
Introduction to Classes

Mojtaba Alaei

April 5, 2020

Content of the course

Definition

Class:

A class packs a set of data (variables) together with a set of
functions operating on the data. The goal is to achieve more
modular code by grouping data and functions into manageable
(often small) units.

Problem: Functions with Parameters

In python we can define function with parmeter by using def. For
example for y(t) = v0t − 1

2gt
2 or g(x ;A, a) = Ae−ax :

def y(t, v0):
g = 9.81
return v0∗t − 0.5∗g∗t∗∗2

def g(x, a, A):
return A∗exp(−a∗x)

Problem:
suppose we want to differentiate a function f (x) at a point x,
using the approximation:

f ′(x) ≈ f (x + h)− f (x)

h
(1)

So

def diff(f, x, h=1E−5):
return (f(x+h) − f(x))/h

Unfortunately, diff will not work with our y(t, v0) function. Calling
diff(y, t) leads to an error inside the diff function, because it tries
to call our y function with only one argument while the y function
requires two.

Problem: Functions with Parameters

A Bad Solution: Global Variables.

def y(t):
g = 9.81
return v0∗t − 0.5∗g∗t∗∗2

def g(t):
return A∗exp(−a∗x)

So

v0 = 3
dy = diff(y, 1)

A = 1; a = 0.1
dg = diff(g, 1.5)

The use of global variables is in general considered bad programming.

Solution:Representing a Function as a Class

A class contains a set of variables (data) and a set of functions,
held together as one unit. The variables are visible in all the
functions in the class. That is, we can view the variables as
”global” in these functions.

Consider the function y(t; v0) = v0t − 1
2gt

2. We may say that
v0 and g , represented by the variables v0 and g, constitute

the data. A Python function, say value(t), is needed to
compute the value of y(t; v0) and this function must have

access to the data v0 and g, while t is an argument.

Solution:Representing a Function as a Class

So for this class we need the data v0 and g, and the function
value(t), together as a class. In addition, a class usually has
another function, called constructor for initializing the data. The
constructor is always named init . Every class must have a
name, often starting with a capital.
Implementation:

class Y:
def init (self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0∗t − 0.5∗self.g∗t∗∗2

Usage and Dissection

An object of a user-defined class (like Y) is usually called an
instance. We need such an instance in order to use the data in the
class and call the value function:

y = Y(3)

Actually, Y(3) is automatically translated by Python to a call
to the constructor init in class Y.

The arguments in the call, here only the number 3, are always
passed on as arguments to init after the self argument.
That is, v0 gets the value 3 and self is just dropped in the call.

This may be confusing, but it is a rule that the self argument
is never used in calls to functions in classes.

With the instance y, we can compute the value y(t = 0.1; v0 = 3)
by the statement:

v = y.value(0.1)

Usage and Dissection

With the instance y, we can compute the value y(t = 0.1; v0 = 3)
by the statement:

v = y.value(0.1)

To access functions and variables in a class, we must prefix the
function and variable names by the name of the instance and a
dot: the value function is reached as y.value, and the variables are
reached as y.v0 and y.g.
For example, print the value of v0 in the instance y by writing:

print(y.v0)

Usage and Dissection

We have already introduced the term ”instance” for the
object of a class.

Functions in classes are commonly called methods,

and variables (data) in classes are called attributes.

In our sample class Y we have two methods, init and
value, and two attributes, v0 and g.

The self Variable

Inside the constructor init , the argument self is a variable
holding the new instance to be constructed. When we write:

self.v0 = v0
self.g = 9.81

we define two new attributes in this instance. The self parameter is
invisibly returned to the calling code. We can imagine that Python
translates y = Y(3) to

Y. init (y, 3)

Let us look at a call to the value method to see a similar use of the
self argument. When we write:

v = y.value(0.1)

Python translates this to a call

v = Y.value(y, 0.1)

such that the self argument in the value method becomes the y in-
stance.

self.v0∗t − 0.5∗self.g∗t∗∗2

The self Variable

In the expression inside the value method,

self.v0∗t − 0.5∗self.g∗t∗∗2

self is y so this is the same as

y.v0∗t − 0.5∗y.g∗t∗∗2

The self Variable

The rules regarding ”self” are listed below:

Any class method must have self as first argument1.

self represents an (arbitrary) instance of the class.

To access another class method or a class attribute, inside
class methods, we must prefix with self, as in self.name, where
name is the name of the attribute or the other method.

self is dropped as argument in calls to class methods.

1The name can be any valid variable name, but the name self is a widely
established convention in Python.

Using Methods as Ordinary Functions

We may create several y functions with different values of v0:

y1 = Y(1)
y2 = Y(1.5)
y3 = Y(−3)

We can treat y1.value, y2.value, and y3.value as ordinary Python
functions of t, and then pass them on to any Python function that
expects a function of one variable. In particular, we can send the
functions to the diff(f, x) function:

dy1dt = diff(y1.value, 0.1)
dy2dt = diff(y2.value, 0.1)
dy3dt = diff(y3.value, 0.2)

Doc Strings

A class can have a doc string, it is just the first string that appears
right after the class headline. The convention is to enclose the doc
string in triple double quotes ”””:

class Y:
” ” ” T h e v e r t i c a l m o t i o n o f a b a l l . ” ” ”

def init (self, v0):
...

And to see the doc:

>>> Y. doc
’The vertical motion of a ball.’

Making Classes Without the Class Construct

More Examples on Classes: Bank Accounts

Bank Accounts:

class Account:
def init (self, name, account number , initial amount):

self.name = name
self.no = account number
self.balance = initial amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance −= amount

def dump(self):
s = ’%s, %s, balance: %s’ % \

(self.name, self.no, self.balance)
print(s)

Usage:

>>> from classes import Account
>>> a1=Account(’Mojtaba Alaei’, ’131031221’, 100000)
>>> a1.withdraw(4000)
>>> a1.dump()
Mojtaba Alaei, 131031221, balance: 96000
>>> a1.name=’Javad Alaei’ # T h i s i s r e a l l y a p r o b l e m

>>> a1.dump()
Javad Alaei, 131031221, balance: 96000

More Examples on Classes: Bank Accounts

Other languages with class support usually have special keywords
that can restrict access to class attributes and methods, but
Python does not.
A special convention can be used: Any name starting with an
underscore represents an attribute that should never be touched or
a method that should never be called. One refers to names starting
with an underscore as protected names:

class AccountP:
def init (self, name, account number , initial amount):

self. name = name
self. no = account number
self. balance = initial amount

def deposit(self, amount):
self. balance += amount

def withdraw(self, amount):
self. balance −= amount

def get balance(self):
return self. balance

def dump(self):
s = ’%s, %s, balance: %s’ % \

(self. name , self. no , self. balance)
print(s)

More Examples on Classes: Bank Accounts

Here is class AccountP in action:

>>> a1 = AccountP(’John Olsson’, ’19371554951’, 20000)

>>> a1.deposit(1000)

>>> a1.withdraw(4000)

>>> a1.withdraw(3500)

>>> a1.dump()

John Olsson, 19371554951, balance: 13500

>>> print(a1. balance) # it works, but a convention i s broken
13500

print(a1.get balance()) # correct way of viewing the balance
13500

>>> a1. no = ’19371554955’ # this i s a ”serious crime”

More Examples on Classes: Phone Book

class Person:
def init (self, name,

mobile phone=None, office phone=None,
private phone=None, email=None):

self.name = name
self.mobile = mobile phone
self.office = office phone
self.private = private phone
self.email = email

def add mobile phone(self, number):
self.mobile = number

def add office phone(self, number):
self.office = number

def add private phone(self, number):
self.private = number

def add email(self, address):
self.email = address

The object None is commonly used to indicate that a variable or
attribute is defined, but yet not with a sensible value.
Usage:

>>> p1 = Person(’Hans Hanson’,
... office phone=’767828283’, email=’h@hanshanson.com’)
>>> p2 = Person(’Ole Olsen’, office phone=’767828292’)
>>> p2.add email(’olsen@somemail.net’)
>>> phone book = [p1, p2]

More Examples on Classes: A Circle

class Circle:
def init (self, x0, y0, R):
self.x0, self.y0, self.R = x0, y0, R

def area(self):
return pi∗self.R∗∗2

def circumference(self):
return 2∗pi∗self.R

More Examples on Classes: A Circle

class Circle:
def init (self, x0, y0, R):
self.x0, self.y0, self.R = x0, y0, R

def area(self):
return pi∗self.R∗∗2

def circumference(self):
return 2∗pi∗self.R

More Examples on Classes: ASE

Special Methods

Special Methods

Some class methods have names starting and ending with a double
underscore. These methods allow a special syntax in the program
and are called special methods. The constructor init is one
example. This method is automatically called when an instance is
created (by calling the class as a function), but we do not need to
explicitly write init .

The Call Special Method

If we could write just y(t), instead of writing y.value(t), the y
instance would look as an ordinary function. Such a syntax is
indeed possible and offered by the special method named call .
Writing y(t) implies a call

y. call (t)

if class Y has the method call defined. We may easily add this
special method:

class Y:
...
def call (self, t):
return self.v0∗t − 0.5∗self.g∗t∗∗2

Example: Automagic Differentiation

class Derivative:
def init (self, f, h=1E−5):

self.f = f
self.h = float(h)

def call (self, x):
f, h = self.f, self.h # m a k e s h o r t f o r m s

return (f(x+h) − f(x))/h

Usage:

>>> from math import sin, cos, pi
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
−1.000000082740371
>>> cos(x) # e x a c t

−1.0

Turning an Instance into a String (str)

Another special method is str . It is called when a class instance
needs to be converted to a string. This happens when we say print
a, and a is an instance.

class Y:
def init (self, v0):

self.v0 = v0
self.g = 9.81

def call (self, t):
return self.v0∗t − 0.5∗self.g∗t∗∗2

def str (self):
return ’v0∗t − 0.5∗g∗t∗∗2; v0=%g’ % slef.v0

Usage:

>>> y = Y(1.5)
>>> y(0.2)
0.1038
>>> print y
v0∗t − 0.5∗g∗t∗∗2; v0=1.5

Adding Objects

Let a and b be instances of some class C. Does it make sense to
write a + b? Yes, this makes sense if class C has defined a special
method add :

class C:
...
add (self, other):
...

Arithmetic Operations and Other Special Methods

Given two instances a and b, the standard binary arithmetic
operations with a and b are defined by the following special
methods:

a + b : a. add (b)
a − b : a. sub (b)
a∗b : a. mul (b)
a/b : a. div (b)
a∗∗b : a. pow (b)

Some other special methods are also often useful:

the length of a, len(a): a. len ()
the absolute value of a, abs(a): a. abs ()
a == b : a. e q (b)
a > b : a. g t (b)
a >= b : a. g e (b)
a < b : a. l t (b)
a <= b : a. l e (b)
a != b : a. n e (b)
−a : a. neg ()

Example: Class for Vectors in the Plane

Some Mathematical Operations on Vectors:

(a, b) + (c , d) = (a + c, b + d) (2)

(a, b)− (c , d) = (a− c, b − d)

(a, b).(c , d) = ac + bd

||(a, b)|| =
√

(a, b).(a, b)

Example: Class for Vectors in the Plane

Implementation:

import math
class Vec2D:

def init (self, x, y):
self.x = x
self.y = y

def add (self, other):
return Vec2D(self.x + other.x, self.y + other.y)

def sub (self, other):
return Vec2D(self.x − other.x, self.y − other.y)

def mul (self, other):
return self.x∗other.x + self.y∗other.y

def abs (self):
return math.sqrt(self.x∗∗2 + self.y∗∗2)

def e q (self, other):
return self.x == other.x and self.y == other.y

def str (self):
return ’(%g, %g)’ % (self.x, self.y)

def n e (self, other):
return not self. e q (other) # r e u s e e q

Example: Class for Vectors in the Plane

Usage:

>>> u = Vec2D(0,1)
>>> v = Vec2D(1,0)
>>> w = Vec2D(1,1)
>>> a = u + v
>>> print(a)
(1, 1)
>>> a == w
True
>>> a = u − v
>>> print(a)
(−1, 1)
>>> a = u∗v
>>> print(a)
0
>>> print(abs(u))
1.0
>>> u == v
False
>>> u != v
True

Exercise: 2D square well

v(x , y) =

{
0 −d/2 6 x , y 6 d/2
∞ otherwise

d is well width

Exercise: 2D square well

ψl ,m(x , y) = φl(x)φm(y)

φl(x) =

√
2

d
cos(

lπx

d
) l : odd

φl(x) =

√
2

d
sin(

lπx

d
) l : even

φm(y) =

√
2

d
cos(

mπy

d
) m : odd

φm(y) =

√
2

d
sin(

mπy

d
) m : even

El ,m =
~2

2m
{(lπ

d
)2 + (

mπ

d
)2}

Exercise

Write a program using class (well 2D) with the d as attribute and
eig and plot psi2 as methods of the class.
eig(l,m) should return El ,m

plot psi2 should plot a two-dimensional image of |ψ(l ,m)|2 using
imshow (matplotlib.pyplot.imshow)

	Understanding clesses

