a is divided into two electrically separate hemispheres by
a thin insulating barrier at its equator. The top hemisphere is maintained at a potential
V0, and the bottom hemisphere at −V0.

(a) Show that the electrostatic potential exterior to the two hemispheres is

V (r, θ)= V0

∞∑
s=0

(−1)s(4s + 3)
(2s − 1)!!

(2s + 2)!!

(a

r

)2s+2
P2s+1(cos θ).

(b) Calculate the electric charge density σ on the outside surface. Note that your series
diverges at cos θ =±1, as you expect from the infinite capacitance of this system
(zero thickness for the insulating barrier).

ANS. (b) σ = ε0 En =−ε0
∂V

∂r

∣∣∣∣
r=a

= ε0V0

∞∑
s=0

(−1)s(4s + 3)
(2s − 1)!!

(2s)!!
P2s+1(cos θ).
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15.2.17 By writing ϕs(x) =
√
(2s + 1)/2 Ps(x), a Legendre polynomial is renormalized to

unity. Explain how |ϕs〉〈ϕs | acts as a projection operator. In particular, show that if
| f 〉 =

∑
n a′n|ϕn〉, then

|ϕs〉〈ϕs | f 〉 = a′s |ϕs〉.

15.2.18 Expand x8 as a Legendre series. Determine the Legendre coefficients from Eq. (15.40),

am =
2m + 1

2

1∫
−1

x8 Pm(x)dx .

Check your values against AMS-55, Table 22.9. (For the complete reference, see Addi-
tional Readings.) This illustrates the expansion of a simple function f (x).

Hint. Gaussian quadrature can be used to evaluate the integral.

15.2.19 Calculate and tabulate the electrostatic potential created by a ring of charge,
Example 15.2.3, for r/a = 1.5(0.5)5.0 and θ = 0◦(15◦)90◦. Carry terms through
P22(cos θ).

Note. The convergence of your series will be slow for r/a = 1.5. Truncating the series
at P22 limits you to about four-significant-figure accuracy.

Check value. For r/a = 2.5 and θ = 60◦, ψ = 0.40272(q/4πε0r).

15.2.20 Calculate and tabulate the electrostatic potential created by a charged disk
(Exercise 15.2.14), for r/a = 1.5(0.5)5.0 and θ = 0◦(15◦)90◦. Carry terms through
P22(cos θ).

Check value. For r/a = 2.0 and θ = 15◦, ψ = 0.46638(q/4πε0r).

15.2.21 Calculate the first five (nonvanishing) coefficients in the Legendre series expansion
of f (x) = 1 − |x |, evaluating the coefficients in the series by numerical integration.
Actually these coefficients can be obtained in closed form. Compare your coefficients
with those listed in Exercise 18.4.26.

ANS. a0 = 0.5000, a2 =−0.6250, a4 = 0.1875, a6 =−0.1016, a8 = 0.0664.

15.2.22 Calculate and tabulate the exterior electrostatic potential created by the two charged
hemispheres of Exercise 15.2.16, for r/a = 1.5(0.5)5.0 and θ = 0◦(15◦)90◦. Carry
terms through P23(cos θ).

Check value. For r/a = 2.0 and θ = 45◦, V = 0.27066V0.

15.2.23 (a) Given f (x) = 2.0, |x | < 0.5 and f (x) = 0, 0.5 < |x | < 1.0, expand f (x) in a
Legendre series and calculate the coefficients an through a80 (analytically).

(b) Evaluate
∑80

n=0 an Pn(x) for x = 0.400(0.005)0.600. Plot your results.

Note. This illustrates the Gibbs phenomenon of Section 19.3 and the danger of trying to
calculate with a series expansion in the vicinity of a discontinuity.
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15.2.24 A plane wave may be expanded in a series of spherical waves by the Rayleigh equation,

eikr cosγ
=

∞∑
n=0

an jn(kr)Pn(cosγ ).

Show that an = in(2n + 1).

Hint.

1. Use the orthogonality of the Pn to solve for an jn(kr).
2. Differentiate n times with respect to (kr) and set r = 0 to eliminate the

r -dependence.
3. Evaluate the remaining integral by Exercise 15.1.15.

Note. This problem may also be treated by noting that both sides of the equation satisfy
the Helmholtz equation. The equality can be established by showing that the solutions
have the same behavior at the origin and also behave alike at large distances.

15.2.25 Verify the Rayleigh equation of Exercise 15.2.24 by starting with the following steps:

(a) Differentiate with respect to (kr) to establish∑
n

an j ′n(kr)Pn(cosγ )= i
∑

n

an jn(kr) cosγ Pn(cosγ ).

(b) Use a recurrence relation to replace cosγ Pn(cosγ ) by a linear combination of
Pn−1 and Pn+1.

(c) Use a recurrence relation to replace j ′n by a linear combination of jn−1 and jn+1.

15.2.26 From Exercise 15.2.24 show that

jn(kr)=
1

2in

1∫
−1

eikrµPn(µ)dµ.

This means that (apart from a constant factor) the spherical Bessel function jn(kr) is an
integral transform of the Legendre polynomial Pn(µ).

15.2.27 Rewriting the formula of Exercise 15.2.26 as

jn(z)=
1
2 (−i)n

π∫
0

ei z cos θ Pn(cos θ) sin θ dθ, n = 0,1,2, . . . ,

verify it by transforming the right-hand side into

zn

2n+1n!

π∫
0

cos(z cos θ) sin2n+1 θ dθ

and using Exercise 14.7.9.
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15.3 PHYSICAL INTERPRETATION OF GENERATING
FUNCTION

The generating function for the Legendre polynomials has an interesting and important
interpretation. If we introduce spherical polar coordinates (r, θ, ϕ) and place a charge q
at the point a on the positive z axis (see Fig. 15.5), the potential at a point (r, θ) (it is
independent of ϕ) can be calculated, using the law of cosines, as

ψ(r, θ)=
q

4πε0

1

r1
=

q

4πε0
(r2
+ a2
− 2ar cos θ)−1/2. (15.58)

The expression in Eq. (15.58) is essentially that appearing in the generating function; to
identify the correspondence we rewrite that equation as

ψ(r, θ)=
q

4πε0 r

(
1− 2

a

r
cos θ +

a2

r2

)−1/2

=
q

4πε0 r
g
(

cos θ,
a

r

)
(15.59)

=
q

4πε0 r

∞∑
n=0

Pn(cos θ)
(a

r

)n
, (15.60)

where we reached Eq. (15.60) by inserting the generating-function expansion.
The series in Eq. (15.60) only converges for r > a, with a rate of convergence that

improves as r/a increases. If, on the other hand, we desire an expression for ψ(r, θ) when
r < a, we can perform a different rearrangement of Eq. (15.58), to

ψ(r, θ)=
q

4πε0a

(
1− 2

r

a
cos θ +

r2

a2

)−1/2

, (15.61)

which we again recognize as the generating-function expansion, but this time with the
result

ψ(r, θ)=
q

4πε0a

∞∑
n=0

Pn(cos θ)
( r

a

)n
, (15.62)

valid when r < a.

r1
q

q
4πε0r1

z = a

r

θ

ϕ =

z

FIGURE 15.5 Electrostatic potential, charge q displaced from origin.
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Expansion of 1/|r1− r2|

Equations (15.60) and (15.62) describe the interaction of a charge q at position a = aêz

with a unit charge at position r. Dropping the factors needed for an electrostatics calcula-
tion, these equations yield formulas for 1/|r− a|. The fact that a is aligned with the z-axis
is actually of no importance for the computation of 1/|r− a|; the relevant quantities are r ,
a, and the angle θ between r and a. Thus, we may rewrite either Eq. (15.60) or (15.62) in a
more neutral notation, to give the value of 1/|r1− r2| in terms of the magnitudes r1, r2 and
the angle between r1 and r2, which we now call χ . If we define r> and r< to be respec-
tively the larger and the smaller of r1 and r2, Eqs. (15.60) and (15.62) can be combined
into the single equation

1

|r1 − r2|
=

1

r>

∞∑
n=0

(
r<
r>

)n

Pn(cosχ), (15.63)

which will converge everywhere except when r1 = r2.

Electric Multipoles

Returning to Eq. (15.60) and restricting consideration to r > a, we may note that its initial
term (with n = 0) gives the potential we would get if the charge q were at the origin, and
that further terms must describe corrections arising from the actual position of the charge.
One way to obtain further understanding of the second and later terms in the expansion is
to consider what would happen if we added a second charge, −q , at z =−a, as shown in
Fig. 15.6. The potential due to the second charge will be given by an expression similar to
that in Eq. (15.58), except that the signs of q and cos θ must be reversed (the angle opposite
r2 in the figure is π − θ ). We now have

ψ =
q

4πε0

(
1

r1
−

1

r2

)

r1

r2

z = az = −a

−q q

r

θ
z

q
4πε0

ϕ = 1
r1

1
r2

−

FIGURE 15.6 Electric dipole.
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=
q

4πε0 r

[ (
1− 2

a

r
cos θ +

a2

r2

)−1/2

−

(
1+ 2

a

r
cos θ +

a2

r2

)−1/2
]

=
q

4πε0 r

[
∞∑

n=0

Pn(cos θ)
(a

r

)n
−

∞∑
n=0

Pn(cos θ)
(
−

a

r

)n
]
. (15.64)

If we combine the two summations in Eq. (15.64), alternate terms cancel, and we get

ψ =
2q

4πε0 r

[
a

r
P1(cos θ)+

a3

r3 P3(cos θ)+ · · ·

]
. (15.65)

This configuration of charges is called an electric dipole, and we note that its leading
dependence on r goes as r−2. The strength of the dipole (called the dipole moment) can
be identified as 2qa, equal to the magnitude of each charge multiplied by their separation
(2a). If we let a→ 0 while keeping the product 2qa constant at a value µ, all but the first
term becomes negligible, and we have

ψ =
µ

4πε0

P1(cos θ)

r2 , (15.66)

the potential of a point dipole of dipole moment µ, located at the origin of the coordinate
system (at r = 0). Note that because we have limited the discussion to situations of cylin-
drical symmetry, our dipole is oriented in the polar direction; more general orientations can
be considered after we have developed formulas for solutions of the associated Legendre
equation (cases where the parameter m in Eq. (15.4) is nonzero).

We can extend the above analysis by combining a pair of dipoles of opposite orienta-
tion, for example, in the configuration shown in Fig. 15.7, thereby causing cancellation of
their leading terms, leaving a potential whose leading contribution will be proportional to
r−3 P2(cos θ). A charge configuration of this sort is called an electric quadrupole, and
the P2 term of the generating function expansion can be identified as the contribution of
a point quadrupole, also located at r = 0. Further extensions, to 2n-poles, with contri-
butions proportional to Pn(cos θ)/rn+1, permit us to identify each term of the generating
expansion with the potential of a point multipole. We thus have a multipole expansion.
Again we observe that because we have limited discussion to situations with cylindrical
symmetry our multipoles are presently required to be linear; that restriction will be elimi-
nated when this topic is revisited in Chapter 16.

We look next at more general charge distributions, for simplicity limiting consideration
to charges qi placed at respective positions ai on the polar axis of our coordinate system.

z = az = −a

q q−2q

z

FIGURE 15.7 Linear electric quadrupole.
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Adding together the generating-function expansions of the individual charges, our com-
bined expansion takes the form

ψ =
1

4πε0 r

[∑
i

qi +
∑

i

qi ai

r
P1(cos θ)+

∑
i

qi a2
i

r2 P2(cos θ)+ · · ·

]

=
1

4πε0 r

[
µ0 +

µ1

r
P1(cos θ)+

µ2

r2 P2(cos θ)+ · · ·
]
, (15.67)

where the µi are called the multipole moments of the charge distribution; µ0 is the
20-pole, or monopole moment, with a value equal to the total net charge of the distribution;
µ1 is the 21-pole, or dipole moment, equal to

∑
i qi ai ; µ2 is the 22-pole, or quadrupole

moment, given as
∑

i qi a2
i , etc. Our general (linear) multipole expansion will converge for

values of r that are larger than all the ai values of the individual charges. Put another way,
the expansion will converge at points further from the coordinate origin than all parts of
the charge distribution.

We next ask: What happens if we move the origin of our coordinate system? Or, equiv-
alently, consider replacing r by |r− rp|. For r > rp , the binomial expansion of 1/|r− rp|

n

will have the generic form

1

|r− rp|
n
=

1

rn
+C

rp

rn+1 + · · · ,

with the result that only the leading nonzero term of Eq. (15.67) will be unaffected by
the change of expansion center. Translated into everyday language, this means that the
lowest nonzero moment of the expansion will be independent of the choice of origin, but
all higher moments will change when the expansion center is moved. Specifically, the total
net charge (monopole moment) will always be independent of the choice of expansion
center. The dipole moment will be independent of the expansion point only when the net
charge is zero; the quadrupole moment will have such independence only if both the net
charge and dipole moments vanish, etc.

We close this section with three observations.

• First, while we have illustrated our discussion with discrete arrays of point charges, we
could have reached the same conclusions using continuous charge distributions, with
the result that the summations over charges would become integrals over the charge
density.

• Second, if we remove our restriction to linear arrays, our expansion would involve
components of the multipole moments in different directions. In three-dimensional
space, the dipole moment would have three components: a generalizes to (ax ,ay,az),
while the higher-order multipoles will have larger numbers of components (a2

→

ax ax , ax ay, . . .). The details of that analysis will be taken up when the necessary back-
ground is in place.

• Third, the multipole expansion is not restricted to electrical phenomena, but applies
anywhere we have an inverse-square force. For example, planetary configurations are
described in terms of mass multipoles. And gravitational radiation depends on the time
behavior of mass quadrupoles.
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Exercises

15.3.1 Develop the electrostatic potential for the array of charges shown in Fig. 15.7. This is a
linear electric quadrupole.

15.3.2 Calculate the electrostatic potential of the array of charges shown in Fig. 15.8. Here is
an example of two equal but oppositely directed quadrupoles. The quadrupole contri-
butions cancel. The octopole terms do not cancel.

15.3.3 Show that the electrostatic potential produced by a charge q at z = a for r < a is

ϕ(r)=
q

4πε0a

∞∑
n=0

( r

a

)n
Pn(cos θ).

15.3.4 Using E = −∇ϕ, determine the components of the electric field corresponding to the
(pure) electric dipole potential,

ϕ(r)=
2aq P1(cos θ)

4πε0r2 .

Here it is assumed that r � a.

ANS. Er =+
4aq cos θ

4πε0r3 , Eθ =+
2aq sin θ

4πε0r3 , Eϕ = 0.

15.3.5 Operating in spherical polar coordinates, show that

∂

∂z

[
Pl(cos θ)

r l+1

]
=−(l + 1)

Pl+1(cos θ)

r l+2 .

This is the key step in the mathematical argument that the derivative of one multipole
leads to the next higher multipole.

Hint. Compare with Exercise 3.10.28.

15.3.6 A point electric dipole of strength p(1) is placed at z = a; a second point electric dipole
of equal but opposite strength is at the origin. Keeping the product p(1)a constant, let
a→ 0. Show that this results in a point electric quadrupole.

Hint. Exercise 15.3.5 (when proved) will be helpful.

15.3.7 A point electric octupole may be constructed by placing a point electric quadrupole
(pole strength p(2) in the z-direction) at z = a and an equal but opposite point elec-
tric quadrupole at z = 0 and then letting a→ 0, subject to p(2)a = constant. Find the
electrostatic potential corresponding to a point electric octupole. Show from the con-
struction of the point electric octupole that the corresponding potential may be obtained
by differentiating the point quadrupole potential.

q−q −2q+2q

z = −2a −a a 2a
z

FIGURE 15.8 Linear electric octopole.
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q q′

a′
a

z

FIGURE 15.9 Image charges for Exercise 15.3.8.

15.3.8 A point charge q is in the interior of a hollow conducting sphere of radius r0. The
charge q is displaced a distance a from the center of the sphere. If the conducting
sphere is grounded, show that the potential in the interior produced by q and the dis-
tributed induced charge is the same as that produced by q and its image charge q ′. The
image charge is at a distance a′ = r2

0/a from the center, collinear with q and the origin
(Fig. 15.9).

Hint. Calculate the electrostatic potential for a < r0 < a′. Show that the potential vani-
shes for r = r0 if we take q ′ =−qr0/a.

15.4 ASSOCIATED LEGENDRE EQUATION

We need to extend our analysis to the associated Legendre equation because it is important
to be able to remove the restriction to azimuthal symmetry that pervaded the discussion
of the previous sections of this chapter. We therefore return to Eq. (15.4), which, before
determining what its eigenvalue should be, assumed the form

(1− x2)P ′′(x)− 2x P ′(x)+

[
λ−

m2

1− x2

]
P(x)= 0. (15.68)

Trial and error (or great insight) suggests that the troublesome factor 1 − x2 in the
denominator of this equation can be eliminated by making a substitution of the form
P = (1−x2)p P , and further experimentation shows that a suitable choice for the exponent
p is m/2. By straightforward differentiation, we find

P = (1− x2)m/2P, (15.69)

P ′ = (1− x2)m/2P ′ −mx(1− x2)m/2−1P, (15.70)

P ′′ = (1− x2)m/2P ′′ − 2mx(1− x2)m/2−1P ′

+

[
−m(1− x2)m/2−1

+ (m2
− 2m)x2(1− x2)m/2−2

]
P. (15.71)

Substitution of Eqs. (15.69)–(15.71) into Eq. (15.68), we obtain an equation that is poten-
tially easier to solve, namely,

(1− x2)P ′′ − 2x(m + 1)P ′ +
[
λ−m(m + 1)

]
P = 0. (15.72)

We continue by seeking to solve Eq. (15.72) by the method of Frobenius, assuming a
solution in the series form

∑
j a j xk+ j. The indicial equation for this ODE has solutions



ArfKen_Ch15-9780123846549.tex

742 Chapter 15 Legendre Functions

k = 0 and k = 1. For k = 0, substitution into the series solution leads to the recurrence
formula

a j+2 = a j

[
j2
+ (2m + 1) j − λ+m(m + 1)

( j + 1)( j + 2)

]
. (15.73)

Just as for the original Legendre equation, we need solutions P(cos θ) that are nonsingular
for the range −1≤ cos θ ≤+1, but the recurrence formula leads to a power series that in
general is divergent at ±1.2

To avoid the divergence, we must cause the numerator of the fraction in Eq. (15.73) to
become zero for some nonnegative even integer j , thereby causing P to be a polynomial.
By direct substitution into Eq. (15.73), we can verify that a zero numerator is obtained for
j = l −m when λ is assigned the value l(l + 1), a condition that can only be met if l is an
integer at least as large as m and of the same parity. Further analysis for the other indicial
equation solution, k = 1, extends our present result to values of l that are larger than m and
of opposite parity.

Summarizing our results to this point, we have found that the regular solutions to the
associated Legendre equation depend on integer indices l and m. Letting Pm

l , called an
associated Legendre function, denote such a solution (note that the superscript m is not
an exponent), we define

Pm
l (x)= (1− x2)m/2Pm

l (x), (15.74)

where Pm
l is a polynomial of degree l − m (consistent with our earlier observation that

l must be at least as large as m), and with an explicit form and scale that we will now
address.

A convenient explicit formula for Pm
l can be obtained by repeated differentiation of the

regular Legendre equation. Admittedly, this strategy would have been difficult to devise
without prior knowledge of the solution, but there are certain advantages to using the
experience of those who have gone before. So, without apology, we apply Leibniz’s for-
mula for the mth derivative of a product (proved in Exercise 1.4.2),

dm

dxm

[
A(x)B(x)

]
=

m∑
s=0

(
m

s

)
dm−s A(x)

dxm−s

ds B(x)

dx s
, (15.75)

to the Legendre equation,

(1− x2)P ′′l − 2x P ′l + l(l + 1)Pl = 0,

reaching

(1− x2)u′′ − 2x(m + 1)u′ +
[

l(l + 1)−m(m + 1)
]

u = 0, (15.76)

where

u ≡
dm

dxm
Pl(x). (15.77)

2The solution to the associated Legendre equation is (1− x2)m/2P(x), suggesting the possibility that the (1− x2)m/2 factor
might compensate the divergence in P(x), yielding a convergent limit. It can be shown that such a compensation does not occur.
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Comparing Eq. (15.76) with Eq. (15.72), we see that when λ= l(l + 1) they are identical,
meaning that the polynomial solutions P of Eq. (15.72) for given l can be identified with
the corresponding u. Specifically,

Pm
l = (−1)m

dm

dxm
Pl(x), (15.78)

where the factor (−1)m is inserted to maintain agreement with AMS-55 (see Additional
Readings), which has become the most widely accepted notational standard.3

We can now write a complete, explicit form for the associated Legendre functions:

Pm
l (x)= (−1)m(1− x2)m/2

dm

dxm
Pl(x). (15.79)

Since the Pm
l with m = 0 are just the original Legendre functions, it is customary to omit

the upper index when it is zero, so, for example, P0
l ≡ Pl .

Note that the condition on l and m can be stated in two ways:

(1) For each m, there are an infinite number of acceptable solutions to the associated
Legendre ODE with l values ranging from m to infinity, or

(2) For each l , there are acceptable solutions with m values ranging from l = 0 to l =m.

Because m enters the associated Legendre equation only as m2, we have up to this point
tacitly considered only values m ≥ 0. However, if we insert the Rodrigues formula for Pl

into Eq. (15.73), we get the formula

Pm
l (x)=

(−1)m

2l l!
(1− x2)m/2

dl+m

dx l+m
(x2
− 1)l, (15.80)

which gives results for −m that do not appear similar to those for +m. However, it can be
shown that if we apply Eq. (15.75) for m values between zero and −l , we get

P−m
l (x)= (−1)m

(l −m)!

(l +m)!
Pm

l (x). (15.81)

Equation (15.81) shows that Pm
l and P−m

l are proportional; its proof is the topic of
Exercise 15.4.3. The main reason for discussing both is that recurrence formulas we will
develop for Pm

l with contiguous values of m will give results for m < 0 that can best be
understood if we remember the relative scaling of Pm

l and P−m
l .

Associated Legendre Polynomials

For further development of properties of the Pm
l , it is useful to develop a generating func-

tion for the polynomials Pm
l (x), which we can do by differentiating the Legendre generat-

ing function with respect to x . The result is

gm(x, t)≡
(−1)m(2m − 1)!!

(1− 2xt + t2)m+1/2 =

∞∑
s=0

Pm
s+m(x)t

s . (15.82)

3However, we note that the popular text, Jackson’s Electrodynamics (see Additional Readings), does not include this phase
factor. The factor is introduced to cause the definition of spherical harmonics (Section 15.5) to have the usual phase convention.



ArfKen_Ch15-9780123846549.tex

744 Chapter 15 Legendre Functions

The factors t that result from differentiating the generating function have been used to
change the powers of t that multiply the P on the right-hand side.

If we now differentiate Eq. (15.82) with respect to t , we obtain initially

(1− 2t x + t2)
∂gm

∂t
= (2m + 1)(x − t)gm(x, t),

which we can use together with Eq. (15.82) in a now-familiar way to obtain the recurrence
formula,

(s + 1)Pm
s+m+1(x)− (2m + 1+ 2s)xPm

s+m(x)+ (s + 2m)Pm
s+m−1 = 0. (15.83)

Making the substitution l = s +m, we bring Eq. (15.83) to the more useful form,

(l −m + 1)Pm
l+1 − (2l + 1)xPm

l + (l +m)Pm
l−1 = 0. (15.84)

For m = 0 this relation agrees with Eq. (15.18).
From the form of gm(x, t), it is also clear that

(1− 2xt + t2)gm+1(x, t)=−(2m + 1)gm(x, t). (15.85)

From Eqs. (15.85) and (15.82) we may extract the recursion formula

Pm+1
s+m+1(x)− 2xPm+1

s+m (x)+P
m+1
s+m−1(x)=−(2m + 1)Pm

s+m(x),

which relates the associated Legendre polynomials with upper index m + 1 to those with
upper index m. Again we may simplify by making the substitution l = s +m:

Pm+1
l+1 (x)− 2xPm+1

l (x)+Pm+1
l−1 (x)=−(2m + 1)Pm

l (x). (15.86)

Associated Legendre Functions

The recurrence relations for the associated Legendre polynomials or alternatively, differ-
entiation of formulas for the original Legendre polynomials, enable the construction of
recurrence formulas for the associated Legendre functions. The number of such formulas
is extensive because these functions have two indices, and there exists a wide variety of
formulas with different index combinations. Results of importance include the following:

Pm+1
l (x)+

2mx

(1− x2)1/2
Pm

l (x)+ (l +m)(l −m + 1)Pm−1
l (x)= 0, (15.87)

(2l + 1)x Pm
l (x)= (l +m)Pm

l−1(x)+ (l −m + 1)Pm
l+1(x), (15.88)

(2l + 1)(1− x2)1/2 Pm
l (x)= Pm+1

l−1 (x)− Pm+1
l+1 (x) (15.89)

= (l −m + 1)(l −m + 2)Pm−1
l+1 (x)

− (l +m)(l +m − 1)Pm−1
l−1 (x), (15.90)

(1− x2)1/2
(

Pm
l (x)

) ′
=

1

2
(l +m)(l −m + 1)Pm−1

l (x)−
1

2
Pm+1

l (x), (15.91)

= (l +m)(l −m + 1)Pm−1
l (x)+

mx

(1− x2)1/2
Pm

l (x). (15.92)
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Table 15.3 Associated Legendre Functions

P1
1 (x)=−(1− x2)1/2 =− sin θ

P1
2 (x)=−3x(1− x2)1/2 =−3 cos θ sin θ

P2
2 (x)= 3(1− x2)= 3 sin2 θ

P1
3 (x)=−

3
2 (5x2

− 1)(1− x2)1/2 =− 3
2 (5 cos2 θ − 1) sin θ

P2
3 (x)= 15x(1− x2)= 15 cos θ sin2 θ

P3
3 (x)=−15(1− x2)3/2 =−15 sin3 θ

P1
4 (x)=−

5
2 (7x3

− 3x)(1− x2)1/2 =− 5
2 (7 cos3 θ − 3 cos θ) sin θ

P2
4 (x)=

15
2 (7x2

− 1)(1− x2)= 15
2 (7 cos2 θ − 1) sin2 θ

P3
4 (x)=−105x(1− x2)3/2 =−105 cos θ sin3 θ

P4
4 (x)= 105(1− x2)2 = 105 sin4 θ

It is obvious that, using Eq. (15.90), all the Pm
l with m > 0 can be generated from those

with m = 0 (the Legendre polynomials), and that these, in turn, can be built recursively
from P0(x)= 1 and P1(x)= x . In this fashion (or in other ways as suggested below), we
can build a table of associated Legendre functions, the first members of which are listed in
Table 15.3. The table shows the Pm

l (x) both as functions of x and as functions of θ , where
x = cos θ .

It is often easier to use recurrence formulas other than Eq. (15.90) to obtain the Pm
l ,

keeping in mind that when a formula contains Pm
m−1 for m > 0, that quantity can be set to

zero. It is also easy to obtain explicit formulas for certain values of l and m which can then
be alternate starting points for recursion. See the example that follows.

Example 15.4.1 RECURRENCE STARTING FROM Pm
m

The associated Legendre function Pm
m (x) is easily evaluated:

Pm
m (x)=

(−1)m

2m m!
(1− x2)m/2

d2m

dx2m
(x2
− 1)m =

(−1)m

2m m!
(2m)! (1− x2)m/2

= (−1)m(2m − 1)!! (1− x2)m/2. (15.93)

We can now use Eq. (15.88) with l = m to obtain Pm
m+1, dropping the term containing

Pm
m−1 because it is zero. We get

Pm
m+1(x)= (2m + 1)x Pm

m (x)= (−1)m(2m + 1)!! x(1− x2)m/2. (15.94)

Further increases in l can now be obtained by straightforward application of Eq. (15.88).
Illustrating for a series of Pm

l with m = 2: P2
2 (x) = (−1)2(3!!)(1 − x2) = 3(1 − x2),

in agreement with the table value. P2
3 can be computed from Eq. (15.94) as P2

3 (x) =
(−1)2(5!!)x(1− x2), which simplifies to the tabulated result. Finally, P2

4 is obtained from
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the following case of Eq. (15.88):

7x P2
3 (x)= 5P2

2 (x)+ 2P2
4 (x),

the solution of which for P2
4 (x) is again in agreement with the tabulated value. �

Parity and Special Values

We have already established that Pl has even parity if l is even and odd parity if l is odd.
Since we can form Pm

l by differentiating Pl m times, with each differentiation changing
the parity, and thereafter multiplying by (1− x2)m/2, which has even parity, Pm

l must have
a parity that depends on l +m, namely,

Pm
l (−x)= (−1)l+m Pm

l (x). (15.95)

We occasionally encounter a need for the value of Pm
l (x) at x = ±1 or at x = 0. At

x =±1 the result is simple: The factor (1− x2)m/2 causes Pm
l (±1) to vanish unless m =

0, in which case we recover the values Pl(1) = 1, Pl(−1) = (−1)l . At x = 0, the value
of Pm

l depends on whether l + m is even or odd. The result, proof of which is left to
Exercises 15.4.4 and 15.4.5, is

Pm
l (0)=

 (−1)(l+m)/2 (l +m − 1)!!

(l −m)!!
, l +m even,

0, l +m odd.
(15.96)

Orthogonality

For each m, the Pm
l of different l can be proved orthogonal by identifying them as

eigenfunctions of a Sturm-Liouville system. However, it is instructive to demonstrate the
orthogonality explicitly, and to do so by a method that also yields their normalization.
We start by writing the orthgonality integral, with the Pm

l given by the Rodrigues for-
mula in Eq. (15.80). For compactness and clarity, we introduce the abbreviated notation
R = x2

− 1, thereby getting

1∫
−1

Pm
p (x)P

m
q (x)dx =

(−1)m

2p+q p!q!

1∫
−1

Rm
(

d p+m R p

dx p+m

)(
dq+m Rq

dxq+m

)
dx . (15.97)

We consider first the case p < q , for which we plan to prove the integral in Eq. (15.97)
vanishes. We proceed by carrying out repeated integrations by parts, in which we differ-
entiate

u = Rm
(

d p+m R p

dx p+m

)
(15.98)

p+m + 1 times while integrating a like number of times the remainder of the integrand,

dv =

(
dq+m Rq

dxq+m

)
dx . (15.99)
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For each of these p + m + 1 ≤ q + m partial integrations the integrated (uv) terms will
vanish because there will be at least one factor R that is not differentiated and will therefore
vanish at x =±1. After the repeated differentiation, we will have

d p+m+1

dx p+m+1 u =
d p+m+1

dx p+m+1

[
Rm

(
d p+m R p

dx p+m

)]
, (15.100)

in which a quantity whose largest power of x is x2p+2m contains also a (2p+2m+1)-fold
differentiation. There is no way these components can yield a nonzero result. Since both
the integrated terms and the transformed integral vanish, we get an overall vanishing result,
confirming the orthogonality. Note that the orthogonality is with unit weight, independent
of the value of m.

We now examine Eq. (15.97) for p = q , repeating the process we just carried out, but
this time performing p + m partial integrations. Again all the integrated terms vanish,
but now there is a nonvanishing contribution from the repeated differentiation of u, see
Eq. (15.98). Since the overall power of x is still x2p+2m and the total number of differ-
entiations is also 2p + 2m, the only contributing terms are those in which the factor Rm

is differentiated 2m times and the factor R p is differentiated 2p times. Thus, applying
Leibniz’s formula, Eq. (15.75), to the p+m-fold differentiation of u, but keeping only the
contributing term, we have

d p+m

dx p+m

[
Rm

(
d p+m R p

dx p+m

)]
=

(
p+m

2m

)(
d2m Rm

dx2m

)(
d2p R p

dx2p

)
=

(p+m)!

(2m)! (p−m)!
(2m)! (2p)! =

(p+m)!

(p−m)!
(2p)!. (15.101)

Inserting this result into the integration by parts, remembering that the transformed
integration is accompanied by the sign factor (−1)p+m, and recognizing that the repeated
integration of dv, Eq. (15.99) with q = p, just yields R p , we have, returning to Eq. (15.97),

1∫
−1

[
Pm

p (x)
]2

dx =
(−1)2m+p

22p p ! p !

(p+m)!

(p−m)!
(2p)!

1∫
−1

R p dx . (15.102)

To complete the evaluation, we identify the integral of R p as a beta function, with an
evaluation given in Exercise 13.3.3 as

1∫
−1

R p dx = (−1)p 2(2p)!!

(2p+ 1)!!
= (−1)p 22p+1 p ! p !

(2p+ 1)!
. (15.103)

Inserting this result, and combining with the previously established orthogonality relation,
we have

1∫
−1

Pm
p (x)P

m
q (x)dx =

2

2p+ 1

(p+m)!

(p−m)!
δpq . (15.104)
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Making the substitution x = cos θ , we obtain this formula in spherical polar coordinates:

π∫
0

Pm
p (cos θ)Pm

q (cos θ) sin θ dθ =
2

2p+ 1

(p+m)!

(p−m)!
δpq . (15.105)

Another way to look at the orthogonality of the associated Legendre functions is to
rewrite Eq. (15.104) in terms of the associated Legendre polynomials Pm

l . Invoking
Eq. (15.74), Eq. (15.104) becomes

1∫
−1

Pm
p Pm

q (1− x2)mdx =
2

2p+ 1

(p+m)!

(p−m)!
δpq , (15.106)

showing that these polynomials are, for each m, orthogonal with the weight factor (1−
x2)m . From that viewpoint, we can observe that each value of m corresponds to a set of
polynomials that are orthogonal with a different weight. However, since our main interest
is in the functions that are in general not polynomials but are solutions of the associated
Legendre equation, it is usually more relevant to us to note that these functions, which
include the factor (1− x2)m/2, are orthogonal with unit weight.

It is possible, but not particularly useful, to note that we can also have orthogonality of
the Pm

l with respect to the upper index when the lower index is held constant:

1∫
−1

Pm
l (x)P

n
l (x)(1− x2)−1dx =

(l +m)!

m(l −m)!
δmn . (15.107)

This equation is not very useful because in spherical polar coordinates the boundary con-
dition on the azimuthal coordinate ϕ causes there already to be orthogonality with respect
to m, and we are not usually concerned with orthogonality of the Pm

l with respect to m.

Example 15.4.2 CURRENT LOOP—MAGNETIC DIPOLE

An important problem in which we encounter associated Legendre functions is in the mag-
netic field of a circular current loop, a situation that may at first seem surprising since this
problem has azimuthal symmetry.

Our starting point is the formula relating a current element I ds to the vector potential
A that it produces (this is discussed in the chapter on Green’s functions, and also in texts
such as Jackson’s Classical Electrodynamics; see Additional Readings). This formula is

dA(r)=
µ0

4π

I ds
|r− rs|

, (15.108)

where r is the point at which A is to be evaluated and rs is the position of element ds of the
current loop. We place our current loop, of radius a, in the equatorial plane of a spherical
polar coordinate system, as shown in Fig. 15.10. Our task is to determine A as a function
of position, and therefrom to obtain the components of the magnetic induction field B.
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y

x

z

r

ds
rs

a

FIGURE 15.10 Circular current loop.

It is in principle possible to figure out the geometry and integrate Eq. (15.108) for the
present problem, but a more practical approach will be to determine from general consid-
erations the functional form of an expansion describing the solution, and then to determine
the coefficients in the expansion by requiring correct results for points of high symmetry,
where the calculation is not too difficult. This is an approach similar to that employed in
Example 15.2.3, where we first identified the functional form of an expansion giving the
potential generated by a circular ring of charge, after which we found the coefficients in
the expansion from the easily computed potential on the axis of the ring.

From the form of Eq. (15.108) and the symmetry of the problem, we see immediately
that for all r, A must lie in a plane of constant z, and in fact it must be in the êϕ direction,
with Aϕ independent of ϕ, i.e.,

A= Aϕ(r, θ) êϕ . (15.109)

If A had a component other than Aϕ , it would have a nonzero divergence, as then A would
have a nonzero inward or outward flux, resulting in a singularity on the axis of the loop.

Since everywhere except on the current loop itself there is no current, Maxwell’s equa-
tion for the curl of B reduces to

∇×B=∇× (∇×A)= 0,

and, since A has only a ϕ component, it further reduces to

∇×

[
∇× Aϕ(r, θ) êϕ

]
= 0. (15.110)

The left-hand side of Eq. (15.110) was the subject of Example 3.10.4, and its evaluation
was presented as Eq. (3.165). Setting that result to zero gives the equation that must be
satisfied by Aϕ(r, θ):

∂2 Aϕ
∂r2 +

2

r

∂Aϕ
∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Aϕ
∂θ

)
−

1

r2 sin2 θ
Aϕ = 0. (15.111)
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Equation (15.111) may now be solved by the method of separation of variables; setting
Aϕ(r, θ)= R(r)2(θ), we have

r2 d2 R

dr2 + 2
d R

dr
− l(l + 1)R = 0, (15.112)

1

sin θ

d

dθ

(
sin θ

d2

dθ

)
+ l(l + 1)2−

2

sin2 θ
= 0. (15.113)

Because the second of these equations can be recognized as the associated Legendre equa-
tion, in the form given as Eq. (15.2), we have set the separation constant to the value it must
have, namely l(l + 1), with l integral. The first equation is also familiar, with solutions for
a given l being r l and r−l−1. The second equation has solutions P1

l (cos θ), i.e., its specific
form dictates that the associated Legendre functions which solve it must have upper index
m = 1. Since our main interest is in the pattern of B at r values larger than a, the radius of
the current loop, we retain only the radial solution r−l−1, and write

Aϕ(r, θ)=
∞∑

l=1

cl

(a

r

)l+1
P1

l (cos θ). (15.114)

When we obtain a more detailed solution, we will find that it converges only for r > a,
so Eq. (15.114) and the value of B derived therefrom will only be valid outside a sphere
containing the current loop. If we were also interested in solving this problem for r < a,
we would need to construct a series solution using only the powers r l .

From Eq. (15.114) we can compute the components of B. Clearly, Bϕ = 0. And, using
Eq. (3.159), we have

Br (r, θ)=∇× Aϕ êϕ
∣∣∣

r
=

cot θ

r
Aϕ +

1

r

∂Aϕ
∂θ

, (15.115)

Bθ (r, θ)=∇× Aϕ êϕ
∣∣∣
θ
=−

1

r

∂(r Aϕ)

∂r
. (15.116)

To evaluate the θ derivative in Eq. (15.115), we need

d P1
l (cos θ)

dθ
=− sin θ

d P1
l (cos θ)

d cos θ
=−l(l + 1)Pl(cos θ)− cot θ P1

l (cos θ), (15.117)

a special case of Eq. (15.92) with m = 1 and x = cos θ . It is now straightforward to insert
the expansion for Aϕ into Eqs. (15.115) and (15.116); because of Eq. (15.117) the cot θ
term of Eq. (15.115) cancels, and we reach

Br (r, θ)=−
1

r

∞∑
l=1

l(l + 1) cl

(a

r

)l+1
Pl(cos θ), (15.118)

Bθ (r, θ)=
1

r

∞∑
l=1

l cl

(a

r

)l+1
P1

l (cos θ). (15.119)

To complete our analysis, we must determine the values of the cl , which we do by using
the Biot-Savart law to calculate Br at points along the polar axis, where Br is synonymous
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with Bz . Since θ = 0 on the positive polar axis and Pl(cos θ)= 1, Eq. (15.118) reduces to

Br (z,0)=−
1

z

∞∑
l=1

l(l + 1) cl

(
a

z

)l+1

=−
a2

z3

∞∑
s=0

(s + 1)(s + 2)cs+1

(
a

z

)s

. (15.120)

The symmetry of the problem permits one more simplification; the value of Bz must be the
same at −z as at z, from which we conclude that the coefficients c2, c4,. . . must all vanish,
and we can rewrite Eq. (15.120) as

Br (z,0)=−
a2

z3

∞∑
s=0

2(s + 1)(2s + 1)c2s+1

(
a

z

)2s

. (15.121)

The Biot-Savart law (in SI units) gives the contribution from the current element I ds to
B at a point whose displacement from the current element is rs as

dB=
µ0

4π
I

ds× r̂s

r2
s

. (15.122)

We now compute B by integration of ds around the current loop. The geometry is shown
in Fig. 15.11. Note that d Bz , which will be the same for all current elements I ds, has the
value

d Bz =
µ0 I

4πr2
s

sinχ ds,

z

a

I

r̂

dB

ds→

rs= a2+ z2

FIGURE 15.11 Biot-Savart law applied to a circular loop.
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where χ is the labeled angle in Fig. 15.11 and rs has the value indicated in the figure. The
integration over s simply yields a factor 2πa, and we see that sinχ = a/(a2

+ z2)1/2, so

Bz =
µ0 I a2

2
(a2
+ z2)−3/2

=
µ0 I a2

2z3

(
1+

a2

z2

)−3/2

=
µ0 I a2

2z3

∞∑
s=0

(−1)s
(2s + 1)!!

(2s)!!

(
a

z

)2s

. (15.123)

The binomial expansion in the second line of Eq. (15.123) is convergent for z > a.
We are now ready to reconcile Eqs. (15.121) and (15.123), finding that

−2(s + 1)(2s + 1)c2s+1 =
µ0 I

2
(−1)s

(2s + 1)!!

(2s)!!
,

which reduces to

c2s+1 =
µ0 I

2
(−1)s+1 (2s − 1)!!

(2s + 2)!!
. (15.124)

We write final formulas for A and B in a form that recognizes that c2s = 0, applicable
for r > a:

Aϕ(r, θ)=
a2

r2

∞∑
s=0

c2s+1

(a

r

)2s
P1

2s+1(cos θ), (15.125)

Br (r, θ)=−
a2

r2

∞∑
s=0

(2s + 1)(2s + 2)c2s+1

(a

r

)2s
P2s+1(cos θ), (15.126)

Bθ (r, θ)=
a2

r3

∞∑
s=0

(2s + 1)c2s+1

(a

r

)2s
P1

2s+1(cos θ). (15.127)

These formulas can also be written in terms of complete elliptic integrals. See Smythe
(Additional Readings) and Section 18.8 of this book.

A comparison of magnetic current loop and finite electric dipole fields may be of interest.
For the magnetic loop dipole, the preceding analysis gives

Br (r, θ)=
µ0 I a2

2r3

[
P1 −

3

2

(a

r

)2
P3 + · · ·

]
, (15.128)

Bθ (r, θ)=
µ0 I a2

4r3

[
−P1

1 +
3

4

(a

r

)2
P1

3 + · · ·

]
. (15.129)

From the finite electric dipole potential, Eq. (15.65), one can find

Er (r, θ)=
qa

πε0r3

[
P1 + 2

(a

r

)2
P3 + · · ·

]
, (15.130)

Eθ (r, θ)=
qa

2πε0r3

[
−P1

1 −

(a

r

)2
P1

3 + · · ·

]
. (15.131)
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The leading terms of both fields agree, and this is the basis for identifying both as dipole
fields.

As with electric multipoles, it is sometimes convenient to discuss point magnetic mul-
tipoles. A point dipole can be formed by taking the limit a→ 0, I →∞, with I a2 held
constant. The magnetic moment m is taken to be Iπa2n, where n is a unit vector perpen-
dicular to the plane of the current loop and in the sense given by the right-hand rule. �

Exercises

15.4.1 Apply the Frobenius method to Eq. (15.72) to obtain Eq. (15.73) and verify that the
numerator of that equation becomes zero if λ= l(l + 1) and j = l −m.

15.4.2 Starting from the entries for P2
2 and P1

2 in Table 15.3, apply a recurrence formula to
obtain P0

2 (which is P2), P−1
2 , and P−2

2 . Compare your results with the value of P2 from
Table 15.1 and with values of P−1

2 and P−2
2 obtained by applying Eq. (15.81) to entries

from Table 15.3.

15.4.3 Prove that

P−m
l (x)= (−1)m

(l −m)!

(l +m)!
Pm

l (x),

where Pm
l (x) is defined by

Pm
l (x)=

(−1)m

2ll!
(1− x2)m/2

dl+m

dx l+m
(x2
− 1)l .

Hint. One approach is to apply Leibniz’s formula to (x + 1)l(x − 1)l.

15.4.4 Show that

P1
2l(0)= 0,

P1
2l+1(0)= (−1)l+1 (2l + 1)!!

(2l)!!
,

by each of these three methods:

(a) Use of recurrence relations,
(b) Expansion of the generating function,
(c) Rodrigues formula.

15.4.5 Evaluate Pm
l (0) for m > 0.

ANS. Pm
l (0)=

 (−1)(l+m)/2 (l +m − 1)!!

(l −m)!!
, l +m even,

0, l +m odd.

15.4.6 Starting from the potential of a finite dipole, Eq. (15.65), verify the formulas for the
electric field components given as Eqs. (15.130) and (15.131).
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15.4.7 Show that

P l
l (cos θ)= (−1)l(2l − 1)!! sinl θ, l = 0,1,2, . . . .

15.4.8 Derive the associated Legendre recurrence relation,

Pm+1
l (x)+

2mx

(1− x2)1/2
Pm

l (x)+
[

l(l + 1)−m(m − 1)
]

Pm−1
l (x)= 0.

15.4.9 Develop a recurrence relation that will yield P1
l (x) as

P1
l (x)= f1(x, l)Pl(x)+ f2(x, l)Pl−1(x).

Follow either of the procedures (a) or (b):

(a) Derive a recurrence relation of the preceding form. Give f1(x, l) and f2(x, l)
explicitly.

(b) Find the appropriate recurrence relation in print.

(1) Give the source.
(2) Verify the recurrence relation.

ANS. (a) P1
l (x)=

lx

(1− x2)1/2
Pl −

l

(1− x2)1/2
Pl−1.

15.4.10 Show that sin θ
d

d cos θ
Pn(cos θ)= P1

n (cos θ).

15.4.11 Show that

(a)

π∫
0

(
d Pm

l

dθ

d Pm
l ′

dθ
+

m2 Pm
l Pm

l ′

sin2 θ

)
sin θ dθ =

2l(l + 1)

2l + 1

(l +m)!

(l −m)!
δl l ′ ,

(b)

π∫
0

(
P1

l

sin θ

d P1
l ′

dθ
+

P1
l ′

sin θ

d P1
l

dθ

)
sin θ dθ = 0.

These integrals occur in the theory of scattering of electromagnetic waves by spheres.

15.4.12 As a repeat of Exercise 15.2.9, show, using associated Legendre functions, that

1∫
−1

x(1− x2)P ′n(x)P
′
m(x)dx =

n + 1

2n + 1

2

2n − 1

n!

(n − 2)!
δm,n−1

+
n

2n + 1

2

2n + 3

(n + 2)!

n!
δm,n+1.

15.4.13 Evaluate

π∫
0

sin2 θ P1
n (cos θ)dθ.
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15.4.14 The associated Legendre function Pm
l (x) satisfies the self-adjoint ODE

(1− x2)
d2 Pm

l (x)

dx2 − 2x
d Pm

l (x)

dx
+

[
l(l + 1)−

m2

1− x2

]
Pm

l (x)= 0.

From the differential equations for Pm
l (x) and Pk

l (x) show that for k 6=m,

1∫
−1

Pm
l (x)P

k
l (x)

dx

1− x2 = 0.

15.4.15 Determine the vector potential and the magnetic induction field of a magnetic
quadrupole by differentiating the magnetic dipole potential.

ANS. AM Q =−
µ0

2
(I a2)(dz)

P1
2 (cos θ)

r3 êϕ+ higher-order terms,

BM Q = µ0(I a2)(dz)

[
3P2(cos θ)

r4 êr −
P1

2 (cos θ)

r4 êθ

]
+ · · · .

This corresponds to placing a current loop of radius a at z→ dz and an oppositely
directed current loop at z→−dz. The vector potential and magnetic induction field of
a point dipole are given by the leading terms in these expansions if we take the limit
dz→ 0, a→ 0, and I →∞ subject to I a2 dz = constant.

15.4.16 A single circular wire loop of radius a carries a constant current I.

(a) Find the magnetic induction B for r < a, θ = π/2.
(b) Calculate the integral of the magnetic flux (B · dσ ) over the area of the current

loop, that is,

a∫
0

r dr

2π∫
0

dϕ Bz

(
r, θ =

π

2

)
.

ANS. ∞.

The Earth is within such a ring current, in which I approximates millions of amperes
arising from the drift of charged particles in the Van Allen belt.

15.4.17 The vector potential A of a magnetic dipole, dipole moment m, is given by A(r) =
(µ0/4π)(m× r/r3). Show by direct computation that the magnetic induction B=∇×

A is given by

B=
µ0

4π

3r̂
(
r̂ ·m

)
−m

r3 .
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15.4.18 (a) Show that in the point dipole limit the magnetic induction field of the current loop
becomes

Br (r, θ)=
µ0

2π

m

r3 P1(cos θ),

Bθ (r, θ)=−
µ0

2π

m

r3 P1
1 (cos θ),

with m = Iπa2.
(b) Compare these results with the magnetic induction of the point magnetic dipole of

Exercise 15.4.17. Take m= ẑm.

15.4.19 A uniformly charged spherical shell is rotating with constant angular velocity.

(a) Calculate the magnetic induction B along the axis of rotation outside the sphere.
(b) Using the vector potential series of Example 15.4.2, find A and then B for all

points outside the sphere.

15.4.20 In the liquid-drop model of the nucleus, a spherical nucleus is subjected to small de-
formations. Consider a sphere of radius r0 that is deformed so that its new surface is
given by

r = r0

[
1+ α2 P2(cos θ)

]
.

Find the area of the deformed sphere through terms of order α2
2 .

Hint.

dA=

[
r2
+

(
dr

dθ

)2
]1/2

r sin θd θdϕ.

ANS. A= 4πr2
0

[
1+ 4

5α
2
2 +O

(
α3

2

)]
.

Note. The area element dA follows from noting that the line element ds for fixed ϕ is
given by

ds= (r2 dθ2
+ dr2)1/2 =

[
r2
+

(
dr

dθ

)2
]1/2

dθ.

15.5 SPHERICAL HARMONICS

Our earlier discussion of separated-variable methods for solving the Laplace, Helmholtz,
or Schrödinger equations in spherical polar coordinates showed that the possible angular
solutions 2(θ)8(ϕ) are always the same in spherically symmetric problems; in particular
we found that the solutions for 8 depended on the single integer index m, and can be
written in the form

8m(ϕ)=
1
√

2π
eimϕ, m = . . . ,−2,−1, 0, 1, 2, . . . , (15.132)
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or, equivalently,

8m(ϕ)=



1
√

2π
, m = 0,

1
√
π

cos mϕ, m > 0,

1
√
π

sin |m|ϕ, m < 0.

(15.133)

The above equations contain the constant factors needed to make 8m normalized, and
those of different m2 are automatically orthogonal because they are eigenfunctions of
a Sturm-Liouville problem. It is straightforward to verify that in either Eq. (15.132) or
Eq. (15.133) our choices of the functions for +m and −m make 8m and 8−m orthogonal.
Formally, our definitions are such that

2π∫
0

[
8m(ϕ)

] ∗
8m′(ϕ)dϕ = δmm′ . (15.134)

In Section 15.4 we found that the solutions 2(θ) could be identified as associated Leg-
endre functions that can be labeled by the two integer indices l and m, with −l ≤ m ≤ l .
From the orthonormality integral for these functions, Eq. (15.105), we can define the nor-
malized solutions

2lm(cos θ)=

√
2l + 1

2

(l −m)!

(l +m)!
Pm

l (cos θ), (15.135)

satisfying the relation
π∫

0

[
2lm(cos θ)

] ∗
2l ′m(cos θ) sin θ dθ = δll ′ . (15.136)

We have previously noted that an orthonormality condition of this type only applies if both
functions 2 have the same value of the index m. The complex conjugate is not really nec-
essary in Eq. (15.136) because the2 are real, but we write it anyway to maintain consistent
notation. Note also that when the argument of Pm

l is x = cos θ , then (1− x2)1/2 = sin θ ,
so the Pm

l are polynomials of overall degree l in cos θ and sin θ .
The product 2lm8m is called a spherical harmonic, with that name usually implying

that 8m is taken with the definition as a complex exponential; see Eq. (15.132). Therefore
we define

Y m
l (θ,ϕ)≡

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eimϕ. (15.137)

These functions, being normalized solutions of a Sturm-Liouville problem, are orthonor-
mal over the spherical surface, with

2π∫
0

dϕ

π∫
0

sin θ dθ
[
Y m1

l1
(θ,ϕ)

]∗
Y m2

l2
(θ,ϕ) = δl1l2δm1m2 . (15.138)
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The definition we introduced for the associated Legendre functions leads to specific signs
for the Y m

l that are sometimes identified as the Condon-Shortley phase, after the authors
of a classic text on atomic spectroscopy. This sign convention has been found to simplify
various calculations, particularly in the quantum theory of angular momentum. One of
the effects of this phase factor is to introduce an alternation of sign with m among the
positive-m spherical harmonics. The word “harmonic” enters the name of Y m

l because
solutions of Laplace’s equation are sometimes called harmonic functions.

The squares of the real parts of the first few spherical harmonics are sketched in
Figure 15.12; their functional forms are given in Table 15.4.

Cartesian Representations

For some purposes it is useful to express the spherical harmonics using Cartesian coordi-
nates, which can be done by writing exp(±iϕ) as cosϕ ± i sinϕ and using the formulas
for x, y, z in spherical polar coordinates (retaining, however, an overall dependence on r,
necessary because the angular quantities must be independent of scale). For example,

cos θ = z/r, sin θ exp(±iϕ)= sin θ cosϕ ± i sin θ sinϕ =
x

r
± i

y

r
; (15.139)

these quantities are all homogeneous (of degree zero) in the coordinates.
Continuing to higher values of l , we obtain fractions in which the numerators are homo-

geneous products of x , y, z of overall degree l , divided by a common factor r l. Table 15.4
includes the Cartesian expression for each of its entries.

Overall Solutions

As we have already seen in Section 9.4, the separation of a Laplace, Helmholtz, or even a
Schrödinger equation in spherical polar coordinates can be written in terms of equations of
the generic form

R′′ +
2

r
R′ +

[
f (r)− l(l + 1)

]
R = 0, (15.140)[

1

sin θ

d

dθ

(
sin θ

d

dθ

)
+

1

sin2 θ

d2

dϕ2 + l(l + 1)

]
Y m

l (θ,ϕ)= 0. (15.141)

The function f (r) in Eq. (15.140) is zero for the Laplace equation, k2 for the Helmholtz
equation, and E − V (r) (V = potential energy, E = total energy, an eigenvalue) for the
Schrödinger equation. We have combined the θ and ϕ equations into Eq. (15.141) and
identified one of its solutions as Y m

l . What is important to note right now is that the com-
bined angular equation (and its boundary conditions and therefore its solutions) will be
the same for all spherically symmetric problems, and that the angular solution affects the
radial equation only through the separation constant l(l+ 1). Thus, the radial equation will
have solutions that depend on l but are independent of the index m.

In Section 9.4 we solved the radial equation for the Laplace and Helmholtz equations,
with the results given in Table 9.2. For the Laplace equation ∇2ψ = 0, the general solution
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m = 0, l = 1 m = 1, l = 1

m = 0, l = 2 m = 1, l = 2 m = 2, l = 2

m = 0, l = 3 m = 1, l = 3 m = 2, l = 3 m = 3, l = 3

m = 0, l = 0

FIGURE 15.12 Shapes of |ReY m
l (θ,ϕ)|

2 for 0≤ l ≤ 3, m = 0 . . . l .

in spherical polar coordinates is a sum, with arbitrary coefficients, of the solutions for the
various possible values of l and m:

ψ(r, θ, ϕ)=
∞∑

l=0

l∑
m=−l

(
almr l

+ blmr−l−1
)

Y m
l (θ,ϕ); (15.142)
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Table 15.4 Spherical Harmonics (Condon-Shortley Phase)

Y 0
0 (θ,ϕ)=

1√
4π

Y 1
1 (θ,ϕ)=−

√
3

8π sin θ eiϕ
=−

√
3

8π (x + iy)/r

Y 0
1 (θ,ϕ)=

√
3

4π cos θ =
√

3
4π z/r

Y−1
1 (θ,ϕ)=+

√
3

8π sin θ e−iϕ
=

√
3

8π (x − iy)/r

Y 2
2 (θ,ϕ)=

√
5

96π 3 sin2 θ e2iϕ
= 3

√
5

96π (x
2
− y2

+ 2i xy)/r2

Y 1
2 (θ,ϕ)=−

√
5

24π 3 sin θ cos θ eiϕ
=−

√
5

24π 3z(x + iy)/r2

Y 0
2 (θ,ϕ)=

√
5

4π

(
3
2 cos2 θ − 1

2

)
=

√
5

4π

(
3
2 z2
−

1
2 r2

)
/r2

Y−1
2 (θ,ϕ)=

√
5

24π 3 sin θ cos θ e−iϕ
=+

√
5

24π 3z(x − iy)/r2

Y−2
2 (θ,ϕ)=

√
5

96π 3 sin2 θ e−2iϕ
= 3

√
5

96π (x
2
− y2

− 2i xy)/r2

Y 3
3 (θ,ϕ)=−

√
7

2880π 15 sin3 θ e3iϕ
=−

√
7

2880π 15[x3
−3xy2

+ i(3x2 y − y3)]/r3

Y 2
3 (θ,ϕ)=

√
7

480π 15 cos θ sin2 θ e2iϕ
=

√
7

480π 15z(x2
− y2

+ 2i xy)/r3

Y 1
3 (θ,ϕ)=−

√
7

48π

(
15
2 cos2θ − 3

2

)
sin θ eiϕ

=−

√
7

48π

(
15
2 z2
−

3
2 r2

)
(x + iy)/r3

Y 0
3 (θ,ϕ)=

√
7

4π

(
5
2 cos3 θ − 3

2 cos θ
)
=

√
7

4π z
(

5
2 z2
−

3
2 r2

)
/r3

Y−1
3 (θ,ϕ)=+

√
7

48π

(
15
2 cos2θ − 3

2

)
sin θ e−iϕ

=

√
7

48π

(
15
2 z2
−

3
2 r2

)
(x − iy)/r3

Y−2
3 (θ,ϕ)=

√
7

480π 15 cos θ sin2 θ e−2iϕ
=

√
7

480π 15z(x2
− y2

− 2i xy)/r3

Y−3
3 (θ,ϕ)=+

√
7

2880π 15 sin3 θ e−3iϕ
=

√
7

2880π 15[x3
−3xy2

− i(3x2 y − y3)]/r3

for the Helmholtz equation (∇2
+ k2)ψ = 0, the radial equation has the form given in

Eq. (14.148), so the general solution assumes the form

ψ(r, θ, ϕ)=
∞∑

l=0

l∑
m=−l

(
alm jl(kr)+ blm yl(kr)

)
Y m

l (θ,ϕ). (15.143)

Laplace Expansion

Part of the importance of spherical harmonics lies in the completeness property, a conse-
quence of the Sturm-Liouville form of Laplace’s equation. Here this property means that
any function f (θ,ϕ) (with sufficient continuity properties) evaluated over the surface of a
sphere can be expanded in a uniformly convergent double series of spherical harmonics.4

4For a proof of this fundamental theorem, see E. W. Hobson (Additional Readings), chapter VII.
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This expansion, known as a Laplace series, takes the form

f (θ,ϕ)=
∞∑

l=0

l∑
m=−l

clmY m
l (θ,ϕ), (15.144)

with

clm =

〈
Y m

l

∣∣∣ f (θ,ϕ)
〉
=

2π∫
0

dϕ

π∫
0

sin θ dθ Y m
l (θ,ϕ)

∗ f (θ,ϕ). (15.145)

A frequent use of the Laplace expansion is in specializing the general solution of the
Laplace equation to satisfy boundary conditions on a spherical surface. This situation is
illustrated in the following example.

Example 15.5.1 SPHERICAL HARMONIC EXPANSION

Consider the problem of determining the electrostatic potential within a charge-free spheri-
cal region of radius r0, with the potential on the spherical bounding surface specified as an
arbitrary function V (r0, θ, ϕ) of the angular coordinates θ and ϕ. The potential V (r, θ, ϕ) is
the solution of the Laplace equation satisfying the boundary condition at r = r0 and regular
for all r ≤ r0. This means it must be of the form of Eq. (15.142), with the coefficients blm

set to zero to ensure a solution that is nonsingular at r = 0.
We proceed by obtaining the spherical harmonic expansion of V (r0, θ, ϕ), namely

Eq. (15.144), with coefficients

clm =

〈
Y m

l (θ,ϕ)

∣∣∣V (r0, θ, ϕ)
〉
.

Then, comparing Eq. (15.142), evaluated for r = r0,

V (r0, θ, ϕ)=

∞∑
l=0

l∑
m=−l

alm r l
0 Y m

l (θ,ϕ),

with the expression from Eq. (15.144),

V (r0, θ, ϕ)=

∞∑
l=0

l∑
m=−l

clmY m
l (θ,ϕ),

we see that alm = clm/r l
0, so

V (r, θ, ϕ)=
∞∑

l=0

l∑
m=−l

clm

(
r

r0

)l

Y m
l (θ,ϕ).

�
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Example 15.5.2 LAPLACE SERIES—GRAVITY FIELDS

This example illustrates the notion that sometimes it is appropriate to replace the spherical
harmonics by their real counterparts (in terms of sine and cosine functions). The gravity
fields of the Earth, the Moon, and Mars have been described by a Laplace series of the
form

U (r, θ, ϕ)=
G M

R

[
R

r
−

∞∑
l=2

l∑
m=0

(
R

r

)l+1 [
ClmY e

ml(θ,ϕ)+ SlmY o
ml(θ,ϕ)

]]
.

(15.146)

Here M is the mass of the body, R is its equatorial radius, and G is the gravitational con-
stant. The real functions Y e

ml and Y o
ml are defined by Morse and Feshbach (see Additional

Readings) as the unnormalized forms

Y e
ml(θ,ϕ)= Pm

l (cos θ)cos mϕ, Y o
ml(θ,ϕ)= Pm

l (cos θ)sin mϕ.

Note that Morse and Feshbach place the m index before l . The normalization integrals for
Y e and Y o are the topic of Exercise 15.5.6.

Satellite measurements have led to the numerical values for C20, C22, and S22 shown in
Table 15.5.

Table 15.5 Gravity Field Coefficients, Eq. (15.145).

Coefficienta Earth Moon Mars

C20 1.083× 10−3 (0.200± 0.002)× 10−3 (1.96± 0.01)× 10−3

C22 0.16× 10−5 (2.4± 0.5)× 10−5 (−5± 1)× 10−5

S22 −0.09× 10−5 (0.5± 0.6)× 10−5 (3± 1)× 10−5

aC20 represents an equatorial bulge, whereas C22 and S22 represent an azimuthal
dependence of the gravitational field.

�

Symmetry of Solutions

The angular solutions of given l but different m are closely related in that they lead to the
same solution for the radial equation. Except when l = 0, the individual solutions Y m

l are
not spherically symmetric, and we must recognize that a spherically symmetric problem
can have solutions with less than the full spherical symmetry. A classical example of this
phenomenon is provided by the Earth-Sun system, which has a spherically symmetric grav-
itational potential. However, the actual orbit of the Earth is planar. This apparent dilemma
is resolved by noting that a solution exists for any orientation of the Earth’s orbital plane;
that actually occurring was determined by “initial conditions.”

Returning now to the Laplace equation, we see that a radial solution for given l , i.e., r l

or r−l−1, is associated with 2l + 1 different angular solutions Y m
l (−l ≤ m ≤ l), no one

of which (for l 6= 0) has spherical symmetry. The most general solution for this l must
be a linear combination of these 2l + 1 mutually orthogonal functions. Put another way,
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the solution space of the angular solution of the Laplace equation for given l is a Hilbert
space containing the 2l+1 members Y−l

l (θ,ϕ), . . . ,Y l
l (θ,ϕ). Now, if we write the Laplace

equation in a coordinate system (θ ′, ϕ′) oriented differently than the original coordinates,
we must still have the same angular solution set, meaning that Y m

l (θ
′, ϕ′) must be a linear

combination of the original Y m
l . Thus, we may write

Y m
l (θ

′, ϕ′)=

l∑
m′=−l

Dl
m′mY m′

l (θ,ϕ), (15.147)

where the coefficients D depend on the coordinate rotation involved. Note that a coordi-
nate rotation cannot change the r dependence of our solution to the Laplace equation, so
Eq. (15.147) does not need to include a sum over all values of l . As a specific example, we
see (Fig. 15.12) that for l = 1 we have three solutions that appear similar, but with differ-
ent orientations. Alternatively, from Table 15.4 we see that the angular solutions Y m

1 have
forms proportional to z/r , (x + iy)/r , and (x − iy)/r , meaning that they can be combined
to form arbitrary combinations of x/r , y/r , and z/r . Since a rotation of the coordinate
axes converts x , y, and z into linear combinations of each other, we can understand why
the set of three functions Y m

1 (m = 0,1,−1) is closed under coordinate rotations.
For l = 2, there are five possible m values, so the angular functions of this l value form

a closed space containing five independent members. A fuller discussion of these spaces
spanned by angular functions is part of what will be considered in Chapter 16.

Applying the preceding analysis to solutions of the Schrödinger equation, the eigenval-
ues of which are determined by solving its radial ODE for various values of the separation
constant l(l+1), we see that all solutions for the same l but different m will have the same
eigenvalues E and radial functions, but will differ in the orientation of their angular parts.
States of the same energy are called degenerate, and the independence of E with respect
to m will cause a (2l + 1)-fold degeneracy of the eigenstates of given l .

Example 15.5.3 SOLUTIONS FOR l = 1 AT ARBITRARY ORIENTATION

Let’s do this problem in Cartesian coordinates. The angular solution Y 0
1 to Laplace’s equa-

tion is shown in Table 15.4 to be proportional to z/r , which for our present purposes we
write (r · êz)/r , where êz is a unit vector in the z direction. We seek a similar solution,
with êz replaced by an arbitrary unit vector êu = cosα êx + cosβ êy + cosγ êz , where
cosα, cosβ , and cosγ are the direction cosines of êu . We get immediately

(r · êu)

r
=

x

r
cosα +

y

r
cosβ +

z

r
cosγ.

Consulting the Cartesian-coordinate expressions for the spherical harmonics in Table 15.4,
we see that the above expression can be written

(r · û)
r
=

√
8π

3

(
Y−1

1 − Y 1
1

2

)
cosα +

√
8π

3

(
−Y−1

1 − Y 1
1

2i

)
cosβ +

√
4π

3
Y 0

1 cosγ.

This shows that all three Y m
1 are needed to reproduce Y 0

1 at an arbitrary orientation. Similar
manipulations can be carried out for other l and m values. �
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Further Properties

The main properties of the spherical harmonics follow directly from those of the functions
2lm and 8m . We summarize briefly:

Special values. At θ = 0, the polar direction in the spherical coordinates, the value of ϕ
becomes immaterial, and all Y m

l that have ϕ dependence must vanish. Using also the fact
that Pl(1)= 1, we find in general

Y m
l (0, ϕ)=

√
2l + 1

4π
δm0. (15.148)

A similar argument for θ = π leads to

Y m
l (π,ϕ)= (−1)l

√
2l + 1

4π
δm0. (15.149)

Recurrence formulas. Using the recurrence formulas developed for the associated Leg-
endre functions, we get for the spherical harmonics with arguments (θ,ϕ):

cos θ Y m
l =

[
(l −m + 1)(l +m + 1)

(2l + 1)(2l + 3)

]1/2

Y m
l+1

+

[
(l −m)(l +m)

(2l − 1)(2l + 1)

]1/2

Y m
l−1, (15.150)

e±iϕ sin θ Y m
l =∓

[
(l ±m + 1)(l ±m + 2)

(2l + 1)(2l + 3)

]1/2

Y m±1
l+1

±

[
(l ∓m)(l ∓m − 1)

(2l − 1)(2l + 1)

]1/2

Y m±1
l−1 . (15.151)

Some integrals. These recurrence relations permit the ready evaluation of some inte-
grals of practical importance. Our starting point is the orthonormalization condition,
Eq. (15.138). For example, the matrix elements describing the dominant (electric dipole)
mode of interaction of an electromagnetic field with a charged system in a spherical har-
monic state are proportional to ∫ [

Y m′
l ′

] ∗
cos θ Y m

l d�.

Using Eq. (15.150) and invoking the orthonormality of the Y m
l , we find∫ [

Y m′
l ′

] ∗
cos θ Y m

l d�=

[
(l −m + 1)(l +m + 1)

(2l + 1)(2l + 3)

]1/2

δm′m δl ′,l+1

+

[
(l −m)(l +m)

(2l − 1)(2l + 1)

]1/2

δm′m δl ′,l−1. (15.152)

Equation (15.152) provides a basis for the well-known selection rule for dipole radiation.
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Additional formulas involving products of three spherical harmonics and the detailed
behavior of these quantities under coordinate rotations are more appropriately discussed in
connection with a study of angular momentum and are therefore deferred to Chapter 16.

Exercises

15.5.1 Show that the parity of Y m
l (θ,ϕ) is (−1)l . Note the disappearance of any m dependence.

Hint. For the parity operation in spherical polar coordinates, see Exercise 3.10.25.

15.5.2 Prove that Y m
l (0, ϕ)=

(
2l + 1

4π

)1/2

δm0.

15.5.3 In the theory of Coulomb excitation of nuclei we encounter Y m
l (π/2,0). Show that

Y m
l

(π
2
,0
)
=

(
2l + 1

4π

)1/2
[(l −m)! (l +m)! ]1/2

(l −m)!! (l +m)!!
(−1)(l−m)/2, l +m even,

= 0, l +m odd.

15.5.4 The orthogonal azimuthal functions yield a useful representation of the Dirac delta
function. Show that

δ(ϕ1 − ϕ2)=
1

2π

∞∑
m=−∞

eim(ϕ1−ϕ2).

Note. This formula assumes that ϕ1 and ϕ2 are restricted to 0 ≤ ϕ < 2π . Without this
restriction there will be additional delta-function contributions at intervals of 2π in
ϕ1 − ϕ2.

15.5.5 Derive the spherical harmonic closure relation

∞∑
l=0

+l∑
m=−l

[
Y m

l (θ1, ϕ1)
] ∗

Y m
l (θ2, ϕ2)=

1

sin θ1
δ(θ1 − θ2) δ(ϕ1 − ϕ2)

= δ(cos θ1 − cos θ2) δ(ϕ1 − ϕ2).

15.5.6 In some circumstances it is desirable to replace the imaginary exponential of our spher-
ical harmonic by sine or cosine. Morse and Feshbach (see Additional Readings) define

Y e
ml = Pm

l (cos θ) cos mϕ, m ≥ 0,

Y o
ml = Pm

l (cos θ) sin mϕ, m > 0,

and their normalization integrals are

2π∫
0

π∫
0

[Y e or o
mn (θ,ϕ)]2 sin θ dθ dϕ =

4π

2(2n + 1)

(n +m)!

(n −m)!
, n = 1,2, . . .

= 4π, n = 0.
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These spherical harmonics are often named according to the patterns of their positive
and negative regions on the surface of a sphere: zonal harmonics for m = 0, sectoral har-
monics for m = n, and tesseral harmonics for 0<m < n. For Y e

mn , n = 4, m = 0, 2, 4,
indicate on a diagram of a hemisphere (one diagram for each spherical harmonic) the
regions in which the spherical harmonic is positive.

15.5.7 A function f (r, θ, ϕ) may be expressed as a Laplace series

f (r, θ, ϕ)=
∑
l,m

almr lY m
l (θ,ϕ).

Letting 〈· · · 〉sphere denote the average over a sphere centered on the origin, show that〈
f (r, θ, ϕ)

〉
sphere

= f (0,0,0).

15.6 LEGENDRE FUNCTIONS OF THE SECOND KIND

The Legendre equation, a linear second-order ODE, has two independent solutions.
Writing this equation in the form

y′′ −
2x

1− x2 y′ −
l(l + 1)

1− x2 y = 0, (15.153)

and restricting consideration to integer l ≥ 0, our objective is to find a second solution
that is linearly independent from the Legendre polynomials Pl(x). Using the procedure of
Section 7.6, and denoting the second solution Ql(x), we have

Ql(x)= Pl(x)

x∫ exp

 x∫
2x/(1− x2)dx


[Pl(x)]2

dx

= Pl(x)

x∫
dx

(1− x2)[Pl(x)]2
dx . (15.154)

Since any linear combination of Pl and the right-hand side of Eq. (15.154) is equally valid
as a second solution of the Legendre ODE, we note that Eq. (15.154) defines both the scale
and the specific functional form of Ql .

Using Eq. (15.154), we can obtain explicit formulas for the Ql . We find (remembering
that P0 = 1 and expanding the denominator in partial fractions):

Q0(x)=

x∫
1

1− x2 dx =
1

2

∫ [
1

1+ x
+

1

1− x

]
dx =

1

2
ln

(
1+ x

1− x

)
. (15.155)
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Continuing to Q1, the partial fraction expansion is a bit more involved, but leads to a
simple result. Noting that P1(x)= x , we have

Q1(z)= x

x∫
dx

(1− x2)x2 dx =
x

2
ln

(
1+ x

1− x

)
− 1. (15.156)

With significantly more work, we can obtain Q2:

Q2(x)=
1

2
P2(x) ln

(
1+ x

1− x

)
−

3x

2
. (15.157)

This process can in principle be repeated for larger l , but it is easier and more instructive to
verify that the forms of Q0, Q1, and Q2 are consistent with the Legendre-function recur-
rence relations,5 and then to obtain Ql of larger l by recurrence. The recurrence formulas,
originally written for Pl in Eq. (15.18), are

(l + 1)Ql+1(x)− (2l + 1)x Ql(x)+ l Ql−1(x)= 0, (15.158)

(2l + 1)Ql(x)= Q′l+1(x)− Q′n−1(x). (15.159)

Verification that Q0, Q1, and Q2 satisfy these recurrence formulas is straightforward and
is left as a exercise. Extension to higher l leads to the formula

Ql(x)=
1

2
Pl(x) ln

(
1+ x

1− x

)
−

2l − 1

1 · l
Pl−1(x)−

2l − 5

3(l − 1)
Pl−3(x)− · · · . (15.160)

Many applications using the functions Ql(x) involve values of x outside the range
−1 < x < 1. If Eq. (15.160) is extended, say, beyond +1, then 1 − x will become neg-
ative and make a contribution ±iπ to the logarithm, thereby making a contribution ±iπ Pl

to Ql . Our solution will still remain a solution if this contribution is removed, and it is
therefore convenient to define the second solution for x outside the range (−1,+1) with

ln

(
1+ x

1− x

)
replaced by ln

(
x + 1

x − 1

)
.

From a complex-variable perspective, the logarithmic term in the solutions Ql is related to
the singularity in the ODE at z =±1, reflecting the fact that to make the solutions single-
valued it will be necessary to make a branch cut, traditionally taken on the real axis from
−1 to +1. Then the Ql with the (1+ x)/(1− x) logarithm are recovered on −1< x < 1
if we average the results from the (z + 1)/(z − 1) form on the two sides of the branch cut.

The behavior of the Ql is illustrated by plots for x < 1 in Fig. 15.13 and for x > 1 in
Fig. 15.14. Note that there is no singularity at x = 0 but all the Ql exhibit a logarithmic
singularity at x = 1.

5In Section 15.1 we showed that any set of functions that satisfies the recurrence relations reproduced here also satisfies the
Legendre ODE.
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FIGURE 15.13 Legendre functions Ql(x), 0≤ x < 1.
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FIGURE 15.14 Legendre functions Ql(x), x > 1.
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Properties

1. An examination of the formulas for Ql(x) reveals that if l is even, then Ql(x) is an
odd function of x , while Ql(x) of odd l are even functions of x . More succinctly,
Ql(−x)= (−1)l+1 Ql(x).

2. The presence of the logarithmic term causes Ql(1)=∞ for all l .
3. Because x = 0 is a regular point of the Legendre ODE, Ql(0) must for all l be finite.

The symmetry of Ql causes Ql(0) to vanish for even l; it is shown in the next subsec-
tion that for odd l ,

Q2s+1(0)= (−1)s+1 (2s)!!

(2s + 1)!!
. (15.161)

4. From the result of Exercise 15.6.3, it can be shown that Ql(∞)= 0.

Alternate Formulations

Because the singular points of the Legendre ODE nearest to the origin are at the points±1,
it should be possible to describe Ql(x) as a power series about the origin, with convergence
for |x | < 1. Moreover, since the only other singular point of the Legendre equation is a
regular singular point at infinity, it should also be possible to express one of its solutions
as a power series in 1/x , i.e., a series about the point at infinity, which must converge for
|x |> 1.

To obtain a power series about x = 0, we return to the discussion of the Legendre ODE
presented in Section 8.3, where we saw that an expansion of the form

y(x)=
∞∑
j=0

a j x s+ j (15.162)

led to an indicial equation with solutions s = 0 and s = 1, and with the a j satisfying the
recurrence formula, for eigenvalue l(l + 1),

a j+2 = a j
(s + j)(s + j + 1)− l(l + 1)

(s + j + 2)(s + j + 1)
, j = 0, 2, . . . . (15.163)

When l is even, we found that Pl(x) was obtained as the solution y(x) from the indicial-
equation solution s = 0, and we did not make use (for even l) of the solution from s = 1
because that solution was not a polynomial and did not converge at x = 1. However, we are
now seeking a second solution and are no longer restricting attention to those that converge
at x =±1. Thus, a second solution linearly independent of Pl must be that produced (again,
for even l) as the series obtained when s = 1. This second solution will have odd parity,
and therefore must be proportional to Ql(x).

Continuing, for even l , with s = 1, Eq. (15.163) becomes

a j+2 = a j
(l + j + 2)(l − j − 1)

( j + 2)( j + 3)
,
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corresponding to

Ql(x)= bl

[
x −

(l − 1)(l + 2)

3!
x3
+
(l − 3)(l − 1)(l + 2)(l + 4)

5!
x5
− · · ·

]
. (15.164)

Here bl is the value of the coefficient of the expansion needed to give the formula for Ql

the proper scaling. For odd l , the corresponding formula, with s = 0, is an even function
of x , and must therefore be proportional to Ql :

Ql(x)= bl

[
1−

l(l + 1)

2!
x2
+
(l − 2)l(l + 1)(l + 3)

4!
x4
· · ·

]
. (15.165)

To find the values of the scale factors bl , we turn now to the explicit forms for Q0 and
Q1, Eqs. (15.155) and (15.156). Expanding the logarithm, we find (again keeping only the
lowest-order terms)

Q0(x)= x + · · · , Q1(x)=−1+ · · · .

From the recurrence formula, Eq. (15.158), keeping only the lowest-order contributions,
we find

2Q2 = 3x Q1 − Q0 −→ Q2 =−2x + · · ·

3Q3 = 5x Q2 − 2Q1 −→ Q3 = 2/3+ · · ·

4Q4 = 7x Q3 − 3Q2 −→ Q4 = 8x/3+ · · ·

· · · = · · · .

These results generalize to

bl =


(−1)p (2p)!!

(2p− 1)!!
l even, l = 2p,

(−1)p+1 (2p)!!

(2p+ 1)!!
l odd, l = 2p+ 1.

(15.166)

One may now combine the values of the coefficients bl with the expansions in Eqs. (15.164)
and (15.165) to obtain entirely explicit series expansions of Ql(x) about x = 0. This is the
topic of Exercise 15.6.2.

As mentioned earlier, the point x =∞ is a regular singular point, and expansion about
this point yields an expansion of Ql(x) in inverse powers of x . That expansion is consid-
ered in Exercise 15.6.3.

Exercises

15.6.1 Show that if l is even, Ql(−x)=−Ql(x), and that if l is odd, Ql(−x)= Ql(x).

15.6.2 Show that



ArfKen_Ch15-9780123846549.tex

Additional Readings 771

(a) Q2p(x)= (−1)p 22p
p∑

s=0

(−1)s
(p+ s)! (p− s)!

(2s + 1)! (2p− 2s)!
x2s+1

+ 22p
∞∑

s=p+1

(p+ s)! (2s − 2p)!

(2s + 1)! (s − p)!
x2s+1, |x |< 1,

(b) Q2p+1(x)= (−1)p+122p
p∑

s=0

(−1)s
(p+ s)! (p− s)!

(2s)! (2p− 2s + 1)!
x2s

+ 22p+1
∞∑

s=p+1

(p+ s)! (2s − 2p− 2)!

(2s)! (s − p− 1)!
x2s, |x |< 1.

15.6.3 (a) Starting with the assumed form

Ql(x)=
∞∑
j=0

bl j xk− j ,

show that

Ql(x)= bl0x−l−1
∞∑

s=0

(l + s)! (l + 2s)! (2l + 1)!

s! (l!)2 (2l + 2s + 1)!
x−2s .

(b) The standard choice of bl0 is

bl0 =
2l(l!)2

(2l + 1)!
,

leading to the final result

Ql(x)= x−l−1
∞∑

s=0

(l + 2s)!

(2s)!! (2l + 2s + 1)!!
x−2s .

Show that this choice of bl0 brings this negative power-series form of Qn(x) into
agreement with the closed-form solutions.

15.6.4 (a) Using the recurrence relations, prove (independent of the Wronskian relation) that

n
[

Pn(x)Qn−1(x)− Pn−1(x)Qn(x)
]
= P1(x)Q0(x)− P0(x)Q1(x).

(b) By direct substitution show that the right-hand side of this equation equals 1.

Additional Readings
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