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Abstract

We consider a generalization of the representation of the so-called co-Minkowski plane (due
to H. and R. Struve) to an abelian group (V,+) and a commutative subgroup G of Aut(V,+).
If P =G x V satisfies suitable conditions then an invariant reflection structure (in the sense
of Karzel (Discrete Math. 208/209 (1999) 387-409)) can be introduced in P which carries
the algebraic structure of K-loop on P (cf. Theorem 1). We investigate the properties of the
K-loop (P,+) and its connection with the semi-direct product of ¥ and G. If G is a fixed
point free automorphism group then it is possible to introduce in (P,+) an incidence bundle
in such a way that the K-loop (P,+) becomes an incidence fibered loop (in the sense of
Zizioli (J. Geom. 30 (1987) 144-151)) (cf. Theorem 3).
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0. Introduction

In [3] there was introduced the concept of an invariant reflection structure (P, °;0),
that is a set P with a fixed element 0 and a map °:P — SymP; x —x° such that
¥0)=x, x°0x®=id and x°0 3?0 x® = (x%1%(x))? for all x, y€P, and it was proved
that (P,+) for a + b:=a"00°) becomes a K-loop.
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If one takes a so-called co-Minkowski plane (cf. [8,9]) (M, ¥, =) then in the motion
group I' of (M, %,=) to each point x€M there exists exactly one reflection ¥ in x
and the point set M splits into two subsets P and P~ with the properties:

. M=PUP~

2. VYoel, o(P)=P and o(P~)=P~

3. any two points a,b€ P (resp. P~ ) have exactly one midpoint m in P (resp. in P ™),
i.e. m(a)=>.

Therefore, after fixing a point 0 € P, denoting for any x € P the midpoint of 0 and x in P
by x’ and setting x*:= %' then (P, °;0) is an invariant reflection structure. Since in the
classical co-Minkowski plane the subset P has the analytical representation P=R x R
(Ry:={xeR|x>0}) and the reflection in the point (o,a)€P has the form

P — P

O @D ) G ek e

this procedure can be generalized. We replace (R,+) by an arbitrary abelian group
(V,+) and (R,,-) by a commutative subgroup (G,-) of Aut(¥,+). Then in the prod-
uct set P:=G x V' we can associate by () to each element (o,a)€P an involutory
permutation (o, @).

Here we discuss the following problems:

1. Under which conditions we derive from G x V' an invariant reflection structure and
so turn P=G x V in a K-loop (P,+) (cf. Theorem 1).

2. In the case that (P,+) is a K-loop what can be said of its structure (cf. Section 2).

3. In the co-Minkowski plane the intersections of P with lines, passing through the
fixed point 0, form subgroups of the loop (P,+). In the general case, is there also
a fibration of (P,+) in subgroups or in subloops?

4. The set P can be turned via the semi-direct product Ge<V in a group (P,-)
(which can be considered as an affine permutation group of (V,+)) by setting:
(,a) :V—V; x—a+ ax. What are the relations between (P,-) and (P,+) in
particular when (P, -) is a subset of a kinematic stripe space (cf. [4,5])?

1. Basic definitions and preliminary results

Let (L,+) be a loop; for any acL we denote by —acL the element of L such that
a+ (—a)=0; moreover let a*:L—L; x —a+x and Lt :={a" |acL}.

Since (L,+) is a loop, L™ C Sym L, hence J,:=((a+b)") ' oat ob™ €Sym L and
the structure group A:=({J,p|a,b€L}) is a subgroup of SymL. For any acL let
Z(a):={x€L|a+x=x+a}.

According to Kerby and Wefelscheid, we say that a loop (L,+) is a K-loop if the
following conditions hold:

for all a,b€L: —(a+b)=—a-+ (=b); Sap="0apraEAULL,+).
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By [3] one can derive a K-loop from a so-called invariant reflection structure
(P,%0) that is a set P#(), a fixed element 0€P and a map °:P—J:=
{o€SymP|c*=id}; x —x° such that the following conditions hold:

(B1) VxeP, x°(0)=x;
(B2) VacP, a’oP%0a’=P° (where P*:={a’|acP}).

Then we have (cf. [3], Section 6):
(1.1) For all a,b€P let a*:=a’00°, a+ b:=a"(b), —a:=0°a) then

(1) (P,+) is a K-loop;
(ii)) YaeP: —a+a=a+(—a)=0, & qa=id, é,_,=1id;
(iii) Va,beP: atobtoa™ =(a+ (b+a))" (Bol identity).

Given a loop (L,+), a set Z#C2% is called a bundle with respect to 0 or simply
0-bundle if:

(F1) VX7 |X|=2;
(F2) UZ=L;
(F3) VA,BE 7, A+#B: ANB={0}.

If furthermore the following conditions (cf. [10]):

(F4) YaclL, VXe F: 0ca+X=a+XeF,;
(F5) VXeZF, Yoed: §(X)eTF,

are satisfied then % is called an incidence 0-bundle and (L,+, %) a fibered loop if
moreover all Xe€ # are subloops of (L, +).

Remark 1. We observe that if (L,+,%) is a fibered loop then condition (F4) is
trivially verified.

A triple (P,%,+) is an incidence loop (group) if (P,%) is an incidence
space, (P,+) is a loop (group) and for any a€P, a*t is a collineation of (P, %), i.e.
at e Aut(P, &).

Incidence loops and loops with an incidence 0-bundle are the same by the following
(see [10]):

(1.2) Let (L,+) be a loop then:

(1) if (L, #,+) is an incidence loop then £(0):={Xe€¥|0€X} is an incidence
0-bundle;

(ii) if # C 2% is an incidence 0-bundle then (L, %, +) with #:={a+X |acL, X €F}
is an incidence loop.
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An incidence group (P, %, +) is said to be a kinematic space (cf. [2]) if for any
XeZ(0):={4eZL|0e€4}:

(i) X is a subgroup of (P,+),
(i1) for any a€P, a+ X —ac Z(0).

2. Derivation from a pair of groups

Let (V,+) be an abelian group and let (G, -)<Aut(V,+) verifying the following
conditions: (G,-) is abelian and uniquely divisible by 2 (i.e. Vy€G 3;E€ G such that
E2=19; we shall write V7 i=8).

We explicitly note that since (V,+) is commutative, (EndV,+,-) is a ring
and since (G,-) is abelian the subring (G),; of End(V,+) generated by G is
commutative.

Let us now consider the cartesian product

P:=GxV:={(v,a)|0eeG,acV}

Our aim is to introduce a reflection structure on P, thus for any (o,a)eP
we define the map (wa):P—P; (&x)—(a)éx)i=(?¢" L (1 + af™h)
(a) — aé~"(x)) where (1 + af~')E€End V' (here 1 denotes, as usual, the identity of
(G,-)).

In the following, for any y€End V' and for any x&V, we shall write yx instead of
7(x) in order to simplify notations.

(2.1) For (o, a),(B,b)eP:

(i) (a)eJ*:={ceSym P| o> =id}\{id};
(>ii) le(oc a)—{(oc x)€P|x—|—x—a—|—a}
(iii) (2a)o(B,b)o(xa)=(o2p",(1 +af~")a — af~'b).

Proof. (ii) We have (¢, x)Ele(oc a) if and only if a?¢~' = ¢ and (1 +oé a—(aé™ ")
x =x. These equalities imply ¢=o and x +x=a+a. O

(2.2) For any (f5,b)€ P there exists exactly one (&,x)€P such that (E;)(I,O):(,B,b)
if and only if 1+ \/B€Aut(V,+).

Proof. From (&x)(1,0)=(&2,(1 + &)x)=(B,b) we have &2=f and (1 + E)x=b;
thus, = \/B and (1+ \/B)x =b. Hence our assumption is valid if and only if for any
BEG, 1+ /BeAut(V,+). O

By (2.1) and (2.2) we are now able to define an invariant reflection structure on P
and therefore, by (1.1), an addition + such that (P,+) becomes a K-loop.
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Theorem 1. If the pair (G, V) satisfies the following conditions:

1. (G,) is uniquely divisible by 2;
2. 1+ GCAut(V,+)

and if we set °:P—J;(a,a)— (0, a)’ :=(y/, (1 /—f‘—v\/&)—la) then (P,%(1,0)) is an
invariant reflection structure and if we define:

(2,a) + (B,b):= (%,a)’ o (1,0)°(B,b) = (B, [(1 + Vap)/(1 + Va)la + v/ab)
then (P,+) is a K-loop with the properties:

(i) —(wa)=(a"",—a""a);
(it) (1,V) and (G,0), respectively, are abelian subgroups of the loop (P,+) isomor-
phic to (V,+) and (G,-), respectively;
(iii) for any (o, a),(B,b),(y,c)€P,

(e @)= (o (1 — o)d + a)

where

1 (1—\ﬁb 1\/B>.

d::1+\/@ VB 1+vie

Proof. By assumptions 1, 2 of theorem 1 and the proof of (2.2) it follows that for any
(o,a) the map (x,a)’:=(\/o, (1 + /2)~'a) is the uniquely determined involution of
P mapping (1,0) onto («,a). Consequently (P, % (1,0)) satisfies (B1) and by (2.1(iii))
also (B2), and so by (1.1), (P,+) is a K-loop.

(iii) The formula can be obtained by direct calculation. [

From now on we assume always that (G, V') satisfies conditions 1 and 2 of Theorem 1
and |G| >1.
Now we study the action of the structure group 4 on P.
For each deV let 9;: P — P;(&,x)— (&, (1 — &)d+x).
Then 9, is an automorphism of (P,+) and for dy,d, €V we have

ﬁd1+dz = ﬁd] o ﬁdz‘
If |G|>1, 9, is the identity if and only if d=0, and then

g (V= Au(P ),
|\ d — Ya,

is a monomorphism of (¥,+) in Aut(P,+) consequently A:=9(¥) is a commutative
subgroup of Aut(P,+) and ¥ : ¥V — A with 9¥/(d):=1v,; an isomorphism. By Theorem
1 (iii) the structure group 4 is a subgroup of 4 and so V' :=v9'~'(4) a subgroup of
(V,+). Moreover by Theorem 1(iii), (l+\/ﬁ)(l+ﬂ)(l+\/ﬂ>y)d ={1-)b—(1-P)c,
hence for any (€ G, veV we set y=¢&, ¢=0, and any f€G, b=(1 + \/B)(I +7)
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(14+/By)v and get d = (1—7)v. This shows J((1—G)V) C 4. Since (1+G) C Aut(P, +),
d=(1+/B'A+ N1+ /B~ = )b — (1 = B))e((l — G)V) for any
(B,b),(7,c)€P hence 9~ 1(A)=V'={((1 — G)V). Thus, we can state the following
theorem.

Theorem 2. Let |G|>1, V':=((1 - G)V) and o€ G*:=G\{id}. Then A has the fol-
lowing properties:

() (V, ) ZA<A=(V,+);
(ii) A(o, V)=(o,, V)= A(, Vy=(o,V); A(, V)= (o, V');
(iii) Ajry = ((1 =)V, +) =V [ker(1 — a);
(iv) 4= J‘(%V) < Fixa= {0} = Fix oy ={0} & A= 4),,p);
Fixa={0} =V -a)V<V'<V;
(V) Ay acts transitively on (o, V)= (1 —o)V =V (= V' =V);
(Vi) Ao,y acts regularly on (o, V)< (1 —a)eAut(V,+)=V'=V and A =A.

Proof. (iii) By (ii) ¢: 4 — 4),y) is a homomorphism and if d€ 4, d:=0""1(5)eV’
then for any xeV: o(a,x)= (o, (1 — a)d 4 x) showing A, =((1 — «)V’,+) and
5|(0(,V) = id|(‘2,y/) (1 —a)d=0&deker(l —a).

(iv) If Fixa={0} then (1 — ) is a monomorphism of ¥ hence V(1 — o)V <
(A-Gy»y=r'<v. O

(2.3) Let (o,a)eP\(1,V) be given and let

(@) :={(x)eP|(1 - a=(1 —a)x}.
Then:

(1) [(oc,a)] = [—(oc,a)]; [(“9 0)] = (Ga Fix !Z); _
(ii) [(®,a)] is a subloop of (P,+) such that for any 6€4 and d :=9~'(5):

of(, )] = [0(, a)] = [(2, (1 — 2)d + @)];

(iii) (o.a) + (B,0) = (B,0) + (wa) & (1 — \/af)(1 = fa — (1 — x)b) =0;
(iv) Z(o,a) 2 [(o,)]U (2~ V), Z(o,a) N Z(—(a,@)) 2 [(aa)];
V) [a)]N(BV)#D (1= Blac(l —o)V;
(vi) (B,b)el(e,a)lN (B, V)= [(a)]N(B, V)= (B, b + Fixa);
(vii) Yae(l —a)V: [(e,a)]N(B,V)#D.

Proof. (i) (&,x)e[—(x,a)]=[(e"", —a~'(a))] (by definition) < (1 — &)(—a"(a))=
(I—a Hx e (1-8a=(—a+1)x=(1—o)x & (& x)€[(x, a)]. Hence [—(a, a)] = [(o, @)].
(ii) Let (&,x),(n, v)E[(o,a)] ie. (1 —Ea=(1 —a)x and (1 —n)a=(1 — «)y, then
(&) + (1, 9) = (&, (1 +V/En)/(1 +/Ex + VEr) and (1 —2)(1 +v/E)/(1 +v/Ox +
VEY) =1+ Ven/(1 + VOl — )x + VE1 — )y =(1 +vEn)/(1 + VO — &a +
VE(T = ma=(1—&na so (&x)+ (n,»)E[(%a)].
Moreover (&,x)€[(a,a)] implies —(&,x) €[(a, a)].
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Let us now consider the equations

(&x)+ (o, a1)= (02, a2), (21, a1)+(n, y) = (02, @2) with (a,a;) €[(2,a)] and i=1,2.
Since (P,+) is a K-loop we know (cf. [6]) that the solutions are given by
(&x)==(o,a1) + (a1, a1) + (22, a2)) — (1,a1)), (1, )= — (a1, a1) + (a2, a2); thus,
by our previous considerations, (&, x),(#, y)€[(,a)] and ([(x,a)],+) is a subloop
of (P,+). d(&x)=(&(1 — &)d +x)e(o, (1 —a)d + a)]< (1 — E(1 —a)d +a)=
(1 —a)((1=d +x)e (1 —a=(1—a)xe (S x)E[(2%a)]

(iil) (%a) + (B,6)=(B,b) + (wa) = (1 + Vap)/(1 + va)a + ab=(1 + \/Bx)/
(1+v/B)b+/Pas (1=/aB)(1 = /B)/(1+Va)a= (1 —/af)(1—v/2)/(1+/B)b &
(1- \/@)(1 + )1+ \/B)((l —B)a— (1 —a)b)=0; since (14 G)C Aut(V,+), the
last equation is equivalent to (1 — \/aB)(1 — f)a — (1 — a)b) =0.

(iv) By (iii) Z(o, @) = {(&x) € P | (1 —al)(1—&)a—(1—a)x =0}. Hence [(2,a)] C
Z(a,a) and also {(a~',x)|xeV} CZ(a,a).

Moreover, Z(—(x,a))=Z(a"',a~'(—a))D[—(x,a)]U(a, V) and by (i) we have:
[(a,a)] € Z(ox,a) NZ(—(2, a)).

(v)—(vi) Let (B,b),(B,x)e[(,a)]N (B, V), then (1 —a)b=(1—f)a and (1 —a)x=
(I =p)a,ie. (1 —Pplac(l —a)V and (1 —a)x=(1 — a)b that is (1 — a)(x — b)=0.

(vii) By assumption there is b€ V' such that a = (1 —a)b hence (o, a) = (a,(1 —x)b)
and (1 — Bla=(1 — )1 —a)b=(1 — a)(1 — B)be(1l — a)V; so by (v) we have
()N (B V)£0. [

It follows from (2.3(vi)(vii)):
(2.4) Let a€ G*; then the following statements are equivalent:

(i) Fixa={0};
(i) VBeG, VacV |[(,a)IN(B, V) |<1;
(iii) VBeG, Yae(l — o)V |[(o,a)] N (B, V)| =1.

We introduce now the following:

Definition. An element (a,a)€P\{(1,0)} is called transversal if [(o,a)]N (S, V)#£D
for any f€G, or equivalently, by (2.3.v), (1 — G)aC (1l — a)V. Then we say that
[(o,a)] is transversal too.

From this definition it follows that any transversal (o,a)€P must have a#1 and
(o, 0) is transversal for any o€ G*.

(2.5) Let «€G* and acV then

(1) if ae(1 —a)V then (a,a) is transversal;
(ii) if (1 — o) is surjective then (o, a) is transversal.

(2.6) For any d€ A4 and for any transversal («,a)€P, §(a,a) is transversal.

Proof. By (2.4(ii)) and Theorem 2(ii), for any f€G [d(o,a)]N(S, V)=0[(x,a)]N
OB, V)=0([(a)]N (B, V) #0. O
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3. The K-loop (P, +) and the group G><V

By the assumption of Section 2 we can turn P=G x V' also in a group (P,-) via
the semidirect product:

(o,a) - (B, b):=(af,a + ab).

Then the reflection (&:E) defined in Section 2 is exactly the map:

LEx) = (a) - (Ex) - (wa)

and, if a# 1, the centralizer of (o,a) in the group (P,-) is exactly the set [(a,a)]
(cf. (2.3)). Assumptions 1 and 2 of Theorem 1 are equivalent to requiring the
group (P,-)=Gr<V to be uniquely divisible by 2.

Remark 2. It is well known that to any group G one can associate a discrete symmetric
space (see e.g. [7]), namely the so-called special reflection groupoid in the sense of
[1], by setting, for any a€G, d:G — G; x —ax 'a. If (and only if) G is uniquely
divisible by 2, then we can define, for any a€G, a®:G—G; x —+/a(x), so that
(G,% 1) becomes an invariant reflection structure in the sense of Section 1. So we
note that from any group G one can derive, in the sense of Section 2, a K-loop if G
is uniquely divisible by 2.

The semidirect product (P=Gr<V,-) has a representation as an affine permutation
group of V by:

(o,a): { V-

X — ox + a.

Then, for each a€V, the stabilizer P,:={({,x)€P|(&x) (a)=a} is a commutative
subgroup of (P,-) which intersects the normal subgroup (1,7) in the neutral element
(1,0) of (P,-) and (P, +). But we can say more:

(3.1) For any aeV we have P,={(&, (1 — &)a)| £€G} and:

(i) YaeG*, P, C[(a,(1 —a)a)] and the equality holds if Fix a={0}.

(ii) The operation “-” and the loop operation “+” coincide in P,, and (P,,+) is a
commutative subgroup of (P,+) (and of any transversal subloop [(, (1 — a)a)]
with o € G*).

Proof. (i) Let (B.b)e[(e (1 — a)a)], ie. (1 — a)b=(1 — B)(1 — a)a, then (I — o)
(b— (1 —p)a)=0 and this gives b=(1 — f)a if Fix o ={0}.

(ii) For &,&eG we have

(& (1= Oa) - (&,(1 - Ea) = (&, (1 — E)a)

&1 = 9a) + (&,(1 = a)=(E¢,(1 + VEHA — VOa + Va(l — &a)=
(&¢,(1-¢&Na). O
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(3.2) Let (a,a)eP\(1,V), then

(1) ([(a)],-) is a subgroup of (P, -);
(i1) the operations “-” and “+4” coincide on [(,a)] if and only if ([(«,a)],-) is abelian;
(iii) if Fix o= {0} then ([(o,a)],-) is abelian.

Proof. Let (&,x),(n, y)€[(x,a)], ie.
(#) (1 =&a=(1—oa)x and (1 —n)a=(1 —a)y.

(i) x+ly=y+me(-—mx=>0=0Oy.

Moreover (1 + v/&n)/(1 + VEOx + VEy — (x + &y) = (Ve — 1)/(1 + VEx + V€
(1 -VOy=0&Vein -1+ Vi1 -OHy=0&1~Ey=>1—nx.

(ii1) (*) implies (I — o)1 —p)x=(1 —n)(1 — Ea=(1 — a)(1 — &)y and so, by
Fixao={0}, 1 —n)x=(1—-¢&)y. O

4. A bundle of (P, +)

In this section, we assume that, in addition to conditions 1 and 2 of Theorem 1, the
following condition is satisfied.

3. Vae G* Fixa={0} (i.e. (1 —a) is a monomorphism of (V,+)).
Let
7 ={l(%a)][ (% a)e P\(L, )} U{(1,V)}
then we have
(4.1) # is a (1,0)-bundle of (P,+) consisting of abelian subgroups.

Proof. By Theorem 1(iii) and (3.2(ii)), the elements of % are all abelian subgroups.
Since conditions (F1,2) of Section 1 are trivially verified, we have only to check (F3).
By (2.4(ii)), for any (o, a)€P\(1,V), [(e,a)]N (L, V)={(1,0)}.

Let (B,b)€[(a,a)] with f#1 and let (&,x)€[(S,b)], ie. (1 — pla=(1 — a)b and
(1 -=&b=( — p)x. Then (a,a)€[(f,b)] and (1 —a)(1 — f)x=(1 — &)(1 — B)a, and
so, by Fix f={0}, (1 —a)x=(1 — &)a, ie. ({,x)E[(2,a)], i.e. [(f,6)]C[(,a)]. By
(e,a)€[(p,b)] we have [(B,0)]=[(x,a)]. O

By Theorem 1(iii), we know that for any Sed, (1, V)=(1,V) and by (2.3(ii))
for any [(o,@)]€ Z\{(1,V)} 6([(x,a)])=[(o (1 — 2)d +a)l€e Z\{(1,V)}.
Thus condition (F5) is satisfied for the elements of & and by (4.1), (1.2(ii)) and
Theorem 1. we can state:
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Theorem 3. The set F is an incidence (1,0)-bundle of the K-loop (P,+) consisting
of abelian subgroups and (P, ¥,+), where & :={(a,a)+X |(0,a)EP, XEF }, is an
incidence loop with A<Aut(P,%,+).

We observe that the elements of %, that are the centralizers in the group (P, -), can
be also characterized with respect to the loop operation in the following way:

(4.2) (i) For any o€ G*:
[(,a)]=Z(,a)NZ(—(a,a)).
(i1) For any a#0 (1,V)=2(1,a).

Proof. (i) By (2.3(iii)), we have that (é,x)€Z(a,a) if and only if (1 — v/af)
(1 —=&a— (1 —a)x)=0. So two cases can occur:

(a) E# o~ ! then \/a& # 1 and so, since Fix v/a& = {0}, we have (1—&)a—(1—a)x =0
ie. (&x)e(o,a)l.

(b) é=a! then (=, V) C Z(a, a).

Thus, with (2.3(iv)) Z(e, a)=[(o,a)]U ("', V) and so [(o, a)]=Z(o, a) N Z(— (o, a)).

(i) (&x)eZ(la)e (1 — VE)1 — ¢) =04« E=1 by condition 3. [J
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