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Dedicated to Janos Aczél on the occasion of his 75" birthday, in friendship

Summary. We present a functional equations approach to the non-negative functions h (z,y)
and F (z,y) satisfying

coshh (z,y) = \/1+22/1+y2 —zy,
E(@,y) =z —yll.

The underlying structure is a pre-Hilbert space X of dimension at least 2. An important tool is
the group of translations

Ti(z) =x+ ((xe)(cosht — 1)+ 1+ 22 sinht) e,

t € R, where Ty : X — X satisfies the translation equation with a fixed e € X such that e? = 1.
One of the results is that a function

d: X xX —>Rso:={reR|r>0}

which is invariant under orthogonal mappings and the described translations for a fixed e, must
be of the form

d(z,y) =g ((h(z,9))

with an arbitrary function g : R>g — R>q. If, moreover, d is additive on the line {e | £ € R},
then d is essentially equal to h.

Mathematics Subject Classification (1991). 39B40, 39B70, 46B20, 51K05.

1. Suppose that X is a pre-Hilbert space, i.e. a real vector space equiped with an
inner product

c: XxX =R, o(z,y) = zy

satisfying 22 = zz > 0 for all z # 0 in X. In addition we assume that the
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dimension of X is at least 2. Hence there exist elements e, es of X with

e? =1=e¢3 and ejep = 0. (1

~—

We define the hyperbolic distance h (z,y) € Rof x,y € X by means of h (x,y) >

0 and
coshh (z,y) = V1+ 221+ y2 -y, (2)

where cosh denotes the hyperbolic cosine. The right-hand side of (2) must be
greater or equal to 1: the inequality of Cauchy—Schwarz,

(zy)* < 2*y?,
namely implies (zy)? < 2%y? + (z — y)?, i.e.

ry+1<|zy+1] <V1+ 221 +92

Among the results of this note are a characterization of the function h (x,y), more
precisely a functional equations approach to h (z,y), and, moreover, a similar
approach to the euclidean distance function

E(z,y) :=y/(x—y)?=[lz—-y]. (3)

We are thus able to carry over results in [2] from R”™ to arbitrary pre-Hilbert spaces
of dimension greater than 1 (Theorems 2, 3, 4). This, however, is accomplished
by developing additional methods in comparison with [2]. Especially, translation
groups ¥ (e) are crucial. Moreover, the hyperbolic group H (X) of X will be
determined (Theorem 1) and the fundamental objects of the hyperbolic geometry
of X, like hyperbolic lines, hyperbolic subspaces, spherical-hyperbolic subspaces,
will be described (Theorem 5 and Propositions 2, 3, 4).

2. Let e be an element of X such that e? = 1 holds true. For ¢t € R we call the
mapping
Ti(x) =x + ((:pe)(cosht — 1)+ V1 + 22 sinht)e (4)

from X into itself a hyperbolic translation of X with axis e. For arbitrary y in X
we denote by y1 the real number ye. A simple calculation yields

2
1+ [Ty(x)] 2 _ (xl sinht + /1 + 2 cosht) . (5)
Since 7% = (ze)? < 22 - ¢? = 22, we have

0<a?+ [14—:102—:10%] cosh? t
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and hence —z1 sinht < |21 sinh¢| < V1 + 22 cosht, i.e.

0 < zysinht+ V14 22 cosht.

This leads to
1+ [Ti(z)]2 = 21 sinht + /1 + 22 cosht, (6)

on account of (5). A simple calculation now implies
cosh h (Tt(x), T; (y)) = coshh (z,y)

for all x,y € X, and hence that hyperbolic translations with axis e preserve hy-
perbolic distances.

Since, by applying (6),

Tys(z) =T, (TS (:v))

holds true for all t,s € R and all z € X, the set of all hyperbolic translations with
axis e must be a group of bijective mappings of X with respect to the permutation
product. Notice that Ty is the identity mapping, and that T_;(y) is the uniquely
determined solution z of Ti(z) = y for given y € X. We denote the group of all
hyperbolic translations with axis e by ¥ (e).

If z,y € X satisfy y — x € Re, then there exists exactly one t € R such that
Ti(x) =y
holds true. On account of (4) and in view of
y—x=:Ae,

A+ ze = (ze)cosht + 1+ z2sinht must be solved with respect to . Since
(ze)? < 22, we define a € R by means of

ze =: asinha with a > 1 and a? := 1+ 22 — (ze)%.
Hence A + ze = asinh (¢t + «) and t is thus uniquely determined.

3. We would like to define an orthogonal mapping w of X as a surjective mapping
w: X — X with w (0) = 0 and such that

E (w (x), w (y)) = E(z,y)

holds true for all x,y € X of euclidean distance 1 or 3. A theorem of H. Berens and
the author (see, e.g., [3], 48 ff) then implies that orthogonal mappings of X are
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bijective and linear and that they preserve euclidean distances. (In this connec-
tion also compare E. Schréder [5]). Denote by O (X) the group of all orthogonal
mappings of X. If w is in O (X) then

E(z,00=FE (w (x), O)
implies 22 = [w (z)] ? for all o € X. This together with

B (z,y) = B (w (@), w(v))
then yields 2y = w () w (y) for all z,y € X. We hence have

cosh h (z,y) = cosh h (w (x), w (y))

and thus h(z,y) = h (w (x), w(y)) for all z,y € X and all w € O(X). This
implies that all orthogonal mappings of X preserve hyperbolic distances.

A hyperbolic isometry of X is a mapping of X into itself such that hyperbolic
distances are preserved. A hyperbolic isometry need not to be bijective. Take for
instance the pre-Hilbert space X of all sequences

(w1, 22,23, ...)

of real numbers such that almost all z; of the sequence are 0, with the usual
operations, and with the usual inner product

(x1,...)(y1,.-) :inyi.
i=1

The mapping v of X into itself with
v (z1, 22,23, ... ) = (21,0,22,0,23,0,...)

is not bijective, but it preserves hyperbolic distances.
A hyperbolic transformation of X is a surjective hyperbolic isometry. The group
of all these transformations will be denoted by H (X).

Theorem 1. Let e € X be given with €2 =1. Then

H(X)=0(X)-%(e) - O(X).
Proof. 1. If p is in X, then there exists v in O (X) with v (p) =|| p || e. — This is
trivial in the case p = — || p || € by just applying v (z) := —z. Otherwise put

b:=p+|pl|leand |b] -a:=Db
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and, moreover, v (z) := —x + 2 (za) a. Now observe that 7 is an involution and
that it preserves euclidean distances.

2. Suppose that § is in H (X) and that § (0) =: p. Then there exists v € O (X)
with
76(0) =l p e

According to Section 2 there exists T3 € T (e) with
Tivd (0) = 0.

The mapping ¢ := T34 is bijective and it preserves hyperbolic distances. Hence
cosh h (z,) = coshh (¢ (x), (1)),

e VI4 2214+ y2—ay =1+ \/1+n2—&nwith & := o (x) and 7 := ¢ (y).

Because of
h(0,2)=h(0,6(2))

we get 22 = I (z)]2 for all z € X. This implies zy = &n for all z,y in X. The
mapping ¢ hence preserves euclidean distances and is thus in O (X). ]

4. Denote by R>¢ the set of all real numbers r > 0. A function d : X x X — R>g
is called a distance function of X. We will say that such a distance function is of
type Dy if, and only if, the functional equation

(D1) d(z,y) =d (gp (x), cp(y)) forall p € O(X) and all z,y € X
holds true (see [2]). Obviously, h and E are of type Dj.

Theorem 2. Define
K = {(&,6,8) €R? | €1, € Ry and £ < &6}
Suppose that f : K — Rxq is chosen arbitrarily. Then
d(x,y) = f (@?,% zy) (7)

s a distance function of X of type Dy. If, vice versa, d is a distance function of
X of type D1, there exists f : K — Rxq such that (7) holds true for all z,y € X.

Proof. Obviously, (7) is of type D1. So assume that d is a distance function of X
of type D1. Suppose that (£1,&2,£3) is in K and that ej,eg € X satisfy (1). Put

zo := 0 and yg := 61\/5_2
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in the case &1 = 0. Observe here {3 = 0, in view of §§ < £1&. Then define

f(517£27£3) = d(x()vyO)' (8)

In the remaining case &1 > 0 put xg := e1v/£1,

Yo/ €1 = e1€3 + ean /€16 — €3

and, again, (8). The function f : K — R is hence defined for all elements of K.
We now have to prove that (7) holds true. Let x,y be elements of X and put

& =22, & = y?, & = ay.

Because of the Cauchy—Schwarz inequality, (£1,&2,£3) must be in K. If we are
able to prove that there exists ¢ € O (X) with

¢ (z0) =z and ¢ (yo) =y, (9)
where xq, yg are the already defined elements with respect to (&1, &2,&3), then
d(z,y) = d(z0,90) = f (€1.62.63) = f (%%, 29)

holds true and (7) is established. — In order to find ¢ € O (X) with (9), we
observe

¥® = a5, y* = yg, xy = x0 Yo (10)
According to step 1 of the proof of Theorem 1 we may assume
=9 #0and y #yo # 0, (11)

without loss of generality. Put z := y — yg and define
M:={meX|mdlz}
Then M is a maximal subspace of X because
p e X\M

implies pz? — (pz) z € M and hence p € Rz ® M. Furthermore observe = € M, in
view of (10) and (11). For

v=az+m, mée M,

define ¢ (v) = —az + m. Then ¢ € O (X) satisfies ¢ () = z, since z € M, and
¢ (yo) =y, in view of

11
yo=—§Z+§(y+yo),y+yoL2-
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Proposition 1. X is a metric space with respect to the distance function h (x,y).

The proof of this proposition is, mutatis mutandis, the same as that given in
[2] in the case of a more specialized situation, namely X = R".

Remark. Observe that X is also a metric space under the rather strange distance
function

(for all z,y € X) which is of type Dy as well.

5. If e is an element of X with e2 = 1, then we already defined the hyperbolic
translation group ¥ (e). The euclidean translation group & (e) is the set of all
mappings

Si(x) =x +te, t €R,

of X into itself.

For a distance function d define
(Dg(e,hyp)) d(z,y) = d(T (x), T (y)) for all x,y € X and all 7 € T (e),
(Dg(e, eucl)) d(z,y) = d(T (x), T (y)) for all x,y € X and all 7 € & (e).
Theorem 3. Let g: R — Rx>q be given. Then
d(@,y) = g (E (@) (12)
satisfies D1 and Dy (e, eucl) for every e € X with ¢ = 1. Similarly,
d(@,y) =g (h (@) (13)
has properties D1 and D3 (e, hyp) for all e in question. There are no other distance
functions satisfying D1 and D3 (e, eucl), D2 (e, hyp), respectively, for a fixed given

€.

Proof. a) Suppose that d satisfies D1 and D3 (e, eucl) for a fixed givene. If y € X

is not 0, then
G} <_y ) :wG(e)ufl
Iyl

for a suitable w € O (X). Hence

d(@,y) =d (2 -+ (—y), v+ (-y) = d (@ y,0),
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a formula which also holds true in the case y = 0. Thus d (z,y) = f ((x—y)Q, 0, O)
because of Theorem 2. Define

g (&) = f(€%,0,0)

for all real £ > 0. Hence

d(z,y) =g( (év—y)Q) =9(E(x,y)>'

b) Suppose that d is a distance function satisfying D; and Dg (e, hyp) for a
fixed given e. We define a function

g:Rs9—Rxg

as follows: for & > 0 put
g (&) :=d(0,e-sinh&).

If z,y € X, then
h(xz,y) = h(0,e-sinh§)

in the case £ := h(z,y). Take a p1 € O (X) that transforms z in evVz2, then a
T € T (e) which maps this latter element into 0. With another @9 € O (X) we get

waTp1(x) =0 and pa7p1(y) =: en

with n > 0. Since
§=h(x,y)="h(0,en)

it follows cosh & = cosh h (0,en) = /1 + 12, i.e. n = sinh &. Hence with v := po7¢1

d(z,y)=d (7 (), v (y)) =d(0,esinh§) =g(§) =g (h (r,y))- -

6. A distance function d of X will be called additive on the half-line
I+ :={Xe| A >0}

if, and only if, the following property holds true.
(D3 (e)) Suppose that «, 8,7 are real numbers with 0 = o < 3 <. Then

d(ae,ve) = d(ae, fe) + d (Be, ve). (14)
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Theorem 4. Lete € X be an element with €2 = 1 and suppose that d is a distance
function of X satisfying D1, D3 (e) and Da(e, eucl), Da(e, hyp), respectively.
Then

d($7y) = kE(.L“,y)

or
holds true with o fized real number k > 0.

Proof. We would like to prove that

g€+n) =9 +gm), (15)

holds true for all non-negative real numbers £ and 7. In the euclidean case there
exist 0 = a < 8 < v with

& = FE(0,0e) and n = E (Be,ve).

In view of £ +n = E (0,~ve) this implies (15), on account of (12) and (14). Mutatis
mutandis, the same argument may be applied to the hyperbolic case. Since all
solutions

qg: RZO — RZO
of (15) are given by g (§) = k€, where k is a constant > 0 (J. Aczél [1]), Theorem
4 is proved. O
7. The set
S(m, o) :={z € X [h(m,z)= o} (16)

is called the hyperbolic hypersphere with center m € X and radius o > 0.

Proposition 2. S (m,p) is the hyperellipsoid
S(m,0) ={z € X | E(f,2) + E(g,2) =20} (17)

with f := me™9, g := me? and o := sinhp - V1 +m?2, where e denotes the
exponential function exp (t).

Proof. a) Put S :=sinh p and C := cosh p. If then
E(f,z)+E(g,2) =2a (18)

holds true, a simple calculation (apply e¢ = C+ S5, e ¢ =C—S and p := z—mC(C)

yields
|mx + C| = V1+m2 1+ 22, (19)
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If here —ma — C were equal to V1 +m?2 /1 + x2, then the contradiction
1< coshh (m, —z) = V1+m2V1+a2 +mz = —-C
would be the consequence. Hence (19) yields
coshh (m,x) = C,

ie. x € S(m,o).
b) Assume vice versa C' = V1 +m2 /1 + 22 —ma. Then the simple calculation
from a), but now in the other direction, leads to

ViormS)? [ —m)? = 5% 2+ m?) ~ 2| (20)

In the case
52 (24 m?) —p? >0, (21)

(18) is a consequence of (20). In order to prove (21) we observe
(mxz)? < m?2? + §2
and (14 22)(1 +m?) = (mx + C)?, i.e.
2% —2(mx) C +m? = (ma)? + 5% —m?%2? < 252,
ie. (21). O

Obviously, S (0, p) is a euclidean hypersphere with euclidean center 0 and eu-
clidean radius sinh p. In the case m # 0 the pairwise distinct elements

0,f =me™ 9 m,g = me®
are all on the euclidean half-line
M :={mo | o >0}.

If we define
moy before mog

if, and only if, o1 < o9, then
0 before f before m before g

holds true. Suppose that a # 0 is in X and that A, u are real numbers with
0 < A < p. Then there exists exactly one o > 0 such that

{r e X | E(a)\z)+ E (ap,z) = 2a}
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is a hyperbolic hypersphere S (m, 0). Here, obviously, the equations
20 = (p— A/ ()~ + a2,
m = ay/A\u and p = %(lnu —1InA) hold true.
8. We also would like to work with
S (m,0):={x e X |h(m,z) =0} ={m}.

If p, ¢ are distinct elements of X, then

g(p.a):={2e XS (ph(p.2) NS (g h(g.2)) = o}
(see [4], 20) will be called a hyperbolic line of X.

Theorem 5. All hyperbolic lines of X are given by
l(a) ={a&| £ €R} witha#0 in X

and by
l(a,b) ={acosh& + bsinh¢ | £ € R}

with a,be X and a #0, b2 =1, ab=0.

Proof. a) Suppose that a # 0 is in X and that z € g (0,a). Because of

2;_2%—% S(O,h(O,x)) ms(a,h(a,x)) = {x}

we get x € [ (a). Assume &a & g (0,a). Hence there is an y # £a with

(a)a = ya and (5@)2 = y2.
But
(ya)? = £2a%a% = y2a?

implies, according to Cauchy—Schwarz, that a and y are linearly dependent, i.e.
that y = &a.

b) If g (p, q) is a hyperbolic line and ¢ a hyperbolic transformation, then, obvi-
ously,

6 (g (P, q)) =g (5 (p), o (q))
and p,q € g(p,q). Take § € H (X) with ¢ (p) = 0. Then

5 (g (P, Q)> =1 (5 (q)>-
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All hyperbolic lines of X are hence images of lines [ (a) under hyperbolic transfor-
mations. In view of Theorem 1 we hence have to determine all

%ﬂw@@ﬁ
with 71,72 € O (X) and T} € T (e). Obviously for v € O (X),

(@) =1 (v @),

7 (1)) =1 (v (@), 7).

So it remains to determine T} (l (a)). The cases t = 0 or e € [ (a) are trivial and

we hence will exclude them. Let j be an element in the subspace generated by e
and a such that j2 = 1 and ej = 0. Without loss of generality assume a =: ae+ j.

Then
Ti(fa) = (aC + SV 1+ E2a2) e+ &)
with S :=sinht # 0 and C := cosht > 1. We observe that

{Ti(€a) = 21(§) e +22(8) j | £ € R}

is the branch 1 > z2aC (for t > 0) or the branch z1 < x9aC (for t < 0) of the
hyperbola with equation

23 — 2aCz 29 + (a? — §%) 23 = 52,
which can be written in the form
2
2L 21 22
Y (22)
with ka2 := S2 and

Va2 +C2 - (y1y2) = (a1 22) (_Ca g) :

But the branches of (22) are exactly hyperbolic lines [ (v, w).
¢) Suppose that a, b are elements of X with a # 0, b2 = 1, ab = 0. Define t € R
by sinht = 1. For T} in ¥ (b) we then have

T, (£b) = &b+ V1 + &2a,

iﬂumman@D. O
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A hyperbolic line I (a,b) never contains 0, since a, b are linearly independent.
On the basis of this information it is easy to prove that through two distinct
elements p, g of X there is exactly one hyperbolic line: without loss of generality
we may assume that p = 0. But then there is only the line / (¢) through p and q.

The nearest element of [ (a,b) to 0, from the euclidean point of view (and also
from the hyperbolic point of view), is the element a, and it is a vertex of the
underlying hyperbola of [ (a, b) as well. The other vertex is —a, and the foci of the
hyperbola in question are

a 1
+——/(a+b)2 =2ay/1+ .
| all Voo a?

The asymptotes are [ (a + b) and [ (a — b). It is then easy to prove that I (a,b) =
{(¢,d) holds true if, and only if, a = ¢ and b = +d.

A hyperbolic line [ (a) can be written in the form
I(a) ={0-coshf+a-sinh&| & € R}.

We thus have formally { (a) = 1(0,a). This is the reason that all hyperbolic lines
are of the form
I (a,b) = {acosh& + bsinh& | € € R}

with elements a,b € X such that b> = 1 and ab = 0 hold true. b is a tangent
vector in £ = 0, i.e. in a and a will be called the vertezx of [ (a,b), even in the case
a = 0. If we determine the hyperbolic distance of z () and x (3), where

x (&) = acosh + bsinh &, (23)
we get
h(z (@), (8) =18 al. (24)

In order to find the hyperbolic line I (a,b) through the elements p # ¢ of X we
proceed as follows: if p,q are linearly dependent, then [(0,b) is this line with
0# ce{pyq}, | c| -b:=c. In the case that p,q are linearly independent, we
have, in view of (24),

p = acosh§ + bsinh &, (25)
g = acosh(§ + o) + bsinh (£ + o) (26)

with 0 = h (p,q). (We could also work with o = —h (p,q).) This implies

asinh ¢ = psinh (£ + ¢) — gsinh ¢, (27)
bsinh p = —pcosh (£ + o) + g cosh&. (28)
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Now ab = 0 yields
0 = p®sinh (2 4 20) — 2pgsinh (26 + o) + ¢° sinh 2¢,
ie.
46 =In(pe™¢ - ¢)° — In(pe? — q)*.
Knowing in this way ¢ and &, (27), (28) lead to a, b, since g # 0.

A hyperbolic spear is an oriented hyperbolic line. If we agree that b has in a
the orientation of the curve (23), then [ (a,b) may serve as representation of this
spear. The other spear then would be [ (a, —b).

If p # q are elements of X, then the hyperbolic segment [p,q] is defined by
means of

pal :={z () | <n<E+o},
where we observe (23), (25), (26) and ¢ > 0.
If we have p € [ (a,b) with (23), (25), then

{z(n)[n>¢&}and {z(n) |n <&}

are called the hyperbolic half-lines of I (a,b) with starting point p.

The theory of hyperbolic angles for X may now be developed as we did it in
our book [4], Section 3.3.

A hyperbolic subspace of X is a set M C X such that for all p # ¢ in M the
line g (p, q) is a subset of M. Of course, f and M are subspaces, also every single
element of X, but hyperbolic lines as well. Since every hyperbolic line is contained
in a one- or two-dimensional linear subspace of the vector space X, the following
Proposition must hold true.

Proposition 3. All hyperbolic subspaces of X are given by the linear subspaces
of X and their images under hyperbolic transformations of X.

A spherical-hyperbolic subspace is a set
M NS (m,e),

where M is a hyperbolic subspace containing m. Without loss of generality we
may assume m = 0. Hence the following Proposition holds true.

Proposition 4. All spherical-hyperbolic subspaces of X are given by the spherical-
euclidean subspaces of X with center 0 and their images under hyperbolic trans-
formations of X.

Remark. Similar expressions, as those for hyperbolic lines, may be derived for
other hyperbolic subspaces. Again, the images of such subspaces (through 0) under
mappings T; are crucial for this purpose.
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