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Preface

This book is based on lectures given several times at Reading University in

England at their School of Continuing Education, from about 2002.

One might wonder why I gave these lectures. I had been attending a few

lectures on diverse subjects such as Music, Latin and Greek and my wife

suggested that perhaps I should give some lectures myself. I was somewhat taken

aback by this but then realised that I did have some useful material lying around

that would make a starting point.

When I was a boy (a long time ago) I much enjoyed reading books such as

Mathematical Snapshots by Steinhaus and Mathematical Recreations and Essays

by Rouse Ball. Moreover, I had made a few models such as the minimal set of

squares that fit together to make a rectangle, some sets of Chinese Rings, and 31

coloured cubes and these items were still around. This starting point was much

enhanced by some models that my daughter Janet had made when at school. A

junior class had been instructed to make some models for an open day but had

made a mess instead. Janet (then in the sixth form) was asked to save the day.

Thus I also had available models of many regular figures including the Poinsot-

Kepler figures and the compound of five tetrahedra and that of five cubes.

Although I had not followed a career in mathematics (apart from a few early

years in the chemical industry), I had kept an interest alive and had acquired and

read many books of a mathematical nature, some from that wonderful bookshop

on K street in Washington, Reiter’s Technical Bookstore, and some as gifts from

publishers for reviewing proposals and so on. Moreover, my interest was

restimulated when Janet was reading maths at Cambridge.

Having written a few technical books on programming languages, it seemed

a natural step to prepare colourful notes for the course in the form of what might

be chapters of a book. It took longer than I thought to finally turn the notes into

a book – partly because I was diverted into writing a number of other books on

programming in the meantime. But at last the job has been done.

There are ten basic lectures. We start with the Golden Number which leads

naturally to considering regular Shapes and Solids in two and three dimensions

and then a foray into the Fourth Dimension. A little amusement with Projective

Geometry follows (a necessity in my youth for those going to Oxbridge) and then

a dabble in Topology. A messy experience with soap Bubbles stimulated by

Boys’ little book is next. We then look at circles and spheres (the Harmony of the

Spheres) and especially Steiner’s porism and Soddy’s hexlet, which provide

opportunities for pretty diagrams. Next is a look at some aspects of Chaos and

Fractals. We then with some trepidation look at Relativity – special relativity can

be appreciated relatively easily (groan – sorry about the pun) but general

relativity is a bit tricky. The Finale then picks up a few loose ends.
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Besides the main lectures, I did from time to time address some related

topics or hand out material for further reading. This material has been gathered

into a number of appendices. The main lectures contain some exercises as given

out at the time (harder ones are marked with asterisks) but answers are not

provided (I may give the course again one day).

An important question is to consider who might want to read this book. The

mathematical background required is not hard (a bit of simple algebra,

Pythagoras, a touch of trigonometry) and is the sort of stuff anyone who once

studied a science based subject to the age of 16 or so would have encountered. I

found that students on the courses were from varied backgrounds – of both sexes

and all ages. Some had little technical background at all but revelled in activities

such as making models, cutting up Möbius strips and blowing bubbles; others

had serious scientific experience and enjoyed perhaps a nostalgic trip visiting

some familiar topics and meeting fresh ones.

I have made no attempt to avoid using mathematical notation wherever it is

appropriate. I have some objection to popular mathematical books that strive to

avoid mathematics because some publisher once said that every time you put an

equation in the sales divide by two. But I have aimed to provide lots of

illustrations to enliven the text. 

I must now thank all those who have helped me in this task. First, a big thank

you to my wife, Bobby, who suggested giving the courses, helped with

typesetting and took some of the photographs, and to my daughter Janet who

provided much background material. Thanks also to David Shorter who took

some other photographs; and to Frank Bott who translated parts of an ancient

book in Italian; also to Brian Wichmann who gave good advice on generating

some diagrams; and to Pascal Leroy who was a great help in finding a number of

errors and suggesting many improvements. And thanks to staff at Reading

University who provided the framework for giving the courses and to those who

actually attended the courses (too many to name) who made the experience such

fun. 

I must especially pay tribute to the late John Dawes whom I knew when we

were both undergraduates at Trinity in Cambridge – John worked with me in the

software industry and provided the inspiration for some of the exercises. One

episode is worth mentioning. We encountered the problem of proving that if one

puts squares on the sides of any quadrilateral then the lines joining the centres of

opposite squares are always the same length and at right angles. I challenged the

team working on a large compiler project to find a slick proof. John came up with

the proof using complex numbers described in the Finale.

I am grateful to the authors of the many books that I have read and enjoyed

and which have been a real stimulus to understanding. I cannot mention them all

here but I must mention a few. The oldest is probably Flatland by Edwin Abbott,

a marvellous tale written over a century ago about adventures into many

dimensions. And then from the same era there is Soap Bubbles by Boys with its

elegant diagrams – it seems that he entertained Victorian dinner parties with his

demonstrations. I have already mentioned Mathematical Snapshots by Steinhaus
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and Mathematical Recreations and Essays by Rouse Ball. The last was revised

by Coxeter and his various books such as Introduction to Geometry and Regular

Polytopes are fascinating. If ever stranded on a desert island, Introduction to

Geometry would be a strong contender for my allowed one book – this refers to

a long-running BBC radio program in which various personalities are invited to

name their eight favourite records to take on a desert island – they are also

allowed one special book. Two other books I must mention. One is Excursions in

Geometry by C Stanley Ogilvy which introduced me to Soddy’s amazing hexlet

and the other is Stamping Through Mathematics by Robin Wilson which explores

the world of mathematics via illustrations on postage stamps.

In a nostalgic mood, I must thank those who taught me about the wonders of

mathematics at school and at Cambridge. At school (Latymer Upper in West

London), we were privileged to learn from brilliant teachers such as Bob

Whittaker. I recall sixth form lessons in the basement of a local milkbar where

we could all smoke in peace and contemplate projective geometry. At

Cambridge, I especially enjoyed lectures by Fred Hoyle on relativity and Paul

Dirac on quantum mechanics (both sadly no longer on this planet). I was also

privileged to enjoy wonderful supervisions from John Polkinghorne who also

very kindly reviewed part of this book.

Finally, I must thank my friends Karen Mosman, Sally Mortimore, and

Simone Taylor who encouraged me to persevere with progressing the book to

publication and, most important of all, Martin Peters, Ruth Allewelt and Angela

Schulze-Thomin at Springer-Verlag and Sorina Moosdorf at le-tex who made it

actually happen.

I hope that all those who read or browse through this book will find

something to enjoy. I enjoyed writing it and learnt a lot in the process.

John Barnes

Caversham

England

November 2009
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1 The Golden Number

T
HIS LECTURE is about the so-called Golden Number. This number defines a

ratio which turns up in various guises in an amazing number of contexts.

These include the ideal shapes of architectural objects such as temples, the

arrangement of many botanical systems, and purely geometrical objects such as

the pentagon. We shall start, however, by considering the sizes of pieces of paper.

Pieces of paper

O
NCE UPON A TIME paper came in all sorts of bizarre sizes with wonderful

names such as Elephant, Foolscap and Crown. Books were printed in sizes

such as Crown octavo which had eight pages to a sheet of Crown. However, in

the 1960s, as part of the metrication process, the A series of paper sizes was

introduced and all these names faded (the A series was originally a German DIN

standard). But note that in this respect the US is stuck in a time warp and

continues to use historical sizes known as Letter and Legal.

So now we use paper with boring names such as A3 and A4. A sheet of A3

is simply double a sheet of A4 and similarly A5 is half a sheet of A4. Thus, as we

add one to the number, the area is divided by two. The diagram shows a sheet of

A3 divided into two sheets of A4.

An important property of the A series is that all the sizes have the same

proportions. Suppose the width of a sheet of A4 is x and its length is y, then a

sheet of A3 will have width y and length 2x. If the ratios of the length to width

for both sizes are the same, it follows that

2x/y = y/x, so that (y/x)2 = 2 giving a ratio of √2 = 1.414...

So each sheet has sides √2 smaller than the one before and area one-half the one

before. Well this is well known. But what is less well known is that the area of

A0, the biggest of the series, is defined to be exactly one square metre. 

y

2x

A sheet of A3 can be

divided into two

sheets of A4.

 J. Barnes, Gems of Geometry, DOI 10.1007/978-3-642-05092-3_1,
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This means that the sides of a sheet of A0 have to be √√2 and 1/√√2

respectively which give a size of about 1189 by 841 mm. A4 has sides one-

quarter of this giving 297 by 210 which is the right answer.

Note that a sheet of A0 can be subdivided into one each of the (infinite

number of) smaller sizes as above.

This shows quite clearly that the sum of the areas of the smaller sheets

equals the area of the big sheet of A0. And so it follows that

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... = 1

This is therefore a very simple illustration of the fact that the sum of an infinite

series of numbers can be finite.

This, of course, is the essence of Zeno’s paradox about Achilles and the

tortoise. Remember that they have a race and Achilles gives the tortoise 100

metres start. Achilles runs 10 times as fast as the tortoise so by the time Achilles

reaches the point from whence the tortoise started, the tortoise is now 10 metres

ahead; when Achilles reaches that point the tortoise is now 1 metre ahead and so

on. The argument is that the tortoise is always ahead and so Achilles never

catches up. But of course the hare catches up at the point 100+10+1+0.1+0.01+

... = 111.111... = 1111/9 metres from the starting point. In the paradox the ratio of

the speeds is 10 rather than 2 as in the paper sizes but if Achilles had arthritis and

the tortoise was on drugs then maybe Achilles might only have twice the speed

of the tortoise.

The golden ratio

A
NOTHER INTERESTING WAY to subdivide a sheet of paper is to remove a square

from one end. If the remaining piece has the same shape as the original then

we say that it is a golden rectangle and the ratio of the sides is the golden ratio.

In other words a large golden rectangle can be subdivided into a square plus a

small golden rectangle.

Suppose that the piece left after the square is removed has width 1 and length

t so that the ratio of the sides is t. Then the square cut off has side t so that the

length of the original piece must have been t+1 as shown in the diagram opposite.

2 Gems of Geometry
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However, since the original piece has the same shape and its width is t it follows

that its length must also have the value t2. So we have

t
2 = t + 1  from which  t2 – t – 1 = 0

Using the familiar formula for the quadratic equation ax
2 + bx + c = 0 which is

–b ± √(b2 – 4ac)
x =   ———————

2a

gives t = (1 + √5)/2 = 1.6180.... This is the so-called golden number and is often

denoted by the Greek letter τ (tau). The equation τ2 = τ + 1 can be rearranged to

give the following relations which should also be noted

τ = 1 + 1/τ   and   1 = 1/τ + 1/τ2 and so

1/τ = 0.6180...

τ = 1.6180...

τ2 = 2.6180...

A piece of paper in the golden ratio is rather longer and narrower than A4. For

comparison, the old Foolscap size is 13" by 8" which gives a ratio of 1.625 and

so is very close to the golden ratio.

We can now see that a golden rectangle can be divided into an infinite

number of squares of diminishing size. The arrangement shown below mirrors

that of the division of the sheet of A0. Later in this lecture we shall see ways of

1 The Golden Number 3

t2

t

t 1

small

golden

rectangle

A golden rectangle divided

into a square and a

smaller golden rectangle.

square

A golden rectangle

subdivided into an

infinite number of

squares.



dividing a rectangle into a finite number of squares all of which have a different

size.

An alternative way to do the subdivision is in a spiral form where the squares

converge onto a point P inside the original golden rectangle as shown above.

Note how the lines which join the corner points all pass through the point P;

these four lines are at 90° to each other in pairs. Thus AEC is at right angles to

BFD. In fact the whole picture simply consists of the basic square repeatedly

rotated about the point P by 90° and shrunk by a factor of τ. 

A spiral curve can be drawn through the points A, B, C, D, E, F, etc. In a

single rotation it changes size by a factor of τ4 which is about 6.85. This spiral is

often called the golden spiral. At first glance it looks as if it is tangential to the

squares but in fact it cuts the sides at about 4.75°. In general shape it

approximates to that exhibited by many shells although it spirals too quickly.

It has been claimed that the golden ratio is the ideal shape for a room. Most

modern houses have rooms that are too thin for their length thus giving an

awkward end space. Pictures are often of the golden ratio as well. It is interesting

that artists rarely paint a square picture. It is either landscape or portrait in format

and typically around the golden ratio.

Fibonacci’s rabbits

I
N 1202, LEONARDO OF PISA, who was nicknamed Fibonacci (son of good

nature), completed a book entitled Liber Abbaci (roughly, a Book of

Counting). One of the topics concerns the breeding of rabbits. Suppose each pair

of rabbits produces another pair of rabbits every month except in their first

month of life and that we start with a single pair of new-born rabbits.

In month 1 we have just the original pair and at the start of month 2 we still

have just the original pair since they only breed in that month. But at the start of

the third month we have 2 pairs and by the fourth month 3 pairs. By the fifth

4 Gems of Geometry
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month not only do the original rabbits breed but their first born pair also breed

so then we have 5 pairs. By the sixth month the second litter also breed giving 8

pairs. It then really gets going. This is shown in the tree of rabbits above.

A little thought shows that in each month the number of rabbits equals the

sum of the numbers in the previous two months. (That’s because all the rabbits

of the previous month will still be around and all the rabbits of the month before

will have bred a new pair.) So we get the famous series of Fibonacci numbers in

which each one is the sum of the previous two:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

As the series progresses the ratio between successive numbers rapidly

approaches a limit thus

1, 2, 1.5, 1.666..., 1.600, 1.625, 1.615..., 1.619..., 1.617...

The number the ratio approaches is, surprise, surprise, the golden number, τ. That

this should be the case is easily seen since in the limit if each number is x times

its predecessor then any group of three successive numbers will have values n,

xn, x
2
n and since moreover each number is the sum of its two predecessors it

follows that

x
2
n = xn + n and so  x2 = x + 1 which is one of the formulae for τ

An interesting property of Fibonacci’s numbers is that the square of any one of

them differs from the product of the two adjacent numbers by exactly 1, for

example

3 × 3 = 9 = 2 × 5 – 1

5 × 5 = 25 = 3 × 8 + 1

8 × 8 = 64 = 5 × 13 – 1

13 × 13 = 169 = 8 × 21 + 1

Note how the squares are alternately one more than and one less than the product

of the adjacent numbers.
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month 1

month 2

month 3

month 4

month 5

month 6

bunny

pair 1

bunny

pair 1

bunny

pair 1

bunny
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bunny

pair 2

bunny

pair 2

bunny
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bunny
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bunny
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bunny

pair 1

bunny

pair 5

bunny

pair 1

bunny
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bunny
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bunny

pair 4

bunny
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bunny

pair 7

bunny

pair 3

bunny

pair 3



2

3
5

8

1

1

13

21

This property is the basis of a very old puzzle. Consider a chessboard and

cut it as shown above. It then seems as if the pieces can be rearranged to form a

rectangle of size 5 by 13 which has 65 squares whereas the original chessboard

had 64 squares.

The question is where did the extra unit of area come from? The answer is

that the pieces don’t quite fit together and in fact there is a tiny lozenge shaped

gap in the rearranged shape. But it is not easy to spot this unless the cutting is

done carefully. This puzzle appeared in the Boy’s Own Annual for 1917–1918

but surprisingly there was no explanation of where the extra square came from;

the discussion implied that it truly appeared from nowhere. Similar puzzles can

be made up with the smaller numbers but the gap is then much more obvious.

The Fibonacci numbers provide a way of subdividing an appropriate

rectangle into a finite number of squares with one square corresponding to each

number. The case of subdividing a rectangle 55 by 34 into 9 squares is shown

below. This doesn’t quite solve the problem of dividing a rectangle into a number

of different squares because the first two Fibonacci numbers are both 1.

However, it is possible to subdivide a rectangle into 9 different squares of

sizes 1, 4, 7, 8, 9, 10, 14, 15 and 18. They form a rectangle of sides 32 and 33 as

shown above opposite. It makes quite an amusing puzzle to assemble a set of

such squares into a rectangle. A set of squares made of aluminium alloy or brass

6 Gems of Geometry
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34 × 55 divided into
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sides are the first

nine Fibonacci

numbers.
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using a unit of perhaps 1/8" or 1/2 cm is compact enough to keep in one’s pocket

and produce at parties to amuse (or bore) your friends. This is not the only

subdivision into 9 squares but there are no subdivisions of a rectangle into fewer.

It is also possible to subdivide a square into different squares as shown

below. The simplest case has 21 different squares of sides 2, 4, 6, 7, 8, 9, 11, 15,

16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42 and 50. Note that the smallest has

1 The Golden Number 7

18

14

10 9

8
4

1

7

15

A rectangle of sides

32 × 33 divided into

nine different

squares.

A square of side 112

divided into 21

different squares.
7

6

8

19

24

11

27

9
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37
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29

33

15 17

35

50

2

4

25
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side 2 rather than 1. These squares can be arranged to form a square of side 112.

I am sure that they would not make a sensible puzzle and would cause one to lose

friends quite quickly.

There is a curious relationship between electrical circuits and the

subdivision of squares and rectangles into different squares. As a simple

example, consider the case of the 32 × 33 rectangle.

Imagine a current flowing from one edge to the opposite edge of a rectangle.

The resistance increases as the rectangle gets longer and decreases as it gets

wider. These effects cancel out so that all squares have the same resistance

irrespective of their size; for simplicity we will assume that the resistance of a

square is 1 ohm. Now suppose that the 32 × 33 rectangle be subdivided into

squares and that a uniform current flows from the top edge to the bottom edge as

shown above. Since the flow is uniform it follows that current never flows from

a square to one alongside it but only from a square to one below it. As a

consequence the collection of conducting squares is equivalent to a network of 1

ohm resistors connected in this case as shown alongside the rectangle.

Each resistance corresponds to a square and each junction point corresponds

to a horizontal division between squares. The current flowing in each resistance

is clearly proportional to the width of the corresponding square. Assuming that

the current in the resistance corresponding to the square of side 1 is 1 amp it

follows that the total current flowing through the network is 33 amps. It is easy

to see that the total resistance of the rectangle is 32/33 ohms and that the voltage

across the rectangle is 32 volts.

The problem of subdividing a rectangle into different squares thus becomes

equivalent to finding an electrical network of 1 ohm resistors in which the

18

14

10 9

8
4

1

7

15

Current flowing from one edge to

the other of the 32 × 33 rectangle.

The equivalent electrical circuit of

nine equal resistors.



current in each resistor is different. A network which exhibits symmetry

somewhere (either as a whole or in part of it) will have equal currents

somewhere. It is easy to convince oneself by just trying that any network joining

two points with less than 9 lines has symmetry somewhere. It follows that 9

different squares is the minimum number for subdividing a rectangle.

The golden ratio and Fibonacci’s numbers also turn up in the simplest form

of so-called continued fractions which we now briefly explore before returning

to the geometrical theme.

Continued fractions

I
AM SURE THAT Victorian schoolboys knew all about continued fractions – or

maybe they didn’t and got beaten as a consequence. Continued fractions are a

somewhat neglected topic these days – probably considered too hard to learn at

school (high school) and too obscure to learn at university (college). Neverthe-

less they have intriguing properties which are worth knowing.

Consider any fraction less than 1 such as 7/16. We can write this as

1               1                 1                   1                         1
—      =   ——    =   ———      =   –———         =   ———
16/7 22/7 2 +  1              2 +  1                  2 +  1

——                ——                    ———
7/2 31/2 3 +  1

—
2 

This is usually written in one of various shorthand notations such as 

1       1      1
——  ——  —
2 +    3 +    2

or even more succinctly as [2, 3, 2]. If a number is greater than 1 such as 47/16

then we can write it as [4; 2, 3, 2].

We recall that some common fractions such as 1/7 expressed in decimal

notation do not terminate but exhibit a recurring pattern thus 

1/7 = 0.142857142857... sometimes written as 0.1

.

42857

.

All common fractions expressed as continued fractions naturally terminate and

of course 1/7 is simply expressed as [7].

A surprising thing about continued fractions is that some numbers which are

chaotic as a decimal fraction have a recurring form as a continued fraction.

Consider for example the recurring fraction

x = [1; 2, 2, 2, ...]

1 The Golden Number 9



This can be written as 1 + y where

1       1       1     
y =  ——  ——  ——  ...

2 +    2 +    2 +

A moment’s thought shows that the fraction following the first 2 is itself y so we

have

1
y =  ———         from which we get

2 + y

y
2 + 2y – 1 = 0    so that  y = –1 + √2

and so finally x = 1 + y = √2 = 1.4142....

In a similar way we can show that √3 = [1; 1, 2, 1, 2, 1, 2, ...]. Clearly the

most beautiful recurring continued fraction of all has to be [1; 1, 1, 1, ...] and it

will come as no surprise that this has the value τ, the golden number.

Some so-called transcendental numbers such as e = 2.171828..., the base of

natural logarithms, which are a complete mess as a decimal expansion, have a

recognizable pattern as a continued fraction

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...]

Others such as π have no recognizable pattern; π = [3; 7, 15, 1, 292, ...].

An important property of continued fractions is that if we chop off the

sequence then we obtain an approximation to the value. That is not so surprising

because if we chop off a recurring decimal such as 0.142857142857... then

clearly we get an approximation. In the case of continued fractions the chopped

off values are known as convergents. The approximations given by a chopped off

decimal fraction are always too low but amazingly the convergents of a

continued fraction are alternately too low and too high. For example if we

consider some successive approximations to τ = [1; 1, 1, 1, 1, ...], we find

[1; 1, 1] = 3/2

[1; 1, 1, 1] = 5/3

[1; 1, 1, 1, 1] = 8/5

and Lo and Behold these are the ratios of successive pairs of Fibonacci numbers.

An important property of the convergents is that they provide excellent

approximations to the original number. In fact it can be shown that a convergent

provides the best approximation for the size of its terms. Thus 13/8 is the best

approximation to τ using only ratios involving integers of 13 or less.

The approximation of 22/7 for π is the first convergent from the continued

fraction [3; 7, 15, 1, 292, ...]. A convergent is a particularly good approximation

if the first term ignored is large. So [3; 7] = 22/7 is a good approximation to π

because the first term ignored is 15. And [3; 7, 15, 1] is extremely good because

the first term ignored is 292. 

10 Gems of Geometry
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It is straightforward to compute one convergent from the previous two.

Suppose the continued fraction is [a0; a1, a2, a3, ...] and the convergents are

c0=n0/d0, c1=n1/d1, c2=n2/d2 and so on. Then the first two are easy

c0 = a0/1  so  n0 = a0 and  d0 = 1

c1 = a0 + 1/a1 = (a1a0 + 1)/a1 so  n1 = a1n0 + 1  and  d1 = a1

The general pattern continues thus

n2 = a2n1 + n0;  d2 = a2d1 + d0

n3 = a3n2 + n1;  d3 = a3d2 + d1

The rule is that to get the next convergent you multiply both top and bottom of

the previous one by the next term and add them to the top and bottom of the one

before that. Let’s try that with √2 which is [1; 2, 2, 2, ...]. The first two

convergents are [1] = 1/1 and [1; 2] = 3/2. The next convergent is [1; 2, 2] so the

new term added is 2 and then we follow the rule giving the sequence

1       3     2 × 3 + 1       7      2 × 7 + 3       17       2 × 17 + 7         41
— ;  — ;  ————  =  — ;   ————  =  —– ;   —————  =  —–
1       2     2 × 2 + 1       5      2 × 5 + 2       12       2 × 12 + 5         29

So if you want to find a good approximation to a number first convert it to a

continued fraction and then choose a convergent using these rules. As an

example suppose we are trying to make a right angled corner out of Meccano (or

Erector or Marklin) and wish to brace it with an isosceles triangle (that is one

with two sides the same). Meccano strips only have holes every 1/2" so we have

to choose our bracing with care.

From the right angled triangle shown below (and using Pythagoras’ theorem

that the square on the hypotenuse is equal to the sum of the squares on the other

two sides) it is clear that the length of the brace is going to be √2 times the length

of the sides. Now we have just computed the convergents for √2; they are

1/1, 3/2, 7/5, 17/12, 41/29, ...

We can quickly compute the decimal values of these convergents which are

1, 1.5, 1.4, 1.4166..., 1.4137... 

whereas the correct value is of course 1.4142...

The hypotenuse is √2 times the sides.



It’s pretty clear that 3/2 is not going to be very good but even 7/5

is only 1% out and 17/12 is more than four times better. In fact

the slack in the bolts means that 7/5 will work but of course

the slack in the bolts also means it isn’t very rigid. So the

best choice is 17/12. Remember that the measure-

ments are from the centres of the holes so we need

18 holes = 9" on the diagonal and 13 holes = 6½"

along the sides. Any Meccano person will tell

you that there is no such thing as a 9" strip

so we have to overlap two strips

together.

Well that is quite enough

about continued fractions so

let’s get back to some

geometry.
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pentagram pentagon with diagonalspentagon

Pentagons

T
HE MOST BEAUTIFUL two-dimensional shape in the world is undoubtedly the

regular pentagon. It has long been used as a mystic symbol. If we extend the

sides of a pentagon then we get the star-shaped pentagram. If we take a large

pentagon and draw its five diagonals then these form a pentagram around a

smaller pentagon inside the original pentagon.

The pentagon with its diagonals reveals many instances of the golden

number. Suppose for simplicity that the length of the sides of the inner pentagon

is 1 unit. Each diagonal of the outer pentagon contains a side of the inner

pentagon and two other sections which are sides of an isosceles triangle such as



abD in the diagram above. Suppose the length of these two other sections is t.

Then the total length of a diagonal is 2t + 1.

It is important to note that each diagonal of the outer pentagon (such as

EbaC) is parallel to the opposite side (in this case AB). As a consequence the

figure BcDC is a rhombus which is a parallelogram all of whose sides are equal.

The rhombus is shown in bold in the diagram. Now the length of cD is clearly

t+1 and so it follows that the length of a side of the outer pentagon is also t+1.

Now notice that the large triangle ABD has the same shape as the small

triangle baD. So the ratios of their sides must be the same. The small triangle has

sides in the ratio t:1 and the large triangle has sides in the ratio 2t+1:t+1. And so

2t + 1 = t(t + 1)  giving  t + 1 = t2 which is the familiar equation for τ.

So t is actually the golden number τ. The pentagon provides yet another example

of the appearance of the golden ratio. 

Indeed, the pentagon is absolutely riddled with golden ratios. The inner

pentagon has side 1; the larger bits of the diagonal have length τ, the outer

pentagon has sides of length τ2 and the diagonals have overall length τ3! It is

truly a golden figure. These powers of τ are all revealed in the three parts of a

diagonal as shown below. Note that since τ2 = τ + 1 it follows that τ3 = τ2 + τ =

(τ + 1) + τ = 2τ + 1, the length of the whole diagonal.
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It is interesting to compute further powers of τ in the same way. We find

τ4 = 3τ + 2

τ5 = 5τ + 3

τ6 = 8τ + 5

which shows those Fibonacci numbers once more!

Because the ratios of successive Fibonacci numbers are close

approximations to τ it follows that a sequence of four Fibonacci numbers forms

a good approximation to the series of powers of τ exhibited by the diagonal. We

can make a Meccano model of the pentagonal figure using a series such as 5, 8,

13, 21 and the slack in the bolt holes takes up the small errors. We can even do

it with 3, 5, 8, 13 as illustrated above but the next series down won’t work.

The ancients knew all about the pentagon and the golden ratio. Euclid refers

to the fact that the diagonals of a pentagon divide each other in “extreme and

mean ratio”. The definition in Book VI says “Ακρον και μεσον λογον ευθεια

τετμησθαι, οταν η ως η ολη προς το μειζον τμημα, ουτως το μειζον προσ

το ελαττον.” which obviously means “A straight line is divided in extreme and

mean ratio when, as the whole line is to the greater segment, so is the greater to

the less.” Thus in the diagram the length of the whole line is τ3, the greater

segment has length τ2, and the lesser segment has length τ and therefore clearly

both ratios are τ.
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Phyllotaxis

P
HYLLOTAXIS MEANS the arrangement of leaves and similar botanical items. It

derives from the Greek word φυλον (phulon), meaning a leaf.

It has been known for ages that nature seems to prefer the Fibonacci numbers

when it comes to the arrangement of branches, leaves and petals. Thus a pansy

has five petals and some daisies have 21, 34 or even 55 petals. Flowers that seem

to break this rule by having say 6 petals are seen on closer examination to have

2 groups of 3 petals.

However, these favoured numbers are sometimes violated. Thus clover

usually has three leaves but just occasionally we find a four-leaved clover.

Daisies which mostly have 21 petals will have some flowers with 20 or 22 petals.

Poppy heads have around 13 seed pods but individuals may have 11, 12, 14 or

even 15.

Arrangements involving Fibonacci numbers also occur as double

interlocking spirals in objects such as pineapples and sunflower heads. A

pineapple has its sections arranged so that they appear to form 5 spirals in one

direction and 8 spirals in the other. Sunflower heads often have 55 and 89 spirals.

Typical pinecones have three and five spirals.

The cactus shown below looks somewhat like a pineapple from the side and

shows spiky protuberances arranged in spirals of 21 and 34. On top it shows the

new buds growing rather like the centre of a sunflower.

Until recently this was all thought to be “in the genes” but now it appears

that maybe it is a phenomenon caused by natural processes where the emerging

Two views of the cactus, Mammillaria tlalocii. The side shows buds in spirals of 21

and 34. The top is similar to the centre of a sunflower.
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units appear to spread out in a way which minimizes interference and gives each

maximum space for growth. 

Growth in any plant commences at a conical tip from which new material

emerges. The cone might be very sharp as in the tip of a bamboo shoot or quite

flat as in a growing sunflower head. It seems however that there is a natural

tendency for each new primordial growing bud to come out at an angle of about

137.5° from the previous one. Why this strange angle? Well this angle divides a

circle into “extreme and mean ratio” in the words of Euclid. Now we might

remember that

1 = 1/τ + 1/τ2

so that the two angles which divide 360° in extreme and mean ratio are 360/τ and

360/τ2. These angles are 222.492... and 137.508... degrees respectively. The

latter is often called the golden angle.

Now if successive buds grow out from the centre each 137.5° from the

previous one it turns out that they each have maximum space around them. The

diagram below shows ten buds having grown out in sequence at the same rate.

Clearly if they were at an angle such as 120° from each other then the fourth bud

would find itself up against the first one and the pattern would consist of three

lines of buds with wasted spaces between. Indeed we have to avoid any angle

which is a rational fraction of 360° (that is a factor of some multiple of 360°).

Numbers such as square roots are satisfactory so we might try 360/√5 which

A circle divided in

extreme and mean ratio

showing the golden angle.

137.5...°

Pattern for τ.



1 The Golden Number 17

gives 160.996... degrees. But, as seen in the diagram above, it is not that good

since a pattern of spiral arms emerges and space is wasted between the arms. A

better choice is 360/√2 which gives an angle of 105.442 degrees. But this is not

quite so good as τ. The reason that τ is best is related to the fact that its continued

fraction has every term equal to one thus [1; 1, 1, 1, ...]. The smaller the terms in

the continued fraction the more uniformly distributed is the pattern. The

continued fraction for √5 is [2; 4, 4, 4, ...] and that for √2 is [1; 2, 2, 2, ...]. The

diagrams above and opposite show the distribution for the three cases

corresponding to dividing the circle by τ, 3 and √5.

Assuming that the buds remain the same size, it is more realistic to slow

their radial progress as they move away from the centre so that they continue to

have the same space. Accordingly, a reasonable model is one where the distance

out from the centre varies as the square root of the age of the bud. The resulting

distribution for the first fifty buds shows that they align themselves as spirals

with 13 in one direction and 8 in the other. However, as more buds are added it

becomes clear that spirals corresponding to all the Fibonacci numbers can be

traced. Adding more buds concentrates the eye on the outer regions where the

spirals corresponding to the higher Fibonacci numbers are evident. 

The first fifty buds and the

spirals of 8 and 13.

Pattern for 3. Pattern for √5.



Thus in the diagram above where the first 144 buds are shown the spirals

most evident are those for 13 and 21 although the 34 spiral is beginning to

appear. Note that the 21 spirals are formed by the numbers that are 21 apart and

so on. The spirals for adjacent Fibonacci numbers always go in opposite

directions. We can still trace the lower spirals but the buds on them become

further and further apart. Note how the buds corresponding to the Fibonacci

numbers themselves are aligned about the vertical. The pattern is clearly the sort

of thing we see in a Sunflower head where typically the spirals are in the region

of 55 and 89.

We will now consider a rather different model more appropriate to

pineapples and fircones which have a general cylindrical appearance. We will

suppose that buds are created along the base of a cylinder and migrate upwards

at a constant rate. Again we will suppose that the buds emerge at the golden angle

of 137.5 degrees apart. A big difference from the flat sunflower is that we can

assume that the buds continue to travel at a uniform rate since they will then

continue to have the same space about them. The general effect for the first

twenty buds will be as in the diagram opposite where the cylinder has been

unrolled. This shows clearly the three spirals up to the right and five to the left

and is a good representation of the pattern on a fircone. The spiral of two is also
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clearly visible on the flat picture but not so obvious on a fircone because it

swiftly disappears from view.

In this rectangular pattern the spirals which dominate are determined by the

ratio of vertical to horizontal separation. A neat presentation is to show the region

consisting of the area containing those points closest to each point of the pattern.

This is known as the Dirichlet region after the Prussian mathematician Peter

Dirichlet (1805–1859). The region is usually hexagonal and is shown in the

pattern on the right above which has the same spacing as that on the left and

explicitly reveals that the regions which touch correspond to the spirals of 2, 3

and 5.

If we change the ratio of horizontal to vertical separation then the hexagonal

regions change shape and the neighbouring regions become different. At the

transition positions the regions become rectangular as shown below.

Finally, the pattern overleaf illustrates the case of 5, 8 and 13 spirals which

corresponds very closely to the structure of a pineapple – although some

pineapples may twist the other way.

1 1
2 2

3 3
4 4

5 55 5
6 6

7 7
8 88 8

9 9
10 10

11 11
12 12

13 1313 13
14 14

15 15
16 16

17 17
18 18

19 19
20 20

0 00 0

1 1
2 2

3 3
4 4

5 55 5
6 6

7 7
8 88 8

9 9
10 10

11 11
12 12

13 1313 13
14 14

15 15
16 16

17 17
18 18

19 19
20 20

0 00 0

The first twenty points on a cylinder showing spirals of 2, 3 and 5.

The transition point where the regions are rectangular.
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Another interesting example of the appearance of the golden number is

provided by the succulent Echevaria elegans shown below. Successive fleshy

leaves grow out at golden angles from each other.
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showing the golden
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The pattern on a pineapple with 5, 8 and 13 spirals.
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We now return to the question of why it is that the number of petals on many

flowers are Fibonacci numbers. Again it seems to concern the emission of buds

around a central axis with the golden angle of 137.5° between them. 

Suppose that buds grow out from the centre but unlike the sunflower head

do not move away from the centre but just grow into petals. The picture on the

left above shows the first five petals. Note that the first one to grow is in fact that

on the right and the top petal is the third; we have shown it rotated to reveal the

symmetry. The sixth petal would be located between the first and third but

clearly there isn’t room without overlapping. So maybe that is why many plants

stop there. 

Of course if the petals are narrower then more can be placed as in the picture

on the right which has 13 petals. Amazingly, if we forbid overlapping it is always

the case that the first one that will not fit is that immediately after a Fibonacci

number of petals have been placed.

It is fairly easy to show that, as they are added, the nearest petal to the one

which is the Nth after a particular Fibonacci number is in fact petal number N.

Thus the nearest petal to number 10 is number 2 (since 10 is 2 more than the

Fibonacci number 8) and the nearest to 11 is number 3. Moreover, the spacing

depends only on the previous Fibonacci number and decreases by a factor of τ

when the next Fibonacci number is reached. Thus petals 9 to 13 are all about 20°

from petals 1 to 5 respectively whereas petals 14 to 21 are all about 12.4° from

petals 1 to 8 respectively and so on. 

Another intriguing feature is that the petals are grouped into pairs and

singletons. If there are exactly Fn petals where Fn is the nth Fibonacci number

then there are Fn–2 pairs and Fn–3 singles. Thus a flower with 13 petals has them

1

42

3

5

Flowers with 5 and 13 petals.



22 Gems of Geometry

Fibonacci number

Fn = 2Fn–2 + Fn–3

For example, 13 = 2 × 5 + 3 and 55 = 2 × 21 + 13. The picture above shows an

excellent specimen of Echnicacea purpurea which has 13 petals in which some

grouping into pairs is evident.

In practice of course, nature is not always so precise and especially with the

larger numbers of petals some variation is found. Nevertheless, it seems that the

golden angle is at the bottom of it all.

The sunflower features in the painting entitled Virgin of Guadalupe by

Salvador Dali. The head of the Virgin is depicted against a giant sunflower head

made of stones with the stones arranged in spirals.

A flower of Echnicacea purpurea. 

It has 13 petals which show strong indications of being grouped into pairs and

singletons.

grouped into 5 pairs and 3 singletons. Note that this illustrates the fact that for any



Further reading

C
HAPTER 11 of Introduction to Geometry by Coxeter covers the key aspects of

the golden number and gives for example the mathematical details of

Fibonacci’s numbers and the pineapple. Pictures of the divisions of squares into

squares will be found in Tilings and Patterns by Grünbaum and Shephard and

also in Mathematical Snapshots by Steinhaus although at the time of writing of

the latter the decomposition of the square of side 21 was not known; the

relationship with electrical circuits is discussed in detail in Graph Theory by

Bollabás. There is a good discussion on continued fractions in The Higher

Arithmetic by H Davenport. The Book of Numbers by Conway and Guy covers

all sorts of numbers and series and includes material on the Fibonacci numbers

and phyllotaxis. 

A rather different reference work is Stamping Through Mathematics by

Robin Wilson. This illustrates almost 400 postage stamps depicting various

aspects of mathematics. Those of relevance to this lecture include the golden

spiral on an 80 cent Swiss stamp of 1987 and the decomposition of a rectangle

into eleven squares on a 110 pfennig German stamp of 1998.

An intriguing reference must surely be De Divina Proportione by Paccioli

published in 1509 and illustrated with drawings of models by Leonardo da Vinci.

Curiously, it is written in old Italian rather than Latin. He describes thirteen

properties of the golden number. The ninth is that the diagonals of a pentagon

intersect in the golden ratio. The original text (in a modern font) begins

S
E nel cerchio se formi el pentagono equilatero e ali suoi doi rppinqui

anguli se subtéda doi linee recte mosse dali termini deli suoi lati de

necessita quelle fra loro se divideráno secondo la nostra rpportióe. E

cadauna dele lor magior parti semṕ sira el lato del dicto pétagono.

I am grateful to the British Library for permission to quote the above fragment

and to Frank Bott of Aberystwyth for providing the following translation.

I
F an equilateral pentagon be inscribed in the circle and to two of its

adjacent vertices two straight lines be subtended to the end of the

sides, of necessity they divide each other according to our ratio. And

each of their larger parts will always be equal to the side of the said

pentagon.

It is unclear why the pentagon needed to be inscribed

in a circle but the associated diagram certainly helps

with the translation of the rest of it which considers an

example where the diagonal of the pentagon is 10 units

and then CF is √125 – 5, and AF is 15 – √125. 

We will encounter other properties of the golden

number in later lectures.
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Exercises

1 Find the sizes of the squares in the subdivision of a rectangle shown below.

They are all different whole numbers and the smallest has side 2. The

diagram is distorted so you can’t cheat by measuring!

2 Draw a flower with eight petals and number them in a similar way to the

numbering on the flower with five petals in the notes.

3 The continued fraction for π is [3; 7, 15, 1, 292, ...]. We saw that the first

convergent [3; 7] is 22/7 which is a frequently used approximation. Compute

the next two approximations [3: 7, 15] and [3; 7, 15, 1].
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2 Shapes and Solids

T
HIS LECTURE is about the variety of regular shapes in two and three

dimensions. We start by considering the regular plane figures such as the

triangle, square, and pentagon and how they can be used to form various regular

patterns of tiles. We then move into the third dimension and consider the simple

solid figures, such as the tetrahedron and cube which were known in classical

times. We conclude by looking at some of the many more elaborate and beautiful

figures discovered more recently.

Flatland

A
BBOTT (using the pseudonym, A Square) wrote his enchanting book Flatland

in about 1883. I am sure it has given enormous pleasure to countless readers

of many generations. I first read it as a schoolboy and reread it a few years ago.

It is a story about the inhabitants of a two-dimensional world. One of the

intriguing things is that they are visited by a Sphere who intersects their flat

world in a Circle. So all the Flatlanders see of the Sphere is the Circle. When the

Sphere first approaches Flatland it appears just as a Point which grows into a

Circle and then shrinks again as the Sphere goes away. The Flatlanders cannot

believe their eyes at this inexplicable phenomenon.

Another aspect of this book is that it is amazingly politically incorrect. The

male inhabitants are geometrical figures. The working classes are isosceles

triangles and the angle at the apex distinguishes their skills. A very sharp angle

indicates a very lowly person indeed. The middle classes are regular figures with

rank according to the number of their sides. Thus a Pentagon outranks a Square

and so on. Curiously enough, each generation goes up one rank, so the son of a

Pentagon is a Hexagon. The governing aristocracy are Circles. Hence the

concern at the visit of the Sphere who appears as a dynamically sized aristocrat.

A Sphere intersects Flatland in a Point and a Circle.

Flatland A Point

A Circle
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The really unacceptable thing these days is that all females are simply two-

sided figures with little breadth at all. At one end is a mouth and at the other a

sharp tail. So the book is to a very large extent a satire on the social order of the

times.

Abbott also explores the one-dimensional Lineland, a fairly boring place, but

not so dull as Pointland with its single inhabitant. He also skirmishes with

thoughts of the Fourth Dimension and so shall we in the next lecture.

Polygons

W
E ARE ALL FAMILIAR with the regular polygons: triangle, square, pentagon,

hexagon and so on. There is clearly an infinite number of them. In the

diagram below each is shown with its Schläfli symbol which in the case of these

polygons is simply the number of sides in curly brackets. Schläfli (1814–1895)

was a Swiss mathematician who spent most of his life in Berne and became

famous for his discoveries regarding geometrical figures.

A linguistic interlude might be in order. The word polygon comes from two

Greek words, πολυς (polus), many and γονος (gonos), angled. The individual

names such as pentagon use the Greek number prefixes, penta-, hex-, hept-, oct-

and so on. English is curious, sometimes numbers are taken from the Greek as

here but sometimes from Latin as in quartet, quintet, sextet.

One might think that these regular figures were the end of the story but we

can consider another way of looking at their construction. We can build a

polygon by starting from a point, drawing a line of unit length, turning through

an angle and then drawing another line and keep on repeating the process. If the

angle we turn through is an exact factor of 360° (such as 120°, 90°, 72° or 60°)

then we get one of the normal polygons (triangle, square, pentagon or hexagon

respectively). 

However, suppose we turn through an angle which is not a factor of 360° but

is nevertheless a factor of some multiple of 360°. As an example suppose we turn

through 108° which is 1/10 of 1080°, thrice 360°. Then after drawing ten lines

and thus making nine turns we do return to the starting point but only after
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crossing over the lines and thus forming a star shape (a decagram) which is quite

regular in form. A number of possibilities are shown above.

The first one is our old friend the pentagram. It has the symbol {5/2}

because it has 5 lines and goes around twice. The others have similar symbols.

Note that there are two different heptagrams, one goes around twice and the other

thrice; moreover, the configuration at the core of the 3-heptagram is in fact a 2-

heptagram and the figure at the core of that is an ordinary heptagon.

The concept of density is interesting and will turn up later. It is the number

of times a ray starting at the centre of a polygram and going out intersects an

edge. The density is of course the second number in the symbol. Thus the density

of a decagram is 3. It is clearly a measure of the degree of convolution of a

figure.

As we saw in the previous lecture, the pentagram is interesting since it is

riddled with golden numbers and in particular we recall that the diagonals cut

each other in golden ratios. We might wonder whether the other polygrams have

similar romantic properties exhibiting special numbers. Alas, it appears not.

Indeed I think this is a typical property of these sorts of mathematical objects –

as they get more complex they lose their beauty.

Nevertheless, dedicated readers with an evening to spare might like to try

their hands at calculating the ratios in which the diagonals of the 2-heptagram cut

each other. Similar techniques to those used in Lecture 1 with the pentagram will

do the trick although a lot more effort is required. In fact, we find that if the

diagonals are cut in ratios 1:x:1 where x is the length of the side of the inner

heptagon, then x satisfies the quartic equation overleaf.
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x4 + 2x3 – x2 – 3x – 1 = 0

It is well known that such equations do not have nice solutions. Incidentally, we

can also compute x directly from the angle θ which is 771/7° (a pretty angle one

might think for a seven-sided figure but it is simply a coincidence that one-

seventh of 720 subtracted from 180 should have so many 7s in its representation

as a proper fraction). Now consider one of the right angled triangles formed by

dropping the perpendicular from the corner onto the diagonal. The hypotenuse is

1 and the base is x/2, so we get

x = 2 sin θ/2 = 1.2469...  which is not an interesting number.

We will leave the polygrams at this point. Apart from the pentagram, they are not

very exciting and the real point of the discussion has been to show that they can

be considered as truly regular figures. We will find that the pentagram, octagram

and decagram occur once more when we consider regular figures in three

dimensions.

Tiling

I
T IS POSSIBLE to cover a flat plane in a completely regular manner with

triangles, squares and hexagons but not with any other regular polygon. This

is easily seen because for a regular pattern each point must be surrounded by a

number of the polygons and so their angle must be a factor of 360°. So we can

have six equilateral triangles with angle 60°, four squares with angle 90°, or

three hexagons with angle 120° and nothing else. 

Underneath each pattern in the diagram below is shown its Schläfli symbol

which consists of the symbol for the tile followed by the number of them around

each point. Tiling with squares is commonplace in the kitchen and bathroom. The

use of hexagons is familiar from the honeycomb made by bees and is also used

in wire netting; it has the property of using least material (wax or wire for a given

area or gauge size). The form of carbon known as graphite has planes of atoms
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arranged as a hexagonal tiling. The triangle pattern is used for planting orchards

since it gives the biggest distance between individual trees. 

Note that the tiling of triangles and that of hexagons have the same Schläfli

symbol but reversed. This is because they are duals of each other. If we draw a

line from the centre of each triangle to the centre of each adjacent triangle then

the new lines form the hexagon pattern. Similarly, if we draw a line from the

centre of each hexagon to the centre of each adjacent hexagon then the new lines

form the triangle pattern. The square tiling is called self-dual for obvious reasons.

If we relax the rule that every tile must have the same shape but instead

simply insist that every tile must be a regular polygon and that every point must

have the same arrangement of polygons around it then we get a host of further

patterns. Four such patterns are shown on this page. The symbol shows the

number of sides of the various polygons surrounding each point in order. 

The first two patterns are easily obtained from the patterns of all squares and

all hexagons by truncation. If we take the square tiles and clip off their corners

so that they become octagons then we get the first pattern whereas if we clip the

corners off the hexagons we get the second one. The two other patterns are
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{4.8.8} {3.12.12}

{4.6.12} {3.4.6.4}
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{3.3.3.4.4} {3.3.4.3.4}

{3.6.3.6} {3.3.3.3.6}

closely related to {3.12.12} and exhibit the twelve-sided theme. The pattern

{4.6.12} is perhaps the most intriguing of all the tilings with its mixture of three

different polygons which are nevertheless clearly distinguished. The pattern

{3.4.6.4} also uses three different polygons but maybe looks a little cluttered;

however, it has a simple beauty because it can be looked upon as simply

overlapping dodecagons (the Greek prefix for twelve is dodeca-).

Two further patterns can be formed out of triangles and squares. Both have

three triangles and two squares at each point but arranged in a different order.

That on the left above is curious because it is so obviously different in the two

directions whereas the other patterns are not. That on the right looks at first sight

like an incoherent mess. It also looks as if it would be different if reflected in a

mirror; but this is not so. The reflected version is just the same as the original but

slightly rotated.

The final two patterns are shown below. These are formed of hexagons and

triangles. The one on the left is unique among the mixed tilings in that each edge

has the same status; each edge has a triangle on one side and a hexagon on the
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other. This tiling appears in one of the floors at the Roman villa at Fishbourne.

The one on the right is interesting because it does become different if reflected

in a mirror. So it exists in two forms like right- and left-handed gloves. They are

said to be enantiomorphic from the Greek εναντιος (enantios), meaning

opposite.

The reader might care to try colouring the patterns in order to reveal their

structure more clearly. Some appear more attractive than others. Beauty is of

course in the eye of the beholder but the human eye likes symmetry and the most

attractive patterns seem to be those that exhibit the most symmetries. However,

to explain this in more detail would take us outside the scope of these lectures.

Finally, note that the beautiful pentagon does not appear in any of these

patterns. We will briefly reconsider this fact at the end of this lecture.

Vision and projection

W
E ARE AWARE that the world around us has three dimensions. However, we

see everything as two-dimensional images partly because the retina is a

two-dimensional surface albeit curved and so the signals sent to our brain only

relate to two-dimensional images of the world. Another reason of course is that

light travels in straight lines and most objects are not transparent. And so we can

only see those parts of things facing towards us.

The fact that we have two eyes enables our brain to provide some

information about the distance of objects and so with experience we build

knowledge of the three-dimensional world and understand its common shapes.

Because of our need to represent three-dimensional objects on two-

dimensional bits of paper we are used to the ideas of projections and this works

well with objects with which we are familiar. However, our knowledge is

relatively shallow when we consider unfamiliar shapes as we shall see.

Projections can take various forms, they can be parallel as if viewed from infinity

or they might have a closer viewpoint. 

As a simple example consider a cube. Engineering practice is to represent a

cube with the front face shown square and then the sides receding at an angle,

usually 30°. This has the merit that at least the front face looks correct but in fact

this engineering view is not one that can be observed; if we can see part of the

side then the front will not appear square. However, it is a familiar and useful

representation for many symbolic purposes.

Another possibility is the orthogonal projection. This is the view that would

be obtained by looking at it from a long way away (e.g. through binoculars). Of

course in order to see anything other than the front face we need to rotate the

cube a bit. The second example overleaf shows the effect of rotating the cube a

little about the horizontal axis and then by rather more about the vertical axis.

(The angles chosen are those in the right angled triangles with sides 7, 24, 25 and
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5, 12, 13; this gives a reasonable view and results in a position with tidy

coordinates).

The perspective view is obtained by considering a view from a near

viewpoint. Parallel lines converge on a point known as the vanishing point. As a

consequence the far faces of the cube are shown smaller because they are farther

away from the viewpoint. This is the view used in paintings.

We will in general use the orthogonal view because of its mathematical

simplicity and the fact that it preserves parallel lines. Another approach is to use

two perspective views as seen by each eye and this gives a stereoscopic image.

Some examples will be found in Appendix B.

Five classical polyhedra

W
E HAVE SEEN that there are an infinite number of polygons but in fact there

are only five regular solids whose faces are regular polygons. This is easily

seen by considering the angles at a corner (vertex is the proper term). The sum

of the angles of the individual faces which meet at a vertex must be less than

360°. So if the faces are squares (with angles 90°) then the number of faces can

only be three which gives the familiar cube. We cannot have less than three

anyway and with four the sum of the angles would be exactly 360° which is too

much. In fact this gives the tiling of squares which we saw earlier – in a sense

the potential solid figure falls flat on its face!

If the faces are triangles (angle 60°) then we can fit together three, four or

five at a vertex. In the case of three we get a tetrahedron which has four faces;

with four triangles at a vertex we get an octahedron which has eight faces; and

with five at a vertex we get an icosahedron which has twenty triangular faces.

Attempting six at a vertex gives the triangular tiling.

The last case is where the faces are pentagons (angle 108°) and we can fit

together three of these which produces the beautiful dodecahedron with twelve

faces.

Engineering view of a

cube.

Orthogonal view of a

cube.

Perspective view of a

cube.



2 Shapes and Solids 33

Faces with more edges are not possible; the next case would be the hexagon

(angle 120°) and attempting three of these gives the third regular tiling.

The five figures are shown below together with their Schläfli symbols. These

give the symbol for the face followed by the number of faces meeting at a vertex.

The figures show all the edges and sometimes this can be confusing. An

alternative is to show the hidden edges as dotted lines or to omit them entirely as

overleaf.

The technical term for a solid shape with polygons as faces is a polyhedron

from the Greek word εδρα (hedra), meaning a seat, base or foundation. The

plural is polyhedra.

The ancient world was familiar with all these polyhedra and they are often

referred to as the Platonic figures. The twelve faced dodecahedron is generally

considered the most beautiful and mysterious. It appears in Dali’s painting, In

Search of the Fourth Dimension, and in Escher’s lithograph, Reptiles. It also

appears in The Last Supper by Dali in the sense that the room in which the last

supper is being held is clearly in the shape of a dodecahedron with pentagonal

windows.

Various symmetries should be noted. Apart from the tetrahedron, each face

has an opposite face which is parallel to it; similarly each vertex has an opposite

vertex. The tetrahedron, however, has a vertex opposite each face and vice versa.

’

cube

{4, 3}

icosahedron

{3, 5}

dodecahedron

{5, 3}

tetrahedron

{3, 3}

octahedron

{3, 4}
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The five Platonic solids with hidden lines removed.

Moreover, for all five solids, each edge has an opposite edge. Apart from the

tetrahedron these opposite edges are parallel to one another; in the case of the

tetrahedron, they are at right angles.

The octahedron can be divided into two square pyramids and so has a sort of

equator in the shape of a square. None of the others has an equatorial divide. The

icosahedron, however, has two such divisions and we can think of them as being

like the arctic and antarctic circles on earth (or maybe like the tropics of cancer

and capricorn). These “circles” are in fact pentagons.

I suppose that the only one of these solids with which we are familiar on an

everyday basis is the cube; this is emphasized by the fact that it is indeed the only

one for which we have an Anglo-Saxon word. We are of course familiar with the

square pyramid of the Pharaohs but the tetrahedron is a pyramid on a triangular

base. All five solids occur in crystals or primitive organisms. 

If we slice a small corner off a cube, then the revealed section is a triangle

since three edges and faces meet at a corner of the cube. We say that the vertex

figure of a cube is a triangle. Strictly speaking the vertex figure is defined as that

formed by joining the midpoints of the edges meeting at the vertex. The Schläfli

symbol for a polyhedron is properly interpreted as the symbol for its face

followed by that for its vertex figure. So the cube has Schläfli symbol {4, 3}, that

of the tetrahedron is {3, 3), the octahedron is {3, 4}, the icosahedron is {3, 5}

and the beautiful dodecahedron is {5, 3}. We now see that the symbols for the

regular tilings follow the same rule.

Despite our familiarity with the cube it is not obvious that if we slice it

diagonally through the centre, then the cross-section is a regular hexagon. We

can contemplate this by imagining what the inhabitants of Flatland would see if
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a Cube were to penetrate and cross through their land. The sequence of events as

seen by the Flatlanders depends upon how the Cube approaches. 

If the cube comes vertex first then it will first appear as a Point and then as

a growing Triangle. As the next three vertices of the cube pass through Flatland,

the Triangle gets blunted at its three corners and turns into an irregular hexagon.

When the cube is exactly halfway the Hexagon becomes regular. The process

then repeats in reverse.

If the cube comes face first then it will suddenly appear as a Square and will

remain so and then suddenly disappear.

If the cube approaches edge first then it first appears as a Line which

immediately turns into a Rectangle whose length is that of the line but whose

width gradually grows until it turns into a Square. The Square continues to grow

into a Rectangle in the opposite sense until the long edge is √2 times the original

line at which point the cube is halfway and four of its vertices are in Flatland.

The process then repeats in reverse.

So the cube contains within it quite a variety of cross-sections: triangles,

rectangles, squares and hexagons. The diagram below shows the appearance of a

fleet of three cubes at the different orientations as they pass through Flatland.

We can similarly contemplate what would appear if the other regular solids

were to pass through Flatland. The tables overleaf show what happens in the case

A sequence of views of a fleet of three Cubes of different orientations as seen

by the Flatlanders. 

Two diagonal

sections

through a

cube.
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Passing through Flatland, vertex and face first. Those marked * are not regular.

of a solid approaching vertex first and face first. Note that the tetrahedron is

somewhat different to the others since if it approaches vertex first then it leaves

face last and vice versa. 

We have already seen that if a cube approaches edge first then the section is

a series of rectangles with the section being a square at two positions. Perhaps

surprisingly the sections of a tetrahedron passing edge first are also rectangles

and at the midway point the section is a square as shown below. The other cases

of passing through Flatland edge first are left to the reader.

As a linguistic aside note that the proper name for a 9-gon is an enneagon

from the Greek for nine which is εννεα (ennea). However, it is often referred to

as a nonagon using the Latin prefix.

It is obvious that the angles between the faces of a cube are all 90°. The

angles between the faces of a tetrahedron are 70° 32'. (That is 70 degrees plus 32

minutes – remember that there are 60 minutes to a degree.) The angles between

the bonds in a carbon atom are 109° 28' which is 180° minus 70° 32'; the atom

is at the centre of a tetrahedron and the four bonds are in the direction of the

vertices. The angles between the faces of an octahedron are also 109° 28'. The

angle between the faces of a solid figure is known as the dihedral angle.

Object Sequence

Tetrahedron point, triangle

Cube point, triangle, hexagon, triangle, point

Octahedron point, square, point

Dodecahedron point, triangle, hexagon, triangle, point

Icosahedron point, pentagon, decagon, pentagon, point

Object Sequence

Tetrahedron triangle, point

Cube square

Octahedron triangle, hexagon, triangle

Dodecahedron pentagon, decagon, pentagon

Icosahedron triangle, 9-gon*, dodecagon*, 9-gon*, triangle

Vertex first.

Face first.

Two sections

through a

tetrahedron.



Duality

T
HIS IS a good moment to say a little more about duality which we briefly

mentioned when introducing the regular tilings. We might have noted that

the Schläfli symbol for the cube and octahedron are related symmetrically. The

cube has three faces at each vertex and each face has four sides whereas the

octahedron has four faces at each vertex and each face has three sides. The cube

has six faces and eight vertices whereas the octahedron has eight faces and six

vertices. Both have twelve edges.

Moreover, if we join the midpoints of the six faces of a cube then we obtain

an octahedron. And similarly if we join the midpoints of the eight faces of an

octahedron then we obtain a cube.

We say that the cube and octahedron are dual figures; the properties of one

can be deduced from the other by interchanging the roles of the vertices (points)

and the faces (planes). The edges (lines) occupy a central role.

The same dual relationship is exhibited by the dodecahedron and

icosahedron. The tetrahedron however is self-dual; if we join the centres of the

faces of a tetrahedron then we get another tetrahedron. The diagram below shows

these combinations. The internal figure is shown solid whereas the external one

is transparent.

It is clear that the cube and octahedron are closely related as are the

dodecahedron and icosahedron. What is perhaps remarkable is that all five

figures can be found lurking inside or around each other.

Consider a cube and starting from a corner add lines joining it to the

diagonally opposite corners of the three faces around the initial corner (see

overleaf). Then add lines joining those three corners to each other. The result is

that we have a figure composed of six equal lines and four points. Well, the only

figure like that is a tetrahedron. A tetrahedron can be drawn in a cube in two

different ways. Each joins a different set of four of the eight vertices of the cube.

Each has an edge as one diagonal of each of the six faces of the cube.
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A tetrahedron in a tetrahedron, an octahedron in a cube, a cube in an octahedron.
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Compounds of the cube and octahedron and the dodecahedron and icosahedron.

Tetrahedra in a cube and the compound Stella Octangula.

If we take both tetrahedra and remove the cube then we have the simplest so-

called compound figure. It was mentioned by Paccioli in his book, De Divina

Proportione. It was rediscovered by Kepler who called it the Stella Octangula

(eight-pointed star). The fact that two tetrahedra are involved reflects the self-

dual nature of the tetrahedron.

Another attractive compound is formed from a cube and an octahedron in

which they penetrate each other. The edges of one intersect the edges of the other

at their midpoints and at right angles. The existence of this compound is another

consequence of the duality between the cube and octahedron. There is, of course,

a similar compound formed from a dodecahedron and an icosahedron. Escher’s

mezzotint entitled Crystal shows the compound of cube and octahedron and his

woodcut entitled Four Regular Solids shows both compounds interlaced.

Some of the vital statistics of the five polyhedra are given in the table

opposite. Note especially that the formula F+V–E has the same value (2) in each

case. This is a famous formula of Euler (1707–1783), the Swiss mathematician.

We shall meet it again in Lecture 5 when we discuss some aspects of Topology.
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Two other rather amazing compounds consist of five interlocking tetrahedra

and five interlocking cubes. These exist because of a perhaps surprising

relationship between the dodecahedron and the cube. In order to see this, first

consider the effect of joining together four vertices in adjacent faces of a

dodecahedron as shown in the first diagram below. This results in a four sided

figure. Each side is clearly the same length because each is a diagonal of equal

sized pentagons. Moreover, the angles are clearly the same since they are formed

by adjacent diagonals of two faces in a similar way. So the figure is a square. If

we continue to draw lines in adjacent pentagonal faces then eventually we find

that we have drawn six squares which are the six faces of a cube inside the

dodecahedron as shown in the second diagram.

Each of the 12 edges of the cube is a diagonal of the 12 faces of the

dodecahedron. Because a pentagon has five diagonals, it follows that there are

five different ways of constructing a cube inside a dodecahedron. The five cubes

are oriented as shown below.

Object Symbol Faces Edges Vertices F+V–E Dihedral

Tetrahedron {3, 3} 4 6 4 2 70° 32'

Cube {4, 3} 6 12 8 2 90°

Octahedron {3, 4} 8 12 6 2 109° 28'

Dodecahedron {5, 3} 12 30 20 2 116° 34'

Icosahedron {3, 5} 20 30 12 2 138° 11'

Building five cubes inside a dodecahedron.
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Two of the ten

possible

compounds of a

pair of the five

cubes.

The four coloured cubes intersect a face of the white cube in four coloured

triangles. If the cubes have edge of length 2τ
3 and the white square is centred at

the origin then the coordinates of some points are as shown.

(τ
3, τ3)

(τ, 2τ)

(τ
3, 1)

(τ
2, τ)

(τ
3–τ

–1, 0)(τ, 0)

(0, τ
2)

If we now remove the dodecahedron we are left with the remarkable

compound of five interlocking cubes. Each vertex of the original dodecahedron

is shared by two cubes (the dodecahedron has 30 vertices and five cubes have 60

between them) and of course these two cubes also share the opposite vertex. Two

cubes can be chosen from five in ten different ways and so there are ten possible

compounds of a pair of cubes. Two such pairs are shown above. 

The cubes intersect each other at points which divide their edges in the

golden ratio; this is because the edges of the cubes are diagonals of the
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pentagonal faces of the dodecahedron and we saw in the previous lecture that the

diagonals of a pentagon intersect each other in the golden ratio.

Although the compound of a pair of cubes is easy to comprehend, the

compound of all five cubes is rather intricate. A first step in its understanding can

be obtained by considering the face of one cube (the white one for example) and

the lines of intersection of the four other cubes with it. This is shown opposite

where the intersecting cubes are coloured red, blue, green and yellow and the

intersecting lines have the appropriate colour. Note that the cubes intersect each

other in triangles so that the figure is just four overlapping triangles; the common

area is a rhombus which will be mentioned again later. The cognocenti of golden

numbers will delight in the coordinates of the various points of intersection of the

triangles which are as shown taking the side of a cube to be 2τ
3.

Finally, the diagram below shows a view of the compound of all five cubes

looking straight at the white face. The solid lines are the edges of the cubes and

form the convex edges of the compound; the dashed lines are lines of intersection

of the cubes and are the concave edges of the compound.
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Models of the five cubes and five tetrahedra.

We recall that a tetrahedron can be drawn inside a cube. If we do that for

each cube we obtain a compound of five tetrahedra. Moreover, there are two

ways to draw a tetrahedron in a cube (left- and right-handed) and consequently

there are two different forms of the compound of five tetrahedra which are

enantiomorphic. 

We could of course put all ten tetrahedra together. This can be looked upon

as the result of putting together the two forms of the compound of five tetrahedra

or alternatively we might consider the tetrahedra in pairs (recall that such a pair

of tetrahedra form a stella octangula) and thus the result is equivalent to a

compound of five stellae octangulae.

As well as the figure composed of five cubes, there is a dual consisting of

five octahedra surrounding an icosahedron. The five tetrahedra are self-dual.

These remarkable compounds can only really be appreciated by handling

actual models. The photographs below show (elderly) paper models of the five

cubes and the five tetrahedra. 

The icosahedron also has some interesting properties regarding internal

plane figures. Two adjacent vertices plus their opposites form the corners of a

golden rectangle. See the diagram opposite. An icosahedron has twelve vertices

altogether and as a consequence three such golden rectangles define the twelve

vertices. These three rectangles are at right angles to each other. This is in fact

the thirteenth and last effect regarding the golden number described by Paccioli

in his De Divina Proportione. Note that there are five different ways in which the

group of three rectangles can be chosen – this corresponds to the fact that there

are five different ways in which a cube can be placed inside the dual

dodecahedron.
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It is obvious that groups of five adjacent vertices of an icosahedron form a

pentagon since we simply have to consider the five triangular faces meeting at

any vertex. There are of course twelve such pentagons one corresponding to each

vertex. It is perhaps more surprising that groups of three vertices form an

equilateral triangle. The vertices are not adjacent as they are for the pentagons

but are the opposite vertices of the three faces surrounding any given face. There

are therefore twenty such triangles one corresponding to each face of the

icosahedron. Note that the sides of the triangles are not edges of the icosahedron.

In both cases the polygons form parallel pairs (and in the case of the triangles are

parallel to faces of the icosahedron). Two such parallel pairs are shown below.

We will meeet these twelve pentagons and twenty triangles again in a

moment.

Three mutually orthogonal golden rectangles inside an icosahedron. 

Pairs of parallel pentagons and triangles in an icosahedron.
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The Kepler–Poinsot figures with density 3.

Small stellated dodecahedron {5/2, 5} Great dodecahedron {5, 5/2}

Kepler and Poinsot

W
E IMPLIED ABOVE that the five regular polyhedra (the Platonic figures) were

the only regular figures possible. However, just as we considered the

polygrams such as the pentagram to be regular polygons then we should admit

the possibility that a regular solid might be non-convex and have faces consisting

of polygrams. At first sight this seems ludicrous since intuitively one cannot

imagine prickly stars neatly fitting together. Nevertheless, it is possible as was

discovered by Kepler and Poinsot.

Kepler (1571–1630) is best known for his laws of planetary motion such as

that the orbits of the planets are ellipses. He discovered that there are two regular

figures whose faces are all pentagrams. One has five pentagrams at each vertex

and the other has three; their Schläfli symbols are {5/2, 5} and {5/2, 3}. The

faces naturally intersect but that is reasonable since the sides of the pentagram

intersect anyway. They have rather heavy names, the Small Stellated

Dodecahedron and the Great Stellated Dodecahedron respectively. These names

reflect that they can be built up from the dodecahedron which lies at their centre.

They both have twelve faces arranged parallel to the faces of this central

dodecahedron.

The duals of these were discovered many years later by Poinsot (1777–

1859). They are the Great Dodecahedron {5, 5/2} which has twenty triangular

faces and the Great Icosahedron {3, 5/2} which has twelve pentagonal faces. In

both cases the vertex figure is a pentagram and they both have twelve vertices

arranged as the vertices of an icosahedron. The faces are the twenty triangles and

twelve pentagons inside an icosahedron discussed in the last section.

Of the stellated dodecahedra perhaps the small one with five pentagrams at

each vertex is more attractive; the large one is really too prickly to be beautiful.
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The small stellated dodecahedron appears in Escher’s lithographs, Order and

Chaos (two versions) and Gravity. It has also been used as the basis for glass

lanterns. The great icosahedron is somewhat confusing; its triangular faces do

not stand out clearly since they are penetrated by three vertex figures. However,

the great dodecahedron is very attractive; both the pentagonal faces and the

vertex figures are immediately obvious. 

The concept of density was mentioned with respect to the polygrams. The

density is the number of times a ray out from the centre intersects a face. The

density of the five Platonic solids is of course one. But the density of these non-

convex figures is not one. It is three in the case of the small stellated

dodecahedron and its dual and it is seven in the case of the great stellated

dodecahedron and its dual. Note that in calculating the density, the penetration of

the core of a pentagram counts as two intersections. It is probably not a

coincidence that those with lower density are more attractive since the higher

density is clearly associated with a greater degree of convolution.

The table shows the statistics for these figures. Note that Euler’s formula

does not work for two of them. This is because Euler’s formula relates to all the

individual segments of faces and edges as cut up by the intersections with each

other whereas we are considering the faces and edges as a whole.

The Kepler–Poinsot figures with density 7.

Great stellated dodecahedron {5/2, 3} Great icosahedron {3, 5/2}

Object Symbol Faces Edges Vertices Density

Small stellated dodecahedron {5/2, 5} 12 30 12 3

Great stellated dodecahedron {5/2, 3} 12 30 20 7

Great dodecahedron {5, 5/2} 12 30 12 3

Great icosahedron {3, 5/2} 20 30 12 7
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The Archimedean figures

W
HEN CONSIDERING tilings we decided that the key to a regular pattern was

that it should be composed of any regular polygons provided that each

point should have the same polygons around it. This produced eight additional

regular tilings.

We can similarly extend our definition of regular solids to permit the faces

to be any regular polygons provided the same arrangement of faces occurs at

each vertex. Disallowing intersecting faces for the moment, this introduces the

thirteen so-called Archimedean figures.

A number of these are obtained by truncating the five Platonic figures much

as we saw how some new tilings could be produced by clipping the corners off

the squares and hexagons in the uniform tilings.

Thus if we file down the vertices of a tetrahedron, we get a new triangle at

each vertex and the original triangular sides become hexagons. This is known

(boringly) as the truncated tetrahedron which we can denote by {3.6.6} in a

similar notation used for the tilings. Thus it has 12 vertices, 8 faces (4 hexagons

and 4 triangles) and 18 edges. Each vertex has a triangle and two hexagons

around it. Some edges have a hexagon either side and some have a hexagon on

one side and a triangle on the other. Further truncation produces an octahedron.

If we truncate a cube then we get the truncated cube {3.8.8} with 6 octagonal

faces and 8 triangular faces. If we truncate an octahedron then we get the

truncated octahedron {4.6.6} with 6 square faces and 8 hexagonal faces. If we

truncate either of these a further stage then we get the cuboctahedron {3.4.3.4}

which has six square faces (like a cube) and eight triangular faces (like an

octahedron). 

The existence of the elegant cuboctahedron is further evidence of the duality

between the cube and octahedron. An important property is that each edge is the

same and has a square on one side and a triangle on the other. Thus the

cuboctahedron is more regular than figures such as the truncated cube in which

the edges are not all the same. Another property of the cuboctahedron is that it

can be looked upon as two halves divided by a hexagon. In fact there are four

such equatorial hexagons each containing one side of all six squares.

A normal tetrahedron and a truncated tetrahedron {3.6.6}.
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As expected, a similar pattern emerges by truncating the dodecahedron and

icosahedron. We have the truncated dodecahedron {3.10.10} and the truncated

icosahedron {5.6.6}. If we truncate either of these further then we get the

midway icosidodecahedron {3.5.3.5} which has 12 pentagonal faces (like a

dodecahedron) and 20 triangular faces (like an icosahedron). The

icosidodecahedron is extra regular like the cuboctahedron in that each edge is the

same. It also is divided in two by equatorial polygons which in this case are

decagons. There are five such equatorial decagons and each contains one of the

five sides of every pentagonal face.

Incidentally, the truncated icosahedron with its 12 pentagonal faces and 20

hexagonal faces is the shape of the modern soccer ball. Of deeper interest is

perhaps the recent discovery of the strange molecule of carbon, C60, whose 60

atoms are arranged as the 60 vertices of the truncated icosahedron. This allotrope

of carbon is sometimes known as Buckminsterfullerene after the architect.

It is interesting to note the close relationship between the group of three

cube/octagon based figures and the three dodecahedron/icosahedron based

Truncated dodecahedron

{3.10.10}

Truncated icosahedron

{5.6.6}

Icosidodecahedron

{3.5.3.5}

Truncated cube

{3.8.8}

Cuboctahedron

{3.4.3.4}

Truncated octahedron

{4.6.6}
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figures. In fact the symbols for the first group have 4s in the places where those

of the second group have 5s (the 8 and 10 correspond also). If we go one step

further and replace the 5s by 6s then we obtain three tilings namely {3.12.12},

{3.6.3.6} and {6.6.6} the last being of course the uniform tiling of hexagons

normally denoted by {6, 3}. Many properties correspond, for example the tiling

{3.6.3.6} has the same extra regularity as the cuboctahedron and

icosidodecahedron with all edges the same.

So that introduces seven of the thirteen Archimedean figures. The remaining

six can be introduced in various ways but a good way is to consider some of the

remaining tilings and what happens if we reduce the number of polygons around

a key polygon.

Consider for example the tiling {4.6.12} shown below left which has

alternate hexagons and squares arranged around a dodecagon. Suppose we

reduce the dodecagon to a decagon – this forces the pattern to fold up and

produces {4.6.10} which is sometimes called the truncated icosidodecahedron. A

further similar reduction produces {4.6.8} the truncated cuboctahedron. (These

names are sometimes considered incorrect because straightforward truncation

produces rectangles rather than squares at the old vertices and some realignment

is then required to obtain the regular figures.) 

Two other regular figures are obtained by similarly starting from the tiling

{3.4.6.4} which is that formed by overlapping dodecagons. More explicitly, it

consists of squares and triangles around a hexagon. If we reduce the hexagon to

a pentagon we get {3.4.5.4} which is known as the rhombicosidodecahedron for

reasons which need not bother us. Reducing the pentagon to a square produces

{3.4.4.4} known as the rhombicuboctahedron.

Both the truncated icosidodecahedron and the rhombicosidodecahedron have

30 square faces and these are oriented in exactly the same way as the 30 faces of

the compound of five cubes inscribed inside a dodecahedron which we met

earlier.

Truncated cuboctahedron

{4.6.8}

Truncated icosidodecahedron

{4.6.10}

Tiling

{4.6.12}
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The final two figures are obtained from the tiling {3.3.3.3.6} which it may

be remembered came in enantiomorphic forms (like left- and right-handed

gloves). Reducing the central hexagon to a pentagon produces {3.3.3.3.5} known

as the snub dodecahedron. Reducing the pentagon to a square produces

{3.3.3.3.4} known as the snub cube. Like the original tiling both these snub

figures come in enantiomorphic forms. Incidentally, the word snub comes from

the Old Norske snubba meaning to cut short – it’s nice to have some

Scandinavian influence for a change after all that Latin and Greek. The snub

cube has six square faces like a cube and similarly arranged in parallel pairs but

somewhat twisted. In addition it has 32 triangular faces. The snub dodecahedron

has twelve pentagonal faces like the dodecahedron and in addition has 80

triangular faces.

That concludes the thirteen Archimedean figures. However, it should be

mentioned that there are also the prisms and antiprisms. These satisfy the

requirement that a regular figure should have regular polygonal faces and each

vertex should have the same arrangement of faces about it. A prism consists of

Rhombicuboctahedron

{3.4.4.4}

Rhombicosidodecahedron

{3.4.5.4}

Tiling

{3.4.6.4}

Snub cube

{3.3.3.3.4}

Snub dodecahedron

{3.3.3.3.5}

Tiling

{3.3.3.3.6}
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two equal polygons joined by squares. Thus a hexagonal prism consists of two

parallel hexagons joined by six squares. A square prism is simply a cube. Clearly,

there is an infinite number of such prisms. The antiprisms consist of pairs of

polygons joined by triangles arranged alternately. A triangular antiprism is an

octahedron. The prisms and antiprisms are somewhat boring.

The statistics of the Archimedean figures are summarized in the table below.

It should be mentioned that there is another set of figures which are the duals of

the Archimedean ones. In the Archimedean figures, although the faces are all

regular, the vertex figures are not. The duals on the other hand have regular

vertex figures but the faces are not regular. They don’t look very attractive

presumably because the eye more easily recognizes regular faces than regular

vertex figures. 

Two of the Archimedean duals are important and are worth describing in

some detail. These are the duals of the cuboctahedron and icosidodecahedron

Object Symbol Faces E V

Trunc tetrahedron {3.6.6} 8 = 4(3)+4(6) 18 12

Trunc cube {3.8.8} 14 = 8(3)+6(8) 36 24

Cuboctahedron {3.4.3.4} 14 = 8(3)+6(4) 24 12

Trunc octahedron {4.6.6} 14 = 6(4)+8(6) 36 24

Trunc dodecahedron {3.10.10} 32 = 20(3)+12(10) 90 60

Icosidodecahedron {3.5.3.5} 32 = 20(3)+12(5) 60 30

Trunc icosahedron {5.6.6} 32 = 12(5)+20(6) 90 60

Trunc icosidodecahedron {4.6.10} 62 = 30(4)+20(6)+12(10) 180 120

Trunc cuboctahedron {4.6.8} 26 = 12(4)+8(6)+6(8) 72 48

Rhombicosidodecahedron {3.4.5.4} 62 = 20(3)+30(4)+12(5) 120 60

Rhombicuboctahedron {3.4.4.4} 26 = 8(3)+18(4) 48 24

Snub dodecahedron {3.3.3.3.5} 92 = 80(3)+12(5) 150 60

Snub cube {3.3.3.3.4} 38 = 32(3)+6(4) 60 24

A hexagonal prism and hexagonal antiprism.
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which it will be recalled are more regular than the other Archimedean figures

because all their edges are the same. Both these duals have faces which are

rhombic (a rhombus is a parallelogram with all sides equal) and are known as the

rhombic dodecahedron which has 12 faces and the rhombic triacontahedron

which has 30 faces. They are shown above. The reader may feel confused in

looking at them. The problem seems to be that the human eye is conditioned to

assume that a rhombus is actually a square at an angle and so the brain attempts

to interpret the image as bits of cubes stuck together.

The rhombic dodecahedron is important in crystallography and we shall

meet it again in the next lecture when we discuss honeycombs. Its dihedral angle

is exactly 120° as we shall see in a moment. 

The rhombic triacontahedron in a sense has already been encountered since

it is the figure common to the five cubes in the amazing compound of five cubes.

If we look back at the diagram on page 40 showing the lines of intersection of

the four coloured cubes with a face of the white cube we will see a rhombus at

the centre of the white square. This rhombus is a face of the figure common to

the five cubes and since each cube has six faces this makes the total 30. The

triacontahedron above has been coloured with the faces corresponding to those

of the five cubes.

A strange feature of these figures is that a zigzag belt of rhombi can be traced

around the equator in various ways. In the case of the rhombic dodecahedron, the

The rhombic

dodecahedron with 12

faces and the rhombic

triacontahedron with

30 faces are the duals

of the cuboctahedron

and

icosidodecahedron.

Two of the zigzag

belts of the

triacontahedron

are highlighted.
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belt has six rhombi and can be traced in four ways. These belts are the dual of

the four equatorial hexagons of the cuboctahedron. Since the belt has six rhombi

it follows that the dihedral angle is 120°, the same as the angle between the sides

of a hexagon. In the case of the triacontahedron there are five belts of ten rhombi

from which it follows that the dihedral angle of the triacontahedron is 144°.

Note that the rhombic faces of the dodecahedron and triacontahedron do not

have the same shape. The ratio of the diagonals in the case of the dodecahedron

is √2 whereas for the triacontahedron it is τ, the golden number.

Non-convex polyhedra

W
E HAVE ALREADY met the four Kepler-Poinsot regular polyhedra which have

pentagrams as faces or vertex figures. These are the only non-convex

polyhedra whose faces are all the same. 

However, if we allow any combination of polygons or polygrams as faces

provided that the same arrangement occurs at each vertex (as for the

Archimedean figures) and also allow the faces to intersect then other possibilities

arise. There are in fact 53 such figures. We will not consider them in detail

because it would take too much space but just mention a few in order to illustrate

the variety of these figures.

An interesting new feature is that the faces that arise also include the

octagram {8/3} and the decagram {10/3} as well as the pentagram and the

various polygons that we have already encountered as faces of earlier figures.

An intriguing figure is the heptahedron shown below which has seven faces

– it is unique in having an odd number of faces. Three faces are intersecting

squares arranged at right angles to each other in the same way as the three

equatorial squares of an octahedron. The other four are triangles whose three

sides join the sides of the three squares. Each of the eight vertices is surrounded

by two squares and two triangles. That is the same arrangement as in the

cuboctahedron but, in the case of the heptahedron, the vertex figure crosses over

Three squares plus four triangles make a heptahedron {3.4,3.4}.

+ =



itself as shown above. We can represent this by using a comma rather than a dot

in the list of faces at the point where the sides of the vertex figure change

direction thus {3.4, 3.4}. The heptahedron is a weird figure with strictly speaking

only one side. It can be looked upon as an octahedron with alternate sections

missing. We will meet the heptahedron again in the lecture on Topology.

Another relatively simple pair of figures can be derived from the

cuboctahedron {3.4.3.4}. First take four intersecting hexagons arranged as the

equatorial hexagons of the cuboctahedron. These can then be joined by the eight

triangles of the cuboctahedron or by the six squares of the cuboctahedron as

shown below. The resulting figures are known as the octahemioctahedron and

cubohemioctahedron respectively. Each can be considered to be part of a

cuboctahedron and together they make a complete cuboctahedron. One is one-

sided and the other is two-sided.

A similar pair of figures can be obtained from the icosidodecahedron

{3.5.3.5}. In this case there are six intersecting equatorial decagons and these

can be joined by 20 triangles or by 12 pentagons.

Another pair of figures can be obtained from the rhombicuboctahedron

{3.4.4.4} as shown overleaf. This does not have equatorial polygons but instead

has pairs of octagons on either side of the equatorial belts of squares and so

positioned a bit like the arctic and antarctic circles of the earth. Moreover, there

are three such belts of squares intersecting at right angles. So we start with six

octagons in three parallel pairs intersecting each other at right angles. We can

then join these either with twelve squares or with eight triangles and six squares. 

A similar pair of figures can be obtained from the rhombicosidodecahedron

{3.4.5.4}. In this case the framework is provided by 12 decagons arranged as six

intersecting parallel pairs (their position can easily be seen by looking at an
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Vertex figures of cuboctahedron (left)

and heptahedron (right).

Four equatorial hexagons

of a cuboctahedron.

Octahemioctahedron

{3.6,3.6}

Cubohemioctahedron

{4.6,4.6}
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Six octagrams arranged

as the face of a cube.
{8/3.4,8/3.3} {8/3.4,8/3.4}

icosahedron). The 12 decagons can then be joined by 30 triangles or by 20

triangles and 12 pentagons.

Two figures involve six octagrams {8/3} arranged as the faces of a cube with

pairs of vertices touching. The edges can then be joined in two ways as shown

below. In one figure, six squares are arranged in pairs parallel to the octagrams

and thus oriented as the faces of a cube; the remaining edges are then joined by

eight triangles oriented as the faces of a dual octahedron. In the other figure the

edges are joined by twelve squares arranged as six parallel pairs with two pairs

perpendicular to each pair of octagrams. 

Two figures involve decagrams {10/3} in much the same way. They have 12

decagrams arranged as the faces of a dodecahedron with pairs of vertices

touching. Their sides are then joined by 20 triangles and 12 pentagons or by 20

hexagons.

Four figures involve 12 pentagrams arranged as in the faces of a

dodecahedron with their vertices touching. In two cases the vertices of three

adjacent pentagrams touch and the edges are then joined by 20 triangles or by 12

pentagons. In the other two cases the pentagrams are oriented so that they meet

in pairs at the vertices and the edges are then joined by 12 pentagons or by 10

hexagons. 

Six polar octagons of a

rhombicuboctahedron.
{4.8,4.8} {4.8,3.8}



2 Shapes and Solids 55

That very briefly outlines just 17 of this amazing group of 53 figures. Many

of the others are very intricate and defy an outline description. But I must

mention one more since it is the only one composed only of polygrams. 

The so-called great dodecahemidodecahedron consists of twelve pentagrams

interlinked with six decagrams. The six decagrams are arranged equatorially as

if parallel to the pairs of faces of a dodecahedron. The pentagrams are in pairs

parallel to and each side of a decagram. Each decagram meets each of the five

others at two opposite vertices. The vertices are also joined by the pentagrams.

It is shown above as a stereo pair.

Pentagonal tilings

A
S NOTED EARLIER, it is not possible to tile a plane with regular pentagons.

However, quite recently (in mathematical terms) it was shown by Penrose

that it is possible to tile the plane with a mixture of regular pentagons with the

occasional pentagram, rhombus and a boat-like shape which is part of a

pentagram. Moreover, the tiling almost shows fivefold symmetry since the rows

of pentagons can be traced in five directions. However, the tiling never repeats

exactly although lumps will be found which match as closely as we like. A

curious feature is that if we attempt to assemble such a tiling then we will quite

often get into an impossible position and have to backtrack.

This is typical of much modern mathematics and verges on the ideas of

chaos which we will discuss later. I suppose the rot started with Gödel who

loosely speaking showed that some things can neither be proved nor disproved

which rather dented the feeling that mathematics ought to be a cut and dried

discipline.

Two views of a model of the great dodecahemidodecahedron {10/3.5/2,10/3.5/2}.
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Further reading

T
HE AMAZING BOOK Flatland by Abbott is a clear starting point for this lecture.

An exhaustive discussion of tilings will be found in Tilings and Patterns by

Grünbaum and Shepherd; this includes the Penrose pentagonal tilings. A rather

different book is Islamic Patterns by Critchlow which contains many diagrams

as well as an interesting discussion covering all the regular and semi-regular

tilings. The pentagonal tilings are also described in The Emporer’s New Mind by

Penrose.

Mathematical Models by Cundy and Rollett is a classic book and describes

the regular tilings and gives details of the regular and Archimedean figures and

guidance on their construction. Polyhedron Models by Wenninger covers all the

regular figures including the 53 non-convex ones; it includes detailed

instructions on how to make models and includes photographs of every one.

Strangely, although the compound figure of five cubes is mentioned,

constructional details are omitted although it gives details of the other compound

figures. The five cubes are however described by Cundy and Rollett. Pretty

photographs of some figures will be found in Mathematical Snapshots by

Steinhaus. 

The lithographs by Escher will be found in Escher, The Complete Graphic

Work edited by Locher. Most will also be found in Gödel, Escher, Bach by

Hofstadter. The paintings by Dali are illustrated in Dali by de Liaño. 

See also Appendix A for an amusing relationship between the golden number

τ and the square root of 2 and Appendix B for stereo images of various figures.

Exercises

1 How many different colours are required to colour a) the three regular

tilings, b) the eight semi-regular tilings? Remember that adjacent tiles must

be of a different colour but it doesn’t matter if tiles of the same colour meet

at a corner only. Note that a chessboard requires only two colours – now

think about the others. (Only one tiling requires the maximum of 4 colours.) 

2 A tetrahedron can be coloured in two different ways with four colours, one

on each face. How many different ways can a cube be coloured with six

colours, one on each face?

3** The line joining the centres of adjacent hexagons in the tiling {3.4.6.4} is at

right angles to the sides of the hexagons that it crosses. However, in the

tiling {3.3.3.3.6} the line joining the centres of adjacent hexagons crosses

the sides obliquely because the hexagons are rotated. What is the angle of

rotation? Similarly what is the angle of rotation of the squares in the snub

cube {3.3.3.3.4} compared with the corresponding squares in {3.4.4.4}?



3 The Fourth Dimension

T
HE PREVIOUS LECTURE described the regular figures in two and three

dimensions. We now consider the regular figures in four dimensions and how

we can get a glimpse of them by analogy with how a person in Flatland might get

some appreciation of figures in three dimensions.

What is the fourth dimension?

P
HILOSOPHERS, mathematicians and artists have long mused over the

possibility of a fourth dimension. Einstein’s theories of relativity were a big

stimulus to (probably superficial) discussion of the fourth dimension at dinner

parties in the early years of the twentieth century. Indeed, that seems to have

been a time of increasing interest in the occult, meditation, spiritualism and

similar topics. The contemplation of the fourth dimension was claimed to be

good for gaining an expansion of consciousness, deeper insight into one’s soul

and so on. I would have thought that too much contemplation of the fourth

dimension was more likely to result in a nasty headache!

There was some confusion regarding whether time is the fourth dimension.

In Einstein’s theories of relativity, time is indeed the fourth dimension but

interwoven with the spatial dimensions as we shall discuss in Lecture 9. But in

this lecture we shall be considering a fourth dimension in space. This is of course

merely a mathematical figment of the imagination but even though we do not live

in a world of four spatial dimensions and thus can have no direct experience of

it nevertheless the properties of such a space and the possible regular figures can

be predicted and described. 

It is pretty hard to imagine a fourth spatial dimension but by analogy with

how the Flatlanders could get some feel for the third dimension there are a

number of approaches we can take. One way is to consider the possible sections

of the various regular hypersolids. In other words what we might observe if a

four-dimensional figure were to pass through our Spaceland in the same way that

the Flatlanders could see the various sections of a cube even though they could

not appreciate the cube as a whole. Another way is to imagine the projections of

the objects onto our space. In this lecture we will concentrate on looking at

sections whereas some projections as stereo images are shown in Appendix D.

Before looking at specific regular figures, it is worth recapping a few rules

about three dimensions and stating the corresponding rules in four dimensions.

And again we can use the Flatland analogy to help us.

For example, two planes intersect in a line in three dimensions (unless they

are parallel). In four dimensions however, two planes generally meet only in a
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single point. If this seems strange then consider the analogy with lines in

Flatland. Two lines in Flatland always meet in a point (unless parallel) but in our

three-dimensional space two lines in general do not meet at all (unless by chance

they are both in the same plane). A plane and a line generally meet in a point in

our space but do not meet at all in four dimensions (unless by chance they are

both in the same three-dimensional space).

The general rule is simple. In space of n dimensions, objects of p and q

dimensions meet in an object of p+q–n dimensions. Thus in n=3 dimensions, two

planes (p=q=2 dimensions) meet in a line (2+2–3=1 dimension). If p+q–n is zero

then the objects meet in a point; if it is negative then they do not meet. So in four

dimensions, two planes meet in a point (2+2–4=0) whereas a line and a plane do

not in general meet at all.

Honeycombs

A
S A PRELIMINARY to delving into the magic of four dimensions, we will

consider honeycombs in three dimensions. Although we normally associate

the word honeycomb with the structure made by bees, it is used technically to

mean the subdivision of a space into many equal parts. In two dimensions, this

becomes the tilings which we saw in the previous lecture. Moreover, the tilings

proved to be rather like some of the regular three-dimensional figures but opened

flat. So considering honeycombs in three dimensions is a natural prelude to

investigating four dimensions.

Perhaps surprisingly, the only regular honeycomb is that made of cubes. The

Schläfli symbol for the cubic honeycomb is {4, 3, 4}. We can consider this as an

overlapping combination of {4, 3} and {3, 4}. The {4, 3} represents the cube and

the {3, 4} represents the vertex figure formed where eight cubes meet and is of
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The vertex figure of the

honeycomb of cubes is an

octahedron.



course the octahedron. Note that six edges meet at each vertex corresponding to

the fact that the octahedral vertex figure has six vertices.

Remember that the vertex figure is that obtained by joining the midpoints of

the edges which meet at the vertex concerned. By going up a dimension, the

vertex figure becomes a polyhedron rather than a polygon.

It is interesting to consider what the Flatlanders would see if a piece of

honeycomb of cubes were to pass through Flatland. If it were to pass face first

then it would appear suddenly as a section of square tiling {4, 4}. On the other

hand if the honeycomb were at an angle so that the individual cubes were

approaching vertex first then the section would be a mixture of triangles and

hexagons. And indeed when some of the cubes are exactly halfway then they

appear as regular hexagons with the result that the pattern of the cross-section is

the tiling {3.6.3.6}. Various cross-sections are shown above and below.
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A honeycomb of cubes

intersected by Flatland in a

tiling of triangles and

hexagons.

Two cross-sections through a honeycomb of cubes.



That space can be subdivided into cubes is obvious. We might think

intuitively that space could also be subdivided into lots of tetrahedra by analogy

with tiling the plane with triangles. But this is not so. However, if we allow the

cells to be Archimedean polyhedra as well and allow mixtures but insist that the

same number surround each edge and each vertex then there are four other

possibilities so that the full list becomes 

cubes (4, 8)

truncated octahedra (3, 4)

tetrahedra (2, 8) and octahedra (2, 6)

tetrahedra (1, 2) and truncated tetrahedra (3, 6)

octahedra (1, 2) and cuboctahedra (2, 4)

The numbers in parentheses give the number of cells around each edge and the

number of cells meeting at each vertex respectively.

The honeycomb of a mixture of tetrahedra and octahedra shown below in a

sense is the analogue of the tiling of triangles in the plane. The tetrahedra have

two different orientations and four of each orientation meet at each vertex. Two

octahedra and one of each orientation of tetrahedra meet at each edge. Altogether

no less than fourteen cells and twelve edges meet at each vertex. Note how this

honeycomb is formed by a series of parallel planes at four different orientations.

These planes containing the faces of the cells exhibit the regular tiling of

triangles. This honeycomb appears in the lithograph by Escher entitled

Flatworms.

Then there is the honeycomb of tetrahedra and truncated tetrahedra (opposite

and above). Both occur in two different orientations. Two truncated tetrahedra of

one orientation, one of the other and a tetrahedron meet at each edge. Eight cells

and six edges meet at each vertex. Like the honeycomb of tetrahedra and

octahedra it is formed by cutting space by a series of parallel planes at four

different orientations; in the former case four planes go through each vertex, but
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A honeycomb of

tetrahedra and

octahedra.



in this case just three planes. The faces of the figures on these planes show the

familiar tiling {3.6.3.6}.

The honeycomb of octahedra and cuboctahedra shown below can be

obtained by taking the cubic honeycomb and making a hole at each vertex. Since

the vertex figure is an octahedron, it follows that the holes will be octahedra. If

we make them the right size then the cubes become reduced to cuboctahedra. Six

cells and eight edges meet at each vertex.

3 The Fourth Dimension 61

A honeycomb of

cuboctahedra and octahedra.

A honeycomb of

tetrahedra and truncated

tetrahedra.



Finally, the truncated octahedra perhaps make the prettiest honeycomb; it

has a certain elegance because it has the least number of polyhedra meeting at

each edge and vertex. We will meet it again when we discuss soap bubbles in

Lecture 6. The arrangement of the truncated octahedra within this honeycomb is

rather harder to understand than for the other honeycombs. One way is to observe

that the polyhedra can be seen as forming layers and within each layer they are

arranged as for the tiling of hexagons (one layer in the diagram above has green,

blue and red polyhedra arranged so that no two of the same colour touch).

Another layer can then be placed on top and one such polyhedron is shown

coloured yellow. Note that it touches polyhedra of all colours in the layer below.

The reader might like to consider what other tilings are exhibited by sections

of the various honeycombs. We have already seen that sections exhibit the

regular {4, 4} and {3, 6} and the mixed {3.6.3.6}. Some others occur as well.

Other less regular honeycombs are possible. We can make a honeycomb of

triangular prisms and one of hexagonal prisms. These naturally arise by

considering the triangular and hexagonal tilings of the plane and imagining

similar parallel planes whose distance apart is equal to the length of the side of

the tiles. But they are somewhat irregular because all the edges do not have the

same number of prisms around them. If we do the same with the square tiling

then we get the cubic honeycomb again because a square prism is simply a cube.

Another honeycomb is that made of rhombic dodecahedra (one of the dual

Archimedean figures). Although three meet at each edge, some vertices have four

and some have six around them so that it is not really regular. Nevertheless, it is

an important figure in crystallography. We will meet it again later in this lecture.
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The 4-simplex

T
HE TETRAHEDRON is the simplest figure in three dimensions and is obtained

by taking a triangle which is the simplest figure in two dimensions and

adding a fourth point in the extra dimension equidistant from the vertices of the

triangle. Similarly, starting with a tetrahedron we add a fifth point in the new

dimension equidistant from the other four. The result is the regular 4-simplex

which has five vertices, ten edges, ten triangular faces and five tetrahedral cells.

The five tetrahedra form the “surface” of the 4-simplex.

The diagram below shows a triangle ABC, a tetrahedron ABCD and a 4-

simplex ABCDE. The simplex has five tetrahedral cells and these are obtained by

taking any four of the vertices. This can be done in five ways (the omitted vertex

can be chosen in five ways obviously). Similarly, it has ten edges because there

is an edge corresponding to the ten ways in which two vertices can be chosen

from five. And it has ten triangular faces because three vertices can also be

chosen in ten ways (each choice of three corresponds to choosing the remaining

two). Consequently, there is a face opposite each edge where the face is

identified by the three vertices not being on the edge; thus the face ABC is

opposite the edge DE. Moreover, each cell is opposite a vertex; thus the cell

ABCD is opposite the vertex E. Note the similarity to the tetrahedron in which

each edge has an opposite edge and each vertex has an opposite face. 

Another interesting feature is that each edge belongs to three faces. Thus AB

is an edge of ABC, ABD and ABE. In a three-dimensional figure each edge only

belongs to two faces and in four dimensions this corresponds to the fact that each

face belongs to two cells. Thus the face ABC belongs to the cells ABCD and

ABCE. Finally each vertex belongs to four cells. Thus the vertex A belongs to the

cells ACDE, ABDE, ABCE and ABCD. 

The Schläfli symbol for the 4-simplex is {3, 3, 3}. The first two 3s show that

the cells are tetrahedra {3, 3}. The fact that the last two numbers are 3s as well

shows that the vertex figure is also a tetrahedron and indeed this can be

confirmed by noting that if we join the four points in the middle of the four edges

meeting at a vertex then we get the same arrangement of points and lines as in a

tetrahedron.
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A triangle {3}, tetrahedron {3, 3} and 4-simplex {3, 3, 3}.

A

C B

A

B

D C

A

C

E D

B
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Two views of a 4-simplex intersecting our space in a triangular prism.

A

C

E D

B

A

C

E D

B

We will now consider what we Spacelanders would see if a 4-simplex passed

through our space. As in the case of three-dimensional objects passing through

Flatland, the appearance depends upon the orientation.

If the 4-simplex approaches vertex first then it will first appear as a Point

which will immediately become a growing Tetrahedron until the opposite cell

(which is a tetrahedron) is in our space. And then the Tetrahedron will suddenly

vanish as the 4-simplex moves away. If it approaches cell first then the reverse

will happen – a Tetrahedron will suddenly appear and then slowly shrink to a

Point. (Remember that the 4-simplex, like the tetrahedron, is not centrally

symmetric since each vertex is opposite a cell rather than another vertex and each

edge is opposite a face.)

On the other hand, suppose the 4-simplex approaches with edge DE first. It

will first appear as a Line (in red below) and then this will turn into three lines

close together connecting two small triangles at each end, in other words a

Triangular Prism (in blue). That this should be the case can be seen by studying

the first diagram which shows the position when the 4-simplex is a little way

through our space.

It is important to realize that a plane in a general position in four dimensions

will intersect our space in a single line and that a line will generally meet our

space in a single point. This can be seen by considering the three-dimensional

analogy whereby a line generally intersects a plane in a single point; the

exceptions are when the line is wholly in the plane or is parallel to it in which

case it doesn’t meet it at all.

So the faces ADE, BDE, and CDE each meet our space in one of the long

edges of the prism. The other faces except ABC meet our space in the six short

lines of the two triangular ends of the prism. The face ABC doesn’t meet our

space at all because it is parallel to it.

As the 4-simplex progresses, the Prism changes, the triangular ends grow

larger and closer together as in the second diagram until finally the triangles

merge into one Triangle which happens as the face ABC opposite the initial edge

DE reaches our space. The reverse happens of course if the simplex approaches

face first. It starts as a Triangle, then becomes a Prism and ends up as a Line.



3 The Fourth Dimension 65

The hypercube and the 16-cell

W
E WILL NOW consider two other simple four-dimensional figures which are

analogous to the cube and its dual, the octahedron, in three dimensions.

The hypercube (or tesseract as it is often called) corresponds to the cube. A

cube is formed by taking a square in two dimensions and connecting it to an

equal square in a parallel plane. Similarly a hypercube is obtained by taking a

cube and connecting it point by point to another cube in a “parallel” space. The

hypercube has 16 vertices, 32 edges, 24 square faces and 8 cubic cells.

Representations of a square, cube and hypercube are shown below.

The Schläfli symbol for a hypercube is {4, 3, 3}. The cells are cubes {4, 3}

and the vertex figure is a tetrahedron {3, 3}. Observe that three square faces meet

at each edge. This is also encoded in the Schläfli symbol – the initial 4 says that

the faces have four edges and the final 3 says that the edges are on three faces.

Moreover, each vertex is part of four cells.

Each cubic cell of a hypercube is opposite another cubic cell in much the

same way that each square face of a cube is opposite another square face. 

The four-dimensional figure corresponding to the octahedron is the 16-cell.

A convenient naming convention is simply to use the number of cells which is

really what we do in three dimensions only the names are glamorized by being

Greek. Remember that octahedron just means 8-faced. We can also refer to the

hypercube as the 8-cell and the 4-simplex as the 5-cell. One way of constructing

an octahedron is to take three lines (axes) at right angles and then to mark the

vertices as the points on the lines which are unit distance from the centre. We

construct the 16-cell in the same way by taking two points on each of four lines

at right angles. The 16-cell has 8 vertices, 24 edges, 32 triangular faces and 16

tetrahedral cells. Representations of the octahedron and 16-cell are shown

overleaf in which dotted lines represent the axes. Note that the two-dimensional

analogue is also a square.

The Schläfli symbol for the 16-cell is {3, 3, 4}. This shows that the cells are

tetrahedra {3, 3} and the vertex figure is an octahedron {3, 4}. Four triangular

faces meet at each edge and each vertex belongs to eight cells.

A square {4}, cube {4, 3} and hypercube {4, 3, 3}.
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Other representations of a cube and hypercube.

Note that the hypercube and 16-cell are duals and that the 4-simplex is self-

dual. In four dimensions, edges and faces are dual concepts as are vertices and

cells.

Other representations of the hypercube and 16-cell are possible. The

representation of the hypercube shown earlier was obtained by taking the

engineering representation of the cube and then joining it to a copy. Another

possible representation of a cube is one square within another which is the

perspective view obtained by looking at it straight on; the far side looks smaller

of course because it is further away. A similar representation of a hypercube is

one cube within another as shown below. That the hypercube has eight cubes as

cells is quite easily seen in this representation. Two of the cubes are the outer and

inner one and the remaining six are the rather distorted shapes that have one face

of the inner cube and one face of the outer cube as opposite faces.

However, this representation is not very helpful for our purposes because it

is not an orthogonal view and as a consequence lines which are truly parallel do

not appear to be parallel. So we need to use an orthogonal projection of a

A square {4}, octahedron {3, 4} and 16-cell {3, 3, 4}.
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hypercube. Care is needed to ensure that lines and points do not coincide as for

example happens with an orthogonal projection of a cube looking straight at the

centre of a face – all we see is a single square! For the hypercube, we use a

projection from near the centre of an edge. The result is the third diagram shown

opposite. From exactly the centre of an edge would cause the two central lines to

coincide hence the slight deviation. Note that this view is similar to the

engineering representation shown earlier.

An interesting alternative representation of the 16-cell is a cube with the face

diagonals drawn. This is in fact the orthogonal view obtained by looking at a 16-

cell from the centre of one of its cell. Each face of the cube plus its diagonals is

one of the tetrahedral cells of the 16-cell which appear flat in this view. Since the

cube has six faces that accounts for six out of the sixteen cells of the 16-cell.

Eight others are at each corner of the cube and comprise the corner plus the three

points closest to it. The other two are simply the two tetrahedra embedded in the

cube which formed the stella octangula compound figure discussed in Lecture 2;

thus we take two corners of the top face plus the two corners of the bottom face

which do not correspond and of course this can be done in two ways. Some of

the cells are shown in bold in the diagrams above.

We will now consider what we might see when hypercubes and 16-cells pass

through our space. There are four key possible orientations in both cases, vertex

first, edge first, face first and cell first so quite a lot of different views are

possible. (In the diagrams that follow the initial item is shown in red and the

various subsequent cross-sections in blue.) We start with the hypercube.

If a Hypercube approaches cell first then it suddenly appears as a Cube and

then suddenly disappears much as a Cube passing through Flatland is seen as a

Square which suddenly appears and then disappears.

If a Hypercube approaches face first then the sequence is first a Square and

then the four corners double up to give a very shallow square box formed by

joining two parallel squares together (a form of cuboid). As the Hypercube

progresses, the two squares move apart until the figure becomes a Cube. As it

progresses further the original squares continue to move apart until the

Hypercube is exactly halfway and eight of its vertices are in our space. The

figure is then a cuboid with square ends and whose long edges are √2 times the

16-cells highlighting individual tetrahedral cells.
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sides of the square. The process then reverses. This is a similar sequence to that

observed in Flatland as a Cube passes through edge first.

If the Hypercube approaches vertex first then it will first appear as a Point

which will immediately become a growing Tetrahedron (remember that the

vertex figure is a tetrahedron). After a while the four nearest vertices will reach

our space. When this happens each vertex of the tetrahedron divides into three

because three further lines emanate from the vertex of the hypercube. The result

is that the tetrahedron becomes truncated and eventually turns into the Truncated

Tetrahedron (one of the Archimedean figures) with four regular hexagonal faces

and four triangular faces. At this point the Hypercube is at a position where the

four cubic cells containing the vertex which first entered our space are exactly

halfway through and are sliced by our space in a hexagon – remember that the

Flatlanders saw a hexagon when a cube passed through Flatland vertex first. The

four cubic cells remote from the leading vertex of the Hypercube are only a little

way into our space and so are sliced in a triangle which explains the triangular

faces of the Truncated Tetrahedron. As the Hypercube progresses the Truncated

Tetrahedron becomes further truncated until it eventually becomes an

Octahedron. This happens when the Hypercube is exactly halfway and six of its

vertices are in our space. The process then repeats in reverse. The Octahedron

turns via a different Truncated Tetrahedron into a Tetrahedron which then shrinks

to a Point. The diagrams above show the situation (1) when the tetrahedron is at

a maximum, (2) when the truncated tetrahedron is regular, and (3) the midway

octahedron.

Three views of a

hypercube crossing our

space vertex first.
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Finally, if a Hypercube approaches edge first then the sequence is first a

Line, then a Triangular Prism (much like the 4-simplex). The next change is

when a group of six vertices reach our space. Each vertex of the prism then

divides into two so that the ends of the prism become irregular hexagons. When

the Hypercube is halfway these hexagons become regular so that we see a

Hexagonal Prism. The process then reverses. Remember that each edge of a

hypercube belongs to three different cubic cells and these cells are passing

through our space edge first – this accounts for the rectangular faces. Further

each vertex of the initial edge of the hypercube belongs to one other cubic cell

because four cells meet at each vertex of a hypercube. These two other cubes are

passing through our space vertex first and this explains the initial triangle which

becomes a hexagon at the halfway position. The diagrams above show (1) when

the triangular prism is half its maximum size, (2) when the triangular prism is at

a maximum, and (3) the midway hexagonal prism.

These various sequences may seem rather complicated but the key to

understanding what happens is to note that as the Hypercube moves along,

groups of its vertices pass through our space (the actual number depends upon

the orientation) and when this happens there is a significant change in the

properties of the shape as seen in our space. The sequences are summarized in

the table overleaf; the entries with numbers correspond to sections where that

number of vertices are in our space. (Note that the numbers 88, 484, 2662, 14641

are rows of Pascal’s triangle multiplied by an appropriate power of 2.) 

What we have seen is that a Hypercube can present quite a variety of figures

to us as it passes by. It can appear as a tetrahedron, a truncated tetrahedron, an

Three views of a

hypercube

crossing our

space edge first.
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octahedron, a cube, a triangular prism, a hexagonal prism and also various

intermediate forms. It is interesting to observe that our investigations show that

these figures can be continuously transformed from one to another. Moreover, we

have only considered the effect as the hypercube traverses our space with a fixed

orientation – we have not considered how the figures change if the hypercube

were to rotate.

We will now consider the dual 16-cell. In some ways the 16-cell is a bit

easier because it has fewer vertices and edges. But on the other hand the

hypercube is perhaps easier to understand intuitively because we can readily

(perhaps) see the various cubes of which it is composed.

If a 16-cell approaches vertex first then the initial Point becomes a growing

Octahedron which reaches a maximum when the 16-cell is halfway through our

Space and then shrinks again down to a Point. This is similar to the way in which

an Octahedron passing through Flatland vertex first appears as a Square which

grows and then contracts.

If a 16-cell approaches cell first then it immediately appears as a Tetrahedron

because the cells are tetrahedra and then each vertex breaks into three points, the

edges of the tetrahedron become flattened so that long rectangles appear between

the adjacent faces of the tetrahedron and the vertices turn into small triangles.

When the 16-cell is halfway, the rectangles become squares and the whole figure

is then a Cuboctahedron with six square faces and eight triangular faces. The

process then reverses with the newly created triangles eventually becoming the

faces of the tetrahedral cell of the 16-cell opposite the cell which originally

entered our space. The diagram opposite shows the flattened tetrahedron (when

one-fifth of the way) and the midway cuboctahedron. 

If a 16-cell approaches edge first then the sequence is first a Line, then a

long Square Prism with square pyramid caps. As the 16-cell progresses, the

squares approach and when the 16-cell is halfway (and then four vertices of the

16-cell are in our space), the squares meet and the resulting figure becomes two

Vertex first

1 Point

Tetrahedron

4 Tetrahedron

Trunc Tetrahedron

6 Octahedron

Trunc Tetrahedron

4 Tetrahedron

Tetrahedron

1 Point

Edge first

2 Line

Triangular prism

6 Triangular prism

Hexagonal prism

6 Triangular prism

Triangular prism

2 Line

Face first

4 Square

Cuboid

Cube

8 Cuboid

Cube

Cuboid

4 Square

Cell first

8 Cube

Cube

8 Cube

Sections of a hypercube crossing our space.



square pyramids arranged base to base. Note that although it has eight triangular

sides they are not equilateral and so the figure is not a regular octahedron

because the angles are not the same. In fact the dihedral angle between the base

and sides of the square pyramids is 45° whereas the corresponding angle in a

regular octahedron is 54° 44'. The process then reverses. The diagram below

shows two views of this sequence, the prism plus caps (when one-eighth of the

way) and the midway double square pyramid.

Finally, if a 16-cell approaches face first then the sequence starts with a

Triangle. The corners of the triangle then become four points and the figure

consists of two parallel triangles joined along their edges by pairs of thin four-

sided figures (trapezia) and at their ends by pairs of triangles; in other words it

is a shallow triangular prism plus a border of trapezia and triangles. As the 16-

cell progresses the two big triangles shrink until they vanish when the figure

becomes two Hexagonal Pyramids base to base – this occurs when the 16-cell is

halfway and two vertices of the 16-cell are in our space and are in fact the apices
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A 16-cell crossing our space edge first.

A 16-cell crossing our space cell first.
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of the pyramids. The process then reverses. This rather complex sequence can be

explained by noting that each face of the 16-cell belongs to two tetrahedral cells

which pass through our space face first and account for the big triangles that

shrink. In addition, each edge of the original face belongs to two other tetrahedra

and these pass through edge first (but at an angle) thus explaining the trapezia.

Finally, each vertex of the original face belongs to two further tetrahedral cells

and these pass through vertex first (again at an angle) and explain the small

triangles. The diagram shows the triangular prism with border (when one-twelfth

of the way) and the midway double hexagonal pyramids.

The various sequences are summarized in the table below in a similar way

to the sequences for the hypercube.

Vertex first

1 Point

Octahedron

6 Octahedron

Octahedron

1 Point

Edge first

2 Line

Square prism +

pyramid caps

4 Double square

pyramid

Square prism +

pyramid caps

2 Line

Face first

3 Triangle

Triangular prism

+ border

2 Double

hex pyramid

Triangular prism

+ border

3 Triangle

Cell first

4 Tetrahedron

Cuboctahedron

4 Tetrahedron

Sections of a 16-cell crossing our space.

A 16-cell crossing our space face first.
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Other regular convex figures

T
HERE ARE THREE other regular hypersolids making a total of six compared

with the five Platonic solids in three dimensions. See the table below.

The first new figure is the 24-cell which is related to both the Hypercube and

the dual 16-cell. The 24-cell has 24 octahedral cells, 24 vertices, 96 triangular

faces and 96 edges. Its Schläfli symbol is {3, 4, 3} from which we see that the

vertex figure is a cube. Three triangular faces meet on each edge and eight cells

meet at each vertex. The 24-cell has the interesting property of being self-dual;

it has no analogue in three dimensions.

The other two figures are the 120-cell and 600-cell which form a dual pair

as is clear from their Schläfli symbols being the reverse of each other. They are

analogous to the dodecahedron and icosahedron in three dimensions. Clearly

these are complex figures and virtually impossible for humble three-dimensional

beings to comprehend. I have no doubt that the 120-cell is very beautiful to a

hyperperson being composed of 120 dodecahedral cells with a total of 720

pentagonal faces. Probably the 600-cell composed of 600 tetrahedral cells with a

total of 1200 triangular faces is just rather too much!

Observe that the formula C–F+E–V always has value zero. This is the four-

dimensional analogue of Euler’s formula F–E+V in three dimensions which as

we saw in the previous lecture always has the value 2.

The item labelled C//V gives the number of cells meeting at each vertex. This

is computed by multiplying the number of vertices in each cell by the number of

cells and then dividing by the number of vertices in the overall figure. Thus in

the case of the hypercube, the cells are cubes and have 8 vertices each so the

calculation is 8 × C / V = 8 × 8 / 16 = 4. In the case of the 600-cell no less than

20 tetrahedral cells meet at each vertex which is a scary indication of its richness.

The item labelled F//E gives the number of faces meeting at each edge. This

can be similarly computed by multiplying the number of edges of each face by

the number of faces and then dividing by the overall number of edges. In fact the

result is always the last number of the Schläfli symbol.

We will not explore the three new figures in detail as we did the 4-simplex,

hypercube and 16-cell. Suffice it to say that sections of the 24-cell include cubes,

octahedra and cuboctahedra and sections of the 120-cell and 600-cell include

tetrahedra, dodecahedra, icosahedra and icosidodecahedra.

Object Symbol Cells Faces Edges Vertices C//V F//E

4-simplex {3, 3, 3} 5 10 10 5 4 3

Hypercube {4, 3, 3} 8 24 32 16 4 3

16-cell {3, 3, 4} 16 32 24 8 8 4

24-cell {3, 4, 3} 24 96 96 24 8 3

120-cell {5, 3, 3} 120 720 1200 600 4 3

600-cell {3, 3, 5} 600 1200 720 120 20 5
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Non-convex regular figures

Symbol Cells Faces Edges Vertices C//V F//E Density

{5/2, 5, 3} 120 720 1200 120 12 3 4

{3, 5, 5/2} 120 1200 720 120 12 5 4

{5, 5/2, 5} 120 720 720 120 12 5 6

{5/2, 3, 5} 120 720 720 120 20 5 20

{5, 3, 5/2} 120 720 720 120 20 5 20

{5/2, 5, 5/2} 120 720 720 120 12 5 66

{3, 5/2, 5} 120 1200 720 120 12 5 76

{5, 5/2, 3} 120 7200 1200 120 12 3 76

{5/2, 3, 3} 120 720 1200 600 20 3 191

{3, 3, 5/2} 600 1200 720 120 20 5 191

HE READER will recall from the last lecture that there are four regular non-

They have pentagrams as faces or as vertex figures. The question arises as to

whether such amazing figures exist in four dimensions. The answer is Yes. There

are in fact ten of them and their basic statistics are listed in the table. 

As expected they all have pentagrams somewhere in their Schläfli symbols.

They are closely related to the 120-cell and 600-cell in the same way that the

icosahedron. Two of them are self-dual and the other eight form four dual pairs.

Poinsot polyhedron is the Great Dodecahedron {5, 5/2} and this occurs as the

cells of the self-dual {5, 5/2, 5} whose vertex figure is the dual Small Stellated

Dodecahedron and as the cells of {5, 5/2, 3} whose vertex figure is the Great

Stellated Dodecahedron.

The density of these figures is odd. The reader may recall that the density of

a polyhedron is the number of times a ray from the centre to the outside crosses

a face (counting crossing the core of a pentagram as two). Similarly, the density

of a four-dimensional figure is the number of cells that a ray crosses. Curiously,

the density of these figures reveals an extraordinary sequence of numbers.

density. By analogy perhaps the same applies to these four-dimensional figures.

If this is so then those with density 191 must surely be nasty convoluted beasts

whereas those with density 4 and 6 will be the most attractive. I am sure that the

self-dual {5, 5/2, 5} is gorgeous.

We will not contemplate the appearance of these figures as they cross our

space. But clearly they will present an amazing galaxy of forms based on

Tconvex polyhedra which are usually known as the Kepler–Poinsot polyhedra.

Kepler–Poinsot polyhedra are closely related to the dodecahedron and

All the Kepler–Poinsot polyhedra occur as cells of one or more of these four-

dimensional figures. I am sure that some have great beauty. My favourite Kepler–

The more attractive Kepler–Poinsot polygons are those with the lower

dodecahedra, icosahedra and the Kepler–Poinsot polyhedra as well as the simpler



by Flatland will appear as several separate pieces, many sections of these non-

convex four-dimensional figures by our space will comprise separate pieces.

Honeycombs, five dimensions and more

W
E WILL NOT consider four-dimensional figures akin to the Archimedean

figures in which the cells are not all the same in this lecture. The reader

will not be surprised to learn that such figures do exist but it would be more

likely to bring on that headache rather than improve the repose of our souls to

contemplate such complexity. But see Appendix C.

However, we will say a few words about honeycombs. We started this

lecture by noting that the only really regular honeycomb in three dimensions is

that formed of cubes {4, 3, 4}. There are in fact three regular honeycombs in four

dimensions with symbols {4, 3, 3, 4}, {3, 3, 4, 3}, and {3, 4, 3, 3}.

The first shows that fourspace can be filled with hypercubes {4, 3, 3} as

expected. The other two are duals; one shows that fourspace can be filled with

16-cells {3, 3, 4} and the other shows that fourspace can be filled with 24-cells

{3, 4, 3} which is perhaps rather surprising and reveals just one more amazing

aspect of four-dimensional space. 

Indeed, the consideration of honeycombs is perhaps the best way of

introducing the 24-cell. The cubic honeycomb in two dimensions is of course the

tiling of squares. We can divide a square into four equal parts each consisting of

a triangle whose base is one of the sides of the square and such that the apices of

the four triangles are the centre of the square. Suppose now that we take a tiling

of squares and do this subdivision to alternate squares and then add each triangle

to the adjacent square that has not been subdivided. Then clearly the squares that

were not subdivided plus the triangles added to them must also produce a tiling.

However, it simply turns out to be another square tiling with larger squares and

rotated through 45° as shown below.
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Dividing alternate squares in the tiling into four triangles and then adding them to

the remaining adjacent squares gives another square tiling but at 45°.

polyhedra. Moreover, just as some cross-sections of the Kepler–Poinsot polyhedra
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A cube divided into six

square pyramids.

A cube with a square

pyramid on each face.

A rhombic dodecahedron

circumscribing a cube.

We can do the same thing with the honeycomb of cubes in three dimensions.

A cube can be subdivided into six square pyramids; the base of each pyramid is

a face of the cube and the apices of the pyramids meet at the centre of the cube

as shown in the first diagram above. Suppose we now take a cubic honeycomb

and do this subdivision to alternate cubes and then add each pyramid to the

adjacent cube that has not been subdivided. 

Clearly we now have a new honeycomb dividing three-dimensional space

and in fact this is the honeycomb of rhombic dodecahedra briefly mentioned

earlier. Each cube plus six pyramids forms a rhombic dodecahedron as shown in

the second and third diagrams above. The resulting honeycomb is shown

opposite. A layer of green and red polyhedra lies in one plane and a layer of

yellow and blue ones forms an adjacent plane. It is not that regular since some

vertices have four and some six cells around them.

We can obviously do the same thing with the four-dimensional honeycomb

of hypercubes. A hypercube has eight cubic cells and so can be subdivided into

eight hyperpyramids each with a cubic cell as its base and all meeting at the

centre of the hypercube. The six side cells of these hyperpyramids are (of course)

square pyramids. If we now do this subdivision to alternate hypercubes of the

honeycomb and add the hyperpyramids to the adjacent undivided hypercubes

then again we must get a new regular subdivision of four-dimensional space. It

turns out that a hypercube plus the eight adjacent hyperpyramids forms a 24-cell

{3, 4, 3}. And so we obtain the honeycomb {3, 4, 3, 3}. By duality there is also

the honeycomb of 16-cells with symbol {3, 3, 4, 3}.

It is worth a brief mention of what the sections of these four-dimensional

honeycombs by our three-dimensional space might be. In the case of the

hypercubic honeycomb, the possible sections include the normal honeycomb of

cubes, the honeycomb of tetrahedra and octahedra and the honeycomb of

tetrahedra and truncated tetrahedra (remember that possible sections of a

hypercube vertex first are tetrahedra, truncated tetrahedra and octahedra).

Sections of the honeycombs of 16-cells and 24-cells include the honeycomb of

cuboctahedra and octahedra.
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We have seen that four dimensions reveals more complexity than three

having six convex regular figures as opposed to five and ten non-convex ones as

opposed to four. It also has three regular honeycombs as opposed to just one. We

might expect things to get yet more elaborate in five dimensions. But it doesn’t.

All that exist in five (and more) dimensions are the analogues of the tetrahedron,

cube and octahedron and the honeycombs of supercubes.

So four dimensions is uniquely rich and the self-dual 24-cell is itself unique

in having no analogue in three dimensions.

These various statistics are summarized in the table below.

A honeycomb of rhombic dodecahedra.

Dimensions Two Three Four Five + 

Objects

Regular infinite five six three

convex triangle, square, tetra-, hexa- 5-cell, 8-cell n-simplex

pentagon, etc octa-, dodeca- 16-cell, 24-cell supercube

icosahedron 120-cell, 600-cell its dual

Regular infinite four ten none

nonconvex pentagram, etc Kepler–Poinsot {5/2, 5, 3} etc –

Honeycombs three one three one

triangle, square, cubic hypercubic supercubic

hexagon tilings 16-cell, 24-cell
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A cube can be

represented as a net of

six squares with various

edges identified.

Nets

A
NOTHER WAY of describing a figure in three dimensions is to give the so-

called net from which it can be constructed by folding. Thus the net of a

cube is a figure made of six squares arranged as shown below. To complete the

description we need to say which sides are to be considered glued together and

strictly in which direction although this is usually obvious. The diagram shows

arrows and letters against some of the sides; the others are obvious.

We can now explain to a Flatlander that a cube is the figure obtained by

rotating the faces along the edges until the marked edges join up. Of course he

won’t understand how one could rotate something about an edge because to him

rotation only occurs about points. Nevertheless, we could explain that if it were

folded up and somehow he could negotiate the corners then he would find that

going out of the far right hand square by the edge “a” will miraculously bring

him into the far left square by its edge “a”.

We can now extrapolate this to the representation of a hypercube in three

dimensions. The required net comprises eight cubes, four of which are in a row

and the other four are around the second one of the row. The figures opposite

hopefully illustrate this. The one on the left shows all the edges whereas that on

the right has the hidden edges removed. 

Now all we have to do is to fold it up. We need to rotate the cubes about the

appropriate faces. But of course we Spacelanders only know about rotation about

lines and cannot comprehend how we might rotate something about a plane. Oh

well, at least we can do the identifications and so can understand that if we were

able to fold the thing up to form a hypercube, then the cube on the right would

be joined to the cube on the left and so on. Some of the faces are lettered to show

how they are identified. As a result, if we were able to traverse the cells of the

hypercube then by going out of the far side of the right hand cube we would find

ourselves inside the left hand one.

This is the basis of an amusing story by Robert Heinlein entitled And He

Built a Crooked House. A man in Southern California (where else!) has a house
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built for him one day by a strange builder. The house has eight nice rooms

oriented as shown below. The five rooms on the main floor are a central hall,

kitchen, dining room, lounge, and drawing room. There is a garage basement

beneath the hall and master bedroom above the hall and finally a superb study in

the attic above the master bedroom with wonderful views on all four sides. But

when he and his wife come to move in they find only a single room, the

basement. However, the builder takes them into the basement and surprisingly

the other rooms seem to be all there but connected by strange staircases. And

when they attempt to go out onto the roof of the study in the attic they find to

their horror that they are back in the basement! 

Well of course the house has folded up into a hypercube as the result of a

minor earthquake. As a consequence, the rooms lead into each other in a most

disconcerting manner. For example, if we attempt to go out of the master

b

b

c

c

a

a

f

f

e

e

d
d

The net of a hypercube.

Basement

Study

Bedroom

Kitchen

Dining room

Lounge

Drawing room

The Crooked House described by Robert Heinlein.
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bedroom window above the kitchen we actually find ourselves falling into the

kitchen from the ceiling. If we then attempt to leave the kitchen via the window

opposite the central hall we find ourselves entering the study by the

corresponding window and upside down! The story unfolds into a series of

strange disasters.

If this seems all rather peculiar then consider the analogy with the cubic net

of six squares which might be shown to a Flatlander. 

A rather more sombre example of the hypercube net of eight cubes appears

in the painting by Dali entitled Crucifixion (‘Hypercubic Body’). This shows a

man crucified on a cross taking the form of the hypercube net. 

Further reading

F
OR CONSIDERATION of the fourth dimension as being of mystic significance see

for example Theosophy and the Fourth Dimension by Alexander Horne. For

an advanced account of the geometry of regular figures in four dimensions see

Regular Polytopes by Coxeter. For an introduction see Introduction to Geometry

also by Coxeter. The honeycombs are discussed in Mathematical Recreations

and Essays by Rouse Ball and Mathematical Snapshots by Steinhaus.

The story And He Built a Crooked House by Robert Heinlein will be found

in Fantasia Mathematica compiled and edited by Clifton Fadiman. The painting

by Dali is illustrated in Dali by de Liaño. 

See also Appendix C for more ramblings about the fourth dimension and

Appendix D for stereo images of projections from four into three dimensions.

Exercises

1 How many different colours are required to colour the six honeycombs in

three dimensions? Each solid has every face the same colour. Solids with

adjacent faces must be of different colours. Solids that meet only along an

edge or at a vertex can have the same colour. The honeycomb of cubes

requires only two colours, alternate cubes could be black and white. Now

consider the other five honeycombs.

2 In two dimensions the length of the two diagonals between the opposite

corners of a square of side 1 is √2. In three dimensions the length of the four

diagonals between the opposite corners of a cube of edge 1 is √3. What is the

length of the superdiagonals between the opposite corners of a hypercube of

edge 1? How many such superdiagonals does the hypercube have?

3 In the crooked house, where do we find ourselves if we go through the four

walls (imagine a door in each), the ceiling and floor (imagine hatches in
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them) of the kitchen? Fill in the chart below. Give which surface of the new

room you enter by and your orientation assuming you were standing vertical

as you left the kitchen. The first row has been completed and shows that if

you were to go down through a hatch in the floor, then you would be in the

basement and have entered it through a wall and since you went through the

floor feet first then you come through the wall feet first as well and so are

lying down.

4* The Schläfli symbols in three dimensions using 3 and 4 are {3, 3}, {3, 4},

{4, 3} and {4, 4}. What are they? Observe that {4, 4} is actually a

honeycomb (the square tiling). It is a fact that a sequence representing a

honeycomb cannot appear as a subsequence in a higher dimension. Thus a

sequence such as {3, 4, 4} is impossible. List all the combinations of 3 and

4 that make up valid Schläfli symbols in four and five dimensions and say

what they are. Deduce that there can only be one honeycomb in five or more

dimensions.

Face Location Enter by Orientation

Floor Basement Wall Lying down

Ceiling

Wall towards kitchen

Wall adjacent to hall

Wall to right of hall

Wall to left of hall
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4 Projective Geometry

T
HE GEOMETRY we did at school (or maybe didn’t) was mostly very dull. It was

all about lengths and angles; proofs were often about showing that certain

angles or lengths were equal. However, there is much geometry in which the

lengths of lines and sizes of angles are not considered at all. This so-called

projective geometry was heavily studied in the nineteenth century but became

unfashionable. This was perhaps because it seemed to have no practical value

and did not provide a foundation for other things. Nevertheless, it has a certain

elegance and beauty. 

Pappus’ theorem

P
APPUS LIVED IN ALEXANDRIA in the fourth century and wrote an extensive

treatise on mathematics in about 320. His famous theorem is a good starting

point for a tour of projective geometry. Here it is.

Consider two lines l and l' and take any three points on each. We can call

them A, B, C and A', B', C'. Now draw a line from each point on one line to the

two points on the other line with a different letter. So through A we draw two

lines, one to B' and one to C' and so on. The two lines joining A to B' and A' to

B meet in a point which we can call C''. In a similar way the two lines BC' and

B'C meet in A'' and finally AC' and A'C meet in B''.

The remarkable thing is that A'', B'' and C'' always lie on another straight line

l''. This is Pappus’ theorem. It makes no mention of lengths or angles and so is

in strong contrast to the theorems of Euclid.

Note that there are nine lines and nine points with three points on each line

and three lines through each point. It is symmetries like this that give projective

geometry its great beauty.

A
B

C

C'
B'

A'

l
l''

l'

Pappus’ theorem.
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In a sense this was the beginning of projective geometry although Pappus

did not know this and proved his theorem using traditional methods. The theorem

of Menelaus who also lived in Alexandria but somewhat earlier (around AD 100)

is about the ratios of lengths cut on the sides of a triangle by a fourth line. It is

thus a typical traditional theorem. It is shown above. The product of the three

ratios cut by the fourth line on the three sides is 1 thus

QX RY PZ
—–  ×  –—  ×  –—     =  1
RX PY QZ

In the example, Y is the midpoint of PR so that PY = RY and Z is a quarter of the

way from P to Q so that QZ = 3 × PZ. It then follows from the formula that QX

is 3 times RX.

It is possible to prove Pappus’ theorem by using Menelaus’ theorem five

times on one of the triangles in the Pappus figure (e.g. the triangle formed from

the lines A'C, C'B and B'A). We leave this nasty exercise to the dedicated reader. 

Pappus’ theorem is stated in terms of points and lines and the only

relationships we need are the Propositions of Incidence in a plane which are

two points define a line,

two lines define a point.

Note the symmetry in these two statements; this symmetry underlies the

principle of duality which we met in the previous two lectures. If we exchange

point for line and vice versa throughout then the propositions are unchanged.

There are similar propositions in three dimensions which are

two points define a line,

three points (not on a line) define a plane,

two lines in a plane define a point,

two lines though a point define a plane,

three planes (not through a line) define a point,

two planes define a line.
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In three dimensions the symmetry is obtained by interchanging plane and point

whereas line remains unchanged in the middle. The principle of duality in three

dimensions thus means that any theorem involving points, lines and planes

implies a corresponding theorem involving planes, lines and points.

It is not possible to prove Pappus’ theorem using just these propositions and

this gives the theorem deep significance. By contrast, the famous theorem of

Desargues can be proved just from the propositions of incidence.

Desargues’ theorem

G
IRARD DESARGUES (1593–1661) was an architect and military engineer from

Lyons. He is generally considered to be the founder of projective geometry

and is famous for the following theorem concerning triangles.

Suppose two triangles ABC and A'B'C' are such that the lines AA', BB' and

CC' are concurrent which means that they go through a common point P.

(Concurrent is from the Latin con, together, plus curro, I run.) It is then said that

the two triangles are in perspective from P. Suppose now that sides BC and B'C'

meet in L and that CA and C'A' meet in M and that AB and A'B' meet in N. Then

the theorem says that the three points L, M and N are collinear which means that

they lie on a common line. This is sometimes expressed by saying that if two

triangles are in point perspective then they are also in line perspective.

If the triangles are not in the same plane then the theorem is almost obvious

since the three points L, M and N all lie on the line of intersection of the two

planes containing the triangles. However, we do first have to show that the pairs

of lines such as BC and B'C' actually intersect. But this follows from the fact that

both lines BC and B'C' lie in the plane defined by the two lines PCC' and PBB'.
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Desargues’ theorem in

space.
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If both triangles are in the same plane then the proof is not so easy. In fact

we have to introduce a third triangle outside the plane which is in perspective

with both original triangles and we then apply the theorem of three dimensions

which we have just proved. 

Thus in the diagram below, the triangles ABC and A'B'C' in black lie in the

plane of the paper and then the line PQQ' in red is any line not in the plane of

the paper and Q and Q' are any two points on it. The point A'' is where the red

lines A'Q' and AQ meet and so on for B'' and C''. We then have a triangle A''B''C''

which is shown in green. It is then the case that the pair of triangles A'B'C' and

A''B''C'' are in perspective from Q' whereas the pair of triangles ABC and

A''B''C'' are in perspective from Q.

Since ABC and A''B''C'' are in perspective it follows that BC and B''C'' meet

on the line where the plane of the triangle A''B''C'' meets that of ABC. Applying

the same argument with triangles A'B'C' and A''B''C'' it follows that in fact BC,

B'C' and B''C'' all meet on this line and so this is the point L. Ditto M and N. So

L, M and N all lie on the line where the plane of the triangle A''B''C'' meets the

original plane. This proves it. The argument is perhaps not easy to follow but see

Appendix B which has stereo images of these figures which might help.

It is strange that Desargues’ theorem is so easy to prove in three dimensions

but cannot be proved in two dimensions without the help of the third dimension.

And indeed it is possible to construct special geometries in two dimensions in

which the propositions of incidence hold but Desargues’ theorem is not true. We

will have a brief look at some special geometries in a moment.
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Duality

I
T IS INTERESTING to consider the duals of Pappus’ and Desargues’ theorems in

both two and three dimensions.

Before doing so it is worth noting how important it is to get a neat and

symmetric notation. We are very used to talking about triangles by naming their

three vertices. In fact the very word triangle emphasizes that they have three

angles rather than three sides. So we talk about a triangle with vertices A, B and

C. But we can equally talk about a triangle in terms of its three sides and it is

convenient to denote them by lower case letters so that the sides are the lines a,

b and c where the line a is the line opposite the point A and so on. We can then

refer to a line either by its own symbol (such as a) or in terms of two points on

it (such as BC). Equally, we can refer to a point either by its own symbol (such

as A) or in terms of two lines through it (such as bc). It should now be clear that

the dual of a triangle considered as three points is simply a triangle considered

as three lines. So the whole concept of a triangle is self-dual. I suppose we should

really refer to it as a trilateral when we think of it as three lines.

We can now phrase Desargues’ theorem in the form: If two triangles ABC

and A'B'C' are such that the lines AA', BB' and CC' all go through a point X then

the points aa', bb' and cc' all lie on a line x. The point aa' is of course the point

L in the previous diagrams.

To obtain the dual of Desargues’ theorem in two dimensions we have to

interchange point and line throughout. We then get: If two triangles abc and a'b'c'

are such that the points aa', bb' and cc' all lie on a line x then the lines AA', BB'

and CC' all go through a point X. 

The interesting result is that we obtain the same theorem in reverse. So the

converse is the dual theorem. This is sometimes expressed as saying that

Desargues’ theorem in two dimensions is self-dual.

We can do the same with Pappus’ theorem. The original theorem is (see page

83) as follows. Consider two lines l and l' and take any three points A, B, C on l

and A', B', C' on l'. Denote the point of intersection of BC' and B'C by A'' and

define B'' and C'' similarly. Then A'', B'' and C'' all lie on a line l''.
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In order to obtain the dual we simply interchange point and line and so on.

The result is as follows.

Consider two points L and L' and take any three lines a, b, c through L and

a', b', c' through L'. Denote the line joining bc' and b'c by a'' and define b'' and

c'' similarly. Then a'', b'' and c'' all go through a common point L''. This is shown

in the diagram above.

At first sight the dual of Pappus’ theorem doesn’t look like the original at all.

But closer inspection shows that it really is the same diagram. 

The original diagram has nine points A, B, C, A', B', C', A'', B'', C'' and also

nine lines l, l', l'', BC', B'C, CA', C'A, AB', A'B. Moreover, each line has three of

the points on it and each point has three of the lines through it.

The dual diagram also has nine points and nine lines and three of each

through or on each of the other as appropriate. In order to show that the diagrams

really are the same we need to show how the points of one can be identified with

those of the other. This can be done in many ways but one way is to identify L

with A and L' with A'. The three lines through L then correspond to l, AC' and AB'

whereas the three lines through L' correspond to l', A'B and A'C. Following the

intersections of these lines we find that the lines a'', b'' and c'' correspond to l'',

B'C and BC'. These three lines intersect in A'' which is therefore the point

corresponding to L''.

So in conclusion, the dual of Desargues’ theorem in two dimensions is the

same theorem in reverse and the dual of Pappus’ theorem also gives rise to the

same configuration although the identification is less clear.

The Pappus configuration has nine lines and nine points with three points on

each line and three lines through each point. By contrast the Desargues

configuration has ten lines and ten points with again three points on each line and

three lines through each point. The charm of both configurations partly lies in

their dual nature.
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Duality in three dimensions

W
E WILL NOW take a deep breath and consider the dual of Desargues’ theorem

in three dimensions. We recall that in this form of duality we have to

interchange point and plane but leave line unchanged.

Desargues’ theorem can be stated as: If two triangles ABC and A'B'C' are

such that the lines AA', BB' and CC' all go through a point X then the points aa',

bb' and cc' all lie on a line x. We assume that the triangles are in different planes.

Before considering the dual it will be helpful to understand the amazing

symmetry of the configuration. In fact there are five planes: the two planes of the

triangles ABC and A'B'C' and the three planes involving the perspective point X

which are XBB'CC', XCC'AA' and XAA'BB'. 

The Desargues configuration is indeed simply that caused by the intersection

of five planes. Two planes meet in a line and since there are ten ways to choose

two objects from five (thus 12, 13, 14, 15, 23, 24, 25, 34, 35, 45) we get ten lines.

Three planes meet in a point and since there are also ten ways to choose three

objects from five, we get ten points. Each of the planes contains four of the lines

(one corresponding to each of the four other planes) and each such line contains

three of the points. 

In order to appreciate the symmetry the figure is shown below with the lines

labelled l12 and the points labelled P12 and so on. Each line contains the three

points whose suffices are different from those of the line; thus line l14 contains

the points P23, P25 and P35. Similarly, point P14 is on the lines l23, l25 and l35. 
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We can call the five planes Π1, Π2, Π3, Π4, Π5 where we number them so

that the plane Π1 contains the six points without a 1 in a suffix plus the four lines

with a 1 in the suffix. The line l12 is then the line of intersection of the planes Π1

and Π2, and the point P12 is the point of intersection of the three planes Π3, Π4,

and Π5.

Because the diagram is so symmetric it should now be clear that it reveals

Desargues’ theorem in lots of different ways. We can take any of the ten points

as the point of perspective of two triangles and then the line with the same

suffices is the line of perspective of the theorem. Thus if we take P24 as the point

of perspective then the triangles concerned are P12P32P52 and P14P34P45 and their

pairs of sides meet in the three points P13, P15 and P35 which lie on the line l24.

Finally, note that each plane contains four lines and six points. These form

what is known as a complete quadrilateral in which each of the four lines

contains three points. The plane Π3 is shown above. We shall discuss the

complete quadrilateral later.

In conclusion then the Desargues configuration in three dimensions comprises

that formed by five planes and is thus known as a complete pentahedron.

Now to return to duality. The dual of five planes is of course five points. So

the dual figure is that formed by the lines and planes through five points. But the

thought of five points brings to mind the five points of the 4-simplex in four

dimensions which we met in Lecture 3. So the dual of the Desargues

configuration can equally be thought of as the projection of a 4-simplex in four

dimensions onto three dimensions.

Now we saw in Lecture 3 that the 4-simplex (or 5-cell) has five points, ten

edges, ten faces and five cells. Or in the terminology of this lecture, the figure of

five points in four dimensions has ten lines, ten planes and five solids (three-

dimensional spaces). If we slice this by an arbitrary solid then the ten lines are

cut by the solid in a point, the ten planes are cut in a line and the five solids are

cut in a plane – everything goes down one dimension. So the cross-section is a

figure consisting of ten points, ten lines and five planes – in other words it is the

original Desargues configuration!
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So at the end of the day the Desargues configuration and its dual are simply

cross-sections and projections respectively of the simplex in four dimensions

consisting of five arbitrary points and the lines and planes joining them.

The dual of Pappus’ theorem in three dimensions is less interesting. This is

largely because (unlike Desargues’ theorem) it is really only a theorem of two

dimensions so duality in other dimensions is rather artificial. 

We have seen that we have duality in a plane by interchanging point and line

and duality in three dimensions by interchanging point and plane. Other dualities

are possible.

For example, if a configuration just consists of lines and planes through a

common point then a different form of duality can be obtained by interchanging

line and plane. This results in another configuration consisting of planes and

lines through a common point. The reason this works is that if we take the three-

dimensional propositions of incidence and consider what they reduce to if all the

lines and planes go through a point then we simply get

two lines (though a point) define a plane,

two planes (through a point) define a line.

and these reveal the dual nature of planes and lines though a point. Note that they

correspond to the usual duality of line and points in a plane and so the whole

thing is consistent.

Similar dualities can be created in four dimensions. The normal duality in

four dimensions transforms point into solid and line into plane and vice versa.

Dualities can also be formed concerning all the solids, planes and lines through

a point and so on. 

I think that’s quite enough about duality and trust that the reader will have

gained some idea of the power of the technique. I hope it has illustrated some of

the beauty of this kind of geometry but maybe it has been just all too confusing.
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Infinity and parallels

I
T IS PERHAPS time to say something about the fundamental nature of projective

geometry. Basically, it concerns those geometrical properties which are

unchanged by a projection. 

For example, if we draw the Pappus diagram on a window and then observe

the shadow cast upon the floor by the sun, the shadow will equally be a Pappus

diagram. However, if we draw the diagram of Pythagoras’ theorem which

comprises a right-angled triangle with squares on its sides on the window, then

the shadow on the floor will be distorted; the triangle will no longer be right-

angled and the squares will no longer be squares. So Pythagoras’ theorem is not

a theorem of projective geometry.

An important consideration in Euclidean geometry is the business of parallel

lines. As we know, parallel lines do not meet which singles them out from other

pairs of lines. But parallelism is not a projective property. A painting of parallel

railway tracks in the usual perspective manner shows them as pairs of lines

which meet. Indeed, as we remarked at the beginning, projective geometry is not

about angles and lengths because these get changed by projection.

In projective geometry we do not contemplate the existence of parallel lines

at all and simply say that all pairs of lines meet in a point. This makes life much

easier because it introduces the duality between points and lines because all pairs

of points define a line and so it is reasonable that all pairs of lines should define

a point.

The reader might feel that projective geometry must be useless if it does not

admit of real-world matters such as parallel lines. However, we can change any

projective theorem into a Euclidean one by introducing the so-called line at

infinity. Since we want parallel lines to meet somewhere, we introduce the idea

of points at infinity where they meet. There is one point at infinity in each

direction and we say that these points together lie on a line which is “at infinity”.

Note carefully that a pair of parallel lines only meet at one point at infinity. Both

directions lead to the same point at infinity. I suppose we can think of the line at

infinity as a sort of infinite circle where the two ends of any diameter are

identified as the same point – we will encounter this idea of identification again

in the lecture on Topology.

Now we can take any projective theorem and decree that any one line in it is

the line at infinity. It then becomes a corresponding Euclidean theorem in which

the line at infinity does not appear and any lines meeting on the line at infinity

are now considered to be parallel.
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Let us try this with Desargues’ theorem. Suppose that the line at infinity is

the line where the pairs of sides meet. The diagram on the left above shows the

original Desargues configuration and that on the right shows the configuration

with the line at infinity removed and those pairs of lines meeting at infinity now

drawn as parallel. The new diagram shows that if two triangles are such that their

sides are parallel then the triangles are in perspective from some point.

Quadrilaterals and Quadrangles

W
E MENTIONED the complete quadrilateral when discussing the duality of

Desargues’ theorem. A complete quadrilateral is the figure composed of

four lines; these four lines meet each other in a total of six points. The dual figure

is a complete quadrangle which is the figure composed of four points; these four

points join each other in six lines.

The six points of the quadrilateral are arranged as opposite pairs which we

can denote by P12, P34, by P13, P24, and by P14, P23 where we use the convention

that Pij is the point of intersection of lines li and lj. (Note the importance of using

a consistent notation. It would be very hard to follow this if we called the lines

a, b, c, d and the points A, B, C, D, E, F.)
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In a dual manner the six lines of the quadrangle are also arranged as opposite

pairs which we can denote by l12, l34 and so on. 

Now we can introduce what is known as the diagonal triangle of these

figures. We will concentrate on the quadrangle and leave it to the reader to

construct the dual argument for the quadrilateral if desired.

Each opposite pair of lines of the quadrangle meet in a point which is known

as a diagonal point. Since there are three opposite pairs of lines there are

therefore three diagonal points and these form a triangle known as the diagonal

triangle of the quadrangle. In the diagram above the diagonal triangle is shown

dashed red.

An important property of the diagonal triangle is that its sides cut the lines

of the quadrangle in pairs of points such as those marked H and K on the line

joining P2 and P3. Note that K is of course one of the points of the diagonal

triangle. The four points P2, P3, H and K are said to form a harmonic range. In

fact if we fix P2, P3 and K and then draw any quadrangle to fit around them it

turns out that H is always at the same point (this can be proved using Desargues’

theorem).

Further insight can be gained by supposing that the diagonal line through K

and the point of intersection of l12 and l34 is the line at infinity. It then follows

that the original quadrangle is a parallelogram because its opposite sides meet at

infinity. Thus the side P2P3 is parallel to P1P4 and P1P2 is parallel to P3P4. The

point H is then the midpoint of the side P2P3.

In order to come clean over this topic it is necessary to briefly introduce the

idea of cross-ratio. We noted earlier that lengths are not fixed in projective

geometry and in fact neither are ratios. But rather strangely the ratios of certain

ratios are fixed. 

In the diagram opposite we say that the ranges ABCD and A'B'C'D' are in

perspective from the point P. Clearly the lengths of the segments AB and A'B' are

not the same. Nor are ratios such as AB/BC the same as A'B'/B'C'. However,

perhaps surprisingly, it is the case that the ratio of the ratios AB/BC and AD/DC

does remain the same whatever the projection.
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This can be proved using old-fashioned geometry and in particular the sine

rule. Remember that in any triangle ABC, the sines of its angles are in the same

proportion as the lengths of the opposite sides.

We can then apply this rule to various triangles with apex at P. After some

messing about we find that

AB AD sin APB sin APD
—–   —–     =    ———–    –———
BC / DC sin BPC / sin DPC

This may look a bit indigestible but all that has happened on the right is that each

segment on the left has been replaced by the sine of the angle that segment

subtends at the point P. The remarkable thing about the expression on the right

is that it is the same whether we use the points ABCD or the points A'B'C'D' since

the angles are the same in both cases. That proves that the so-called cross-ratio

of four points remains the same under projection. So despite the fact that lines

and angles change size under projection here we have found a numerical property

that does not change. Incidentally, a group of lines such as PA, PB, PC, PD

through a point P is known as a pencil of lines through P.

Now back to the harmonic range that we found on the quadrangle. A

harmonic range is a range in which the cross-ratio is exactly –1. (It is negative

because we measure some of the distances backwards.) So in other words the

points H and K are such that they separate P2 and P3 in the same ratio internally
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and externally. And so when we send K off to infinity the ratios both become 1

and so H is the midpoint of P2P3.

The four points of a cross-ratio can be considered in six different ways.

That’s because having fixed one of the four points the other three can be arranged

in 3! = 6 ways thus ABCD, ABDC, ACBD, ACDB, ADBC, ADCB. If the value of

one cross-ratio is x, then the others are 1/x, 1–x, 1/(1–x), (x–1)/x and x/(x–1).

These six values can be transformed into one another by the two operations of

subtracting from 1 and taking the inverse (dividing into 1). In the case of the

harmonic range the six values become –1, –1, 2, 1/2, 2, 1/2 and we see that they

reduce to three values only in this special case.

Well that is quite enough about cross-ratio for the moment. We will meet it

again when we consider bubbles in Lecture 6 but I wanted to make the point that

projective geometry does have some numerical properties.

Conics

S
O FAR we have only considered points and lines but geometry concerns much

more. Indeed, Euclid has a lot to say about circles and his later books

consider conic sections generally. 

In classical times the conic sections were defined in terms of the sections of

a cone. Thus if we cut an ordinary cone parallel to its base we get a circle. If we

cut it at a small angle we get an ellipse. If we increase the angle (and assuming

that we have a proper double cone), then the cross section breaks into the two

parts of a hyperbola. Just before this happens the section is a parabola. Finally,

if we cut the cone through its vertex then we get a pair of straight lines which

shows that a pair of lines can also be treated as a special kind of conic section.

There are various other ways of defining conics other than as sections of a

cone. For example we can define an ellipse as those points for whom the sum of

the distance from two other points is a constant. The two other points are the foci

of the ellipse. The orbit of the planets about the Sun is an ellipse with the Sun at

one focus. If the foci coincide then the ellipse becomes a circle.

In projective geometry we do not distinguish between the different kinds of

conics because they can be projected into one another. If we draw a circle on a

piece of glass and project the image onto the floor then we will typically get an

ellipse but by varying the position of the point of projection (or that of the floor!)

we can get the other forms of conic as well. In fact this is easily seen by

considering the double cone once more; we simply take the vertex of the cone as

the point of projection and the circle as a section of the cone. So in projective

geometry all conics are the same and by convention we usually draw them as an

ellipse. But of course the pair of straight lines as a form of conic remains distinct.

An interesting theorem concerning conics is that named after Blaise Pascal

(1623–1662), the famous French mathematician who sadly died at a relatively

early age. Pascal’s theorem is a generalization of Pappus’ theorem and is most
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neatly stated as follows. If a hexagon be inscribed in a conic then the points of

intersection of the opposite sides of the hexagon are collinear. If we make the

hexagon zigzag about then we get a diagram very like that of Pappus where the

line of the three concurrent points crosses the conic. Alternatively we can have

other diagrams where the line lies outside the conic as shown.

We can obtain a Euclidean theorem by taking the line of collinearity as the

line at infinity. We then deduce the theorem that if a hexagon is inscribed in a

conic and two pairs of opposite sides are parallel then the third pair are also

parallel.

Duality with respect to conics is interesting. We normally think of a conic as

a set of points. The dual concept is, of course, to think of a conic as a set of lines

and in fact the lines concerned are simply the tangents to the conic. Using this

idea we can now find the dual of Pascal’s theorem. The dual of a line joining two

points on a conic is the point of intersection of two tangents to the conic. We

quickly see that the dual theorem is as follows. If the sides of a hexagon are the

tangents of a conic then the lines joining opposite vertices are concurrent. This

was discovered by C J Brianchon (1760–1854) when he was a student at the

Ecole Polytechnique in Paris and so is known as Brianchon’s theorem. These

were early days of understanding duality and one could get a theorem named

after one for doing it.
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Coordinates

M
UCH ELEMENTARY GEOMETRY is about coordinates and equations concerning

them. A general point (in a plane) typically has coordinates (x, y) giving the

distance of the point from two fixed axes and the equation of a line is usually

stated as 

y = mx + c equation of a straight line

We haven’t used coordinates so far and at first sight they might appear out of

place because they would seem to imply the measurements of lengths and we

know that lengths have no place in projective geometry.

However, a very beautiful system of coordinates can be devised where we

use three coordinates (x, y, z) to represent a point (we are discussing the

geometry of a plane) rather than the usual two coordinates. So a point might have

a position such as (1, 2, 1). Moreover, the system is such that it is only the ratios

of the values that matter so that the point (1, 2, 1) can equally be called the point

(2, 4, 2). An important rule is that there is no point (0, 0, 0).

The line joining two points P and Q is then defined as consisting of all those

points whose coordinates have the form αP + βQ where α and β are any numbers
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at all. For example, if P is the point (1, 0, 1) and Q is the point (0, 1, 2) then

taking α = 1 and β = 2 we obtain the point P+2Q which is (1+2×0, 0+2×1,

1+2×2) which is (1, 2, 5). So the point (1, 2, 5) lies on the line joining P and Q.

Another basic principle is that we can choose any three points (not on the

same line) as the points with coordinates (1, 0, 0), (0, 1, 0) and (0, 0, 1). These

form the so-called triangle of reference. We can then choose any other point (not

on the triangle) as the unit point (1, 1, 1).

This system of so-called homogeneous coordinates is very powerful and has

a certain symmetric beauty. As a simple example we can consider Desargues’

theorem once more. Suppose that the triangle ABC is the triangle of reference so

that A is the point (1, 0, 0), B is (0, 1, 0) and C is (0, 0, 1). We can take the point

of perspective P to be the unit point (1, 1, 1). See the diagram opposite.

Now any point on the line PA will have coordinates which are a combination

of those of P and A (remember the general form αP+ βQ introduced above). And

so A' must have the form (α+β, β, β). But it is only the ratio that matters so we

can equally and quite generally consider the point A' to be (a, 1, 1). In the same

way we can take B' as (1, b, 1) and C' as (1, 1, c).

Now the point L is where BC meets B'C' and so must be a combination of B

(0, 1, 0) and C (0, 0, 1) and also a combination of B' (1, b, 1) and C' (1, 1, c).

Since it has to be a combination of B and C, it follows that its x-coordinate is 0.

It should then be clear that the combination of B' and C' required has to be B'–C'

so that the x terms cancel. It follows that L is the point (0, b–1, 1–c). 

In the same way M is the point (1–a, 0, c–1) and N is (a–1, 1–b, 0). Now we

find that L+M+N = 0 or in other words L = –M–N and this shows that L is on the

line joining M and N and so in other words L, M and N lie on a line. So we have

proved Desargues’ theorem using coordinates.

Using coordinates in projective geometry has a certain beauty because of its

intrinsic symmetry. With a suitable choice of triangle of reference we can make

things easy because of this symmetry.

As we have seen, a theorem in projective geometry can be turned into a

Euclidean one by choosing one line to be at infinity. It is a common convention

to choose the line z = 0 as the line at infinity; that is the line whose points all have

the third coordinate equal to zero. For the other points, if we then scale the

coordinates so that the third coordinate is 1, then the x- and y-coordinates become

the normal Euclidean ones.

Finite geometries

A
ND NOW to a rather curious topic. It was mentioned earlier that there are

special geometries with strange properties. We are so used to our experience

of the real world that we take it for granted that all lines have an infinite number

of points on them. However, we can construct geometries in which this is not the

case and in which every line has only a finite number of points and dually there
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are only a finite number of lines through each point. These finite geometries still

satisfy the various rules such as the propositions of incidence and so the

appropriate theorems still hold true.

Finite geometries were extensively studied by Gino Fano (1871–1952), an

Italian mathematician; in 1892 he discovered the smallest finite geometry in

which there are only seven points and lines and where each line has only three

points and vice versa. It is usually represented by the diagram below.

Unfortunately it is not possible to represent all the lines in this geometry with

what appear to be straight lines. Six lines seem straight but the seventh looks

rather like a circle! Moreover, the only points are those shown as big blobs. The

circular line might look as if it meets all the other lines but it doesn't. There are

just the seven points and the seven lines shown. 

We can give coordinates to the Fano plane as shown in the diagram.

However, the coordinates can only be 0 or 1. Moreover, arithmetic is done

modulo 2 which means that we cast out multiples of 2 and only consider the

remainder. So 1 + 1 = 0 in this arithmetic.

We now find that if we add the coordinates of any two points then we do

indeed get the third point of the line through them. Thus if we add (0, 1, 0) to (1,

0, 0) we get (1, 1, 0) which is indeed the other point on that line. Similarly, if we

add the point (1, 1, 0) to one of the others such as (0, 1, 0) then we get (1, 2, 0)

which of course reduces to (1, 0, 0) since 2 = 0 in this arithmetic and again this

is the other point on that line. So the relationship of adding the points is quite

symmetric. By adding the coordinates we are simply using the general formula

αP+βQ that we introduced earlier. However, in this geometry, because of the

modulo 2 arithmetic, the only possible values of α and β are 0 and 1.

We cannot illustrate Desargues’ theorem using the Fano plane because we

cannot find two triangles in perspective. Thus taking (0, 1, 0) as the point of

perspective, and (1, 0, 0), (1, 1, 1), (0, 0, 1) as one triangle, then the remaining

three points do not form a triangle because they are the three points of the

“circular” line.

Another example of a finite geometry is the 13-point geometry of the plane

which has four points on each line.
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211

111

The coordinate system of this geometry is based on modulo 3 arithmetic

which is such that 1+2 = 0 and 2+2 = 1.

The additional six points have a two in their coordinates and are 102, 021,

210, 112, 121, 211. (For compactness we will omit the parentheses and commas

in the coordinates in future – no confusion should arise because the individual

coordinates are only single digits.) Note that other combinations such as 122 are

equivalent to 244 which reduces to 211 since 4 = 1 in this arithmetic. Point 102

is on the line joining 100 to 001 and point 112 is on the line joining 001 and 111

and so on.

It becomes difficult to represent this 13-point geometry with a diagram. The

Fano geometry was awkward since one line became a “circle”. In the 13-point

geometry things are much worse. One representation is shown below with some

lines in colour and dotted and dashed which hopefully helps to distinguish them.

Now we can try out Desargues’ theorem. Take for example the two triangles

(110, 121, 021) and (100, 111, 001). They are easily seen to be in perspective

from the point 010. Now consider where the corresponding sides meet. The side

(110, 121) meets the side (100, 111) at the point 011. Similarly the other two

sides meet at the points 112 and 101. And then we find that 011, 112 and 101 lie

on the same line. So Desargues’ theorem does work. We leave it to the reader to

try out Pappus’ theorem in the same way.
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Many finite geometries of this kind are possible. In fact, for every number n

which is a power of a prime number, there is a geometry which has n2+n+1 points

and lines with n+1 points on each line and vice versa. (Note that n has to be a

power of a prime number including a prime number itself. It does not work for

6, 10, 14 and so on because these are products of different primes. The reason

concerns group theory which is outside the scope of these lectures.)

The Fano plane corresponds to n = 2 and has 4+2+1 = 7 points and lines, and

2+1 = 3 points on each line. The case n = 3 is the 13-point geometry which we

have just discussed with 9+3+1 = 13 lines and points, and 4 points on each line. 

Finite geometries extend to three or more dimensions as well. The number

of points in three dimensions is n3+n2+n+1. By duality this is also the number of

planes whereas the number of lines is (n2+1)(n2+n+1). So the Fano space where

n = 2 has 15 points and planes and 35 lines with 7 points in each plane.

Incidentally, the things we call points and lines can be considered as quite

abstract. All that matters is that there is a relationship between them

corresponding to “is on” and that two of one uniquely define one of the other in

some way. See the story in Appendix G.

Configurations

W
E WILL CONCLUDE with a few points regarding some of the configurations

we have met.

The Desargues configuration can be drawn in many different ways and that

shown below has an elegant symmetry. The triangles ABC and A'B'C' are again

in perspective from P and the meeting points of the pairs of sides are L, M and N

which lie on a straight line.
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The diagram can be relabelled using Pij and lij as before. Two other curious

properties are worth noting.

In the figure above, the lines l12, l23, l34, l45, l15 are red and dashed. Thus five

lines are red and five lines are black. They form two pentagons and the vertices

of the red pentagon lie on the black lines (extended as necessary) and vice versa.

In the figure below, the lines l15, l25, l35, l45 are red and dashed. The four red

lines form a complete quadrilateral and the six black lines form a complete

quadrangle. Each point of the quadrilateral (there are six, namely, P12, P13, P14,

P23, P24, P34) lies on a line of the quadrangle (P12 on l34 and so on).
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Coxeter mentions these two elegant properties of the Desargues

configuration in Exercises 2 and 3 in Section 3.2 of his Projective Geometry.

The Pappus configuration has a number of amazing properties as well. For

example, having taken three points on one line, the three points on the other line

can be ordered in six different ways and so six different Pappus lines can be

drawn. These form two groups of three concurrent lines. In the case of the six

points on the conic in Pascal’s theorem, there are sixty different ways of

considering the points to form the successive vertices of a hexagon and so there

are sixty Pascal lines. The resulting figure is known as the Hexagrammum

Mysticum of Pascal. It occupied the minds of many Victorian geometers.

Configurations in a plane can be classified by giving the number of lines l

and points p in them. Note that if the number of points on each line is pl and the

number of lines through each point is lp then we always have

l × pl = p × lp

since they both represent the number of pairings in the configuration.

The configurations we have met are tabulated above. Note that the

quadrilateral and quadrangle are duals whereas all the others are self-dual

including the familiar triangle.

Further reading

I
T IS HARD to know quite what to recommend as a next step since there is a vast

literature. The little book by Faulkner entitled Projective Geometry is a

possibility. Of a more advanced nature is Projective Geometry by Coxeter or the

relevant parts of his Introduction to Geometry. For the Hexagrammum Mysticum

consult Plane Geometry by H F Baker – this is volume 2 of his comprehensive

treatise on geometry which is very hard and hard to find. A gentler treatment

including the proof of Pappus’ theorem using Menelaus’ theorem will be found

in Geometry Revisited by Coxeter and Greitzer.

See also Appendix B for stereo images of the Desargues configuration.
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Configuration Points L/point Lines P/line

Triangle 3 2 3 2

Quadrangle 4 3 6 2

Quadrilateral 6 2 4 3

Fano plane 7 3 7 3

Pappus 9 3 9 3

Desargues 10 3 10 3

13-point geometry 13 4 13 4



Exercises

1 Two points define a line and two lines define a point. In the Fano plane, the

two points 100 and 010 define the line to the left of the diagram. The two

points 011 and 101 define the line that looks like a circle. At which point do

these two lines intersect?

2 Let A, B and C be any points on a line. Suppose A', B' and C' are points on

another line such that AB' and A'B are parallel and that CB' and C'B are

parallel. Using Pappus’ theorem and choosing a suitable line at infinity

deduce that AC' and A'C are also parallel. See the diagram below.

3* Prove Pappus’ theorem using coordinates in a similar way to the proof of

Desargues' theorem. Take the points as follows A = (a, 1, 0), B = (b, 1, 0), 

C = (c, 1, 0), A' = (a', 0, 1), B' = (b', 0, 1), C' = (c', 0, 1). (So that ABC is the

line z = 0 and A'B'C' is the line y = 0.) Then show that the point whose

coordinates are (aa'–bb', a'–b', a–b) lies on the line AB'. Deduce that it also

lies on the line A'B and so must be the point C''. Similarly, find the

coordinates of A'' and B'' and show that the coordinates are such that a

combination of those of A'' and B'' are the coordinates of C'' and thus they

are on a straight line.
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5 Topology

T
OPOLOGY is one of those branches of mathematics where some of the simple

results are very easy to state and appreciate. However, the underlying

mathematics is rather hard and it is not easy to prove what seems quite obvious.

Topology used to be considered a branch of geometry although now it is seen

more as a branch of abstract algebra. In this lecture we will just look at some of

the entertaining facts and not generally bother with how they might be proved.

Hairy dogs

T
HIS TOPIC traditionally has this title since it can be postulated as: “Can you

comb your dog flat without any awkward whorls?” Well a dog is basically a

sphere with bits sticking out such as legs so we can consider an abstract

formulation of the problem.

Imagine a ball covered in hair. Can we comb it flat? The answer is No. Try

as we might there are always at least two places where the hair will not lie flat.

We might get a sort of vortex or a point where all the hair leads away or all comes

together.

On the other hand consider a rubber ring (like an inner tube). Now imagine

such a ring covered with hair. Can we comb this flat? Yes we can. We can comb

the hair round and round the short way or we can comb it the long way round and

either way it lies flat.

So there is a real difference between a sphere and a torus (to give the ring its

proper name) in this respect. The study of this sort of property is known as

A hairy sphere and a hairy torus.
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topology from the Greek τοπος (topos), a place. Topology concerns the way in

which surfaces and shapes are connected together but it does not concern lengths

and angles and similar properties. Thus in topological terms a sphere is the same

as a cube or tetrahedron and a torus is the same as a teacup. 

We may recall that the regular figures in three dimensions satisfy Euler’s

formula

F + V – E = 2     Euler’s characteristic for sphere

where F is the number of faces, V is the number of vertices and E is the number

of edges. In topology, where the rigid shape does not matter, the regular figures

can be thought of as representing maps on the surface of a sphere and an

important topological property of a sphere is that the Euler characteristic is two. 

However, consider the hollow figure shown above (such as a wooden trivet

for standing hot saucepans upon). This has 24 edges, 12 vertices and 12 faces so

that F+V–E is zero. The hollow figure is topologically a torus and in fact the

Euler characteristic for a torus is zero. So here we have a real numerical

difference between the sphere and the torus. 

It is the Euler characteristic which controls whether the hairy dog can be

combed smooth. We can comb the hairy torus smooth because its Euler

characteristic is zero. But in the case of the sphere there are always at least two

places where the hair is troublesome. The troublesome places (called singular

points) can be characterized in various ways. They might be places where the

hair all flows away or where it all comes together; other possibilities are a vortex

in one direction or the other; all of these score +1. Another form of singular point

108 Gems of Geometry

Sources, sinks and vortices

score +1.
Simple saddles score –1.
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is where the hair flows in from North and South and flows out from East and

West or vice versa with a stagnant point in between much like the contours of a

mountain pass or saddle; such a point scores –1. 

So the rule is that the sum of the scores of the singular points must equal the

Euler characteristic and so be 2 on a sphere and zero on a torus.

That the score is always the Euler characteristic is reasonable as can be seen

by considering a hairy octahedron. If we comb the hair in a circular form but in

opposite directions in adjacent faces then we find that there is a vortex in the

centre of each face and there is a saddle around each vertex. Since there are 8

faces and 6 vertices, the total score is clearly F–V = 8–6 which is 2.

It should be observed that in any map where two lines cross at each vertex

(that is four edges meet at each vertex), then the number of edges E must be

twice the number of vertices V. So the formula F+V–E in this case becomes F–V

as well. Note that in order to be able to comb a figure in the way we did the

octahedron, each vertex must have an even number of faces meeting at it. We can

call such vertices crosspoints because two or more lines cross at them. If two

lines cross then we get a simple form of crosspoint with score –1. If three lines

cross then it scores –2 and so on.

The octahedron is clearly equivalent to a sphere with equator and two

meridians. Although the octahedron is the simplest figure with four flat faces

meeting at each vertex, a simpler map on the sphere is just with equator and one

meridian in which case there are four edges, four faces and two vertices which

again satisfies Euler’s formula. 

Note that a sphere with just one great circle such as the equator is not a

proper map since the one edge does not join any vertices – but just adding one

vertex in the edge somewhere makes it satisfactory. Another restriction for a map

to be allowed is that a face must not have a hole in it. Thus if we removed the

lines on the top and bottom flat surfaces of the trivet then two faces would have

holes in them and the Euler formula would not apply.
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The torus can be thought of as a sphere with a handle on it. The most general

surface of this kind is a sphere with p handles on it. The Euler characteristic in

this general case is 2–2p. An example of the case of two handles is obviously a

two-handled vase; another example is a teapot. A pretzel has three handles and

so has Euler characteristic –4. So a hairy pretzel certainly cannot be combed

smooth!

Colour problems

A
NY MAP on a plane or a sphere can be coloured with just four colours without

sections sharing an edge having the same colour. This has long been

conjectured but was only proved as recently as 1976 by Kenneth Appel and

Wolfgang Haken. An interesting feature is that the proof was partly done by a

computer program and so an air of strangeness hangs over it. Mathematical proof

is an odd business. To a large extent it is a discourse between the writer and the

readers. The writer needs to convince the readers that the proof is correct. Typical

mathematical proofs proceed by stages in which some “obvious” intermediate

steps are omitted. This does not matter since the readers can fill them in as

necessary. However, in the case of a proof by computer, the readers really have

to convince themselves that the computer program is perfect and this is not easily

done. Nevertheless, it seems that the four colour theorem is true.

Strangely enough the corresponding theorem on the torus that seven colours

are required was easily proved long ago. We can illustrate the four colour

theorem by considering the colouring of some of the figures we met in earlier

lectures.

The tetrahedron requires the full four colours since each face meets every

other face and it has four of them. However, the coloured tetrahedron exhibits

enantiomorphism since there are two ways of doing the colouring. The two

versions are mirror images. Thus in the diagram opposite there are two tetrahedra

with red, blue, green and yellow faces and they are both standing on their yellow

face.

This property of the tetrahedron is important in organic chemistry since the

carbon atom is quadrivalent. The carbon atom can be thought of as being at the

centre of the tetrahedron with its four bonds pointing to the vertices. So if a
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compound has four different atoms or groups attached to the central carbon atom

then the compound can exist in two different forms. This phenomenon was first

observed by Louis Pasteur (1822–1895) the great French chemist. He showed that

lactic and tartaric acid exist in two forms. It is curious that living material often

favours one form whereas synthetic processes usually produce both forms. A

tragedy occurred when the drug thalidomide which reduced morning sickness in

pregnant women in one form caused deformities in the foetus in the other form. 

Returning to geometry, the cube can be coloured with three colours since the

opposite faces can be coloured the same. The octahedron only needs two colours

– it is unique amongst the five regular solids in having an even number of faces

meeting at each vertex and so these can be coloured alternately. The icosahedron

needs three colours but the dodecahedron needs all four colours. The

cuboctahedron is another example of a figure only needing two colours. 

An interesting way to represent solid figures is to imagine them opened out

so that one face extends to infinity in all directions and the others are then

projected upon it. This is essentially the view we would obtain by looking at a

transparent model from a close viewpoint. Such representations of the cube,

octahedron, dodecahedron and icosahedron are shown below. The viewpoint
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chosen is on the circumsphere. They are called Schlegel diagrams after the

German mathematician Victor Schlegel (1843–1905).

We can use the Schlegel diagrams to illustrate the colouring of the regular

figures. One face is represented by the rest of the plane outside the diagram and

we shall assume it to be yellow. We recall that there are two ways to colour the

tetrahedron. There is in fact only one way to colour a cube with three colours and

only one way to colour an octahedron with two colours. 

The dodecahedron is more interesting since there are four different ways to

colour it and these form two enantiomorphic pairs as shown above. The

dodecahedron has 12 faces and there are three faces of each of the four colours.

Moreover, each face of a given colour (yellow, say) is opposite a different one of

the three other colours. (The 12 faces form 6 pairs and there are 6 ways of

choosing two colours from four.) Thus in the diagrams we have chosen to orient

the dodecahedra so that the background yellow face is the one opposite the red

face which thus appears in the middle. The other two yellow faces which clearly

have to be adjacent to the central red face are opposite a green and blue face

respectively. The other faces around the red face are either two green and one

blue or vice versa and this accounts for the four arrangements.

The case of the icosahedron is rather complex and there are in fact no fewer

than 144 different ways in which it can be coloured using the three colours that

are necessary. It would take too long to explain these and so the interested reader

should consult the references.

We will now briefly consider the tilings of the plane which, as we saw in

Lecture 2, are like infinite solid regular figures. The familiar chessboard

illustrates that the square tiling requires only two colours. The triangular tiling

also needs only two colours but the hexagonal tiling requires three. Of the mixed

tilings, only {3.12.12} requires the full four colours; the reader may recall that

this tiling is obtained by taking the hexagonal tiling and filing down the corners

so that triangles appear and the hexagons then become dodecagons. Since the

same basic hexagonal colouring is needed for the dodecagons it follows that a

fourth colour is required for the triangles.

A related puzzle is how many different ways are there to colour the regular

figures using a different colour for each face? We already know that the answer

Four ways of colouring a dodecahedron.
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for the tetrahedron is two. In the case of the cube the answer is thirty. To see this

choose one of the six colours – we will suppose it is red. Paint one face red and

place it with the red face down on the table. Then there are five different choices

for the top face. We can then paint any side with one of the four remaining

colours and turn it so that it faces North. The three remaining faces can then be

painted in the three remaining colours in six ways. (Recall that n items can be

arranged in n! ways where n! = n × (n–1) × (n–2) × ... × 2 × 1.) So the final

answer is five times six which is thirty. Another way to arrive at the same answer

is first to note that the four colours on the four sides can be arranged in 4! = 24

ways but then to observe that this results in some repetition because the cube can

be oriented in four ways so we then have to divide by four.

It is a straightforward matter to make 30 little cubes and then to paint them

in the 30 different ways. If we add one more so that two are the same then we

can pose our friends the interesting challenge of finding the identical pair. This

is straightforward if approached logically but many people just thrash hopelessly

picking up arbitrary pairs and putting them back in disgust.

An interesting puzzle regarding these 30 cubes was devised by Major P A

MacMahon (1854–1929). He was a major in the army and served in India and

later became a famous mathematician. The puzzle is to take any one of the 30

cubes and then find 8 from the remainder that can be arranged to form a matching

cube 2×2×2 where not only do the external faces match the original but the

touching faces of the individual cubes have to match as well. The eight cubes can

be chosen in only one way but curiously they can be arranged in two ways.

There is also the question of how many ways are there to colour the

octahedron, dodecahedron and icosahedron so that all faces are different. We can

use the same approach as with the cube. For a general regular figure with n faces,

ways. The remaining n–2 colours can then be applied to the sides in (n–2)! ways.

We then have to divide by the number of edges around the base (k, say) in order

to account for duplication caused by the rotational symmetry. So we end up with

Number of ways to colour n-hedron with k-gon faces =  (n–1)! / k.

Tilings of triangles and squares require two colours, but hexagons require three.

having chosen a colour for the bottom face we can choose the top face in n–1
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This formula also works for the tetrahedron. We get

Tetrahedron 3!/3 = 2

Cube 5!/4 = 30

Octahedron 7!/3 = 1680

Dodecahedron 11!/5 = 7983360

Icosahedron 19!/3 = 40548366802944000

It is clearly just feasible but very tedious to make a set of 1680 coloured

octahedra but the others are obviously out of the question.

Colouring maps on the torus

I
N ORDER to explore properties of figures such as the torus it is convenient to

introduce the idea of an identification model rather like the nets we discussed

when talking about the crooked house in the lecture on four dimensions.

If we take a rectangle and imagine the two long sides joined together, we get

a cylinder. If we then join the two ends of the cylinder together in the obvious

way, we finally get a torus. We can indicate these connections by rectangles with

arrows showing the edges joined together as shown below.

We can now use the model of the torus to show that a map requiring seven

colours is possible. The map is simply a hexagon surrounded by six other

hexagons and because of the way in which the torus is connected each of the

hexagons is surrounded by all the others so they all touch each other and

therefore must have different colours. This map is really just a section from a

hexagonal tiling of the plane as shown opposite; of course the tiling in the plane

doesn’t need seven colours but it is coloured the same way for comparison. Many

other hexagonal maps on the torus are possible but this is the only one that needs

Model of cylinder. Model of torus.
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the maximum of seven colours. Note that the model of the torus has been skewed

so that the hexagons look regular. Incidentally, these maps are called regular if

every face has the same number of edges and so on – the faces don’t have to be

regular figures with equal sides and angles and in any event they are usually not

flat.

Square maps on the torus are also possible. The map shown below is

intriguing in having five squares with each square being surrounded by the other

four. Such square maps again relate to the square tiling of the plane. Another

example of a square map on the torus is provided by the trivet which we met

earlier; this map has 12 squares. The reader might like to consider how many

colours are required to colour the map on the trivet.

Note that the usual representation of the torus is effectively a map of one

square with just one vertex. That may sound very peculiar; it also has only two

edges because the opposite edges are the same. Nevertheless it satisfies the Euler

formula that F+V–E is zero on the torus.

Percy J Heawood (1861–1955), a mathematician from Durham, conjectured

that the maximum number of colours required for a map on a surface which is a

sphere with p handles is given by the following peculiar formula

A torus with a map of seven

hexagons; each one is

surrounded by all the others.

A section of the hexagonal

tiling of the plane showing the

derivation of the torus.

A torus with a map of five

squares; each one is

surrounded by all the others.
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7 + √(48p+1)

N = integer part of  ——————— Heawood’s formula

2

For the sphere (p=0), this formula gives the correct value of 4, for the torus

(p=1), it gives 7. In the case of a teapot (p=2), the expression (7 + √(48p+1))/2

becomes 8.424... and so we take the whole number part which is 8. In the case of

the pretzel (p=3), the answer is 9 and so on.

Although Heawood’s formula has proved to be correct, he was unable to

prove it in the basic case of mapping a sphere or plane. As mentioned earlier that

had to wait until the advent of computers enabled a tedious proof to be

mechanized.

It is perhaps a more amazing fact that on these surfaces, for all values of p,

there is a regular map of N regions each of which has N–1 sides and meets all the

others. We have seen that in the case of the sphere (p=0), the tetrahedron

provides a map of four triangles. On the torus (p=1), we have seen the map of

seven hexagons. So a teapot (p=2) requires 8 colours for a map of eight

heptagons all meeting each other and a pretzel (p=3) requires 9 colours for a map

of nine octagons.

The Möbius band

I
F WE TAKE a strip of paper and glue the ends together in the usual way then we

get a cylinder. If, however, we put a half turn in the strip and then glue the ends

together we get a strange surface known as the Möbius band (or strip) which is

named after the German astronomer August Möbius (1790–1868).

The key property of the Möbius band is that it has only one side and only

one edge. This can easily be seen by simply running a finger along it. The

Möbius band figures in two woodcuts by Escher entitled Möbius Strip I and

Möbius Strip II. The former shows a band with a cut down the centre. The latter

shows red ants crawling over the surface of a Möbius band.

The Möbius band can be represented by the diagram below right in which

the fact that the two edges are joined after a twist is indicated by the arrows going

in opposite directions.

Model of cylinder. Model of Möbius band.
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If we cut a Möbius band down the centre (see above) and then open it out we

find that we still have a single strip but it is twice as long and has two full turns

in it. Because they are full turns it has two edges and two sides and is

topologically equivalent to a cylinder; one side is the original side of the Möbius

band (grey) and the other side is the cut we made (white). The fact that it has

turns does not matter topologically and if we lived in four dimensions we could

in fact undo the turns without cutting it. If we now cut the strip with two turns

down the middle then, being equivalent to a cylinder, it naturally becomes two

pieces. However, they both have double turns and are in fact linked together. 

Another experiment is to cut the Möbius band down its length but one-third

of the way across as shown below. Because of the one-sided nature of the band

the cut goes around twice and finally joins up. This results in two linked pieces:

one is a Möbius band of the same length as the original and the other is a double

twisted cylinder twice as long. The new Möbius band comes from the centre of

the old one (and is white) and its one edge is the new cut, the twisted cylinder

comes from the outside of the original band with one edge being that of the

original band and the other being the new cut.

Cutting a Möbius band in half.

Cutting a Möbius band in thirds.
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This perhaps unexpected behaviour of the Möbius band is the basis for a

short story by William Upson entitled Paul Bunyon versus the Conveyor Belt in

which Loud Mouth Johnson loses two bets regarding what happens when a

conveyer belt is slit down the middle in order to make it longer. 

A third trick is to take two equal strips of paper flat against each other, make

a half twist in them and then join the two pairs of ends together. (In the picture

above the two strips are red one side and green on the other.) This seems like two

Möbius bands snuggled together and indeed one can run a finger all around

between them. However, on shaking it out, it is revealed as just a single piece and

in fact is another cylinder with a double twist. It is an interesting exercise to turn

the twisted cylinder back into the snuggled bands.

It is not so surprising that we get a cylinder with a double twist since the

double Möbius band is just what we would get by slicing a thick Möbius band in

two. And that is obviously much the same as slicing a strip of rectangular cross-

section with a half twist and clearly it doesn’t matter in topological terms

whether the rectangular section is split along the long or short side; splitting

along the long side is like cutting the Möbius band down the middle.

The Möbius band and the cylinder both have Euler characteristic of zero.

This is easily seen by considering the representation of them as a single rectangle

with two ends identified. In both cases this results in a map which has one face,

two vertices and three edges so that F+V–E is zero. Since the Euler characteristic

is zero it is possible to comb a hairy cylinder and a hairy Möbius band quite

smooth and indeed it is pretty obvious that we can do this.

Maps on the Möbius band may require six colours. Two examples are shown

opposite: the one on the left has three pentagons and three hexagons (F=6, E=18,

V=12) whereas the one on the right has five pentagons and one hexagon (F=6,

E=16, V=10). The hexagons are the faces with an edge on the boundary; each

face is adjacent to all five others and so six colours are required. These two maps

are closely related as we shall see later. Note that when colouring a one-sided

A double Möbius band joined up and then shaken out.



surface we have to think of the colour penetrating right through so that both

“sides” at every point have the same colour.

Both the Möbius band and the cylinder may be found in a torus. That this is

so is best seen by considering a torus held horizontally and then inserting a knife

vertically so that it intersects the axial circle. (The axial circle is the circle which

goes all the way around in the middle.) We then move the knife all the way

around keeping it vertical and following the axial circle. The result is that the

torus is divided into two parts and the new face created by the knife is a cylinder.

On the other hand consider what happens if, as we move the knife around the

torus, we steadily change the angle of the knife so that when we are one half of

the way, it is horizontal and when we get back to the beginning it is vertical again

but reversed so that the cut joins up. It will seem as if we must have cut the torus

into two pieces but this is not so. The cut is a Möbius band and the torus remains

intact. This is exactly like the experiment of gluing the two twisted strips

together that we mentioned earlier – they seem as if they must be two Möbius

bands but in fact they are just one cylinder with a double twist.

The Möbius band and the cylinder are examples of open surfaces which

means that they have free boundaries. The torus and sphere are examples of

closed surfaces.

The Möbius band and cylinder have some things in common such as that the

Euler characteristic is zero for both of them. However, they are quite different

regarding maps. Maps on the Möbius band can require six colours as we saw

above whereas maps on the cylinder are similar to maps on the sphere and only

require four colours. In order to prove this, consider the section of a sphere

between the arctic and antarctic circles; this is obviously a cylinder. We can then

shrink the polar circles until they vanish in which case the cylinder becomes a

sphere. It is clear that any map on a cylinder requiring more than four colours

would then become a map on the sphere requiring more than four colours but we

know that this is not possible. So all maps on the cylinder require at most four

colours.
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Two maps on the Möbius band needing six colours.
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The Klein bottle

T
HE KLEIN BOTTLE is a very strange surface. It is named after its discoverer,

the German mathematician Felix Klein (1849–1925). Perhaps the best way

to introduce the Klein bottle is through the identification model shown below. It

is similar to that for the torus except that one pair of edges is matched in the

opposite direction. It can be constructed by taking a cylinder and joining its two

free ends in the opposite way to when making a torus but in order to do this the

cylinder has to be deformed so that it intersects itself as shown. The Klein bottle

might therefore seem somewhat improper because of the intersection but if we

were lucky enough to live in four dimensions then we could make a Klein bottle

that did not suffer from this apparent defect.

The Klein bottle is another example of a one-sided surface like the Möbius

band and this accounts for a number of its peculiar properties. Despite being a

closed surface, both inside and outside are the same. It features in a number of

light-hearted tales such as The Last Magician by Bruce Elliott.

The Euler characteristic of the Klein bottle is zero like that of the torus and

so a hairy Klein bottle can be combed smooth as is fairly obvious. Unlike the

torus, only six colours are required for maps on the Klein bottle. As an example

consider the first of our two six-coloured maps on the Möbius band. If we

identify the two free edges it becomes a map of three pentagons and three

heptagons on the Klein bottle. In the second diagram opposite this has been

emphasized by shifting the dividing line between the three heptagons so as to

explicitly reveal the additional interfaces. This is a very peculiar map since each

of the three heptagons meets both of the others twice as well as meeting the three

Model of torus. Model of Klein bottle.



pentagons. As a consequence there are three points at which the three heptagons

all meet. 

Observe that the other map on the Möbius band does not become a proper

map on the Klein bottle because the yellow face then goes all the way around the

bottle and divides it into two parts. As a result the yellow face cannot be shrunk

away because it has a hole in it (we say that it is not simply connected).

Before moving on, it should be noted from the rectangular identification

model that rather than starting with a cylinder and identifying the two free edges

in the opposite direction, we could alternatively start with a Möbius band and

then identify the free edges in the same direction. A complication is that the two

seemingly free edges of the Möbius band are in fact the same edge as we know

so it’s not that easy – we shall come back to this in a moment.

The projective plane

T
HE FINAL SURFACE to be introduced is known as the real projective plane. The

reader will recall from Lecture 4 that in projective geometry there is no

notion of lengths and angles and no concept of parallelism; as a consequence all

lines and points are treated equally. A good model of the projective plane is given

by all the lines in three dimensions through a point (this is the dual of all the lines

in a plane which in turn is the dual of all the points in a plane, hence the name).

Imagine a sphere with centre at the point, then every line meets the sphere in two

points which are antipodes. So there is a pair of points on the sphere

corresponding to each point of the projective plane. However, if we consider just

a hemisphere then we only have one point on the hemisphere for each point on

the plane except that there are two points on the equator. In order to remedy this

we consider the opposite points of the equator as the same. So the projective

plane can be modelled as a hemisphere with opposite points on its equator

identified. We can simplify this for ease of presentation by flattening the

hemisphere into a circle so the projective plane then becomes just a circle with

opposite points of the circumference identified. Gosh, I hope that’s clear.
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Two views of a map of three pentagons and three heptagons on a Klein bottle.
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Alternatively, we can model the projective plane using our familiar

rectangular diagrams with some edges identified. In this case both pairs of edges

have to be identified and both are reversed. This completes all the possibilities

for identifying the pairs of opposite edges. Neither reversed gave the torus, one

pair reversed gave the Klein bottle and now both pairs reversed gives the

projective plane. Clearly, both the rectangular model and the circular model

shown above are the same.

Six colours are required for mapping the projective plane and the example

below shows six pentagons each of which is adjacent to all the others. This map

is related to the two maps on the Möbius band which we saw earlier as will be

explained in a moment. The map has 6 faces, 15 edges and 10 vertices and so the

Euler characteristic, F+V–E, is 1. This is consistent with the obvious behaviour

of a hairy projective plane as seen from the circular model; clearly we can

smooth it around in a circular manner except for a single central vortex whose

score is 1.

In Lecture 2 we met a strange non-convex regular figure known as the

heptahedron. This has three square faces and four triangular faces and it is easily

seen that it is one-sided. In the diagram the opposite pairs of vertices are labelled

A and A', B and B', and C and C'. So the three squares are BCB'C' (blue), CAC'A'

(red), and ABA'B' (green); the four triangles are ABC, A'B'C, A'BC', and AB'C'.

Map of six pentagons on a

projective plane.

Models of projective plane.
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If we unfold the heptahedron around the square ACA'C' then we get the map

shown below left where two of the squares have been distorted. Note how the

opposite points have to be identified since they are the same point in the

heptahedron. If we now slightly change the shape we arrive at the figure on the

right in which it is perfectly clear that the opposite sides of the figure are

identified in opposite directions. Thus we now see that the heptahedron is

topologically equivalent to the projective plane. So the projective plane is

another one-sided surface.

The heptahedron has 7 faces, 6 vertices and 12 edges thus confirming that its

Euler characteristic is one. Since four faces meet at each vertex, it can be

coloured with only two colours (like the cuboctahedron). The triangles can be

one colour and the squares the other. The fact that the squares intersect each other

does not matter.

Three squares

plus four triangles

make a

heptahedron.

B'

A'

A

B

C

C'

A

C'

C

A'

B'

C'

B

A

B

B'

A

C'

C

A'

B'

C'

B

A

B

B'

The heptahedron is an example of a projective plane.
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Another interesting map on the projective plane consists of three squares

each of which meets the others on two edges as shown above. There are only four

vertices, A, B, C and D. The square ABCD is red, the square ACDB is green and

the square ADBC is blue.

In Sylvie and Bruno Revisited by Charles Dodgson (better known as Lewis

Carroll), Mein Herr instructs Lady Muriel to join together three handkerchiefs to

make the Purse of Fortunatus. First, she joins two together (the red and blue ones

for example) and this results in a Möbius band. The one side of this band consists

of four handkerchief edges and the next stage is simply to sew the green

handkerchief edge by edge to these four edges. There are problems of course and

she promises to do it later. Mein Herr says that it is called the Purse of Fortunatus

because of its one-sided nature since everything outside the purse is also inside

the purse and so the purse contains the wealth of the whole world. In four

dimensions she could sew the handkerchiefs together without having to tear

them.

Three squares on a

projective plane.

A B

D C

A B D

D

B

C A

A

These are the three handkerchiefs and

Lady Muriel has already sewn some edges

together. 

She then has no problem joining AD to DA

so that the red and blue handkerchiefs

form a Möbius band. 

But completing the Purse of Fortunatus by

joining the remaining three edges of the

green handkerchief to the others is less

easy.
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Round up

W
E HAVE NOW MET the main surfaces in two-dimensional topology. We have

seen that some have two sides such as the sphere and torus whereas others

are somewhat bizarre and only have one side such as the Klein bottle and

projective plane. In order to categorize the surfaces neatly it is convenient to

introduce an awkward object known as a crosscap.

One way to introduce the crosscap is to take a Möbius band and consider

how it would have to be rearranged so that its one edge could be neatly attached

to another free edge such as one end of a cylinder. The edge of the band is not

knotted in any way so it ought to be possible to make it into a circle. However,

we cannot do this without the band having to intersect itself. Well, we are

familiar with the idea of a surface having to intersect itself from our experience

of the Klein bottle and so it is not too awful an idea. The final result is the

peculiar looking hat shape shown below. 

The cross-section is a circle at the bottom and, as we progress upwards, the

circle becomes pinched until it eventually becomes a figure-of-eight. The

Möbius band intersects itself along the vertical line where the figures-of-eight

cross over.

Now we have already observed that every two-sided closed surface is

equivalent to a sphere with p handles. The torus had p=1 and so on. It can also

be shown that every one-sided closed surface is equivalent to a sphere with one

or more (q, say) discs cut out and replaced by crosscaps.

The case of one crosscap (q=1) gives the projective plane whereas two

crosscaps (q=2) gives the Klein bottle. The Möbius band is equivalent to a

projective plane with a disc cut out and this explains the relationship between the

map of pentagons on the projective plane and the two maps of pentagons on the

Möbius band. The first map on the Möbius band occurs if the hole in the

projective plane is at an intersection between three faces whereas the map with

yellow all along the free edge is obtained by cutting the hole in the projective

plane in the middle of the yellow hexagon.

A crosscap.
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We have seen that the Euler characteristic X for a sphere with p handles is

2–2p; in the case of a sphere with q crosscaps it is 2–q, so we have

X = 2 – 2p Euler characteristic for sphere with p handles,

X = 2 – q Euler characteristic for sphere with q crosscaps.

The remarkable formula of Heawood for the colours on a map can be rewritten

as 

7 + √(49 – 24X)

N = integer part of ——————— Heawood’s formula

2

This formula also applies to one-sided surfaces except for one case and that is the

Klein bottle. The formula predicts that seven colours are needed on the Klein

bottle but in fact it has been shown that six colours always suffice. Note finally

that Heawood’s formula only applies to closed surfaces. It does not apply to open

surfaces such as the cylinder and Möbius band.

The properties of the surfaces we have encountered are summarized in the

table above. Note that N (the maximum number of colours required for a map) is

sometimes called the chromatic number. Another point is that the proper

technical terms rather than two-sided and one-sided are orientable and

nonorientable. 

Further reading

A
N EASY INTRODUCTION to Topology will be found in What is Mathematics?

by Courant and Robbins. There is a more difficult but very rewarding

introduction in Introduction to Geometry by Coxeter. Somewhat easier perhaps

is Elementary Topology by Blackett. The full details of colouring the icosahedron

are given in Mathematical Recreations and Essays by Rouse Ball. The history

Object Open/closed Sides Euler no. Chromatic no.

Sphere closed two 2 4

Torus closed two 0 7

Teapot closed two –2 8

Pretzel closed two –4 9

Projective plane closed one 1 6

Klein bottle closed one 0 6

Cylinder open two 0 4

Möbius band open one 0 6
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and solution of the four colour problem are described in Four Colours Suffice by

Robin Wilson.

The story The Last Magician by Bruce Elliott will be found in the anthology

entitled Fantasia Mathematica compiled and edited by Clifton Fadiman. The

story Paul Bunyon versus the Conveyor Belt by William Upton will be found in

another anthology entitled The Mathematical Magpie also compiled by Clifton

Fadiman. This latter anthology also includes the episode concerning the Purse of

Fortunatus from Sylvie and Bruno Revisited by Charles Hodgson. These

anthologies both contain other stories around the themes of topology.

Note also that Klein Bottles can be obtained from Acme Klein Bottles, 6270

Colby Street, Oakland, CA 94618, USA (www.kleinbottle.com). 

See also Appendix D for more details of Schlegel diagrams.

Exercises

1 The hairy octahedron can be combed into swirls on each face with consistent

hair direction along the edges because an even number of faces meet at each

vertex. It is the only one of the five regular figures like this. Which of the 13

Archimedean figures have four faces at each vertex? (See Lecture 2.)

Compute in each case the number of faces minus the number of vertices. 

2 Draw the Schlegel diagram for the tetrahedron. Make a copy and colour the

two diagrams differently (but with the same four colours of course).

3 How many colours are required to colour a trivet? Draw a representation of

a trivet as a torus divided into twelve squares and then colour this.

4* On the model diagrams for a torus and Klein bottle (below) a representation

of a cylinder is shown (the coloured section) on the torus. Show that a

cylinder and a Möbius band may be found in a Klein bottle by drawing

similar representations. Finally, draw a Möbius band on the torus in a similar

manner (use the knife cutting example as a guide).

Model of torus. Model of Klein bottle.



6 Bubbles

S
OAP BUBBLES may seem an odd topic for a lecture. One might think that there

was little to say since they are patently spherical and surely that is that.

However, when two or more bubbles are joined together some intriguing features

are revealed. This lecture is partly inspired by Boys’ famous book entitled Soap

Bubbles whose second edition was published in 1911.

Surface tension

I
F WE BLOW UP a balloon made of rubber then the pressure increases as the

balloon gets bigger. Eventually the molecules in the rubber are all straightened

out and the stretching process turns into a big bang.

Soap bubbles are very different. As the bubble gets bigger, the pressure gets

less. In order to show this let us recall the simple physics of surface tension.

Liquids behave as if they have a skin at the interface to the air. This skin has

a tension which depends upon the liquid. We can imagine a line embedded in the

skin and we define the surface tension in terms of the force acting at right angles

on that line. If the force on a line of length one centimetre is one dyne then we

say that the surface tension is one dyne/cm. (Remember that a dyne is the force

required to accelerate a gram by one cm/sec/sec; it is very small – by contrast,

the force of gravity upon a gram is 981 dynes.)

The surface tension of water is about 73 at room temperature, that of

mercury is 465 and that of liquid gold is about 1100. 

Although surface tension is very small for most purposes which immediately

concern us, it is vital for many aquatic insects such as waterboatmen whose

whole way of life depends upon being able to walk on water.

Now consider a soap bubble with surface tension T and consider the forces

on half of it defined by a line which is a circumference around it. (See the

diagram overleaf.) The film on one side of the line will pull on the line by a force

which is 2T multiplied by the length of the line. (It is 2T because a film has two

sides.) If the bubble has radius R then the length of the circumference is 2πR and

so the force is 4TπR. This is the force acting upon one half of the bubble and it

is counterbalanced by the difference in pressure P between the air inside and

outside the bubble. This difference acts over the area of the cross-section which

is πR2 and so the opposing force is PπR2. Equating these two forces we get

4TπR = PπR2 and so  P = 4T/R

So the pressure in a soap bubble is inversely proportional to the radius of the

bubble. Double the radius and the pressure is halved.
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This gives some very unintuitive behaviour. Imagine two large glass tubes

connected together and with a third tube down which we can blow. Now suppose

that we blow soap bubbles on the ends of the tubes. We start with a flat film

across the openings; as we blow these two films swell up symmetrically until

they are both equal hemispheres on the ends of the tubes. If we then blow a bit

more a strange thing happens: instead of two bubbles getting bigger and bigger

as we might imagine, one bubble indeed gets bigger but the other collapses back

and gets smaller. Three stages are shown below.

This can also be explained in terms of minimization of potential energy. The

force of gravity encourages objects to seek the lowest point, whereas in the case

of soap films, the system seeks to become that with minimum surface area. The

one large bubble has a smaller surface area than two smaller bubbles with the

same total volume.
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Force due to surface

tension is

circumference × 2T

= 2πR × 2T

Force due to pressure

is area × P

= πR2 × P

blow blow blow 

Two equal

hemispherical bubbles.

Two equal small

bubbles.

One large and one

small bubble.

The forces on half a bubble.



Two bubbles

A
SINGLE BUBBLE naturally forms a sphere. But let us consider what shapes we

get when two bubbles meet. Three films are formed which are the remaining

parts of the original two bubbles plus a film between them. These three films

meet together in a circle. Each film is of course part of a sphere except that if the

original two bubbles are exactly the same size then the joining film will be flat.

Consider the forces on a point of the circle where

the three films meet. We know that the surface

tension is the same throughout and therefore at that

point there will be three equal forces acting on the

point. It follows by symmetry that the three films

must be at the same angle to each other and since the

whole angle at a point is 360°, the angle between the

three films must be 120°.

This is just a special case of Lami’s theorem in statics named after the

French mathematician Bernard Lami (1640–1715). It states that if three forces

act at a point in equilibrium then the angles must be such that each force is

proportional to the sine of the angle between the other two forces. This is really

the sine theorem which we met in Lecture 4 when discussing cross-ratios.

Now suppose that one bubble has radius R1 and the other bubble has radius

R2 and that the radius of the intermediate film is R3 as in the diagram below. The

centres of the two bubbles are O1 and O2 and the centre of curvature of the

intermediate film is O3. 

Since the tangents to the three films are at 120° to each other it follows that

the radii are also at 120° to each other. As a consequence the angles O1PO2 and

O2PO3 are both 60°. PX is the tangent to the intermediate film and thus at right

angles to PO3 from which it follows that O1PX and XPO2 are both 30° so that PX

bisects O1PO2 as shown below.
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O1 X O2

R1

R2

R3

O3

Two bubbles meet so

that the centres of the

three films lie on a line

such that the angles

are as shown.

60°

30° P



The radius of the intermediate film R3 is related to the radii of the two

bubbles by a simple formula. Recall that the pressure in a bubble is inversely

proportional to its radius since P = 4T/R. The radius of the intermediate film is

dictated by the difference in the pressures on either side of it. These pressures are

4T/R1 and 4T/R2 respectively. It immediately follows that P3 = 4T/R3 = 4T/R2 –

4T/R1. So finally we have the simple equation

1/R3 = 1/R2 – 1/R1 relationship between the radii of the three films

This relationship can also be deduced from the fact that the three films are at

120° to each other. In the diagram above we have omitted the films for simplicity

and the tangent line is shown dotted. Now if we draw the line O2Y so that it is

parallel to the line O1P then the angle PO2Y is the same as O1PO2 from which it

follows that all the angles of the triangle PYO2 are 60° so that it is indeed

equilateral with all sides being of length R2. This means that the sides YO2 and

YO3 of the triangle O2YO3 are R2 and R3–R2 respectively.

Now the triangle O2YO3 is similar to the triangle O1PO3 having

corresponding angles the same and so the sides are in proportion. It follows that 

(R3–R2)/R2 = R3/R1 if we now divide throughout by R3 we get

1/R2 –1/R3 = 1/R1 which is the relationship we want.

(It is perhaps surprising that we can deduce this relationship simply from the fact

that the three films meet at 120°.) We will use the argument of this discussion in

reverse when we consider the properties of three bubbles.

From the same similar triangles above it is easy to see that the ratio of O1O3

to O2O3 is the same as that of R1 to R2. This is a neat result: the centre of

curvature of the intermediate film divides the line joining the centres of the two

bubbles externally in the same ratio as the radii of the two bubbles.

Moreover, it is a standard theorem of elementary geometry that if an angle

of a triangle be bisected then the bisecting line divides the side opposite the angle

in the same proportion as the lengths of the sides adjacent to the angle. So since

PX bisects the angle O1PO2 this means that the ratio of O1X to O2X is the same
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O1 X O2

R1

R2

R3

O3

Proving that 1/R3 = 1/R2 – 1/R1 using similar triangles.

60°

60° P

Y

R3–R2

If O2Y is drawn parallel to

O1P then triangles O1PO3

and O2YO3 are similar.



as that of R1 to R2. So the tangent divides the line joining the centres of the two

bubbles internally also in the same ratio as the radii of the two bubbles.

Putting these two results together we have the pretty result that O1, O2, O3

and X form a harmonic range as discussed in the lecture on projective geometry

when we were looking at cross-ratios. Here is harmony in the spheres although

perhaps not quite what Pythagoras had in mind!

It is interesting to consider some typical values of the radii. In the diagrams

above the first shows two bubbles of radius 2 units with a flat intermediate film. 

In the second the left bubble has a radius of 3 units and the right has a radius

of 2 units. It then follows that 1/R3 = 1/2 – 1/3 = 1/6 so that the intermediate film

has a radius of 6 units. The distance O1O3 can be shown to be 3√7 units and O2O3

is 2√7 units so that the ratio of these distances is also 3 to 2 as expected 

In the third case the left bubble has grown to a radius of 4 units and is twice

that of the right bubble. The radius of the intermediate film is then the same as

that of the left bubble since 1/2 – 1/4 = 1/4 and, moreover, the surface of the right

bubble is exactly a hemisphere (the triangle O1PO2 is half the isosceles triangle

O1PO3 and so has a right angle at O2). The distance O1O3 is 4√3 whereas O2O3

is 2√3 which are again in the same ratio as the radii of the bubbles.

In the final case the left bubble has become so large that it is a flat film. It

then follows that R3 is the same as R2 and the result is a lenticular bubble hanging

in a flat film. 

We conclude by returning to the pencil of four lines PO1, PX, PO2 and PO3.

We recall from the discussion on cross-ratio in the lecture on projective geometry

that such a pencil cuts any line in four points in the same cross-ratio. Indeed we

showed that the angles between the lines are 30°, 30°, and 60° without

considering the size of the bubbles. It follows therefore that any line cutting these

four lines will cut them in points which form a harmonic range and so correspond

to the centres of a pair of bubbles, the centre of curvature of the intermediate film

and its tangent intersection point.
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A sequence of bubble pairs where the left grows so large that it

eventually becomes a flat film.



The diagram above shows the pencil in black plus the lines of centres

corresponding to the sequence of bubbles in blue. Two special cases arise. When

the line of centres is parallel to PO3, the intermediate film is flat which

corresponds to equal bubbles and when the line of centres is parallel to PO1 or

PO2, then we have the case of the lenticular bubble hanging in a film.

We can go one stage further by considering the tangents to the bubbles

themselves at the point P. Suppose these meet the line of centres in points X1 and

X2 respectively. This is shown below although X2 has unfortunately gone off the

page to the left! Note that all the angles at P are 30°. By similar arguments to

before we find that the points X1 and X2 also form harmonic ranges with the three

centres taken in an appropriate order. If we relabel X as X3 then we find that

X1 and O1 divide O2O3 internally and externally in the ratio of R2 to R3;

X2 and O2 divide O3O1 internally and externally in the ratio of R3 to R1;

X3 and O3 divide O1O2 internally and externally in the ratio of R1 to R2.

It is amazing that there is so much geometric beauty in just two soap bubbles.
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O1 X3X2 X1O2

R1

R2

R3

O3

The three ranges

(X1, O1, O2, O3) 

(X2, O2, O3, O1)

(X3, O3, O1, O2)

are harmonic.

30°

30° P

O1 X O2 O3

P

R1 = 2

R1 = 3

R1 = 4R1 = ∞

Lines of centres for pairs of bubbles with R2 = 2.



O12

Three bubbles

N
OW SUPPOSE that a third bubble is placed so that it touches the two bubbles

we have just been discussing. Because we can always draw a plane through

any three points it follows that the three bubbles are symmetric about the plane

through their centres. The result is as shown below. 

For simplicity we have changed the notation slightly. The centres of the three

bubbles are now O1, O2 and O3 with radii R1, R2 and R3. The centre of curvature

of the film between bubbles 1 and 2 is the point O12 and the radius of curvature

is R12. In a similar way we denote the centres of curvature of the films between

bubbles 1 and 3 and between bubbles 2 and 3 as the points O13 and O23 with radii

of curvature R13 and R23.

We know of course that O1, O2 and O12 lie on a straight line because adding

the third bubble does not disturb the configuration of two bubbles around the

point P provided that the pressures remain the same. Similarly O1, O3 and O13 lie

on a line as do O2, O3 and O23. What is perhaps rather amazing is that the centres

of the three intermediate films O12, O13 and O23 also lie on a straight line.

As consequence, the six points lie in groups of threes on four lines. The four

lines are the four lines of a complete quadrilateral (in green) and the six points

are the six points where the four lines meet. Note that each line corresponds to

an intersection of three films.

To prove this, we use a similar argument to that of the previous section but

in reverse. Suppose the three films meet at the point P as shown overleaf.

6 Bubbles 135

O1 O2

R1

R2

R12

O13

O23

The centres of curvature of the six films formed by three bubbles

meeting form the six points of a complete quadrilateral.

O3
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First draw a line parallel to O23P through O13 meeting PO12 at Y; the triangle

O13YP is then equilateral as before because the films meet at 120°. It then follows

that the length of YO12 is the length of PO12 (which is R12) minus that of PY

(which is the same as PO13 which is R13). So the length of YO12 is R12 – R13.

If the pressures in the three bubbles are P1, P2 and P3 then since the radii of

the films are dictated by the differences in the pressures we have P2–P1 = 4T/R12

and so on from which it follows that

1/R12 + 1/R23 = 1/R13 and then by multiplying by R12 we get

(R12 – R13)/R13 = R12/R23

It then immediately follows that the triangles O23PO12 and O13YO12 are similar

because the ratio of the pair of sides O23P and PO12 is the same as that of the pair

O13Y and YO12 and the angles between the pairs of sides are the same since they

are both 120°. Hence the angle O23O12P is the same as O13O12Y. It then follows

that O13 lies on the line O23O12.

So we see that corresponding to every intersection between three films there

is a line containing the centres of curvature of the three films. Well that is not so

surprising, the joint between the three intermediate films is just like any other.

Thus we have now proved the nice result that the four lines, one for each

intersection between films, form a complete quadrilateral and the six centres of

curvature are the six points of the quadrilateral.

Now add the diagonal triangle LMN (in red, see opposite) joining the

opposite pairs of points of the quadrilateral as mentioned in Lecture 4. We may

recall that the diagonal triangle has the property of forming harmonic ranges with

the other points and lines. As a consequence, the line NO3 meets the line O1O2O12

in the point which forms a harmonic range with the three points O1, O2 and O12.

However, we saw in the last section that the point X where the tangent to the

intermediate film between bubbles 1 and 2 meets the line of centres is such that

O1, O2, O12 and X form a harmonic range. 

O12

O13

Proving that O13 lies on the line joining O23 and O12.

O23

P

Y

R23

R13

R12–R13

R12
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So we have discovered that the line NO3 actually goes through the point X.

Similar results follow for the other tangents at P and so we deduce that the line

O23L goes through X1 and O13M goes through X2 which is off the page. Similarly,

it can be shown that the line NO3 meets the line O23O13O12 in the point where the

tangent to the intermediate film between bubbles 1 and 2 at the meeting point

between the three intermediate films cuts that line. 

Altogether there are twelve points where tangents meet the lines of centres

– three points on each of the four lines of centres. The six lines LO1, MO2, NO3

and O23L, O13M, O12N each go through two of these twelve points.

The figure formed by the three bubbles is intriguing and abounds with

harmonic ranges revealing further harmony between the spheres of the bubbles.

O1 X O2

R1

R2

R12

O12

P

O13

O23

M

L

N

LMN is the diagonal triangle

of the quadrilateral formed by

the six centres of curvature.

The line NO3 then goes

through X where the tangent

at P meets the line O1O2.

O3
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Four bubbles

N
OW ADD A FOURTH BUBBLE so that it meets the three bubbles. The centres of

the four bubbles no longer lie in a plane and so it is hard to draw a

satisfactory diagram. However, each group of three bubbles acts as we have just

described and their centres lie in a plane containing six centres of curvature.

There are ten films, four are the bubbles themselves and, since there are six

ways of choosing two bubbles from four, there are six intermediate films making

ten altogether. We can denote the centres of the four bubbles by points O1, O2,

O3, O4 and the centres of the intermediate films by O12, O13, O14, O23, O24, O34.

Also, we have just seen from studying three bubbles that these points lie on lines

in groups of three. 

This should bring another echo of the lecture on projective geometry. In fact,

the ten points are arranged as the points of the Desargues configuration which we

saw lie on ten lines in groups of three. The configuration is shown below with

the points named according to the convention just described. (The points for the

case of three bubbles are at the bottom of the diagram and are arranged much as

in the previous section except that they are reflected left for right.)

The lines have been named as well. The line joining the centres of bubbles

1 and 2 is l12 and so on whereas the line joining the centres of curvature of three

intermediate films is numbered according to the bubble not involved; thus the

line of the centres O12, O13 and O23 is l4.

The centres of curvature

of the ten films formed by

the meeting of four

bubbles lie as the ten

points of the Desargues

configuration.

O24

O3

O14

l14

O4

O12

O13

O23

O1

O2

O34

l3

l12

l4

l2
l1

l34

l24

l23
l13
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This diagram reveals an intriguing fact. We expect there to be four planes

because clearly the centres of the bubbles define four planes. However, the

Desargues configuration contains five planes so where does the other plane come

from? The answer is that the centres of curvature of the six intermediate films all

lie in the same plane and this is the fifth plane. The six centres and the four lines

l1, l2, l3 and l4 form a complete quadrilateral in this plane.

I find it rather amazing that a group of humble bubbles should relate to one

of the most fundamental configurations of projective geometry. But that is a

typical illustration of the beauty of geometry. Seemingly unrelated topics

suddenly have a deep resonance. Well on this high note of ecstasy we will leave

the four bubbles and in a sense the story stops there because we have run out of

dimensions – we cannot add a fifth bubble so that all five bubbles touch each

other (at least not in this world). 

Foam

W
E WILL NOW turn to a consideration of how lots of bubbles arrange

themselves. This is a rather complex problem and so we will content

ourselves with just looking at two simple cases.

Suppose we have two sheets of glass and some bubbles trapped between

them to form a single layer. We will also suppose that the bubbles wet the glass

so that they are at right angles to it. The bubbles will of course meet each other

at 120° as usual. Moreover, if the bubbles all have the same size and are at the

same pressure then the films between them will be flat and the result will be a

uniform mass of regular hexagonal prisms much like a honeycomb as shown

below.

It is interesting to consider the shape of the bubbles at the edge of the

honeycomb (the diagram below shows a section of honeycomb without the

edge). For simplicity suppose we have seven bubbles with one bubble in the

centre surrounded by the other six. Then the outside surfaces will be curved but

Portion of hexagonal honeycomb of bubbles between two pieces of glass.
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since we have assumed that the bubbles wet the glass the curved surfaces will be

cylindrical rather than spherical. 

As a brief detour let us do the calculation of the pressure difference across a

cylinder from first principles as we did for the sphere at the beginning of this

lecture. For a section of half cylinder of length h and radius R we see from the

diagram above that 

4hT = 2RhP and so  P = 2T/R pressure in cylinder

So the pressure in a cylinder is one half of that in a sphere of the same radius.

This in fact is just a special case of a general formula. A general surface has two

radii of curvature (these correspond to the directions of greatest and least

curvature) and if these are R1 and R2 then the pressure formula is 

P = 2T/R1 + 2T/R2 pressure across general surface

In the case of a sphere R1 and R2 are the same thus giving 4T/R whereas in the

case of the cylinder one radius is infinite so one term vanishes leaving 2T/R.

Force due to surface

tension is long 

edges × 2T

= 2h × 2T

Force due to pressure is 

area × P

= 2Rh × P

Cross section of

seven bubbles

squeezed between

two sheets of glass.

h

The forces on half a cylindrical bubble.
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And now to return to the seven bubbles. If we suppose that the pressure in

each is the same then the resulting shapes will be as shown opposite. The outer

bubbles have three flat faces and one cylindrical one. If the flat faces are all the

same size, the surrounding bubbles have a smaller volume than the central one.

Let us now consider what happens in three dimensions. Again we will

suppose that all the bubbles are of the same size and more importantly have the

same pressure which ensures that all intermediate faces have no curvature. It

turns out there are always three bubbles meeting at each line between them and

therefore that the faces have to be at 120°. The only regular honeycomb that fits

the bill is that of rhombic dodecahedra, one of the dual Archimedean figures

which we met in Lecture 3 when we were about to embark into Four Dimensions.

So we might expect a foam of equal sized bubbles to be composed of lots of

rhombic dodecahedra. But this is not the case. Although the rhombic

dodecahedron does indeed have its faces at 120° and also has the least surface

area of all the honeycombs for the volume contained, nevertheless it is not the

correct answer. One problem with this honeycomb is that a rhombic

dodecahedron is not that regular, some vertices have four lines meeting and

others have six.

Another possibility is the honeycomb of truncated octahedra which also has

three faces on each edge and moreover is regular in that every vertex of a

truncated octahedron is the same and has just three lines meeting. But the

problem here is that the three angles where the faces meet are not 120°. One (that

between the hexagonal faces) is the familiar angle of 109° 28' and the other two

are 125° 16'. The answer will become clear in a moment.

In three dimensions a possible ideal foam approximates to a honeycomb of

truncated octahedra.
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Films on frames

I
F WE DIP a wire loop into a solution of detergent and remove it we will find a

film across it. No doubt we recall making bubbles by blowing through such a

loop. Some intriguing patterns can emerge if we dip more elaborate shapes into

a solution. 

Suppose we have a wire frame in the shape of a cube and dip this. One might

expect to obtain a film on each face so that the cube is really constraining a large

bubble. But this doesn’t happen – what we actually get is much like that shown

in the diagram below. There are thirteen films in total, one on each of the twelve

edges and these all meet towards the centre of the cube around a square looking

film. This is perhaps disappointing since it is not symmetric. However, there are

two general laws that apply, one is that the films must meet at 120° and the other

is that the area of the film must be a minimum.

Suppose the edge of the cube is 2 units and that the little square film has

edge 2x units. If we assume that all the films are flat then it turns out that the least

area occurs when x is about 0.073 units. This is a tedious but straightforward

calculation; there are 8 trapezoidal films, 4 triangular films and one square one.

It is easy enough to compute the area of all these and then find the condition for

the area to be a minimum. This gives the value of x mentioned.

On the other hand if we consider the fact that the films meet at 120° then by

considering the meeting of the trapezoidal films with the square film we can

deduce that x must be 0.423 which contradicts our previous value.

Obviously we have made a wrong assumption somewhere. If we make a wire

cube and dip it then all becomes clear. The square in the centre is not a square at

all but has slightly curved sides. Moreover, the trapezoidal films are not flat

either. Recall that the general formula for the pressure difference across a film is

P = 2T/R1 + 2T/R2 pressure across general surface

So if the film is shaped like a saddle with equal but opposite curvatures in two

directions at right angles then the pressure difference will be zero but the film

Approximate shape of film

on wire cube.

There are 8 trapezoidal

films, 4 triangular films

and one square film.

In fact the square film has

slightly convex sides and

so the trapezoidal films

are not quite flat.



will not be flat. And this indeed is what happens. The trapezoidal films are ever

so slightly saddle shaped. The triangular films are indeed flat by symmetry and

so of course is the curvilinear square in the middle.

Now compare the honeycomb of truncated octahedra with the films at the

centre of the wire cube and in particular consider the truncated octahedra

surrounding one square face. It is immediately clear that the squarish film

corresponds to the square face, the trapezoidal surfaces correspond to parts of the

hexagonal faces adjacent to the square face and the triangular faces correspond

to parts of the adjacent square faces which are at an angle to the central square

face. So the puzzle is solved. 

Our ideal regular foam thus consists of slightly distorted truncated octahedra

whose hexagonal faces are not quite flat and whose square faces (although flat)

have slightly curved edges. These curvatures ensure that the faces meet at 120°

as required. Moreover, this distorted figure has slightly less surface area per

volume than the rhombic dodecahedron and so wins on that score as well. A

truncated octahedron has 14 faces and so each bubble has 14 neighbours. 

Very recently, a slightly more efficient arrangement in terms of surface per

volume was discovered by Denis Weaire and David Phelan of Trinity College,

Dublin. This consists of a mixture of 12-gons and 14-gons of the same volume.

The 12-gons are irregular dodecahedra with irregular pentagonal faces whereas

the 14-gons are also irregular and have 12 pentagonal and two hexagonal faces.

In practice it is extremely difficult to create a foam whose bubbles all have

exactly the same volume so these arrangements are unlikely in a real foam.

Typically a foam is made of bubbles of somewhat varying size and the number

of faces varies from perhaps 12 to 16.

Films on cylinders

T
HAT A FILM may be curved and yet flat (which sounds like a contradiction) is

perhaps best demonstrated by considering a soap film across two rings.

Suppose we capture a bubble between two rings and then move the rings so

that the part of the film between the rings is a cylinder. Then we will have two

large parts of spheres on the rings as shown below. If the radius of the cylinder
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Cross section

through two bubbles

and a cylinder of film

held on two rings.
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is Rc, then the pressure in the cylinder is 2T/Rc; if the radius of the spheres is Rs

then the pressures are 4T/Rs. Since these pressures must be the same, it follows

that the radius of the two big bubbles must be exactly twice that of the cylinder.

If we now break one of the bubbles (the rings must not be too far apart) then

the other will become flat whereas the film between the rings will take a waisted

form as shown below. This portion of film is of course open to the air and so its

total curvature must be zero. We conclude that the curvature everywhere must be

equal and opposite in the two principal directions.

The shape of the cross section is known as a catenary and is the same shape

as that adopted by a hanging chain. (The Latin for chain is catena, whence the

name.) The solid figure obtained by rotating a catenary is usually called a

catenoid.

The catenary has some interesting properties. An important one relates to the

fact that the catenoid has zero total curvature. The radius of curvature at any

point on a catenary is exactly equal to the distance between that point and where

the normal meets the axis. The radius of curvature is that of the circle that most

closely fits the curve at the point and the normal is at right angles to the tangent.

So in the diagram opposite CP equals PN.

As a special case the radius of curvature at the centre of the catenary equals

the distance from the catenary to the axis which we can suppose has length a as

shown in the inverted catenary at the bottom of the diagram opposite.

It should now be clear why the catenoid has zero total curvature. The

curvature in the plane of the paper at P has radius CP. On the other hand the

curvature in the plane which is at right angles to the paper (and which of course

Film on two rings

open to the air.

The total curvature

everywhere is zero.

P S. The film cannot actually be drawn out quite so far as shown above since it

becomes unstable and breaks.
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contains the normal line) has radius PN. But as just mentioned it is a property of

the catenary that these are equal and so the two curvatures cancel out. 

If we now slowly pull the two rings apart the waist of the catenoid narrows;

one might expect that the waist would eventually contract to nothing but before

this happens the film always breaks. In fact if the rings have radius R then the

distance between the rings for a stable film cannot exceed about 1.325R. The

minimum waist (2a) is about 1.1R. Any attempt to pass these limits results in an

unstable film which breaks. This corresponds to when the tangent to the point P

goes through the central point O.

For those interested in the detailed mathematics, the equation of a catenary

is y = a cosh(x/a) where the cosh function is the hyperbolic cosine usually

defined as cosh x = (ex + e–x) / 2 where e is the base of natural logarithms.

Another example of instability is illustrated by considering a cylindrical

film. If we take the case of two rings with bubbles on the ends and a film between

the rings and somehow contrive to pull the rings apart and at the same time pump

more air in so that the cylindrical film remains a cylinder then eventually the

cylinder becomes unstable, goes wobbly and breaks up into various bubbles. This

instability happens when the length of the cylinder is exactly equal to its

circumference. In other words when the length is 2πR. Incidentally, the Greek

letter π is used to denote the ratio of circumference to diameter because π is the

first letter of the Greek word περιμετρος (perimitros), perimeter.

C

P

N

tangent line

normal line

Cross section through a catenoid showing catenaries and circles of curvature.

The distance CP is equal to PN.

O
a

a
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Further reading

T
HE OBVIOUS starting point for further reading is Soap Bubbles by Boys; this

is a delightful book and covers many aspects of bubbles as well as other

aquatic forms such as jets of water. It has some very pretty drawings. However,

Boys doesn’t mention that the squarish film at the centre of the cube is in fact

curved. A brief discussion of the discovery by Weaire and Phelan of the more

efficient arrangement with a mixture of irregular figures will be found in

Kepler’s Conjecture by Szpiro.

Another interesting discussion will be found in On Growth and Form by

D’Arcy Thompson; this book generally is about the shape of living organisms.

Regarding bubbles, he relates the shapes of bubbles to that of cells in organisms

and the stability of cylinders to why drops form on a spider’s web and so on. A

rather different discussion from the point of view of minimization of the area of

a surface will be found in What is Mathematics? by Courant and Robbins.

Exercises

1 Two soap bubbles are joined. One has a radius of 1 cm and the other has a

radius of 3 cm (after they are joined together). What is the radius of the

intermediate film between them?

2** Seven bubbles are squeezed between two parallel sheets of glass such that

the intermediate films are all flat and the same size as shown below. The

volume of the central bubble is 1 cc. What are the volumes of the

surrounding bubbles? 



7 Harmony of the Spheres

I
N THE LECTURE on Bubbles we saw how the centres of bubbles, the centres of

curvature of dividing films, and points on tangents formed various harmonic

ranges. In this lecture we will start by looking at some other pretty properties of

circles and spheres. But first a brief explanation of the title of this lecture.

It seems that the phrase “music of the spheres” originated from Pythagoras

and it was really all about the motion of the planets. Plato said that a siren sits

on each planet who carols a most sweet song, agreeing to the motion of her own

particular planet, harmonizing with others. Hence Milton speaks of the “celestial

syrens’ harmony that sit upon the nine enfolded spheres”. Maximus Tyrius says

that the mere proper motion of the planets must create sounds and as the planets

move at regular intervals, the sounds must harmonize.

There are a number of properties of circles and spheres which are simply

stated but surprisingly tricky to prove unless we get the right view of the

problem. So this lecture is really about how the appropriate transformation can

turn a hard problem into an easy one. In a later lecture we will look at how the

complex plane can easily reveal a few unexpected properties of figures involving

polygons.

Steiner’s porism

T
HEOREMS come in various categories and only the best seem to deserve the

term theorem. I suppose a Theorem is a very important fact from which other

things can be proved. Pythagoras theorem is an obvious example of a jolly good

theorem.

A subsidiary conclusion leading on immediately from a theorem is often

called a Corollary. This comes from the Latin corollarium meaning originally a

garland of flowers such as given to an actor and then later meaning a gratuity or

free gift. So a corollary comes for free from a theorem with no further effort.

A preliminary conclusion which is needed in order to further the proof of a

theorem is called a Lemma. This comes from the Greek λεμμα (lemma),

meaning a skin or base and thus something assumed. Being of Greek origin the

posh plural of lemma is of course lemmata.

And finally there is a Porism which seems to be a second class theorem

which leads nowhere. Porism comes from the Greek ποριζω (porizo), which

roughly means to find or obtain. Anyway, a curious discovery of the Swiss

mathematician Jakob Steiner (1796–1863) is traditionally known as a porism.

Draw two circles one inside the other and with different centres and thus not

concentric. Now draw a circle touching both original circles; then draw a circle
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touching this circle and both original circles. Continue in this way and so draw a

series of circles touching the original circles and each other to form a chain. It

might be that the last circle just touches the first so that the chain of circles is

neatly closed as in the left-hand example above. More often than not this does

not happen as in the other example. But the amazing fact is that whether the

circles form a closed chain or not does not depend upon the position of the first

circle of the chain.

To prove this using brute force would be very nasty but it can be shown to

be almost obvious using an ingenious transformation known as inversion.

Inversion

A
TRANSFORMATION is essentially a rule for converting one configuration (such

as a diagram of lines, circles, etc) into a related one. Certain properties of

the original configuration will remain preserved but others might not be. If we

can prove something in the transformed version and the necessary properties are

preserved then the corresponding thing will be true in the original.

A very simple transformation is that obtained by reflection in a flat mirror.

This is unhelpful because the new configuration is pretty much the same. For

example, the reflection of an equilateral triangle will still be an equilateral

triangle. So anything hard to prove in the real world will remain just as hard to

prove in the Looking Glass world – although in Alice’s case the Looking Glass

world didn’t seem to be quite the same at all!

The important transformation known as inversion is a sort of reflection in a

circle. Suppose the circle has centre O and radius R as shown opposite; we call

O the centre of inversion. Then the rule is that any point P is transformed into a

point P' such that P' is on the line OP and the distance OP multiplied by OP' is

equal to the square of the radius R. Thus

OP × OP' = R2 fundamental rule for inversion

Inversion goes in reverse obviously; thus if P transforms into P' then P'

transforms into P. (Unprimed points and lines are in red and the primed inverses
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Steiner’s porism.

If the chain of circles joins

up (left) then it always

does wherever the chain

starts.

If not (right) then it never

does.



are in green.) Note that every point inside the circle transforms into a point

outside the circle and vice versa. The only points that transform into themselves

are the points on the circle of inversion such as X (which is shown red and green).

So the circle of inversion as a whole transforms into itself.

It is clear that every point of a line through the centre of inversion O

transforms into a point of the same line. So the line as a whole transforms into

itself. But the individual points on the line do not transform into themselves

except for the point X where the line meets the circle of inversion. It’s best not

to ask what the point O transforms into (we cannot consider it to be a line at

infinity because that breaks the otherwise general rule that a point transforms

into a point). 

We will now consider the transformation of lines not through O. The

diagram below shows the case where the line PQ does not meet the circle of

inversion. P is the point on the line such that OP is at right angles to the line and

Q is any other point on the line. P' and Q' are the inverted points. Now consider

the two triangles OPQ and OQ'P'. By the rule for inversion we know that OP ×

OP' = R2 = OQ × OQ' from which it follows that the two triangles are similar and

therefore that the angle OQ'P' is also a right angle. It follows that Q' lies on the

circle whose diameter is OP' since the angle in a semicircle is a right angle
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O P P'

P transforms into P'.

P' transforms into P. 

X transforms into itself.

The basic rules of inversion.

X

R

O
P'

P

Q

Q'

The inverse of

the line PQ is the

circle OP'Q'.
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P

T

X X'

Y

Y'

P

X'

Y'

X

Y

Euclid III, 35,36: PX × PX' = PY × PY' = PT2

(Euclid Book III, Proposition 31). So finally we deduce that the inverse of the

line PQ is in fact the circle OP'Q'. The same argument applies if the line meets

the circle of inversion as shown above.

So the inverse of a general line is a circle through the centre of inversion O.

Conversely, the inverse of a circle through the centre of inversion is a straight

line not through the centre of inversion. Note that if the line intersects the circle

of inversion then the inverse circle also goes through the same two points on the

circle of inversion.

Finally, we have to consider the case of a circle not through O. The key to

this is a couple of Euclid’s theorems (Book III, Propositions 35 and 36) which

are illustrated below. P is any point outside a circle and PT is a tangent to the

circle. PXX' is a line which meets the circle in the points X and X'. Then the

product of PX and PX' equals the square of PT. Also if two lines through P meet

the circle in X, X' and Y, Y' respectively then the product of PX and PX' equals

the product of PY and PY'. This applies whether P be inside or outside the circle.

Now in the diagram opposite, suppose we start with circle XYT with centre

C. Note that XY is any line through the centre of inversion. Suppose that the

product of OX and OY has the value p; then by Euclid’s theorem just mentioned

this value p is the same no matter what line we take through O. Now draw the

circle which is the factor R2/p larger than the original circle and whose centre D

O
P

P'

Q'

Q

The inverse of the

line PQ is the

circle OP'Q'.

It goes through the

two points where

the line PQ meets

the circle of

inversion.
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is the same factor further from O. Remember that R is the radius of the circle of

inversion. Suppose this new circle meets the line in X' and Y' as shown. Then

OX' = OY × R2/p because of expansion factor, and 

OX = p ÷ OY because of definition of p, so multiplying together

OX × OX' = R2 and so X' is the inverse of X.

This argument follows for any point X on the original circle and so the new circle

is indeed the required inverse of the original one. And vice versa of course. Note

however, that the centre of the new circle D is not the inverse point of the centre

C of the original circle (which is why we didn’t call it C'). The diagram above

shows the case where the centre of inversion is outside the two circles; it also

shows the tangent line OTT' where T' is the inverse of T. 

A similar argument applies if the centre of inversion is inside the two circles.

However, in this case we cannot show the tangents. Other possibilities are where

the circles intersect the circle of inversion. Both the original and inverse circles

meet the circle of inversion in the same two points. These cases are shown below.

T'

T

Y'

X'
X

Y

C D
O

Circle X'Y'T' is the inverse of circle XYT. Case where O is outside the circles.

X'

X'

X

Cases where circles intersect the circle of inversion.

X'

X
X

Centre of inversion inside.
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A very important situation is shown above. This is when the original circle

meets the circle of inversion at right angles (that is the two circles are orthogonal

to each other so that the tangent of each goes through the centre of the other). The

tangent OT to the circle then intersects the circle of inversion at T so that T

inverts into itself. In this special case the whole circle inverts into itself. That this

is so follows immediately from Euclid’s theorem mentioned above since by that

theorem OX × OX' = OT
2 but this is precisely the rule for inversion. Note

carefully that the individual points on the circle do not invert into themselves; the

arc inside the circle of inversion transforms into the arc outside. 

There is however one circle that does invert into itself point for point and

that of course is the circle of inversion.

We have at last covered all the rules for the inversion of lines and circles

which can be summarized thus (O is the centre of the circle of inversion, C).

line through O <=> same line through O,

line not through O <=> circle through O,

circle not through O <=> circle not through O,

circle orthogonal to C <=> same circle orthogonal to C,

circle of inversion, C <=> itself, point for point.

We will now briefly consider what properties are preserved by inversion. It is

obvious that lengths are not preserved but perhaps surprising that angles are

always preserved. Thus if two lines intersect at right angles then the circles

which are their inverses will be orthogonal to each other.

O

T

X

X'

A circle meeting the circle of inversion at right angles inverts into itself.
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(The proof that angles are preserved is left for the reader; draw a short curve

PQ and its inverse P'Q', then triangles OPQ and OQ'P' are similar using the

inversion formula and so the angles OPQ and OQ'P' are equal; then let Q

approach P so PQ becomes the tangent. This shows that the angle between any

line and a radial line is preserved; the general case follows by adding or

subtracting angles.)

Although lengths are not preserved, it will perhaps not come as a surprise

that cross-ratios are preserved. This is very easy to show for any four points on

a line through O by using the formula for cross-ratio and the rule that OX × OX'

= R2.

In the case of a line not through O, four points A, B, C, D on the line invert

into four points A', B', C', D' on a circle as shown above. This is a good moment

to define the cross-ratio of four points on a circle. Take another point P on the

circle and consider the four lines A'P, B'P, C'P, D'P which form a pencil through

P. The cross-ratio of this pencil can be shown not to depend upon the choice of

P (the angles at P do not depend upon P by Euclid III, 21 – angles in a segment

are equal) and so we can take this to define the cross-ratio of the four points on

the circle. So finally by taking P as the centre of inversion it is clear that the

cross-ratio of the four points on the circle is the same as that of those on the line.

(Incidentally, the cross-ratio on any other conic such as an ellipse is defined in

the same way.)

We have now introduced the key properties of inversion which incidentally

was invented by Jakob Steiner whose porism we will return to in a moment.

O
C

C'

B'

B

D

A

A'

D'

The four points A, B, C, D on the line have the same cross-ratio as the four points

A', B', C', D' on the circle.
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Coaxial circles

C
ONSIDER TWO CIRCLES through two points C and D as shown below. Take any

point P on CD (not between C and D) and consider the tangents to the two

circles meeting them at T and U. Now we have

PT
2 = PC × PD = PU

2 using Euclid III, 36 twice

So the tangents PT and PU have the same length. So the circle centre P and

radius PT will be orthogonal to both circles and indeed to all circles through C

and D.

But we can do this with any point P and so obtain a whole series of circles

whose centres lie on the line CD each of which is orthogonal to all the circles

through both C and D. 

The result is the very pretty arrangement shown opposite above. There are

two sets of circles. The circles of one set meet each other in C and D (we shall

call this set the M-set – or meeting set). The other set (the N-set – or not meeting

set) do not meet each other and have their centres on the line CD. All the circles

of one set are orthogonal to all circles of the other set. 

The two straight lines in the diagram from which the tangents to all circles

of one set are equal are known as the radical axes. The two sets are known as

coaxial sets. 

Now consider what happens if we invert the whole diagram with respect to

a circle whose centre is D. For convenience we can take the circle of inversion

as the circle with centre D that passes through C so that C inverts into itself.

We recall that a circle through the centre of inversion becomes a straight line

not through the centre of inversion. So the M-circles through D become straight

lines and moreover they all go through C since C remains unchanged. The N-

circles on the other hand invert into another set of circles. However, since angles

are preserved, these circles have to be orthogonal to the set of straight lines

though C. This means of course that they are concentric and all have centre C.

The result is shown below opposite.

C DP

T

U

The tangents PT and PU

from any point P to any

circles through C and D have

the same length.

So a circle centre P with

radius PT is orthogonal to all

circles through C and D.
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As a consequence, if we take any two circles that do not intersect (any two

N-circles) and invert them about the point D then the result is a pair of concentric

circles. Of course, we have to find the point D but that is easy. Just draw a circle

orthogonal to the two given circles and then that meets the line joining the two

centres in C and D. We can also invert about C; again the inverse circles will be

concentric.

And now at last we can easily prove Steiner’s porism. 

DC

Inverting the two sets of circles with respect to D results in a set of concentric

circles about C and a set of lines through C.

C D

Two sets of coaxial circles.
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Proof of Steiner’s porism

S
UPPOSE we have two circles one inside the other so that they do not intersect

and that we can draw a chain of circles touching them and each other so that

the chain neatly joins up. Then Steiner’s porism states that the chain always joins

up no matter where we start the chain. And contrariwise, if the chain doesn’t join

up then it never will no matter where the chain is started.

We have just seen that any two circles can be inverted into a pair of

concentric circles. If we do this then the chain of circles will transform into a ring

of equal circles between the two concentric circles as shown below. Now in the

transformed picture the ring will obviously work wherever it is started because

being all the same size the little circles can be rotated like ball bearings. The

corresponding circles in the inverted figure on the left will then expand and

contract as they rotate between the two fixed circles. So that proves it. Amazing. 

(For convenience I will refer to the equal circles between the concentric

fixed circles as a ring of circles and to the variable inverted ones as a chain of

circles.)

The centre of inversion is inside the circles as marked below. Note that since

the points of contact of the ring of circles on the right are themselves on a circle,

then the points of contact of the transformed chain on the left are also on a circle.

But the same doesn’t apply to the centres since, as noted earlier, the centre of a

circle does not invert into the centre of the inverted circle. In fact the centres of

the chain lie on an ellipse – the proof is left to the reader.

It is amusing to consider what happens if the centre of inversion is in

different places. And then to consider how the system behaves as the circles

rotate. For reasons which will become apparent when we deal with an analogous

system in three dimensions, we will deal with the case of six circles although

similar behaviour occurs with any number. Note that with six, the circles in the

original ring have the same radius as the inner fixed circle – and consequently

the outer fixed circle has three times the radius as the inner one. The simple case

with the point of inversion inside the inner circle is shown opposite with the

chain of transformed circles in four positions. The first corresponds to the

position of the original ring of equal circles; the others correspond to rotation of

the original ring by 15°, 30° and 45° respectively. In this example, taking the

inner circle as having radius 1 and centre at the origin, the point of inversion is

The figure on the left

can be inverted into

that on the right.

The blob is the

centre of inversion.



the point (–0.5, 0.0). Note that the inner circle of the original becomes the outer

circle of the inverted system and vice versa.

As the point of inversion approaches the circumference of the inner circle,

the inverted inner circle becomes very large and the circles of the chain expand

and contract a great deal as they tour around. Two positions are shown below in

a fairly extreme situation – these correspond to the first two positions in the

previous example, that is at the starting position and with 15° rotation.
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The case of a ring of six with the point of inversion inside the

inner circle as marked.

Four positions of the inverted system are shown

corresponding to the original ring being rotated in steps of 15°.

When the point of inversion is very close to the inner circle, the inverted circle

becomes huge. Two positions of the chain are shown corresponding to the original

ring and it rotated by 15°.
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When the point of inversion is on the circumference of

the inner circle, the inverted inner circle becomes a

straight line. Three positions of the inverted system

are shown corresponding to the original ring being

rotated in steps of 15°.

This example has the point of inversion at about (–0.99, 0.0). The figure

chosen is actually 4/7 times √3 which is 0.98974.... Curiously enough, if the

centre of inversion is at fractional multiples of √3 then the radii of the various

circles have nice proportions based on the inverse of various integers. In this case

the fixed circles have radii proportional to 1 and 1/131 and the circles of the

chain in the starting position have radii proportional to 1/363, 1/195 and 1/27.

Eventually, when the centre of inversion is actually on the circumference of

the inner circle, that is at (–1.0, 0.0), the inner circle inverts into a straight line.

The chain of circles still manage to tour around the inverse of the original outer

circle. However, each becomes momentarily a straight line (essentially becoming

a circle of infinite radius) when it is exactly opposite the line which is the image

of the original inner circle. This happens when the corresponding circle of the

original ring just touches the centre of inversion as it rotates around.

Three positions are shown below corresponding to the starting position and

with rotations of 15° and 30° respectively.

Next consider what happens when the point of inversion moves a bit further

so that it is in the gap between the two fixed circles. The inner circle now inverts

into a circle which does not surround the image of the outer circle. In other words
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the two fixed circles no longer define an annular space. At the starting position

the centre of inversion is not within any of the circles of the ring and the inverted

chain consists of six circles touching each other in the usual way.

The diagram shows the case when the point of inversion is at about (–1.299,

0.0). The exact value is in fact 3/4 times √3. Again the radii have nice ratios. The

fixed circles have radii proportional to 1/11 and 1/39 and the circles of the chain

in the starting position have radii proportional to 1/147, 1/75 and 1/3.

Now, as the ring rotates, the behaviour is perhaps rather surprising. As each

circle passes the point of inversion, its image becomes a straight line and then as

it progresses further its image becomes a circle wrapping the others. The diagram

above shows four positions: the usual starting position, and then rotated such that

the first circle becomes a straight line (at about 4.5° in this example) and then at

When the point of inversion is

between the fixed circles, a

circle of the chain becomes a

straight line as it passes the

centre of inversion and then

wraps around the others.
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This is the case where the

point of inversion is on the

circle through the points of

contact of the circles of

the original ring. The

inverted chain consists of

circles whose centres all

lie on a straight line.

15° and 30°. As rotation continues the wrapping circle eventually becomes a

straight line again and then changes to a circle touching the others in the usual

way. The process repeats of course as the other circles of the ring pass through

the point of inversion.

An especially interesting case arises if the point of inversion lies exactly on

the circle of the points of contact of the original ring of circles. This is at the

point (–1.732..., 0.0) where 1.732... is of course √3. The point of inversion is then

never outside the ring of circles and so the inverted chain never consists of

circles all touching each other externally. Indeed, at the starting position, the

centre of inversion lies on the circumference of two circles of the ring and so

they invert into a pair of parallel straight lines. As the original ring rotates, the

two lines become huge circles one wrapped around all the others. The diagram

shows the situation at the starting position and at angles of 7.5°, 15° and 30°.
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Note that the fixed circles are now equal and the centres of the inverted

circles lie on the straight line midway between the fixed circles. Let us follow the

green circle which in the diagram opposite starts as the bottom straight line

which corresponds to its centre being at infinity at the bottom of the page. As the

system progresses, the green line turns into a huge circle which slowly contracts

and as it does so its centre moves up until the circle is at its smallest position and

its centre is between the fixed circles. The centre continues to move up and the

circle grows until it once more becomes a straight line only this time it is the

upper straight line. The centre now flips from infinity at the top to infinity at the

bottom and now the green circle becomes the huge one that wraps around all the

others. Its centre now moves up from infinity at the bottom and the circle shrinks

until its centre is once more between the two fixed circles only this time it

surrounds all the circles. Finally, the centre progresses upwards and the green

circle grows until it once more becomes the bottom straight line which is where

we started.

The various systems can be classified according to how the centres of the

chain of inverted circles behave. When the point of inversion is inside (or

outside) both fixed circles then the centres of the chain lie on an ellipse. When

the point of inversion is on the circumference of a fixed circle then the centres of

the chain lie on a parabola. When the centre of inversion is between the fixed

circles then the centres of the chain lie on a hyperbola. Finally, when the centre

of inversion is on the circle of contact, then the centres of the chain lie on a

straight line as we have just seen. The diagram below illustrates this

categorization.

elliptic

zone

parabolic

point

parabolic

point

linear

point

hyperbolic

zone

circular

point

elliptic

zone

The centres of the circles of the inverted chain lie on a conic whose

type depends upon the position of the centre of inversion.
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If the ring has just four circles then each of the six circles meets four of the others.

The inverted system with respect to the point shown on the circle of contact points

is exactly the same with two pairs of circles interchanged.

Original system. Inverted system.

Note that if the centre of inversion moves further out then we get the same

kinds of systems again but in the reverse order. Indeed each inverted system

corresponds (apart from an overall scale factor) to inverting the original ring at

two different places. Thus inverting at (–1, 0) which is on the circumference of

the inner fixed circle gives rise to the same kind of system as inverting at (–3, 0)

which is on the circumference of the outer fixed circle. Similarly, inverting at

(–0.5, 0) which is inside both fixed circles gives the same system as inverting at

(–6, 0) which is outside both circles. The only difference is that in the inverted

system the inner and outer circles change places. The reader might recall when

discussing the inversion of coaxial systems that both points C and D would invert

the coaxial system into a concentric system and these correspond to the twin

points here.

Everything we have discussed applies in general no matter how many circles

are in the ring. We chose six because that configuration will turn up again in

three dimensions in a moment. 

An interesting special case is when there are just four circles in the ring. This

results in a very symmetric configuration in which each circle including the two

fixed circles touches four of the other five. If we invert this system then naturally

we get another system with six circles in which each touches four of the others.

And in fact if we invert at the point on the circumference of the circle through

the points of contact of the circles of the ring (the linear point in the

categorization diagram), then the inverted system is identical except that two

pairs of circles have interchanged their places.

Well that really concludes the story of Steiner’s porism. And now to move

into three dimensions.
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Soddy’s hexlet

T
HERE IS an amazing analogue of Steiner’s chain in three dimensions which

was first discovered by Sir Frederick Soddy (1877–1956). Soddy is mainly

famous for his work on isotopes (he invented the word isotope) and he was

awarded the Nobel prize in 1921. As well as being a brilliant chemist, he was also

an enthusiastic geometer and he discovered the hexlet in 1932.

Consider three spheres touching each other. There is a gap between them and

the question arises as to whether we can form a closed chain of spheres passing

through this gap such that each sphere touches the three fixed spheres and the

adjacent spheres in the chain. By analogy with Steiner’s porism we might

imagine the answer to be: “Yes, provided the spheres have certain positions.” But

the amazing fact is that no matter how the three spheres are placed, it is always

possible to have a closed chain and moreover there are always exactly six spheres

in the chain. Hence the term hexlet.

The proof that this is the case is remarkably simple. We use inversion once

more but this time in three dimensions. The rules for inversion in three

dimensions are as one would expect. Spheres invert into spheres except that a

sphere through the centre of inversion inverts into a plane (just as in two

dimensions a circle through the centre of inversion inverts into a line).

Now invert the three fixed spheres with the point of contact between two of

them as the point of inversion. The two spheres through the point of inversion (A

and B say) become parallel planes (A' and B') and the third sphere (C) becomes

a sphere (C') between them and touching them. Clearly we can now place a ring

of six equal spheres around the fixed sphere and these will all touch the two

planes as shown below. (Just imagine seven billiard balls on a table with six

around a central one and then place a sheet of glass on top.) The points of contact

of the six spheres of the chain with the planes form the vertices of a hexagon. If

we now invert the system back then we get a chain of six spheres touching the

three fixed spheres with which we started. QED 

Seven spheres between

two planes.

plane A'

plane B'

sphere C'
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(For convenience I will again refer to the circle of six spheres between the

planes as a ring of spheres and the inverted spheres as a chain of spheres.)

We can classify the different configurations possible by considering various

points of inversion of the system of two planes and seven equal spheres just as

we did with Steiner’s circles. Before doing so, it is interesting to note that a

further sphere (D', not shown) surrounds the six spheres of the ring. However,

this sphere intersects the two planes and so in any inverted system the sphere D

will intersect the spheres A and B.

We will start by supposing that the point of inversion lies centrally between

the two planes so that it is in fact in the plane passing through the centres of the

seven spheres. One consequence of this is that the spheres A and B are of the

same size. Another consequence is that by considering the central plane we see

that the cross section of the spheres reveals the Steiner configuration we have

just discussed in detail. The inner sphere (C') corresponds to the inner circle and

the outer sphere (D') corresponds to the outer circle and of course the ring of

spheres corresponds to the ring of circles.

As a first example, suppose that the centre of inversion is outside the original

ring of spheres. This corresponds to the case where the centre of inversion is

outside the system of circles and so as the ring of spheres rotate, they do not hit

the centre of inversion and so nothing unusual happens to the corresponding

chain of spheres as it rotates.

Three views of such a system are shown opposite above. We assume that the

fixed spheres are transparent and that the spheres of the chain are coloured and

solid. The first view is in the direction of the line joining the centres of A and B

so that A and B are superimposed in the projection. The other two views are at

right angles. The sphere D is shown in the first view only.

In this example the centre of inversion is at the point 2√3. The sizes of the

spheres A, B, C and D are proportional to 1/2, 1/2, 1/11 and 1/1 respectively and

the spheres of the chain are proportional to 1/3, 1/15 and 1/27.

Note an interesting corollary. If we start with any Steiner chain of six circles

and consider the corresponding spheres, then we can always place a pair of equal

spheres A, B to touch the spheres of the chain and each other.

In the case of the Steiner circles we saw that two complementary points of

inversion essentially give rise to the same system. Thus inverting with respect to

the point (x, 0) gives the same arrangement of circles as inverting with respect to

(–3/x, 0). But in the case of the spheres there is an important difference. 

Suppose we invert with respect to the point –√3/2 which is the complement

of 2√3. We are now inverting with respect to a point inside the sphere C'. The

chain of spheres remains the same, the spheres C and D swap over which means

that the important sphere C is now the large sphere surrounding the chain, but the

spheres A and B are quite different. They become much smaller (one-quarter of

their former size to be precise) and are actually inside the large sphere C. So here

is a major difference reflecting the different ways in which three spheres can

touch each other. The result is shown opposite below. The spheres A and B touch

each other through the central gap in the chain.
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(above) Three orthogonal

views of six spheres

forming a chain around the

three fixed spheres.

A

B

A, B

D

BA

A B

A

B

C

A, B

(below) The same six spheres

forming a chain around the three

fixed spheres. But the fixed spheres A

and B are inside the fixed sphere C.

C
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Three views of the case where the centre of inversion is at the origin. The two

equal fixed spheres are centrally placed in the third fixed sphere.

Perhaps it would be easier to understand what is going on if we consider the

very simple case of inversion with respect to the origin. In Steiner’s porism this

is pretty boring because the configuration simply inverts into itself (the inner and

outer circles change places of course). But in the hexlet, the two planes invert

into equal spheres A and B and the inner sphere C' becomes a sphere C encircling

them symmetrically. The ring inverts into a chain of equal spheres which run

around the equatorial gap rather like a curious ball bearing. The diagram above

shows the usual three views of this configuration.

Just as in Steiner’s porism we obtain different classes of configurations

according to the location of the centre of inversion. If it is between the planes but

outside the inner sphere then the fixed spheres touch externally. If it is inside the

inner sphere then the two fixed spheres corresponding to the plane are inside the

third sphere as above. If it lies outside the planes then again we get two fixed

spheres inside the third but this time the outer sphere corresponds to one of the

planes.

If the centre of inversion lies between the planes in such a way that the

spheres of the ring pass through it as they rotate, then the spheres of the chain

become planes and then wrap around the other spheres in turn in much the same

way that the circles behaved in Steiner’s porism.

In particular, if the centre of inversion is exactly on the circle of points of

contact between the spheres of the ring then the three fixed spheres are the same

size and the spheres of the chain then move so that their centres are on a straight

line. They take it in turn to become planes and then wrap around the entire

system. Three views of this pretty symmetrical configuration are shown opposite.

Other variations are much as in Steiner's porism. If the point of inversion lies

on the surface of the inner fixed sphere then of course that sphere inverts into a

plane and the fixed spheres become two spheres touching that plane. If the point

of inversion is not on the central plane then the fixed spheres A and B are not the

same size but this does not much change the general features of the resulting

configuration.

It is perhaps worth mentioning that the centres of the spheres of the chain

always lie on a conic which can be an ellipse, parabola, hyperbola or straight

line. Except for the case where the three fixed spheres are the same size, the
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points of contact between the spheres of the chain always lie on a circle since

they do so in the ring and a circle inverts into a circle.

Well that is enough about the hexlet. We have introduced it via Steiner’s

porism but clearly it can be discussed directly although I feel that the two-

dimensional porism helps with understanding the three-dimensional hexlet. What

is perhaps surprising is that the hexlet requires less understanding of inversion

since in order to explain the porism we had to explain the properties of coaxial

circles.

We leave the reader to ponder over whether there is an analogy in four

dimensions.

Three views of the case where the three fixed spheres are all the same size.

The yellow sphere surrounds them all and has been made transparent otherwise

we couldn't see much! The three fixed spheres are transparent as usual.



Further reading

A
PART FROM READING Soddy’s original papers, an excellent alternative

description will be found in Excursions in Geometry by C Stanley Ogilvy.

He gives a fuller description of the background to inversion than we have but

says rather less about Steiner’s porism and goes straight for a description of the

hexlet. The book also covers aspects of projective geometry, the golden number

and other pretty topics. A lovely little book which encouraged me to explore the

beauties of the hexlet.

Exercises

1 Remember that an ellipse is a curve such that from any point P of the ellipse

the sum of the distances to two fixed points (the foci) is a constant. Thus an

ellipse can be drawn using a loop of string and two fixed pins. The diagram

below left shows a circle of the Steiner chain and the two fixed circles. If the

radii of the fixed circles are R1 and R2 with centres C1 and C2 then find the

sum of the distances PC1 and PC2 where P is the centre of the circle of the

chain. Deduce that the centres of the chain of circles lie on an ellipse with

foci at C1 and C2.

2 Suppose three circles A, B, C intersect at a common point. Suppose also that

the common chord of A and B is a diameter of C and that the common chord

of A and C is a diameter of B. Prove that the common chord of B and C is a

diameter of A. Use inversion and the theorem that the three altitudes of a

triangle are concurrent (an altitude of a triangle is a line through one vertex

and at right angles to the opposite side). Remember that angles are preserved

by inversion. See below right.
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8 Chaos and Fractals

T
HE TWENTIETH CENTURY saw an upheaval in our understanding of the

mechanics of the universe and the foundations of mathematics. This lecture

looks at two aspects of strange modern mathematics with a clear geometrical

interpretation and the subsequent lecture looks at aspects of our understanding of

the physical universe as modified by Einstein’s theories of relativity.

Shaken foundations

A
T THE END of the nineteenth century, it seemed clear that our understanding

of the universe was more or less complete at least with regard to the laws of

physics. It was a world of order and predictability. Newton’s laws prescribed the

motion of matter in an accurate manner. Maxwell had devised his equations

describing electricity and magnetism. And Whitehead and others were working

on the foundations of mathematics and seemed to have placed it on a solid

footing.

There were a few loose ends. The orbit of the planet Mercury didn’t seem

quite right; black body radiation was a bit odd and in mathematics there were

things like Fermat’s last theorem still to be proved. But these were surely just

loose ends that needed tidying up. Generally speaking, it was assumed that it was

a clockwork universe. Given the data describing the position and momentum of

every particle then we could, in principle if not in practice, compute the future.

This raised awkward philosophical questions of freewill but then philosophers

always ask awkward questions anyway.

The twentieth century destroyed all this. First of all, Einstein introduced his

theories of relativity which showed that straight lines weren’t even straight and

Newton’s laws weren’t quite right. And then Dirac, Schrödinger and others

introduced quantum mechanics which threw predictability away so that it was

not a clockwork universe after all. And to make matters much worse, Kurt Gödel

shook the very foundations of pure mathematics itself by showing that some

things could neither be proved nor disproved.

Much new curious mathematics emerged in the second half of the twentieth

century (although the foundations were laid about a century earlier) which in a

sense is about coping with complexity which defies a traditional approach. 

Two aspects which we will now briefly explore are the ideas of fractals

which have the odd property of being characterized by a dimension which is not

a whole number and then so-called chaotic systems which arise from non-linear

dynamical equations which cannot be solved using the approaches of the

Victorian mathematicians. 
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Fractals

I
F WE LOOK at a coastline on a map then it is clear that it is not smooth. There

are bays and estuaries and promontories and creeks and so on. If we look at a

large scale map then further irregularities appear, big bays often have small bays

in them, promontories have little promontories, creeks have further tiny creeks

off them. And of course if we walk the coastline then we discover even more fine

detail. Structures which exhibit a similar pattern whatever the scale are said to be

self-similar.

It is impossible to define the length of a coastline without giving details of

how we are going to measure it. If we use a small scale map (say 1:100,000) and

mark off the coastline in 1 km lengths with a pair of dividers then we might find

a length of 100 km. If we measure the same coastline on a large scale map (say

1:10,000) and mark it off in 100 metre lengths then it will be longer because we

will go in and out of bays which were ignored on the first map. It might be 120

km. If we walk the coastline and measure it with a 10 metre chain then it will be

longer still. And if we crawl along it with a metre rule then it will be even longer.

A formal mathematical example of this idea is given by the curve devised in

1904 by Helge von Koch, a Swedish mathematician. In the first stage below we

have a line consisting of four straight sections each of unit length but with the

middle two sections around the outline of an equilateral triangle. The length of

the line is four units but the distance between the endpoints is three units. We

now replace each of the four sections by a copy of the original reduced by a

factor of three and this gives stage 2. 
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Four stages in the development of the Koch curve.

Stage 1: length = 4

Stage 2: length =

4×4/3 = 5.333...

Stage 3: length =

4×(4/3)2 = 7.111...

Stage 4: length =

4×(4/3)3 = 9.481...



We then repeat the process for ever. It is clear that at each stage the length

of the line is increased by a factor of 4/3. This continues indefinitely and so the

ultimate line (if it could be drawn) would be infinitely long. The line at stage 100

is over 7 billion units long (and good old-fashioned billions of 1012 at that).

Nevertheless, although the line becomes infinitely long it is still contained

very much in the original area of the early stages – it just gets fuzzy. Moreover,

it really is a line still since if we cut it by a point then it becomes two parts.

Fractional dimensions

W
E ARE FAMILIAR with the idea of one, two, and three dimensions. A key

characteristic of figures with these dimensions is that if we double a linear

dimension then the size of the overall object is increased by 2, 4, or 8

respectively, that is 2 raised to the power given by the dimension. Thus, if we

have a square of side 1, then a square of side 2 can be thought of as composed of

4 squares of side 1. And similarly a cube of side 2 can be composed of 8 cubes

of side 1.

We can also look at this in reverse. If a two-dimensional object is subdivided

into N smaller ones then the size of the original will be √N times that of the

smaller ones (of course N had better be a square number such as 25 in order to

make this practicable). And if a three-dimensional object is subdivided into N

smaller ones then the size of the original will be 3√N times that of the smaller

ones. So the ratio r between the original and the subdivided version is related to

the dimension and the number of subdivisions by

rD = N the dimensions power of the ratio is the number of subdivisions

If we take logarithms we obtain an expression for the number of dimensions D

in terms of the number of subdivisions N and the ratio r, thus

D = log N / log r the dimension defined in terms of the scaling

Let us just check this for consistency. If we have a cube of side 10, then we can

divide it into 1000 cubes of side 1. So N is 1000 and r is 10. For convenience we
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A square can be

subdivided into 4 squares

of half the linear size.

A cube can be subdivided

into 8 cubes of half the

linear size.



can use logarithms to base 10 (the base doesn’t matter) and find that log N = log

1000 is 3 and log r = log 10 is 1 giving D = 3/1 = 3 as expected.

We can now define the dimensionality of a fractal using this very same

formula. 

In the case of the Koch curve, we divided it into four parts at each stage and

each part was 1/3 of the linear size of the original. So N is 4 and r is 1/3. We

obtain

D = log 4 / log 3 = 1.2618... dimensionality of Koch curve

It has been found by measurement that a natural coastline has a dimensionality

of about 1.2.

We can apply the same subdivision process that we did with the Koch curve

to other fragmented lines. The diagram above shows the effect of using a square
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Stage 1: length = 5

Stage 2: length =

5×5/3 = 8.333...

Stage 3: length =

5×(5/3)2 = 13.888...

Stage 4: length =

5×(5/3)3 = 23.148...

A fractal line with dimension 1.4649....



outline rather than the triangular outline in the Koch curve. This divides the line

into 5 parts and so we obtain

D = log 5 / log 3 = 1.4649...

If we now make the square subdivision on both sides so that the line goes around

one square and then around the other we obtain a division into 9 segments. The

dimension calculation then becomes

D = log 9 / log 3 = 2

Rather surprisingly the dimension is now exactly 2 and indeed the ultimate line

visits all space within a square whose opposite vertices are the original ends of

the line. The line has now in fact become a square and this is why the dimension

is 2.

The same ideas apply to surfaces. Thus we can take a triangle, decompose it

into four triangles and then replace the centre one by a tetrahedron. The original

triangle had area 4 and the new figure is composed of six equilateral triangles
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Stage 1: length = 9

Stage 2: length = 27

A fractal line of dimension 2 ultimately fills all the space in the square.



and so has area 6. Using this figure as a baseline, clearly each triangle of it can

now be replaced by a half size copy of itself and this can be continued

indefinitely – note that we say half size since it is the linear ratio that matters.

The dimension calculation for this fractal surface is

D = log 6 / log 2 = 2.58449...

and so this bumpy surface has a dimension considerably more than 2.

A typical landscape with gentle hills and valleys has a fractal dimension of

about 2.2 whereas a craggy mountainous area might have a dimension of 2.5.

Cantor sets

A
N IMPORTANT CONCEPT which will be useful later is that of a Cantor set

named after George Cantor (1845–1918) who was born at St Petersburg.

Cantor is famous for his research on infinity and the realization that some

infinities are larger than others. There are an infinite number of integers and this

infinity is the smallest infinity and is often denoted by the symbol ℵ0. (ℵ is the

first letter of the Hebrew alphabet and is pronounced as Aleph.) 

Perhaps surprisingly there is the same infinity of rational fractions such as

1/2, 2/3 and so on; we often say that the rational fractions are countable. We can

in fact place the rational numbers in order and match them with the integers.

However, the total number of real numbers is a bigger infinity. This is easily

proved by reductio ad absurdum. If the real numbers were countable then we

could put them in order and match them to the integers. Let us suppose that we

have done this for the numbers between 0 and 1 and write out their decimal

expansion thus

1 0.a1a2a3a4a5...

2 0.b1b2b3b4b5...

3 0.c1c2c3c4c5...

4 0.d1d2d3d4d5...

We now fabricate a number which is different from the first number in the first

place and is different from the second number in the second place and so on (this

is a technique called diagonal slicing). This number is clearly not in the list

because it differs from them all somewhere. And so the list wasn’t complete and

so the numbers could not be matched with the integers and therefore there are

more real numbers than integers. Well I have got off the subject but I just wanted

to mention some of the clever ideas and techniques introduced by Cantor.

A Cantor Middle Thirds Set is obtained by taking all the real numbers from

zero to one and then removing the middle third (but not removing its end points).

The result is two sections of numbers from 0 to 1/3 and from 2/3 to 1. We then

do the same thing with these two sections and repeat the process for ever.
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It is clear that the sum of the lengths of the lines remaining is multiplied by

2/3 at each stage and so goes to zero. However, although the sum of the lengths

is zero, there are still some numbers left and in fact there are an infinite number

of them left. Moreover, each one is quite isolated and for this reason the set is

sometimes called Cantor Dust. It is another example of a self-similar structure.

Note that it is very important that we do not remove the end points at each

stage. In fact these end points that are left form the dust. So the set contains the

numbers 0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, 1/27, 2/27, 7/27, 8/27, 19/27, 20/27,

25/27, 26/27 and so on.

Population growth

I
N LECTURE 1 we discussed Fibonacci’s rabbits and noted that their population

grew each month by a factor which converged upon the golden number τ. So

in due course the population in month N+1 which we can call PN+1 is given in

terms of the population in month N by

PN+1 = τ × PN exponential rabbit growth

We can alternatively write this as

f(x) = τ × x f gives the population in terms of its previous value

In other words f(x) is a simple function which takes the population in one month

and gives the population in the next month.

With this model the population grows without bounds as shown in the graph

below. The world eventually becomes solid rabbit.
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In practice of course the growth of the rabbit population is limited because

of running out of food (grass, carrots, etc). We can express this by modifying the

function f(x) in some way so that it cannot get excessively large. An obvious way

to do this is to multiply it by some factor which gets smaller as x gets larger. So

we might consider

f(x) = τ × x × (1–x/N) growth modified with limiting constant N

What happens now is that as the population approaches N, the factor (1–x/N)

restricts the growth and eventually halts it. (Note that we are now dealing with

fractions of pairs of rabbits! We can overcome this by assuming that the

population is very large and that we are dealing with percentages.) Suppose N is

100 and the value of x at the start is 10, then the sequence of values in successive

months (to two decimal places) is

10.00, 14.56, 20.13, 26.01, 31.14, 34.70, 36.67, 37.57, 37.95, 38.10, ...

The population stabilizes at 38.1966.... We can easily compute this because f(x)

then equals x so

x = τ × x × (1–x/100) condition for static population, which gives 

x = 100 × (1–1/τ) and then using τ–1 + τ–2 = 1, we get

x = 100 × τ–2 = 38.1966...

Well I suppose we would naturally expect the population to stabilize in this way.

The graph above shows the sequence and the steady limit.

Biologists have known for a very long time that populations are often not

stable but can jump about in alarming ways. Sometimes this is attributed to freak

conditions such as a drought but it is in fact inherent in the simple model we have

just been using. For convenience it is best to get rid of the number N and to work

entirely in terms of fractions. The general equation then becomes

f(x) = μ × x × (1–x) which is usually written as

f(x) = μx(1–x)
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For some reason it is traditional to use the Greek letter μ (mu) for the growth

factor in this equation. We have just been dealing with the case where the growth

factor μ = τ = 1.618... and we have seen that this results in a stable population.

Let’s try some other values of the growth factor starting at 0.1 each time (which

corresponds to starting at 10% as before).

Values of μ less than 1 (or indeed equal to 1) result in the population dying

out and so are rather uninteresting. Values between 1 and 2 behave much like τ

and the population steadily approaches a limit which is determined by setting f(x)

equal to x so that we have

x = f(x) = μx(1–x) which can be rearranged to give

x = 1 – 1/μ fixed point for growth factor μ

Values between 2 and 3 behave somewhat differently – although the population

does stabilize at a level given by the same formula it always overshoots first and

then oscillates about the limit as it settles down. The case of μ = 2.5 is shown

above.

However as μ approaches 3 it takes a long time to settle down. The case

where μ = 2.9 is shown below. And when μ is equal to 3 it seems as if it will

never settle down but it does eventually at 0.666....

The limit point in the cases we have just been discussing is known as a fixed

point because if we start from it then the next value is the same. In these cases it

is also known as a stable point (or an attracting point) because if we disturb the

system slightly then it eventually goes back to the same fixed point. Note that

8 Chaos and Fractals 177

Population with growth

factor 2.5 stabilizes at

0.6.

Population with growth

factor 2.9 eventually

stabilizes at 0.655....



zero is also a fixed point since if we start at zero then we stay at zero since f(0)

is always 0 no matter what the value of μ. Moreover, if μ is less than or equal to

1, then the fixed point at zero is stable but for the case of μ greater than 1 it is

not stable since if we start with a value slightly different from zero then the

population grows away from zero. In these cases we say that zero is an unstable

point (or a repelling point).

Double, double, boil and trouble

A
ND NOW to return to other values of μ. When μ becomes a bit more than 3,

the behaviour becomes rather different. It doesn’t actually settle down at all

but ends up by oscillating between two values. We say that it has a stable period

of two. The period is stable because if we disturb it slightly then it settles down

again to the same period of two values. Note that the original fixed point at 1–1/μ

is still there but it is no longer stable and so if we start just slightly away from it

then the population moves into the stable cycle of two. 

The case of μ = 31/6 is shown below. If we start at 0.1 as before then it

eventually settles down into a cycle between the two points 10/19 = 0.526... and

15/19 = 0.789.... This is shown in the upper graph. Moreover, the unstable fixed

point is at 13/19 = 0.684.... The lower graph illustrates what happens if we start

near this fixed point at the point 0.7. It oscillates around the fixed point but

gradually diverges until it eventually settles into the two cycle as before.
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The equation for determining the points of the two cycle is obtained by

applying the function f twice so we have

f(f(x)) = x which eventually gives the indigestible

μ3x3 – 2μ3x2 + μ2x + μ3x – μ2 + 1 = 0

This is not quite so awful as it seems because it includes the factor (μx – μ+1)

corresponding to the fixed point and taking this out we get the quadratic equation

μ2x2 – μ(μ+1)x + (μ+1) = 0 equation for two cycle

and the two roots of this equation give the two values for the two cycle.

If we increase μ a bit more then another change occurs. The stable two cycle

itself becomes unstable and a new stable four cycle is introduced. As happened

with the stable fixed point, the two cycle is still there but simply becomes

unstable. This change occurs just after μ = 3.42.

The case of μ = 3.5 is illustrated above. The unstable fixed point is at exactly

5/7 = 0.714... and the unstable two cycle is between 6/7 = 0.857... and 3/7 =

0.428.... The new stable four cycle goes around the four points 0.875, 0.826...,

0.382..., 0.500. Curiously enough, starting from 0.1, it first oscillates around the

unstable two cycle before settling into the stable four cycle.

As we increase μ more and more the cycles double again and again with ever

increasing frequency. At each stage a new stable cycle of period 8, 16, 32, ... is

introduced and the previous stable cycle becomes unstable. Thus at μ = 3.55,

there is an 8-cycle; at μ = 3.566, there is a 16-cycle; at μ = 3.569, there is a 32-

cycle; and at μ = 3.5696, there is a 64-cycle. 

A dramatic change occurs at around μ = 3.57. The sequence of values reveals

little discernable structure; the values jump about all over the place and never

repeat. We say that the behaviour is chaotic. Some areas of values seem to be

omitted but there are no stable cycles. Of course the two, four, etc. cycles still

exist but they are all unstable.
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Population with growth factor 3.5 appears to be going to oscillate between 6/7 =

0.857... and 3/7 = 0.428... but finally settles into a four cycle.



Chaos and peace

T
HE CHAOTIC PATTERN generally holds up to μ = 4 but strangely enough there

are areas of peace where the system again reveals stable behaviour.

At μ = 3.82, chaos reigns, but at μ = 3.83 the behaviour is quite different.

Starting at 0.1, it seems chaotic to start with but after about 70 iterations it

suddenly settles to a stable three cycle with values 0.156..., 0.504..., and 0.957....

As we increase μ again, the three cycle becomes unstable at around 3.841

and is replaced by a stable 6-cycle. The period doubling that we saw previously

with the two cycle is repeated but rather more frantically with the three cycle.

Thus at 3.845 we have a 6-cycle, at 3.848 there is a 12-cycle and at 3.849 there

is a 24-cycle but shortly thereafter chaos breaks out again.

There are an infinite number of such stable zones in the generally chaotic

area between about 3.57 and 4. Some of the zones are very narrow indeed (they

have to be since there are an infinite number of them). There is in fact a zone

corresponding to every odd integer and in each zone the period doubling of that

integer occurs. Thus there is a zone for 5, 10, 20 and one for 7, 14, 28 and so on. 

A 5-cycle zone starts at about 3.739. At μ = 3.742 it has divided into a 10-

cycle and at 3.7425 it is a 20-cycle and chaos resumes soon thereafter. There is

a 9-cycle at 3.8537 and it becomes an 18-cycle at 3.8539 but 3.854 is chaotic.

There is chaos at 3.851492 but a 21-cycle at 3.851493 which becomes a 42-cycle

at 3.8515. And so on.

There are some other even cycles as well without a previous odd cycle. Thus

there is a 6-cycle zone (but no previous 3-cycle) at about 3.63.

The overall behaviour can be represented by so-called orbit diagrams. The

horizontal axis gives the values of μ. The diagram below covers values of μ from

1.0 to 3.54; there is a single stable point of growing value until the doubling
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process starts at μ = 3; redoubling occurs at about 3.42. It also shows the unstable

fixed points and two cycles as red lines.

The diagram above covers values from 2.99 to 4 and the lines and dark areas

represent the values visited by a process after it has settled down (it thus omits

the unstable cycles shown in the first diagram). Note that there are clear regions

within the black chaotic area corresponding to the stable zones. The remarkable

thing is that if we magnify the area around one of these regions as shown below

then we obtain a similar pattern. The whole structure exhibits self-similarity like

a fractal.
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Orbit from μ = 2.99 to 4.0 showing the onset of chaos.

Orbit from μ = 3.8 to 3.9 showing the stable three cycle and its period doubling.



Despite the very strange behaviour, the theory behind this so-called non-

linear dynamics was firmly established during the second half of the twentieth

century; it was stimulated by the use of computers to explore the topic in a

heuristic manner. One notable theorem regarding cycles was discovered by the

Russian mathematician N V Sarkovski in 1964. He showed that if a process has

a three cycle then it necessarily has cycles of every other value (of course they

will almost all be unstable). This seems quite peculiar. It means that since the

process for μ = 3.83 has a three cycle then it necessarily has cycles of sizes 28,

209 and every integer imaginable. Of course, we know that it has (unstable)

cycles for all the powers of 2 which still lurk from the original doubling process

but to have every imaginable cycle is amazing. But this is really just a special

case of his theorem. The full theorem says that if we put the integers in the

following curious order

3, 5, 7, ... 2×3, 2×5, 2×7, ... 4×3, 4×5, 4×7, ... 8×3, 8×5, 8×7, ... 8, 4, 2, 1

then if a system has a cycle of a particular size N then it has cycles of all sizes

following N in the above list. We note that 3 is the first number in the list and so

the special case follows.

Another intriguing fact concerns the rate of doubling. Once we are in a

doubling sequence, successive doublings occur at an exponential rate. In fact the

range of values of μ for each cycle is a factor of about 4.669 smaller than the

previous one. This curious constant is known as the Feigenbaum number δ after

the American theoretical physicist, Mitchell Feigenbaum, who showed that it

appears in many dynamical processes. 

And so to dust

W
HEN THE VALUE of μ becomes greater than 4, the pattern changes yet again.

The key difference is that the function f can produce values greater than 1

which on a further iteration produce a negative result which then progresses

towards minus infinity. 

As an example, we will take the case of μ = 4.5. Starting with 0.1 we get the

following sequence of values

0.1, 0.405, 1.084, –0.411..., –2.616..., –42.570..., –8346.836...

which illustrates quite clearly that matters soon get out of control. We can

perhaps express this by saying that once the population exceeds the 100% normal

limit, the world flips and eventually becomes solid antirabbit.

The basic cause of this behaviour is that f is greater than 1 for values of x

between 1/3 and 2/3. So once a value lies in the middle third, a catastrophic

excursion to minus infinity is inevitable. Of course, if a value becomes exactly
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1/3 or 2/3 then the next value is exactly 1 which in turn leads to zero which is an

unstable fixed point. So not all points lead to antirabbit, some lead merely to

extinction.

Are there any other kinds of points which lead neither to minus infinity nor

to zero? Yes there are. For one thing there is the unstable fixed point at 1 – 1/μ

which in the case of μ = 9/2 is the point 7/9. Then there are cycles. For example

there is the two cycle defined by the equation mentioned earlier

μ2x2 – μ(μ+1)x + μ+1 = 0

Inserting μ = 9/2 in this we find that the points of the two cycle are (11 + √33)/18

and (11 – √33)/18 which are about 0.930... and 0.291... respectively. This two

cycle is unstable. Indeed there are lots of cycles. There are two different three

cycles, there are three different four cycles, six different five cycles and so on.

All of these cycles are unstable.

The points forming these cycles and the points which lead to zero are in fact

some of the points of a Cantor dust with similar properties to the Middle Thirds

Set described earlier. Thus it has an infinite number of points but each is quite

isolated from other points of the set. The dust consists of all the points which do

not eventually lead to minus infinity. We have just seen that the dust includes

points which lead to zero and includes points which form endless cycles.

Surprisingly, there are also other points which just form endless unrepeating

chains of chaos.

In order to get a glimpse of why this might be it is useful to consider the

different generations which do not lead to the points which fall into the central

third and thus eventually to minus infinity. And we are going to tag the points

with a sort of decimal sequence using the letters L and R for left and right. Note

that each point X always has two parents (x1 and x2) because the equation f(x) =

X is quadratic and always has two real roots (provided μ > 4 and 0 < X < 1).

In the first parent generation all the points on the left third lead to a point

still in the range 0 to 1; we give these points a sequence name starting L. Also all

the points in the right third also lead to the range 0 to 1 and we give these a

sequence name starting R. See the diagram on the next page. Note carefully that

the left third maps in the same order but the right third maps in the reverse order.

The points L and R are the extreme points of the two sections as shown and both

map to 1. However, all the points in the middle third eventually lead to minus

infinity. 

We now repeat the process. Thus the parents of the left-hand third are the

two outer parts of the thirds, and these points have names starting LL and RL

respectively. The parents of the point L are the points LL and RL themselves. And

so it goes on. It should be noted that the process gives rise to a Cantor set very

like the Middle Thirds Set but it is not quite the same. L and R are indeed 1/3 and

2/3, but LL is 0.0805... rather than 1/9 as in the middle thirds set.

Using this technique it is possible to show that the points with names

consisting of sequences of letters L and R correspond exactly to the points of the
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dust which does not lead to destruction. It is important to note that the points fall

into various categories. 

There are the points whose name is a finite sequence such as LRRL; these

points eventually go to 1/3 or 2/3 and so to zero. Note carefully that the successor

of a point is obtained simply by removing the first letter, so the points leading on

from LRRL are simply RRL, RL and then L and L is of course 1/3. 

But there are also points whose name consists of a recurring sequence such

as LRLRLR... these are the points which form cycles. The successor of LRLRLR...

is RLRLR... and its successor is LRLR... which of course is where we started so

LRLRLR... and RLRLRL... are the points of the two cycle which we discovered

earlier. Note especially that RRRR... is the unstable fixed point at 7/9 whereas

LLLL... is the unstable fixed point at zero.

And finally there are points whose sequence is unending but not repetitive

(like the decimal expansion of √2). These are the points which form endless

chaotic sequences.

So we have illustrated the behaviour of the points of the dust in terms of

what is known as symbolic dynamics. We leave it to the reader to identify the sets

of points which give rise to the other cycles such as the three cycles and four

cycles and thus to explain why there are several cycles of each order.

This completes our exploration of the behaviour of population dynamics. As

μ increases further, no other structural changes occur. In summary, when μ is less

than 1, the population dies out, when μ is between 1 and 2 it smoothly goes to a

stable point, when μ is between 2 and 3 it always overshoots and then oscillates

about the stable point. Just above 3, it turns into a two cycle, which divides again

and again and then goes chaotic but there are regions of stable cycles until μ

reaches 4. Finally when μ exceeds 4 most points diverge away to minus infinity

and only a dust of points do not. This dust contains some points which go to zero,

some which cycle and some which are endlessly chaotic.

points starting L points starting R

L R

LL LR RR RL

LLL LLR LRR LRL RRL RRR RLR RLL

parents 1

parents 2

parents 3

The first few generations of points for μ = 4.5 not leading to death at minus infinity.

range 0..1
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Newton’s method

N
EWTON DEVISED a simple technique for solving equations. Suppose we have

some equation y = f(x) with a graph as shown below. We want to find where

it crosses the axis, that is where y is zero. We make a guess and find the gradient

at that point and then compute where the tangent crosses the axis and use this as

the next guess and keep on repeating until we are satisfied. Sometimes we might

have an actual formula for the gradient in which case it is easy to apply. 

As a simple example suppose we want to solve f ≡ x2 – 9 = 0. (We know that

there are two answers namely 3 and –3.) Using the differential calculus (which

Newton invented) the gradient is given by

dy/dx = 2x

Let us guess that x is 4 in which case f is 16 – 9 = 7. The gradient at the point

where x is 4 is 2x and so has value 8. The adjustment is then error/gradient = 7/8

= 0.875. So the next guess is 4 – 0.875 or 3.125. Proceeding in this way we have

successive values

4.0,  3.125,  3.0025,  3.00000104...

and we see that they rapidly approach the right value.

Observe that if we guess with a starting value of x greater than zero then it

always goes to the positive answer +3.0 whereas if we start with a value less than

zero then it always goes to the negative answer –3.0. (Of course if we are dumb

enough to start with zero, then the initial gradient is zero and the adjustment

gives a division by zero.) So the range of values which go to one answer is neatly

divided from the range of values that go to the other answer (see overleaf).

If we work with complex numbers and try to solve f ≡ z3 – 8 = 0 then a

strange thing happens. Remember that complex numbers are of the form x + iy

where i is the square root of –1. First note that there are three cube roots of 8, the

real root z = 2 and two complex roots –1 + √3i and –1 – √3i. Let us just check

the first of these by multiplying it out and remembering that i×i = –1.

(–1 + √3i) × (–1 + √3i) × (–1 + √3i) = (+1 – √3i – √3i – 3) × (–1 + √3i)

= (–2 – 2√3i) × (–1 + √3i) = (2 – 2√3i + 2√3i + 6) = 8

So that’s OK.

1st guess

y= f(x)
2nd3rd

Newton’s

method

consists of

approximating

using the

tangent.
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We can use exactly the same technique as before. The general formula is

next guess of x = (old guess of x) minus (old error f divided by gradient)

The gradient df/dz is 3z2 where z is the estimated point. 

Suppose the first estimated point is z = 2i. The error is z3 – 8 which is –8–8i.

The gradient 3z2 is 3×(–4) = –12 (remember i2 = –1). So the correction is the

error divided by the gradient which is 2/3+2i/3 and so the next trial point is

–2/3+4i/3 = –0.666...+ 1.333...i. 

Proceeding in this way we get a sequence of values (to three decimal places)

as follows

2i,  –0.667+1.333i,  –1.164+1.848i,  –1.017+1.736i,  –1.000+1.732i

And, as we see, they converge onto –1.000 + 1.732...i which is the correct result.

The first three are shown on the diagram below in red, the roots are in black.

Now since there are three roots and these are neatly placed at 120° around the

origin (zero) we might expect the regions of the starting points which lead to the

All starting points

this side of the

origin go to the

positive root.

All starting points

this side of the

origin go to the

negative root.

Newton’s method

applied to

x2 – 9 = 0

Expected three regions of the

complex plane which one

might think would contain

starting points converging on

the three cube roots of 8.
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individual roots to neatly divide the complex plane into three triangular lumps as

shown in the same diagram (basins of attraction is the technical name).

But the three regions are not like that at all. Consider as another example

starting at 1 + i. We might expect that this would converge to the real root at 2

because that is nearest. But it doesn’t. The diagram above shows the erratic

initial behaviour. The first correction leaves the estimate nearest to the real root

but the next correction moves towards the root in the upper half of the plane to

which it eventually converges.

In fact the basins of attraction are very strange with fractal boundaries with

the curious property that each boundary point is in fact a boundary point of all

three regions. As a consequence there are starting points leading to each root

from far within the other regions. The diagram below shows the three regions in

different colours with the roots marked in black.

The three basins

of attraction to the

cube roots of 8.

Behaviour with initial

point at 1+i.
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Julia and Mandelbrot sets

W
E HAVE DISCUSSED at length the population equation f(x) = μx(1–x) and

showed that it had different behaviour for various values of μ. The key

point about the equation is that it is non-linear – that is it contains powers of x

other than just x itself. A related quadratic equation which we will now look at is 

Q(x) = x2 + c

This has similar behaviour to f for real values of x where the parameter c takes

the place of μ although as μ increases c decreases and so the orbit diagram is

reversed as shown below.

The general behaviour is very similar. Thus c = 0.25 corresponds to μ = 1.0.

The two cycle starts at c = –0.75 which corresponds to μ = 3. Chaos starts at

around c = –1.4 and complete divergence occurs at c = –2 which corresponds to

μ = 4. 

Within the chaotic zone from –1.4 to –2 we find zones of stable cycles and

period doubling just as before. Thus there is a three cycle at around –1.75 which

doubles to a six cycle at around –1.77. 

The function Q can of course also be applied to complex numbers z and we

then write

Q(z) = z2 + c

where c may also be complex.

mathematicians, studied the behaviour of dynamical systems in the early part of

the twentieth century. There are two types of sets known as Julia sets. The filled

The orbit diagram for the function Q(X) = x2 + c with c from –2.0 to +0.25.

Gaston Julia (1893–1978) and Pierre Fatou (1878–1929), both French
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Julia set for a function such as Q is defined as the set of points z which do not

cause z to iterate off to infinity. The Julia set is the boundary of the filled Julia

set. 

In the case of the function f with μ greater than 4 we saw that the set of

points which did not go to minus infinity was a Cantor set. So the Julia set for

that example is that Cantor set. Moreover, since the Cantor set was simply a set

of isolated points, it follows that the filled Julia set and the Julia set are the same

in that case. 

In the case of the function Q we find that for some values of c, the (filled)

Julia set covers a solid region. Thus if c is zero then the function Q becomes

Q(z) = z2

and so it is simply a squaring function. In the complex plane if z is in the unit

circle then the points converge on zero whereas if it is outside then they go to

infinity. The points on the unit circle stay on the unit circle. Some points of the

unit circle exhibit cycles and some are chaotic. The filled Julia set is itself the

unit circle. 

On the other hand if we take c to be quite large such as 10 then all points go

to infinity and the Julia set is empty. For some values of c, the Julia set consists

of a disconnected dust whereas for others it consists of a set of branching lines

often called a dendrite.

The Mandelbrot set is a sort of key to the Julia sets. It is named after Benoit

Mandelbrot who discovered it in 1980. Again it is a map in the complex plane. A

point c is in the Mandelbrot set if the filled Julia set for c is connected (that is

not just a dust). The Mandelbrot set is another example of a fractal with self-

similar portions. A simple image of the set is shown below. It is important to

realise that it is difficult to see what the Mandelbrot set really looks like. This is

The Mandelbrot

set.
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because it has dendritic arms sprouting from the various lumps and these are

curiously shaped lines of zero width. And since a line has zero width, it is

invisible. Within the arms are solid regions which are part of the set and these

show as spots in the diagram. Amazingly, these small solid regions have a similar

shape to the whole set thus showing self-similarity once more. 

It can also be shown that the Mandelbrot set is the set of points c for which

Q(z) = z2 + c

does not go to infinity when starting at z = 0.

Another representation of the set is shown below. The green regions are

points near the set. They are in fact points which have not diverged beyond a

circle of radius 5 after some 20 iterations of the function Q. They illustrate the

general position of the dendritic arms.

With c = 0, the sequence of values of Q starting with z = 0 is simply 0, 0, 0,

... and so we have a fixed point at the origin and 0 is in the Mandelbrot set.

With c = 1, the sequence commences 0, 1, 2, 5, 26, and clearly this

diverges to infinity and so 1 is not in the Mandelbrot set.

With c = –1, the sequence is 0, –1, 0, –1, ... and this is a two cycle and so

–1 is in the Mandelbrot set.

The Mandelbrot set in colour hinting at the dendritic arms.
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In fact, the main cardiod-shaped zone is that for which there is a fixed point.

The circular zone to the left of that is a two-cycle zone and the smaller circular

zone to the left of that is a four-cycle zone and so on thus exhibiting period

doubling. On the negative axis it is then chaotic but does not diverge to infinity.

Moreover, a tiny version of the Mandelbrot set can be seen on the negative axis

and this corresponds to the stable three cycle and its doublings inside the chaotic

region. 

The various bulbs around the main zones correspond to other periods. Thus

the large bulbs attached to the top and bottom of the central cardiod are zones of

three cycles.

The Mandelbrot set exhibits amazing complexity and it is amusing to expand

a region in greater and greater detail. The four diagrams below expand on a

region between the main cardiod and the period two circle. Each is expanded by

a factor of 10 on the previous one. The Mandelbrot set is a truly amazing

structure and turns up in the analysis of stability in many physical processes.

The four diagrams show the parts of the set from about

–0.8 to –0.7 and 0.15 to 0.25

–0.745 to –0.735 and 0.17 to 0.18

–0.7405 to –0.7395 and 0.172 to 0.173

–0.7402 to –0.7401 and 0.17255 to 0.17265.



Natural chaos

W
E HAVE INTRODUCED chaos through the example of the growth of the rabbit

population. But chaos abounds everywhere. Most physical processes are

governed by non-linear equations and so exhibit chaos. 

In fact it is only a few processes that are linear and so are easily predicted.

The oscillation of a pendulum is one where a slight disturbance of the initial

conditions does not result in wildly different behaviour. The behaviour of a

single planet around the sun is also a linear process and so easily predicted. But

the general three body problem (such as earth, moon and sun) is not so easy and

has to be done by approximations (although these are in this case quite accurate).

Good examples of non-linear systems which affect us greatly occur in fluid

dynamics which describe the movement of water and air and thus the sea and the

weather. The main equation concerned is the Navier–Stokes equation which is

simple to express but is not linear. No matter how good our knowledge of the

current values of the pressure and temperature, wind speed, etc. throughout the

world it is really impossible to predict the weather for more than a few days

ahead. The smallest difference soon gives rise to widely different behaviour and

hence the fable of how killing a butterfly in England can cause a storm in

Singapore.

The movement of the sea bashing against rocks is almost all simply the

Navier–Stokes equation. But what a mess; one could not conceive of predicting

just how the sea will behave down to the last drop. The sea is a splendid example

of chaos in action.

Further reading

T
HE BOOK Chaos by James Gleick is a partly historical overview of the subject

with pretty pictures and no mathematics. Two books with excellent

illustrations are The Beauty of Fractals by Peitgen and Richter and the Science

of Fractal Images which is a collection of essays by Barnsley, Devaney,

Mandelbrot, Peitgen, Saupe and Voss. These books both have hard lumps of

mathematics but they can be appreciated and dipped into without too much

trouble.

For a proper understanding of population dynamics and the theory behind

Julia and Mandelbrot sets, I can thoroughly recommend either A First Course in

Chaotic Dynamical Systems or An Introduction to Chaotic Dynamical Systems

both by Robert Devaney. A First Course is easier and was written later. An

Introduction was written earlier and goes further. Both are undergraduate texts

and should be accessible to anyone who enjoyed mathematics at school (and is

diligent). Both describe period doubling, symbolic dynamics and so on. A First

Course mostly uses the function Q = x2 + c whereas An Introduction uses f =

μx(1–x) more as in these notes.
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Exercises

1 a) What is the dimensionality of the curve formed by repeatedly subdividing

the line fragment below with reduced versions of itself as described in the

text? 

b) A square has side of length three units and is subdivided into nine squares

of side 1. The centre square is replaced by a cube of side 1 (strictly by a cube

with the base missing). Each unit square of the figure is then replaced by a

copy of the whole figure with one third the linear dimension. This

replacement is repeated ad infinitum. What is the dimensionality of the

resulting surface?

2 In the population growth example, suppose μ = 34/15. The population

eventually settles into a two cycle. What are the two values of the cycle and

what is the value of the (unstable) fixed point?

3 In symbolic dynamics, there is one two cycle namely LRLRLR.... Explain

why there are two three cycles and give their sequences. Similarly give the

sequences for the four cycles and five cycles.

Line segment for 1a.



9 Relativity

E
INSTEIN PROPOSED two theories of relativity at the start of the twentieth

century which painted a picture of the world quite at odds with our intuition

regarding the nature of space and time.

The two theories are known as the Special Theory and the General Theory.

The Special Theory essentially concerns the velocity of light and the

mathematics is fairly easy to understand even though the outcomes are quite

startling. The General Theory concerns gravitation and the mathematics behind

it is considered rather difficult (postgraduate in these dumbed-down days I am

sure). The effects of both theories differ little from the traditional predictions of

Newton except in extreme circumstances. Nevertheless, in those extreme

circumstances all experiments have indicated that they are correct. 

This lecture gives a reasonable presentation of the Special Theory and

explains phenomenon such as time and space contraction. It also gives just a

glimpse of the General Theory which lies behind such things as Black Holes. 

The special theory

T
HE SPECIAL THEORY arose out of the problem of the velocity of light.

Scientists were familiar with the idea that waves represented a disturbance in

some medium. Thus sound is propagated as a disturbance in the air and the waves

on the sea are obviously disturbances of the surface of the water. It was known

that light was a form of electromagnetic wave and it seemed natural to assume

that it was a disturbance in something. Since light reaches us from the Sun and

stars this stuff clearly had to be pervasive. It was called “the ether” or often “the

æther” in order to distinguish it from the common chemical C2H5.O.C2H5

(properly called diethyl ether).

Many attempts were made to find how fast the sun and earth were travelling

through the ether. If the velocity of light in the ether were c and the ether were

travelling relative to the earth at a velocity e then we would expect that the

measured velocity of light relative to the earth would vary between c–e and c+e

according to the direction of measurement. Of course light is pretty speedy at

some 300,000 km per sec and so the variation might be hard to detect. But light

is not that fast – it takes 8 minutes for the light from the sun to reach us and the

delay in radio communication over long terrestrial distances, especially if

satellites are involved, is noticeable.

The famous experiments of Michelson and Morley in 1887 showed that the

velocity of light was always the same no matter how they measured it. They

measured the time taken for light to go from a source to a mirror and back and
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did it in two directions at right angles. The time was the same although it

shouldn’t have been by traditional Newtonian mechanics. It was tried when the

earth was in different positions in its orbit around the sun thereby eliminating the

possibility that the earth was coincidentally at rest relative to the ether at the time

of the experiment.

An example which can be used to illustrate the expected effect is that of a

duck crossing a river. Suppose she can paddle at 5 feet per second and that the

river is 50 feet wide. Then to go across and back is clearly 100 feet and so takes

20 seconds provided there is no current. Equally to paddle along the river for 50

feet and then back again will also take 20 seconds if there is no current.

Now suppose there is a current of 3 feet per second. Then when going across,

the duck has to aim slightly upstream in order to avoid being swept downstream.

The result is that because of the composition of vectors using Pythagoras, the

actual net speed across is only √(25 – 9) = √16 = 4 feet per second and so the

time taken for the return trip is 25 seconds.

The trip up and down for 50 feet takes rather longer. When paddling

downstream the duck is helped by the current and so goes 5+3 = 8 feet per second

whereas when going upstream, the current is against her so that she only goes

5–3 = 2 feet per second. So to do 50 feet with the current takes only 50÷8 = 6.25

seconds but 50 feet against the current takes 50÷2 = 25 seconds. Therefore the

return trip takes 31.25 seconds which is quite a lot more than the time for the

double crossing.

The experiments were checked and double-checked and the conclusion was

that the velocity of light was always the same no matter how it was measured. A

number of hypotheses were proposed in order to explain this result. The Irish

both proposed that bodies moving through the ether suffered a contraction along

their length. This certainly explained the Michelson and Morley results but was

essentially tampering with the symptoms rather than getting to the disease which

caused them. Other proposals concerned the effect of the ether on moving clocks.

In 1905, Albert Einstein proposed the radical solution that there is no ether

at all and the velocity of light (and indeed the whole of physics) is the same

relative to all observers in uniform motion no matter how they move. This also

dispensed with the common sense idea that distances and time intervals are the

same for all observers. This is a big traumatic shock. We are so used to the idea

of absolute time that it is very hard to get used to the idea that time depends upon

by whom it is measured.
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Time changes

I
N ORDER to contemplate the effect of relativity on time we can carry out some

thought experiments. Imagine a VHST (very high speed train) travelling at a

velocity v. Inside the train is a sort of light clock which bounces photons back

and forth between two mirrors. Suppose the distance between the mirrors is d. If

the velocity of light is c then clearly the time for the light to go from one mirror

to the other as measured by the conductor on the train is d/c. We will call this

time interval t'. So we have d = c×t'.

But for the train spotter on the ground the effect is quite different. By the

special theory the velocity of light as measured by him is still c. But in a time

interval t for the train spotter in which the light goes from one mirror to the other,

the train will have moved a distance vt and so we have a triangle in which the

hypotenuse is ct and the base is vt. Note that, for the observer, the photons

bouncing between the mirrors are travelling at an angle and so traverse the

hypotenuse. So we must have (by Pythagoras)

c
2
t
2 = c2

t'
2 + v2

t
2 or

t' = t × √(1 – v2/c2)

So the time as measured by the observer on the train is less than that measured

by the train spotter. In other words the clock on the train seems to be (nay,

actually is) slowed down according to the train spotter by the factor √(1 – v2/c2). 

Since c is quite large (300,000,000 metres/sec), the effect is fairly small for

normal trains. For a train travelling at 360 km/hour (v = 100 metres/sec), v/c is

only 0.00000333.... But for a supergalactic train travelling at half the velocity of

light, the effect is significant since then v/c is 0.5 and √(1 – v2/c2) is 0.866....
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Such enormous speeds seem unlikely but the effect is observed for particles

reaching the earth from outer space. Certain radioactive particles generated at

high altitude reach the surface of the earth in a proportion which is unexpectedly

high. This is because they decay with a half life as measured by their internal

clock. Consider particles travelling at 0.866c towards the earth; this velocity has

a time factor change of 0.5. Suppose that the half life of decay of the particles (as

measured when stationary in the laboratory) is 0.001 sec and we observe that the

particles take 0.002 sec to reach the earth as measured by us. We would expect

only one quarter of the particles to reach the earth. But, because of the time

effect, the time as measured by the internal atomic activity of the particles is only

0.001 sec and so half of them actually reach the earth.

There are well known “paradoxes” concerning a pair of twins, one who stays

at home and the other who goes on a trip to a star and back. Suppose that the

mobile twin travels at 99% of the velocity of light. Then his clock will appear to

be running at about 1/7th of its natural rate according to his sister who stays at

home. A round trip to a star 25 light years away will take 50 years as measured

by the sister but only 7 years as measured by the traveller. This is genuine – when

they meet again, the sister will have a blue rinse but the traveller will still be a

young man.

It is often thought that this is a paradox because surely according to the

traveller, the sister’s clock should have been running slowly and so she should

seem young to him. But the situation is not symmetric since the experience of the

traveller is quite different in one important respect – he suffered enormous

accelerations and these have to be taken into account in a full analysis.

The Lorentz–Fitzgerald contraction

W
E MENTIONED earlier that Lorentz and Fitzgerald both hypothesized that

bodies shrink along the direction of their travel through the ether. Although

there is no ether and so the framework for their hypothesis is irrelevant,

nevertheless there is a relative contraction in the direction of motion and this is

often named after them.

Consider once more the radioactive particles on their journey to the earth’s

surface. We noted that they decayed at a different rate to that expected from the

point of view of the observer on earth and we concluded that this was because of

time going more slowly on the particle as measured by the observer on earth. 

Now consider a (small) observer riding with the particles. A key point about

the earth view was that only half of the particles decayed before reaching earth.

But this must also hold from the particles’ view because 1/2 is simply a raw

numerical proportion and not a physical constant. The time of travel from the

particles’ view thus must be 0.001 sec (the half life). However, the velocity being

relative must be the same whether the particle measures the velocity of the earth

coming towards it or vice versa. Well, the overall story must be consistent from
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both viewpoints and the only conclusion has to be that from the particles’

viewpoint the distance to the earth as measured by the particle must be only one

half of the distance as measured from the earth. So the earth-measured distance

contracts for the particle by the same factor as the particle-measured time

contracts for the earth.

This is known as the Lorentz–Fitzgerald contraction – an object whose

length is L when at rest (as measured by an observer moving with the object) has

length

L' = L × √(1 – v2/c2) the Lorentz–Fitzgerald contraction

as measured by an observer travelling at velocity v relative to the object along its

length. (Note carefully that the width of the object is the same to both observers

and does not change.)

There are some amusing examples mentioned by Rindler. A man wishes to

store a 40 foot pole in a 20 foot garage. He runs into it at 0.866c and so to an

observer in the garage it shrinks to 20 feet and exactly fits and the observer

quickly closes the door. We imagine a large concrete block at the end of the

garage which prevents the pole from bursting through the wall. But once the pole

is stopped it becomes 40 feet long again and breaks through the door! 

Gosh you might say but what about the viewpoint of the pole? It finds it is

approached by a garage which is only 10 feet long so how on earth can it fit?
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Well, the garage keeps going when it hits the pole and takes the front end of the

pole with it. The shock wave down the pole cannot travel faster than c and so the

back end doesn’t know about the impact for some time and remains stationary

until the garage engulfs it. Note that from the viewpoint of an observer who was

travelling with the pole but escapes being engulfed by the garage, the 40 foot

pole is engulfed by a 10 foot garage which carries the pole along with it and

squeezes it to fit on impact. But (as seen by the observer who was with the pole

and continues in motion relative to the garage) once the pole is in uniform

motion again and being carried along by the garage, the original 40 foot pole has

a contraction to 20 feet and so is still twice as long as the 10 foot garage and thus

bursts through the door. We get the same overall story however we look at it.

Distortion of bodies

W
E HAVE JUST OBSERVED that bodies shrink in motion. But it is very much

more curious than that.

Consider a railcar of length 60 feet. There is a hole in a bridge of length 40

feet and a very strong wind blowing in gusts. The driver decides to make sure

that he can get the railcar over the hole by travelling at high speed and in fact

approaches the hole at 0.866c. From the point of view of the bridge, the railcar

shrinks to 30 feet and easily fits into the hole. Moreover, just as the back end of

the railcar gets over the hole, a supergiant instantaneous gust of wind blows the

railcar through the hole while it still remains horizontal. Disaster!
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But now look at it from the point of view of the railcar. The hole in the

bridge is now only 20 feet long and it looks as if the rigid railcar will easily get

over the hole. What happens? The key is that simultaneous events are only

simultaneous at the same time and place; events at the same time but different

places for one observer will be at different times for a moving observer. So the

gust of wind hits the different parts of the railcar at different times from the point

of view of the railcar. In fact it hits the front of the railcar well before it reaches

the opposite side of the hole; the front of the railcar bends down and the whole

thing wiggles through the hole.

So we have to come to the very surprising conclusion that there is no such

thing as a rigid body.

In Mr Tompkins in Wonderland, George Gamow describes the experiences of

Mr Tompkins in a world where the velocity of light is rather small, perhaps 30

mph. He describes how he sees a cyclist whose wheels have shrunk in the

direction of motion and thus become ellipses. And then when he ventures forth

on a bicycle he finds that the city blocks all shrink around him.

But the perceived distortion is more complex than that. Moving objects

actually become curved from the point of view of the observer. Rectangular city

blocks will lean over. The basic reason is that the image we see is produced by

photons all arriving at our eye at the same time. This means that we see parts of

an object that are further away as they were at an earlier time than those parts

which are nearer to us. (Of course this would apply without relativity, it is simply

a consequence of the finite velocity of light, but the effect is strangely modified

by relativity.)
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Lorentz transformation

I
N THE GENERAL CASE the situation as seen by an observer O travelling at

velocity v relates to the situation seen by another observer O' according to the

following equations – we assume that the axes have the same orientation and that

the motion is along the x-axis

x' = γ(x – vt),   y' = y,   z' = z,   t' = γ(t – vx/c2)    where γ = 1/√(1 – v2/c2)

These give the positions and time as seen by one observer in terms of that seen

by the other. Note that the y and z values are the same. The x transformation

involves the time as expected but also involves the factor γ. The t transformation

shows that the times as measured by the two observers are different and

moreover reveals the factor γ as well corresponding to the fact that the clock rates

differ as measured by each other.

The fact that both the x and t transformations involve both x and t implies

that time and space are mixed up. However, although distances and times as

measured by the two observers of two different events E1 and E2 are different,

nevertheless the observers will agree on the value of

δs
2 = δx

2 + δy
2 + δz

2 – c2δt
2 δs is the interval between two events

where δx, δy, δz are the differences between the positions of the two events and

δt is the difference between the time of two events. The value δs is known as the

interval between the events and is the same for all observers.

Note that δs
2 is zero for two events on a beam of light. If it is negative then

one event can communicate with the other by sending a signal; if it is positive

then neither can communicate with the other and happenings at one event cannot

influence the other.

This is traditionally depicted by a so-called light cone as shown below. We

can suppress one of the space dimensions (z, say) and so we are effectively

considering relativistic Flatland.
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Time and relativity

O
NE OF THE PROBLEMS with dealing with relativity is accepting the fact that

events that are simultaneous for one observer will not be simultaneous for

an observer moving relative to the first one.

Consider the problem of a train 500 metres long that makes marks on the

track at each end of the train. The train has a central switch which sends a signal

to the two ends in an identical manner and these then trigger the track marking

devices. In an identical manner means they travel to the two ends of the train at

the same speed and therefore the marks are made on the track at the same time

according to an observer on the train.

Since the ground is contracted from the viewpoint of the observer on the

train by the Lorentz–Fitzgerald contraction it means that the marks on the ground

are more than 500 metres apart. This sounds wrong because to an observer on the

ground the train will have contracted and it is natural to assume that the marks

are therefore closer apart than 500 metres. The solution to the dilemma is that

from the viewpoint of the observer on the ground the train does not make the

marks at the same time. It makes the mark at the rear of the train first and then

later makes the mark at the front and meanwhile of course the train has moved

on so that the marks end up further apart than expected.

Let us quantify the effect. We will assume that the train is travelling at 0.6c

at which speed the contraction is 0.8; this gives convenient numbers. According

to the train the marks will therefore be 500/0.8 = 625 metres apart.

Suppose that the signals are electromagnetic and therefore travel to the ends

of the train at the velocity of light c. They will travel at this velocity according

to the observer on the ground as well because that is the nature of light and

relativity.

Suppose the centre of the train is at coordinate x = 0 as measured on the

ground at the time t = 0 according to the ground clock when the signal is sent to

the two ends. Suppose the train is going in the direction of increasing x. At time

t = 0 the front of the train will be at x = 200 metres and the back will be at x =

–200 metres. Remember that from the ground the train will have contracted to

500 × 0.8 = 400 metres.

Consider the front of the train first. At time t = Tf, it will be at the point x =

200+0.6cTf. The signal which is travelling at velocity c will at that time be at the

point cTf. So

x = 200 + 0.6cTf position of front of train at time Tf

x = cTf position of signal at time Tf

Now when the signal reaches the front of the train clearly these two values for x

must be the same since both signal and front of the train will also be at the same

place as seen by the observer on the ground. By equating these we can find the

time on the ground clock at which the mark at the front is made. We have
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200 + 0.6cTf = cTf which gives   0.4cTf = 200   so that

Tf = 500/c time of front mark

We can now do the same for the back of the train. At time Tb the back of the train

will be at the point x = –200+0.6cTb and the signal (which is travelling in the

opposite direction) will be at –cTb. Equating these gives the time on the ground

clock when the mark at the back is made. We have

–200 + 0.6cTb = –cTb which gives   1.6cTb = 200   so that

Tb = 125/c time of back mark

We now see clearly that the marks are made at different times. 

We can now compute the position of the marks by putting the values of the

times into the formulae for the positions of the signals. We obtain 

front mark at x = cTf = 500 using position of signal

back mark at x = –cTb = –125 using position of signal

We can check this by putting the times into the formulae for the position of the

ends of the train thus

front mark at x = 200+0.6cTf = 200 + 0.6c × 500/c = 200+300 = 500

back mark at x = –200+0.6cTb = –200 + 0.6c × 125/c = –200+75 = –125

The distance between the marks is therefore 500 – (–125) = 625 which is the

same as deduced by the observer on the train.

So the two views do give the same answer but clearly it is much easier to

choose the observer for whom the events are simultaneous.

This can be illustrated by the diagram opposite which plots the position of

the ends of the train and the signals against time as measured by the observer on

the ground. The two signals start at the origin and since they travel at the velocity

of light, their paths are a section of the light cone from that point.

The calculation is much more tedious if the signals going to the ends of the

train do not travel at the speed of light but at some lesser speed v. The difficulty

is that the speed of the two signals as seen by the observer on the ground are not

v and indeed are not the same. One way to do the calculation is to use the formula

for the composition of relative velocities. If an object A is travelling at velocity

v relative to the observer and B is travelling at velocity u relative to A then the

velocity of B relative to the observer is

(v + w) / (1 + vw/c2) composition of velocities

Note that if v and w are both very small so that vw/c2 is negligible then the

formula becomes v + w as we expect. Also if one of them, say w, equals the

velocity of light c then the result is (v + c) / (1 + v/c) = c again as we would

expect.
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We can now do the general calculation. Suppose the train is travelling at

velocity v and the signals down the train travel at velocity w. Then the signal

going to the front of the train as seen by the observer on the ground has velocity

(v+w)/(1+vw/c2) and the signal to the back has velocity (v–w)/(1–vw/c2). For

convenience let us put γ = √(1–v
2/c2), the contraction factor. At time t = 0 the

ends of the train are at x = +250γ and x = –250γ. As before we compute the times

Tf and Tb at which the marks are made by equating the positions of the ends of

the train and the signals.

250γ + vTf = (v+w)Tf / (1+vw/c2)

Tf = 250γ(1+vw/c2)/(w(1–v
2/c2)) = 250(1+vw/c2)/wγ

–250γ + vTb = (v–w)Tb / (1–vw/c2)

Tb = 250γ(1–vw/c2)/(w(1–v
2/c2)) = 250(1–vw/c2)/wγ

The positions of the marks are

front mark at x = (v+w)Tf / (1+vw/c2) = 250(v+w)/wγ

back mark at x = (v–w)Tb / (1–vw/c2) = 250(v–w)/wγ

and the difference between these is simply 500/γ which is the length of the train

divided by the contraction factor and so is greater than 500 exactly as computed

by the observer on the train.
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Mass and energy

I
N NEWTON’S LAWS, the acceleration of a body depends upon the force applied

to it and the velocity continues to increase smoothly without limit. However,

in relativity this cannot be so because the velocity cannot exceed c. It turns out

that the mass of the body is not constant but increases with velocity using the

same factor γ = 1/√(1 – v2/c2). So we have

m = m0/√(1 – v2/c2)       mass is rest mass multiplied by the magic factor

So the mass keeps on increasing and becomes infinite at the velocity of light.

This increase in mass absorbs the energy and prevents the velocity from

increasing without bounds. This means that material bodies cannot travel at the

velocity of light. But photons can because they have zero rest mass. 

This increase in mass is real and is observed for fast moving particles such

as electrons. An electron moving in a magnetic field experiences a force at right

angles to its velocity and as a result goes around in a circle. If the field is H and

the velocity of the electron is v and its charge is e then the force caused by the

magnetic field is

F = Hve/c force on charged particle moving in magnetic field H

This is counterbalanced by the centrifugal force which is 

F = mv
2/r centrifugal force

where m is the mass of the electron and r is the radius of the circle. These two

expressions for F must balance and so we can deduce that the radius must be

r = mvc/He radius of orbit of electron

and so the faster the electron goes the bigger the circle it describes. Since the

circumference of the circle is 2πr it follows that the time per revolution is

T = 2πr/v = 2πmc/He time per revolution

which is independent of the velocity. This is the principle of the cyclotron, a

classical device for accelerating particles whereby they are given a pulse of

energy each cycle and move into a wider orbit. However, as the electrons speed

up the value of m increases and the time of revolution changes slightly. This

meant that the simple cyclotron could not be used to generate very fast electrons

and had to be modified to form the synchrotron in which the timing of the pulses

of energy is synchronized to the circular beam of ever more massive electrons.

Let us now consider the momentum and energy of moving bodies.

Remember that momentum (mv) is conserved but that energy (½mv
2) can turn
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into heat. When two cars collide much of the energy of their motion is converted

to heat, some to sound and so on. But the total momentum is never changed.

An interesting example concerns billiards. If a ball hits a similar stationary

ball at an angle then both balls end up moving. Suppose the velocity of the one

ball beforehand is v and afterwards is u and the other ball has velocity w

afterwards. The velocities fit together in a triangle as shown above in order to

conserve momentum. However, if no energy is lost we also have 

½mv
2 = ½mu

2 + ½mw
2 conservation of energy

So by Pythagoras the triangle has a right angle and so the balls move apart along

lines at right angles as shown above. All billiard players know this. But this is

not true in relativistic billiards so Mr Tompkins would be in difficulties if he

ventured into the billiard saloon.

We have seen that distance and time are confused in relativity. Consider a

uniform force F acting on a body in the Newtonian world. The change in

momentum of the body is F multiplied by the time for which the force is applied

whereas the change in energy is F multiplied by the distance the body moves

while the force is applied. Since distance and time are confused, it is not

surprising then that momentum and energy are confused in relativity as well.

Instead of talking about momentum and energy separately in fact we talk about

the energy-momentum vector which has four components. Three (corresponding

to the three space dimensions, x, y, z) give the momentum and the fourth

(corresponding to time t) is the energy. 

In order to get the transformations to work if we move to a different observer

we find that we have to have

P = (mvx, mvy, mvz, m) energy-momentum vector

So the mass is identified with the energy. Moreover, we find that if a force F adds

an amount of energy dE to a moving body then we find that the increase in

velocity is precisely that corresponding to an increase in mass dm given by 

dE = dm × c2 increase in energy relates to increase in mass
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This implies that the whole energy of a body is given by

E = mc
2 the famous relation between mass and energy

It is interesting to write this in the form using m0 and then to expand it

E = m0c
2 /√(1 – v2/c2) expand using binomial theorem

E = m0c
2 + ½mv

2 + ...

and this reveals that the total energy is the rest energy plus the normal Newtonian

kinetic energy ½mv
2 to a first approximation.

That electricity and magnetism are mixed up was known for many years

before Einstein. A moving magnet creates an electric current and a moving

charge (an electric current) creates a magnetic field. Relativity greatly simplified

Maxwell’s equations. In fact they are best discussed in terms of the so-called

electromagnetic tensor. A tensor is like a vector but has two dimensions of

components. So in four-dimensional space–time a tensor has 16 entries. That

describing electromagnetism can be laid out as follows

0 H3 –H2 –E1

–H3 0 H1 –E2

Fij =  ( H2 –H1 0 –E3 )
E1 E2 E3 0

The Es are the electric field and the Hs are the magnetic field in the different

dimensions. The rate of change of F is in fact the current or charge. Note that the

Es and Hs are involved in different ways. This relates to the fact that there are no

free magnetic poles.

If we have matter distributed around rather than as single point objects then

it turns out that energy and momentum also have to be described by a tensor. In

fact both the mechanical and electric energy are combined into a single energy

tensor normally denoted by Tij.

Coordinates

B
EFORE DELVING into general relativity it is necessary to explain the possibility

of more general forms of coordinates. In two dimensions we are familiar

with rectangular coordinates x and y. The distance ds between two points whose

x and y coordinates differ by dx and dy is of course given by 

ds
2 = dx

2 + dy
2 by Pythagoras

and in three dimensions we have ds
2 = dx

2 + dy
2 + dz

2 in an obvious way.
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Sometimes it is convenient to use other forms of

coordinates such as polar coordinates where a point is

described by r and θ where r is the distance of the point

from some origin and θ is the angle from some fixed line.

In this case the distance between two points whose

coordinates differ by small values dr and dθ is 

ds
2 = dr

2 + r2
dθ2 distance in polars

The key point to notice is that the factor by which dθ2 is multiplied is not a

constant but depends upon the value of the coordinates themselves (in this case

just r).

Sometimes it is convenient to use oblique axes. Suppose the axes are at an

angle φ as shown below. Then we can take the coordinates as the displacements

parallel to the axes as in the diagram on the left. In this case the distance between

two points is given by

ds
2 = dx

2 + dy
2 + 2dx dy cos φ displacements

The interesting point here is that as well as the terms in dx
2 and dy

2 there is also

a term in the cross-product dx dy. Such coordinates are often called contravariant

coordinates. 

An alternative view using oblique axes is to take the projections as the

coordinates as in the diagram on the right. In this case the distance becomes

ds
2 = dx

2 / sin2φ + dy
2 / sin2φ – 2dx dy cos φ / sin2φ projections

Here the coefficients are quite different from those of the displacement model.

These are often called covariant coordinates. Note that if the axes are rectangular

then both forms of coordinates are the same.

It is time to use some adult notation rather than the x and y of the

kindergarten. Suppose that there are n dimensions and that the coordinates are

denoted by x with a suffix or superfix 1, 2, 3, etc. If we use the displacement (or

contravariant) form then the coordinates are x1, x2, x3, ..., whereas if we use the
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projection (or covariant) form then the coordinates are denoted by x1, x2, x3, ....

(Note that x2 does not denote a power but simply the second coordinate in the

displacement form.) The various coefficients of the coordinates can be denoted

by g12 and g12 and so on. The two equations for the square of the interval ds
2 in

the general two dimensional case can now be written

ds
2 = g11dx

1
dx

1 + g12dx
1
dx

2 + g21dx
2
dx

1 + g22dx
2
dx

2 displacement form

ds
2 = g11

dx1dx1 + g12
dx1dx2 + g21

dx2dx1 + g22
dx2dx2 projection form

We write dx
1
dx

1 to denote the square of dx
1 to avoid ambiguity. Note carefully

that the coefficients with the suffices g11 go with the coordinates with the

superfices dx
1 and vice versa. 

If we compare these equations with the two above we see that the values of

the various gs for the oblique axes are

g11 = 1;  g12 = g21 = cos φ;  g22 = 1 displacements

g
11 = 1/sin2φ;  g12 = g21 = –cos φ/sin2φ;  g22 = 1/sin2φ projections

It is convenient to make g12 = g21 so that they are both half of the coefficient of

the cross term dx dy.

It turns out that the upper and lower gs are always closely related no matter

what coordinate system be chosen. We always have

g11g
11 + g12g

21 = 1 and g11g
12 + g12g

22 = 0

g21g
11 + g22g

21 = 0 and g21g
12 + g22g

22 = 1

Let us just test the first one for the oblique axes; we get

g11g
11 + g12g

21 = 1×1/sin2φ + cos φ × –cos φ/sin2φ

= (1 – cos2φ)/sin2φ = sin2φ/sin2φ = 1 OK

It is now time to introduce the summation convention. This states that if any

expression has a repeated letter upstairs and downstairs then we consider the

expression to be replaced by the sum of the terms where the letter takes all the

values according to the number of dimensions. Thus in three dimensions we have

aijb
j2 is shorthand for    ai1b

12 + ai2b
22 + ai3b

32

The so-called Kronecker delta δi

j was introduced by the German mathematician

Leopold Kronecker (1823-1891) as a useful shorthand. It has value 1 when i = j

and value 0 otherwise. We can now write the four equations for the relationships

between the gs as the one equation

gij g
jk = δi

k
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and the two equations for the interval ds become

ds
2 = gij dx

i 
dx

j and   ds
2 = gij 

dxi dxj

We see that the summation convention produces very compact notation – it is

especially convenient when there are many dimensions.

The gs are very important for converting from the “upstairs” to the

“downstairs” form and vice versa. For any vector a, it can be shown that

ai = gija
j and ai = gij

aj

Thus we can convert between the dx
i and the dxi using these rules.

The examples of coordinates we have used have been in the plane. Another

interesting example is given by latitude and longitude which give coordinates on

a sphere. Suppose the longitude is given by φ and the latitude by θ and that the

radius of the sphere is a. Then the interval ds between two nearby points is given

by

ds
2 = a2

dθ2 + a2 cos2θ dφ2

from which the reader can easily find the gs by taking θ as x1 and φ as x2.

As another example, consider the equations of special relativity. Here we

have three space dimensions and one time dimension and we can write 

x
1 = x,  x2 = y,  x3 = z,  x4 = t

The metric for special relativity 

ds
2 = dx

2 + dy
2 + dz

2 – c2
dt

2

can now be written as

ds
2 = gijx

i
x

j

using the normal rectangular axes where g11 = g22 = g33 = 1 and g44 = –c
2 and the

cross coefficients such as g12 are all zero.

Curvature

T
HE IMPORTANT TOPIC we are working towards is curvature. If we live on a

sphere then we will find that our world is not flat. The angles of a triangle

drawn on a sphere do not add up to 180° but are always more. (The sides have to

be great circles which correspond to straight lines.) As an extreme case consider

the triangle formed by taking the northern half of the 0° and 90° meridians and

the section of equator joining them; all three angles of this triangle are right
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angles so that the sum of the angles is 270°. The surface of the sphere is

intrinsically curved and it cannot be rolled out flat.

On the other hand the surface of a cylinder is quite different; it can be rolled

out flat without any distortion. The surface of a cylinder is not intrinsically

curved and the (two-dimensional) geometry of the surface is the same as that on

a plane. A Flatlander living on a large cylinder would not know that it was not a

plane from making measurements on the surface of the land – we assume that he

doesn't travel too far and return to his starting point by going around his

universe!

Of course we see the cylinder embedded in three-dimensional space and in

that space it is curved. So there are different forms of curvature. When dealing

with soap bubbles we were considering the curvature in the embedding space

whereas here we are considering the intrinsic curvature that can be detected by

measurements in the surface itself.

It is the gs that determine the properties of a space. An important feature is

that the values of the gs can vary from place to place and in fact it is the ways

the gs change that determine the curvature rather than the gs themselves. We thus

need to introduce the rate of change of the gij with respect to the x
k. Normal

calculus notation would be to write this as

∂gij

— rate of change of gij with respect to xk

∂x
k

This is rather cumbersome and is usually abbreviated as simply gij,k.

A number of mathematicians worked on the general form of n-dimensional

space as an abstract concept in the 19th century. They included the German

the problems in defining curvature was finding a formula for the rate of change

of a property with respect to the coordinates that was consistent in any set of

coordinates. To cut a long story short the following rather complex expression

was found to be important and is referred to as a Christoffel symbol

Γi

jk = ½ gil (glj,k + glk,j – gjk,l) definition of Christoffel symbol

It was discovered that the curvature can be described in terms of the so-called

Riemann tensor defined as

Ri

jkl = Γi

jl,k – Γi

jk,l + Γi

mk Γm

jl – Γi

ml Γm

jk definition of Riemann tensor

It can be shown that if all the components Ri

jkl are zero then the space is flat and

vice-versa. The Ricci tensor is a contracted form thus

Rjk = Ri

jki definition of Ricci tensor

Remember the rule that if a letter is repeated upstairs and downstairs then we

have to sum over all possibilities. This means in four-dimensional space that
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Rjk = R1
jk1 + R2

jk2 +R
3

jk3 + R4
jk4

The Ricci tensor has 10 independent components just as there are 10 gij for four-

dimensional space. Given the gij we can compute the Rij (just follow the

definitions above) and similarly given the Rij we can compute the gij (not so

easy) and this gives us all we need to know about the space.

Incidentally, we can contract the Ricci tensor itself to give the scalar R. First

we have to raise one of the suffices using the g
ij and then we can do the

contraction thus

R
i

j = gik
Rkj raise one suffix of the Ricci tensor, then

R = Ri

i = gij
Rij definition of R

R is a single value describing the overall curvature at a point. 

Einstein’s equations

E
INSTEIN WAS NOT SATISFIED with special relativity because it did not explain

gravitation. However, it did seem that light travelled in straight lines or

perhaps we should say that the path of light defined straight lines. He thought

that gravitation in some way affected the very fabric of space. After studying the

geometry of Riemann, Christoffel and Ricci for many years, he proposed his

general theory in 1915.

The basic equation for free space is simply

Rij = 0 general relativity in free space

and the equation in the local presence of matter is

Rij – ½ gijR = kTij in the presence of matter, where k

k = 8πG/c4 involves the gravitational constant G

The tensor T defines the quantity of energy/matter present. It includes both mass

and electromagnetic radiation.

The more general equation reduces to the simple form if Tij is zero. This is

an interesting exercise in tensor manipulation. First we get

Rij – ½ gijR = 0 then multiply by gjk to give

Ri

k – ½ gijg
jk

R = 0 then contract by putting k = i to give

R – 2R = 0 note that gijg
ji = δi

i = 4 since 4 dimensions

and so R is zero and can be omitted thereby leading to the simple equation.
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The Schwarzschild solution

A
LTHOUGH EINSTEIN’S EQUATIONS for general relativity in free space look

remarkably simple in the compact form

Rij = 0 general relativity in free space

they are really very complex. Exact solutions are hard to find but Schwarzschild

(1873–1916) found an important solution in 1916 while serving on the Russian

front. Using spherical coordinates r, θ, φ, where r is the distance from the origin

and θ and φ are two angles corresponding to latitude and longitude, he showed

that a solution was given by the metric

ds
2 = (1–2m/r)–1

dr
2 + r2(dθ2 + sin2θ dφ2) – (1–2m/r) dt

2 Schwarzchild

It is instructive to compare Schwarzchild’s metric with the normal formula for

the Euclidean distance in spherical coordinates which is

ds
2 = dr

2 + r2(dθ2 + sin2θ dφ2) Newton

There are two key differences. One is that there is a time term but that is to be

expected since we are dealing with relativity. But the really significant change is

the factor (1–2m/r) which modifies the terms in both the time, t, and the radial

distance from the origin, r.

It turns out that the Schwarzschild metric describes the space around a

central mass m where m is measured in suitable units. Using conventional units

the term is 

1 – 2Gm/rc2 distortion term in conventional units

where G is the gravitational constant and c is the velocity of light. Remember

that the gravitational constant G is such that the gravitational force between two

bodies is 

F = Gm1m2/r
2 gravitational force between two bodies

where m1 and m2 are the masses of the two bodies and r is the distance between

them.

The interesting thing about the Schwarzschild metric is that when r has the

value R defined by

R = 2Gm / c2 definition of Schwarzschild radius

then the distorting factor becomes zero which means that the coefficient of dr in

the metric becomes infinite and that of dt becomes zero predicting strange things.
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In the case of the Sun, its mass is 2×1030 kg, the speed of light is 3×108

metres/sec and the gravitational constant is 6.7×10–11, so 

R = 2×6.7×10–11×2×1030 / (9×1016) = 3000 metres

This is a very small distance compared with the radius of the sun which is nearly

700,000 km and so the distortion of space caused by the sun is almost negligible.

But what it does mean is that if all of the mass of the sun were compressed

so that it fitted within this radius then odd things would happen. We now call

such an object a Black Hole. But before discussing black holes we will briefly

look at the other predictions of general relativity.

Consequences of general relativity

O
NE FEATURE of the motion of the planets which could not be explained by

Newton’s laws concerned the orbit of Mercury. The orbits of the planets are

basically ellipses with the Sun at one focus (strictly the focus is at the common

centre of gravity but since the Sun is so massive compared with the planets it is

inside the Sun anyway). The planets disturb each other’s orbits a bit and as a

consequence the ellipse shifts. We call this movement the motion of the

perihelion – the perihelion is the point of the orbit nearest to the Sun.

The perihelion of Mercury shifts by almost exactly 56" per year. Remember

that 60" = 1' and 60' = 1°. Most of this shift can be explained by the effects of

the other planets according to Newton’s laws. But there is a discrepancy of 43"

per century between observation and this prediction. This discrepancy was

certainly known to Le Verrier who predicted the existence and location of

Neptune by studying the discrepancies in the orbit of Uranus. Neptune was then

discovered by the observatory in Berlin in 1846. But Le Verrier was quite unable

to explain the discrepancy in the case of Mercury.

The distortion of space–time described by the Schwarzschild solution

predicts that the orbit of a planet will rotate by 

3πR/a(1–e
2) movement of perihelion per orbit

In this formula, R is the Schwarzschild radius of the parent body (the Sun), a is

the semi-major axis of the orbit (that is half the long axis of the ellipse) and e is

the eccentricity of the ellipse. (If the equation of an ellipse is x2/a2 + y2/b2 = 1,

then the eccentricity is given by e2 = 1 – b2/a2.)

For the Sun, R is 3000 metres as mentioned above, the semi-major axis of

the orbit of Mercury is 58,000,000 kilometres and the eccentricity of its orbit is

0.2. Putting these values in the equation we get

3π×3000 / (58×109 × 0.96) = 0.508 ×10–6
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This is the rotation of the perihelion in radians per orbit. The period of Mercury

is 88 days and there are 36524 days in a century so there are 36524/88 orbits per

century which is about 415. To convert from radians to seconds of arc we first

have to multiply by 57.3 (180/π) to convert to degrees and then by 3600 since

there are 3600 seconds in a degree. We finally get

0.508 × 10–6 × 415 × 57.3 × 3600 = 43 seconds per century

and this exactly matches the observed discrepancy. This was the first verification

of the theory of general relativity.

Another consequence is the bending of light by massive bodies. Of course

light truly travels in “straight” lines in that it follows the path where ds
2 = 0. But

it seems as if it is bent. This can be measured in an eclipse of the sun where the

stars which can be seen just adjacent to the eclipsed sun appear shifted since the

light from them is bent as it grazes the sun. The deflection predicted by general

relativity is

2R/r deflection of light grazing massive body

where R is the Schwarzschild radius and r is the actual radius of the Sun (about

695000 km). This gives 2×3000/695000000 = 0.86×10–5 radians = 1.78".

There was a total eclipse of the Sun on 29th May 1919 and the observations

made by expeditions to Sobral in Brazil and the Island of Principe which were

organized by Eddington confirmed this prediction. 

Another prediction is that clocks go more slowly in the presence of a

gravitational field and this too has been confirmed.

Black Holes

T
HE TERM Black Hole seems to have been coined by John Wheeler in 1967.

Prior to this time they were referred to as Collapsed Stars or Frozen Stars. Of

course no-one really knew that they existed until very recently. Indeed, as

recently as 1975, Dirac says in his book entitled General Theory of Relativity

“The question arises whether such a region can actually exist. All we can say

definitely is that the Einstein equations allow it.”* 
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Einstein developed the theory of General Relativity in 1915 and, as

mentioned above, Schwarzschild soon solved the equations for a sphere of mass

other similar problems in a book published in 1921 so the mathematical

possibilities have been in front of us for many years.

The main characteristics of a black hole is that, viewed from outside, time

stands still at the surface and light cannot get out (photons stand still at the

horizon). If we watch someone falling into a black hole then from our point of

view they never quite get there; they seem to take an infinite time. For them,

however, time goes all too quickly and they dash into the hole to an almost

immediate death. 

A black hole of the mass of the Sun has a radius of 3000 metres. In the case

of the Earth, the corresponding radius is about one centimetre. So the whole of

the Earth would have to be squeezed into a ball less than an inch across.

But a black hole doesn’t have to be quite so amazingly dense. The relation

between the mass m and the radius R is simply linear

R = 2Gm / c2

So if we double the mass then the critical radius doubles as well. This means that

a sufficiently large black hole doesn’t have to be that dense. Suppose we had a

huge incompressible sphere of the same density as water (1000 kg per cubic

metre) and of radius R. Then its mass m is 4/3πR
3×1000. Putting this in the

equation for R we have

R = 2G×4/3πR
3×1000 / c2 = 6 × 10–25 × R3 from which

R
2 = 1.5 × 1024 giving 

R = 1.2 × 1012 metres   or   1200 million kms

So a sphere of water of this size would form a black hole. This is the size of the

Solar System nearly out to the orbit of Saturn so it’s pretty huge but not

incomprehensible. Of course a sphere of water this size would be crushed under

gravity and be much denser. However, a group of ordinary stars rotating about a

common centre can easily have an average density in order to form a black hole

where the centrifugal force prevents them from collapsing. Rotating black holes

seem to exist at the centre of many galaxies.

The other way to get a black hole is to have extremely dense matter and in

fact a neutron star is an obvious example. (A neutron star is one composed just

of neutrons crushed up together.) The mass of a neutron is about 1.7×10–24 gm,

and the diameter of a neutron is about 10–13 cm. So the density is about 3×1015

times that of water. A black hole of this density using the same formula as before

has a radius of 20 km compared to the Schwarzschild radius for the Sun of 3 km.

So for a neutron star to become a black hole it has to have a mass about 7 times

that of the Sun.
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Despite Einstein’s equations in 1915 showing the possibility, nobody really

took black holes seriously for many years – Eddington dismissed the possibility

as ridiculous. However, Oppenheimer (who worked on the wartime atomic bomb

project) suggested around 1939 that neutron stars might exist and form what we

now call black holes. 

The discovery of Pulsars in 1968 which turned out to be rotating neutron

stars was the first sign that black holes might be real. Now we know that black

holes exist at the centre of many galaxies. Roger Penrose and Stephen Hawking

both did amazing pioneering work on the properties of black holes.

Properties of black holes

B
LACK HOLES have some strange properties. The most obvious is that matter

falling into a black hole cannot get out once it has passed inside the critical

radius. This even applies to photons so that light cannot get out either. 

The gravitational field bends light and this bending is such that light can

circle for ever around a black hole in an orbit with a radius of 3R/2 where R is

the Schwarzschild radius of the black hole. Light a bit further out can be

deflected by exactly 180° and so reflected back. So, in principle if we shine a

torch on a black hole we will see a dark space surrounded by a halo of reflected

light. This does not seem to have been observed as yet.

Some black holes rotate. This arises because stars rotate and a massive star

which collapses into a black hole will preserve the angular momentum of the

matter that is captured. The corresponding equations were solved by Roy Kerr

and so rotating black holes are sometimes referred to as Kerr black holes.

It is usually stated that instant death is the fate of the traveller into a black

hole because the massive variation in the gravitational field will tear him apart.

But this is not necessarily so for huge black holes. 

The Schwarzschild solution applies to the space outside an object, that is

where there is no matter. However, it can be shown that in the case of matter

distributed on the surface of a sphere, the effect outside is as if it were all

concentrated at the centre and moreover, there is no gravitational field inside the

sphere at all. This property of Newtonian physics perhaps surprisingly carries

over into the relativistic solution as well.

So we can imagine a huge spherical shell of thickness sufficient to produce

a black hole as observed from a distance yet within the shell the properties of

space are as normal. Of course one could not get out of such a black hole but then

maybe one wouldn’t want to if for example it contained a small star with a

comfortable planet rotating about it.

Such a shell-like distribution could perhaps be formed by many stars rotating

about the centre of a galaxy. From within the centre of such an agglomeration

things would seem much as normal, but from afar it would appear as a black hole

at the centre of the galaxy.
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Further reading

T
HERE ARE MANY popular accounts of relativity. One is Black Holes by Jean-

Pierre Luminet. Despite the title it is not just about black holes. An excellent

account of the basic principles with some simplified mathematical explanation is

in Makers of Mathematics by Hollingdale; this book covers many other subjects

discussed in these lectures and is highly recommended.

To go further into the mathematics is hard work. There is The Meaning of

Relativity by Einstein himself. First published in 1922, the sixth edition is dated

1956. Another historic work is Space Time Matter by Hermann Weyl. The

English translation is from the fourth German edition of 1921; this book contains

a good account of tensors. A more recent work is Essential Relativity by Rindler.

This has some light-hearted examples but also the real mathematics as well. The

short book General Relativity by Dirac gives a brief but complete account of the

necessary tensor notation and the essence of the key points of the theory; but it

is more like printed college notes than a conventional book – lots of equations

but not much chatter.

Finally, there is Mr Tompkins in Wonderland by George Gamow. This is the

light-hearted account of the adventures of Mr Tompkins in a land where the

speed of light is only about 30 mph. This will be found in Mr Tompkins in

Paperback which also contains Mr Tompkins Explores the Atom.

Exercise

1 A very high speed train is 500 metres long as measured when stationary. The

two power cars (one at each end of the train) have a device for making a

mark on the track. In the centre of the train is a switch which sends a signal

to the two ends of the train in an identical manner and causes the devices to

make the marks on the track. One day the train is travelling at 0.866 times

the speed of light; at this speed the Lorentz–Fitzgerald contraction factor is

0.5. The conductor throws the switch and the two marks are made on the

track. An observer on the track measures the distance between the two

marks. How far apart are they?

a) 500 metres

b) 1000 metres

c) 250 metres

d) 866 metres
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10 Finale

T
HESE LECTURES have had a number of goals. One was simply to present some

pretty or surprising configurations. Another was to reveal that despite the

fact that we live in a three-dimensional world, nevertheless our understanding of

three dimensions is fairly poor. Thus few people know that if you cut through a

cube in a certain way, then the cross-section is a hexagon. Another goal, and

perhaps the most important in a philosophical sense, was that solving and

understanding a problem depends very much upon getting the right point of view.

The lecture on inversion and its use to prove Steiner’s porism and explain

Soddy’s hexlet is perhaps the most intriguing example of getting the right point

of view that we have encountered. Another example is that of the train marking

the track in special relativity where it is important to analyse the situation from

the point of view of the correct observer.

In this final lecture we will look at some more examples where getting the

right point of view is so important. These are about certain curious properties of

triangles, squares and other rectilinear figures and how the use of the Argand

plane can provide very simple explanations in many cases. 

Squares on a quadrilateral

I
F WE TAKE any quadrilateral, place squares on its four sides, then the lines

joining the centres of the opposite squares have the same length and are at right

angles to each other.

Coxeter gives this as Exercise 10 in Section 1.8 of his Introduction to

Geometry. It is preceded by two related problems and the three are as follows*:

8 If four squares are placed externally (or internally) on the four sides of any

parallelogram, their centers are the vertices of another square.

9 Let X, Y, Z be the centers of squares placed externally on the sides BC, CA,

AB of a triangle ABC. Then the segment AX is congruent and perpendicular

to YZ (also BY to ZX and CZ to XY).

10 Let Z, X, U, V be the centers of squares placed externally on the sides AB,

BC, CD, DA of any simple quadrangle (“quadrilateral”) ABCD. Then the

segment ZU (joining the centers of two “opposite” squares) is congruent and

perpendicular to XV.

Coxeter gives brief answers (hints) which are reproduced below. In each case his

answer is followed by further explanation which will be helpful (maybe

essential) to mere mortals.

*Reproduced by permission from John Wiley & Sons Inc.

© Springer-Verlag Berlin Heidelberg 200  
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Coxeter’s answer for Exercise 8 shown above is:

8 Let Z, X, U be the centers of the squares on three consecutive sides AB, BC,

CD of the parallelogram ABCD. The triangle XBZ is derived from XCU by a

quarter-turn (i.e. a rotation through a right angle) about X.

The triangles XBZ and XCU are congruent because 1) XC = XB both being half

of the diagonals of the square centre X, 2) BZ = CU both being half of the

diagonals of the equal squares with centres Z and U, and 3) angle XBZ = angle

XCU since both are two angles of 45° plus an acute angle of the parallelogram.

As a consequence since XB is at right angles to XC, the triangle is rotated a

quarter-turn about X. And therefore XZ is at right angles to XU. Moreover, since

the triangles are congruent XZ has the same length as XU.

Similarly, the other pairs of adjacent sides of the figure ZXUV are at right

angles and have the same length. Therefore the figure is a square.  QED

And now for Exercise 9 shown opposite. Here is Coxeter’s answer:

9 Let M be the midpoint of CA. By Exercise 8, the segments MZ and MX are

congruent and perpendicular. The same can obviously be said of MY and

MA. Therefore the triangle MAX is derived from MYZ by a quarter-turn about

M.
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The first point to note is that looking back at the diagram for Exercise 8 we see

that AC is a diagonal of the parallelogram. So M is the midpoint of the

parallelogram and by symmetry (rotation) M is the midpoint of the square ZXUV.

Therefore MZ and MX are half diagonals of the square and so of equal length and

perpendicular.

MY and MA are both of the same length and are perpendicular because they

are both equal to half the side of the square on AC.

The triangles MAX and MYZ are congruent because a) MA = MY, just proved,

b) MX = MZ, just proved, and c) angle AMX = angle YMZ since they are both

angle AMZ plus a right angle (ZMX and AMY respectively).

As a consequence since MA is at right angles to MY, the triangle is rotated a

quarter-turn about M. And therefore AX is at right angles to YZ. Moreover, since

the triangles are congruent AX has the same length as YZ. Similarly, BY is

congruent to and perpendicular to ZX and CZ to XY.  QED

And at last we are able to tackle Exercise 10 that the lines joining the centres

of opposite squares on any quadrilateral are equal and perpendicular.
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10 As in Exercise 9, the segments MZ and MX are congruent and perpendicular.

Similarly (by considering the triangle CDA instead of ABC), the segments

MU and MV are congruent and perpendicular. Therefore the triangle MXV is

derived from MZU by a quarter-turn about M.

The diagram is much as for Exercise 8 except that the point D has been moved

so that ABCD is no longer a parallelogram but an arbitrary quadrilateral. The

triangle ABC is as in Exercise 9. And so MZ and MX are congruent and

perpendicular as proved in that exercise.

We now consider the triangle ADC instead of ABC and then by an identical

argument we can prove that the lines MU and MV are congruent and

perpendicular.

The triangles MXV and MZU are congruent because a) MU = MV, just

proved, b) MX = MZ, just proved, and c) angle VMX = angle UMZ since they are

both angle UMX plus a right angle (UMV and ZMX respectively).

As a consequence since MU is at right angles to MV, the triangle is rotated

a quarter-turn about M. And therefore the third side VX is at right angles to ZU.

Moreover, since the triangles are congruent VX has the same length as ZU.  QED

Well, that was quite hard work and although we did not have to prove all of

Exercise 9 on the way, nevertheless we did have to do the first part of it. We will

now look at a stunning alternative approach.
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The Argand plane

W
E IMAGINE the diagram embedded in the complex plane or Argand diagram

named after the Swiss mathematician Jean Robert Argand (1768–1822).

Each point can be represented by the complex number at that point as a sort of

coordinate. A complex number can be written as x+iy where x and y are the so-

called real part and imaginary part respectively and i is √–1; x and y then

correspond to the normal coordinates in a plane.

So points such as A and B are represented by the complex numbers A and B.

A line in the complex plane is characterized by the difference between the

complex numbers representing its ends. So the line AB is represented by the

value B–A. (It is important to get the sign right; considered in the opposite

direction, the line BA is A–B.) Note that the point B–A is the end of a parallel and

equal line with one end at zero. 

Note also that the midpoint of AB is (A+B)/2. A third of the way along is

(2A+B)/3 and so on.

If a line is rotated anticlockwise by a right angle then its value is multiplied

by i. So if two lines have values such that one is i times the other then they must

have the same length and be at right angles.
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The quadrilateral revisited

T
HE QUADRILATERAL has points with values A, B, C, D. The midpoint of AB is

M which thus is (A+B)/2.

The distance AM is (B–A)/2. Now MZ is the same length as AM and at right

angles to it. So the line MZ is (B–A)i/2. The point Z is then M plus MZ, so

Z = (A+B)/2 + (B–A)i/2 

Similarly

X = (B+C)/2 + (C–B)i/2

U = (C+D)/2 + (D–C)i/2

V = (D+A)/2 + (A–D)i/2

The line ZU is the difference between Z and U, and VX is the difference between

V and X, so 

ZU = (C+D)/2 + (D–C)i/2 – (A+B)/2 – (B–A)i/2 = (–A–B+C+D)/2 + (A–B–C+D)i/2

VX = (B+C)/2 + (C–B)i/2 – (D+A)/2 – (A–D)i/2 = (–A+B+C–D)/2 + (–A–B+C+D)i/2
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We now immediately see that ZU × i = VX. It follows that ZU and VX are of the

same length and at right angles.  QED

Pretty smart stuff, eh? A good illustration of getting the right view of the

problem or maybe one might say getting the right angle!

Other complex problems

A
NUMBER of other curious problems can be solved using the Argand plane in

much the same way. Some depend upon the observation that the centre of

gravity (centroid) of a triangle ABC is the point (A+B+C)/3.

Consider any hexagon ABCDEF as below. Draw the short diagonals between

pairs of points thus AC, BD, CE, DF, EA and FB. This produces a number of

triangles ABC, BCD, CDE, DEF, EFA, FAB. Take the centroids of these triangles

(B', C', D', E', F', A') and join them to form another hexagon (in red). Then,

whatever the shape of the original hexagon, this hexagon is such that its opposite

sides are parallel and equal.

The proof is straightforward. The various points of the new hexagon are 

B' = (A+B+C)/3

C' = (B+C+D)/3

and so on. It follows that 

B'C' = C'–B' = (B+C+D)/3 – (A+B+C)/3 = (D–A)/3

E'F' = F'–E' = (E+F+A)/3 – (D+E+F)/3 = (A–D)/3

and the result immediately follows since the opposite sides are clearly of the

same length and parallel. 
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Take any quadrilateral ABCD as above and join the diagonals in the same

way so that, for example, B' is the centroid of the triangle ABC. Then the

quadrilateral A'B'C'D' is the same shape as the original but with sides of one-

third the length.

Again the proof is straightforward. The side B'C' is given by

B'C' = C'–B' = (B+C+D)/3 – (A+B+C)/3 = (D–A)/3

and so B'C' is parallel to and one-third the length of the side DA of the original

quadrilateral. The result follows.

Another rather trivial example is obtained by taking any triangle ABC and

placing an equilateral triangle on each side as shown opposite. Then the centres

of these equilateral triangles form a triangle A'B'C' and the centroid of this

triangle coincides with that of the original triangle.

The point C' is the centroid of the equilateral triangle on AB. This is obtained

by taking the midpoint of AB and then going one-third of the way up the altitude

which of course has length √3/2 times the side of the triangle and is at right

angles to AB. We get

C' = (A+B)/2 + (B–A)i/2√3

If we add the three such centroids together, then the imaginary terms all cancel

and we are left with A+B+C and then dividing by 3 we get the centroid of A'B'C'

which is clearly the same as that of the original triangle ABC whose centroid is

(A+B+C)/3.

Of more interest is that the triangle A'B'C' is always equilateral no matter

what the shape of ABC. This is known as Napoleon’s theorem after Napoleon

Bonaparte (1769–1821) who was an amateur mathematician as well as a general

although it is unclear whether he really discovered it.
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In order to prove this we need to consider the cube roots of 1 which we

discussed when dealing with Newton’s method in the lecture on Chaos and

Fractals. We saw that the three cube roots of 1 are 1 and –1/2 ± √3i/2. The value

–1/2 + √3i/2 is often known as ω so that the three roots are 1, ω and ω2. If two

lines are at 60° to each other and of the same length then it is clear that the value

of one will be ω times the value of the other (strictly –ω or –ω2).

The line C'A' is given by 

C'A' = A' – C' = (B+C)/2 + (C–B)i/2√3 – (A+B)/2 – (B–A)i/2√3

= (C–A)/2 + (C+A–2B)i/2√3

If we multiply this by ω we get

ωC'A' = ((C–A)/2 + (C+A–2B)i/2√3) × (–1/2 + √3i/2)

= (A–C)/4 – (C+A–2B)/4 + i × ((C–A)√3/4 – (C+A–2B)/4√3)

= (B–C)/2 + (B+C–2A)i/2√3 = B'C'

and so it follows that the line C'A' has the same length as B'C' and is at 60° to it.

Therefore the triangle A'B'C' is equilateral.

Napoleon’s theorem is in fact a special case of a more general theorem which

states that if we place similar triangles on the edges of any triangle then the

circumcentres of these three triangles form a triangle similar to the three

triangles. A traditional proof of this theorem is given in Geometry Revisited by

Coxeter and Greitzer. Napoleon’s theorem is of course the special case where the

similar triangles are in fact equilateral in which case the circumcentre (the centre

of the circle through the three points of the triangle) becomes just the centre or

centroid.
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Trisection

I
F WE TRISECT the three angles of any triangle then the trisecting lines meet in

points which form an equilateral triangle. This is known as Morley’s theorem

and was discovered as recently as 1899 by Frank Morley (1860–1937).

The odd thing about this theorem is that there appears to be no

straightforward proof. All proofs seem to sort of work backwards from an

equilateral triangle and show that any shaped triangle can be fitted around. Such

a backward proof will be found in Introduction to Geometry by Coxeter. The

reader is invited to become famous by devising a forward proof!

It is perhaps surprising that such a simple theorem was not discovered

earlier. Maybe it was because it was known that trisection of an angle could not

be done using ruler and compasses and therefore it seemed immoral to even think

about it.

Bends

I
T IS OFTEN HELPFUL to talk about the bend of a circle rather than its radius. The

bend is the inverse of the radius. The smaller the circle the bigger the bend

which makes sense in that the circumference of a smaller circle is more bent. So

the rule about the intermediate film where two soap bubbles meet which is

normally written as 

Morley’s theorem.

The triangle formed by the

trisectors of the angles of any

triangle is equilateral.
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1/R12 = 1/R1 – 1/R2 rule for soap bubbles in terms of radii

can instead be written as

B12 = B1 – B2 rule for soap bubbles in terms of bends

Using bends is also neater for the sizes of the spheres in Soddy’s hexlet since in

many positions the bends are simply integers. Moreover, the sum of the bends of

the three fixed spheres always equals the mean of the bends of any opposite pair

of the hexlet. So the sum of the bends of the whole chain stays the same as the

chain moves.

If four circles touch each other as shown below (like a Steiner chain of

three), then the four bends have an interesting property, namely

2(b1
2 + b2

2 + b3
2 + b4

2) = (b1 + b2 + b3 + b4)
2

According to Coxeter, this was first discovered by the French mathematician

René Descartes (1596–1650). He mentioned it in a letter to Princess Elisabeth of

Bohemia in 1643. It was rediscovered in 1842 by Philip Beecroft and then again

by Soddy in 1936 who wrote a poem about it in Nature*. The middle verse is

Four circles to the kissing come,

The smaller are the benter.

The bend is just the inverse of

The distance to the centre.

Though their intrigue left Euclid dumb

There’s now no need for rule of thumb.

Since zero bend’s a dead straight line.

And concave bends have minus sign,

The sum of the squares of all four bends

Is half the square of their sum.

The reference to the negative bends reflects the fact that one circle might

surround the others in which case that circle has a negative bend.

Four circles touching

each other.

*Reprinted by permission from Macmillan Publishers Ltd: Nature, vol 137, p 1021, 1936.
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Each such set of four circles has a complementary set through the points of

contact as shown below in red. If their bends are a1, a2, a3, and a4 then it turns

out that these bends are related to the other set by relations such as

2a1 = b2 + b3 + b4 – b1 etc

and moreover, the sum of the bends of one set is equal to the sum of the bends

of the other set, thus

a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

Soddy discovered that there is an analogous theorem and formula for five spheres

in three dimensions and this is mentioned in the next verse of the poem. It seems

dimensions and added a final verse.

Four circles

touching with one

external.

Four circles

touching and

their companion

set.

that Thorold Gosset (1869–1962) extended it to n+2 hyperspheres in n
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Pedal triangles

H
ERE IS A LITTLE PUZZLE for the reader to struggle with. Consider any triangle

ABC and a point P. It is usual to consider the case where P is inside the

triangle. Drop the perpendiculars from the point P on to the three sides of the

triangle. The feet of the perpendiculars form a triangle A1B1C1 which is known

as the pedal triangle with respect to the point P. (A special case is where the

perpendiculars go through the vertices of the original triangle in which case P is

the orthocentre.)

We find in general that the angles of the pedal triangle are different from

those of the original triangle. Now starting from the pedal triangle find its pedal

triangle with respect to the same point P. We might call this the grandpedal

triangle of the original triangle. Finally take the pedal triangle of this triangle

which we can call the greatgrandpedal triangle of the original triangle.

The problem is to show that the angles of the greatgrandpedal triangle

A3B3C3 are the same as those of the original triangle ABC. In other words the 3rd

generation pedal triangle is similar to the original triangle.

A similar construction can be done with a quadrilateral. Drop the

perpendiculars from any point P to the four sides and then the feet of these define

the vertices of another quadrilateral. The 4th generation such quadrilateral is

similar to the original. In fact the theorem extends to a general polygon. The nth

generation pedal n-gon of any n-gon is similar to the original.

A

B C
A1

B1

C1 A2

C2

B2

A3

B3
C3

Nested pedal triangles.



Coordinates of points and lines

W
HEN DEALING with projective geometry we saw that a point in a plane could

be denoted by coordinates of the form (p, q, r) and that it was only the

ratios that mattered. Thus (p, q, r) is the same point as (2p, 2q, 2r). There is of

course no point (0, 0, 0). We can chose any three points not on a line as the

triangle of reference (1, 0, 0), (0, 1, 0), (0, 0, 1) and then any point not on the

lines of the triangle as the unit point (1, 1, 1).

We can use these coordinates both for “normal” geometry and for finite

geometry. In the 13-point finite plane with arithmetic modulo 3, it means that the

point (1, 1, 2) can equally be denoted by (2, 2, 4) which is (2, 2, 1). Similarly,

the point (1, 2, 0) is the same as (2, 1, 0).

If A and B are two points then any point on the line joining them can be

written as pA + qB. It is only the ratio of p and q that matters.

If we need to find the point where two lines AB and CD meet where A, B, C,

D are given points then there are a number of ways we can proceed. One is to

observe that any point on AB can be written as A + pB and any point on CD can

be written as C + qD. If these are the same point then we know that the ratios of

the coordinates must be the same. So we must have

A + pB = α(C + qD) equations for p and q and factor α

then by comparing the three coordinates we obtain equations for p and q. 

As a simple example suppose ABC is the triangle of reference and D is the

unit point (1, 1, 1) and that we wish to find the point where AB meets CD. We

obtain

(1, 0, 0) + p(0, 1, 0) = α(0, 0, 1) + αq(1, 1, 1)

and then by comparing the three coordinates, we get

1 = αq;   p = αq;   0 = α + αq from which

q = –1;  α = –1;  p = 1

so that the point of intersection of AB and CD is (1, 1, 0).

We normally think of an equation such as

lx + my + nz

as being the equation of a line. All points (x, y, z) that satisfy the equation lie on

the line. But we can think of (l, m, n) as being the coordinates of a line and then

the equation can be thought of as the equation defining all lines through the point

(x, y, z). In one case we think of (l, m, n) as being constant and (x, y, z) as being

variable and in the other case we think of (x, y, z) as being constant and (l, m, n)

as being variable. This reveals the dual nature of point and line once more.
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In the Fano plane the seven points are 100, 010, 001, 011, 101, 110, 111.

Equally, there are seven lines and these have the same set of seven coordinates.

The line through the points 100, 101, 001 is the line 010. Thus the points of the

triangle of reference are the points 100, 010, 001 and the lines of the triangle of

reference are the lines 100, 010, 001. The unit point 111 is the only point not on

a line of the triangle of reference and the unit line 111 (the “circle”) is the only

line not through a point of the triangle of reference.

A neat way to deal with coordinates is to use determinants. Remember that

a determinant is a square array of numbers and has a value obtained by adding or

subtracting products of the numbers taken one from each row and column. Thus

in the simple 2×2 case

|
a b

| 2 by 2 determinant
c d

the value is defined to be a×d – b×c.

In the 3×3 case we might have

a11 a12 a13

| a21 a22 a23 | 3 by 3 determinant

a31 a32 a33

and the value is

a11(a22a33 – a23a32) – a12(a21a33 – a23a31) + a13(a21a32 – a22a31)

which can be expressed in many different ways. Note how each term of the first

row is multiplied by the 2×2 determinant obtained by omitting the row and

column containing the term in the first row. The signs alternate.

Now if we are using x, y, z as coordinates then the equation of the line

joining (x1, y1, z1) to (x2, y2, z2) is

x y z

| x1 y1 z1 | =  0

x2 y2 z2

So the coordinates of the line are the 2×2 determinants

|
y1 z1

| etc.
y2 z2

The condition for three points to lie on a line is simply

x1 y1 z1

| x2 y2 z2 | =  0

x3 y3 z3
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Similar relationships hold for line coordinates and the condition for three lines to

go through a point.

It all works for the finite geometries as well provided we remember to do the

appropriate modulo arithmetic.

Further reading

T
HE TRADITIONAL PROOF of the theorem about squares on a quadrilateral will

be found in Introduction to Geometry by Coxeter; this book also describes

the bends and touching circles. Poems by Soddy and Gosset about the bends will

be found in The Mathematical Magpie compiled by Clifton Fadiman. Proofs of

Napoleon’s theorem, pedal triangles and the trisection theorem will all be found

in Geometry Revisited by Coxeter and Greitzer. The property of hexagons is

mentioned in the article New Names for Old by Kasner and Newman in volume

3 of The World of Mathematics by James Newman.

The use of determinants for projective geometry is described in The Methods

of Plane Projective Geometry based on the use of General Homogeneous

Coordinates by E A Maxwell.



A The Bull and the Man

W
E HAVE SEEN that the square root of 2 and the golden number τ occur

frequently in the geometry of various figures. Thus a diagonal of a square

of unit side has length √2 whereas a diagonal of a pentagon of unit side has

length τ. Generally, √2 crops up in the series of figures related to the cube and

octahedron whereas τ crops up in the series of figures related to the

dodecahedron and icosahedron. We will now look at a very different problem

where both numbers occur.

The problem

S
UPPOSE we have a square field with a gate in one corner as shown below. The

field also contains a man and a bull. The bull is in a corner diagonally

opposite the gate whereas the man is in one of the other corners and thus

equidistant from the bull and the gate.

The man runs towards the gate. If the bull is smart then it will run diagonally

across the field to the gate. The distance the bull has to go is obviously √2 times

the distance the man has to go. So if the man can run at 10 miles per hour then

the bull has to do about 14.14 miles per hour to catch him which sounds too close

for comfort.

gate

bull

man

course of

smart bull

course of

stupid bull

237



B (x, y)

However, if the bull is stupid then it will run towards the man and pursue a

curved course across the field as the man runs along the edge of the field. If the

bull gets to the gate at the same time as the man then the distance the bull travels

is surprisingly τ times the length of the side of the field. So the bull has to travel

at about 16.18 miles per hour. Hmm, still sounds dodgy. The proof is

straightforward but somewhat tedious.

The proof

S
UPPOSE the field is the unit square. The bull starts at A (0, 1). The man starts

at the origin (0, 0). The gate is at (1, 0).

Suppose the bull travels at speed λ times the man. The velocity of the bull is

always directly towards the man. We use the normal x, y coordinates and let s be

the distance the bull has travelled at any time.

Then the curve the bull traverses can be parameterized as 

x = x(s),  y = y(s)

and we have the usual equations

ds2 = dx2 + dy2

or

(ds/dy)2 = (dx/dy)2 + 1
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Suppose the bull is at the point B (x, y). Then the man is at the point M where the

tangent to the path of the bull meets the x-axis. So the distance PM is

dx
- y –– negative sign because slope is negative

dy

So the distance OM which the man has travelled is x - y dx/dy. But the distance

s along the curve AB which the bull has travelled is λ times this because the bull

is λ times faster than the man. So

λ (x - y dx/dy) = s

Now differentiate with respect to y

λ (dx/dy - y d 2x/dy2 - dx/dy) = ds/dy = - √(1 + (dx/dy)2)

Note that we take the negative square root since ds/dy is negative. So

λ y d 2x/dy2 = √(1 + (dx/dy)2)

Now put p = dx/dy. We get

λ y dp/dy = √(1 + p2)

Rearrange and integrate

dp dy
λ

∫
–––––    = 

∫
––

√(1 + p2)          y

This is all standard stuff, we get

λ sinh-1 p = log y + k

where k is the constant of integration. Now we know that at the start, y = 1 and

moreover, the bull goes straight down the y-axis so p = dx/dy = 0. So

λ sinh-1 0 = log 1 + k

Now sinh-1 0 = 0 and log 1 = 0 so k = 0 as well. Hence we get

p = sinh((log y)/λ)

Now replace p by dx/dy, also put μ = 1/λ to make life easier

dx/dy = sinh(μ log y)

Integrate once more

x = ∫ sinh(μ log y) dy
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Now use

sinh z = ½ (ez - e-z)

this gives

x = ½ ∫ (eμ logy - e-μ logy)dy

But of course eμ logy is simply yμ . So

x = ½ ∫ (yμ - y-μ )dy

This is a trivial integration and we get

2x = y1+μ/(1+μ) - y1-μ/(1-μ) + k

where again k is the constant of integration.

But we know two points on the curve, where the bull starts and the gate. So

when x = 0, y = 1 and when x = 1, y = 0. Put these pairs of values in the above

and we get two equations for μ and k.

0 = 1/(1+μ) - 1/(1-μ) + k

2 = k

Substituting k = 2 in the first equation and rearranging

2(1+μ)(1-μ) = (1+μ) - (1-μ)

which reduces to

1 - μ
2 = μ

Putting μ = 1/λ, this becomes

λ
2 - 1 = λ

So finally

λ = τ, the golden number. QED

To finish we will put the values of k = 2 and μ = 1/τ into the equation for x. We

get, after noting that 1 + 1/τ = τ and 1 - 1/τ = 1/τ2,

x = ½(y τ/τ - τ
2y1/τ2

) + 1

In France this curve is known as the courbe du chien. Interesting variations arise

if the angry bull (or mad dog) starts from other places such as (1, 1) or the man

attempts other strategies such as running in a circle.
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B Stereo Images

T
HIS APPENDIX presents stereo images of several of the compound figures

described in Lecture 2 and the Desargues configuration discussed in Lecture

4. Other stereo images relating to projections of objects from four dimensions

into three will be found in Appendix D.

These images have been designed to be viewed from about 30 cm. The left

eye should look at the left image and the right eye at the right image. Some find

it helpful to hold a strip of card in the middle so that each eye can only see the

correct image. 

The trick is to persuade your eyes that you are looking at something more or

less at infinity so far as the muscles which align the eyes are concerned but to

focus on the images which are quite near. If you are short-sighted it could be

better to remove your spectacles and hold the pages somewhat closer. If you are

normal or long-sighted then reading glasses will be found helpful.

Compound figures

In Lecture 2 we described a number of compound figures such as the Stella

Octangula and the amazing compound of five cubes. 

We start with simple images of cubes and tetrahedra.
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A tetrahedron can be inscribed in a cube in two different ways as in the first

two images below. If both tetrahedra are inscribed in a cube and then the cube is

removed we get the compound of two tetrahedra or the stella octangula as shown

in the third and fourth images.
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The space common to the two tetrahedra forming a stella octangula is in fact

an octahedron. This is shown in thinner lines in blue in the first image below.

Deleting the hidden edges makes the structure of the stella octangula much

clearer. The edges of the octahedron form the concave edges of the stella

octangula.

Finally, we see how the octahedron is circumscribed by the original cube.

The vertices of the octahedron lie in the centres of the faces of the cube.
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Similarly, a cube can be inscribed in an octahedron. The vertices of the cube

lie in the centre of the faces of the octahedron.

And of course the nesting can be continued indefinitely. In the bottom figure

the inner cube is one-third of the size of the outer cube.
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These images illustrate the compound of the cube and octahedron. The

common space is a cuboctahedron. This is shown in thinner lines in blue.

The bottom image shows the compound with hidden lines removed. The

edges of the cuboctahedron form the concave edges of the compound.

Similar images of the compound of icosahedron and dodecahedron can be

drawn showing the common icosidodecahedron. 
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The three images below show the icosahedron and the three inscribed golden

rectangles. The top images opposite show a dodecahedron with an inscribed

cube. The lower images show the three double golden rectangles inscribed in a

dodecahedron.

The next two pages show the five positions of the cube in a dodecahedron

and the building of the compound of five cubes as each cube is added in turn. The

colours are as in Lecture 2 except that yellow is replaced by brown and white by

black.
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Desargues’ theorem

The two images below are stereo versions of those used to illustrate the proof of

Desargues’ theorem on pages 85 and 86.

The first image shows the general case where the two triangles ABC and

A'B'C' are not in the same plane and the figure is a complete pentahedron formed

by five planes. The planes of the two triangles contain six points each and are

ABCLMN and A'B'C'LMN. The three other planes involve the point of projection

P and are PBB'CC'L, PCC'AA'M and PAA'BB'N. Note that each point lies in three

planes. The line LMN is the line of intersection of the planes containing the two

triangles and lies in the plane of the paper. The points C and C' are above the

plane of the paper whereas A, A', B and B' are below.

The second image shows the case where the two triangles ABC and A'B'C'

are in the same plane (that of the paper). The green lines form the triangle

A''B''C'' which is in perspective with both ABC (from the point Q) and A'B'C'

(from the point Q' ). The lines through Q and Q' are in red. The red and green

lines and the points Q, Q', A'', B'' and C'' are all above the plane of the paper.

Note that Q and Q' have to lie on a line through P otherwise the pairs of lines

such as AQ and A'Q' would not meet.
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C More on Four

T
HIS APPENDIX looks at a few further aspects of regular and semi-regular

figures in four dimensions. 

Archimedean figures in four dimensions

I
HAD SORT OF PROMISED not to look at this topic but a brief discussion might be

interesting. We can define Archimedean figures in four dimensions as ones in

which each cell is a regular Platonic solid but not all cells are the same. This is

the obvious analogue of the rule in three dimensions which requires each face to

be a regular polygon but not all faces to be the same. 

We also need rules regarding the arrangement of cells around vertices, edges

and faces. Recall that in three dimensions the rule is that the combination of

faces around each vertex shall be the same and arranged in the same way. This

gives rise to the 13 figures described in Lecture 2. We noted that if in addition

we required the faces around each edge to be the same then only two figures

qualified, namely the cuboctahedron and icosidodecahedron.

In four dimensions we obviously require that the arrangement of cells

around each vertex has to be the same. We might find that some special figures

have the same arrangement around each edge and face as well.

In Lecture 3 we introduced the 24-cell by considering the effect of taking a

cubic honeycomb in various dimensions and subdividing alternate cubes and

adding the portions to the surrounding cells. In two dimensions this just gave

another tiling of squares; in three dimensions it gave the honeycomb of rhombic

dodecahedra; in four dimensions it gave the honeycomb of 24-cells.

We can do a similar trick with other configurations. Take for example a

triangle and consider the figure obtained by joining the midpoints of each side.

We just get another triangle as shown below which is rather boring.

Joining the midpoints of

the sides of a triangle just

gives another triangle.
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Now consider what happens in three dimensions if we join the midpoints of

the edges of a tetrahedron. We must take care only to join adjacent points, that is

those points nearest to each other. If the edge of the tetrahedron has length 2 then

the adjacent midpoints are 1 apart. We easily see that the resulting figure is an

octahedron as shown above in stereo. Four faces lie in the four faces of the

tetrahedron and four faces lie parallel to them.

We will now do the analogous construction in four dimensions. The

analogue of a tetrahedron is of course the 4-simplex or 5-cell. This has 10 edges

and so the figure obtained by joining the midpoints of these edges has 10

vertices. None of the four-dimensional figures we have encountered so far has 10

vertices so this is obviously something new. 

We start by considering a stereo image of a 4-simplex as shown below. This

is obtained by projecting the four-dimensional figure onto three dimensions. The

result is a tetrahedron with a fifth point in the centre. Such projections are

considered in more detail in Appendix D.

If we now join the midpoints of the edges the result is the rather confusing

image shown opposite above. However, with care we see that the figure has 10

cells. Five cells are tetrahedra and five cells are octahedra. Three octahedra and

two tetrahedra meet at each vertex. 
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This becomes clearer if we remove the original 4-simplex and colour one

octahedron and one tetrahedron as shown below. The four other tetrahedra have

as base one face of the red octahedron and as apex one vertex of the blue

tetrahedron. The four other octahedra lie between the other faces of the red

octahedron and the faces of the blue tetrahedron. Note that the four tetrahedra

look inverted; this is because the projection is orthogonal. If we had projected

from much nearer then the blue tetrahedron would have been much smaller.

So this is a four-dimensional Archimedean figure. The 30 faces are all

triangles but are not all equivalent. Some faces separate an octahedron and a

tetrahedron whereas others separate two octahedra. There are also 30 edges with

one tetrahedron and two octahedra around each edge. So this figure has a

pleasing duality with 10 cells and vertices and 30 faces and edges. 

The figure is somewhat analogous to the truncated tetrahedron which has

four triangles and four hexagons as faces and in which each triangle is opposite

a hexagon. In the four-dimensional figure each tetrahedron is similarly opposite

an octahedron. 

The figure can also be constructed by considering the truncation of a 4-

simplex. Since the vertex figure of a 4-simplex is a tetrahedron it follows that the

figures obtained at the truncation points are tetrahedra. The cells which also

happen to be tetrahedra are first truncated into truncated tetrahedra and finally

into octahedra.
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The general principle of truncation can be applied to the other regular figures

in the same way. The new cell which emerges at a truncated vertex is of course

the vertex figure while the effect of truncation on the original cells is exactly as

happens with truncation of those cells in three dimensions.

Thus consider the hypercube. The vertex figure of a hypercube is a

tetrahedron and so the new cells created at the 16 vertices are tetrahedra. The 8

cells of a hypercube are of course cubes and these truncate first into truncated

cubes and finally into cuboctahedra. So we see that the resulting figure has 24

cells of which 16 are tetrahedra and 8 are cuboctahedra. One tetrahedron and two

cuboctahedra meet at each edge. The cuboctahedra meet each other at shared

square faces and meet the tetrahedra at shared triangular faces. The figure has 32

vertices since the hypercube has 32 edges.

The 16-cell behaves somewhat differently. The 8 vertices become 8

octahedra and the 16 tetrahedral cells also truncate into octahedra. So the

resulting figure has 24 octahedral cells and is simply the regular 24-cell. So we

have discovered another construction for this curious self-dual figure.

If we now truncate the 24-cell itself, the 24 vertices become 24 cubes

whereas the 24 original octahedral cells become 24 cuboctahedra. Thus the

figure has 48 cells and 96 vertices. One cube and two cuboctahedra meet at each

edge, the cuboctahedra meeting at triangular faces.

So we have discovered two new figures whose cells are mixtures of

cuboctahedra with tetrahedra or cubes respectively. But these do not really class

as four-dimensional Archimedean figures since a cuboctahedron is not regular.

In a similar way, truncating the 120 cell (whose cells are dodecahedra)

results in a figure comprising 120 icosidodecahedra and 600 tetrahedra so that is

not Archimedean either. However, truncating the 600-cell (whose cells are

tetrahedra and vertex figure is an icosahedron) results in a figure comprising 120

icosahedra and 600 octahedra with one icosahedron and two octahedra meeting

at each edge and two icosahedra and five octahedra meeting at each of the 720

vertices. So here is another Archimedean figure. 

The various truncations are summarized in the table above. The situation is

quite different to that in three dimensions where the cube and octahedron (which

are duals) both truncate into cuboctahedra and the dodecahedron and icosahedron

both truncate into icosidodecahedra. In three dimensions the truncation process
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Object Intermediate Final truncation

4-simplex tetrahedra + trunc tetrahedra 5 tetrahedra + 5 octahedra

Hypercube tetrahedra + trunc cube 16 tetrahedra + 8 cuboctahedra

16-cell octahedra + trunc tetrahedra 8 octahedra + 16 octahedra

24-cell cubes + trunc octahedra 24 cubes +24 cuboctahedra

120-cell tetrahedra + trunc dodecahedra 600 tetrahedra + 120 icosidodecahedra

600-cell icosahedra + trunc tetrahedra 120 icosahedra + 600 octahedra



generated 7 (of the 13) Archimedean figures whereas in four dimensions it has

only revealed two.

In seeking other Archimedean figures observe that since adjacent cells share

a face, then all faces must be the same. But the cells must not all be the same

otherwise it would be regular. This means that the faces can only be triangles and

the cells can only be combinations of tetrahedra, octahedra, and icosahedra. Also

there must be at least three cells at each edge just as in three dimensions all solid

figures must have at least three faces at each vertex. Another requirement is that

the sum of the dihedral angles must not exceed 360° just as the sum of the angles

of the faces at a vertex in a three-dimensional figure must not exceed 360°.

We have discovered two, that of 5 tetrahedra and 5 octahedra and that of 120

icosahedra and 600 octahedra. Thorold Gosset (1869–1962), an English lawyer,

was the first to enumerate these Archimedean semi-regular figures and as well as

these two (which he called the Tetroctahedric and the Octicosahedric), he

discovered the only other which he called the Tetricosahedric.

This remarkable figure comprises 120 tetrahedra and 24 icosahedra. It has 96

vertices and these are the points obtained by dividing the 96 edges of the 24-cell

in the golden ratio. Three icosahedra and five tetrahedra meet at each vertex. It

has 432 edges but it is not that regular since some edges are surrounded by one

tetrahedron and two icosahedra and others by three tetrahedra and one

icosahedron. Moreover, it is a snub figure and occurs in enantiomorphic forms.

Coxeter refers to it as s{3, 4, 3} because of its derivation from the 24-cell.

So in contrast to the 13 Archimedean figures in three dimensions, there are

only three such figures in four dimensions; moreover, none is as regular as the

cuboctahedron since in every case the faces are not all equivalent.

Note that the honeycomb of octahedra and tetrahedra in three dimensions

was classified by Gosset as a four-dimensional figure. 

Prisms and hyperprisms

A
REGULAR PRISM in three dimensions consists of two regular polygons joined

by squares as illustrated in Lecture 2. We can describe the creation of a

prism as being done by taking a regular polygon and connecting it point by point

to an equal figure in a parallel plane where the distance between the planes is

equal to the side of the polygons. Note that a square prism is simply a cube.
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Object Cells Faces Edges Verts Dihedral

Tetroctahedric 10 = 5 tetra + 5 octa 30 30 10 289° 28'

Octicosahedric 720 = 600 octa + 120 icosa 3600 3600 720 357° 07'

Tetricosahedric 144 = 120 tetra + 24 icosa 480 432 96 349° 15'

or 346° 54'



We can similarly define a hyperprism as being obtained by taking a

polyhedron and joining it to a similar polyhedron in a parallel space. If the

polyhedron is a cube then the hyperprism is simply the hypercube. We will now

consider some other simple hyperprisms.

If the polyhedron is a tetrahedron, then it is easy to see that the resulting

tetrahedral hyperprism shown above must have 8 vertices (4 from each

tetrahedron) and 16 edges (6 from each tetrahedron and 4 joining the two

tetrahedra). It has 14 faces (4 triangular faces from each tetrahedron plus 6

square faces obtained by joining the 6 pairs of corresponding edges) and 6 cells

(the 2 original tetrahedra plus 4 triangular prisms obtained by joining the 4 pairs

of corresponding faces of the tetrahedra).

Such a hyperprism is sort of regular in that each vertex is the same – one

tetrahedron and three triangular prisms meet at each vertex. On the other hand

the edges are not all the same since some such as AB belong to 2 triangular faces

(ABC and ABD) and 1 square face (ABB'A') whereas others such as AA' belong

to 3 square faces (AA'B'B, AA'C'C, and AA'D'D) and so the tetrahedral

hyperprism is not that regular.

We can create a hyperprism starting from a triangular prism itself as shown

below. This triangular prismatic hyperprism clearly has 12 vertices (6 from each

prism) and 24 edges (9 from each prism and 6 joining the two prisms). It has 19

faces (3 squares and 2 triangles from each prism plus 9 new squares from the 9
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pairs of edges giving 4 triangles and 15 squares in total) and 7 cells (the 2

original prisms plus 2 new prisms from joining the 2 triangular faces of the

original prisms and 3 cubes from joining their square faces giving 4 triangular

prisms and 3 cubes in total).

The triangular prismatic hyperprism is again sort of regular in that each

vertex is the same – two cubes and two triangular prisms meet at each vertex.

It is always worth checking that the Euler formula C–F+E–V is correctly

zero or in other words that C+E and F+V are the same. For the tetrahedral

hyperprism they are both 22 and for the triangular prismatic hyperprism they are

both 31. Note that the corresponding figure for the hypercube is 40 so in some

sense they are simpler structures.

Another approach to understanding these structures is to consider the net for

the hypercube which we met in Lecture 3. It is shown above on the left. This net

comprises two rings of four cubes wrapped around each other. One ring is the

central row of cubes which we know in four dimensions is folded so that the far

left face marked “a” is joined to the far right face also marked “a”. And the other

ring of four cubes consists of the cubes around the central row which we know

also meet in four dimensions since for example the two faces marked “e”

coincide.

We can easily trace these two rings of cubes in the representation shown

above on the right. One ring is composed of the small central cube, the distorted

cube above it, the large cube and then the bottom distorted cube. The other ring

is composed of the four distorted cubes around the middle. We can also trace two

rings another way by taking the small central cube, the distorted cube to the right,

the large cube and then the distorted cube to the left as one ring and then the other

ring is made of the remaining distorted cubes.

We can construct a four-dimensional figure out of two rings of prisms in

many ways. The general case is where there are p q-gonal prisms and q p-gonal

prisms such as five hexagonal prisms and six pentagonal prisms. Note that the

two types of prisms always meet each other in square faces (remember that all

prisms have square faces).
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For example, suppose we have a row of three cubes and then around the

central cube place four triangular prisms as shown above. Again we can identify

the pairs of faces and we have a ring of three cubes and a ring of four triangular

prisms wrapped around each other. Indeed, this is the triangular prismatic

hyperprism once more. The cubes meet the triangular prisms and each other in

square faces whereas the triangular prisms meet each other in triangular faces.

A particularly nice example is that of two rings of three triangular prisms. In

this case the figure comprises 6 cells all of which are triangular prisms and so it

has a high degree of regularity. It has 9 vertices, 6 triangular faces and 9 square

faces and 18 edges. All the vertices are the same and 4 cells meet at each vertex.

Moreover, all the edges are the same and belong to 2 square faces and 1

triangular face. We can call it a triangular pseudohyperprism – it’s not properly

a hyperprism since a hyperprism is obtained by joining two identical polyhedra

by parallel lines. We find that C+E = F+V = 24.

Another fairly simple example of a true hyperprism is the square pyramidal

hyperprism obtained by joining two square pyramids. It has 10 vertices (5 from

each pyramid), 21 edges (8 from each pyramid and 5 joining the two pyramids),

18 faces (4 triangles and 1 square from each pyramid plus 8 square faces from

joining the 8 pairs of corresponding edges giving 8 triangles and 10 squares in

total) and finally 7 cells (the 2 original pyramids plus 1 cube obtained by joining

the square bases of the pyramids and 4 triangular prisms obtained by joining the

four triangular faces of the pyramids). We check that C+E = F+V = 28. This

figure is not at all regular since not even the vertices are the same (that’s largely

because the vertices of a square pyramid are not all the same in the first place).

Moreover, it has three different kinds of cells.

Although a square pyramid is not regular, two pyramids form an octahedron

which is regular, so we should consider the octahedral hyperprism. It has 12

vertices (2 from each octahedron), 30 edges (12 from each octahedron plus 6

joining the two octahedra), 28 faces (8 triangles from each octahedron plus 12

squares from joining the 12 pairs of corresponding edges) and finally 10 cells

(the 2 original octahedra plus 8 triangular prisms obtained by joining the 8 faces

of the octahedra). Note that C+E = F+V = 40, the same as the hypercube.
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We conclude with a few words about hyperpyramids. A pyramid is obtained

by joining a point to each vertex of a plane figure (a tetrahedron is simply a

triangular pyramid). A hyperpyramid is similarly obtained from a polyhedron by

joining each vertex to a point in the fourth direction. If the polyhedron is a

tetrahedron then we simply get the 4-simplex (or 5-cell) and so the 4-simplex is

simply a tetrahedral hyperpyramid.

If we start with a cube we get a cubic hyperpyramid. This has 9 vertices

(8+1), 20 edges (12+8), 18 faces (6 squares plus 12 triangles) and 7 cells (1 cube

plus 6 square pyramids). So C+E = F+V = 27.

If we start with a triangular prism we get a rather odd figure. It has 7 vertices

(6+1), 15 edges (9+6), 14 faces (3 squares plus 2+9 triangles) and 6 cells (1

triangular prism, 3 square pyramids and 2 tetrahedra (triangular pyramids)). So

C+E = F+V = 21. 

And if we start with a square pyramid we get a square pyramidal

hyperpyramid. This has 6 vertices (5+1), 13 edges (8+5), 13 faces (1 square plus

4+8 triangles) and 6 cells (2 square pyramids and 4 tetrahedra). So C+E = F+V

= 19. Note that the two square pyramids are similarly arranged. We can think of

this figure as being obtained from a base square in two dimensions and then we

add two further points one in each of two other dimensions and join these points

to the square and to each other. 

All the figures we have discussed in this section plus the tetroctahedric are

summarized in the table above in ascending order of the values of C+E. Note that

all the faces are either triangles or squares.

Apart from the truly regular figures, two are of especial note for their

regularity. One is the tetroctahedric which is notable in that all its faces are

triangles. The other is what we have called the triangular pseudohyperprism all

of whose cells are the same even though the cells themselves being triangular

prisms are not regular.
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Object Cells, C Faces, F E V C+E

4-simplex 5 = 5 tetrahedra 10 = 10t 10 5 15

Squ pyrd hypyrd 6 = 2 pyr, 4 tetra 13 = 12t+1s 13 6 19

Tri prism hypyrd 6 = 1 triprsm, 3 pyr, 2 tetra 14 = 11t+3s 15 7 21

Tetra hyprism 6 = 2 tetra, 4 triprisms 14 = 8t+6s 16 8 22

Tri pseudohyprism 6 = 6 triprisms 15 = 6t+9s 18 9 24

Cubic hypyrd 7 = 1 cube, 6 pyr 18 = 12t+6s 20 9 27

Squ pyrd hyprism 7 = 2 pyr, 1 cube, 4 triprsm 18 = 8t+10s 21 10 28

Tri prsm hyprism 7 = 4 triprisms, 3 cubes 19 = 4t+15s 24 12 31

Hypercube 8 = 8 cubes 24 = 24s 32 16 40

Octa hyprism 10 = 2 octa, 8 triprisms 28 = 16t+12s 30 12 40

Tetroctahedric 10 = 5 tetra, 5 octa 30 = 30t 30 10 40

16-cell 16 = 16 tetrahedra 32 = 32t 24 8 40



D Schlegel Images

I
N LECTURE 5 we introduced the idea of a Schlegel diagram as a convenient way

of representing the topology of a three-dimensional object such as an

octahedron as a two-dimensional image.

In this appendix we look at this process for three-dimensional objects in a

little more detail and then consider the corresponding process for four-

dimensional objects. 

Schlegel diagrams

A
SCHLEGEL DIAGRAM of a three-dimensional object is obtained by projecting

the object onto a plane. If the viewpoint is sufficiently close to one face then

the projection of that face surrounds the projection of the other faces. This means

that in topological terms we can think of the space outside the image as

representing the near face.

Take the cube for example (a bit of a special case). If we view a cube of edge

2x from a point 2x from the centre on an axis through the centre of a face then

we see the second image below. If we move further away to say 5x then the

opposite face becomes proportionately much larger. If we move to infinity then

we get an orthogonal projection and the near and far faces coincide so all we see

is a square. However, we might consider the view from the circumsphere as

canonical and in the case of the cube this is at distance √3x (= 1.732x) from the

centre. This is the first image below and is the one used in Lecture 5.

Note that in each case the projections are onto the plane through the centre

of the cube so as we move away the near face gets smaller but the far face gets

a bit larger.

The images of the various squares are of three different kinds. First there is

the image of the opposite face at level 1, then the four side faces at level 2 and

finally the near face at level 3. We can designate the pattern as (1, 4, 1).

Projections of a cube from √3x, 2x, 5x, and infinity.
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We can do the same sort of thing with the octahedron. One key difference is

that the opposite faces of an octahedron are oriented differently and so do not

coincide when viewed from infinity. Another big difference is that if we view an

octahedron from far away then we can see some of the side faces whereas in the

case of the cube that is not possible if we look at it face on. So if we get too far

away the projection of the nearest face no longer surrounds the projection of all

the other faces. If the edge of the octahedron is 2x then the critical point is when

we view it at a distance of √6x (= 2.449x) from the centre. Three of the triangles

in the projected image then degenerate.

The diagrams above show the view from the circumsphere (1.414x), from

2x, from the critical point (2.449x), and from infinity.

The projection of the octahedron has triangles at four different levels and the

overall pattern is (1, 3, 3, 1).

The dodecahedron portrays similar behaviour to the octahedron. Again the

opposite faces are oriented differently and again if viewed from afar then some

of the side faces are visible. Suppose that the edge of the dodecahedron is 2x/τ

where τ is the golden number. Then the circumradius is √3x (= 1.732x) and the

critical point where the projected image of the first set of faces degenerates is at

√(4τ+3)x (= 3.078x) from the centre.
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Projections of an octahedron from √2x, 2x, √6x, and infinity.

Projections of a dodecahedron from √3x, 2.5x, √(4τ+3)x, and infinity.



The diagrams opposite show the view from the circumsphere (1.732x), from

2.5x, from the critical point (3.078x), and from infinity.

The projection of the dodecahedron has pentagons at four different levels

and the overall pattern is (1, 5, 5, 1).

The tetrahedron is very boring. If you look at it face on then no matter how

far away or near the projection is always just a triangle subdivided into three

equal triangles. The pattern is simply (3, 1).

To complete the five Platonic solids we need to consider the icosahedron

which behaves somewhat differently. From afar, two distinct sets of side faces

are visible and the projections of these sets degenerate at different points. So

there are two critical points. 

If the edge is 2x/τ (we use the same scale as for the dodecahedron since the

figures are dual), then the circumradius is √(3–τ)x = 1.175x. The first critical

point is at √(3/5)τx = 1.253x and the second critical point is at √3τx = 2.802x.

The diagrams above show the view from the circumsphere (1.175x), from

the first critical point (1.253x), from 2x, from the second critical point (2.802x),

and from infinity. The icosahedron has triangles at six different levels and the

overall pattern is (1, 3, 6, 6, 3, 1).

Before embarking on projections of four-dimensional figures, it is worth

considering whether the projection of the three-dimensional figures would help

a Flatlander to gain a better impression of them. Well, maybe. It's hard to know.
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Projections of an icosahedron from √(3–τ)x, √(3/5)τx, 2x, √3τx, and infinity.



The hypercube

T
HE OBVIOUS ANALOGY of the Schlegel diagrams for three-dimensional objects

is to consider the projection of a four-dimensional object into (or onto) a

three-dimensional space. 

Again there are a number of possibilities. We can project from various

distances and from various angles. The natural analogy to the projections we

have just seen is to project from a point on the circumhypersphere where an axis

through the centre passes through the centre of a cell. We might then consider

how the projection changes as the viewpoint moves along the axis to infinity.

The projected images are of course three-dimensional figures and in order to

gain a good comprehension of them the figures are rotated slightly and also

presented as stereo images.

We begin with the hypercube. If the edge of the hypercube is 2x then the

radius of the circumhypersphere is also 2x. That is obtained by applying

Pythagoras in four dimensions so the square of the radius is x2+x2+x2+x2 = 4x2.

The result is the familiar figure shown below. The inner cube is at level 1, the

distorted cubes around it are level 2 and the outer cube is level 3. So using the

notation of the previous section, the image has pattern (1, 6, 1). If we move the

point of projection to infinity then the inner and outer cubes coincide and the

image is uninteresting just as the projection of a cube onto a plane from infinity

is uninteresting.

We can of course project from points in different directions. Obvious choices

are through the centre of a face, through the centre of an edge and through a

vertex. And we can consider projections from the circumhypersphere or from

infinity or somewhere in between.

Suppose for example that we project through the centre of an edge from the

circumhypersphere. This gives the top image opposite which is somewhat

confusing. There are eight cubes here but only three somewhat distorted ones are

clearly visible.

Things become a bit clearer if the viewpoint is moved to infinity as shown

next. However, there is still some confusion because two edges (and hence two
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Projection of a hypercube cell first from the circumhypersphere.



pairs of points) have become exactly superimposed and appear as a single edge

in the middle of the diagram so that it looks overall like a hexagonal prism. 

If we move the direction of projection very slightly then the two edges

become distinct and we get the view shown below. It is this view that was used

in Lecture 3 when we were discussing the appearance of a hypercube crossing

our space in various orientations. It should now be clear that there are three cubes

around both of the now separated central edges. The other two cubes are

extremely flattened in this view and comprise the two hexagonal faces of the now

broken prism.
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Projection of a hypercube nearly edge first from infinity.

Projection of a hypercube edge first from the circumhypersphere.

Projection of a hypercube edge first from infinity.



The 16-cell

I
T WILL BE REMEMBERED that the 16-cell is the dual of the hypercube in the same

way that the octahedron is the dual of a cube. In a hypercube, each cell (a cube)

is surrounded by six other cells (cubes). In the case of a 16-cell, the individual

cells are tetrahedra and each cell (a tetrahedron) is surrounded by four other cells

(tetrahedra).

The view of the 16-cell from the circumhypersphere in a direction through

the centre of a cell is shown below. The overall figure is a tetrahedron in green

(the cell nearest the view point). In the centre is a smaller tetrahedron in red (this

is the opposite cell to the view point). A dot is shown in their common centre to

aid perspective. The inner tetrahedron at level 1 is surrounded by four others at

level 2, one on each face of the inner one. Each level 2 tetrahedron shares three

vertices with the inner one and shares one vertex with the outer tetrahedron. 

Another group of tetrahedra at level 3 share two vertices with the inner one

and two vertices with the outer one – that is they share an edge with each. There

are six of these level 3 tetrahedra and they each share two faces with level 2

tetrahedra and two faces with yet another group of tetrahedra at level 4. The level

4 tetrahedra share three vertices with the outermost tetrahedron at level 5 and one

vertex with the inner tetrahedron. 

So there are five levels for the projection of the 16-cell and the symbol for

the pattern is (1, 4, 6, 4, 1). These total 16 as expected.

It should be noted that the tetrahedra at level 4 are in fact degenerate in this

view and have fallen flat. So (rather surprisingly) being on the

circumhypersphere is not close enough in four dimensions to ensure that all cells

are projected properly inside the image of the outer cell. Using the terminology

for discussing the projections of three-dimensional objects we see that the point

on the circumhypersphere is in fact a critical point and we should really project

from a little closer.
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Projection of a 16-cell, cell first, from the circumhypersphere.



If the edge of the 16-cell is √2x then the circumradius is x and the centre of

a cell is at 0.5x – this is the radius of the inscribed hypersphere. So we consider

moving the viewpoint somewhere between x and 0.5x. In the following diagrams

the projection is onto the space of the near cell itself. This means that the image

of the near cell remains constant. 

The view above is from 0.75x. The level 4 tetrahedra are now no longer

degenerate. This image is quite attractive and physical models of it are

instructive. Such models were commercially available in Germany as

educational aids/toys in the period from about 1890 to 1910.

If we now move the projection point away towards infinity then the inner

tetrahedron grows. Its vertices reach the faces of the outer tetrahedron when the

viewpoint is at x on the circumhypersphere as seen earlier. 
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Projection of a 16-cell, cell first, from 0.75x.

Projection of a 16-cell, cell first, from 2x.



As the viewpoint moves further away, the vertices of the inner tetrahedron

project beyond the faces of the outer tetrahedron and so the level 4 tetrahedra

become reversed. The image when the viewpoint is at 2x was shown above. It has

a slight appearance of being a distorted cube. And note how the red edges of the

inner tetrahedron are approaching the green edges of the outer tetrahedron.

When the viewpoint reaches infinity, the edges of the inner and outer

tetrahedra meet. The inner and outer tetrahedra in fact become related as the two

tetrahedra of the stella octangula and the overall figure becomes the surrounding

cube. Note that the cube is composed of the black lines joining the original inner

and outer tetrahedra and those tetrahedra are the diagonals of the cube. The level

3 tetrahedra then become degenerate and form the six faces of the cube. This

view is shown below and was the view of the 16-cell used in Lecture 3 although

the latter was rotated differently. This figure seems a little difficult to appreciate.

We are so used to seeing cubes that the tetrahedra are obscured. Moreover, the

cube is presented at a slightly unfamiliar angle.

Does this sequence of views of the 16-cell help us humble three-dimensional

beings to appreciate its construction? The author thinks so although the reader

might disagree.

Another way to see what is going on is to consider the image starting from

the inner tetrahedron as successive levels are added. In the stereo images

opposite, of the view from 0.75x, the hidden lines are removed and concave

edges are shown in thinner lines.

First we start with the level 1 inner tetrahedron. Then we add the four level

2 tetrahedra which hide the level 1 tetrahedron completely.

We next add the six level 3 tetrahedra which in turn hide the level 2

tetrahedra. And finally, we add the four level 4 tetrahedra which hide the level 3

tetrahedra and this results in the overall shape of the outer level 5 tetrahedron.

So the overall structure is a bit like a Russian doll with each layer of

tetrahedra completely covering the others in turn.
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Projection of a 16-cell, cell first, from infinity.
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Building up the image layer by layer.

Level 1.

Add

level 3.

Finally,

add

level 4.

Add

level 2.



The 24-cell

W
ITH a certain amount of trepidation we can consider similar projections of

the other regular four-dimensional figures such as the 24-cell. 

There are a number of ways of constructing a 24-cell. One is to add

hyperpyramids to the cells of a hypercube (this was described in Lecture 3 when

considering honeycombs in four dimensions). Another way is to join the

midpoints of the edges of a 16-cell as mentioned in Appendix C. By duality, if

we join the midpoints of the faces of a hypercube we also get a 24-cell. This is

because the hypercube and 16-cell are dual and edges and faces are dual in four

dimensions.

We start by joining the midpoints of the edges of the 16-cell and use the

second of the views in the previous section with the viewpoint obtained at 0.75x.

The result is shown below. It is a bit confusing at first sight. Remember that a 24-

cell comprises 24 octahedra. There is an inner octahedron in red and an outer

octahedron in green. These correspond to truncating the inner tetrahedron and

outer tetrahedron of the parent 16-cell. Lying between these two octahedra is a

black cuboctahedron. The cuboctahedron is joined to the inner octahedron by

pale blue lines and to the outer one by pale brown lines. We now need to find the

remaining 22 octahedra.

There is a level 2 octahedron on each face of the inner red one. Its opposite

face is one of the triangular faces of the black cuboctahedron and these two faces

are joined by blue edges. There are eight level 2 octahedra.

The level 3 octahedra share one vertex with the inner red octahedron and one

vertex with the outer green octahedron. The square faces of the cuboctahedron

are equatorial squares of these octahedra. There are six level 3 octahedra.

Finally, there is a level 4 octahedron on each face of the outer green

octahedron. Its opposite face is again one of the triangular faces of the black

cuboctahedron. This means that each level 4 octahedron shares a face with a

level 2 octahedron. And naturally there are eight level 4 octahedra.

So there are five levels for the projection of the 24-cell (the same as for the

16-cell) and the symbol for the pattern is (1, 8, 6, 8, 1) and these total 24 as

required. 
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Projection of a 24-cell, cell first, from 0.75x.



The image above shows just one octahedron from each level and might help.

On the right is a level 3 octahedron joining the vertices of the inner and outer

octahedra. At the bottom left a level 2 and a level 4 octahedron are shown – they

share a common face and a face of the inner and outer octahedra.

Further insight is gained by considering the images as the various levels are

added. In the images below the hidden lines are removed and concave edges are

thinner. 

We start with the level 1 inner octahedron. Adding the eight level 2

octahedra produces the cuboctahedron with deep dimples on its square faces

reaching down to the vertices of the hidden inner octahedron. Adding the six

level 3 octahedra fills these dimples and produces a figure which reaches out to

the final vertices of the full image. Note that the triangular faces of the

cuboctahedron are still visible – they are of course actually faces of the level 2
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The projection showing just one cell from each level.

Add

level 3.

Add

level 2.

Level 1.



272 Gems of Geometry

octahedra. And finally, adding the very flattened level 4 octahedra completes the

outer level 5 octahedron.

Note that the cuboctahedron is a cross-section of the 24-cell. There are in

fact 12 such cuboctahedra, one for each pair of opposite cells. Another is shown

below in thicker lines. It is so distorted that it has collapsed into a single plane

and so appears as a Schlegel diagram of a cuboctahedron.

The 24 vertices of a 24-cell define three associated hypercubes and three

associated 16-cells.

The hypercubes are constructed from the equatorial squares of the octahedra.

Consider for example the level 3 octahedron on the right in the earlier diagram

and its equatorial square that is a face of the cuboctahedron. This square shares

edges with equatorial squares of all the adjacent octahedra. If we trace these

adjacent squares throughout the 24-cell we find that we have discovered a

hypercube lurking inside the 24-cell. The hypercube has 24 faces, one for each

octahedron of the 24-cell.

However, we can do this process by starting with any of the equatorial

squares of the first octahedron. And since an octahedron has three equatorial

squares it follows that there are three related hypercubes inscribed in a 24-cell.

The three are shown above opposite using the same colours as the 24-cell.

It will be recalled that compounds can be formed in three dimensions such

as the compound of five cubes. If we put the three hypercubes associated with a

Finally,

add

level 4.

Another cuboctahedron appearing as a Schlegel diagram.
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24-cell together then we form a compound of three hypercubes. This is shown

below where the hypercubes are now red, blue and green. 

The compound looks remarkably like the original 24-cell with the colours of

the edges changed. But this is not really the case. The faces of the 24-cell are all

Three hypercubes related to a 24-cell.

The compound of three hypercubes.



274 Gems of Geometry

triangles whereas those of the hypercubes are of course squares. Thus although

the edges are all the same the faces are not and so the two structures are quite

different. This difference is clarified by removing the hidden lines. In the case of

the 24-cell all that can be seen is the outer level 5 octahedron as shown earlier.

However, in the case of the compound of hypercubes we get the dimpled figure

shown above where the triangular faces are parts of the square faces of the

hypercubes.

Each hypercube shares 16 vertices with the 24-cell. The remaining 8 vertices

define a related 16-cell. This is to be expected because the hypercube and 16-cell

are dual and the 24-cell is self-dual – as a consequence any relationship between

the 24-cell and a hypercube must be mirrored by a similar relationship with a 16-

cell. The 24 edges of the 16-cell are those diagonals of the octahedra which join

the pairs of points not on the equatorial squares forming part of the

corresponding hypercube. In other words, starting with a diagonal of an

octahedron we build up the 16-cell using adjacent diagonals just as the

hypercube was built up using adjacent equatorial squares. And since an

octahedron has three diagonals it follows that there are three associated 16-cells

just as there are three hypercubes.

The 16-cell corresponding to the first of the hypercubes is shown below.

Note that the edges of the 16-cell are not edges of the 24-cell. This corresponds

to the fact the the faces of the hypercube are not faces of the 24-cell either.

Remember that in four dimensions the dual of a line is a plane and vice versa

whereas in three dimensions a line is self-dual.

A 16-cell from 8 points of a 24-cell.

The compound of three hypercubes with hidden lines removed.



We can merge the 16-cell and corresponding hypercube to produce a

compound figure using all 24 vertices of the original 24-cell. And naturally there

is also a compound of three 16-cells.

In three dimensions we met such compounds as the stella octangula (two

tetrahedra in a cube), the mixed compound of cube + octahedron and the

compound of five cubes. We have just seen that in four dimensions there are

compounds of three 16-cells, three hypercubes, and a mixed compound of

hypercube + 16-cell. There are others as well but enough is enough.

The 120-cell, 600-cell and tetroctahedric

S
IMILAR projections and images can be created for the 120-cell (whose cells

are dodecahedra) and the dual 600-cell (whose cells are tetrahedra). Needless

to say they are not easy to depict in the same manner because there are just too

many edges (1200 and 720 respectively). However, it is worth stating the general

arrangement.

The projection of the 120-cell has a level 1 inner dodecahedron at its centre.

This is surrounded by 12 level 2 dodecahedra one on each face of the inner

dodecahedron. The result has 20 dimples and the level 3 dodecahedra lie in these

dimples. And so on. The final pattern is (1, 12, 20, 12, 30, 12, 20, 12, 1) which

adds to 120. So the dodecahedra lie in nine different levels.

The 600-cell is even more hazardous. It starts with a level 1 inner

tetrahedron at its centre and this is surrounded by 4 level 2 tetrahedra. The level

2 tetrahedra now have 12 exposed faces (3 each) and on these are placed 12 level

3 tetrahedra. And so on. Altogether the pattern has an amazing 31 levels: (1, 4,

12, 24, 12, 4, 24, 24, 32, 24, 12, 24, 28, 24, 24, 54, 24, 24, 28, 24, 12, 24, 32, 24,

24, 4, 12, 24, 12, 4, 1). 

Although we cannot depict these elaborate objects we will finish by showing

the tetroctahedric introduced in Appendix C. This is the simplest of the four-
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A compound of a hypercube and corresponding 16-cell.



dimensional Archimedean figures and has 10 cells, 5 tetrahedra and 5 octahedra.

It is thus possible to produce two different images, one with an octahedron at the

centre and the other with a tetrahedron at the centre. Both images are shown

above.

They are intriguing images with a mixture of tetrahedra and octahedra very

clearly visible. They echo the structure of the 16-cell and the octahedra give a

flavour of the 24-cell without being overwhelmingly complex. In the top view

above, the inner tetrahedron at the centre at level 1 is surrounded by four

octahedra at level 2. Then there are four tetrahedra at level 3 and finally the outer

octahedron at level 4. So the pattern is (1, 4, 4, 1).

The reader is invited to contemplate images of some of the other simple

figures discussed in Appendix C such as the triangular pseudohyperprism which

is composed of six triangular prisms.

Two images of the tetroctahedric.
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E Crystals

A
SET OF LECTURES entitled gems of geometry must clearly say something

about crystals. We start by considering the problem of packing spheres.

Packing of spheres

T
HE PROBLEM of how best to pack spheres together to occupy the least space

has been studied for a long time. Familiar examples of this occur in the

packing of oranges on a greengrocer’s display or the stacking of cannonballs in

a pile.

Let us first consider the analogous simple problem of packing circles in two

dimensions, that is on a plane. We could of course pack them in rows and

columns but this is not at all good. Since the area of a circle is πr
2 and the area

of a square of side 2r is 4r
2 the fraction of the space occupied by the circles is

πr
2 ÷ 4r

2 = π/4 or about 0.785....

A much better packing is where the centres of the circles are arranged as the

vertices of the tiles in the triangular tiling. The area of a triangle of side 2r is √3r
2

but this corresponds to the space occupied by only half a circle (three sectors

each of which is one-sixth of a circle) so the fraction of the space occupied by

the circles is 1/2πr
2 ÷ √3r

2 = π/2√3 or about 0.906.... This is in fact the best

Packing circles as in a square tiling is very inefficient.

Only some 78.5% of the space is utilized.

Area of square is 2r × 2r = 4r2,

area of 4 sectors of circle is πr2,

ratio = π/4 = 0.785....

Packing circles as in a triangular tiling is much more

efficient. Over 90.6% of the space is utilized.

Area of triangle is r × √3r = √3r2,

area of 3 sectors of circle is 1/2πr2,

ratio = π/2√3 = 0.906....
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packing possible. We recall from Lecture 2 that trees in an orchard are grown

arranged as in the triangular tiling because this gives maximum land utilization. 

The analogous problem in three dimensions is how to pack spheres so that

the least space is occupied.

Cannonballs are usually piled with the first layer of balls arranged in the

square pattern. Balls for the second layer are then placed above the gaps so that

each ball in the second layer touches four balls in the layer below.

In the diagram above the first layer of balls is shown in black and the second

layer is shown in red. (We are looking down of course.) Each red ball touches

four black balls in the layer below and four other red balls in its own layer. We

can then add a third layer of black balls in the gaps in the second layer so that the

balls in the third layer are immediately above those in the first layer and so on.

It is clear that each ball then touches twelve other balls.

In order to compute the packing consider a section downwards and at 45° so

that it goes through the points where the black and red balls touch. In this section

the distance between the centres of the black balls on the bottom layer (we

assume the balls have radius r) is 2√2r. By considering the triangle of centres

between two black balls and the red ball above we have a triangle whose base is

2√2r and whose sloping sides are 2r. The height of the triangle is therefore √2r.

So we have shown that the layer of red balls is √2r above the layer of black balls

whereas if the red balls had been directly over the black balls the red layer would

have been 2r above the black layer – an improvement of a factor of √2.

Incidentally this slice reveals the square arrangement once more.

Alternate layers of red and

black cannonballs where

each layer is packed as a

square tiling.

About 74% of the space is

utilized.

A vertical and diagonal slice

at 45° through the points of

contact between the two

layers.

The base of the triangle is

2√2r and its height is √2r.
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Now since the volume of a sphere is 4/3πr
3 and the volume of a cube of side

2r is 8r
3, the density of packing for a simple cubic arrangement would be 4/3πr

3

÷ 8r
3 = π/6 or about 0.523.... It follows that the density for the arrangement we

have been discussing is √2π/6 or about 0.740....

Another way to stack things is to start with the triangular pattern for the first

layer and then to place the second layer such that each ball is above a gap in the

first layer. This time however each ball in the second layer will only touch three

balls in the layer below. Moreover, the balls in the second layer are directly

above only half of the gaps in the first layer. If a third layer is now added then

we have a choice – either the balls in that layer are above the spare gaps in the

first layer or they can be above the first layer. It clearly doesn’t make any

difference to the packing density. We choose to place the third layer over the

spare gaps in the first layer. The fourth layer can then be directly above the gaps

in the second layer and so on. Observe that although each red ball only touches

three balls in the layer above and in the layer below, it now touches six other red

balls in its own layer. So altogether each ball still touches twelve other balls.

In order to compute the packing we note that the centres of a red ball and the

three black balls in the layer below are arranged as the vertices of a tetrahedron

ABCD. If an equilateral triangle ABC has side 2r then its height MC is √3r. Since

the centre of a triangle G is one-third of the way up the median MC this means

that the distance between a vertex C at the foot of the tetrahedron and the point

Alternate layers of red

and black cannonballs

where each layer is

packed as a triangular

tiling.

Again 74% of the space is

utilized.

D

C
B

A

M

G

Using Pythagoras on AMC

we deduce that MC is √3r. 

Hence GC is 2√3r/3.

Then in DGC we apply

Pythagoras again and obtain

DG = √(8/3)r.



The four sloping sides show

the triangular packing.

The horizontal planes and

two vertical diagonal planes

show the square packing.

3 square + 4 triangular.

G of the base under the top vertex is 2√3r/3. Finally, from the triangle DGC we

deduce that the height DG of the tetrahedron is √(8/3)r. 

Now the density of the packing for a triangular packing of spheres in a single

layer can be calculated in much the same way as for the triangular tiling of

circles. We get 2/3πr
3 ÷ 2√3r

3 = π/3√3 or about 0.604.... This would be the

packing density if the triangular packed layers were placed directly on top of

each other. But we know that we have an improvement over that by the ratio of

the height of the tetrahedron to 2r. So we finally deduce that the packing must be

π/3√3 × 2/√(8/3). This reduces to √2π/6. Gosh, that’s the same as before. The

saving by making the layers better packed is exactly compensated by the layers

being further apart.

The reason why the two packings give the same result is that they are the

same packing but looked at from a different angle. In order to justify this perhaps

surprising statement we will show that both configurations have planes revealing

the square and triangular tilings.

If we make a square pyramid on a base using the square packing as below

then the four sloping sides reveal the triangular tiling where each sphere is

surrounded by six others. Moreover, we have already seen that a vertical slice

through a diagonal reveals the square tiling again. Since there are two diagonals

this means that three directions of planes in total show the square tiling and four

planes show the triangular tiling – seven planes in total.

If we make a hexagonal pyramid as opposite in which the horizontal layers

have the triangular packing then three of the six sloping faces reveal the square

packing and the other three reveal the triangular packing. Again we have seven

planes – four show the triangular packing and three show the square packing.

So it is clear that the packings are the same. Moreover, we recall from

Lecture 2 that a cuboctahedron has 12 vertices and 14 faces arranged as 7 parallel

pairs. It is now easy to see that the 12 spheres touching a sphere are arranged as
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the vertices of a cuboctahedron. The triangular faces of the cuboctahedron

correspond to the four planes with the triangular packing and the square faces of

the cuboctahedron correspond to the three planes with the square packing. 

Another way of looking at this is to recall that the dual of the cuboctahedron

is the rhombic dodecahedron which has 14 vertices and 12 faces. We can place a

sphere inside a rhombic dodecahedron so that the 12 faces are all tangent planes

to the sphere. The sphere touches each face at its centre. Now a honeycomb can

be formed from rhombic dodecahedra and if this is done then the spheres inside

will all be touching each other and form the arrangement we have been

discussing. So it all fits together.

The north, south-east and south-west sloping sides plus the horizontal planes

show the triangular packing. The north-west, north-east and south sloping sides

show the square packing. 3 square + 4 triangular.

The 12 spheres

surrounding one

sphere are arranged

as the vertices of a

cuboctahedron.
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In the hexagonal close

packing the 12 spheres

surrounding one

sphere are arranged

as the vertices of a

twisted cuboctahedron.

It will be noticed that the twelve spheres at the vertices of the cuboctahedron

are not arranged uniformly. There are big gaps between those at the corners of a

square. Another figure with twelve vertices is the icosahedron and if we place

spheres at its vertices just touching an equal sphere in the centre then none of the

twelve spheres touch each other. This is because the circumradius of an

icosahedron (the distance from the centre to a vertex) is less than the length of

the edge. In fact if the length of the edge is 2 then the circumradius is τ√(3 – τ)

= 1.902... where τ is the golden number.

Because of this apparent slack it was wondered for many centuries whether

a better packing of spheres could be found. Kepler conjectured that the packing

we have described was the best but the matter was not settled until 1998 when

Tom Hales showed conclusively with a computer assisted proof that this

traditional packing could not be bettered. 

We conclude by considering the other way of arranging the triangular layers.

If we place the third layer directly over the first layer and then the fourth directly

over the second and so on, we get the arrangement above. This is called the

hexagonal close packing. It has the same packing density of course. However,

there are a number of differences. For one thing there are vertical gaps all the

way through. And although each sphere touches 12 others they are no longer

arranged as the vertices of a cuboctahedron but as the vertices of a related figure

which consists of a cuboctahedron with one “hemisphere” twisted in relation to

the other.

Hexagonal close

packing in which

alternate layers are

above each other.

Note the vertical gaps

through the layers.
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Crystals

T
HE PACKING OF SPHERES naturally leads us to consider the arrangement of

atoms in crystals. This is a complex subject and we cannot cover it

thoroughly. However, since these lecture notes are entitled Gems of Geometry it

would seem unreasonable not at least to consider the arrangement in some

compounds such as those constituting gemstones.

The arrangement of crystals is primarily driven by considerations of the

minimization of energy; not only does this involve the distance between atoms

but complexity is introduced because of valency and bond angles.

One very obvious possibility is where the atoms are placed at the vertices of

a honeycomb of cubes. This is not a particularly dense packing. If we have

touching spheres of radius r at each point then this means that each cubic cell has

side 2r and thus volume 8r
3. Each cell contains one-eighth of each of eight

spheres and thus the total volume is 4/3πr
3 so that the proportion occupied by the

spheres is 4/3πr
3 ÷ 8r

3 = π/6 or about 0.523.... So this simple cubic lattice has a

packing of 52% compared with the maximal 74% discussed above.

Another common structure is where the basic cubic cell also has an atom at

the centre of the cube. For a cube of side 2r the space diagonal is 2√3r. For equal

spheres at the centre and vertices this means that touching spheres have to have

radius 1/2√3r; the volume of each sphere is then 1/2√3πr
3. Note that the sphere at

the centre touches the spheres at the vertices but those at the vertices no longer

touch each other. Each cell now contains one-eighth of each of eight spheres plus

one sphere at the centre – total two spheres and so the total volume is √3πr
3. It

follows that the proportion occupied by the spheres is √3πr
3 ÷ 8r

3 = √3π/8 or

about 0.680.... So this arrangement which is known as the body-centred cubic

lattice has a packing of 68%.

A further possibility is where there are additional atoms in the centres of the

faces of the cube rather than at the centre. This gives the face-centred cubic

lattice. For equal touching spheres their radius now has to be 1/2√2r so that their

volume is 1/3√2πr
3 each. Each cell now contains one-eighth of each of eight

Simple cubic lattice,

packing is 52%.

Body-centred cubic

lattice,

packing is 68%.

Face-centred cubic

lattice,

packing is 74%.
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spheres plus one-half of each of six spheres – total four spheres and so the total

volume is 4/3√2πr
3. It follows that the proportion occupied by the spheres is

4/3√2πr
3 ÷ 8r

3 = √2π/6 or about 0.740.... Gosh, that is a familiar number and

indeed by looking at this packing carefully we find that it is the same

arrangement as discussed earlier. The planes containing the faces of the cubes

exhibit the square tiling (but at 45° to the edges of the cubes) and the planes

containing the faces of the inscribed tetrahedra (these planes are perpendicular to

the space diagonals) exhibit the triangular tiling.

Common salt, sodium chloride, NaCl, has the sodium and chlorine atoms at

alternate vertices of the simple cubic lattice. In the diagram above the sodium

atoms are shown in red and the chlorine atoms are in green. Another way of

looking at this structure is to observe that the chlorine atoms occur at the points

of a face-centred cubic lattice. So it comprises two such face-centred lattices

interleaved. 

Salt normally forms small cubic crystals. However, although the lattice is

primarily cubic, crystallization can occur along other planes. The preferred

planes are those with a high density of atoms. With a unit side to a cube, then

each unit area of a plane containing the faces of the cubes exhibits the square

tiling and contains 1 atom per unit area. However, if we take a plane defined by

opposite edges of a cube, then we get a tiling of rectangles whose edges are 1 and

√2. On such a plane the density is 1/√2 or about 0.707 atoms per unit area.

Another possibility is to take a plane defined by one of the faces of an inscribed

tetrahedron (this of course is the same direction as the faces of the dual

octahedron). Such a plane exhibits atoms arranged as in the triangular tiling with

edge √2. The density is 1/√3 or about 0.577 atoms per unit area. The interesting

thing about these planes is that they only contain atoms of one kind. 

Sodium Chloride,

common salt, NaCl.

Na, sodium

Cl, chlorine
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The diagrams above show examples of both these planes; their atoms are

shown larger for clarity. Note that under some circumstances salt does form

octahedral crystals. 

Many compounds such as Magnesium Oxide, MgO, show the same structure

as Sodium Chloride. A related example is Iron Pyrites, FeS2, which forms

beautiful cubic crystals often called Fool’s Gold. In this case the two Sulphur

atoms are grouped together as one item at one set of locations whereas the Iron

atoms are at the other set of locations. 

The cubic structure is also shown by crystals formed of pure elements. Many

metals such as Gold (Au), Silver (Ag) and Copper (Cu) have the close-packed

face-centred cubic structure. Some metals such as Chromium (Cr) and Tungsten

(W) have the looser body-centred cubic structure. The inert gases (as solids) such

as Neon, Argon and Krypton take the face-centred cubic structure but the lighter

Helium has the hexagonal close-packed structure mentioned when we were

discussing the packing of spheres.

The body-centred cubic structure is adopted by a number of compounds and

the classic model is Caesium Chloride, CsCl. The corners of the cubic cells are

one atom such as Chlorine and the central atom is the other, Caesium. Another

compound with this structure is Ammonium Chloride, NH4Cl, commonly known

A plane of chlorine atoms

showing the triangular tiling.

A plane showing the

rectangular tiling.
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as Sal Ammoniac. In this case the ammonium ion NH4 acts as a single unit and

takes the place of Caesium. It should be noted that this body-centred lattice can

also be thought of as two interlaced simple cubic lattices.

The same structure occurs with some alloys. Thus one form of brass consists

of interlaced cubic lattices of Copper and Zinc.

An interesting variant of the cubic lattice is a combination of the face-

centred lattice and the body-centred lattice. This is the structure of the mineral

Perovskite, Calcium Titanate, CaTiO3. A Titanium atom is at the centre of the

body, Oxygen atoms are in the centres of the faces and Calcium atoms are at the

vertices of the cubic cell. 

The Oxygen atoms are thus at the vertices of linked octahedra. It might look

as if there were many more Calcium atoms than Titanium atoms but they occur

The Caesium

Chloride structure.

Cs, caesium

Cl, chlorine

The Perovskite

structure.

Ca, calcium

Ti, titanium

O, oxygen



E Crystals 287

in equal numbers, one per cell. Remember that each atom at a corner of a cell is

shared among eight cells. But there are three Oxygen atoms per cell since each

atom is only shared among two cells. The arrangement is thus consistent with the

formula CaTiO3. Potassium Iodate, KIO3, adopts the same structure.

The diamond structure

E
ACH CARBON ATOM in a diamond is linked with a covalent bond to four other

carbon atoms arranged at the vertices of a tetrahedron. One way to visualize

the structure is to consider the face-centred lattice. And then add an atom at the

centres of alternate small cubes. These atoms than form another face-centred

lattice interlaced with the first one. This structure is shown below. It is thus like

Calcium Titanate in stereo.

The diamond structure

as two interlaced face-

centred lattices. 

Each atom of one

lattice is linked to four

atoms of the other

lattice.
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the Caesium Chloride structure with alternate atoms missing. Note that each red

carbon atom is linked to four green ones and vice versa.

Perhaps a better way of looking at the diamond structure is as touching

tetrahedra as shown below. One carbon atom (in red) is at the centre of each

tetrahedron and its four neighbours are in black. Note that there are also

interlinked slightly buckled hexagonal tilings – alternate atoms in each ring are

black and red. There are four such tilings corresponding to the four faces of a

tetrahedron.

Equally, we can look upon the structure as a series of tetrahedra with the

apex down and with a black atom at the centre. In either case the tetrahedra are

arranged as those of one orientation in the honeycomb of tetrahedra and

octahedra. A stereo version is shown opposite which should clarify the structure.

It is perhaps surprising that the tetrahedral structure is the same as that of the

interlaced face-centred lattices. However, recall that a tetrahedron can be

circumscribed by a cube. If we do that for each tetrahedron of black atoms then

the cubes form a honeycomb with alternate cubes missing and that is precisely

the form of one face-centred lattice. The red atoms at the centres of the tetrahedra

form the other face-centred lattice. 

The structure of diamond looked at as touching tetrahedra. A carbon atom is at the

vertices and at the centre of each tetrahedron.



This is much easier to understand by looking at the stereo image shown

below. This comprises two complete face-centred cubes interlaced, one of green

atoms and one of red atoms. In order to help visualization, the outlines of parts

of the cubic cells are shown as fine green and red lines. Note that the cubes are

shown at a slightly different orientation than usual – there is a somewhat greater

rotation about the vertical axis in order to avoid the front atoms obscuring some

of those behind. This stereo image shows the buckled hexagonal rings quite

clearly.

Incidentally, the diamond structure is not densely packed. It is easily shown

that the density is π√3/16 which is about 34%.

The elements Silicon, Germanium, and Tin (white tin) also adopt the

diamond structure. Some compounds such as the mineral Zinc Blende (Zinc

Sulphide), ZnS, have the same structure with each atom of Zinc connected to

four atoms of Sulphur and vice versa.
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The diamond structure as two interlinked face-centred lattices in stereo.

The diamond structure as touching tetrahedra in stereo.



Other crystal structures

S
PACE PRECLUDES a detailed further discussion of crystals. Many adopt a

hexagonal pattern such as graphite which comprises layers of hexagonal

tilings of carbon with only weak binding between the layers. Many are based on

the hexagonal close-packed structure.

We noted that the carbon atoms in a diamond were arranged as the vertices

of the honeycomb of tetrahedra and octahedra and of course the atoms in

Sodium Chloride form the honeycomb of cubes. Other honeycombs appear as

well. The oxygen atoms in Perovskite (Calcium Titanate) are arranged as the

vertices of the honeycomb of octahedra and cuboctahedra – the Titanium atoms

cuboctahedra.

We conclude with a few remarks about some of the more well known

gemstones. Ruby and Sapphire are simply the clear mineral Corundum, Al2O3,

with traces of other elements which impart the colour. The Oxygen atoms are

arranged as the hexagonal close-packed structure with the Aluminium atoms

squeezed in some of the gaps between the larger Oxygen atoms.

Emerald is Beryl with traces of Vanadium or Chromium imparting the green

colour. Beryl is complex with formula Be3Al2Si6O18. The Silicon and Oxygen

atoms are arranged in rings in the shape of a puckered hexagon – these rings form

the familiar tiling of hexagons in a series of parallel layers. The Beryllium and

Aluminium atoms connect to the Oxygen atoms in adjacent layers and thereby

connect the layers together.

Amethyst is Silicon Dioxide, SiO2, and is simply Quartz with traces of Iron

giving the colour. Quartz occurs in a number of forms based on a hexagonal

structure. Each Silicon atom is surrounded by four Oxygen atoms. These groups

are arranged in spirals and so quartz is found in enantiomorphic forms.

Sometimes crystals occur as twins with a part of each form. Calcium Fluoride

(Fluorspar) normally occurs as cubic crystals but examples of twin cubes

arranged as in the compound of five cubes discussed in Lecture 2 have been

found.

Further reading

T
HE PROOF of the packing of spheres is described at length in Kepler’s

Conjecture by George Szpiro. There are so many books on crystallography

that it is rather hard to recommend any particular one for further reading but

volume IV of The Crystalline State by Sir Lawrence Bragg is a classic text.
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are at the centres of the octahedra and the Calcium atoms are at the centres of the



F Stability

T
HIS APPENDIX looks in more detail at the stability of various aspects of the

system discussed in Lecture 8.

Stability of fixed points

W
E START by considering the stability of fixed points of a function y = f(x).

The stability of a fixed point is determined by the derivative at that point.

Remember that the derivative is the slope or gradient usually written as df/dx and

often abbreviated to f '(x). 

The rules regarding stability are

f ' > 1 unstable, diverges monotonically

0 < f ' < 1 stable, converges monotonically

–1 < f ' < 0 stable, oscillates and converges

f ' < –1 unstable, oscillates and diverges

So when f' is positive, the behaviour is monotonic and when f' is negative

the system oscillates. Moreover, if the absolute value of f' is less than 1 then it

converges. Note that when the gradient is +1 or –1 a transition occurs between

stability and instability. These are in fact typically the bifurcation points.

The reason for the behaviour at a fixed point is easily understood by

considering a diagram such as below. The points where the function f(x) meets

the line y = x are the fixed points. This is obvious because the function is defined

by y = f(x) and a fixed point is one where f(x) = x.

A function with

two fixed points.

the fixed

points

the line y = x

a curve y = f(x)
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We now consider the four cases separately and for simplicity we will just

look at a small part of where the function f crosses the line y = x. In fact we can

take a small portion of f to be a straight line. Now suppose we start with an initial

value x0 which is slightly greater than the fixed point. Applying the function f we

get the next point x1= f(x0). This can be determined graphically by simply

drawing a vertical line from x0 on the x-axis up to the curve and then a horizontal

line to meet the line y = x. This gives the next value, x1. We then repeat this

process to give x2, x3 and so on.

The diagrams below show the four cases with f '(x) equal to –0.5, +0.5, –2,

and +2. The reason for the different behaviours should now be clear.
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f ' = –2, 

oscillates and diverges.

f ' = –1/2, 

oscillates and converges.

f ' = +2, 

diverges monotonically.

f ' = +1/2, 

converges monotonically.

x0x1 x2x3



The fixed points

W
E WILL NOW consider the population function studied in Lecture 8 whose

behaviour depends upon the value of the parameter μ, namely

f(x) = μx(1 – x)

We consider various positive values of μ. 

There are two fixed points given by

f(x) = x or in other words  x = μx(1 – x) which is

μx2 + (1 – μ)x = 0

This is a quadratic equation and so has two roots. One is at x = 0 and the other is

at x = (μ – 1)/μ or  1 – 1/μ.

As we have seen, the stability of a fixed point is determined by the derivative

at that point. Recall that the derivative of xn is n×xn–1. Thus the derivative of μx

is just μ and the derivative of μx2 is 2μx. So we have 

f '(x) = μ – 2μx =  μ(1 – 2x)

Hence the derivative of the fixed point at x = 0 is μ(1 – 2×0) = μ. For μ between

0 and 1, this is clearly less than 1 and so is stable. For μ above 1, it is unstable

and diverges monotonically.

For the fixed point at x = 1 – 1/μ, the derivative is

μ(1 – 2(1 – 1/μ)) = μ(2/μ –1) = 2 – μ

Note that if μ < 1, the corresponding value of x is negative and so of no interest.

For 1 < μ < 2 the derivative is positive and less than 1. It is a stable point and

converges monotonically. Here is the behaviour starting at 0.1 for the case μ =

1.5 where the fixed point is at 1 – 1/μ = 1/3.

μ = 1.50000

0.10000  0.13500  0.17516  0.21672  

0.25463  0.28469  0.30546  0.31823  

0.32544  0.32929  0.33129  0.33230  

0.33282  0.33308  0.33320  0.33327  

0.33330  0.33332  0.33333  0.33333  

0.33333  0.33333  0.33333  0.33333  

At μ = 2 the derivative is zero and then changes sign. For 2 < μ < 3, the derivative

lies between –1 and 0. It is still stable but converges in an oscillatory manner.

Thus
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μ = 2.50000

0.10000  0.22500  0.43594  0.61474  

0.59209  0.60380  0.59806  0.60096  

0.59952  0.60024  0.59988  0.60006  

0.59997  0.60002  0.59999  0.60000  

0.60000  0.60000  0.60000  0.60000  

Note how it overshoots but then rapidly settles down.

When μ is exactly 3, the derivative is –1. This is the first bifurcation point

and convergence is extremely slow. The first 50 values are

μ = 3.000

0.100  0.270  0.591  0.725  0.598  0.721  0.603  0.718  0.607  0.715  

0.611  0.713  0.614  0.711  0.616  0.709  0.618  0.708  0.620  0.707  

0.622  0.705  0.623  0.704  0.625  0.703  0.626  0.702  0.627  0.702  

0.628  0.701  0.629  0.700  0.630  0.699  0.631  0.699  0.632  0.698  

0.632  0.697  0.633  0.697  0.634  0.696  0.634  0.696  0.635  0.695  

and even after 100,000 iterations it has still not converged to three decimal digits,

the last few being

0.665920  0.667411  0.665920  0.667411  0.665921  

0.667411  0.665921  0.667411  0.665921  0.667411  

0.665921  0.667411  0.665921  0.667411  0.665921  

0.667411  0.665921  0.667411  0.665921  0.667411  

It does eventually converge to 2/3 of course.

It is quite easy to investigate just why convergence is so slow in this

instance. Suppose we start at x = 2/3 + δ where δ is small. Then the next point is

given by

f(x) = 3x(1 – x)

= (2 + 3δ)(1/3 – δ)

= 2/3 – δ – 3δ2

This is the other side to where we started and there is also the term 3δ2. In fact

if δ is positive then we are actually further away. So let’s take two iterations so

that we end up on the same side.

f(x) = 3x(1 – x)

= (2 – 3δ – 9δ2)(1/3 + δ + 3δ2)

= 2/3 + δ – 18δ3 – 27δ4
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Note that the terms in δ2 cancel. If δ is small then we can ignore the term in δ4

so after every two iterations we are 18δ3 nearer. Suppose for example that δ is

0.001 (which is about the position after 100,000 iterations). Then two more

iterations will bring us 0.000000018 nearer. It’s not surprising that convergence

is slow. In fact the closer we get, the slower the convergence becomes.

We can compare this with convergence around μ = 2. The fixed point is 1/2

so we start at 1/2 + δ. We get the next point

f(x) = 2x(1 – x)

= (1 + 2δ)(1/2 – δ)

= 1/2 – 2δ2

In this case the terms in δ cancel. So if we start with δ = 0.001 then the error at

the next iteration is only 0.000002. So the number of exact decimal places nearly

doubles each time. So the closer we get, the faster the convergence becomes.

When μ > 3 the fixed point becomes unstable. It is still there of course and

if we choose numbers that can be represented exactly in a binary computer then

we can demonstrate it. Thus taking μ = 4 the fixed point is at x = 0.75. Both these

numbers can be held exactly and the computation of 4.0x(1–x) can also be done

exactly.

Starting at exactly 0.75 we get

μ = 4.0000000

0.7500000  0.7500000  0.7500000  0.7500000  

0.7500000  0.7500000  0.7500000  0.7500000  

0.7500000  0.7500000  0.7500000  0.7500000  

0.7500000  0.7500000  0.7500000  0.7500000  

But starting at 0.7500001 we get

μ = 4.0000000

0.7500001  0.7499998  0.7500005  0.7499990  

0.7500019  0.7499962  0.7500076  0.7499847  

0.7500305  0.7499390  0.7501221  0.7497558  

0.7504882  0.7490227  0.7519507  0.7460833  

0.7577720  0.7342143  0.7805746  0.6851115  

0.8629349  0.4731131  0.9971083  0.0115332  

0.0456007  0.1740852  0.5751181  0.9774291  

0.0882458  0.3218341  0.8730276  0.4434018  

0.9871866  0.0505971  0.1921480  0.6209086  

0.9415245  0.2202244  0.6869025  0.8602698  

Here we see that it diverges by oscillating around 0.75. Chaos soon sets in.

F Stability 295



The two cycle

B
IFURCATION SETS IN at μ = 3. The fixed point becomes unstable and is

effectively replaced by a stable two cycle.

The two cycle is defined by the function f(f(x)) which is often written as

f (2)(x)

f (2)(x) = f(f(x)) = μf(x)(1 – f(x)) = μ2x(1 – x)(1 – μx(1 – x))

= μ2(x – x2)(1 – μx + μx2) = –μ3x4 + 2μ3x3 – (μ3 + μ2)x2 + μ2x

For a point x to be on a two cycle we must have f(f(x)) = x, so we get

x = –μ3x4 + 2μ3x3 – (μ3 + μ2)x2 + μ2x which rearranges to

μ3x4 – 2μ3x3 + (μ3 + μ2)x2 + (μ2 + 1)x = 0

One root of this is x = 0. Note that any fixed point is also a two cycle because

two applications of the function clearly leave the value unchanged. It therefore

follows that the other fixed point is also a root of the equation and indeed it can

be factorized to give

x(μx – μ + 1)[μ2x2 – μ(μ + 1)x + (μ + 1)] = 0

So the quadratic equation

μ2x2 – μ(μ + 1)x + (μ + 1) = 0

corresponds to the true two cycle. It will be recalled that the quadratic equation

ax2 + bx + c = 0 has real roots only if the so-called discriminant b2 – 4ac is zero

or positive. In this case the discriminant is

μ2(μ + 1)2 – 4μ2(μ + 1) = μ2(μ + 1)(μ – 3)

This is positive only if μ > 3 which shows that genuine period two points only

exist if μ > 3. (If μ = 3 we get a double root.) We ignore negative values of μ.

Solving the quadratic equation in the usual way we find that the roots are

μ(μ+1) ± √[μ2(μ+1)2 – 4μ2(μ+1)]
x =  –––––––––––––––––––––––––––––

2μ2

(μ+1) ± √[(μ+1)(μ–3)]
=   ––––––––––––––––––––

2μ

and so these are the points of the two cycle.

The stability of the two cycle can be investigated by considering the

derivative of f(f(x)). This derivative is

–4μ3x3 + 6μ3x2 – 2(μ3 + μ2)x + μ2
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Remember that the two cycle starts when μ = 3 at which point the two roots of

the quadratic equation are equal and in fact both are 2/3 which is also the fixed

point which is about to go unstable. Indeed the equation f(f(x)) = x actually has a

triple root of 2/3.

At this point (μ = 3, x = 2/3) the derivative of the two cycle is

–4×33×(2/3)3 + 6×33×(2/3)2 – 2(33 + 32)(2/3) + 32 = –32 + 72 – 48 + 9 = 1

So the derivative is +1 which is characteristic of a bifurcation point. The

derivative is –1 at the next bifurcation point which is where the two cycle

becomes unstable and breaks into a four cycle. At this bifurcation point we

therefore have

–4μ3x3 + 6μ3x2 – 2(μ3 + μ2)x + μ2 = –1 f(2) '(x) = –1

and of course we also have

μ2x2 – μ(μ + 1)x + (μ + 1) = 0 f(2)(x) = x

So we now have two equations for μ and x. These look a bit tricky but are in fact

quite easy. It helps to put y = μx in order to reduce the number of instances of μ.

We then get

–4y3 + 6μy2 – 2(μ2 + μ)y + μ2 = –1 (1)

y2 – (μ + 1)y + (μ + 1) = 0 (2)

terms in y3 and gives

(2μ – 4)y2 + (–2μ2 + 2μ + 4)y + μ2 + 1 = 0 (3)

Now multiply equation (2) by (2μ – 4) and subtract it from equation (3). Rather

surprisingly all the terms in y now vanish and we are simply left with

μ2 – 2μ – 5 = 0

and so

μ = 1 + √6 = 3.44948974...

Indeed we can easily check that 3.44 is still a two cycle whereas 3.45 is a four

cycle. Thus

μ = 3.44000

0.10000  0.30960  0.73529  0.66955  

0.76111  0.62547  0.80584  0.53822  
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Now multiply equation (2) by 4y and add it to equation (1). This eliminates the



0.85497  0.42654  0.84143  0.45897  

0.85421  0.42840  0.84237  0.45678  

...

0.84851  0.44219  0.84850  0.44219  

0.84851  0.44219  0.84850  0.44219  

0.84851  0.44219  0.84850  0.44219  

0.84851  0.44219  0.84850  0.44219  

0.84851  0.44219  0.84850  0.44219  

and

μ = 3.45000

0.10000  0.31050  0.73861  0.66608  

0.76734  0.61592  0.81614  0.51768  

0.86142  0.41184  0.83569  0.47373  

0.86012  0.41508  0.83762  0.46924  

...

0.85244  0.43397  0.84746  0.44599  

0.85244  0.43397  0.84746  0.44599  

0.85244  0.43397  0.84746  0.44599  

0.85244  0.43397  0.84746  0.44599  

0.85244  0.43397  0.84746  0.44599  

This converges quite slowly to its four cycle because 3.45 is close to the

bifurcation point.

As μ increases, bifurcation continues at an ever increasing rate giving an 8-

cycle at 3.55, a 16-cycle at 3.566, a 32-cycle at 3.569, a 64-cycle at 3.5696 and

so on.

The bifurcation points can be tabulated thus

1-2 3.00000

2-4 3.44949

4-8 3.54408

8-16 3.56438

16-32 3.56867

It is interesting to compute the ratio of the differences between these successive

pairs of values. In fact they converge to a constant which is about 4.669. This

curious constant is known as the Feigenbaum number δ after the American

theoretical physicist, Mitchell Feigenbaum as was mentioned in Lecture 8. 
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Three cycles

W
E CAN INVESTIGATE the three cycle in a similar manner although it gets

rather tedious. We have to solve

f(f(f(x))) = x or  f (3)(x) = x

We get an eighth degree equation and work in stages, thus

f(f(f(x))) = μf (2)(x)(1 – f (2)(x)) = x

which eventually becomes

μ7x8 – 4μ7x7 + (6μ7 + 2μ6)x6 – (4μ7 + 6μ6)x5 + (μ7 + 6μ6 + μ5 + μ4)x4

– (2μ6 + 2μ5 + 2μ4)x3 + (μ5 + μ4 + μ3)x2 – (μ3 – 1)x = 0

As before we know that x = 0 and μx = μ – 1 are roots because a fixed point is

also a three cycle. We can therefore remove these factors. And again we put y =

μx in order to reduce the number of instances of μ.

We finally get

y6 – (3μ + 1)y5 +(3μ + 1)(μ + 1)y4 – (μ3 + 5μ2 + 3μ + 1)y3 +

(2μ + 1)(μ2 + μ + 1)y2 – (μ2 + μ + 1)(μ + 1)y + (μ2 + μ + 1) = 0

This is a sixth degree equation and so has six roots. We know that if x is a root

then f(x) and f(f(x)) are also roots. It follows therefore that the six roots form two

three cycles. Clearly, if one root of a cycle is real then the other two are real as

well. Moreover, since complex roots come in pairs it follows that if one cycle is

real then at least four roots must be real and hence that the other cycle is also

real. So either all the roots are real or all the roots are complex (and in conjugate

pairs). 

If we plot the locus of the roots in the complex plane as μ varies we will

obtain a pattern much like that shown below.
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A typical root locus diagram. The six

roots move as μ varies. The complex

roots are in conjugate pairs and so the

complex branches are symmetric. The

branches hit the real axis when μ =

2√2+1 and then the pairs of real roots

move along the axis in opposite

directions. This shows the movement

from μ = 2.0 to μ = 4.0.

μ = 2.0

μ = 3.0

μ = 4.0



The three pairs of branches hit the x-axis together at the value of μ when the

six complex roots become real. Clearly at that value of μ the roots are double. So

the equation must take the form

(y3 + Ay2 + By + C)2 = 0  or

y6 + 2Ay5 + (A2 + 2B)y4 + (2C + 2AB)y3 + (2AC + B2)y2 + 2BCy + C2 = 0

We can now compare the coefficients of the various powers of y and obtain

2A = –(3μ + 1) (1)

A2 + 2B = (3μ + 1)(μ + 1) (2)

2C + 2AB = –(μ3 + 5μ2 + 3μ + 1) (3)

2AC + B2 = (2μ + 1)(μ2 + μ + 1) (4)

2CB = –(μ2 + μ + 1)(μ + 1) (5)

C2 = μ2 + μ + 1 (6)

So here we have six equations for the four unknowns A, B, C and μ. Clearly there

is some redundancy.

Eliminating A between equations (1) and (2) we get

8B = (3μ + 1)(μ + 3) (7)

and eliminating C between equations (5) and (6) we get

4B2 = (μ2 + μ + 1)(μ + 1)2 (8)

We can now eliminate B between equations (7) and (8) and finally obtain an

equation for μ

(3μ + 1)2(μ + 3)2 – 16(μ2 + μ + 1)(μ + 1)2 = 0

This is a quartic equation and after multiplying out the terms it becomes

7μ4 – 12μ3 – 54μ2 – 12μ + 7 = 0

Note the symmetry in this equation. It follows that if m is one root then 1/m is

another root. By inspiration this can be factorized thus

(μ2 – 2μ – 7)(7μ2 + 2μ – 1) = 0

Finally, we find the roots to be

2√2 + 1, –2√2 + 1, (2√2 – 1)/7, (–2√2 – 1)/7

As is usual in these situations only one of these is significant. In fact it is the first

one. So the value of μ when the three cycle first appears is 2√2 + 1 or about

3.828427....
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Just below this there is chaos and just above it there is a stable three cycle.

At the critical value there is in fact a double three cycle. As μ increases this

double three cycle separates into two distinct three cycles quite close together.

Only one of these is stable.

We can actually find expressions for the values of the three cycle. First,

using the known value of μ after some manipulation we have

A = –3√2 – 2

B = 5 + 4√2

C = –3 – √2

and of course we have

y3 + Ay2 + By + C = 0

We now make the usual substitution z = y + A/3 in order to remove the quadratic

term. After much manipulation we obtain

z3 – 7z/3 – 7/27 = 0

We use the normal technique for solving such cubics by putting z = u + v where

uv equals one-third of the coefficient of z; so uv = –7/9 and we eventually find

z = 3√(7/54) [3√(1 + 3√3i) + 3√(1 – 3√3i)]

This is the awkward case where although the roots are real they turn out as

expressions involving the cube root of complex numbers.

Undaunted we can seek the cube root of the complex number 1 + 3√3i

geometrically. The real part is 1 and the imaginary part is √27. Using Pythagoras

we thus find that the argument θ is given by tan θ = √27 and the modulus is √28.

The cube root is obtained by dividing the argument by 3 and taking the cube

root of the modulus. We note moreover that we have to add the cube root of the

conjugate number (that is the one with a minus sign for the imaginary part).

When we add these two cube roots, the imaginary parts cancel and we are left

simply with double the real part. 
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√28

θ

Finding the cube root of 

1 + 3√3i geometrically.



This is 

2×6√28 cos θ/3 where tan θ = √27

Then we have to multiply by the term 3√(7/54). This actually improves things

since the factor becomes

2×6√28 × 3√(7/54)

= 2×6√((28 × 49) / (54 × 54))

= 2√7/3

So finally we have a value for z namely

z = 2√7/3 cos θ/3 where tan θ = √27

There are of course two other values for z corresponding to the other points of

the cycle and these are found by taking the other cube roots which are simply

z = 2√7/3 cos (2π/3 + θ/3)

z = 2√7/3 cos (4π/3 + θ/3)

We then obtain y = z – A/3 = z + √2 + 2/3 and finally x = y/μ. The values of x are

0.159928818...,  0.514355277...,  0.956317842...

So these are the values of the three cycle when it first appears at μ = 2√2 + 1

which is about 3.828427....

If we take a value of μ just slightly above this critical value then the stable

and unstable three cycles are approximately equally spaced around the above

values. For example if we take μ = 3.8285 then the unstable three cycle is about

0.16072485,  0.51643545,  0.95609083 unstable cycle

and the stable cycle is

0.15912637,  0.51227308,  0.95654832 stable cycle

The variations from the double three cycle are

0.00079603,  0.00208017,  0.00022701 and

0.00080245,  0.00208220,  0.00023048 respectively

Finally, here is the behaviour starting at the above unstable three cycle in a rather

smaller font

μ = 3.82850000
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0.16072485  0.51643545  0.95609083  

0.16072485  0.51643545  0.95609083  

0.16072485  0.51643545  0.95609083  

0.16072485  0.51643545  0.95609083  

0.16072485  0.51643545  0.95609083  

0.16072485  0.51643544  0.95609083  

0.16072485  0.51643544  0.95609083  

0.16072485  0.51643544  0.95609083  

0.16072485  0.51643544  0.95609083  

0.16072485  0.51643544  0.95609083  

0.16072484  0.51643544  0.95609083  

0.16072484  0.51643543  0.95609083  

0.16072484  0.51643543  0.95609083  

0.16072484  0.51643543  0.95609083  

0.16072484  0.51643542  0.95609083  

0.16072484  0.51643542  0.95609083  

0.16072484  0.51643541  0.95609083  

0.16072483  0.51643541  0.95609084  

0.16072483  0.51643540  0.95609084  

0.16072483  0.51643539  0.95609084  

0.16072483  0.51643538  0.95609084  

0.16072482  0.51643537  0.95609084  

0.16072482  0.51643536  0.95609084  

0.16072481  0.51643535  0.95609084  

0.16072481  0.51643534  0.95609084  

0.16072480  0.51643532  0.95609085  

0.16072479  0.51643530  0.95609085  

0.16072478  0.51643528  0.95609085  

0.16072478  0.51643525  0.95609085  

0.16072476  0.51643523  0.95609086  

0.16072475  0.51643519  0.95609086  

0.16072474  0.51643516  0.95609087  

0.16072472  0.51643512  0.95609087  

0.16072470  0.51643507  0.95609088  

0.16072468  0.51643501  0.95609089  

0.16072466  0.51643495  0.95609089  

0.16072463  0.51643488  0.95609090  

0.16072460  0.51643480  0.95609091  

0.16072456  0.51643471  0.95609092  

0.16072452  0.51643460  0.95609094  

0.16072448  0.51643448  0.95609095  

0.16072442  0.51643434  0.95609097  

0.16072436  0.51643418  0.95609099  

0.16072429  0.51643400  0.95609101  

0.16072422  0.51643380  0.95609104  

0.16072412  0.51643357  0.95609107  

0.16072402  0.51643330  0.95609110  

0.16072390  0.51643299  0.95609114  

0.16072377  0.51643264  0.95609118  

0.16072362  0.51643225  0.95609123  

0.16072344  0.51643179  0.95609129  

0.16072324  0.51643127  0.95609136  

0.16072301  0.51643068  0.95609143  

0.16072275  0.51643001  0.95609152  

0.16072246  0.51642923  0.95609161  

0.16072212  0.51642835  0.95609172  

0.16072173  0.51642735  0.95609185  

0.16072129  0.51642620  0.95609199  

0.16072079  0.51642490  0.95609216  

0.16072021  0.51642340  0.95609235  

0.16071956  0.51642170  0.95609256  

0.16071881  0.51641976  0.95609280  

0.16071796  0.51641754  0.95609308  

0.16071698  0.51641501  0.95609340  

0.16071587  0.51641213  0.95609376  

0.16071461  0.51640884  0.95609418  

0.16071317  0.51640510  0.95609465  

0.16071152  0.51640083  0.95609518  

0.16070965  0.51639596  0.95609579  

0.16070751  0.51639041  0.95609649  

0.16070508  0.51638410  0.95609728  

0.16070232  0.51637691  0.95609818  

0.16069917  0.51636873  0.95609921  

0.16069559  0.51635942  0.95610038  

0.16069151  0.51634884  0.95610170  

0.16068689  0.51633682  0.95610320  

0.16068163  0.51632317  0.95610491  

0.16067567  0.51630769  0.95610685  

0.16066892  0.51629013  0.95610904  

0.16066127  0.51627025  0.95611152  

0.16065261  0.51624776  0.95611432  

0.16064283  0.51622235  0.95611747  

0.16063180  0.51619369  0.95612103  

0.16061938  0.51616141  0.95612503  

0.16060541  0.51612511  0.95612952  

0.16058974  0.51608439  0.95613454  

0.16057220  0.51603880  0.95614014  

0.16055262  0.51598792  0.95614638  

0.16053083  0.51593127  0.95615331  

0.16050665  0.51586842  0.95616096  

0.16047993  0.51579895  0.95616938  

0.16045051  0.51572247  0.95617861  

0.16041827  0.51563864  0.95618867  

0.16038311  0.51554722  0.95619959  

0.16034499  0.51544807  0.95621136  

0.16030389  0.51534118  0.95622396  

0.16025987  0.51522668  0.95623736  

0.16021306  0.51510490  0.95625150  

0.16016366  0.51497636  0.95626630  

0.16011194  0.51484177  0.95628166  

0.16005826  0.51470207  0.95629747  

0.16000305  0.51455835  0.95631357  

0.15994680  0.51441189  0.95632981  

0.15989004  0.51426409  0.95634604  

0.15983335  0.51411643  0.95636208  

0.15977728  0.51397039  0.95637778  

0.15972241  0.51382743  0.95639300  

0.15966924  0.51368889  0.95640759  

0.15961824  0.51355596  0.95642146  

0.15956978  0.51342967  0.95643451  

0.15952418  0.51331079  0.95644668  

0.15948165  0.51319990  0.95645793  

0.15944231  0.51309733  0.95646826  

0.15940621  0.51300320  0.95647767  

0.15937334  0.51291746  0.95648617  

0.15934360  0.51283989  0.95649382  

0.15931686  0.51277015  0.95650066  

0.15929296  0.51270779  0.95650674  

0.15927170  0.51265233  0.95651213  

0.15925288  0.51260322  0.95651688  

0.15923628  0.51255991  0.95652105  

0.15922169  0.51252185  0.95652470  

0.15920892  0.51248852  0.95652789  

0.15919776  0.51245941  0.95653068  

0.15918804  0.51243404  0.95653309  

0.15917959  0.51241199  0.95653519  

0.15917226  0.51239285  0.95653701  

0.15916591  0.51237627  0.95653858  

0.15916041  0.51236193  0.95653994  

0.15915566  0.51234954  0.95654111  

0.15915156  0.51233884  0.95654212  

0.15914803  0.51232961  0.95654299  

0.15914498  0.51232167  0.95654374  

0.15914236  0.51231482  0.95654439  
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0.15914010  0.51230893  0.95654494  

0.15913816  0.51230387  0.95654542  

0.15913649  0.51229951  0.95654583  

0.15913506  0.51229577  0.95654618  

0.15913383  0.51229255  0.95654649  

0.15913277  0.51228979  0.95654675  

0.15913186  0.51228742  0.95654697  

0.15913108  0.51228538  0.95654716  

0.15913041  0.51228363  0.95654733  

0.15912984  0.51228213  0.95654747  

0.15912934  0.51228084  0.95654759  

0.15912892  0.51227974  0.95654769  

0.15912856  0.51227879  0.95654778  

0.15912824  0.51227798  0.95654786  

0.15912798  0.51227728  0.95654792  

0.15912775  0.51227668  0.95654798  

0.15912755  0.51227617  0.95654803  

0.15912738  0.51227573  0.95654807  

0.15912724  0.51227535  0.95654811  

0.15912711  0.51227503  0.95654814  

0.15912701  0.51227475  0.95654816  

0.15912692  0.51227451  0.95654818  

0.15912684  0.51227431  0.95654820  

0.15912677  0.51227413  0.95654822  

0.15912671  0.51227398  0.95654823  

0.15912666  0.51227386  0.95654825  

0.15912662  0.51227375  0.95654826  

0.15912659  0.51227365  0.95654827  

0.15912655  0.51227357  0.95654827  

0.15912653  0.51227350  0.95654828  

0.15912651  0.51227344  0.95654828  

0.15912649  0.51227339  0.95654829  

0.15912647  0.51227335  0.95654829  

0.15912645  0.51227331  0.95654830  

0.15912644  0.51227328  0.95654830  

0.15912643  0.51227325  0.95654830  

0.15912642  0.51227322  0.95654831  

0.15912641  0.51227320  0.95654831  

0.15912641  0.51227319  0.95654831  

0.15912640  0.51227317  0.95654831  

0.15912640  0.51227316  0.95654831  

0.15912639  0.51227315  0.95654831  

0.15912639  0.51227314  0.95654831  

0.15912639  0.51227313  0.95654831  

0.15912638  0.51227312  0.95654831  

0.15912638  0.51227312  0.95654832  

0.15912638  0.51227311  0.95654832  

0.15912638  0.51227311  0.95654832  

0.15912638  0.51227310  0.95654832  

0.15912638  0.51227310  0.95654832  

0.15912637  0.51227310  0.95654832  

0.15912637  0.51227310  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227309  0.95654832  

0.15912637  0.51227308  0.95654832  

0.15912637  0.51227308  0.95654832  

0.15912637  0.51227308  0.95654832  

0.15912637  0.51227308  0.95654832  

0.15912637  0.51227308  0.95654832  

0.15912637  0.51227308  0.95654832  

0.15912637  0.51227308  0.95654832  

0.15912637  0.51227308  0.95654832  

0.15912637  0.51227308  0.95654832  

...
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Well that’s quite enough of that. After appearing to be stable it eventually

switches to the genuine stable three cycle.



G Fanoland

T
HIS FANTASY about a land of love illustrates the fact that the relationships

between point and line described in the lecture on Projective Geometry are

abstractions and can be mapped onto other things.

If we take a point as a woman and a line as a man and the relationship of a

point being on a line as equated with the man and woman having a relationship,

then various results emerge. In the first story the seven men and woman map to

the points and lines of the Fano plane.

Seven girls and seven boys

O
NCE UPON A TIME, seven men and seven women established a friendly

commune called Fanoland. The women’s names were Ann, Betty, Carole,

Daisy, Eileen, Fanny and Greta. The men’s names were Alan, Brian, Charles,

David, Edgar, Frank and George.

They were trigamous which means that each had three partners. Each man

had a relationship with exactly three different women and each woman had a

relationship with exactly three different men. However, there was one important

rule in their choice of multiple partners. Any two men had just one woman in

common among their partners. In other words, given any two men they had five

partners between them and thus just one in common. The same rule applied in

reverse. Any two women had exactly five partners between them and thus one in

common.

Find a possible arrangement of the seven men and seven woman and indicate

it by putting a cross (perchance a kiss) in those boxes corresponding to a

relationship. The liberty has been taken of inserting one such cross.

Ann Betty Carole Daisy Eileen Fanny Greta

Alan

Brian X

Charles

David

Edgar

Frank

George
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Plus six girls and six boys

A
FTER A WHILE, the inhabitants of Fanoland became restless for more variety.

They recruited six more men (Harry, Ian, John, Keith, Larry and Mark) and

six more women (Helen, Irene, Jane, Kate, Lorna and Mary) to join the commune

so that there were now thirteen men and thirteen women.

These extra folk enabled the rules to be extended and the commune became

tetragamous. Each man now had four woman as partners and each woman had

four men as partners. Moreover, the old rule about only sharing one partner was

still observed. Thus any two women now had seven partners between them and

thus just one in common. And similarly for the men.

There was one sad consequence of the new rules; some of the existing

relationships had to be broken.

One day, whilst resting after a particularly jolly frolic celebrating the coming

of spring, they were visited by a Princess who noticed a remarkable fact.

They could choose two trios of women such that each trio did not have a man

in common. Moreover, if they chose the trios in such a way that they could be

paired off (one woman from each trio) so that the three men in common (one man

corresponding to each pair of women) themselves did have a woman in common,

then they noticed a remarkable fact. They discovered that in these circumstances,

the following was also true.

Each trio of women defined a trio of men, one for each pair of women (this

was always true of course). If these six men were paired off to form three pairs

of men (corresponding to the pairing of the women in a symmetric manner), then

the three women shared by these three pairs of men actually always had a man in

common.

Prove that this must be so and that it also applies with the roles of men and

women reversed.

Explanation

I
N THE FIRST STORY the men and woman map onto the Fano plane. Thus we can

take Ann as the point 100, Betty as 010, and so on. Similarly, we might take

Alan as the line 100, Brian as 010 and so on. Then since the point 100 lies on the

line 010 (see the last part of the Finale) it follows that Ann has a relationship with

Brian. However, the point 100 does not lie on the line 100 and so Ann does not

have a relationship with Alan.

In the second story they map onto the 13-point finite geometry. The rather

complex fact noticed by the Princess is simply Desargues’ theorem expressed in

terms of the relationships.

And on this curious note, this book comes to an end. 
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