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Abstract

In this paper® we consider higher isoperimetric numbers of a (finite directed) graph. In
this regard we focus on the nth mean isoperimetric constant of a directed graph as the
minimum of the mean outgoing normalized flows from a given set of n disjoint subsets
of the vertex set of the graph. We show that the second mean isoperimetric constant in
this general setting, coincides with (the mean version of) the classical Cheeger constant
of the graph, while for the rest of the spectrum we show that there is a fundamental
difference between the nth isoperimetric constant and the number obtained by taking
the minimum over all n-partitions. In this direction, we show that our definition is the
correct one in the sense that it satisfies a Federer-Fleming-type theorem, and we also
define and present examples for the concept of a supergeometric graph as a graph whose
mean isoperimetric constants are attained on partitions at all levels.

Moreover, considering the NP-completeness of the isoperimetric problem on graphs,
we address ourselves to the approximation problem where we prove general spectral
inequalities that give rise to a general Cheeger-type inequality as well. On the other
hand, we also consider some algorithmic aspects of the problem where we show connec-
tions to orthogonal representations of graphs and following J. Malik and J. Shi (2000)
we study the close relationships to the well-known k-means algorithm and normalized
cuts method.
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1 Introduction

1.1 Objectives and main results

The chapter on isoperimetric numbers and Cheeger-type inequalities is a classic in geometric
analysis as well as spectral graph theory and has been considered from many different aspects

LCorrespondence should be addressed to daneshgar@sharif.ir.
2This article is a revised version of [19] distributed on arXiv.org (1’st, Jan. 2008).



and points of view [3, 7, 8, 22, 29, 36, 39]. The study of such concepts in the discrete case,
although more recent, has also been a center of attention mainly because of its many diverse
connections to important problems of the century, both applied and theoretical in nature
(e.g. see [1, 6,9, 12, 13, 14, 23, 28, 30, 32, 34, 38, 41, 42, 43]).

Let us recall (e.g. see [42]) the definition of the classical Cheeger constant of a Markov chain®
K on a directed base-graph G = (V(G), E(G)), with a nowherezero stationary distribution

’ 2(Q) 2Q) Q) }

¢(K,m) = min —— = min max{

~@=<1/2 T(Q)  ecvie m(Q) m(Q°)

where
Q) E Y K(u,v)m(u),

ueEQ & vgQ

and the not so common mean version as follows

UK, 7)Y min Q) . (1)

ecvie) 2m(Q)(1 — 7(Q))

Our main objective in this paper is to analyze the connectivity of a (directed) finite graph
through its isoperimetric spectrum and to consider the computational aspects of this prob-
lem. In this regard, we will show that the natural generalization of the classical definition
to the nth level for n > 2 does not work if one takes the minimum over n-partitions of the
vertex set and we propose a correct definition in the sense that it satisfies a coarea formula.
We also show that this fundamental difference not only is important in the approximation
problem of the isoperimetric spectrum but also can be quite discriminating in an algorithmic
approach to applications.

In what follows we try to present a short overview of our approach in this article. Firstly,
it should be noted that our main strategy is to transfer the problem to the symmetric base
graph and then use the machinery that is already available through the theory of reversible
Markov chains. Our basic symmetrization approach is adopted from some classical methods
as presented in [26]. In this regard, in Section 2, on the one hand, we have tried to present
this well-known setup in a unified and concise way accessible to graph theorist with an em-
phasis on concepts related to connectivity and flows on the base graph, where we have tried
to keep our notations classic enough to be most natural for all communities involved. On the
other hand, in this section we show that the standard symmetrization process that translates
the connectivity parameters of a given (in general directed) graph to the connectivity of its
symmetrized undirected base graph is natural in the sense that the stationary distribution
and the total flow are preserved in this change of base (see Equation (2) and Lemma 2(a)).
Secondly, it also ought to be noted that computing the isoperimetric numbers of a graph
is known to be a computationally hard problem (e.g. see [38] for the classic version. For
the mean version see [24] or [43] where an NP-completeness result attributed to Papadim-
itrou (1997) is presented), when the eigenvalues and eigenfunctions of a finite graph are quite
close at hand and can be computed effectively (essentially in polynomial time) through well-
known methods of linear algebra.

In the sequel, we concentrate on the mean version of the isoperimetric number, and intro-
duce its extensions to higher indices, as a set of constants called the (mean) isoperimetric
spectrum, in juxtaposition to the classical spectrum consisting of the Laplacian eigenvalues.
It is instructive to note that although the idea of using the maximum version of the higher
isoperimetric numbers as

s, (G, K) 4 min max (igg?),

3By abuse of language we only refer to the kernel instead of the stochastic process itself.




can be traced back into some texts as [7], it seems that the subtle problem of choosing the
suitable class of subsets {Q}j has not been discussed in detail.

The main reason for our shift of interest toward the mean version are manifold. On the one
hand, we must note that most of our results are correct for both maximum and mean versions,
however usually the proofs for the mean version are more involved. On the other hand, in
our opinion, the mean spectrum of the Laplacian whose nth element is the (arithmetic) mean
of the first n eigenvalues of the Laplacian operator, seems to be much more well-behaved
than the classical spectrum because of the smoothing property of the mean operator (e.g.
see [31] for the spectral approximations and a perturbation analysis). This may, in a way,
present a fair chance of a better study/approximation of the spectrum and, in this regard,
the generalized mean version of the isoperimetric constant plays the central role as the most
natural L' counterpart.

Another important aspect of considering the mean version is the fact that it can be traced
back into some important applications as clustering (e.g. see [24, 43] among many other
references and Section 5.3) and as far as we could verify, it presents the most natural applied
framework to generalize the isoperimetric constant. In this setup, what is in our opinion a
bit of a surprise, is that the new definition seems to be well defined (e.g. in the sense that it
satisfies a generalized co-area formula) only when it is defined as the minimum over disjoint
subsets of the space (which does not necessarily constitute a partition). The difference
between the two definitions based on taking the minimum over partitions or disjoint sets,
although disguised in the case of the classical Cheeger constant (i.e. when we deal with
2-partitions; also, see Proposition 1), seems to be inherently nontrivial in general for both
of mean and maximum versions. In Section 3 we introduce and investigate some basic
properties of the generalized mean isoperimetric numbers, where in Section 4, we concentrate
on some examples and special cases (specifically, in relation to Theorem 1 and the proceeding
paragraph). In Section 4.1 we define the concept of a supergeometric graph as a graph
for which all parameters involved are equivalent, and we provide some examples of such
graphs. We believe that supergeometric graphs possess interesting properties that ought to
be investigated in future research.

Naturally, pursuing this line of thought, we analyze the mean isoperimetric spectrum, both
from analytic and graph theoretic points of view, and we prove a Federer-Fleming-type
theorem (Section 5.1) as well as Cheeger-type inequalities connecting these parameters and
the classical spectrum of eigenvalues in different levels (Section 5.2). Also, as a byproduct,
it is shown that generalized Cheeger inequalities at the nth level seem to be strongly related
to the concept of a nodal domain (e.g. see [33, 45] for the background).

Based on the fact that the isoperimetric problem is computationally a hard problem, in
Section 5.3 we concentrate on some algorithmic considerations related to computation of the
isoperimetric spectrum where we study the close relationships to the well-known k-means
algorithm.

2 Preliminaries

In this section we go through some basic definitions and facts that will be used later. In
what follows R and R are the sets of real and nonnegative real numbers, respectively, and
for any real number z € R we define

+def | T >0
(@)" = {0 z<0.



For an n-list of real numbers (repetition is allowed) as ((,,(,,.-.,(,), the mean n-list is

denoted by (¢,,¢,,...,(, ), where

=

= def
¢, =

k
P
i=1

def def

Hereafter, we adopt the notation II: = {k,k+1,...,n}. Also,Z = Ii.

2.1 Function spaces

If X is a set then F4(X) stands for the set of all real functions f : X — R%, and also we

define F(X) % F1(X). Similarly, F+(X) % {f | f: X — R*}. Also, for a positive and

nowherezero weight function w : X — R* — {0} we define the inner product (.,.)_ and the
norm |||, , on F(X) as

1
p

(o), €N fa)g@)w), (£l < (Z |f ()P w<z>> :

reX zeX

respectively, where we usually use the subscript w to refer to the product structure (e.g.
F_(X)). Two functions f,g € F_(X) are said to be orthogonal with respect to w, i.e.
f L, g, whenever (f,g), =0.

For any f € F(X), supp(f) stands for the set {v € V(G) | f(v) # 0}. Also, for any subset

A C X the restriction of f to A is denoted by f|,, i.e.,

R F

The characteristic function of a subset A C X is denoted by x , def 1], when X is clear from
the context.

Moreover, for any real function f, the functions f™ and f~ stand for the positive and
negative parts of f, respectively; and consequently,

f=f"—f" and |[fl=f"+f".
For any two functions (or vectors) f,g, we write f < g if
VoeV(G) f@) < gl).

Also, we write f < g if f < gand f # g.

2.2 Graphs and kernels

The main objective of this section is to introduce a common language of graphs and kernels
that is accessible to both graph theorists and experts in functional analysis and also benefits
from all aspects of the two points of view.

Throughout the paper, a graph G = (V(G), E(G)) is always assumed to be a finite directed
graph (possibly with loops and without multiple edges), where E(G) C V(G) x V(G).

Similarly, an undirected graph G = (V(G), E(G)) is a finite set V(G) along with a set of

undirected edges E(G), each element of which is a subset of V(G) whose size is less than or
equal to 2. When it is clear from the context, by abuse of notation, we use the same symbol
uv both for the directed edge (u,v) € V(G) x V(G) of a directed graph and also for a simple
edge {u,v} of an undirected graph.



>
For a given graph G, we use the natural notation, G, for its symmetric directed base graph
& def

ie. V(@) = V(G) and

<~ >

(uwv € E(G) and vu € E(G)) < (uv € E(G) or vu € E(G)).

Moreover, for a given graph G, G stands for its symmetric undirected base graph i.e.

V(G) o V(G) and

wv € E(G) & (uwv € E(G) or vu € E(G)).
Note that for an undirected graph G = (V(G), E(G)) we may think of any simple edge uv
J— A A <>
as a subset {u,v} C V(G). With this interpretation G = (V(G@), E(G)) is a directed graph

obtained by replacing any simple edge uv € E(G) with two directed edges uv € E(g’) and
vu € E (8) Note that there is a one-to-one correspondence between undirected graphs and
symmetric directed graphs, where the undirected presentation can be interpreted as a more
compact version of expressing the same data.

Given any n x n matrix K whose rows and columns are indexed by the elements of an n-set
V', in general, one can construct a graph G,. = (V, E) where

weE < K(uv)#0.

Then, it is clear that from this point of view, the concept of a weighted graph contains the
same data as the concept of a matrix, and moreover, symmetric graphs as well as undirected
graphs correspond to the concept of symmetric matrices.

Notational assumption: Throughout the paper an overlined notation is usually adopted
to refer to a symmetrization process or taking arithmetic means applied to the original con-
cept.

For two given subsets X,Y of V(G) we define

- def

EX)Y) ={weEG) | ueX &veY}

Also, for a subset @) C V(G) we define

EQY E(@) EQY EWQ,Q),

and
def 2

> “—
E(Q) = E(QUE(Q).
Hereafter, K, and K, stand for the (simple) complete graph on ¢ vertices and the complete
bipartite graph on two parts of sizes r and s, respectively.

2.3 Markov kernels and the energy space

Our major objective in this section is to present a standard symmetrization process as
well as some basic facts about the theory of finite Markov chains with a graph theoretic
emphasis (e.g. for more on this see [1, 18, 26, 42]). Particularly, we will show that the basic
parameters used in this article as the weight functions i.e. the stationary distribution and
the corresponding natural flow, are preserved in this setup, and consequently, one may talk
about the connectivity parameters that are computable from the symmetric model of the
corresponding undirected base graph. In this direction, we have tried to use the overlined
notations for the parameters and concepts related to the undirected base graphs where we
have used the arrowed notations for the general directed case. We will elaborate on the



details of this notational assumptions later in this section.
Hereafter, given a graph GG, we assume that K is the kernel of a Markov chain on this graph
and 7 is a nowherezero stationary distribution, i.e. 7K = 7 and 7(v) # 0 for all v € V(G).

In this setting, ¢(u,v) o K (u,v)m(u) defines a nowherezero flow on G. Also, for any two
disjoint sets X,Y C V(G) we define

(X0 ww), 0,5 bww), a,X) % g, (XX,

IR
uex we B (X,Y)

and 5 ,(X,Y) and 5 ,(X) analogously. Note that since ¢ is a flow, for every nonvoid subset
Q C V(G), we have

— — — .

9,(@Q) = 0,@Q) = 0,@Q).

—
By abuse of notation, we may write 9(Q) for simplicity, if the flow is clear from the context.
Within the same 4 setup, for the symmetric graph G, we consider the kernel

K(U,u)ﬂ'(u)) 7

m(u)

K(u,v) & %(K + K%)= % (K(u,v) +

with the same stationary distribution 7 inducing the flow

3u,0) K, 0)m(w) = 5(6(u,0) + 0(0,w)

on G. We can also define gg(Q) similarly. Note that

5@ Y Bue)=5(0,@+0,@)=3.@Q). (2)
wv€EE(G)

This shows that for a given graph G, the outgoing flow from a subset @ C V(G) is equal to
the outgoing flow from @ C V(G) in the symmetrized model, which justifies our transforma-
tion method from the directed case to the symmetric case, when dealing with connectivity
parameters of graphs in terms of the corresponding flows. We will also prove a generalization
of this fact in Lemma 2(a).

Now, we consider two linear Laplacian operators on F_(G) as follows

— R _
A¥id- K and AY¥id-K,
where id is the identity operator. It is clear that K and A are self-adjoint operators on

F_(G) by definition, while K and z may not be necessarily so, unless K = K* and z =A.
Hence, when |V (G)| = n, one may order all real eigenvalues of A as

0=X <A < <A (3)

(At times we may use superscripts as )\f or /\: to refer to the graph or the kernel when
details are clear from the context.)

Also, it is a well-known fact (Perron-Frobenius theorem) that for a strongly connected
graph G, the eigenspace corresponding to the eigenvalue 0 = )\f is one-dimensional and is
generated by the constant vector 1. Moreover, for any n x n self-adjoint matrix A, and for
any 1 < k < n, by Courant—Fischer variational principle (see [42]), one may write

A" = min max {<Af’f>}: max  min {<Af’f>}, (4)

k 2 2
Wew, 0#few ||f|| wewl  O0AfeW ”fH
k—1

4Note that for Riemannian manifolds (Q) = Vol(Boundary(Q)) has the same property as a trivial flow
with only a nonzero component to the complement.




in which ; §
W, W | dim(W) >k}, WE YW | dim(W) < k),

and (f, g) is the inner product of the space on which A is defined and is self-adjoint.

2.4 Gradients, energy and their properties

Given a graph G, one may define the directed, classical, and symmetric gradients, respec-
tively, as follows

—

o V:F.(G)— F,(G) as Vf(uw) € (f(u) = f(0))*.

o V:F.(G)— F,(G) as Vf(uw) ¥ flu) - f(v).

o V:F (G) — F(G) as Vf(u) € |f(u) — f(v)].

In the rest of this paper we will adopt the following framework.

Assumption: Following our previous notational assumption, hereafter, given any directed
graph G (possibly with loops), we will be working with the measure spaces (V(G), )

and (E(G), ¢) as well as (V(G),n) and (E(G), ¢) for the corresponding undirected graph,
(note that the last case also covers the case of simple graphs). In our notations, the
subscript determines the function space under consideration (e.g. F,(G) stands for the
set of all real functions defined on E(G), the set of edges of a given graph G, equipped
with an inner product weighted by ¢). Thus we will be working within the frameworks
(G, (V(Q),7), (B(G), $),V,V, Al and [G, (V(G),7), (E(G),$),V, Al for the (in general di-
rected) graph G, and the corresponding undirected graph, respectively.

It ought to be noted that considering the inner-product space equipped with the weighted
inner-product (.,.)_ has the advantage of reflecting parts of the global structural proper-
ties of the base graph in the spectrum of the corresponding Laplacian operator (e.g. see
[15, 16, 18, 26]), while this is not necessarily true when one uses the ordinary inner-product
of R™ or symmetrization by the square root of the degree matrix (e.g. as in [9, 10, 11]). Let
us start with the following well-known result.

Lemma 1. For a given graph G, the classical gradient, V, is a linear operator and has an

adjoint V* : F,(G) — F_(G) defined as

Vi X S = 3 feus(.

uv€EE(G) vu€EE(G)
Moreover, 2A = V*V.

Proof. Verification of the adjunction is straightforward. For the second equality, we have,

(Bf)(w) = ﬁ S (f(w) = £(0)) Bu,v) = %u) S V() Buv) = 5 VOV F(u).
VEV(G) veEV(G)
Also, note that, -
(2Af,9), =(V*'Vf,9), =(Vf, Vg),,
holds for all f,g € F_(G). [ |



The simple but important statement of Lemma 1 in a way presents the symmetrization
process of constructing the undirected symmetric graph G from a given graph G, in an
analytic sort of way. In other words, starting from a kernel K on a base graph G, and
considering the operators V and V*, one may construct the symmetric Laplacian operator
as A = %V*V that introduces a new kernel whose base graph is G. Also, a classical and
interesting fact is that if one starts from a graph G and considers the conservation of energy
as Kirchhoff’s node and loop laws, then one finds a Poisson’s equation relating the current
and voltage (i.e. potential) functions whose basic operator is the symmetric Laplacian A
on G (e.g. see [44]). Hence, in this sense, conservation of energy naturally is linked to
connectivity through the symmetric model.

With this background, one of our main objectives can be described as finding methods that
can reflect some of the connectivity properties of G in its related symmetric model G, through
the self-adjoint or symmetric operators defined on it. Therefore, it is natural to concentrate
on well-behaved or induced operators on G (e.g. V : F_(G) — fg(@)) and consider their
relationships to those of G. The following lemma summarizes some of the basic properties
of these operators for further reference. Specially, note that Equation (2) is a consequence
of part (a).

Lemma 2. For any given graph G with a kernel K on it, and f € F_(G),

3 IV =IV1IL 5

) |VFl..

— 2t -
b) IV, = IV, + IV,

¢) SIVFIL, = IVFIL, = BF. ), = (Af. ).

Proof. For (a) note that 2€f(uv) = (f(u) = f(v)) + |f(u) — f(v)|. Since ¢ is a flow on
E(G), we have

S (fw) = f) dluo) = S ) (9({u}) - a({u}) =0

wveE(G) UGV(G)

and consequently,

— — 1
IVfl, = > Vi) éluv) = 5 D 1fw) = f(0)] éu,0)
wvEE(G) wvEE(G)
1 — _
uwv€E(G)

Equality in (b) is clear. Also, (c¢) follows from Lemma 1 and the following equalities,

((id — (K + K).1), = IV,

1

= 5 30 1w - S (9w 0) + 6(v,w) = [V

uwvEE(G)

((tld=EK) [, [).

Clearly, in this approach, one needs some relations between the energy (Dirichlet) forms
and different norms of the operators to construct the necessary connections needed. The
following two lemmas demonstrate the most basic relationships.

Lemma 3. For every f € F_(G) we have



a) [V, <IVFl.,
— — —
b) IV flL, = IVFl, < 2 971,
Proof. Since ¢ is a flow we have Z ¢(u,v) = 1, and consequently, by Cauchy-Schwarz

uveE(G)
inequality,

ST = f)P u,v) = Y [f(w) = F)]* p(u,v) > puv)

wv€EE(G) wveE(G) wv€E(G)

Y

> @) = f)] lu,v)

wvEE(G)
Part (b) follows by a similar discussion. |

Lemma 4. For every 0 # f € F_(G) we have

IV, o IS,
) st <2

Ivr2l,, IV 5 V51, -
b) Tt = et < V2 e

Proof. The proof is clear by Lemma 2(c), Cauchy-Schwarz inequality
(e.g. (a+b)? <2(a®+b?)) and the following

Yo @) = fOP dwv) D )+ f@)F $lu,v)

[Ej P S 1F @) w(u) D 1w+ () dlu,0)
weV(G) uwv€E(G)

( > () = f(v)?| ¢(u7v)) . )
> weE(Q) _ (lVf2|1,¢>
> 2 1210, -

4| D0 P )

wEV(G)

3 The isoperimetric spectrum

In this section we concentrate on the mean isoperimetric constant and its generalization.
In this regard, our point of view is to consider a generalization that is, firstly, well-behaved
computationally, and secondly, can present a good relation to the classical eigenvalues.
Throughout the section, K is the kernel of a fixed Markov chain on the base graph G as
before, and 7 is a nowherezero stationary distribution for this kernel.

It is a well-known fact from random-matrix theory and the recent literature that the behavior
of the classical spectrum of the Laplacian operator is quite hard to predict and, as a matter
of fact, is related to some deep problems in contemporary mathematics [23]. In our opinion,



one possible approach in this direction is to analyze a smooth function of the spectrum, that
in a way contains a fair amount of data, rather than the eigenvalues themselves. Naturally,
the most simple candidate for such a function can be considered to be the arithmetic mean,
and consequently, there seems to be a fair chance that the behavior of the mean-spectrum,
whose nth element is the mean of the first n eigenvalues, be more well-behaved than the
spectrum itself. We should also mention the results of J. B. Hiriart-Urruty and D. Ye [31]
that, in a sense, justifies this approach.

Therefore, based on the above-mentioned approach we will focus on the mean version of
the isoperimetric constant and will generalize it as the most natural L' counterpart of the
mean eigenvalue. It is interesting to note that this generalization leads to a definition for the
nth isoperimetric number which is based on taking a minimum over all n-disjoint subsets
of the ground-space, rather than its n-partitions, and also satisfies a Federer-Fleming-type
theorem (Theorem 1). This difference, although disguised in the classical case k = 2 (see
Proposition 1), seems to be quite nontrivial in general and will be our main motivation for
the definition of a supergeometric graph.

It is not hard to check that there is a straightforward translation of almost all results of this
section to the case of max-isoperimetric constants (see Section 5.2 for a precise definition)
or the case of compact Riemannian manifolds (considering appropriate modifications).

In what follows we introduce the generalized isoperimetric number (in the mean case), and
we investigate some of its basic properties. To begin, we set a couple of notations. The
set D, (G) is defined to be the set of all n-sets {Q,,...,Q,} with 0 # Q, C V(G) for all
1 < < nsuch that for every pair 1 <i < j < n we have Q,NQ, = 0. The set of n-partitions
of a graph G, which is denoted by P, (G), is the subset of D, (G) that contains all n-sets
{Q,,...,Q,} for which U"_ Q, = V(G).

Now, we define the generalized mean isoperimetric constants as,

Definition 1. Given a graph G and a kernel K, the nth (mean) isoperimetric constant of
G (with respect to K) is defined as follows

(G K) = ( <Qi>>‘

3 n Vs
{Q;}] €D, (@) —1

Also, considering the partitions, we define the following related constant,

" 9(Q,)
(Z (QJ) |

=1

i (GK)Y  min

Q3] ePn (@)

S
3

We may exclude the kernel K from the notations, when it is fixed or is clear from the
context. 'y

Some basic properties of the mean isoperimetric spectrum are stated in the following propo-
sition.

Proposition 1. For any graph G (and a given kernel K on it) and for all
1 <n <|V(G)| we have,

10



Proof. The left-hand inequality of part (a) is clear by definitions. Assume that ¢ (G) is

— [
achieved by choosing {Q,} € D, (G) and suppose that a((g")) is maximum of all 8(( 7)),
ﬂ. n 1
i € I,. Then the partition {Q'} € P, (G) with Q' f Q, forallieZ | and

Q" def V(G) - (U lQ ) will satisfy

n

] 1(0(Q) =a@)) _1 ! L
(G <~ (ﬂ@;/) +i; 0] ) SRl+m=-D L@ =0- 1)@+,
For part (b), let {Q,,Q,} € D,(G) be such that ¢,(G) is achieved and let
Q def V(G) — (Q, UQ,). Without loss of generality, assume that 6(@ Q,) < (QQ,Q ).

o def def
Then for the partition {Q’,Q’} with Q’ = @, and Q' = Q,UQ" we have

2 * 2 =
2 "M@ T @, >+w -
The reverse 1nequahty is clear from the definitions.
For part (c), let {Q, }n+ P...(G) be a partition such that 7, (G) is achieved. For every

pair of indices {j,k} CZ,  , define
— —
v\ FQuen T, e )
and let w; , = 7(Q; UQ,). Note that 37, 4,1 w,;, =n. Also

no Y w, T =Y 8(Q,uQ,)

1<j<k<n+1 1<j<k<n+1

Y Y wm@ue)dd

1<j<k<n+1 €L, —{J.k}
n+1

= (-1} a(Q

2 ~(Q.)
n+1l 2
2(Q))
=(n-1) i
2 Q)
Thus,

~ . 1 n?—1 _
L”(G) S {j klflcl% Tj,k S E Z wj,ij,k S n2 L7L+1(G)'

n+1 1<j<k<n+1

For part (d), let {Q,},c, o
over, without loss of generality, assume that

€ D, ., (G) be chosen such that ¢, (G) is achieved, and more-

Then clearly,

11



4 Some examples and special cases

As the first example, let us consider the case n = 2.

Example 1. Let G be a given directed graph. We have

S - wm L[0@Q) | 0(Q)
,(G) = (@12 ery @) 92 (F(Ql) + W(Q2)>
R () B 1)
ecviey 2\ 1(Q)  w(Q°)

N WP () N [(©)
Qcve) 2 W(Q) (1_77(62))
5(Q)

= min

acvie 2m(Q)(1 — W(Q)y

which is the (mean version) of the classical Cheeger constant. Therefore, since we have
7,(G) = 1,(GQ) by Proposition 1(b), our definition of the isoperimetric number for the classical
case is justified. &

Given a strongly connected directed graph G, we define the natural random walk on G by

| 47 wv € E(G)
Ko ={ 7O

where d*(u) stands for the out-degree of vertex u. If the graph G is Eulerian, i.e. for every
vertex u € V(G), we have d¥(u) = d~(u), then one can easily see that the distribution m,

L
defined by 7(u) = \Cllf((g))l is the unique stationary distribution for the natural random walk
def 1

on G which induces the flow ¢ on G, defined by ¢(u,v) = B whenever uwv € F(G) and
zero elsewhere. Hence, for every subset @ C V(G), we have

9@ _ |EQ)
Q) ~ d*Q)
def

where dT(Q) = Y weQ d*(u). Note that for any connected undirected graph G, the sym-

(5)

<«
metric directed graph @ is Eulerian, which shows that these arguments are valid in the case
of undirected connected graphs as well.

4.1 Geometric graphs

By Proposition 1, for any given directed graph G with a kernel K and a nowherezero
stationary distribution 7 on it, one can talk about the isoperimetric spectrum,

0=1¢,(G,K)<,(G,K)<...<. G,K)<1.

\V(G)\(

Also, note that if G has no loops then ¢, ., (G, K) = 1. On the other hand, by definitions,
for any given graph G and for all 1 < n < |V(G)|, we have ¢ (G,K) < [ (G, K), that
motivates the following definition (also see Theorem 1 and Section 5.3).

Definition 2. A graph G is said to be n-geometric with respect to a kernel K, if
., (G, K)=1 (G, K).
A graph G is said to be supergeometric with respect to a kernel K, if it is n-geometric with

respect to K, for every 2 < n < |V(G)|. 'Y

12



By definition and Proposition 1(b), any strongly connected graph is 2-geometric (with respect
to any given kernel K). An easy observation is that for any graph without loops and with
respect to any kernel,

Q=1 = 9(Q) _

m(Q)
This, for instance, shows that all simple graphs on a set of 6 vertices are supergeometric. In
what follows we elaborate on going through the details of computing the mean isoperimetric
constants of some well-known graphs, to provide examples of supergeometric graphs as well
as cases for which the graph is far from being geometric.

Example 2. In this example we compute the isoperimetric spectra of complete graphs and
complete bipartite graphs with respect to their natural random walks, and we show that
they are supergeometric.

By Equation (5), for any {Q,}" € D, (V(K,)), with |Q,| = ¢,, we have

" H t(t—t)  tn—)0
Z Q Zt—l o (t=1) 7

=1 " =1

which is clearly minimized when {Q,} € P, (K,). Therefore for all n € Z, we have

t(n—1)
n(t—1)’

St

LK) =12,.(K,) =

and complete graphs are supergeometric.
Now, let X and Y be the two parts of the graph K __, with |[X| = 7, |Y| = s, and let
{Q,} €D, (V(K,.,)), be such that |Q, N X| =z, and |Q, NY| = y,. By Equation (5), we

have R
n m(Q,) n sz, +ry, n < sz, +ry,

i=1 v i=1

First, note that the function xq_;y is increasing with respect to both x, and y,, and

consequently, one deduces that complete bipartite graphs are supergeometric.
Furthermore, as a special case, let s be a multiple of r, where we want to maximize the
function Sziﬁiyi under constraints Y ;. x, =r and Y., y, = s. Using Lagrange method
we can see that the function is maximized when sz, = ry,, for every ¢ € Z . Thus, for every
n € I, we have

- 2 & 1
L, (K. =1,(K )= ;Z =1--—.

rs+s n
=1

&

Example 3. Let G, = (V,E) be the directed cycle with loops, where = Z/tZ and

Y {(4,1), (4,i+1)| : € V'}. Considering the natural random walk on G,, for every Q C V
we have

—
5@ _ s
Q) 21Q
where s & HieQi+1¢&Q}. So when Q G V is a nonvoid set of consecutive numbers,
this quotient is minimized and is equal to | - Thus for every 2 < n < t,
n =
1 0@Q) _

L, (G,) = min — '
-(G) {Q.}7ep, G, n = (@)  {e }"eDn<G> ZnZ IQ |’



Figure 1: See Example 4.

which is clearly minimized when {Q,}, € P, (G,). Consequently, the graph G, is superge-

n

ometric and if ¢ = L%Jn + r, for some r, then for every 2 < n <t,

60 =565 (7 )

&
In the following example we introduce a graph which is 2-geometric but not 3-geometric.

Example 4. Consider the simple graph G of Figure 1 along with its natural random walk,
where we are going to compute ¢,(G) and 7, (G). By considering disjoint sets

def
{Az = {USi—Z’USi—17U3i}

i=1,2,3},

and the partition

def def def
{Bl = {vnvzvvg}’Bz = {1)4,’()57’1)6},33 = {U7’U87U97U10}}7

we have
1 94) 1,1 1 1. 1
< = o2y g iy= =
(@) = 3;77(4) s5GT515) =5
13 aB,) 11 1 2 13
i < = L= (o442 ==,
LG = 3;7T(Bi) 367578 @
It is easy to verify the following claims (by a case study) for a subset @ C V(G),
2(Q)
=1 = = 17
Q) 1
=2 = >,
@ Q) 73
2(Q) 1
€{3,4,5} = > —.
Qf €{ ¥ Q) =5

To prove that ¢, (G) = % let {Q,,Q,,Q,} be aset of disjoint subsets for which the minimum

is achieved with |Q,| < |Q,| < |Q,]- Then by the previous claim it is clear that |Q,| # 1
and hence we either have |Q,| = |Q,| = 2 or we must have |Q,| < 5. Hence, again by the

14



previous claim in either case the mean flow is greater than or equal to %

By a similar case study, one can characterize 3 different kinds of partitions as follows

‘Q1| :2’|Q2| :3’|Q3‘ :57
or ‘Q1|:25|Q2|:4v|Q3‘:47
or ‘Q1|:37|Q2|:37|Q3‘:47

which shows that 7, (G) is achieved for the partition {B,| i = 1,2, 3}. &

Example 5. In this example we show that, by modifying Example 4, we can construct a
graph G for which 7, (G) > ¢, (G).

Let G, = (V,,E) be a symmetric graph, where V, def {u,z,,y,,2,w,| 1 <i <n}. For
every i € Z_, the induced graph on {z,,y,,z,,w,} is a path of length 3 and the vertex u is

adjacent to all vertices =, forall j € Z . Fori €T _,, let A, o {z,,v,,2,,w,} and also let

A, def {z,,y,}and A __, 2 {z,,w, }. Then,
n+1 =
1 9(4,) 1 n—1 1 2
G < o= — — .
Ln+1( 7L)—n+1Z7r(Ai) n+1 é +3+4

i=1

1, let B, & {z,,y,,%,,w,} and also let B, o {u,z,,y,,2,,w,}. Then, by
a similar argument as in Example 4, one can prove that

Now, for i € T

—
5 1<&9(B) 1(n-1 n-1
0, (G,) = E; (B, o (7 + n—|—7> .

It is clear that if n is large enough, then ¢, (G, ) < (RLH)ZH(GH) <r,(G)). &

5 Computational aspects

5.1 A Federer-Fleming-type theorem

Our basic aim in this section is to find a functional definition through proving a Federer-
Fleming-type theorem. This not only is quite important theoretically (e.g. see [40]) and
along with Examples 4 and 5 justifies the correctness of our generalization, but also can
be assumed as our first step to approximate isoperimetric constants using well-chosen test
functions.

First, we define a couple of function spaces as follows.

Definition 3. We define the space of unit positive functions as,

def

UGS {f | feFHG) and|f],, =1}

Also, a class of functions {f}? is called positive orthonormal, if for all 1 < i < n we have

f, € Z/[: (G) and moreover, for all pairs of indices i # j we have f, L_f,. In this regard we

define et
o0HG) = {{fl}1 | {f.}, is positive orthonormal}.

OH(G) ¥ {{1}; € 0F(G) | {swpnlf))}; € P, (G)}.
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Now, given a kernel K and a nowherezero stationary distribution 7, let us consider the
following parameters which are naturally related to the constants ¢, (G) and 7, (G),

(Z 22 ) .
=1

5

As usual, we exclude the kernel when it is fixed or is clear from the context. First, we prove
the following technical result.

v, (G, K) ef inf

;3 €0t @

S|

ef . 1 - =
(G K) € if = (Z 43
=1

;) edt@ 1

Lemma 5. For every function f € F(G) with || f||,. = 1, there is a set Q C supp(f),

N
@) _ 3

such that <|Vfll,,-

Proof. We prove the claim by induction on the size of the range of f, Range(f). If f

takes only two values 0 and ¢,, then ¢, = ﬁ, where 4 fit,) and f =t, x,. The

proof is straightforward in this case.

Now, let Range(f) = {0,t,,...,t, } such that 0 < ¢, < ... <t  and, moreover, for each

1€ let A, def f71(¢,) and =, ef m(A,). Then,

Y (flw) = f) élu,)

uv€EE(G)

= ct, +ect,+...+c,t,,

—
IVl

for some real numbers c,, where each ¢, depends only on flows between the subsets A,. Now,
our objective is to find the minimum of the function

subject to the constraints

= Ly

{ 0<z, <...<z
(6)
g(x) déf Z?:lﬂixi —-1=0.

First, note that if < = ... = 2= = g, then ¢(z,,...,2,) = Y, km,x, = K everywhere.
1 n
Therefore,
= d(A,)
¢
VAl , =r=—= :
T, 7(4,)

Now assume there exist ¢ # j such that ;— #* ;—J By Lagrange method, the the minimum of 1

J
subject to the constraints (6) is equal to the minimum of the function h(x, \) = ¥ (x) —Ag(z)
under constraints
0<z, <...<2 .

Since we have 0h/0x, = ¢, — Am,, by assumption partial derivatives are not simultaneously
zero, and consequently, g attains its minimum on a boundary point (s,,...,s ), i.e. there
Now, define the function f to be equal to s, on A, for all 4

exists ¢, such that Si0 = Sigi1-

and zero elsewhere. Then, using (6), we have Hf||17r =1 and

— A
IVfll,, =cs +...+¢c,s

n<n"*

16



Therefore, by induction hypothesis we can find a subset @ C supp( f ) C supp(f) such that

f{g; Ay = $(srrer5) < Bl ) = [ F]s.

The following theorem presents a functional definition for the mean isoperimetric spectrum.

Theorem 1. For any graph G (and a given kernel K on it) and for all
1 <n <|V(G)| we have
1, (G) =7,(G) =7,(G).

Proof. By considering characteristic functions of sets we have v, (G) < ¢, (G). To prove

— “n

equality, let {f,}, € OF(G) be chosen such that 7, (G) is achieved. By Lemma 5, for every

5 ; — . n 3
7r((8)) < V£l Since {f,}7 is

positive orthonormal and @, C supp(f,), we conclude that Q,’s are disjoint subsets, and

consequently,
n
Z T )< 2 Z

i=1

For the second equality, by definition we have ¢, (G) = 7, (G) < 7, (G). Now, let {Q,}] be
a set of disjoint sets for which ¢, (G) is achieved. Also, let

i € T, there exists a set @, C supp(f,), such that

Qvl

7. (G).

3\*—‘

e, @ Y -q,

and 0 < € < ) be an arbitrary fixed number. For ¢ € Z _,, define functions

1
m(Q,UQ"
{ }” c @“‘(G) L odef 7 d
9isy n as g, = 7(q,) Xq,» an

1—e ﬂ'(Q*)
G~ UE Q,

def m(Qp
9, (u) - € u e Q
0 u€ Q.
Therefore, we have
n3, (@) < SV
=1
n—1 " 1 B N oo I . )
= Zf : ;(5(?) 9Q)+¢(0(Q.@)-3@,.Q)).

i=1 Q)

and by tending € to zero we get

This result along with Examples 4 and 5 show that the natural and correct definition of
the mean isoperimetric constants is what is defined in terms of minimization over disjoint
subsets of the domain and not partitions.
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5.2 Spectral bounds and Cheeger-type inequalities

In this section we consider the problem of approximating the isoperimetric constants of
a graph using its Laplacian spectrum and some more information from the eigenspaces.
As a by product of this, we also prove generalized versions of Cheeger inequality for the
isoperimetric spectrum. To begin, let us recall an interesting variational principle due to Ky
Fan.

Theorem A. (e.g. see [2]) Ky Fan’s minimum principle
Let A € End(V) be a self-adjoint matriz operating on the v-dimensional inner-product space
V', and let

A <A <<,

be the set of eigenvalues of A ordered in an increasing order. Then for any 1 <n < v we

have
1

A, == ( min tr(UAU*)) ,
n \UU*=id,,

where X, is the average of the n smallest eigenvalues of A, U is an arbitrary n X v matriz,

id is the n x n identity matriz, and (tr) is the trace function.

Note that another way of expressing Ky Fan’s result is that, subject to the same conditions
of Theorem A,

- 1 " (Af L f
AR NS SRETAT
n ffi;ﬁgj i=1 |f1 2

The second important fact is related to the concept of a nodal domain (e.g. see [5] and
references therein). It is interesting to note that in the continuous case, the eigenfunctions
of the ordinary Laplacian (say of a compact Riemannian manifold) is always a continuous
function (essentially smooth) and by Rolle’s theorem there is always a zero point between
any two points with different signs. This fact, in a way, justifies the study of connected
components of f~1(0) (as nodal regions [20, 27, 33]) for any eigenfunction f in the continuous
case. However, when we are dealing with a discontinuous object as a graph, an eigenfunction
can have opposite signs on the two endpoints of an edge, where this, on the one hand, makes
the whole thing more complex, and on the other hand, it makes the space of eigenfunctions
far richer.

Definition 4. If f € F_(G) and @ C V(G), the pair (Q, Q°) is called a bipolar cut-set for

f if for any edge uv € E(Q) we have f(u)f(v) < 0. Also, a subset @ is called a nonnegative

(nonpositive) bipolar part of f if f, def fl, is a nonnegative (nonpositive) function on  and

(Q, Q°) is a bipolar cut-set for f. A signed part of f is a subset @) that is either a nonnegative
or a nonpositive bipolar part of f. Note that in this case f = f, + f, where f, def floe and
fiLf,. Also, note that any strong sign-graph of f is clearly a signed part of f (e.g. see [5]
for the definitions, other variations and background).

For a given real number ¢ € R, a real function f € F(G) is said to be (-excessive (resp. (-
deficient) for the kernel K if Kf < (f (resp. Kf > (f). By abuse of language, a (-excessive
(resp. (-deficient) function for A is just referred to as a (-excessive (resp. (-deficient)
function, if details are clear from the context. ®

We will use the following lemma to prove a generalized Cheeger inequality later. It is
instructive to mention that the lemma can also be deduced as a corollary of the well-known
Duval-Reiner lemma (e.g. see [25] for the lemma and [5] for the history, erratum and a more
detailed discussion).
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Lemma 6. Let G be graph, and f € F(G) be a (-excessive (resp. (-deficient) function

for A, such that a subset Q@ C V(G) is a nonnegative (resp. nonpositive) bipolar part of f.

) def
Then, assuming g = flo we have

= 2
Nz
lolE.,

Proof. Let @ be a nonnegative bipolar part of the (-excessive function f. If u € @ then
g(u) = f(u) and g(v) > f(v) for all neighbors v of u, and so Ag(u) < Af(u) < (f(u) =
Cg(u). Also if u ¢ @ then g(u) = 0, and since g > 0, trivially Ag(u) < (g(u). Hence by
Lemma 2(c) we have

IVall, . = (Ag.9), <<lg,9), =<lgll, .-

The following is the first half of the generalized Cheeger inequality.

Theorem 2. For any given graph G we have X, < 1, (G).

Proof. Let {Q,} € D,(G) be chosen such that

For every ¢ € Z define

det | 1 ueqQ,
nw =, {5 LS8
=7(Q,) and by Lemma 2,

Now, for each i € Z_ we have ||h

illo x

= 2 — — —
VR, o = VR, 5 = IVhL , = 0(Q))-
Hence, by Ky Fan’s minimum principle,

- B, = VAL
n A, = min g — et < E — =n, (G).
fled, I1£:1l5. 1711,

i=1 i=1

Note that for the complete graph K,, we have \, = t_%, for all 2 < ¢ < t. Also, for the

complete bipartite graph K, s, we have A\, = 1, forall 2 < ¢ <r+s—-1and A = 2.
Thus, by Example 2, for the complete graph K,, when 1 < n <t and also, for the complete
bipartite graph K, when s is a multiple of r and 1 < n < r, equality holds in Theorem 2,
which shows that the result is sharp.

For the second half of a generalized Cheeger inequality we need the following definition.

Definition 5. Let I' = (¢,,(,,..-,¢,) be an n-list of real numbers. Then an n-list
of real functions F' = (f,, f,,...,f,) on a domain X along with n disjoint subsets Q =
(Q,,Q,,...,Q,) such that Q, C X, is called a compatible transverse set of functions for A,
if:

* f,

o #0.
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e For each 1 <4 < n, the function f, is a (;-excessive (resp. (-deficient) function (with
respect to A) on X.

e For each 1 < i < n, the subset @, is a nonnegative (resp. nonpositive) bipolar part of

i
[ )

Theorem 3. Consider a graph G and let I" = ((,,(,,--.,C,). If F'=(f,, f,,...,[,) along
with @ = (Q,,Q,,...,Q,) is a compatible transverse set of functions for A, then

2¢, > 1,(G)
def
Proof. Let0#g, f|Q Then,
SN
(, 24> > ey
=1 2,m = 1 1,7

D=

5~ IVt 2

1 9illie 1 2

Z 2 (’rb |92 > Z 5 n (G) 9

i=1 il

where the first and the second inequalities follow from Lemma 6 and 4, respectively, and the
third one is a direct application of Cauchy-Schwarz inequality. |

It ought to be noted that Theorems 2 and 3 together, can be considered as a generalized
Cheeger inequality. In what follows we deduce a special case where one may get an explicit
inequality for the mean spectrum.

Theorem 4. Consider a kernel K on a base graph G. Let F = (f,, f,,..., f.,.) be a list
of eigenfunctions of A for the list of eigenvalues T = (\,, A, ..., A,i1), respectively, such
that along with Q = (Q,,Q,, ..., Q. ,,) form a compatible transverse set of functions for A.
Then,

_ 2 1) —

%o <o(@ <2y (7
Moreover, we would like to add that following the same scenario described for the mean

version, one may define the nth max-isoperimetric constant as

g, (K,m) © min (max 8(Q)> .

1@, ep, @ \15isn m(Q;)

It is noteworthy that all of the previous mentioned results such as the Federer-Fleming
theorem can also be verified for this version with appropriate modifications. For instance,
we may state a more standard Cheeger inequality for the max-isoperimetric constant ¢, using
Theorems 2 and 3 and their counterparts, along with Courant-Fischer variational theorem
as follows.

Theorem 5. For a given graph G, let f be an eigenfunction of A corresponding to the nth
eigenvalue A . Also, let (Q,,Q,,...,Q,) be a list of n disjoint nonempty subsets of V(G)
such that for every 1 < i < n we have f|, # 0 and each Q, is a nonnegative or nonpositive
bipolar part of f. Then, '

%g () <2, and X, <., (G)<V2A,. (8)
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Also, as a corollary of Theorem 5 by considering the fact that always the second eigenvalue
has an eigenfunction with two nodal domains, we obtain the classical Cheeger inequality as,

%< L(@) <o (@) < V2R, (9)
It also must be emphasized that a direct use of eigenvalues and eigenfunctions (not neces-
sarily tuned with repetition) in Theorem 3 will definitely make a deviation from sharpness
which can be easily verified by a comparison to the classical Cheeger inequality (Inequal-
ity (9)). Note that the classical Cheeger inequality is far from being sharp by a recent result
of Montenegro and Tetali [39].

To provide some examples let us recall the following result.

Theorem B. [4, 5] Let K be a kernel on a tree T and let f, be an eigenfunction of A with
eigenvalue A\, which does not vanish on any vertex. Then X\ is simple and f, has exactly n
strong nodal domains.

Therefore, a generalized Cheeger inequality is valid for any Markov chain on a tree T with
a nowherezero eigenfunction f of an eigenvalue A , i.e

max(%,xn) < max(%,Ln(T)) < (T)< V2,
For more on the extensive literature of Markov chains on trees the interested reader is re-
ferred to [5, 37] and references therein.

On the other hand, it is quite interesting that even for the case of trees we do not know
enough about the behavior of parameters discussed in this article, and as Example 4 shows
one encounters nongeometric trees in very small cases. Hence, we believe that the following
problem can be considered to be a nice starting point for the study of supergeometric graphs.

Problem 1. Characterize the class of supergeometric trees.

5.3 Algorithmic considerations

In this section we touch on some algorithmic aspects of the isoperimetry problem and we
study its relationships to some well-known concepts as the k-means algorithm and the nor-
malized cuts method. This section is mainly influenced by the seminal contribution of
J. Malik and J. Shi [43] (also see [21]) that was brought to our attention after the presenta-
tion of the first two authors’ article on the isoperimetric spectrum of graphs [19].
Following our notations in Section 3, for a set X, D, (X) stands for the set of all n-sets
{Q,}7, where Q,’s are nonempty disjoint subsets of X. Also P_(X) C D, (X) consists of all
n-partitions of X.

Definition 6. Given a function f € F4(X) and a weight function w : X — R* — {0}, for
every 1 <n < |X]|, the cost function Ci’w : D, (X) — Rt is defined as follows

e ¢ Z S w(w)l|f(u _ det 2ucq, W(w)f(u)

2
, Where m, = ' ,
i=1 ueq, ZueQi w(u)

and

AR E MITHQIN + Y w@F@),

ueQ™
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where |.|| is the Euclidean L?-norm of R? and Q" = X — U, Q,. Also, associated to the
functions f and w, we define the following parameters

d;

p(fr0) Y min ¢(Q), and i, (fw)

QeD, (X)

min Cf’w(Q).
QeP, (X) "
o

The well-known k-means algorithm seeks for the value of fi (f,w) and an n-partition on
which the minimum is achieved. First, let’s state the following simple lemma.

Lemma 7. Given functions f € F4(X) and w: X — Rt — {0} on X, for all 1 < n < |X|
and for every Q@ = {Q,}7 € D, (X), we have

n

MEQ = S wwe)|f) - Fo)

i=1 2w(@) u,vEQR,

Proof.
2

MEQ) = YA S ww) | Y () - ) w(v)

i=1 w(@Q,)? uea, e,
1
_ ; SO u%@ wuw()w(w) ((f(u), f(w) = (f(0), fw)
—(f(w), f(u)> + <f(11), f(w)>) = Z B WEQ) Z w(u)w(q})nf(u) _ f(U)H2

i=1 uVEQR,

i

Let G be a graph on v vertices and K be a kernel on it, together with a stationary distribution

m. Also, let D be the diagonal matrix defined as D(u,u) def 7(u). Define, the normalized

flow matriz as,
Y i+ K)D Y,

whose (u,v) entry can be described as

6 (uv)
7(u)m(v) u 75 v,

D(u,v) =

1 (u,u) _
@ T rw? YT
that justifies the name. Now, if f is an eigenfunction for the eigenvalue A of ®, and we chose

x in such a way that % = max, %, then

M) = (@) = L0 4 5 E ) = (1 - ZK(m,w) ~o,

which shows that ® is a positive semidefinite matrix, and consequently, there exists a matrix
P such that ® = P'P. Let us define the function p,. € F”(G) such that p, (u) is uth column
of P.

Proposition 2. For every graph G on v vertices and a kernel K on it with a nowherezero
stationary distribution m, the following equations hold for all 1 < n < v,

fo (Pres ™) = v = 2n 4 tr(K) +n e, (G), (10)

g, (pe,m)=v—2n+tr(K)+ni (G).
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Proof. Let Q = {Q.}} € D, (G) be chosen arbitrary and let Q" = V(G) — U ,Q,. By
Lemma 7,

n

PK T _ 1 2 2
O =Ygy, X, Tl - XC; )y ()]
_ - P (1), i (V)
- Z ’/T(’U,)<pK 7pK Z Z (Q )
wev(Q) i=1 u,0eQ
- (u) - m(u) K (u,v)
= (1+ K(u,u) il — 7
ue;(}) ;UGQ1 T‘-(QZ ;u,vze:c?l F(Ql)
Q) - 6(Q)
= v+
uG;G) ; Ql)
~0(Q)
= -2 K
v —2n + tr( )+;7r(Q)
Now, the equations follow by taking minimum over D, (G) and P, (G). [ ]

This results along with Theorem 1 shows that the target of the standard k-means algorithm
is not theoretically Well-justiﬁed and must be redefined to be the set of disjoint subsets for
which the minimum of C is achieved. Besides, note that the left side of Equation (10) is
always nonnegative, and Consequently, one finds a lower bound for ¢ (G) as follows, which
is good when n is large.

Corollary 1. Let G be a graph on v wvertices and a kernel K on it with a nowherezero
stationary distribution 7. Then for every integer 1 < n < v we have

1/+tr(K).

1, (G)>2— -

It should be noted that the set of functions {p, (u) | uw € V(G)} constitutes an orthogonal
representation for G [35]. These relations along with relationships of the subject to the theory
of weakly unitary invariant norms (e.g. see [2]), convex analysis on Hermitian matrices, and
applications of semidefinite programming to the approximation problem are among areas
that ought to be considered in forthcoming research.
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