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Abstract

We consider a generalization of the representation of the so-called co-Minkowski plane (due
to H. and R. Struve) to an abelian group (V;+) and a commutative subgroup G of Aut(V;+).
If P = G × V satis7es suitable conditions then an invariant re8ection structure (in the sense
of Karzel (Discrete Math. 208=209 (1999) 387–409)) can be introduced in P which carries
the algebraic structure of K-loop on P (cf. Theorem 1). We investigate the properties of the
K-loop (P;+) and its connection with the semi-direct product of V and G. If G is a 7xed
point free automorphism group then it is possible to introduce in (P;+) an incidence bundle
in such a way that the K-loop (P;+) becomes an incidence 7bered loop (in the sense of
Zizioli (J. Geom. 30 (1987) 144–151)) (cf. Theorem 3).
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0. Introduction

In [3] there was introduced the concept of an invariant re*ection structure (P; 0; 0),
that is a set P with a 7xed element 0 and a map 0 :P→Sym P; x→ x0 such that
x0(0)= x, x0 ◦ x0 = id and x0 ◦y0 ◦ x0 = (x0y0(x))0 for all x; y∈P, and it was proved
that (P;+) for a+ b := a0 ◦ 00(b) becomes a K-loop.
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If one takes a so-called co-Minkowski plane (cf. [8,9]) (M;L;≡) then in the motion
group 
 of (M;L;≡) to each point x∈M there exists exactly one re8ection x̃ in x
and the point set M splits into two subsets P and P− with the properties:

1. M=P ∪̇P−

2. ∀�∈
, �(P)=P and �(P−)=P−

3. any two points a; b∈P (resp. P−) have exactly one midpoint m in P (resp. in P−),
i.e. m̃(a)= b.

Therefore, after 7xing a point 0∈P, denoting for any x∈P the midpoint of 0 and x in P
by x ′ and setting x0 := x̃′ then (P; 0; 0) is an invariant re8ection structure. Since in the
classical co-Minkowski plane the subset P has the analytical representation P=R+×R
(R+ := {x∈R | x¿0}) and the re8ection in the point (�; a)∈P has the form

(∗) ](�; a) :
{

P → P
(�; x) → (�2�−1;−x + (��−1 + ��−1)a)

this procedure can be generalized. We replace (R;+) by an arbitrary abelian group
(V;+) and (R+; ·) by a commutative subgroup (G; ·) of Aut(V;+). Then in the prod-
uct set P :=G×V we can associate by (∗) to each element (�; a)∈P an involutory
permutation ](�; a).

Here we discuss the following problems:

1. Under which conditions we derive from G×V an invariant re8ection structure and
so turn P=G×V in a K-loop (P;+) (cf. Theorem 1).

2. In the case that (P;+) is a K-loop what can be said of its structure (cf. Section 2).
3. In the co-Minkowski plane the intersections of P with lines, passing through the

7xed point 0, form subgroups of the loop (P;+). In the general case, is there also
a 7bration of (P;+) in subgroups or in subloops?

4. The set P can be turned via the semi-direct product GnV in a group (P; ·)
(which can be considered as an aNne permutation group of (V;+)) by setting:
(�; a)· :V →V ; x→ a + �x. What are the relations between (P; ·) and (P;+) in
particular when (P; ·) is a subset of a kinematic stripe space (cf. [4,5])?

1. Basic de�nitions and preliminary results

Let (L;+) be a loop; for any a∈L we denote by −a∈L the element of L such that
a+ (−a)= 0; moreover let a+ :L→L; x→ a+ x and L+ := {a+ | a∈L}.
Since (L;+) is a loop, L+ ⊆Sym L, hence �a; b := ((a+b)+)−1 ◦ a+ ◦ b+∈Sym L and

the structure group � := 〈{�a; b | a; b∈L}〉 is a subgroup of Sym L. For any a∈L let
Z(a) := {x∈L | a+ x= x + a}.
According to Kerby and Wefelscheid, we say that a loop (L;+) is a K-loop if the

following conditions hold:

for all a; b∈L : −(a+ b)=−a+ (−b); �a; b = �a; b+a∈Aut(L;+).
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By [3] one can derive a K-loop from a so-called invariant re*ection structure
(P; 0; 0) that is a set P �= ∅, a 7xed element 0∈P and a map 0 :P→ J :=
{�∈Sym P | �2 = id}; x→ x0 such that the following conditions hold:

(B1) ∀x∈P; x0(0)= x;
(B2) ∀a∈P; a0 ◦P0 ◦ a0 =P0 (where P0 := {a0 | a∈P}).
Then we have (cf. [3], Section 6):

(1:1) For all a; b∈P let a+ := a0 ◦ 00, a+ b := a+(b), −a := 00(a) then

(i) (P;+) is a K-loop;
(ii) ∀a∈P : −a+ a= a+ (−a)= 0, �a;a = id, �a;−a = id;
(iii) ∀a; b∈P : a+ ◦ b+ ◦ a+ = (a+ (b+ a))+ (Bol identity).

Given a loop (L;+), a set F⊆ 2L is called a bundle with respect to 0 or simply
0-bundle if:

(F1) ∀X∈F: |X |¿2;
(F2)

⋃
F=L;

(F3) ∀A; B∈F; A �=B: A∩B= {0}.

If furthermore the following conditions (cf. [10]):

(F4) ∀a∈L; ∀X∈F: 0∈a+ X ⇒ a+ X ∈F;
(F5) ∀X∈F; ∀�∈�: �(X )∈F;

are satis7ed then F is called an incidence 0-bundle and (L;+;F) a 8bered loop if
moreover all X∈F are subloops of (L;+).

Remark 1. We observe that if (L;+;F) is a 7bered loop then condition (F4) is
trivially veri7ed.

A triple (P;L;+) is an incidence loop (group) if (P;L) is an incidence
space, (P;+) is a loop (group) and for any a∈P, a+ is a collineation of (P;L), i.e.
a+∈Aut(P;L).
Incidence loops and loops with an incidence 0-bundle are the same by the following

(see [10]):

(1.2) Let (L;+) be a loop then:

(i) if (L;L;+) is an incidence loop then L(0) := {X ∈L | 0∈X } is an incidence
0-bundle;

(ii) if F⊆ 2L is an incidence 0-bundle then (L;L;+) with L:={a+X | a∈L; X ∈F}
is an incidence loop.
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An incidence group (P;L;+) is said to be a kinematic space (cf. [2]) if for any
X∈L(0) := {A∈L | 0∈A}:

(i) X is a subgroup of (P;+),
(ii) for any a∈P, a+ X − a∈L(0).

2. Derivation from a pair of groups

Let (V;+) be an abelian group and let (G; ·)6Aut(V;+) verifying the following
conditions: (G; ·) is abelian and uniquely divisible by 2 (i.e. ∀�∈G ∃1�∈G such that
�2 = �; we shall write

√
� := �).

We explicitly note that since (V;+) is commutative, (End V;+; ·) is a ring
and since (G; ·) is abelian the subring 〈G〉+ of End(V;+) generated by G is
commutative.
Let us now consider the cartesian product

P :=G×V := {(�; a) | �∈G; a∈V}:

Our aim is to introduce a re8ection structure on P, thus for any (�; a)∈P
we de7ne the map ](�; a) :P→P; (�; x)→ ](�; a)(�; x) := (�2�−1; (1 + ��−1)
(a) − ��−1(x)) where (1 + ��−1)∈End V (here 1 denotes, as usual, the identity of
(G; ·)).
In the following, for any �∈End V and for any x∈V; we shall write �x instead of

�(x) in order to simplify notations.

(2.1) For (�; a); (�; b)∈P:

(i) ](�; a)∈J ∗ := {�∈Sym P | �2 = id}\{id};
(ii) Fix ](�; a)= {(�; x)∈P | x + x= a+ a};
(iii) ](�; a) ◦ ](�; b) ◦ ](�; a)= ](�2�−1; (1 + ��−1)a− ��−1b).

Proof. (ii) We have (�; x)∈Fix ](�; a) if and only if �2�−1 = � and (1+��−1)a−(��−1)
x= x. These equalities imply �= � and x + x= a+ a.

(2:2) For any (�; b)∈P there exists exactly one (�; x)∈P such that ](�; x)(1; 0)= (�; b)
if and only if 1 +

√
�∈Aut(V;+).

Proof. From ](�; x)(1; 0)= (�2; (1 + �)x)= (�; b) we have �2 = � and (1 + �)x= b;
thus, �=

√
� and (1+

√
�)x= b. Hence our assumption is valid if and only if for any

�∈G; 1 +
√

�∈Aut(V;+).

By (2:1) and (2:2) we are now able to de7ne an invariant re8ection structure on P
and therefore, by (1:1), an addition + such that (P;+) becomes a K-loop.
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Theorem 1. If the pair (G; V ) satis8es the following conditions:

1. (G; ·) is uniquely divisible by 2;
2. 1 + G⊆Aut(V;+)

and if we set 0 :P→ J ; (�; a)→ (�; a)0 := ](
√
�; (1 +

√
�)−1a) then (P; 0; (1; 0)) is an

invariant re*ection structure and if we de8ne:

(�; a) + (�; b) := (�; a)0 ◦ (1; 0)0(�; b)= (��; [(1 +
√
��)=(1 +

√
�)]a+

√
�b)

then (P;+) is a K-loop with the properties:

(i) −(�; a)= (�−1;−�−1a);
(ii) (1; V ) and (G; 0), respectively, are abelian subgroups of the loop (P;+) isomor-

phic to (V;+) and (G; ·), respectively;
(iii) for any (�; a); (�; b); (�; c)∈P,

�(�;b);(�;c)(�; a)= (�; (1− �)d+ a)

where

d :=
1

1 +
√

��

(
1−√

�

1 +
√

�
b− 1−√�

1 +
√
�
c

)
:

Proof. By assumptions 1, 2 of theorem 1 and the proof of (2:2) it follows that for any
(�; a) the map (�; a)0 := ](

√
�; (1 +

√
�)−1a) is the uniquely determined involution of

P̃ mapping (1; 0) onto (�; a). Consequently (P; 0; (1; 0)) satis7es (B1) and by (2.1(iii))
also (B2), and so by (1:1), (P;+) is a K-loop.
(iii) The formula can be obtained by direct calculation.

From now on we assume always that (G; V ) satis7es conditions 1 and 2 of Theorem 1
and |G|¿1.
Now we study the action of the structure group � on P.
For each d∈V let #d :P→P; (�; x)→ (�; (1− �)d+x).
Then #d is an automorphism of (P;+) and for d1; d2∈V we have

#d1+d2 =#d1 ◦#d2 :

If |G|¿1, #d is the identity if and only if d=0, and then

# :
{

V → Aut(P;+);
d → #d;

is a monomorphism of (V;+) in Aut(P;+) consequently R� :=#(V ) is a commutative
subgroup of Aut(P;+) and #′ :V → R� with #′(d) :=#d an isomorphism. By Theorem
1 (iii) the structure group � is a subgroup of R� and so V ′ :=#′−1(�) a subgroup of
(V;+). Moreover by Theorem 1(iii), (1+

√
�)(1+

√
�)(1+

√
��)d=(1−�)b−(1−�)c,

hence for any �∈G; v∈V we set �= �; c=0, and any �∈G, b=(1 +
√

�)(1 +
√
�)
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(1+
√

��)v and get d=(1−�)v. This shows #((1−G)V )⊆�. Since (1+G)⊆Aut(P;+),
d=(1 +

√
�)−1(1 +

√
�)−1(1 +

√
��)−1((1 − �)b − (1 − �)c)∈〈(1 − G)V 〉 for any

(�; b); (�; c)∈P hence #−1(�)=V ′ = 〈(1 − G)V 〉. Thus, we can state the following
theorem.

Theorem 2. Let |G|¿1, V ′ := 〈(1−G)V 〉 and �∈G∗ :=G\{id}. Then � has the fol-
lowing properties:

(i) (V ′;+)∼=�6 R�∼=(V;+);
(ii) �(�; V )= (�; V )= R�(�; V )= (�; V ); �(�; V ′)= (�; V ′);
(iii) �|(�;V )

∼=((1− �)V ′;+)∼=V ′=ker(1− �);
(iv) R�∼= R�|(�;V ) ⇔Fix �= {0}⇒Fix �|V ′ = {0}⇔�∼=�|(�;V );

Fix �= {0}⇒V ∼=(1− �)V6V ′6V ;
(v) �|(�;V ) acts transitively on (�; V )⇔ (1− �)V =V (⇒V ′ =V );
(vi) �|(�;V ) acts regularly on (�; V )⇔ (1− �)∈Aut(V;+)⇒V ′ =V and �= R�.

Proof. (iii) By (ii) ! :�→�|(�;V ) is a homomorphism and if �∈�, d :=#′−1(�)∈V ′

then for any x∈V : �(�; x)= (�; (1 − �)d + x) showing �|(�;V )
∼=((1 − �)V ′;+) and

�|(�;V ) = id |(�;V ) ⇔ (1− �)d=0⇔d∈ker(1− �).
(iv) If Fix �= {0} then (1 − �) is a monomorphism of V hence V ∼=(1 − �)V6

〈(1− G)V 〉=V ′6V .

(2.3) Let (�; a)∈P\(1; V ) be given and let

[(�; a)] := {(�; x)∈P | (1− �)a=(1− �)x}:
Then:

(i) [(�; a)]= [−(�; a)]; [(�; 0)]= (G;Fix �);
(ii) [(�; a)] is a subloop of (P;+) such that for any �∈ R� and d :=#−1(�):

�[(�; a)]= [�(�; a)]= [(�; (1− �)d+ a)];

(iii) (�; a) + (�; b)= (�; b) + (�; a)⇔ (1−√��)((1− �)a− (1− �)b)= 0;
(iv) Z(�; a) ⊇ [(�; a)]∪ (�−1; V ), Z(�; a)∩Z(−(�; a)) ⊇ [(�; a)];
(v) [(�; a)]∩ (�; V ) �= ∅⇔ (1− �)a∈(1− �)V ;
(vi) (�; b)∈[(�; a)]∩ (�; V )⇒ [(�; a)]∩ (�; V )= (�; b+ Fix �);
(vii) ∀a∈(1− �)V : [(�; a)]∩ (�; V ) �= ∅.

Proof. (i) (�; x)∈[−(�; a)]= [(�−1;−�−1(a))] (by de7nition) ⇔ (1 − �)(−�−1(a))=
(1−�−1)x⇔ (1−�)a=(−�+1)x=(1−�)x⇔ (�; x)∈[(�; a)]. Hence [−(�; a)]= [(�; a)].

(ii) Let (�; x); ("; y)∈[(�; a)] i.e. (1− �)a=(1− �)x and (1− ")a=(1− �)y, then
(�; x)+ ("; y)= (�"; (1+

√
�")=(1+

√
�)x+

√
�y) and (1− �)((1+

√
�")=(1+

√
�)x+√

�y)= (1 +
√
�")=(1 +

√
�)(1− �)x +

√
�(1− �)y=(1 +

√
�")=(1 +

√
�)(1− �)a+√

�(1− ")a=(1− �")a so (�; x) + ("; y)∈[(�; a)].
Moreover (�; x)∈[(�; a)] implies −(�; x)∈[(�; a)].
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Let us now consider the equations
(�; x)+(�1; a1)= (�2; a2), (�1; a1)+("; y)= (�2; a2) with (�i; ai)∈[(�; a)] and i=1; 2.

Since (P;+) is a K-loop we know (cf. [6]) that the solutions are given by
(�; x)=−(�1; a1) + (((�1; a1) + (�2; a2))− (�1; a1)), ("; y)= − (�1; a1) + (�2; a2); thus,
by our previous considerations, (�; x); ("; y)∈[(�; a)] and ([(�; a)];+) is a subloop
of (P;+). �(�; x)= (�; (1 − �)d + x)∈[(�; (1 − �)d + a)]⇔ (1 − �)((1 − �)d + a)=
(1− �)((1− �)d+ x)⇔ (1− �)a=(1− �)x⇔ (�; x)∈[(�; a)].
(iii) (�; a) + (�; b)= (�; b) + (�; a)⇔ (1 +

√
��)=(1 +

√
�)a +

√
�b=(1 +

√
��)=

(1+
√

�)b+
√

�a⇔ (1−√��)(1−√�)=(1+
√
�)a=(1−√��)(1−√

�)=(1+
√

�)b⇔
(1−√��)(1+

√
�)(1+

√
�)((1− �)a− (1− �)b)= 0; since (1+G)⊆Aut(V;+), the

last equation is equivalent to (1−√��)((1− �)a− (1− �)b)= 0.
(iv) By (iii) Z(�; a)= {(�; x)∈P | (1−√

��)((1−�)a−(1−�)x=0}. Hence [(�; a)]⊆
Z(�; a) and also {(�−1; x) | x∈V}⊆Z(�; a).
Moreover, Z(−(�; a))=Z(�−1; �−1(−a))⊇ [−(�; a)]∪ (�; V ) and by (i) we have:

[(�; a)]⊆Z(�; a)∩Z(−(�; a)).
(v)–(vi) Let (�; b); (�; x)∈[(�; a)]∩ (�; V ), then (1− �)b=(1− �)a and (1− �)x=

(1− �)a, i.e. (1− �)a∈(1− �)V and (1− �)x=(1− �)b that is (1− �)(x − b)= 0.
(vii) By assumption there is b∈V such that a=(1− �)b hence (�; a)= (�; (1− �)b)

and (1 − �)a=(1 − �)(1 − �)b=(1 − �)(1 − �)b∈(1 − �)V ; so by (v) we have
[(�; a)]∩ (�; V ) �= ∅.
It follows from (2.3(vi)(vii)):

(2.4) Let �∈G∗; then the following statements are equivalent:

(i) Fix �= {0};
(ii) ∀�∈G; ∀a∈V |[(�; a)]∩ (�; V ) |61;
(iii) ∀�∈G; ∀a∈(1− �)V |[(�; a)]∩ (�; V )|=1.

We introduce now the following:

De�nition. An element (�; a)∈P\{(1; 0)} is called transversal if [(�; a)]∩ (�; V ) �= ∅
for any �∈G, or equivalently, by (2.3.v), (1 − G)a⊆ (1 − �)V . Then we say that
[(�; a)] is transversal too.

From this de7nition it follows that any transversal (�; a)∈P must have � �=1 and
(�; 0) is transversal for any �∈G∗.

(2.5) Let �∈G∗ and a∈V then

(i) if a∈(1− �)V then (�; a) is transversal;
(ii) if (1− �) is surjective then (�; a) is transversal.

(2.6) For any �∈ R� and for any transversal (�; a)∈P, �(�; a) is transversal.

Proof. By (2:4(ii)) and Theorem 2(ii), for any �∈G [�(�; a)]∩(�; V )= �[(�; a)]∩
�(�; V )= �([(�; a)]∩ (�; V )) �= ∅.
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3. The K-loop (P;+) and the group G nV

By the assumption of Section 2 we can turn P=G×V also in a group (P; ·) via
the semidirect product:

(�; a) · (�; b) := (��; a+ �b):

Then the re8ection ](�; a) de7ned in Section 2 is exactly the map:

](�; a) :
{

P → P
(�; x) → (�; a) · (�; x)−1 · (�; a)

and, if � �=1, the centralizer of (�; a) in the group (P; ·) is exactly the set [(�; a)]
(cf. (2:3)). Assumptions 1 and 2 of Theorem 1 are equivalent to requiring the
group (P; ·)=GnV to be uniquely divisible by 2.

Remark 2. It is well known that to any group G one can associate a discrete symmetric
space (see e.g. [7]), namely the so-called special re*ection groupoid in the sense of
[1], by setting, for any a∈G, ã :G→G; x→ ax−1a. If (and only if) G is uniquely
divisible by 2, then we can de7ne, for any a∈G, a0 :G→G; x→√̃

a(x), so that
(G; 0; 1) becomes an invariant re8ection structure in the sense of Section 1. So we
note that from any group G one can derive, in the sense of Section 2, a K-loop if G
is uniquely divisible by 2.

The semidirect product (P=GnV; ·) has a representation as an aNne permutation
group of V by:

(�; a)·:
{

V → V;
x → �x + a:

Then, for each a∈V; the stabilizer Pa := {(�; x)∈P | (�; x)·(a)= a} is a commutative
subgroup of (P; ·) which intersects the normal subgroup (1; V ) in the neutral element
(1; 0) of (P; ·) and (P;+). But we can say more:

(3:1) For any a∈V we have Pa = {(�; (1− �)a) | �∈G} and:

(i) ∀�∈G∗, P a ⊆ [(�; (1− �)a)] and the equality holds if Fix �= {0}.
(ii) The operation “·” and the loop operation “+” coincide in P a, and (P a;+) is a

commutative subgroup of (P;+) (and of any transversal subloop [(�; (1 − �)a)]
with �∈G∗).

Proof. (i) Let (�; b)∈[(�; (1 − �)a)], i.e. (1 − �)b=(1 − �)(1 − �)a, then (1 − �)
(b− (1− �)a)= 0 and this gives b=(1− �)a if Fix �= {0}.
(ii) For �; �′∈G we have
(�; (1− �)a) · (�′; (1− �′)a)= (��′; (1− ��′)a)
(�; (1 − �)a) + (�′; (1 − �′)a)= (��′; (1 +

√
��′)(1 − √

�)a +
√
x(1 − �′)a)=

(��′; (1− ��′)a).
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(3:2) Let (�; a)∈P\(1; V ), then

(i) ([(�; a)]; ·) is a subgroup of (P; ·);
(ii) the operations “·” and “+” coincide on [(�; a)] if and only if ([(�; a)]; ·) is abelian;
(iii) if Fix �= {0} then ([(�; a)]; ·) is abelian.

Proof. Let (�; x); ("; y)∈[(�; a)], i.e.

(∗) (1− �)a=(1− �)x and (1− ")a=(1− �)y.

(ii) x + �y=y + "x⇔ (1− ")x=(1− �)y.
Moreover (1 +

√
�")=(1 +

√
�)x +

√
�y − (x + �y)= (

√
�("− 1))=(1 +

√
�)x +

√
�

(1−√
�)y=0⇔√

�("− 1)x +
√
�(1− �)y=0⇔ (1− �)y=(1− ")x.

(iii) (∗) implies (1 − �)(1 − ")x=(1 − ")(1 − �)a=(1 − �)(1 − �)y and so, by
Fix �= {0}, (1− ")x=(1− �)y.

4. A bundle of (P;+)

In this section, we assume that, in addition to conditions 1 and 2 of Theorem 1, the
following condition is satis7ed.

3. ∀�∈G∗ Fix �= {0} (i.e. (1− �) is a monomorphism of (V;+)).

Let

F := {[(�; a)] | (�; a)∈P\(1; V )}∪ {(1; V )}

then we have

(4:1) F is a (1; 0)-bundle of (P;+) consisting of abelian subgroups.

Proof. By Theorem 1(iii) and (3.2(ii)), the elements of F are all abelian subgroups.
Since conditions (F1,2) of Section 1 are trivially veri7ed, we have only to check (F3).
By (2.4(ii)), for any (�; a)∈P\(1; V ), [(�; a)]∩ (1; V )= {(1; 0)}.
Let (�; b)∈[(�; a)] with � �=1 and let (�; x)∈[(�; b)], i.e. (1 − �)a=(1 − �)b and

(1− �)b=(1− �)x. Then (�; a)∈[(�; b)] and (1− �)(1− �)x=(1− �)(1− �)a, and
so, by Fix �= {0}, (1 − �)x=(1 − �)a, i.e. (�; x)∈[(�; a)], i.e. [(�; b)]⊆ [(�; a)]. By
(�; a)∈[(�; b)] we have [(�; b)]= [(�; a)].

By Theorem 1(iii), we know that for any �∈ R�; �(1; V )= (1; V ) and by (2.3(ii))
for any [(�; a)]∈F\{(1; V )} �([(�; a)])= [(�; (1− �)d+ a)]∈F\{(1; V )}.
Thus condition (F5) is satis7ed for the elements of F and by (4.1), (1.2(ii)) and
Theorem 1. we can state:
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Theorem 3. The set F is an incidence (1; 0)-bundle of the K-loop (P;+) consisting
of abelian subgroups and (P;L;+), where L := {(�; a)+X | (�; a)∈P; X ∈F}, is an
incidence loop with �6Aut(P;L;+).

We observe that the elements of F, that are the centralizers in the group (P; ·), can
be also characterized with respect to the loop operation in the following way:

(4:2) (i) For any �∈G∗:

[(�; a)]=Z(�; a)∩Z(−(�; a)):

(ii) For any a �=0 (1; V )=Z(1; a).

Proof. (i) By (2.3(iii)), we have that (�; x)∈Z(�; a) if and only if (1 − √
��)

((1− �)a− (1− �)x)= 0. So two cases can occur:
(a) � �= �−1 then

√
�� �=1 and so, since Fix

√
��= {0}, we have (1−�)a−(1−�)x=0

i.e. (�; x)∈[(�; a)].
(b) �= �−1 then (�−1; V )⊆Z(�; a).
Thus, with (2.3(iv)) Z(�; a)=[(�; a)]∪ (�−1; V ) and so [(�; a)]=Z(�; a)∩Z(−(�; a)).
(ii) (�; x)∈Z(1; a)⇔ (1−√

�)(1− �)= 0⇔ �=1 by condition 3.
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