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INNER MAPPINGS OF BOL LOOPS

Alexander Kreuzer

K-loops have their origin in the theory of sharply 2-transitive groups. In that paper a
proof is given that K-loops and Bruck loops are the same. For the proof it is necessary
to show that in a (left) Bruck loop the left inner mappings L(b}L(a JL{(ab)} ! are automor-
phisms. This paper generalizes results of Glauberman (6], Kist [12] and Kreuzer [14]3.

0. INTRODUCTION

In order to describe sharply 2- transitive groups, H. Karzel introduced in [8] the notion
of a neardomain (E.®,- ){cf. [221). The crucial difficulty of a neardomain is the additive
structure (F.®), which need not be associative and until today no example of a proper
neardomain is known {(cf. [10,111). To obtain partial results, W. Kerby and H. Wefelscheid
considered separately the additive structure (F,®) and called such loops K-loops { see

definition in section?2). Since 1988 the interest on K-loops has been revived because

A. A. Ungar has found a famous physical example.

A.A. Ungar investigated the relativistic addition @ of the velocities R%::{ veR?: |v| <c)

He showed that {IR2. &) is a non-associative and non- commutative loop with characteristic
automorphisms, which he calls a gyrogroup. Ungar proved that for any two velocities

a,bE[Rf': there is an automorphism 3§, p, of (IR%,&)), the socalled Thomas rotation, satis-

fying a®(box)={a®b)o x3_,, (cf. 119, 20,211), i.e. §, p, is a left inner mapping of the

loop. H.Wefelscheid recognized then that (R2,®} is a K-loop.

At first it was discovered by G. Kist that there is a connection between K-loops and

Bruck loops [12, p.27]. G. Kist remarks, that already from results of G. Glauberman

(6] one can deduce that every finite Bruck loop of odd order is a K-loop. As a genera-
lisation it is proved in [14, Theorem1] that every Bruck loop with no element of order 2
is a K-loop.

In this note we prove that K-loops and Bruck loops are the same. For that mainly we

have to show that the left inner mappings of a {(ieft) Bruck loop are automorphisms

of the loop, denoted as axiom (I]. (In general the right inner mappings of a left Bruck
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loop are not automorphisms, hence Bruck loops are clearly not A-loops in then sense
of Bruck and Paige (3], but left A-loops by Definition 1.1.4 of Nagy and Strambach [16],
and in particular homogenous loops. )

In section 1. and 2. we give the definitions and some easy results, partly known, which
we need in section 3. The main results are the Theorems 3.1 and 3.3. Theorem 3.1 gives
also a different proof for a part of Theorem 2.2.ii of Goodaire and Robinson {7] that
the left inner mappings of a left conjugacy closed loop are automorphisms (cf.
Corollary 3.2). (An investigation of left conjugacy closed loops and their properties can
be found in [161.)

Differently to other papers on K-loops [9, 13, 14,15], in this paper we use " " instead

of "+" for the binary operation. as it is customary for loops.

1. Left inner mappings

Let (K,-) be a loop with the identity element 1, and for x €K let x*,x2€K be the unique
elements with x*x= xx@=1. If x*=x2, then x '=x™=x@ is the inverse of x. Let
NU={bEK:a-bc=ab-c for all a,c€K} denote the middle nucleus. For any fixed element

a€ K ,the map
La);: K - K; x - xl{a)=a-x {1.1)

is called left translation. The group M1== CL(x) : x€K) of all permutations of K which
is generated by all left translations (and their inverses) is called the left multiplica-
tion group of (K,-).

Let K:= { L{x): x€K!be the subset of all left translations of M)v Clearly, be Nli iff
ab-c=cL(ab) = a-bc = cL{b)L(a), i.e., iff L{ab)=L(b)L{a) for every acK. Assume
L(b)L{a) =L{x)} €K, then 1L(b}L{a) =ab=1L{x)= x, i.e., x=ab. Hence

be Nu if and only if L(b}L(a)éK for every a€K (1.2)

We call the permutations of A = {«¢ €M, : ta=1} the left inner mappings of (K,-).

1.1 Lemma. M, = AK and M, =KA are exact decompositions, i.e. for every u€M, there
are unique elements L{a},L{b)€K, « €A with y= al{a) = L(b)3 and we have a= b®uZ

Proof. For u¢ M, let a=1y , s=1u"'€K, ie , su=1. Set b= s* then p = yL{a) L{a)=
LIb)L{b) ' with a=ul{a)™!, 8=Lb) 'ueA, since 1pL{a)! =al{a)!=1 and sL(s*) =1,
hence 1L{b) 'u= 1 L{s*) 'u=sp=1. Clearly b%u? = sup= 1g”"lpgu= lp=a.

Assume |t = al{a)=a"L{a" ). then « "' =L{a )L{a) 'and 1 =1 L(a" )L{a) 7}, i.e., 1L{a}=a=a'=11{a")

and x'=x. Hence a€l, x€ A and aiso bel, 3¢ A are uniquely determined .
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For fixed elements a,beK let
5,5 = L{b)L{a)Liab) ™" (1.3)

In this paper we prefer to write §, , rather than L{(b,a) to match up papers on K-loops.
Let A= <5xy :x.y€K> be the subgroup of M; which is generated by all permutations

5xy' Analogous to 12,1V, Lemma1.2]1 and {17,1.5.2] we get:

1.2 Lemma. A =<8x‘).:x,y€ K>.

Proof. Clearly 15, , = 1, hence Arc A. Now we show A'’K K ¢ A'K and A’KK™! c A'K,
hence with respect to M, =<(K> we get A’K=M, and with Lemma 1.1 A=A Let ac A",
x,¥€L, then aL{y)L(x)= D{L{_V)L(X)L(X)’)-ll.(xy)zQ’Sx‘y L{xy)¢ A'K and for z€ K with x=yz
also ch(x)L(y)“:aL(yz)L(y)_lL(z)-lL(zﬁa&z“'fv L{z)e A'K.

Clearly definition (1.3) implies for a,b,x€K:
a-bx = ab- x3, {1.4)

83.1=81,a=id : (1-5)

13 Lemma. In a loop (K,-) the following statements (i),{ii), and (iii} are equivalent:

(1} Ban g = id (i) a*-ax =x (left inverse property) (i) L{a*)= L({a)™"

Proof. By (1.4) a’-ax=a%a- X84n 4= X for every x€K if San o = id. Obviously (it) implies
(). 5,5 , = Lalla*)L{ara)=id, iff L(a*)= L(a)"".

We recal! that the left inverse property implies a*=a®=a"!

2. K-loops, Bruck loops and left conjugacy closed loops

A loop (K,) is called a left A-loop if (I}, a left K-loop if (I), (H} and (III), a left
Bol loop if (B), and a left Bruck loop if {B) and (I{I) are satisfied:

(1 For all x,y€K, gx,y is an automorphism of (K, - ).

(1D 8 5 for all x,yeK.

X,¥ X, yx
(III) (Automorphic inverse property) {ab) !=a"1b™! for all a,bekK.
{B) (left Bol identity) a{b-ac}={aba)c for all a,b,c€K.

We consider also the following axiom

(IB) a~(b-ac)={a* ‘ba)c for all a.b.c€eK.
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In the following we omitt the word “left” and refer by the phrase Bol (Bruck, K-) loop

always to left Bol (Bruck, K-) loops.

By (II) and (1.5), 94 ax 03 a*a® 541 =id, hence by (1.4) a=a-a*a = aa}‘-aBajax = aa™-a.

We obtain (cf. [15,(2.10)1) aa> =1, ;5 4 = 8,3 222 =5,x 1 =id and 3, 578, 552 =5, 1=id,
i.e. by Lemma 1.3, a*-ax=x and arax=a’-x, properties which are well known for Bol loops

(cf. [2, 17, 181). If we set b=1 in (IB}, we get aiso a”-ac=c. Hence:

2.1 Lemma. In K-loops , Bol loops and loops with (IB) the left inverse property a*-ac=c,

2

in K-loops and Bol loops also the left alternative law a-ac=a“c is satisfied.

2.2 Example. In a loop with (IB) the left alternative law need not be valid, which we

see in the following example. For n€lN let K = Z;,, and

+b +4nb if a€{2Zn,6n}
. KxK=K; a-b={a o B oaniemen (1.6)
atrb else
we get a loop (K, -) with neutral element O, with asa =2a and a ! =-a. Itis easy to

compute that (IB) is satisfied. But we have ne(nel) = 2n+1 2 (nen}s1 = 2n » 1 =

2n+1+4n=6n+1, L.e., the left alternative law is not satisfied.

2.3 Lemma. let (K,-) be a loop. Then:

a) (B) < 3a.ba © 53.3 &= L{a)KL{a)cK for all a.bek.

b) (IB) = 5,5 1,0y, = LK L(aMCK for all abek.
c) {IB) = L{a)K L(a)"'cK for every acK.

Proof. a). By (1.4) a(b-ac)=a(ba‘c8b.a)= (:—.rl:oa)c:?:b.a}Sa‘baé (a-ba)c for every ceK, iff
ab,asa.bazid' Since a(b-ac) = cL(a)L{b)(La) and (a-ba)c=cL{a-ba}, {B) is equivalent to
I{a)L(b)L{(a)€K for every a beK.

b). a*({b-ac}=(a* 'ba)cab!asap\'baé (a-ba}ciff 3, 48,5 py =id. By a*{b-ac) = cL{a)L(b}{La™)
and (a* ‘ba)c=cL{a*-ba}, (1B} turns out to be equivalent to L(a)L{b)L(a>)€eK for all a,beK.

c). By Lemma 2.1 a*=a”!, hence b) implies c).

Loops with L{a)KL(a)"' € K are called left conjugacy closed loops {(cf. [7, 16]). Bol loops
with (IB) are therefore exactly the Burn loops of [16), defined as left conjugacy closed
loops with {B). With {IB) we give another proof for Theorem 1.4.4 of [161]:

2.4 Lemma. In a Bol loop (K. ), (IB) is satisfied if and only if {x?:x€K)}C N . where

Nu is the middie Nucleus.

Proof. In a (left) Bol loop b-a’c = a™la-{bla-ac)}= a 'Y{al{bla-ac))) (rB—*} a {{a-ba})-ac) and
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B)
ba?-c= (a '(a(b-aa)))c &) (a”Y{(a-ba)a))c. We set b’ =a-ba. Hence for every ac K we

]
have aEEN“. iff b-aZc = a Y(bac) = ba?-c = {a !-b'a)c, i.e., iff (IB) is satisfied.

2.5 Remark . There do exist proper Bol loops satisfying {IB). For instance the examples
for Bruck loops of order Bn,n€N, given in [15, (5.2.11), (5.5)1 and all six examples
for Bol loops of order 8 of [4} satisfy (IB). Whereas the examples of Bol loops of {f]
do not satisfy (IB).

By 114, (1.2)3, t15, (2.12)X:

2.6 Lemma. Every K-loop satisfies the Bol identity and is a Bruck loop.

3. Left inner automorphisms

Now we describe properties of the loop (K,-) in the left multiplication group M, =KA.
3.1 Theorem. An inner mapping «€ A is an automorphism of {(K,-) if and only if o 'Ka CK.

Proof. Let x,y€K and x € A, Then (xy)a=xox-yx is egivalent to xy=(xa-ya)a !, hence
E(x) = al{xa)a™! |, ie., a 'L(x)a= Lixa)eK (3.1}

if and only if a is an isomorphism. Assume o 'L{x)a=L(x")€K for some x'€¢K, then

1=t ! and 1a 'L{x)x = xa= 1L{x'}) = x" and (3.1} is satisfied, i.e. ,a is an automorphism.

3.2 Corollary. In every loop (K, ) with (IB), A is a group of automorphisms of (K. ),

i.e. the axiom (1) is satisfied and (K, ) is a left A-loop.

Proof. Let a.beK. By Lemma 1.2 it suffices to show that aa,b is an automorphism. By
Lemma 2.1 and Lemma 1.3, 5a,b_1 = L(ab)L(a*)})1(b"). Lemma 2.3.b implies now 84 bK N b_l =
L(b)L{a)L{(ab)*) K L{ab)L(a*)L{b*)C K and with Theorem 3.1 the assertion follows.

3.3 Theorem Let (K.') be a Bol loop and let a,bé K. Then the inner mapping &, }, is an
automorphism of (K, ) if and only if
ab-(a”'b7! JEN, =Ny, (3.2)

where N“(N)\) denotes the middle {left} nucleus.

Proof. For L(x)eK let v= 3,y L(x) 3, ' =L{b){a)L(ab)™" L(x)} L(ab}i(a}'L(b)"eM,.
By Theorem 3.i. 5, is an automorphism iff veK, and by Lemma 23.a yeK iff
L{ab) 'L{a)L{b}y L{b)Lta)L{ab) ' =

L{ab) 'L{a)L{b)*L{a) L{ab) ' L(x)e K. (3.3)
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_ - _ _ (B)
For ze K, the Bol identity implies zL{ab) 1L(a)L(b)zL(a)L(ab) = (ab} 1-{a{ b2 (a-(ab)" 121 }) =

(ab) '-[ (a-b%a)-(ab) 'z] ‘2 [{ab) !-(a-b%a)(ab) ™1z = ?.L((ab)-' -(a-bZ%)(ab)™! ) and by
(1.2) it follows that {3.3) is valid iff

s ={abJ'-(a-b%){ab) t € NLJ' (3.4)
With {(B) and Lemma 1.3, (a-b%a)- a 'b™' = a- b%*a-a"'b™!'} =ab it follows 1 =
{ab)!-{{a-b%) [{ab)" ! (ab){ a™'b '} = ((ab) ' {a-b%)(ab)™?] {(ab)( a 'b™!), ie., s7!=
ab-{ a”'b™!). Because N, is a subgroup of K, s€N, iff s“IENu, We summarize that 5, y,

is an automorphism iff ab( a"b'l)GN“.
Since A=(5, : a. b€K), Theorem 3.3. implies:

3.4 Corollary. In every Bruck loop (K,-), A is a group of automorphisms of (K.') and

the axiom (I} is satisfied, i.e., {(K,-} is a left A-loop.

3.5 Theorem. Bruck loop and K-loops are the same.

Proof. By Lemma 2.6 a K-loop is a Bruck loop. By (14, (2.12)] in a loop with {I), (III}
and the {left) inverse property, (II) and (B) are equivalent, hence in a loop with (I}, (III)
and (B), (1I) is satisfied, i.e. by Theorem 3.3, a Bruck loop is a K-~loop.

The questionwhether the axioms (II} and (I1I) also imply (I) is answered to the nega-

tive by the following:

3.6 Example. Let (R,+,-} be an associative and commutative ring with zero element O,

with x'x=0 = x+x for every xéR and with four elements p,q.r.s satisfying pqrsz=0.

(For instance for n€N with nz4 let R == Zzzn_l be the vector space over Z, with

dimension 2"-1 . We write the vectors of a basis B in the following way:

B={lk.ky ....ky] : k;€10.1) for i€{t,....n} and [k,....k,)#(0,...01 }.

Let O be the zero vector. We define by b-0O=0-b for every b€B and

Pk,

0 if k. +#. =2 for some i€{1,...,n}
kz,...,kn_l'[?l,fz, {n}::{ ] 1

[k +€ ktl,, .. kL] else
an associative and commutative multiplication on B and extend this multiplication

to a distributive multiplication of R. Then obviously x-x = 0 and

£1,000,...1- [01,0,0,...1- TO01,0,...1- 0,001, ... = [1,1,11,...120. )
Now we define on K:= RxR the following operation:

®: RxR—R, (a.a,)0 (b, b,)={a +a,+aabb, b +b,)] {3.6)

2
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Then for a=(a ,a,}.b=(b.b,)e K, (x,.x,)=(a,+b;+aba,b,, a,*+b,) is the unique solution
of the equation (al,az)@(xl.xz} =(bt,b2) and (0.0) is the zero element, ie., (K, ®) is a

commutative loop. Every element of K\{0.0) has order 2, hence (K,®} satisfies (III).

We compute that
(‘\'wxz)aa,b = X, +ala2(b1\‘2+ bz,\'l) + (a'b2 + azbl)xlxz, Xz) (3.7)

and 5y =8, pags i-e.. (II) is satisfied. But for the elements p.g.r.s€R with pars#0 we
have: (1:>,0)€B((q,r)®((p.())ﬁ?*(o‘:-?})=(crpqr:%ﬁS)at (q.r+s)= ((p.O)@((q,r)G(p.O)) ®{0;s),
i.e.. the Bol identity {B) is not satisfied and by Lemma 2.6 neither is (I).
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