
Discrete Mathematics 255 (2002) 235–247
www.elsevier.com/locate/disc

Frobenius groups with many involutions

Hubert Kiechle
Mathematisches Seminar der Universit�at Hamburg, Bundesstr. 55, Hamburg 20146, Germany

Received 5 April 1999; received in revised form 26 October 1999; accepted 20 December 1999

Abstract

We consider a special class of Frobenius Groups, which generalizes the class of sharply
2-transitive groups in such a way that the construction of a neardomain can be generalized to
the construction of a K-loop. The group then is shown to be a quasidirect product of that K-loop
by a suitable automorphism group. The major advantage of this point of view is the existence
of examples which are hoped to shed some light on the still open problem of the existence of
proper neardomains.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Let G be a group acting on a set P. The group G, or more precisely the pair (G; P),
is called a Frobenius group if G acts transitively, but not regularly on P, and only the
identity of G ;xes more than one point, i.e., if � is the stabilizer of an arbitrary point
e∈P, then � �= {1} acts ;xed-point-freely on P\{e}:
The following theorem is the starting point of our investigations. Part (1) is a

straightforward exercise, part (2) is Frobenius’s famous theorem. It is proved in many
books on group theory, e.g., [1, (35.24), p. 191].

Theorem 1.1. Let G be a group. Consider the following conditions:

(I) G=K� contains subgroups K and � �= {1} such that � acts )xed-point-freely
on K by conjugation;

(II) G has a subgroup � �= {1} such that �∩ g�g−1 = {1} for all g∈G\�;
(III) G is a Frobenius group.
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We have

(1) (I)⇒ (II)⇔ (III):
(2) If G is )nite, then the above conditions are all equivalent.

The implication ‘(I)⇒ (II)’ cannot be reversed in general as we shall see later.
The point of Frobenius’s theorem is the existence of the normal subgroup K , which

has � as a complement. K is called the Frobenius kernel of G, and � the Frobenius
complement. The group G is then the semidirect product of K by �.
An important class of Frobenius groups are the sharply 2-transitive groups, i.e.,

groups G which act on a set P in such a way that for all two pairs of distinct elements
a1; a2 and b1; b2 in P, there exists exactly one �∈G such that �(ai)= bi. For this class
of groups it is open, whether the implication ‘(I)⇒ (II)’ can be reversed, or not. In
fact, this question is equivalent with the question, whether proper neardomains exist,
or not (see [22, V, Section 1]).
Our aim is to establish a new class of Frobenius groups—Frobenius groups with

many involutions—which generalizes the notion of a sharply 2-transitive group in a
reasonable way. We will develop the theory for these Frobenius groups, which to some
extent parallels the construction of neardomains from sharply 2-transitive groups. The
point of our generalization is that there do exist examples, which do not satisfy (I)
in Theorem 1.1. It is hoped that studying such examples gives more insight into the
problem mentioned in the preceding paragraph.
This approach is not completely new. In fact, Gabriel has used similar methods

in his dissertation [5]. We will generalize Gabriel’s de;nition, and we will establish
the connection with K-loops. Indeed, we will show that a generalization of (I) of
Theorem 1.1 holds for our special class of Frobenius groups, where a K-loop plays the
role of the Frobenius kernel K , and the semidirect product is replaced by the quasidirect
product.
Therefore, we will need to recall some basic facts about K-loops and the construction

of the quasidirect product in Section 2.
Section 3 is devoted to the connection between general Frobenius groups and certain

loops, then, in Section 4, we introduce the notion which gives the title to this paper.
It turns out that the theory splits in two cases.
Section 5 handles the case of characteristic 2. The remaining case is treated in

Section 6. Here we also present our notion of speci;c groups.
The paper contains no examples. Most of the examples known can be obtained from

a construction due to Kolb and Kreuzer [14].

2. Preliminaries

A set L with a binary operation ‘·’ is called a left loop if there exists an (identity)
element 1∈L and for all a; b∈L, there exists a unique x∈L with

a1 = 1a = a and ax = b:
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For every left loop, the left translations �a :L→L; x �→ ax are bijections for all a∈L:
We can therefore de;ne �a; b := �−1

ab �a�b. The group D(L) generated by all the �a; b is
called the left inner mapping group.
Let G be a group with a subgroup �: A set L of representatives of the left cosets

of � in G with 1∈L, will be called a transversal of G=�: More precisely, we require
that

L ⊆ G such that ∀g∈G: |L ∩ g�| = 1 and 1∈L:
This means in particular G=L�.
For a; b∈L let a ◦ b∈L; da; b ∈� be the unique elements such that

ab = (a ◦ b)da; b:
Thus (L; ◦ ) becomes a left loop (see [2] or [16, (3.2)]). Transversals are always
assumed to carry this structure.
For any set M , denote the symmetric group on M by SM . The identity map is

denoted by 1. For a left loop L, de;ne the obstruction-map

� : L×SL → SL; (a; �) �→ �−1
�(a)��a�

−1:

Observe that �∈SL is an automorphism of L if and only if �(a; �)= 1 for all a∈L:
So � ‘measures’ the deviation of � from being an automorphism.
Following Sabinin (see [17]), we call a subgroup T of SL with �(L×T )⊆T , which

;xes 1 and contains D(L) a transassociant of L: We emphasize that transassociants are
groups by de;nition. All statements made for transassociants and the quasidirect product
are proved in [20,17, XII.6] (see also [12, Section 2.C]). D is always a transassociant,
and Aut L is a transassociant if and only if D⊆Aut L: 1 A transassociant is called )xed
point free if it acts ;xed-point-freely on L#. 2 This is all we can get, since 1 is ;xed
by de;nition.
The main point of these de;nitions is the construction of the quasidirect product.

Theorem 2.1. Let (L; · ) be a left loop, and let T be a transassociant of L. Then

(1) L×Q T , the set L×T with the multiplication

(a; �)(b; �) :=(a · �(b); �a; �(b)�(b; �)��) for all (a; �); (b; �)∈L×T
is a group. The inverse of (a; �)∈L×Q T is given by

(a; �)−1 = (�−1(a′); �−1�(�−1(a′); �)−1�−1
a; a′);

where a′ = �−1
a (1) is the right inverse of a in L.

(2) L×Q T acts faithfully and transitively on L by

(a; �)(x) : = a · �(x) for all (a; �) ∈ L×Q T; x ∈ L:
1 Left loops with this property are called left A‘-loops.
2M # :=M\{1} for any subset of a left loop with identity 1:
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(3) The map T→L×Q T ; � �→ (1; �) is a monomorphism. The image will be denoted
by 1×T: It is the stabilizer of 1 for the above described action of L×Q T on L.

(4) The set L× 1 := {(a; 1); a∈L} is a transversal of L×Q T=1×T: The map
L→L× 1; a �→ (a; 1) is an isomorphism of left loops.

As a simple consequence we obtain

Theorem 2.2. Let L be a left loop, and let T �= {1} be a )xed point free transassociant
of L. Then (L×Q T; L) is a Frobenius group.

Proof. By Theorem 2.1(2) L×Q T acts transitively on L. From Theorem 2.1(3) we
know that 1×T is the stabilizer of 1. Since this group is non-trivial, the action is not
regular.
Take an element (a; �)∈L×Q T which has two ;xed points. Since the action is

transitive, there is no loss in generality, to assume that one of the ;xed points is 1.
Then a=1 and �(x)= x for some x∈L\{1}. By hypothesis, �= 1, and the only element
with more than one ;xed point is (1; 1), the identity.

A left loop L is said to satisfy the left inverse property if �−1
a ∈ �(L)= {�x; x∈L}

for all a∈L: In this case every element a∈L has a unique (left and right) inverse a−1,
and �−1

a = �a−1 , as well as �a; a−1 = 1 (see [19, I.4, p. 20,21]).
L is called a (left) Bol loop if it satis;es the (left) Bol-identity

a(b · ac)= (a · ba)c for all a; b; c∈L:
Note that we use the dot-convention to save parenthesis, e.g., a · bc= a(bc): By [19,
IV.6.3] Bol loops satisfy the left inverse property. Moreover, Sharma [21, Theorem 2]
has shown that every Bol loop is in fact a loop, i.e., the equation ya= b has the unique
solution y= a−1(ab · a−1):

A left loop with unique inverses is said to satisfy the automorphic inverse property if

(ab)−1 = a−1b−1:

A Bol loop with automorphic inverse property is called a K-loop (or sometimes a
Bruck loop). Notice that an associative K-loop is an abelian group.
From [19, IV.6.5, p. 114] one can derive (see also [12, (6.1)]).

Lemma 2.3. In every Bol loop, we have �ak = �ka for all k ∈Z. Therefore |a|= |�a|.

For later use, we record

Lemma 2.4. Let L be a left loop such that D(L) acts )xed-point-freely on L#. If
every element of L has unique inverses, i.e., ab=1⇒ ba=1, then L satis)es the left
inverse property.

Proof. Let a∈L: We have a= a · a−1a= aa−1 · �a; a−1 (a)= �a; a−1 (a): The hypothesis
enforces �a; a−1 = 1: Thus L satis;es the left inverse property.
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One can also show that if L satis;es the hypothesis of the preceding theorem, and
is automorphic inverse, then L is left alternative.
Now, we give a construction for left loops using certain sets of involutions in tran-

sitive permutation groups. This construction occurs in [10, Section 6] in a completely
diLerent context. It is used to coordinatize absolute spaces with K-loops. This approach
has been further generalized by Gabrieli and Karzel in [6–8], and by Im and Ko in
[9]. The following theorem and its proof are due to Karzel. It is also worked out in
[12, (7.1)].

Theorem 2.5. Let G be a group acting on a set P with J = J (G) := {�∈G; �2 = 1}:
For the )xed element 1∈P, denote the stabilizer by �: For a map � :P→ J with
�x(1)= x for all x∈P, de)ne

� : P → G; x �→ �x : = �x�1:

Then we have

(1) L := �(P) is a transversal of G=�. The left loop L has unique inverses. The
bijection � allows to carry the left loop structure over to P. Then, the �x are
the left translations of P. Moreover, �1(x)= x−1 for all x∈P, where x−1 denotes
the inverse of x in P.

(2) L is a loop if and only if the set �(P) acts regularly on P.
(3) The following are equivalent:

(I) �1�(P)�1 ⊆ �(P);
(II) �1�x�1 = �x−1 for all x∈P;
(III) L has the automorphic inverse property;
(IV) L has the left inverse property.

(4) L is a K-loop if and only if �x�(P)�x ⊆ �(P) for all x∈P:

3. Frobenius groups

In the case we are most interested in, the Frobenius group G has no kernel, and is
therefore not a semidirect product. However, transversals, and the quasidirect product
serve as a substitute:

Theorem 3.1. Let G be a Frobenius group acting on a set P. For a )xed e∈P let
� be the stabilizer of e and let L be a transversal. Then

(1) � acts faithfully on L by

� × L→ L; (!; a) �→ !!(a) where !a� ∩ L = {!!(a)}:
Therefore � can be viewed as a subgroup of SL. In this sense, � is a transasso-
ciant of L.
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(2) The map % :L→P; � �→ �(e) is bijective, and the map

G → L×Q �; g �→ (a; a−1g) where a = %−1(g(e))

is an isomorphism. In fact, this map induces an equivalence of the permutation
representations of G on P and of L×Q � on L via %:

Proof. (1) Clearly, ! de;nes an action. If !!= 1, then a−1!a∈� for all a∈L, hence
(II) of Theorem 1.1 shows !=1: Therefore, the action is faithful.

(2) % is bijective, because G acts transitively, and L is a transversal.
Let g∈G, and p∈P: We will show that %(a; a−1g)%−1(p)= g(p), where a=

%−1(g(e)): Notice that only this choice of a puts a−1g inside �: Take �∈L with
�(e)=p, then we can compute

%(a; a−1g)%−1(p) = %(a; a−1g)� = %(a ◦ !a−1g(�)):

Now (a ◦ !a−1g(�))�= aa−1g��= g��: Therefore,

%(a ◦ !a−1g(�)) = g�(e) = g(p):

This shows that % induces the stated equivalence, which in turn implies the remaining
statements.

Remark 3.2. (1) This is a straightforward generalization of the construction [16, (7.2)]
for loops. It also generalizes (I)⇒ (II) in Theorem 1.1.

(2) If L is a loop, then clearly all elements of L× 1 act ;xed-point-freely on L: This
need not be the case, when L is only a left loop. Indeed, put L :=Z3 and de;ne

a ◦ b : =
{
b if a=0;

a− b if a �=0;

then (L; ◦ ) is a left loop such that D(L)= {±1} is a ;xed point free transasso-
ciant. Thus L×QD is a Frobenius group. It is easy to see that the elements of
L× 1\{(0; 1)}= {(1; 1); (2; 1)} are involutions, which necessarily have ;xed points.
In fact, L×QD is isomorphic to S3: Of course, S3 does have a kernel, namely
〈(1; 2; 3)〉, so in a sense we only chose the transversal in a silly way.

(3) There are examples where one cannot make a better choice. Speci;cally, accord-
ing to [4] (see also [3, p. 205]), there exists a Frobenius group G with G=

⋃
g∈G g�g

−1

(� a one point stabilizer). Therefore, G contains no ;xed point free elements at all.
Here, no transversal of G=� can be a loop.

4. Involutions

We are now ready to introduce our new class of Frobenius groups. We also present
the connection with other approaches, in particular with [5]. First a simple lemma.
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Lemma 4.1. Let (G; P) be a Frobenius group such that the set J = J (G) acts transi-
tively on P. Then for all x; y∈P with x �=y, there exists a unique element �∈ J with
�(x)=y:

Proof. The existence of � is an assumption. If �∈ J also has the property �(x)=y,
then

��(x)= �(y)= x and ��(y)=y hence ��=1;

since G is a Frobenius group. Therefore, �= � is unique.

A Frobenius group (G; P) is said to have many involutions if J = J (G) acts tran-
sitively on P, and if the one point stabilizers contain at most one involution. Note
that since all one point stabilizers are conjugate, they all contain the same number of
involutions.

Theorem 4.2. Let (G; P) be a Frobenius group with many involutions. For a )xed
e∈P, let � be the stabilizer of e.

(1) There exists a unique map � :P→ J with �x(e)= x for all x∈P such that
�(P)= J\{1} or �(P)= J: The two cases are mutually exclusive.

(2) �(P) acts regularly on P.
(3) L := �(P)�e is a transversal of G=�, which is a K-loop.
(4) �(P)= J\{1} if and only if every involution in G has exactly one )xed point. In

this case, we have CG(�e)=�, and L contains no elements of order 2.
(5) If �(P)= J , then L= J is of exponent two, and every involution is )xed point

free.

Proof. (1) Let x∈P: If x �= e, there exists �x∈ J with �x(e)= x, which is unique by
(4.1). If e= x, then we consider two cases: Firstly, assume that there is no involution
in �, i.e., no involution has a ;xed point, then �e=1, and �(P)= J: Secondly, assume
that there exists a (unique!) involution �∈�, then put �e := �: Through this choice,
the map � has the desired properties. Note that there is no other way to do it—� is
unique.
(2) We have seen that � contains the involution �e if �(P) �= J: This involution has

the ;xed point e: Then �x�e�x has ;xed point x∈P: Thus for every x; y∈P there
exists �∈ �(P) with �(x)=y, even if x=y and 1 =∈�(P):
The uniqueness of � comes from (4.1).
(3) is a direct consequence of (1), (2) and Theorem 2.5, since �(P) is obviously

invariant.
(4) The ;rst statement is clear from the proof of (1). It follows immediately from

Theorem 1.1(II), that CG(�e)⊆�: For !∈� the element !�e!−1 is an involution with
;xed point e: Therefore, !�e!−1 = �e, and !∈CG(�e):
(5) is clear from the previously proved statements, and from (2.3).



242 H. Kiechle /Discrete Mathematics 255 (2002) 235–247

In the case where L is of exponent 2 (see (5) in the preceding theorem), the
Frobenius group G (with many involutions) is said to have characteristic 2, in symbols,
charG=2: Otherwise, we write charG �=2: The latter is the situation where involutions
have ;xed points.

Theorem 4.3. Let G be a sharply 2-transitive group, then G is a Frobenius group with
many involutions. The K-loop constructed in Theorem 4:2 is isomorphic to the additive
loop of the corresponding neardomain F. 3 Moreover, charG=2⇔ char F =2:

Proof. Clearly, G is a Frobenius group. Wahling [22, V.2(i), (ii), (iv), pp. 229f ] says
that G has many involutions.

5. Characteristic 2

In the case of characteristic 2 we obtain a satisfactory converse. At the same time,
we get a considerable strengthening of (2.4) for loops of exponent 2.

Theorem 5.1. Let L be a loop of exponent 2, and let T be a )xed point free transas-
sociant. Then T contains no involutions, G :=L×Q T is a Frobenius group with many
involutions and charG=2: Moreover, L is a K-loop, and T ⊆Aut L:

Proof. G is a Frobenius group by Theorem 2.2, and the set L× 1 acts transitively. By
(2.4), L satis;es the left inverse property. Thus, for all a∈L

�a; a = 1 and so (a; 1)(a; 1) = (a2; �a; a) = (1; 1):

Therefore, L× 1 consists of involutions and the identity.
We identify T and 1×T according to Theorem 2.1. Assume, there exists an invo-

lution �∈T: Then for x∈L\{1} we have �(x)=y �= x: Take a∈L with ax=y: Then
g := (a; 1)∈G is an involution, and g(x)=y: By (4.1), we arrive at the contradiction
g= �: Therefore, T contains no involutions. This also implies that G is a Frobenius
group with many involutions, and charG=2:
By Theorem 4.2(3) L× 1 is a K-loop, which is isomorphic to L (Theorem 2.1(4)).

For a∈L; (∈T we have

(1; ()(a; 1)(1; ()−1 = (((a); �(a; ()) ∈ L× 1;
since the conjugate of an involution is an involution. Therefore, �(a; ()= 1 for all a∈L,
and ( is an automorphism. Hence T⊆Aut L:

It would be desirable to relax the de;nition of ‘Frobenius group with many involu-
tions’ to the sole requirement that the set J acts transitively. This is possible in the
previously discussed special case.

3 For this correspondence, and the de;nition of the characteristic of a neardomain the reader is referred
to [22, V, Sections 1 and 2].
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Theorem 5.2. Let (G; P) be a Frobenius group, and take � to be the stabilizer of
a )xed e∈P: If there exists a subset F of J (G); 1∈F , which acts )xed-point-freely
and transitively, then G is a Frobenius group with many involutions and charG=2:
Furthermore, F = J (G), and F is a transversal of G=�, which is a K-loop.

Proof. From (4.1) and the assumption we conclude that F acts regularly. Therefore, F
is a transversal of G=�: We will show that F is a loop: Let �; �∈F , then there exists
exactly one (∈F with ((�(e))= �(e): Hence (�∈ ��, and ( ◦ �= �: Thus the equation
) ◦ �= � has the unique solution )= (, and F is a loop.

By Theorem 3.1, � is a ;xed point free transassociant of F , and G=F ×Q �: By
(2.4) F ful;lls the left inverse property. Therefore, F is of exponent 2. Now Theorem
5.1 applies, and gives all the assertions.

An analogous theorem is true for all ;nite Frobenius groups (see [18, 18.1, p. 193]).
No decisive results have been achieved in cases not mentioned in the theorem. So we
do not know if there exist Frobenius groups with ‘too many’ involutions, i.e., such that
the set J acts transitively, and a one-point stabilizer contains more than one involution.

6. Characteristic not 2 and speci%c groups

We now turn to the case of characteristic �=2: Here, we get only a partial converse.
A left loop is called uniquely 2-divisible if the map x �→ x2 is a bijection. In this case,
we denote the unique solution of y2 = x by y= x1=2: Notice that the map x �→ x1=2 is the
inverse of the square map. By (2.3), the usual laws for powers (including 1

2 ) hold in
uniquely 2-divisible K-loops. We will make use of this in the proof of the following:

Theorem 6.1. Let L be a uniquely 2-divisible K-loop, and let � be a )xed point free
subgroup of Aut L which contains D(L) and an involution *: Then

(1) *(x)= x−1 for all x∈L:
(2) L×Q � is a Frobenius group with many involutions of characteristic �=2:
(3) (a; *) is an involution, and �a(x)= (a; *)(1; *)(x) for all a; x∈L:

Proof. (1) First, we claim

a(a−1b)1=2 = b(b−1a)1=2 for all a; b∈L:
By [16, (2.6)] we have �b−1 ; a(a−1b)= (b−1a)−1, hence we can compute

b−1 · a(a−1b)1=2 = b−1a · �b−1 ; a(a
−1b)1=2 = b−1a · (b−1a)−1=2 = (b−1a)1=2:

Multiplying both sides with b gives the claim. Using this, we ;nd

*(x(x−1*(x))1=2) = *(x)(*(x)−1x)1=2 = x(x−1*(x))1=2:

Therefore the assumption implies x(x−1*(x))1=2 = 1: By the left inverse property, we
get x−1*(x)= x−2, and then *(x)= x−1:
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(2) and (3): �, sitting inside Aut L, is a transassociant. Therefore, Theorem 2.2
shows that L×Q � is a Frobenius group. By (1) � contains exactly one involution.
A simple calculation shows that (a; *) is an involution in L×Q �: Therefore, the

involutions act transitively. More speci;c: Let x; y∈L and choose a∈L such that
ax−1 =y: Then (a; *)(x)=y:
Finally, (a; *)(1; *)(x)= a(x−1)−1 = ax= �a(x):

The following lemma shows that the presence of an involution in � is not a strong
assumption. Indeed, it can always be achieved.

Lemma 6.2. Let L be a K-loop, and let � be a subgroup of Aut L with * =∈�: Then
〈� ∪ {*}〉 = � × 〈*〉:

If L is uniquely 2-divisible, and � acts )xed-point-freely, then so does �×〈*〉:
Proof. Since * centralizes every automorphism, the ;rst statement is clear.
Now, assume that L is uniquely 2-divisible, and � acts ;xed-point-freely. Every

element of �×〈*〉 is of the form ! or !* for some !∈�: If this element is not the
identity, and has a ;xed point x∈L\{1}, then it must be of the form !*, because
of the assumption. Now x=!*(x)=!(x−1) implies !2(x)= x: Therefore !2 = 1: By
Theorem 6.1(1), we necessarily have != 1, since != * contradicts our hypothesis.
However, x= *(x)= x−1 is a contradiction, too, because a uniquely 2-divisible loop
cannot have elements of order 2.

Remark 6.3. (1) If L is a uniquely 2-divisible K-loop, then � (as in Theorem 6.1)
cannot contain more than one involution by Theorem 6.1(1). If � happens to have no
involution, then L×Q � can be embedded into the Frobenius group L×Q (�×〈*〉):

(2) One can relax the hypothesis of Theorem 6.1 to a left power alternative, left
A‘-loop. Then it follows that L is a K-loop (see [12, (7.10)].) This and (1) of the
theorem are due to Kist [13, (1.2.e), (1.4.b)].
(3) There exist examples of K-loops with * =∈D(L): It seems to be open whether *

is always an element of D(L) when L is uniquely 2-divisible. Of course, this would
make the hypothesis about * in Theorem 6.1 redundant.
(4) The converse in Theorem 6.1 is only partial, because we need the assumption that

L be uniquely 2-divisible. Theorem 4.2(4) together with [15, (1.4)] only implies that
the map x �→ x2 is injective. Surjectivity is missing. There are in fact counterexamples
arising from [11].

Theorem 6.4. Let G be a group with set of involutions J #, and let � be a subgroup
of G. The following are equivalent:

(I) (G;G=�) is a Frobenius group with many involutions, and charG �=2;
(II) �=CG(�) for some �∈ J #, and for all �; �∈ J #; � �= �, there exists (∈ J # with

(�(= �, and CG(�)∩CG(�)= {1}:

If (II) holds, then ( is uniquely determined given � and �:
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Proof. (I)⇒ (II): From Theorem 4.2(4) we have that �=CG(�) for some �∈ J #:
By assumption, � and � each have exactly one ;xed point, denote them by x; y,

respectively, i.e., �x= x; �y=y: Since the involutions act transitively, there exists (∈ J #
with (x=y: Now, (�( is an involution with ;xed point y: Since there is only one such
involution, we must have (�(= �:
Finally, there exist g; h∈G with g�g−1 = �; h�h−1 = �, therefore, using (II) from

Theorem 1.1, we ;nd

CG(�) ∩ CG(�) = CG(g�g−1) ∩ CG(h�h−1) = g�g−1 ∩ h�h−1 = {1}:
Indeed, the case h−1g∈� leads to �= �, which is excluded by the hypothesis.
(II)⇒ (I): All the conjugates of � are centralizers of involutions, thus (II) of

Theorem 1.1 is satis;ed, and (G;G=�) is a Frobenius group.
To see that J # acts transitively, take X; Y ∈G=�: The stabilizer of �∈G=� is �

itself, and contains the involution �. Hence every one point stabilizer contains an
involution, because they are conjugate to �. In particular, there exists an involution
� with ;xed point X . Also, there exists an element g∈G with gX =Y: Now g�g−1

is an involution, therefore there exists (∈ J # with ((g�g−1)(= �: Hence, (g�= �(g,
and (g∈CG(�), the stabilizer of X: This implies (∈ gCG(�), and so (X =Y: Thus, J #

acts transitively.
The assumption clearly implies that there is at most one involution in CG(�): Thus

the Frobenius group G has many involutions. Clearly, charG �=2:
For the ;nal statement, let (�(= �: If �= �, then (�(�=1: Hence ( and

� commute, i.e., (∈CG(�), therefore (= �: This shows uniqueness in the case of
equality.
If � �= �, let (′∈ J # also have the property (′�(′ = �: Then

(�( = (′�(′ ⇒ (′(� = �(′( and similarly (′(� = �(′(:

Therefore, (′(∈CG(�)∩CG(�)= {1}, and (= (′ is unique.

The proof of the preceding theorem has been inspired by [5, in particular Section 3:2,
p. 20f ]. Besides its intrinsic interest, this theorem will serve to establish the connection
with Gabriel’s thesis.
In [5], Gabriel has introduced speci)c groups in order to axiomatize the subgroup of

a sharply 2-transitive group generated by the set of involutions. We give a generalized
notion, which includes the whole sharply 2-transitive group, and more. A group G is
called speci)c if the set J # of involutions in G has at least 2 elements, i.e., |J #|¿2,
and there exists p∈N∪{∞} such that for all �; �∈ J # with � �= �, there is a (∈ J #
with

|��| = p; (�( = � and CG(�) ∩ CG(�) = {1}:
Notice that G cannot be abelian, since two distinct involutions do not commute. As
mentioned already, our de;nition slightly deviates from Gabriel’s. In fact, in [5, p. 6]
it is required that G is non-abelian, and that J # generates G: It is then derived that
there are at least 2 involutions. This is used to show that p is either an odd prime,
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or ∞, [5, 2.4, p. 6]. Therefore, this statement holds in our more general situation. Call

charG : =

{
0 if p=∞;
p otherwise;

the characteristic of G: We therefore have

Lemma 6.5. The characteristic of a speci)c group is 0 or an odd prime.

We now hook up the notion of a speci;c group to the main subject of this section.

Theorem 6.6. Let G be a speci)c group of characteristic p. If � is an involution, then
(G;G=CG(�)) is a Frobenius group with many involutions, and charG �=2: Moreover,
the K-loop L coming with G is of exponent p, or in case p=0, every element in L#

has in)nite order.

Proof. Let J # be the set of involutions. By Theorem 6:4, G is a Frobenius group with
many involutions. For a∈L we have �a= �� with �; �∈ J # from Theorem 4.2(3).
Therefore, |�a|=p, or |�a|=∞, according to the cases in the hypothesis. But |�a| is
the order of a in L, by (2.3).

This theorem has the following converse:

Theorem 6.7. Let L be a K-loop, and let � be a )xed point free subgroup of Aut L
which contains D(L) and *: Put G :=L×Q �:

(1) If L is of exponent p, where p is an odd prime, then G is a speci)c group with
charG=p:

(2) If every element inL# has in)nite order, then G is a speci)c group with charG=0:
(3) In both cases (1) and (2), �=CG(*):

Proof. The assumptions about the orders of elements in L imply that L is uniquely
2-divisible. Thus by Theorem 6.1, (G;G=�) is a Frobenius group with many involutions.
The statement about |��|, also, comes directly from Theorem 6.1 and the hypothesis
in both cases. From Theorem 4.2(4) we infer that �=CG(*). Now Theorem 6.4 gives
all the remaining conditions for speci;c groups.

Remark 6.8. (1) In the preceding theorem, the involutions generate G if and only if
�= 〈D∪{*}〉, the minimal possible choice for � satisfying the hypothesis if � acts
;xed-point-freely.
(2) The fact that speci;c groups are Frobenius groups has been observed by Gabriel

in [5, 4.2, p. 27]. He has used the phrase ‘generalized Frobenius group’ to denote what
we call a Frobenius group.
(3) Let G be a sharply 2-transitive group with the corresponding neardomain (F;+; · )

of characteristic p �=2, and let K be the subgroup of G generated by the involutions
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in G: Then every subgroup of G containing K is a speci;c group of characteristic p:
In Gabriel’s setting only K quali;es, see [5, 2.4, p. 20] and Remark 1 above. This
shows the extent to which Gabriel’s notion has been generalized.
(4) Examples of speci;c groups of characteristic 0 and 2 abound. They can be

obtained from a construction of Kolb and Kreuzer [14]. If one uses a ;eld F of
characteristic 2, replacing the complex numbers, then this construction gives K-loops
of exponent 2, to which Theorem 5.1 applies. If char F �=2, then one can show that
the resulting K-loops give speci;c groups of characteristic 0.
(5) It does not seem to be easy to come by speci;c groups in characteristic p¿2:

The only examples knows to the author arise from in;nite Burnside groups as described
in [5, 5.18, p. 50].
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