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Our fourth and final task remains to determine A, and B,. At
t=0,

u(z, 0) = i Ay sin ("—Zﬁ) = f(z) (7.3.20)
n=1
and w
us(z,0) = 7‘2 E}JF—CB,, sin (%) = ¢(2). (7.3.21)

Both of these series are Fourier half-range sine expansions over the in-
terval (0, L). Applying the results from Section 2.3,

2 (L . (nTT
Ap = _I:/o f(z)sin (T) dz (7.3.22)
and L
nmwe 2 . [(nTE
_L—Bn = f/o g(z)sin (—L—) dz (7.3.23)
or L
2 . (N7
B, = — | g(z)sin (T) dr. (7.3.24)
As an example, let us take the initial conditions:
0, 0<e<L/4
4h (2 - 1), L/A<x<L/?2
f(z) = (é‘ ;‘) (7.3.25)
4h (3 -1%), L/2<z<3L/4
0, 3L/4<z< L
and
g(x) =0, 0<z<L. (7.3.26)

In this particular example, B, = 0 for all n because g(z) = 0. On the
other hand,

8h [L12 /2 1\ . (nmz
An_f_/;/‘l (Z_Z)SIH(T) dz
+.8.ﬁ/3”“ 32 g (222)
LJy, \a77)"\T
8h . [nw . [ 3nw . /nmT
=3 [2 sin (T) —sin (-—:1—) —sin (T)] (7.3.28)
n

"”)] (7.3.29)

dz (7.3.27)
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Figure 7.3.1: The vibration of a string u(x,t)/h at various positions
z/L at the times ¢t/L = 0,0.2,0.4,0.6,0.8, and 1. For times 1 < ¢t/L <
2 the pictures appear in reverse order.

because sin(A4)+sin(B) = 2sin[4(A+B)] cos[3(A—B)] and 1—cos(24) =
25sin?(A). Therefore,

u(z,t) = §2—h i sin (ﬂ) sin? (ﬂ) L sin (m) cos (mrct)
’ 2 —~ 2 8 / n? L L )

(7.3.32)

Because sin(nr/2) vanishes for n even, so does A,. If (7.3.32) were
evaluated on a computer, considerable time and effort would be wasted.
Consequently it is preferable to rewrite (7.3.32) so that we eliminate
these vanishing terms. The most convenient method introduces the
general expression n = 2m—1 for any odd integer, where m = 1,2,3, ..
and notes that sin[(2m—1)7/2] = (—=1)™*!. Therefore, (7.3.32) becomes

i 2m)'"+1 . [(Qms—l)w]
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Figure 7.3.2: Two-dimensional plot of the vibration of a string u(z,t)/
h at various times ct/L and positions z/L.
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Although we have completely solved the problem, it is useful to
rewrite (7.3.33) as

u(z,t) = % i Apn {sin [—T%r-(x - ct)] + sin [%(z + ct)] } (7.3.34)

through the application of the trigonometric identity sin(A)cos(B) =
lsin(A — B) + §sin(A + B). From general physics we find expressions
like sin[k, (z — ct)] or sin(kz — wt) arising in studies of simple wave mo-
tions. The quantity sin(kz — wt) is the mathematical description of a
propagating wave in the sense that we must move to the right at the
speed c if we wish to keep in the same position relative to the nearest
crest and trough. The quantities k, w, and ¢ are the wavenumber, fre-
quency, and phase speed or wave-velocity, respectively. The relationship
w = kc holds between the frequency and phase speed.

It may seem paradoxical that we are talking about traveling waves
in a problem dealing with waves confined on a string of length L. Ac-
tually we are dealing with standing waves because at the same time
that a wave is propagating to the right its mirror image is running to
the left so that there is no resultant progressive wave motion. Figures
7.3.1 and 7.3.2 illustrate our solution; Figure 7.3.1 gives various cross
sections of the continuous solution plotted in Figure 7.3.2. The single
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large peak at ¢t = 0 breaks into two smaller peaks which race towards
the two ends. At each end, they reflect and turn upside down as they
propagate back towards £ = L/2 at ct/L = 1. This large, negative peak
at z = L/2 again breaks apart, with the two smaller peaks propagating
towards the endpoints. They reflect and again become positive peaks
as they propagate back to = L/2 at ct/L = 2. After that time, the
whole process repeats itself.

An important dimension to the vibrating string problem is the fact
that the wavenumber k,, is not a free parameter but has been restricted
to the values of nw/L. This restriction on wavenumber is common in
wave problems dealing with limited domains (for example, a building,
ship, lake, or planet) and these oscillations are given the special name
of normal modes or natural vibrations.

In our problem of the vibrating string, all of the components prop-
agate with the same phase speed. That is, all of the waves, regardless
of wavenumber k,, will move the characteristic distance eAt or —cAt
after the time interval At has elapsed. In the next example we will see
that this is not always true.

o Example 7.3.2: Dispersion

In the preceding example, the solution to the vibrating string prob-
lem consisted of two simple waves, each propagating with a phase speed
¢ to the right and left. In problems where the equations of motion are
a little more complicated than (7.3.1), all of the harmonics no longer
propagate with the same phase speed but at a speed that depends upon
the wavenumber. In such systems the phase relation varies between the
harmonics and these systems are referred to as dispersive.

A modification of the vibrating string problem provides a simple
illustration. We now subject each element of the string to an additional
applied force which is proportional to its displacement:

u 0%

oz~ © 9z2
where h > 0 is constant. For example, if we embed the string in a thin
sheet of rubber, then in addition to the restoring force due to tension,
there will be a restoring force due to the rubber on each portion of
the string. From its use in the quantum mechanics of “scalar” mesons,
(7.3.35) is often referred to as the Klein-Gordon equation.

We shall again look for particular solutions of the form u(z,t) =
X(z)T(t). This time, however,

XT" - X"T +hXT =0 (7.3.36)

hu, 0<z<L,0<t, (7.3.35)

or
TII h X/I
=t 5=—=- .3.37
arte=x=h (7.3.37)
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Figure 7.3.3: The vibration of a string u(x,t)/h embedded in a thin
sheet of rubber at various positions z/L at the times c¢t/L =0, 0.2, 0.4,
0.6, 0.8, and 1 for hL?/c? = 10. The same parameters were used as in
Figure 7.3.1.

which leads to two ordinary differential equations
X"4+2X =0 (7.3.38)

and
T" + (Ac? + R)T = 0. (7.3.39)

If we attach the string at £ = 0 and « = L, the X(z) solution is

Xna(z) =sin (E%;E) (7.3.40)

with k, = n7/L and A, = n?7%/L%. On the other hand, the T'(t)
solution becomes

Tn(t) = Ay, cos ( k2¢2 + ht) + By sin ( k2e? + ht) (7.3.41)
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Figure 7.3.4: The two-dimensional plot of the vibration of a string
u(z,t)/h embedded in a thin sheet of rubber at various times et/L and
positions z/L for hL?/c? = 10.

so that the product solution is

— sin (™% 2,2 ; 2,2

up(z,t) =sin ( 7 ) [An cos ( k2c? + ht) + B, sin ( kic2+h )]
(7.3.42)

Finally, the general solution becomes

u(z,t) = isin (_n_?) [An cos ( k2c? + ht)

n=1

+ B, sin ( k22 + ht)] (7.3.43)

from the principle of linear superposition. Let us consider the case when
B, = 0. Then we can write (7.3.43)

u(z,t) = i % {sin (kna:+ k2e? + ht) +sin (k,,:c —\VkicZ+h )]

n=1
(7.3.44)
Comparing our results with (7.3.34), the distance that a particular mode
k, moves during the time interval At depends not only upon external
parameters such as h, the tension and density of the string, but also
upon its wavenumber (or equivalently, wavelength). Furthermore, the
frequency of a particular harmonic is larger than that when h = 0.



The Wave Equation 339

This result is not surprising, because the added stiffness of the medium
should increase the natural frequencies.

The importance of dispersion lies in the fact that if the solution
u(z,t) is a superposition of progressive waves in the same direction,
then the phase relationship between the different harmonics will change
with time. Because most signals consist of an infinite series of these
progressive waves, dispersion causes the signal to become garbled. We
show this by comparing the solution (7.3.43) given in Figures 7.3.3 and
7.3.4 for the initial conditions (7.3.25) and (7.3.26) with AL?/c* = 10 to
the results given in Figures 7.3.1 and 7.3.2. Note how garbled the picture
becomes at ct/L = 2 in Figure 7.3.4 compared to the nondispersive
solution at the same time in Figure 7.3.2.

o Example 7.3.3: Damped wave equation

In the previous example a slight modification of the wave equation
resulted in a wave solution where each Fourier harmonic propagates
with its own particular phase speed. In this example we introduce a
modification of the wave equation that will result not only in dispersive
waves but also in the exponential decay of the amplitude as the wave
propagates.

So far we have neglected the reaction of the surrounding medium
(air or water, for example) on the motion of the string. For small-
amplitude motions this reaction opposes the motion of each element of
the string and is proportional to the element’s velocity. The equation
of motion, when we account for the tension and friction in the medium
but not its stiffness or internal friction, is

2 2
‘Z%Hh%it‘-:c?%, 0<z<L,0<t. (7.3.45)
Because (7.3.45) first arose in the mathematical description of the tele-
graph,? it is generally known as the equation of telegraphy. The effect
of friction is, of course, to damp out the free vibration.

Let us assume a solution of the form u(z,t) = X(z)T(t) and sepa-
rate the variables to obtain the two ordinary differential equations:

X" +AX =0 (7.3.46)

and
T" +2hT" + Ac*T =0 (7.3.47)

4 The first published solution was by Kirchhoff, G., 1857: Uber die
Bewegung der Electritat in Drahten. Ann. Phys. Chem., 100, 193-217.
English translation: Kirchhoff, G., 1857: On the motion of electricity in
wires. Philos. Mag., Ser. 4,13, 393-412.
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Figure 7.3.5: The vibration of a string u(z,t)/h with frictional dissi-
pation at various positions z/L at the times c¢t/L = 0, 0.2, 0.4, 0.6, 0.8,
and 1 for hL/c = 1. The same parameters were used as in Figure 7.3.1.

with X(0) = X(L) = 0. Friction does not affect the shape of the normal
modes; they are still

nmwr

Xn(2) = sin (T) (7.3.48)

with k, = nw/L and A\, = n?x2/L%.
The solution for the T'(¢) equation is

To(t) = e ™ [An cos ( k2c? — h? t) + By sin ( k2c? — h? t)]

(7.3.49)
with the condition that k,c > h. If we violate this condition, the solu-
tions are two exponentially decaying functions in time. Because most
physical problems usually fulfill this condition, we will concentrate on
this solution.
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Figure 7.3.6: The vibration of a string u(z,t)/h with frictional dissi-
pation at various times ct/L and positions /L for hL/c = 1.

From the principle of linear superposition, the general solution is

u(z,t) = e~ i sin ("Lﬂ) [An cos ( k2¢2 — h? t)
n=1
+ B, sin ( k22 - h?t)] . (7.3.50)

where m¢ > hL. From (7.3.50) we see two important effects. First, the
presence of friction slows all of the harmonics. Furthermore, friction
dampens all of the harmonics. Figures 7.3.5 and 7.3.6 illustrate the
solution using the initial conditions given by (7.3.25) and (7.3.26) with
hL/c = 1. This is a rather large coefficient of friction and these figures
show the rapid damping that results with a small amount of dispersion.

This damping and dispersion of waves also occurs in solutions of
the equation of telegraphy where the solutions are progressive waves.
Because early telegraph lines were short, time delay effects were negli-
gible. However, when engineers laid the first transoceanic cables in the
1850s, the time delay became seconds and differences in the velocity of
propagation of different frequencies, as predicted by (7.3.50), became
noticeable to the operators. Table 7.3.1 gives the transmission rate for
various transatlantic submarine telegraph lines. As it shows, increases in
the transmission rates during the nineteenth century were due primarily
to improvements in terminal technology.

When they instituted long-distance telephony just before the turn
of the twentieth century, this difference in velocity between frequencies
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Table 7.3.1: Technological Innovation on Transatlantic Telegraph Ca-

Advanced Engineering Mathematics

bles.
Year Technological Innovation Performance
(words/min)
1857-58 Mirror galvanometer 3-7
1870 Condensers 12
1872 Siphon recorder 17
1879 Duplex 24
1894 Larger diameter cable 72-90
1915-20 Brown drum repeater and Heurtley 100
magnifier
1923-28 Magnetically loaded lines 300-320
1928-32 Electronic signal shaping amplifiers 480
and time division multiplexing
1950 Repeaters on the continental shelf 100-300
1956 Repeatered telephone cables 21600

From Coates, V. T. and Finn, B., 1979: A Retrospective Technology
Assessment: Submarine Telegraphy. The Transatlantic Cable of 1866,
San Francisco Press, Inc.

should have limited the circuits to a few tens of miles.’> However, in 1899,
Prof. Michael Pupin, at Columbia University, showed that by adding
inductors (“loading coils”) to the line at regular intervals the velocities at
the different frequencies could be equalized.® Heaviside? and the French
engineer Vaschy® made similar suggestions in the nineteenth century.
Thus, adding resistance and inductance, which would seem to make
things worse, actually made possible long-distance telephony. Today

5 Rayleigh, J. W., 1884: On telephoning through a cable. Br. Assoc.
Rep., 632-633; Jordan, D. W., 1982: The adoption of self-induction by
telephony, 1886-1889. Ann. Sci., 39, 433-461.

6 There is considerable controversy on this subject. See Brittain, J.
E., 1970: The introduction of the loading coil: George A. Campbell and
Michael I. Pupin. Tech. Culture, 11, 36-57.

" First published 3 June 1887. Reprinted in Heaviside, O., 1970:
Electrical Papers, Vol. II, Chelsea Publishing, Bronx, NY, pp. 119-
124

8 See Devaux-Charbonnel, X. G. F., 1917: La contribution des ingén-
leurs francais & la téléphonie 4 grande distance par cables souterrains:
Vaschy et Barbarat. Rev. Gén. Electr., 2, 288-295.
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Figure 7.3.7: The axisymmetric vibrations u'(r,t) = capu(r,t)/P of a
circular membrane when struck by a hammer at various positions r/a
at the times ct/a = 0, 0.2, 0.4, 0.6, 0.8, and 1 for € = a/4.

you can see these loading coils as you drive along the street; they are
the black cylinders, approximately one between each pair of telephone
poles, spliced into the telephone cable. The loading of long submarine
telegraph cables had to wait for the development of permalloy and mu-
metal materials of high magnetic induction.

e Example 7.3.4; Axisymmetric vibrations of a circular membrane

The wave equation

Pu  10u 10%u
—+-—=5—-—, 0<r<a0<t 7.3.51
or?  rdr  c? ot? - ( )
governs axisymmetric vibrations of a circular membrane, where u(r,t)is
the vertical displacement of the membrane, r is the radial distance, ¢ is
time, ¢ is the square root of the ratio of the tension of the membrane to
its density, and a is the radius of the membrane. We shall solve (7.3.51)
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Figure 7.3.8: The axisymmetric vibrations capu(r,t)/P of a circular
membrane when struck by a hammer at various times ct/a and positions

r/a for € = a/4.

when the membrane is initially at rest, u(r,0) = 0, and struck so that
its initial velocity is

(7.3.52)

Ou(r,0) { P/(ze?p), 0<r<e
a

0, e<r<a.

If this problem can be solved by separation of variables, then u(r,t)
= R(r)T(t). Following the substitution of this u(r,t) into (7.3.51), sep-
aration of variables leads to

1 d [/ dR 1 dT
TR (T) =araE = (7.3.53)
or 1d [ dR
— — ——— 2 =
- (r dr) +k2R =0 (7.3.54)
and 2T
2 27 __
T =0, (7.3.55)

The separation constant —k? must be negative so that we obtain solu-
tions that remain bounded in the region 0 < r < a and can satisfy the
boundary condition. This boundary condition is u(a,t) = R(a)T(t) =0
or R(a) =0.
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Figure 7.3.9: Same as Figure 7.3.8 except € = a/20.

The solutions of (7.3.54)—(7.3.55), subject to the boundary condi-
tion, are

Anr

Ra(r) = Jo (7.3.56)

a

and

To(t) = Ansin %"'—t- + By cos A—"ac-t- , (7.3.57)

where ), satisfies the equation Jo(A) = 0. Because u(r,0) = 0 and
T,(0) = 0, B, = 0. Consequently, the product solution is

= M\ . (A
u(r,t) = Z AnJo _a_r sin —a—Ct . (7.3.58)
n=1

To determine A, , we use the condition
6“(7’,0) _ d Anc )\nr _ P/(ﬂ'czp), 0 <r<e
ot —Z AnJo a | 0, e<r<a.
(7.3.59)
Equation (7.3.59) is a Fourier-Bessel expansion in the orthogonal func-
tion Jo(An7/a), where A, equals

n=1

Anc 2 ¢ P AnT
TAH = (12]12(/\") /0 7l'€2pJ0 T dr (7360)
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from (6.5.35) and (6.5.43) in Section 6.5. Carrying out the integration,

_ 2PJy(Ane/a)
) 728y
or
2P X NhOnefa) . [ Anr\ . [ Anct
u(r,t) = C“P,; N2 T200) Jo el Ll Gl B (7.3.62)

Figures 7.3.7, 7.3.8, and 7.3.9 illustrate the solution (7.3.62) for
various times and positions when ¢ = a/4 and ¢ = a/20. Figures 7.3.8
and 7.3.9 show that striking the membrane with a hammer generates a
pulse that propagates out to the rim, reflects, inverts, and propagates
back to the center. This process then repeats itself forever.

Problems

Solve the wave equation u;; = c?uzz, 0 < ¢ < L, 0 < t subject to the
boundary conditions that u(0,¢) = u(L,t) = 0, < 0 and the following
initial conditions for 0 < z < L:

L u(z,0) =0, wuz,0)=1
2. u(z,0)=1, u(z,00=0

_ | 3hz/2L, 0<ez<2L/3 _
3. u(z,0)= {3h(L —2)/L, 2U3<z<L, “E®O=0

4. u(z,0) = [3sin(wz/L) —sin(3nz/L)]/4, wu.z,0)=0,

0, 0<z<L/4
5. u(z,0) =sin(rz/L), wuz,0)={ a, L/4<x<3L/4
0, 3L/A<z< L

B _ | az/L, 0<z<L/2
6. u(z,0)=0, w(z,0)= {a(L—x)/L, Li2<ze<L
_ z, O<z<L/2 _
" u(z’o)_{L—x, Lj2<z<L, "®0=0

8. Solve the wave equation

Pu 0%

W—Cgﬁ, O<z<m0<t
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subject to the boundary conditions

du(0,8) _ du(mt) _ |

t
oz oz o 0<
and the initial conditions
u(z,0)=0 and a_u((;_,()_): 1+ cos®(z), O<z<m.

[Hint: You must include the separation constant of zero.]

9. The differential equation for the longitudinal vibrations of a rod
within a viscous fluid is
d%u du _ ,0%u

S +2ho =

5 at—c-a'ﬁ, 0<(L‘<L,0<t,

where ¢ is the velocity of sound in the rod and h is the damping coef-
ficient. If the rod is fixed at 2 = 0 so that u(0,t) = 0 and allowed to
freely oscillate at the other end z = L so that uy(L,t) = 0, find the
vibrations for any location z and subsequent time t if the rod has the
initial displacement of u(z,0) = = and the initial velocity u,(z,0) = 0
for 0 < £ < L. Assume that h < c7/(2L). Why?

10. A closed pipe of length L contains air whose density is slightly
greater than that of the outside air in the ratio of 1+so to 1. Everything
being at rest, we suddenly draw aside the disk closing one end of the
pipe. We want to determine what happens inside the pipe after we
remove the disk.
As the air rushes outside, it generates sound waves within the pipe.

The wave equation

u _ ,0%u

oz~ ¢ Ba?
governs these waves, where ¢ is the speed of sound and u(z,t) is the ve-
locity potential. Without going into the fluid mechanics of the problem,
the boundary conditions are

a. No flow through the closed end: u(0,t) = 0.
b. No infinite acceleration at the open end: ug-(L,t) = 0.
c. Air is initially at rest: uz(z,0) = 0.

d. Air initially has a density greater than the surrounding air by the
amount so: us(z,0) = —c?so.
Find the velocity potential at all positions within the pipe and all

subsequent times.
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11. One of the classic applications of the wave equation has been the
explanation of the acoustic properties of string instrurnents. Usually
we excite a string in one of three ways: by plucking (as in the harp,
zither, etc.), by striking with a hammer (piano), or by bowing (violin,
violoncello, etc.). In all these case, the governing partial differential
equation is

Ou  ,0%

52 ¢ g2
with the boundary conditions u(0,¢) = u(L,t) = 0, 0 < ¢. For each
of following methods of exciting a string instrument, find the complete
solution to the problem: )

(a) Plucked string

For the initial conditions:

_ Bz/a, O0<e<a
u(z,0) = {ﬁ(L —o)/(L-a), a<z<L
and
ut(x,O):O, 0<17<L,
show that
28L2 .1 . /nma\ . /nrvzx nwet
) = gy o () sin (1) ( L )

n=1

We note that the harmonics are absent where sin(nwa/L) = 0.
Thus, if we pluck the string at the center, all of the harmonics of even
order will be absent. Furthermore, the intensity of the successive har-
monics will vary as n=2. The higher harmonics (overtones) are therefore
relatively feeble compared to the n = 1 term (the fundamental).

(b) String excited by impact
The effect of the impact of a hammer depends upon the manner and

duration of the contact, and is more difficult to estimate. However, as
a first estimate, let

u(z,0) =0, 0<z<L

and
a—e<z<a+e¢€

u(z,0) = {0, otherwise,
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where € < 1. Show that the solution in this case is
4,uL 1 . /nmey . /nma\ . (nmxy\ . (nmrct
u(z,t) = g ,,Z:I —3sin (T) sin (—L—) sin (—L—) sin ( I ) .

As in part (a), the nth mode is absent if the origin is at a node.
The intensity of the overtones are now of the same order of magnitude;
higher harmonics (overtones) are relatively more in evidence than in

part (a).

(¢) Bowed violin string

The theory of the vibration of a string when excited by bowing is poorly
understood. The bow drags the string for a time until the string springs
back. After awhile the process repeats. It can be shown® that the proper
initial conditions are

u(z,0) =0, 0<eze<l

and
uy(z,0) = 4PBc(L — z)/L?, O<z< L,

where 3 is the maximum displacement. Show that the solution is now

(2,1) = Z sin (232) sin <"’£Ct) :

9 See Lamb, H., 1960: The Dynamical Theory of Sound. Dover Pub-
lishers, Mineola, NY, Section 27.
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7.4 D'ALEMBERT’'S FORMULA

In the previous section we sought solutions to the homogeneous
wave equation in the form of a product X (z)T(¢). For the one-dimen-
sional wave equation there is a more general method for constructing
the solution. D’Alembert!® derived it in 1747.

Let us determine a solution to the homogeneous wave equation

u _ ,0%

67—0 @, —OO<1'<O0,0<t (741)

which satisfies the initial conditions

u(z,0) = f(z) and % =g(z), —-o<r<oo. (74.2)

We begin by introducing two new variables £, 7 defined by ¢ = z+ct
and 7 = z—ct and set u(z,t) = w(£,n). The variables £ and 7 are called
the characteristics of the wave equation. Using the chain rule,

9 _%0 mo _9 o
Oz~ Oz 06 Oz On ~ 8¢ ' Oy

o oo mo o o
5t = otoe T oton - o San (7-4.4)

62_656 o 0 on d (0 o
m-ag(&*%)*a—z%(%w—n) (745)

92 92 o2

(7.4.3)

22—+ — 7.4.6
= o7 " “aean T o (7.4.8)
and similarly
0? o? o? o?
A | I Y 47
e c<8£2 20{3774_3772)’ (7.4.7)
so that the wave equation becomes
0w
363, = 0 (7.4.8)

The general solution of (7.4.8) is

w(€,n) = F(§) + G(n). (7.4.9)

10 D’Alembert, J., 1747: Recherches sur la courbe que forme une corde
tendué mise en vibration. Hist. Acad. R. Sci. Belles Lett., Berlin, 214
219.
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Figure 7.4.1: Although largely self-educated in mathematics, Jean Le
Rond d’Alembert (1717-1783) gained equal fame as a mathematician
and philosophe of the continental Enlightenment. By the middle of the
eighteenth century, he stood with such leading European mathemati-
cians and mathematical physicists as Clairaut, D. Bernoulli, and Euler.
Today we best remember him for his work in fluid dynamics and ap-
plying partial differential equations to problems in physics. (Portrait
courtesy of the Archives de I’Académie des sciences, Paris.)

Thus, the general solution of (7.4.1) is of the form
u(z,t) = F(z + ct) + G(z — ct), (7.4.10)

where F and G are arbitrary functions of one variable and are assumed
to be twice differentiable. Setting ¢t = 0 in (7.4.10) and using the initial
condition that u(z,0) = f(z),

F(z)+ G(z) = f(=). (7.4.11)
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The partial derivative of (7.4.10) with respect to ¢ yields

Ou(z, 1)
ot

=cF'(z + ct) — ¢G'(z — ct). (7.4.12)

Here primes denote differentiation with respect to the argument of the
function. If we set £ = 0 in (7.4.12) and apply the initial condition that

ui(z,0) = g(x),
cF'(z) — ¢G'(z) = g(x). (7.4.13)

Integrating (7.4.13) from 0 to any point x gives
1 T
F(z)-G(z) = - / g(r)dr +C, (7.4.14)
0

where C' is the constant of integration. Combining this result with
(7.4.11),

F(z) = ﬂ;—) + 51;/; g(r)dr + % (7.4.15)
and .
G(z) = @ - '21?/0 o(r)dr — % (7.4.16)

If we replace the variable z in the expression for F' and G by « + ¢t and
z — ct, respectively, and substitute the results into (7.4.10), we finally
arrive at the formula

z+ec z—c ohet
u(x,t) = fz+ t);f( ) + 21—0/ g(r)dr. (7.4.17)

—-ct

This is known as d’Alembert’s formula for the solution of the wave equa-
tion (7.4.1) subject to the initial conditions (7.4.2). It gives a represen-
tation of the solution in terms of known initial conditions.

o Example 7.4.1

To illustrate d’Alembert’s formula, let us find the solution to the
wave equation (7.4.1) satisfying the initial conditions u(z,0) = sin(z)
and u(z,0) = 0, —0o < z < co. By d’Alembert’s formula (7.4.17),

u(z, t) = S0 =) j; sin(z +ef) _ sin(z)cos(ct).  (7.4.18)
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e Example 7.4.2

Let us find the solution to the wave equation (7.4.1) when u(z,0) =
0 and u;(z,0) = sin(2z), —o0 < # < co. By d’Alembert’s formula, the
solution is

x4ct . :
w(z,t) = — / sin(2r) dr = SLM;‘“(—?CQ (7.4.19)

2c —ct

In addition to providing a method of solving the wave equation,
d’Alembert’s solution may also be used to gain physical insight into the
vibration of a string. Consider the case when we release a string with
zero velocity after giving it an initial displacement of f(z). According
to (7.4.17), the displacement at a point z at any time ¢ is

u(z,t) = fz +ct) _; fz = Ct). (7.4.20)

Because the function f(z —ct) is the same as the function of f(z) trans-
lated to the right by a distance equal to ¢t, f(z — ct) represents a wave
of form f(z) traveling to the right with the velocity c, a forward wave.
Similarly, we can interpret the function f(x + ct) as representing a wave
with the shape f(z) traveling to the left with the velocity ¢, a back-
ward wave. Thus, the solution (7.4.17) is a superposition of forward
and backward waves traveling with the same velocity ¢ and having the
shape of the initial profile f(z) with half of the amplitude. Clearly the
characteristics ¢ + ¢t and z — ct give the propagation paths along which
the waveform f(z) propagates.

o Example 7.4.3

To illustrate our physical interpretation of d’Alembert’s solution,
suppose that the string has an initial displacement defined by

_Ja—|=|, —a<z<a

f@) = { 0, otherwise. (7.4.21)
In Figure 7.4.2(A) the forward and backward waves, indicated by the
dashed line, coincide at ¢ = 0. As time advances, both waves move
in opposite directions. In particular, at ¢ = a/(2c), they have moved
through a distance a/2, resulting in the displacement of the string shown
in Figure 7.4.2(B). Eventually, at ¢ = a/c, the forward and backward
waves completely separate. Finally, Figures 4.7.2(D) and 4.7.2(E) show
how the waves radiate off to infinity at the speed of ¢. Note that at each
point the string returns to its original position of rest after the passage
of each wave.
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Figure 7.4.2: The propagation of waves due to an initial displacement
according to d’Alembert’s formula.

Consider now the opposite situation when u(z,0) = 0 and u,(z, 0)
= g(z). The displacement is

z+ct
u(z,t) = %/ g(r)dr. (7.4.22)

If we introduce the function

o(z) = —1—/ g(r)dr, (7.4.23)
2c Jo
then we can write (7.4.22) as
u(z,t) = p(z + ct) — p(x — ct), (7.4.24)

which again shows that the solution is a superposition of a forward
wave —p(z —ct) and a backward wave ¢(z + ct) traveling with the same
velocity ¢. The function ¢, which we compute from (7.4.23) and the
initial velocity g(z), determines the exact form of these waves.
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DISPLACEMENT OF STRING
D'ALEMBERT SOLUTION
CASE |

X|=9
Ap=-i

46 -4 -2 10 -8 6 4 2 0 2 4 6 8 100R 4 16"
Figure 7.4.3: Displacement of an infinite, moving threadline when
¢c=10and V = 1.

e Example 7.4.4: Vibration of a moving threadline

The characterization and analysis of the oscillations of a string or
yarn have an important application in the textile industry because they
describe the way that yarn winds on a bobbin!!. As we showed in

Section 7.4.1, the governing equation, the “threadline equation,” is

0%y 82y

s Tog— +ﬂ (7.4.25)
where a = 2V, 8 = V2 — gT/p, V is the wmdup velocity, g is the
gravitational attraction, 7" is the tension in the yarn, and p is the density
of the yarn. We now introduce the characteristics £ = = + Ayt and
17 = x + Aqt, where A; and A, are yet undetermined. Upon substituting

& and 7 into (7.4.25),

(AT +2VA; + V2 — gT/p)uge + (A3 + 2V A2 + V2 — gT/p)uyy
+ [2V2 — 2gT/p + QV(Al + Az) + 2)1)2]11@, =0. (7426)

11 Reprinted from J. Franklin Inst., 275, Swope, R. D., and W. F.
Ames, Vibrations of a moving threadline, 36-55, (©1963, with kind
permission from Elsevier Science Ltd, The Boulevard, Langford Lane,
Kidlington OX5 1GB, UK.
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DISPLACEMENT OF STRING
D'ALEMBERT SOLUTION

t=0 CASE |t
t=2 A=
Ap=-19

t=10

T

— r ¢ 3 » X
0 -8 -6 -4 2 0 2 4 6 8 1012 14 16 I8 20 22

Figure 7.4.4: Displacement of an infinite, moving threadline when

c=11and V = 10.

If we choose A; and A5 to be roots of the equation:

Solving (7.4.27) yields

M4 2VA+ V2 —gT/p=0, (7.4.27)
(7.4.26) reduces to the simple form
Uen = 0, (7.4.28)
which has the general solution
u(z,t) = F(€) + G(n) = F(z + Mt) + G(z + Ast). (7.4.29)
AM=c—-V and Ay =—c—V, (7.4.30)
where ¢ = \/gT/p. If the initial conditions are
u(z,0) = f(z) and uy(z,0) = g(2), (7.4.31)

then

1’+A1t

u(z,t) = 51-6-[/\1f($+)\2t)—/\2f(1'+’\1t)+/+A ,

g(7) dr]. (7.4.32)
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Because A; does not generally equal to Ao, the two waves that
constitute the motion of the string move with different speeds and have
different shapes and forms. For example, if

1
f() = ) and g(z) =0, (7.4.33)
1 c—-V c+V
u(z,t) = %{ o [17 — (C T V)t]z + n [z — (c — V)t]2 } (7.4.34)

Figures 7.4.3 and 7.4.4 illustrate this solution for several different pa-
rameters.

Problems

Use d’Alembert’s formula to solve the wave equation (7.4.1) for the
following initial conditions defined for |z| < oco.

1. u(z,0) = 2sin(z) cos(x) us(z,0) = cos(x)

2. u(z,0) = zsin(z) us(z,0) = cos(2z)

3. u(z,0) = 1/(z2+1) uy(z,0) = €*

4. u(z,0)=¢"" uy(z,0) = 1/(z2 + 1)

5. u(z,0) = cos(ma/2) us(z,0) = sinh(az)

6. u(z,0) = sin(3z) us(z,0) = sin(2z) — sin(z)

7.5 THE LAPLACE TRANSFORM METHOD

The solution of linear partial differential equations by Laplace trans-
forms is the most commonly employed analytic technique after the
method of separation of variables. Because the transform consists solely
of an integration with respect to time, we obtain a transform which
varies both in z and s, namely

U(z,s) = /000 u(z,t)e™* dt. (7.5.1)

Partial derivatives involving time have transforms similar to those that
we encountered in the case of functions of a single variable. They include

Lluy(z,t)] = sU(z,s) — u(z,0) (7.5.2)

and
Llug(z,t)] = s°U(z, s) — su(z,0) — uy(z,0). (7.5.3)

These transforms introduce the initial conditions via u(xz, 0) and u.(z, 0).
On the other hand, derivatives involving & become

Llus(z,1)] = % (Llu(z, 1))} = dU(g’;’ ) (7.5.4)
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and
2 20 (z. s
E[ux.r(l', t)] = :? {[,[U(.’L', t)}} = %2’—)' (755)

Because the transformation has eliminated the time variable, only
U(z,s) and its derivatives remain in the equation. Consequently, we
have transformed the partial differential equation into a boundary-value
problem for an ordinary differential equation. Because this equation
is often easier to solve than a partial differential equation, the use of
Laplace transforms has considerably simplified the original problem. Of
course, the Laplace transforms must exist for this technique to work.

To summarize this method, we have constructed the following sche-
matic:

partial differential equation

+ initial conditions solution to original problem

+ boundary conditions

Laplace transform Inverse transform
ordinary differential equation solution of boundary-value
ry diffe q . f ry

+ boundary conditions problem

In the following examples, we will illustrate transform methods by
solving the classic equation of telegraphy as it applies to a uniform
transmission line. The line has a resistance R, an inductance L, a
capacitance C, and a leakage conductance G per unit length. We denote
the current in the direction of positive by I; V is the voltage drop
across the transmission line at the point . The dependent variables I
and V are functions of both distance z along the line and time t.

To derive the differential equations that govern the current and
voltage in the line, consider the points A at z and B at ¢ 4+ Az in
Figure 7.5.1. The current and voltage at A are I(z,t) and V(z,t); at
B, I+ %Aw and V + %%A:c. Therefore, the voltage drop from A to B
is —%—‘;Az and the current in the line is T + %Ax. Neglecting terms
that are proportional to (Az)?,

oI oV
(LE + RI) Az=-Z-Az. (7.5.6)
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Figure 7.5.1: Schematic of an uniform transmission line.

The voltage drop over the parallel portion HK of the line is V' while
the current in this portion of the line is —%Az. Thus,

ov oI
(CW + GV) Az = —a—xA:L'. (7.5.7)

Therefore, the differential equations for I and V are

a1 ov
Lo +RI= -2 (7.5.8)

and oV a1
Co+GV = (7.5.9)

Turning to the initial conditions, we solve these simultaneous par-
tial differential equations with the initial conditions:

I(z,0) = Io(z) (7.5.10)

and
V(z,0) = Vo(z) (7.5.11)

for 0 < t. There are also boundary conditions at the ends of the line; we
will introduce them for each specific problem. For example, if the line
is short-circuited at ¢ = a, V = 0 at £ = a; if there is an open circuit
atz=a,I=0atz=a.
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To solve (7.5.8)-(7.5.9) by Laplace transforms, we take the Laplace
transform of both sides of these equations, which yields

(Ls + R)I(z,s) = — ch(;, ) + Llo(z) (7.5.12)
and .
(&+GW@@:—£%2+C%@. (7.5.13)

Eliminating T gives an ordinary differential equation in V:

d27 275 dIo(.’L‘)
21—3—37 -q°V = LT - C(L3 + R)VO(Z')7 (7'5'14)

where ¢ = (Ls+ R)(Cs+G). After finding V, we may compute I from

1 iz LIo(lr)
Ls+Rdz Ls+ R’

I=- (7.5.15)

At this point we treat several classic cases.
o Example 7.5.1: The semi-infinite transmission line

We consider the problem of a semi-infinite line z > 0 with no initial
current and charge. The end = 0 has a constant voltage F for 0 < t.
In this case,

9—17 —q°V =0, z > 0. (7.5.16)

The boundary conditions at the ends of the line are

VO,t)=E, 0<t (7.5.17)

and V(z,t) is finite as £ — co. The transform of these boundary con-
ditions is

V(0,s)= E/s and lim V(z,s) < co. (7.5.18)
The general solution of (7.5.16) is
Viz,s) = Ae™ %" + Be®". (7.5.19)

The requirement that V remains finite as £ — oo forces B = 0. The
boundary condition at z = 0 gives A = E//s. Thus,

Viz,s) = %exp[—\/(Ls + R)(Cs + G)z]. (7.5.20)
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We will discuss the general case later. However, for the so-called “loss-
less” line, where R = G =0,

V(z,s) = gexp(—sz/c), (7.5.21)
where ¢ = 1/v/LC. Consequently,
T
V(z,t) = EH (t - Z) , (7.5.22)

where H(t) is Heaviside’s step function. The physical interpretation of
this solution is as follows: V(z,t) is zero up to the time «/c at which
time a wave traveling with speed ¢ from & = 0 would arrive at the point
x. V(z,t) has the constant value E afterwards.

For the so-called “distortionless” line, R/L = G/C = p,

V(e,t)= Be?*/°H (t - f) . (7.5.23)
In this case, the disturbance not only propagates with velocity ¢ but
also attenuates as we move along the line.
Suppose now, that instead of applying a constant voltage E at
z = 0, we apply a time-dependent voltage, f(¢). The only modification
is that in place of (7.5.20),

Vi(z,s) = F(s)e 9. (7.5.24)

In the case of the distortionless line, ¢ = (s + p)/¢, this becomes

V(z,s) = F(s)e~(s+p)=/e (7.5.25)
and ) - :z'
— —pzfec _® e

V(z,t) = e#o/ef (t c) H (t c) . (7.5.26)

Thus, our solution shows that the voltage at z is zero up to the time
z/c. Afterwards V(z,t) follows the voltage at z = 0 with a time lag of
z/c and decreases in magnitude by e=#%/¢

o Example 7.5.2: The finite transmission line

We now discuss the problem of a finite transmission line 0 < z < {
with zero initial current and charge. We ground the end £ = 0 and
maintain the end z = [ at constant voltage E for 0 < t.

The transformed partial differential equation becomes

&2V -
;EZ— -¢*V=0, O<z<l (7.5.27)
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V(x,t . . 3
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Figure 7.5.2: The voltage within a lossless, finite transmission line of
length { as a function of time ¢.

The boundary conditions are
V{0,t)=0 and V(,1)=F, 0<t. (7.5.28)
The Laplace transform of these boundary conditions is
V(o, 5)=0 and V(l,s) = E/s. (7.5.29)
The solution of (7.5.27) which satisfies the boundary conditions is

_ E sinh(qz)

Viz,s)= s sinh(gql)

(7.5.30)

Let us rewrite (7.5.30) in a form involving negative exponentials and
expand the denominator by the binomial theorem,

— E _ 1 — exp(—2¢z)
vV —_ L —q(i-z) 1~ &XPl—oqZ) 7.5.31
(2,5) s* 1 —exp(—2¢l) (7.5.31)
FE
- e—q(l—x)(l e—ZqI) (1 e~ 20 4 o4 + .. ) (7.5.32)
E

- _[e—Q(I—r) — e~ UHT) 4 o=aBl-z) _ o—q(Bl4z) 4 . 1. (7.5.33)
S

In the special case of the lossless line where ¢ = s/c,

V(z,s) — g[e—s(l—x)/c _ e—s(l+z‘)/c + 6—3(31—-1’)/c _ e—s(31+r)/c + .- ]

(7.5.34)
V(z,t):E[H (t_ ’—cw) _H(t_l—l(;:c>
+H(t_ 31—:c) —H(t— 31+x) +] (7.5.35)

or

c c
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Figure 7.5.3: The voltage within a submarine cable as a function of
distance for various «t’s.

We illustrate (7.5.35) in Figure 7.5.2. The voltage at ¢ is zero up to
the time (I — z)/¢, at which time a wave traveling directly from the end
z = | would reach the point z. The voltage then has the constant value
E up to the time (I +z)/c, at which time a wave traveling from the end
z = [ and reflected back from the end z = 0 would arrive. From this
time up to the time of arrival of a twice-reflected wave, it has the value
zero, and so on.

o Example 7.5.3: The semi-infinite transmission line reconsidered

In the first example, we showed that the transform of the solution
for the semi-infinite line is

V(z,s) = ge-“, (7.5.36)

where q? = (Ls+ R)(Cs+G). In the case of a lossless line (R = G = 0),
we found traveling wave solutions.

In this example, we shall examine the case of a submarine cable!?
where L = G = 0. In this special case,

V(z,s) = g-e" s/x (7.5.37)

12 First solved by Thomson, W., 1855: On the theory of the electric
telegraph. Proc. R. Soc. London, AT, 382-399.
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where k = 1/(RC). From a table of Laplace transforms,*?

immediately invert (7.5.37) and find that

we can

V(z,t) = E erfc (%) , (7.5.38)

where erfc is the complementary error function. Unlike the traveling
wave solution, the voltage diffuses into the cable as time increases. We
illustrate (7.5.38) in Figure 7.5.3.

o Example 7.5.4: A short-circuited, finite transmission line

Let us find the voltage of a lossless transmission line of length !
that initially has the constant voltage E. At t = 0, we ground the line
at = = 0 while we leave the end z = I insulated.

The transformed partial differential equation now becomes

Tz & V=- oz (7.5.39)
where ¢ = 1/v/LC. The boundary conditions are
V(0,5)=0 (7.5.40)
and -
- _ 1dv(l,s) _
I(l,s) = “Ts dz 0 (7.5.41)
from (7.5.15).
The solution to this boundary-value problem is
— I—
F(e,s)= = - Z cosh{s(l = z)/¢] (7.5.42)

s s cosh(sl/¢)

The first term on the right side of (7.5.42) is easy to invert and equals
E. The second term is much more difficult to handle. We will use
Bromwich’s integral.

In Section 4.10 we showed that

_y [coshfs({—z)/c]| _ 1 e+t cosh[z(1 — z)/cle” :
£ { s cosh(sl/c) } - 271'1'/ z cosh(zl/c) d

c—o0t

(7.5.43)

13 Gee Churchill, R. V., 1972: Operational Mathematics, McGraw-Hill
Book, New York, Section 27.
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To evaluate this integral we must first locate and then classify the sin-
gularities. Using the product formula for the hyperbolic cosine,

cosh[z(l — z)/c] 1+ 422(’—’”)2][1 + 42;&’};?2] o

c2n?
= 7.5.44
z cosh(zl/c) 2142281+ 255 ( )

This shows that we have an infinite number of simple poles located
at z = 0 and z, = £(2n — 1)wci/(2]), where n = 1,2,3,.... Therefore,
Bromwich’s contour can lie along, and just to the right of, the imaginary
axis. By Jordan’s lemma we close the contour with a semicircle of
infinite radius in the left half of the complex plane. Computing the
residues,

cosh{ (I — IB)/c]e” cosh[z(l _ :L‘)/c]etz 3
Res{ 2 cosh(21/0) } = zl—»o cosh(21/0) =1 (7.5.45)
and
cosh{z(l — z)/cle** '
Res{ z cosh(zl/c) ’z"}
= i (Zz2n)coshz(I = 2)/cle® (7.5.46)

Z—zn z cosh(zl/c)
_ cosh[(2n — )w(1 — z)i/(2])] exp[£(2n — 1)mwcti/(21)]
[(2n — 1)7i/2] sinh[(2n — 1)7i/2]

(7.5.47)

- (2(“—_1):;: 7 cos [(2" =l ””)] exp [N"—%atz] .

(7.5.48)

Summing the residues and using the relationship that cos(t) = (e* +

e *)/2,
V(ac,t):E—E{l_ i:: 271:1 [(2n—1;;r(1—z)]

X cos [(2—"‘71)-"-61]} (7.5.49)
_4E Z (in)—m;l . [(Qn - 1;?(1 - :c)] - [(Qn —211)7rct] |
(7.5.50)

An alternative to contour integration is to rewrite (7.5.42) as

Vo= £ (1 S0/l gl /) g
E

— _s_ [1 _ e—sz/c _ e—-s(21—x)/c + 6—3(21+x)/c + - ] (7552)
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so that

V(ac,t):E[l——H(t—%)—H(t—QIZI)+H(t—21:x>+

(7.5.53)

o Example 7.5.5: The general solution of the equation of telegraphy

In this example we solve the equation of telegraphy without any
restrictions on R, C, G or L. We begin by eliminating the dependent
variable I(z,t) from the set of Equations (7.5.8)~(7.5.9). This yields

% o%v
CL—- 502 +(GL+ RC) + RGV = 57 (7.5.54)
We next take the Laplace transform of (7.5.54) assuming that V(z,0) =
f(z) and V;(z,0) = g(z). The transformed version of (7.5.54) is

(f;——[CLs +(GL+RC)s+ RG]V = —CLg(z)—(CLs+GL+RC)f(x)
(7.5.55)
or

dz? c? c? c?

&V _(s+p)’ =0t () (i + i_;’) f(z),  (7.5.56)

where ¢2 = 1/LC, p = ¢(RC + GL)/2 and o = ¢}(RC — GL)/2.

We solve (7.5.56) by Fourier transforms (see Section 3.6) with the
requirement that the solution dies away as |¢| — 0o. The most con-
venient way of expressing this solution is the convolution product (see
Section 3.5)

V(e,s) = [M N (% . 2_,,) ‘o) ] exp 2|\x/|(31%_¢—§7/c1

(7.5.57)

From a table of Laplace transforms,

o1 [exp (—=bV/s? ; a?)] -1 (a\/m) H(t—b), (7.5.58)

s —a

where b > 0 and I( ) is the zeroth order modified Bessel function of the
first kind. Therefore, by the first shifting theorem,

{exp[ el TP c]}
(s+p)?—0?

= e, [UW] ( |x|). (7.5.59)
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Figure 7.5.4: The evolution of the voltage with time given by the gen-
eral equation of telegraphy for initial conditions and parameters stated
in the text.
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Using (7.5.59) to invert (7.5.57), we have that
vu¢>=iw-“aw*hJaVﬁifﬁaﬂfnt—uV@
Le=f(z) * — {Io[a\/t—Qa:—/c]}H t— |z|/c)
+§e“(m*hkv@TZUBﬂHa—uvo

+ 5e7Pf(z + ct) + f(z - et)]. (7.5.60)

The last term in (7.5.60) arises from noting that sF(s) = L[f(¢)]+ f(0).
If we explicitly write out the convolution, the final form of the solution
is

V(z,t) = 3¢ [f(z + ct) + f(z ~ ct)]

+ 57" /x+n[9(n)+2pf(n)]fo [0'\/0—2{2——(1'——71)2/6] dn

r—ct

sk [ o ovem—a=ar [} an
(7.5.61)

The physical interpretation of the first line of (7.5.61) is straight-
forward. It represents damped progressive waves; one is propagating
to the right and the other to the left. In addition to these progressive
waves, there is a contribution from the integrals, even after the waves
have passed. These integrals include all of the points where f(z) and
g(z) are nonzero within a distance ¢t from the point in question. This
effect persists through all time, although dying away, and constitutes a
residue or tail. Figure 7.5.4 illustrates this for p = 0.1, ¢ = 0.2, and
¢ = 1. We evaluated the integrals by Simpson’s rule for the initial con-
ditions f(z) = H(z+1)— H(z—1) and g(x) = 0. We have also included
the solution for the lossless case for comparison. If there was no loss,
then two pulses would propagate to the left and right as shown by the
dashed line. However, with resistance and leakage the waves leave a
residue after their leading edge has passed.

Problems

1. Use transform methods to solve the wave equation

ot2 ~ fz?’

for the boundary conditions

0<z<1,0<t

u(0,2) = u(1,t) = 0, 0<t
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and the initial conditions

u(z,0) =0, Q%l:l, O<z<l1.

2. Use transform methods to solve the wave equation

?u  8%u
(—9?2——51'—2, 0<z<1,0<«t
for the boundary conditions

u(0,t) = u-(1,t) =0, 0<t

and the initial conditions

ou(0,1)
ot

u(z,0) =0, =z O<z<l

3. Use transform methods to solve the wave equation

v O%u
5{2——5?, 0<x<l,0<«<t

for the boundary conditions
u(0,t) = u(1,t) = 0, o<t

and the initial conditions

u(z,0) = sin(rz), du(z,0) = —sin{7rz), O0<z<l.

ot

4. Use transform methods to solve the wave equation

9y _ 232u

_815—2_65—1’_2-, 0<z<al<t

for the boundary conditions
u(0,t) = sin(wt), u(a,t)=0, 0<t

and the initial conditions

u({z,0) =0, ?—y—gaxt’—o)-:*O, 0<z<a.
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Assume that wa/c is not an integer multiple of 7. Why?

5. Use transform methods to solve the wave equation

W ax2—8 y 0<1'<O0,0<t

for the boundary conditions
u(0,t)=1—e€"*, lm |u(z,t)|~ 2", nfinite, 0<t
T—0Q

and the initial conditions

du(z,0) -

z, 0<z<oo.
ot

u(z,0) =0,

6. Use transform methods to solve the wave equation

0? 6?
67:—6—;::.%", 0<r<oo0<t

for the boundary conditions
u(0,t) = cos(t), lim |u(z,t)| ~ 2", n finite, 0 <1
T == 00

and the initial conditions

u(z,0) =1, @%20, 0<z<o0.

7. Use transform methods to solve the wave equation

8%y 0%

Wzgx—z, 0<zx< L,0<t

for the boundary conditions

0%u(L,t)  k du(L,t) _

u(0,t) =0, BTE +; 52 g, O<t
and the initial conditions
u(z,0) =0, 3_u%ct,_0):0, O<e< L,

where ¢, k, m, and g are constants.
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8. Use transform methods!? to solve the wave equation

?u  , 8 Ou
67_66_1‘(1:'8_1‘)’ 0<.’L’<1,0<t

for the boundary conditions

lim u(z,t)| < 00, wu(l,t)= Asin(wt), 0<t
T—+00

and the initial conditions

Ou(z,0)
o

Assume that 2w # ¢f,, where Jo(3,) = 0. [Hint: The ordinary differ-

ential equation
d au s?
-(E (.’L‘E) - C_2U =0

u(xz,0) =0, 0, 0<z<1.

has the solution
s . (s
U((L‘,S) =c 1y (-c-\/z) + 3Ky (z\/—.’;) ,

where Iy(z) and Kp(z) are modified Bessel functions of the first and
second kind, respectively. Note that J,(iz) = i®I,(2) and I,(iz) =
i" Jo(z) for complex z.]

9. A lossless transmission line of length ¢ has a constant voltage E
applied to the end z = 0 while we insulate the other end [uz(¢,t) = 0].
Find the voltage at any point on the line if the initial current and charge
are zero.

10. Solve the equation of telegraphy without leakage

8%u du 0%u
W_CRW—FCLW’ O<e<,0<t

subject to the boundary conditions
u(0,t)=0 and u(f,t) = E, 0<t
and the initial conditions

u(z,0) = uy(z,0) =0, 0<z<t.

14 Suggested by a problem solved by Brown, J., 1975: Stresses in
towed cables during re-entry. J. Spacecr. Rockets, 12, 524-527.
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Assume that 472L/CR2¢? > 1. Why?

11. The pressure and velocity oscillations from water hammer in a pipe
without friction!® are given by the equations

op _ 20u

'5;——P oz
and

ou _ _10p

ot~ poz’

where p(z,t) denotes the pressure perturbation, u(x,t) is the velocity
perturbation, ¢ is the speed of sound in water, and p is the density
of water. These two first-order partial differential equations may be
combined to yield

azp 2 82

otz ~ " bz?
Find the solution to this partial differential equation if p(0,t) = po and
u(L,t) = 0 and the initial conditions are p(z,0) = pg, p:(z,0) = 0 and
u(z,t) = uo.

12. Use Laplace transforms to solve the wave equation'®
9%(ru) 2 0?(ru)

otz or?
subject to the boundary conditions that

O, 2 0u
orz " 3ror)|._,

where & > 0, and the initial conditions that

, a<r<oo, 0<t

=poe"**H(t) and lim |u(r,t)] < oo, 0<t,

u(r,0) = uy(r,0) = 0, a<r<oo.

13. Consider a vertical rod or column of length L that is supported at
both ends. The elastic waves that arise when the support at the bottom
is suddenly removed are governed by the wave equation!?

Oy _ 0
ot? oz

15 See Rich, G. R., 1945: Water-hammer analysis by the Laplace-
Mellin transformation. Trans. ASME, 67, 361-376.

16 Originally solved using Fourier transforms by Sharpe, J. A., 1942:
The production of elastic waves by explosion pressures. 1. Theory and
empirical field observations. Geophysics, 7, 144-154.

17 Abstracted with permission from Hall, L. H., 1953: Longitudinal
vibrations of a vertical column by the method of Laplace transform.
Am. J. Phys., 21, 287-292. (©1953 American Association of Physics
Teachers.

+ g, O<z< L, 0<t,
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where g denotes the gravitational acceleration, ¢ = E/p, E is Young’s
modulus and p is the mass density. Find the wave solution if the bound-
ary conditions are

u(0,) _ ou(L.t) _
dz ~ 8z

0, 0<t

and the initial conditions are

Ou(z,0)
ot

2
Ma®=—§} =0, O<z<L.

14. Solve the telegraph-like equation!®

6%y ou 5 [ 0%u Ou
AR Nt Y il hutbed
6t2+ e c(3z2+a6z>’ O<e<oo, 0«
subject to the boundary conditions
Ou(0,t) )
Fra ~ugb(t), Ilerolo fu(z,t)| < oo, <z <o

and the initial conditions
u(z,0) = up, u(x,0)=0, 0<t
with ac > k.

Step 1: Take the Laplace transform of the partial differential equation
and boundary conditions and show that

d?U(z, s) +adU(z,s) 3 (32 +ks) Uz, s) = - <s+ k) o

dz? dz c? c?
with U’(0,s) = —up and limy—.oo |U(%, 8)| < 00.

Step 2: Show that the solution to the previous step is

exp [—x (s+ 5%+ az/c]

%+\/(s+%)2+a2/c

18 From Abbott, M. R., 1959: The downstream effect of closing a
barrier across an estuary with particular reference to the Thames. Proc.
R. Soc. London, A251, 426-439 with permission.

Uz,s) = Y0 4 yge=o/?
s
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where 4a? = o2¢c? — k2 > 0.

Step 3: Using the first and second shifting theorems and the property
that

F(VEsa) =c [f(t) ~a [ 2T dr} ,

12— 72
show that

u(z,t) = ug + ugce ¥/2H(t — z/c)

N [e—act/z _ a/' S (av® —12) Mre_w/zdr} .
z/c

12 — r2

15. As an electric locomotive travels down a track at the speed V, the
pantograph (the metallic framework that connects the overhead power
lines to the locomotive) pushes up the line with a force P. Let us find
the behavior!® of the overhead wire as a pantograph passes between two
supports of the electrical cable that are located a distance L apart. We
model this system as a vibrating string with a point load:

d%u 282 P T
=gt 6(t—7), O<z<L, 0<t.

Let us assume that the wire is initially at rest [u(z,0) = u,(x,0) = 0 for
0 < z < L] and fixed at both ends [u(0,t) = u(L,t) = 0 for 0 < t].

Step 1: Take the Laplace transform of the partial differential equation
and show that

d*U(z,s) P
2 _ 2 3 —-zs/V
sU(:L',s)_c—dx2 +p—Ve zs/V

Step 2: Solve the ordinary differential equation in Step 1 as a Fourier
half-range sine series:

||M8

By (s)sin (mrx) ,

19 From Oda, O. and Ooura, Y., 1976: Vibrations of catenary over-
head wire. Q. Rep., (Tokyo) Railway Tech. Res. Inst., 17, 134-135
with permission.
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where

_ 2PB, 1 1 (_1\n.-Ls/V
Bu(s) = JLipr — a2) [s2+az‘s2+ﬁs] 1= oretert],

an = nmc/L and B, = nwV/L. This solution satisfies the boundary
conditions.

Step 3: By inverting the solution in Step 2, show that

u(z 1) = 2P & [sin(ﬂnt) v sin(ant)]sin (mrx)

T pL a2 -2 ¢ ai-pE L

_ %H (t - -é) 2(—1)" sin (*72)
y {sin[ﬂn(t —L/V)] _V sin[an(t - L/V)]}

af - B3 ¢ of — 3

_ 2P 2. [sin(Bat) V sin(ant)] . /nme
‘Ez[az—ﬂz T ai—ﬂz]s‘“( i)

[ Vo

o - B

sinfan(t — L/V)] }
ey

The first term in both summations represents the static uplift on the line;

this term disappears after the pantograph has passed. The second term

in both summations represents the vibrations excited by the traveling
force. Even after the pantograph passes, they will continue to exist.

16. Solve the wave equation

e e e — e — = ————2 0<r<a, 0<«t,

where 0 < a < a, subject to the boundary conditions

du(a,t) + h

}1_1}(1)|u(r¢)|< oo and e au(a,t):O, 0<t

and the initial conditions

u(r,0) = us(r,0) = 0, 0<r<a.
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Step 1: Take the Laplace transform of the partial differential equation
and show that

dzU(r,s)+ldU(r,s)_(sz N r1_2> U(rs) = _b(r—a) 0<r<a

dr? r dr sa?

c2

with
dU(a 5)

lirr(l)[U(r,s)|<oo and + - U(a s)=0.
r—

Step 2: Show that the Dirac delta function can be reexpressed as the
Fourier-Bessel series:

_2ah _ BRh(Baaja)
__2‘7‘21(18%-}-}12_l)le(’Bn)Jl(ﬁnT'/a), 0Sr<a,

where (3, is the nth root of 3J{(8)+h J1(8) = BJo(B)+(h—1)J1(8) =0
and Jo( ), J1( ) are the zeroth and first-order Bessel functions of the first
kind, respectively.

Step 3: Show that solution to the ordinary differential equation in Step
lis

U(r,s) =

Ji(Bna/a)J1(Bnr/a) s
Z(ﬂ%+h2 11)Jz(ﬁn)[ - 2+czﬂ%/az]

Note that this solution satisfies the boundary conditions.

Step 4: Taking the inverse of the Laplace transform in Step 3, show
that the solution to the partial differential equation is

o= 2 S grir o o (2]

17. A powerful method for solving certain partial differential equations
is the joint application of Laplace and Fourier transforms. To illustrate
this joint transform method, let us find the Green’s function for the
Klein-Gordon equation

= S —PPu=—8(@)(t), —w0<z<o00<t

subject to the boundary condition

lim Ju(z,t)] <00, 0<t
r—*oo
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and the initial conditions

u(z,0) = ue(z,0) =0, ~00 < & < 00.

Step 1: Take the Laplace transform of the partial differential equation
and show that

d*U(z,s) 2
gz ‘63'1',3 U(z,s)=~6(z), —00<r <o
with the boundary condition

Il}inoo |U(z, s)| < oo.

Step 2: Using Fourier transforms, show that the solution to the ordinary
differential equation in Step 1 is

exp (el /T 1 )
2/s? 2+ B

You may need to review Section 3.6.

U(z,s) =

Step 3: Using tables, show that the Green’s function is
u(z,t) = %Jo (,8\/ c?t? — .'!22) H(ct — z),

where Jo() is the zeroth order Bessel function of the first kind.
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7.6 NUMERICAL SOLUTION OF THE WAVE EQUATION

Despite the powerful techniques shown in the previous sections for
solving the wave equation, often these analytic techniques fail and we
must resort to numerical techniques. In counterpoint to the continu-
ous solutions, finite difference methods, a type of numerical solution
technique, give discrete numerical values at a specific location (zm, t,),
called a grid point. These numerical values represent a numerical ap-
proximation of the continuous solution over the region (z,, —Az/2, ., +
Az/2) and (t, — At/2,t, + At/2), where Az and At are the distance
and time intervals between grid points, respectively. Clearly, in the limit
of Az, At — 0, we recover the continuous solution. However, practical
considerations such as computer memory or execution time often require
that Az and At, although small, are not negligibly small.

The first task in the numerical solution of a partial differential
equation is the replacement of its continuous derivatives with finite dif-
ferences. The most popular approach employs Taylor expansions. If
we focus on the z-derivative, then the value of the solution at u[(m +
1)Az, nAt] in terms of the solution at (mAz,nAt) is

[(m + 1)Al‘ nAt] = u(xm,t )+ A:L' 8”(17,", n) (Az)2 82“(1:111; n)

oz 2! ox?
(Aa:)3 83u (:cm, tn) (A.’L‘)4 64u(:cm,tn)
3 o3 T 4l oot T
(7.6.1)
au(zm,t )

=u(em,t,) + Az +0[(Az)?], (7.6.2)
where O[(Az)?] gives a measure of the magnitude of neglected terms.2°
From (7.6.2), one possible approximation for u is

Ou(zm,t,) Uppg — U
oz - Az
where we have used the standard notation that u?, = u(z,,t,). This is
an example of a one-sided finite difference approximation of the partial
derivative u;. The error in using this approximation behaves as Axz.

Another possible approximation for the derivative arises from using
u(mAzx,nAt) and u[(m — 1)Az, nAt]. From the Taylor expansion:

éﬁ(’?u(z’m,tn) (Az)? O%u(zm,t,)
1! Oz 2! Ox?

m + O(Ax), (7.6.3)

ul(m — 1)Az, nAt] = u(zm, ty) —

20 The symbol O is a mathematical notation indicating relative magni-
tude of terms, namely that f(€) = O(e") provided lim,_q | f(€)/€"| < 0.
For example, as ¢ — 0, sin(e) = O(e), sin(e?) = O(e?), and cos(e) =

o(1).
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(Az)? Bu(zm, tn) |, (Az)* O*u(em,tn)

3! 83 41 dz? K
(7.6.4)
we can also obtain the one-sided difference formula
n _ ,n
UBmitn) _ ¥m = ¥mo1 | oA, (7.6.5)

Oz Az
A third possibility arises from subtracting (7.6.4) from (7.6.1):

a matn
WPy — = 2Az“—(’g;—) +0[(Az)?] (7.6.6)
or a ( y ) n n
UTm,ln) _ Umpr — Um—i 2
S = el 4 0[(As)7) (71.6.7)

Thus, the choice of the finite differencing scheme can produce profound
differences in the accuracy of the results. In the present case, centered
finite differences can yield results that are markedly better than using
one-sided differences.

To solve the wave equation, we need to approximate uz,. If we add
(7.6.1) and (7.6.4),

0*u(zm,tn)

502 (Az)? 4+ O[(Az)Y] (7.6.8)

U1 + Uppog = 2up, +

or
Pu(m,tn) _ Umi1 = 2Um + Un_g

Ox? - (Az)?
Similar considerations hold for the time derivative. Thus, by neglecting

errors of O[(Az)?] and O[(At)?}, we may approximate the wave equation
by

+ O[(Az)%. (7.6.9)

upt! — 2uf, 4+ up? =2 Upp1 — 2up, +up g
(At)? (Az)?

Because the wave equation represents evolutionary change of some quan-
tity, (7.6.10) is generally used as a predictive equation where we forecast
upt! by

(7.6.10)

2
_ cAt
W = 2un —ynl 4 (H) (ulyy — 200 +ul_y) . (1.6.11)

Figure 7.6.1 illustrates this numerical scheme.
The greatest challenge in using (7.6.11) occurs with the very first
prediction. When n = 0, clearly ul,,,, u5, and u),_; are specified from

the initial condition u(mAz,0) = f(zn,). But what about u.,'? Recall
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Figure 7.6.1: Schematic of the numerical solution of the wave equation
with fixed end points.

that we still have u,(x,0) = g(z). If we use the backward difference
formula (7.6.5),

0 -1
Uy — Uy
—_—= m)- 7.6.12
U = g(zm) (76.12)
Solving for ;!
unl = ul — Atg(en,). (7.6.13)

One of the disadvantages of using the backward finite-difference
formula is the larger error associated with this term compared to those
associated with the finite-differenced form of the wave equation. In the
case of the barotropic vorticity equation, a partial differential equation
with wave-like solutions, this inconsistency eventually leads to a separa-
tion of solution between adjacent time levels.?! This difficulty is avoided
by stopping after a certain number of time steps, averaging the solution,
and starting again.

*1 Gates, W. L., 1959: On the truncation error, stability, and con-
vergence of difference solutions of the barotropic vorticity equation. J.
Meteorol., 16, 556-568. See Section 4.
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A better solution for computing that first time step employs the
centered difference form

1 -1
Up —Un _
T = g(2m) (7.6.14)

along with the wave equation

1 0 -1 0 0 0
Uy — 2um + U, _ 2Ump1 — 2um + Uy g

(at)? =c )’ (7.6.15)

so that
- (_AA_:)Z (CREY N [1 . (%)2 Fem)+ Atg(zm).
(7.6.16)

Although it appears that we are ready to start calculating, we need
to check whether our numerical scheme possesses three properties: con-
vergence, stability, and consistency. By consistency we mean that the
difference equations approach the differential equation as Az, At — 0.
To prove consistency, we first write up, ., up,_q, Up, L and u?tl in
terms of u(x,t) and its derivatives evaluated at (¢m,t,). From Taylor

expansions,

n ou|™ Oul™ 33
Uy = Upy, +A:c5; i +§(A-’C)26_w§ +3 (A‘c)a . +‘ -, (7.6.17)
n n u|™ %u|™ Bul™
up = u"‘—AxB—a: +%(Az)2-8? ) —é(Az‘)sa‘g , (7.6.18)
o ou|™ 2y |™ ;0%u|™
nl = +At§ Z(At)'“’ o + £(At)3 55 - (7.6.19)
and
Sul|™ m B3u|”
n-1_ n _ vu 2 _1 3~ e
upt = up, — At ik + 3(At) 6t2 ) s(At) | +--- (7.6.20)
Substituting (7.6.17)—(7.6.20) into (7.6.10), we obtain
upt! = 2up Fupml Uy — 2 U
(At)? (Az)?
u_ gt ["
T 8:::2 n
4y 4., |™
12(At)26 EEWOVSCL ]
ozt|,

(7.6.21)
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The first term on the right side of (7.6.21) vanishes because u(z, t) sat-
isfies the wave equation. As Az — 0, At — 0, the remaining terms on
the right side of (7.6.21) tend to zero and (7.6.10) is a consistent finite
difference approximation of the wave equation.

Stability is another question. Under certain conditions the small
errors inherent in fixed precision arithmetic (round off) can grow for
certain choices of Az and At. During the 1920s the mathematicians
Courant, Friedrichs, and Lewy?? found that if cAt/Az > 1, then our
scheme is unstable. This CFL criteria has its origin in the fact that if
cAt > Az, then we are asking signals in the numerical scheme to travel
faster than their real-world counterparts and this unrealistic expectation
leads to instability!

One method of determining stability, commonly called the von Neu-
mann method,?? involves examining solutions to (7.6.11) that have the
form

n im@ein)\

ul =e : (7.6.22)

where @ is an arbitrary real number and X is a complex number that
has yet to be determined. Our choice of (7.6.22) is motivated by the
fact that the initial condition 12, can be represented by a Fourier series
where a typical term behaves as e™?.
If we substitute (7.6.22) into (7.6.10) and divide out the common
factor e™?¢i"*  we have that
el 9 4 =il L€ — 2 4 =i
G =Ty (7.6.23)

sin? (%) = (%)2sin2 (g) : (7.6.24)

The behavior of uy, is determined by the values of A given by (7.6.24).
If cAt/Az < 1, then X is real and u?, is bounded for all # as n — oo.
If cAt/Az > 1, then it is possible to find a value of @ such that the
right side of (7.6.24) exceeds unity and the corresponding A’s occur
as complex conjugate pairs. The A with the negative imaginary part
produces a solution with exponential growth because n = t, /At — co
as At — 0 for a fixed t, and cAt/Az. Thus, the value of u?, becomes
infinitely large, even though the initial data may be arbitrarily small.

or

?? Courant, R., Friedrichs, K. O., and Lewy, H., 1928: Uber die par-
tiellen Differenzengleichungen der mathematischen Physik. Math. An-
nalen, 100, 32-74. Translated into English in IBM J. Res. Dev., 11,
215-234.

3 After its inventor, J. von Neumann. See O’Brien, G. G., Hyman,
M. A., and Kaplan, S., 1950: A study of the numerical solution of partial
differential equations. J. Math. Phys., 29, 223-251.
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Figure 7.6.2: The growth of error ||e,|| as a function of ct for
various resolutions. For the top line, Az = 0.1; for the middle line,
Az = 0.01; and for the bottom line, Az = 0.001.

Finally, we must check for convergence. A numerical scheme is
convergent if the numerical solution approaches the continuous solution
as Az, At — 0. The general procedure for proving convergence involves
the evolution of the error term e?, which gives the difference between
the true solution u(z,,t,) and the finite difference solution uy,. From
(7.6.21),

. AN " ANl .
em+l = (EL’—) (em+1 + em—-l) + 2 [1 - (E) ] em - Cm 1
+ O[(At)*] + O[(Az)?(At)?]. (7.6.25)
Let us apply (7.6.25) to work backwards from the point (zm,tn) by
changing n to n — 1. The nonvanishing terms in e}, reduce to a sum of
n+ 1 values on the line n = 1 plus 1(n+1)n terms of the form A(Az)*.
If we define the max norm ||e,|] = maxn, |} |, then
lleall € nB(Az)? + L(n + 1)nA(Ax)*. (7.6.26)
Because nAz < ct,, (7.6.26) simplifies to

lleall < ctn B(Az)? 4 3c*t2 A(Az)?. (7.6.27)
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Figure 7.6.3: The numerical solution u(z,t)/h of the wave equation
with cAt/Az = } using (7.6.11) at various positions z’ = /L and times
t' = ct/L. We have plotted the exact solution as a dashed line.

Thus, the error tends to zero as Az — 0, verifying convergence. We have
illustrated (7.6.27) by using the finite difference equation (7.6.11) to
compute ||e, || during a numerical experiment that used cAt/Az = 0.5,
f(z) = sin(wz) and g(x) = 0. Note how each increase of resolution by
10 results in a drop in the error by 100.

In the following examples we apply our scheme to solve a few simple
initial and boundary conditions:

o Example 7.6.1

For our first example, we resolve (7.3.1) — (7.3.3) and (7.3.25) —
(7.3.26) numerically using (7.6.11) with cAt/Az = 1/2 and Az = 0.01.
Figure 7.6.3 shows the resulting numerical solution at the nondimen-
sional times c¢t/L = 1,3,7, and 15. We also included the exact solution
as a dashed line.

Overall, the numerical solution approximates the exact or analytic
solution well. However, we note small-scale noise in the numerical so-
lution. Why does this occur? Recall that the exact solution could be
written as an infinite sum of sines in the =z dimension. Each successive
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Figure 7.6.4: The numerical solution u(x,t)/h of the wave equation
when the right end moves freely with cAt/Az = 1 using (7.6.11) and
(7.6.30) at various positions ¢’ = z/L and times t’ = ct/L. We have
plotted the exact solution as a dashed line.

harmonic adds a contribution from waves of shorter and shorter wave-
length. In the case of the numerical solution, the longer-wavelength har-
monics are well represented by the numerical scheme because there are
many grid points available to resolve a given wavelength. As the wave-
lengths become shorter, the higher harmonics are poorly resolved by the
numerical scheme, move at incorrect phase speeds, and their misplace-
ment (dispersion) creates the small-scale noise that you observe rather
than giving the sharp angular features of the exact solution. The only
method for avoiding this problem is to devise schemes that resolve the
smaller-scale waves better.

e Example 7.6.2

Let us redo Example 7.6.1 except that we will introduce the bound-
ary condition that u;(L,t) = 0. This corresponds to a string where we
fix the left end and allow the right end to freely move up and down.
This requires a new difference condition along the right boundary. If we
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employ centered differencing,

U7y — Ul
B e e 7.6.28
2Azx 0 ( )

and

At\?
it =2 g+ (B (-2 ) (620

Eliminating u7 , between (7.6.28)-(7.6.29),

At\?
uptl = 2uf —u}~t 4 (CA_:L') (2uf_, —2u}). (7.6.30)

Figure 7.6.4 is the same as Figure 7.6.3 except for the new boundary
condition. In this case the exact solution is

u(z,t) = ﬁ 3 __1____._
’ m? £~ (2n - 1)?
y {2sin [(Qn; l)r] s [3(2718— 1)7r] sin [(2n ; 1)7r] }
X sin [(271—-2—;2—72] cos [Wc—t] . (7.6.31)

We have highlighted those times when the solution has its maximum
amplitude at the free right end. The results are consistent with those
presented in Example 7.6.1, especially the small-scale noise due the dis-
persion. Overall, however, the numerical solution does approximate the
exact solution well.

Project: Numerical Solution of First-Order
Hyperbolic Equations

The equation u; +u; = 0 is the simplest possible hyperbolic partial
differential equation. Indeed the classic wave equation can be written
as a system of these equations: u; + cv, = 0 and v; + cuy = 0. In this
project you will examine several numerical schemes for solving such a
partial differential equation.

Step 1: One of the simplest numerical schemes is the forward-in-time,
centered-in-space of
untl — g0 + U1 — Up_g —0

At 20z
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Figure 7.6.5: The numerical solution u(z,t) of the first-order hyper-
bolic partial differential equation u; + u; = 0 using the Lax-Wendroff
formula. The initial conditions are given by (7.3.25) with h = 1 and
At/Az = 1. We have plotted the exact solution as a dashed line.

Use von Neumann'’s stability analysis to show that this scheme is always
unstable.

Step 2: The most widely used method for numerically integrating first-
order hyperbolic equations is the Laz- Wendroff method:

At n n (At)2 n n
u?n+1 = Uy — 27z (um+l - um—l) + '2_(31:—)2 (unm+1 - 2up, + u'"—l) :

This methods introduces errors of O[(At)?] and O[(Az)?]. Show that
this scheme is stable if it satisfies the CFL criteria of At/Az < 1.

Using the initial condition given by (7.3.25), write code that uses
this scheme to numerically integrate u; + u, = 0. Plot the results
over the interval 0 < z < 1 given the periodic boundary conditions
of u(0,t) = u(l,t) for the temporal interval 0 < ¢ < 100. Discuss
the strengths and weaknesses of the scheme with respect to dissipation
or damping of the numerical solution and preserving the phase of the
solution. Most numerical methods books will discuss this.?

24 For example, Lapidus, L. and Pinder, G. F., 1982: Numerical Solu-
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Figure 7.6.6: Same as Figure 7.6.5 except that the centered-in-time,
centered-in-space scheme was used.

Step 3: Another simple scheme is the centered-in-time, centered-in-

space of

n+l __ ,n—-1
U Um

+ Upip1 — Uy -0
2At 2Ax

This methods introduces errors of O[(At)?] and O[(Az)?]. Show that
this scheme is stable if it satisfies the CFL criteria of At/Az < 1.

Using the initial condition given by (7.3.25), write code that uses
this scheme to numerically integrate u; + u; = 0 over the interval 0 <
x < 1 given the periodic boundary conditions of u(0,t) = u(1,t). Plot
the results over the spatial interval for the temporal interval 0 < ¢ < 100.
One of the difficulties is taking the first time step. Use the scheme in
Step 1 to take this first time step. Discuss the strengths and weaknesses
of the scheme with respect to dissipation or damping of the numerical
solution and preserving the phase of the solution.

tion of Partial Differential Equations in Science and Engineering, John
Wiley & Sons, New York.



Chapter 8

The Heat Equation

In this chapter we deal with the linear parabolic differential equa-
tion
ou  ,8%
—=a"— 8.0.1
5t~ * 822 (8.0.1)
in the two independent variables x and ¢. This equation, known as the
one-dimensional heat equation, serves as the prototype for a wider class
of parabolic equations:

8%u O?u 0%u Ou Ou
Cl(l‘, t)w + b(l‘,t)ﬁ -+ c(z, t)a? = (1,‘, t,u, 6_1:’ —a-t—> s (802)

where b2 = 4ac. It arises in the study of heat conduction in solids as well
as in a variety of diffusive phenomena. The heat equation is similar to
the wave equation in that it is also an equation of evolution. However,
the heat equation is not “conservative” because if we reverse the sign of
t, we obtain a different solution. This reflects the presence of entropy
which must always increase during heat conduction.
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X x+Ax
Figure 8.1.1: Heat conduction in a thin bar.
8.1 DERIVATION OF THE HEAT EQUATION

To derive the heat equation, consider a heat-conducting homoge-
neous rod, extending from = = 0 to z = L along the z-axis (see Figure
8.1.1). The rod has uniform cross section A and constant density p,
is insulated laterally so that heat flows only in the z-direction and is
sufficiently thin so that the temperature at all points on a cross section
is constant. Let u(z,t) denote the temperature of the cross section at
the point = at any instant of time ¢, and let ¢ denote the specific heat
of the rod (the amount of heat required to raise the temperature of a
unit mass of the rod by a degree). In the segment of the rod between
the cross section at x and the cross section at z + Az, the amount of
heat is

Q) = /HAx epAu(s,t)ds. (8.1.1)

On the other hand, the rate at which heat flows into the segment across
the cross section at x is proportional to the cross section and the gradient
of the temperature at the cross section (Fourier’s law of heat conduc-
tion):
Ou(z,t)
—KA——2,
Oz

where x denotes the thermal conductivity of the rod. The sign in (8.1.2)
indicates that heat flows in the direction of decreasing temperature.
Similarly, the rate at which heat flows out of the segment through the
cross section at z + Az equals

(8.1.2)

Ou(z + Ax,t)

—KkA 32

(8.1.3)

The difference between the amount of heat that flows in through the
cross section at z and the amount of heat that flows out through the
cross section at  + Az must equal the change in the heat content of
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the segment < s < ¢+ Az. Hence, by subtracting (8.1.3) from (8.1.2)
and equating the result to the time derivative of (8.1.1),
oQ vHiz Ou(s,t) , Ou(z + Az, t)  Ou(x,i)
B ) AT ds=ra oz T oz |

(8.1.4)
Assuming that the integrand in (8.1.4) is a continuous function of s,
then by the mean value theorem for integrals,

z+Azx
/ 6“((9?1‘) ds = augft;t) Az, <<+ Az, (815)

so that (8.1.4) becomes

cpA (8.1.6)

LOuEt) _ fou(z+Az,t)  du(zt)
ot Oz or |

Dividing both sides of (8.1.6) by cpAxz and taking the limit as Az — 0,

du(z,t) _ ,0%u(z,1)

5 = e (8.1.7)

with a2 = k/(cp). Equation (8.1.7) is called the one-dimensional heat
equation. The constant a® is called the diffusivity within the solid.
If an external source supplies heat to the rod at a rate f(x,?) per

unit volume per unit time, we must add the term f;+Aw f(s,t)ds to
the time derivative term of (8.1.4). Thus, in the limit Az — 0,

du(z,t) » 0%u(z,t)
ot a Oz2

= F(z,1), (8.1.8)

where F(x,t) = f(x,t)/(cp) is the source density. This equation is called
the nonhomogeneous heat equation. ,

8.2 INITIAL AND BOUNDARY CONDITIONS

In the case of heat conduction in a thin rod, the temperature func-
tion u(z,?) must satisfy not only the heat equation (8.1.7) but also how
the two ends of the rod exchange heat energy with the surrounding
medium. If (1) there is no heat source, (2) the function f(z),0 <z < L
describes the temperature in the rod at ¢ = 0, and (3) we maintain
both ends at zero temperature for all time, then the partial differential
equation

du(z,t)  ,0%u(,t)
ot T 0a?

O<z<L,0<t (8.2.1)
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describes the temperature distribution u(z,t) in the rod at any later
time 0 < ¢ subject to the condition

u(z,0) = f(x), 0<z< L (8.2.2)

and
u(0,¢) = u(L,t) =0, 0<t. (8.2.3)

Equations (8.2.1)-(8.2.3) describe the initial-boundary value problem for
this particular heat conduction problem; (8.2.3) is the boundary condi-
tion while (8.2.2) gives the initial condition. Note that in the case of
the heat equation, the problem only demands the initial value of u(z,?)
and not u,(z,0), as with the wave equation.

Historically most linear boundary conditions have been classified in
one of three ways. The condition (8.2.3) is an example of a Dirichlet
problem?! or condition of the first kind. This type of boundary condition
gives the value of the solution (which is not necessarily equal to zero)
along a boundary. '

The next simplest condition involves derivatives. If we insulate both
ends of the rod so that no heat flows from the ends, then according to
(8.1.2) the boundary condition assumes the form

0u(0,1) _ du(L,t) _
8 ~ Qx

0<t. (8.2.4)

This is an example of a Neumann problem? or condition of the second
kind. This type of boundary condition specifies the value of the normal
derivative (which may not be equal to zero) of the solution along the
boundary.

Finally, if there is radiation of heat from the ends of the rod into
the surrounding medium, we shall show that the boundary condition is
of the form

ingl,_t) — hu(0,t) = a constant (8.2.5)

and
w + hu(L,t) = another constant (8.2.6)
T

! Dirichlet, P. G. L., 1850: Uber einen neuen Ausdruck zur Bes-
timmung der Dichtigkeit einer unendlich diinnen Kugelschale, wenn
der Werth des Potentials derselben in jedem Punkte ihrer Oberfiache
gegeben ist. Abh. Koniglich. Preuss. Akad. Wiss., 99-116.

2 Neumann, C. G., 1877: Untersuchungen uber das Logarithmische
und Newton’sche Potential. Leibzig.
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for 0 < t, where h is a positive constant. This is an example of a
condition of the third kind or Robin problem? and is a linear combination
of Dirichlet and Neumann conditions.

8.3 SEPARATION OF VARIABLES

As with the wave equation, the most popular and widely used tech-
nique for solving the heat equation is separation of variables. Its suc-
cess depends on our ability to express the solution u(z,t) as the product
X (z)T(t). If we cannot achieve this separation, then the technique must
be abandon for others. In the following examples we show how to apply
this technique even if it takes a little work to get it right.

e Example 8.3.1

Let us find the solution to the homogeneous heat equation

o _ a0
ot~ 0xz?’

which satisfies the initial condition

0<z<LO<t (8.3.1)

u(z,0)= f(z), 0<z<L (8.3.2)
and the boundary conditions
u(0,t) =u(L,t)=0, 0<t. (8.3.3)

This system of equations models heat conduction in a thin metallic bar
where both ends are held at the constant temperature of zero and the
bar initially has the temperature f(z).

We shall solve this problem by the method of separation of vari-
ables. Accordingly, we seek particular solutions of (8.3.1) of the form

u(z,t) = X(2)T(t), (8.3.4)
which satisfy the boundary conditions (8.3.3). Because
Ou

a5 = X(=)T'(t) (8.3.5)
and o
u "
57 = X"(2)T(2), (8.3.6)

3 Robin, G., 1886: Sur la distribution de I'électricité & la surface
des conducteurs fermés et des conducteurs ouverts. Ann. Sci. I’Ecole
Norm. Sup., Ser. 3, 3, S1-S58.
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(8.3.1) becomes
T (1) X(z) = a®X"(2)T(t). (8.3.7)

Dividing both sides of (8.3.7) by a?X(2)T(t) gives

T X"
= — =—-A

5= % : (8.3.8)

where —A is the separation constant. Equation (8.3.8) immediately
yields two ordinary differential equations:

X"4+2X =0 (8.3.9)
and
T +ad’XT =0 (8.3.10)

for the functions X (z) and T'(¢), respectively.

We now rewrite the boundary conditions in terms of X (z) by noting
that the boundary conditions are u(0,t) = X(0)T(¢) = 0 and u(L,t) =
X(L)T(t) = 0 for 0 < ¢t. If we were to choose T'(t) = 0, then we would
have a trivial solution for u(x,t). Consequently, X(0) = X(L) = 0.

There are three possible cases: A = —m? A =0, and X = k2. If
A = —m? < 0, then we must solve the boundary-value problem:

X" -m*X =0, X(0)=X(L)=0. (8.3.11)
The general solution to (8.3.11) is
X(x) = Acosh(mz) + Bsinh(mz). (8.3.12)

Because X(0) = 0, it follows that A = 0. The condition X(L) = 0
yields Bsinh(mL) = 0. Since sinh(mL) # 0, B = 0 and we have a
trivial solution for A < 0.

If A =0, the corresponding boundary-value problem is

X"(z)=0, X(0)=X(L) =0. (8.3.13)
The general solution is
X(x) =C+ Dx. (8.3.14)

From X(0) = 0, we have that C = 0. From X(L) = 0, DL = 0 or
D = 0. Again, we obtain a trivial solution.

Finally, we assume that A = k2 > 0. The corresponding boundary-
value problem is

X'"+kX =0 X(0)=X(L)=0. (8.3.15)
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solution

o 0 distance

time
Figure 8.3.1: The temperature u(z,t) within a thin bar as a function
of position z/7 and time a?t when we maintain both ends at zero and
the initial temperature equals z(7 — z).

The general solution to (8.3.15) is
X(z) = Ecos(kz) + Fsin(kz). (8.3.16)

Because X(0) = 0, it follows that E = 0; from X(L) = 0, we obtain
Fsin(kL) = 0. To have a nontrivial solution, F # 0 and sin(kL) = 0.

This implies that k,L = nm, where n = 1,2,3,.... In summary, the
z-dependence of the solution is
. (nTZ
Xn(z) = Fysin (T) , (8.3.17)

where A, = n?r%/L%
Turning to the time dependence, we use A\, = n?7?/L? in (8.3.10):

a’n?7?

The corresponding general solution is
aZn2n?
Tn(t) = Grexp <—- Tt) . (8.3.19)
Thus, the functions
2,22
un(z,1) = By sin (?) exp (-“-%%t) n=1,23,.., (83.20)

where B, = F,Gp, are particular solutions of (8.3.1) and satisfy the
homogeneous boundary conditions (8.3.3).

As we noted in the case of wave equation, we can solve the z-
dependence equation as a regular Sturm-Liouville problem. After find-
ing the eigenvalue A, and eigenfunction, we solve for 7,,(¢). The product
solution u,(z,t) equals the product of the eigenfunction and Tj,(t).
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Having found particular solutions to our problem, the most general
solution equals a linear sum of these particular solutions:

00 2,22
u(z,t) = Z B, sin ("Lﬂ) exp ( a;—?ﬂ-t) . (8.3.21)
n=1

The coefficient B, is chosen so that (8.3.21) yields the initial condition
(8.3.2) if t = 0. Thus, setting ¢ = 0 in (8.3.21), we see from (8.3.2) that
the coefficients B, must satisfy the relationship

f(z) = f: B, sin ("Lﬂ) , O0O<z<L (8.3.22)
n=1

This is precisely a Fourier half-range sine series for f(z) on the interval
(0, L). Therefore, the formula

/ f( :c)sm ) dez, n=123,... (8.3.23)

gives the coefficients B,,. For example, if L = r and u(z,0) = z(7 — z),
then

T

B, == '/07r z(m — z)sin(nz) dz (8.3.24)

= 2/ zsin(ne) de — —72;/ z?sin(nz) dz (8.3.25)
0 0

1—(=1)"
—n(f!_)‘ (8.3.26)
Hence,
_ sin[(2n — 1)z] _(5n_1y2 2t
u(z,t) = — n; e (8.3.27)

Figure 8.3.1 illustrates (8.3.27) for various times. Note that both
ends of the bar satisfy the boundary conditions, namely that the tem-
perature equals zero. As time increases, heat flows out from the center
of the bar to both ends where it is removed. This process is reflected in
the collapse of the original parabolic shape of the temperature profile
towards zero as time increases.

o Example 8.3.2

As a second example, let us solve the heat equation

Ou 28

% =Y e 0<z<L,0<t (8.3.28)
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which satisfies the initial condition
u(z,0)=2, O0<z<lL (8.3.29)

and the boundary conditions
a—ué—oa;—t) =u(L,t)=0, 0<t. (8.3.30)

The condition u;(0,t) = 0 expresses mathematically the constraint that
no heat flows through the left boundary (insulated end condition).

Once again, we employ separation of variables; as in the previous
example, the positive and zero separation constants yield trivial solu-
tions. For a negative separation constant, however,

X"+k2X =0 (8.3.31)

with
X'(0) = X(L) =0, (8.3.32)

because u-(0,t) = X’(0)T(t) = 0 and u(L,t) = X(L)T(t) = 0. This
regular Sturm-Liouville problem has the solution

2n — V7w

X,,(a:):cos[( ST ] n=123,... (8.3.33)

The temporal solution then becomes

2n — 1)27r2t]

Ta(t) = B, exp [— aX e (8.3.34)

Consequently, a linear superposition of the particular solutions gives the
total solution which equals

)= 55y [ 17 [ P2 g

n=1

Our final task remains to find the B,’s. Evaluating (8.3.35) at
t=0,

u(z,0)=z= Z B, cos [Qﬁ—;—[‘i)-ﬁ

n=1

] , O<z<LIL. (83.36)
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time ) distance

Figure 8.3.2: The temperature u(z,t)/L within a thin bar as a function
of position /L and time a?t/L? when we insulate the left end and hold
the right end at the temperature of zero. The initial temperature equals

.

Equation (8.3.36) is not a half-range cosine expansion; it is an ex-

pansion in the orthogonal functions cos{(2n — 1)wz /{2L)] corresponding
to the regular Sturm-Liouville problem (8.3.31)-(8.3.32). Consequently,
B, is given by (6.3.4) with r(z) =1 as

n

_ [ zcos[(2n — Vmz/(2L)] dx

T (@2n-1272  (2n- D7’

. (8.3.37)
Jo cos?[(2n — L)z /(2L)] d=
L2 2n—lrz | 1L 2Lz : 2n—Vrz | |L
e 1yse7 COS [( o I] lo + @ty sin [( o ] lo (8.3.38)

L . - L
z L (2n—-1)rzx
2 |0 *t 3En 1) SIN [ L ]Io

ﬁ{ [(2%91] - 1} o [(2n 2 m}
(8.3.39)

8L 4L(-1)

(8.3.40)

as cos[(2n — 1)7/2] = 0 and sin[(2n — 1)7/2] = (=1)"*!. Consequently,
the final solution is

u(e,t) = ‘% g [(2n —21)27r + é;l_)nl] cos [(% ;Ll)w_z]

_(2n - 1)27r2a2t]

X exp [ IV (8.3.41)
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Figure 8.3.2 illustrates the evolution of the temperature field with
time. Initially, heat near the center of the bar flows towards the cooler,
insulated end, resulting in an increase of temperature there. On the right
side, heat flows out of the bar because the temperature is maintained
at zero at = = L. Eventually the heat that has accumulated at the left
end flows rightward because of the continual heat loss on the right end.
In the limit of t — oo, all of the heat has left the bar.

o Example 8.3.3

A slight variation on Example 8.3.1 is

Ou ,0%u
a-—-a W’ 0<1’<L,0<t, (8342)
where
u(z,0)=u(0,t)=0 and u(L,t)=9. (8.3.43)

We begin by blindly employing the technique of separation of vari-
ables. Once again, we obtain the ordinary differential equation (8.3.9)
and (8.3.10). The initial and boundary conditions become, however,

X(0)=T0)=0 (8.3.44)
and
X(L)T(t) =8. (8.3.45)

Although (8.3.44) is acceptable, (8.3.45) gives us an impossible condition
because T'(t) cannot be constant. If it were, it would have to equal to
zero by (8.3.44).

To find a way around this difficulty, suppose we wanted the solu-
tion to our problem at a time long after ¢ = 0. From experience we
know that heat conduction with time-independent boundary conditions
eventually results in an evolution from the initial condition to some time-
independent (steady-state) equilibrium. If we denote this steady-state
solution by w(z), it must satisfy the heat equation

a’w’(z) = 0 (8.3.46)
and the boundary conditions
w(0)=0 and w(L)=2§6. (8.3.47)
We can integrate (8.3.46) immediately to give

w(z) = A+ Bz (8.3.48)



400 Advanced Engineering Mathematics

and the boundary condition (8.3.47) results in

bz

w(z) = I

Clearly (8.3.49) cannot hope to satisfy the initial conditions; that

was never expected of it. However, if we add a time-varying (transient)

solution v(z,t) to w(z) so that

(8.3.49)

u(z,t) = w(z) + v(z,t), (8.3.50)
we could satisfy the initial condition if
v(z,0) = u(z,0) — w(zx) (8.3.51)

and v(z,t) tends to zero as t — co. Furthermore, because w”(z) =
w(0) = 0 and w(L) = 6,

v o2 ?v
5 =% 0<z<l0<t (8.3.52)

with the boundary conditions
v(0,t)=0 and v(L,t)=0, 0<t. (8.3.53)

We can solve (8.3.51), (8.3.52), and (8.3.53) by separation of variables;
we did it in Example 8.3.1. However, in place of f(z) we now have
u(z,0) — w(z) or —w(z) because u(z,0) = 0. Therefore, the solution
v(z,t) is

v(z,t) = "i::l B, sin ("Lﬁ) exp (—ﬁ#t) (8.3.54)
with
= —/ —w(z) sm ) (8.3.55)
=< /OL _0% sin (%) dz (8.3.56)
- [ () - 2w (2)] w39m
= (—1)"%' (8.3.58)

© (_1)m 2,22
u(z,t) = bz + 20 Z (=1) sin (E{——l—‘) exp (—ut> . (8.3.59)
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Figure 8.3.3: The temperature u(z,t)/6 within a thin bar as a function
of position /L and time a?t/L? with the left end held at a tempera-
ture of zero and right end held at a temperature ¢ while the initial

temperature of the bar is zero.

The quantity a®t/L? is the Fourier number.

Figure 8.3.3 illustrates our solution. Clearly it satisfies the bound-
ary conditions. Initially, heat flows rapidly from right to left. As time
increases, the rate of heat transfer decreases until the final equilibrium

(steady-state) is established and no more heat flows.

o Example 8.3.4

Let us find the solution to the heat equation

du _ ,0%
E—a—a—z—f, O<z< L,O<t

subject to the Neumann boundary conditions

ou(0,t) _ Ou(L,t) _
z ~ Bz

and the initial condition that

u(z,0) = 2, 0<e<L.

We have now insulated both ends of the bar.

0, 0<t

(8.3.60)

(8.3.61)

(8.3.62)
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Assuming that u(z,t) = X (2)T(t),

TI XII
7 = 5 = -k, (8.3.63)

where we have presently assumed that the separation constant is neg-
ative. The Neumann conditions give u;(0,t) = X'(0)T(t) = 0 and
ugy(L,t) = X'(L)T(t) = 0 so that X'(0) = X'(L) = 0.

The Sturm-Liouville problem

X"+EX =0 (8.3.64)

and
X'(0)=X(L)=0 (8.3.65)

gives the z-dependence. The eigenfunction solution is
Xn(x) = cos ("Lﬂ) , (8.3.66)

where k, = nv/L and n =1,2,3,...
The corresponding temporal part equals the solution of

' 272 , | atn’m?

Tn “+a knTn = Tn + TTH =0, (8367)
which is 9 2 9
a‘n‘m

T.(t) = A, exp (— JE t) . (8.3.68)

Thus, the product solution given by a negative separation constant is
_ _ nwe a’n?x?
tun(2,1) = Xn(2)Tn(t) = An cos (T) exp (77 t). (8.3.69)

Unlike our previous problems, there i1s a nontrivial solution for a
separation constant that equals zero. In this instance, the z-dependence
equals

X(z) = Az + B. (8.3.70)

The boundary conditions X’(0) = X’(L) = 0 force A to be zero but
B is completely free. Consequently, the eigenfunction in this particular
case is

Xo(z) = 1. (8.3.71)

Because T§(t) = 0 in this case, the temporal part equals a constant which
we shall take to be Ag/2. Therefore, the product solution corresponding
to the zero separation constant is

UQ((L‘,t) = X()(Z')To(t) = A0/2 (8372)
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Figure 8.3.4: The temperature u(z,t)/L within a thin bar as a function
of position z/L and time a?t/L? when we insulate both ends. The initial
temperature of the bar is «.

The most general solution to our problem equals the sum of all of
the possible solutions:

Ao el nre an?x?
u(z,t) = 5 + nzzzl Ap cos (T> exp (-Tt . (8.3.73)
Upon substituting £ = 0 into (8.3.73), we can determine A, because
Ag = nre
U((L‘, 0) == 7 + ;An COS (T) (8374)

is merely a half-range Fourier cosine expansion of the function z over
the interval (0, L). From (2.1.23)-(2.1.24),

9 (L
Ao = —/ zdzr=1 (8.3.75)
L Jo
and
9 L
A, = f/o T cos (%) dx (8.3.76)
2 L? nwe zL nrzy]t
= 2| 2 cos{ =) + —sin (— 8.3.
L[nzwzcos( T )+mrsm( I )]0 (8.3.77)

% (=1 —1]. (8.3.78)
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The final solution is

L 4L & 1 (2m — )7z
“(z’t)zi'FZ(Qm—l)z“’s[ I ]
m=1

2 _1)2,.2
xexp |- VT (8379

because all of the even harmonics vanish and we may rewrite the odd
harmonics using n = 2m — 1, where m=1,2,3,4, ...

Figure 8.3.4 illustrates (8.3.79) for various positions and times. The
physical interpretation is quite simple. Since heat cannot flow in or out
of the rod because of the insulation, it can only redistribute itself. Thus,
heat flows from the warm right end to the cooler left end. Eventually
the temperature achieves steady-state when the temperature is uniform
throughout the bar.

o Example 8.3.5

So far we have dealt with problems where the temperature or flux
of heat has been specified at the ends of the rod. In many physical
applications, one or both of the ends may radiate to free space at tem-
perature ug. According to Stefan’s law, the amount of heat radiated
from a given area dA in a given time interval dt is

o(u* — ul)dA dt, (8.3.80)

where ¢ is called the Stefan-Boltzmann constant. On the other hand,
the amount of heat that reaches the surface from the interior of the
body, assuming that we are at the right end of the bar, equals

du

—k—dAdt, 8.3.81

Oz ( )
where k is the thermal conductivity. Because these quantities must be
equal,

0
“ —ud) = o(u — wo)(v® + ulug +uul + ud).  (8.3.82)

—k— =o(u

If u and up are nearly equal, we may approximate the second bracketed
term on the right side of (8.3.82) as 4ud. We write this approximate
form of (8.3.82) as

—"6—1; = h(u - Uo), (8383)

where h, the surface conductance or the coefficient of surface heat trans-
fer, equals 40u3/k. Equation (8.3.83) is a “radiation” boundary con-
dition. Sometimes someone will refer to it as “Newton’s law” because
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(8.3.83) is mathematically identical to Newton’s law of cooling of a body
by forced convection.

Let us now solve the problem of a rod that we initially heat to the
uniform temperature of 100. We then allow it to cool by maintaining the
temperature at zero at z = 0 and radiatively cooling to the surrounding
air at the temperature of zero? at z = L. We may restate the problem
as

du _ ,0%u
—67—(1 8_:1,‘2—’ 0<1:<L,0<t (8384)
with
u(z,0) =100, O0<z<L (8.3.85)
u(0,t)=0, 0<t (8.3.86)
and u(L
"gz’t) +hu(L,t)=0, 0<t. (8.3.87)

Once again, we assume a product solution u(z,t) = X (z)T(t) with
a negative separation constant so that

XH TI

= = p =k (8.3.88)
We obtain for the z-dependence that
X" +k*X =0 (8.3.89)
but the boundary conditions are now
X(0)=0 and X'(L)+hX(L)=0. (8.3.90)
The most general solution of (8.3.89) is
X(z) = Acos(kz)+ Bsin(kz). (8.3.91)

However, A = 0 because X(0) = 0. On the other hand,
kcos(kL) + hsin(kL) = kL cos(kL) + hLsin(kL) = 0, (8.3.92)

if B # 0. The nondimensional number hL is the Biot number and is
completely dependent upon the physical characteristics of the rod.

4 Although this would appear to make h = 0, we have merely chosen
a temperature scale so that the air temperature is zero and the absolute
temperature used in Stefan’s law is nonzero.
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Table 8.3.1: The First Ten Roots of (8.3.93) and C, for AL = 1.

n an Approximate a, Cn

1 2.0288 2.2074 118.9193
2 4.9132 4.9246 31.3402
3 7.9787 7.9813 27.7554
4 11.0856 11.0865 16.2878
5 14.2075 14.2079 14.9923
6 17.3364 17.3366 10.8359
7 23.6044 23.6043 8.0989
8 26.7410 26.7409 7.7483
9 29.8786 29.8776 6.4625
10 33.0170 33.0170 6.2351

In Chapter 6 we saw how to find the roots of the transcendental
equation
a + hLtan(a) =0, (8.3.93)

where o = kL. Consequently, if «, is the nth root of (8.3.93), then the
eigenfunction is
Xn(z) = sin{anz/L). (8.3.94)

In Table 8.3.1, we list the first ten roots of (8.3.93) for AL = 1.
In general, we must solve (8.3.93) either numerically or graphically.
If « is large, however, we can find approximate values by noting that

cot(a) = —hL/a =0 (8.3.95)

” an, = (2n - DHm/2, (8.3.96)

where n = 1,2, 3,... We may obtain a better approximation by setting
an =(2n—-1)7/2 —¢,, (8.3.97)
where ¢, < 1. Substituting into (8.3.95),
[(2n — 1)7/2 — €p]) cot[(2n — 1)7/2 — €,] + RL = 0. (8.3.98)
We can simplify (8.3.98) to
4+ (2n— )7 /24+hL =0 (8.3.99)
because cot[(2n —~1)7/2— 6] = tan(f) and tan(d) =~ 6 for § < 1. Solving

for €,,
2hL

G- r

(8.3.100)
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and
_(2n—-Drm 2hL

nN T (2n — )7’
In Table 8.3.1 we compare the approximate roots given by (8.3.101) with

the actual roots.
The temporal part equals

(8.3.101)

2 2\ aZa’t
Tn(t) = Crexp (—k2a’t) = Cpexp | — ) (8.3.102)

Consequently, the general solution is

oo 2,2
u(z,t) = Z Cp sin (a_z.z_') exp (— a’}; t) , (8.3.103)
n=1

where a;, is the nth root of (8.3.93).
To determine C,,, we use the initial condition (8.3.85) and find that

100 = i Cp sin (azz) . (8.3.104)
n=1

Equation (8.3.104) is an eigenfunction expansion of 100 employing the
eigenfunctions from the Sturm-Liouville problem

X"+kEX=0 (8.3.105)
and
X(0)=X'(L)+hX(L) =0. (8.3.106)
Thus, the coefficient C,, is given by (6.3.4) or
L .
100 nz/L)d
C, = lo - sin(anz/L)dz. (8.3.107)
Js sin?(anz/L)dz
as r(z) = 1. Performing the integrations,
100L{1 — cos(an)]/an 200[1 — cos(an)]
Ch = = . (8.3.108
"7 L[L - Lsin(2an)/(2an))] an[l + cos?(an)/(hL)] ( )
because sin(2ay,) = 2 cos(an)sin(ay,) and a, = —hLtan(an). The final

solution is

o= 200[1—cos(an)] . (onZ _apa’t
us,t) = ; anll + c0s2(am)/(AD)] sin (% )e"p( Iz )
(8.3.109)
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Figure 8.3.5: Tbe temperature u(z,t) within a thin bar as a function
of position z/L and time a?t/L% when we allow the bar to radiatively
cool at z = L while the temperature is zero at £ = 0. Initially the
temperature was 100.

Figure 8.3.5 illustrates this solution for AL = 1 at various times and
positions. It is similar to Example 8.3.1 in that the heat lost to the
environment occurs either because the temperature at an end is zero
or because it radiates heat to space which has the temperature of zero.
The oscillations in the initial temperature distribution arise from Gibbs
phenomena. We are using eigenfunctions that satisfy the boundary con-
ditions (8.3.90) to fit a curve that equals 100 for all .

o Example 8.3.6: Refrigeration of apples

Some decades ago, shiploads of apples, going from Australia to
England, deteriorated from a disease called “brown heart,” which oc-
curred under insufficient cooling conditions. Apples, when placed on
shipboard, are usually warm and must be cooled to be carried in cold
storage. They also generate heat by their respiration. It was suspected
that this heat generation effectively counteracted the refrigeration of the
apples, resulting in the “brown heart.”

This was the problem which induced Awberry® to study the heat
distribution within a sphere in which heat is being generated. Awberry
first assumed that the apples are initially at a uniform temperature.
We can take this temperature to be zero by the appropriate choice of
temperature scale. At time t = 0, the skins of the apples assume the
temperature # immediately when we introduce them into the hold.

5 Awberry, J. H., 1927: The flow of heat in a body generating heat.
Philos. Mag., Ser. 7, 4, 629-638.
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Because of the spherical geometry, the nonhomogeneous heat equa-

tion becomes

%%z%% (rzg—ﬁ>+% 0<r<b0<t, (8.3.110)
where a2 is the thermal diffusivity, b is the radius of the apple, x is the
thermal conductivity, and G is the heating rate (per unit time per unit
volume).

If we try to use separation of variables on (8.3.110), we find that it
does not work because of the G/« term. To circumvent this difficulty,
we ask the simpler question of what happens after a very long time. We
anticipate that a balance will eventually be established where conduc-
tion transports the heat produced within the apple to the surface of the
apple where the surroundings absorb it. Consequently, just as we intro-
duced a steady-state solution in Example 8.3.3, we again anticipate a

steady-state solution w(r) where the heat conduction removes the heat
generated within the apples. The ordinary differential equation

1d [ ,dw G
7‘_25 (7‘ -dT) = - (83111)

K

gives the steady-state. Furthermore, just as we introduced a transient
solution which allowed our solution to satisfy the initial condition, we
must also have one here and the governing equation is

v a®d ov
5% =75 (ﬂ E) . (8.3.112)

Solving (8.3.111) first,

D Gr?

The constant D equals zero because the solution must be finite at r = 0.
Because the steady-state solution must satisfy the boundary condition
w(b) =4,

=0+ —. 8.3.114
C=0+ on ( )
Turning to the transient problem, we introduce a new dependent
variable y(r,t) = rv(r,t). This new dependent variable allows us to
replace (8.3.112) with
Oy _ 2823:'

a =a w, (83115)
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which we can solve. If we assume that y(r,t) = R(r)T'(t) and we only
have a negative separation constant, the R(r) equation becomes

d’R
<7 tFR=0, (8.3.116)
which has the solution
R(r) = Acos(kr) + Bsin(kr). (8.3.117)

The constant A equals zero because the solution (8.3.117) must vanish

at » = 0 in order that v(0,t) remains finite. However, because § =
w(b) + v(b,t) for all time and v(b,t) = R(b)T(t)/b = 0, then R(b) = 0.
Consequently, k, = nw/b and

B, 202424
vp(r,t) = —T-sin (%) exp (—%) . (8.3.118)

Superposition gives the total solution which equals

(rt)-0+ —"2)+Z—" ln( ) p( #)
(8.3.119)

Finally, we determine the B,,’s by the initial condition that u(r,0) =
0. Therefore,

b
B, = _2/ r [9 + S0 rz)] sin ("—:f) dr (8.3.120)
0

b 6%
=2y ( ) (~1)". (8.3.121)

The final solution is

20b ne . 2r2a’t
u(rt)_€+—z( )sm(n—;”:)exp(—ﬂlp—a——)

G .o o 2GB®X(-1)" . /nxr n?r?a’t
+6fc(b —r)+rmr3z n3 sm( b )exp T2 '

(8.3.122)

The first line of (8.3.122) gives the temperature distribution due to the
imposition of the temperature § on the surface of the apple while the
second line gives the rise in the temperature due to the interior heating.

Returning to our original problem of whether the interior heating is
strong enough to counteract the cooling by refrigeration, we merely use
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the second line of (8.3.122) to find how much the temperature deviates
from what we normally expect. Because the highest temperature exists
at the center of each apple, its value there is the only one of interest in
this problem. Assuming b = 4 cm as the radius of the apple, a*G/x =
1.33 x 107% °C/s and a? = 1.55 x 1072 cm?/s, the temperature effect
of the heat generation is very small, only 0.0232 °C when, after about 2
hours, the temperatures within the apples reach equilibrium. Thus, we
must conclude that heat generation within the apples is not the cause
of brown heart.

We now know that brown heart results from an excessive concentra-
tion of carbon dioxide and a deficient amount of oxygen in the storage
hold.® Presumably this atmosphere affects the metabolic activities that
are occurring in the apple” and leads to low-temperature breakdown.

o Example 8.3.7

In this example we illustrate how separation of variables may be
employed in solving the axisymmetric heat equation in an infinitely long
cylinder. In circular coordinates the heat equation is

2

g—?:a2(%£ %%’5), 0<r<b0<t, (8.3.123)
where r denotes the radial distance and a? denotes the thermal diffu-
sivity. Let us assume that we have heated this cylinder of radius b to
the uniform temperature Ty and then allowed it to cool by having its
surface held at the temperature of zero starting from the time ¢ = 0.

We begin by assuming that the solution is of the form u(r,t) =
R(r)T'(t) so that

d’R 1d T k2
L (IR R Ldl_ k. (8.3.124)

E(W*F?)Zﬁ'd?‘ 5

The only values of the separation constant that yield nontrivial solu-
tions are negative. The nontrivial solutions are R(r) = Jo(kr/b), where
Jo is the Bessel function of the first kind and zeroth order. A separa-
tion constant of zero gives R(r) = In(r) which becomes infinite at the

6 Thornton, N. C., 1931: The effect of carbon dioxide on fruits and
vegetables in storage. Contrib. Boyce Thompson Inst., 3, 219-244.

7 Fidler, J. C. and North, C. J., 1968: The effect of conditions of
storage on the respiration of apples. IV. Changes in concentration of
possible substrates of respiration, as related to production of carbon
dioxide and uptake of oxygen by apples at low temperatures. J. Hortic.
Sci., 43, 429-439.
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Figure 8.3.6: The temperature u(r,t)/T, within an infinitely long
cylinder at various positions r/b and times a?t/b? that we initially heated
to the uniform temperature Tp and then allowed to cool by forcing its
surface to equal zero.

origin. Positive separation constants yield the modified Bessel function
Io(kr/b). Although this function is finite at the origin, it cannot satisfy
the boundary condition that u(b,t) = R()T'(t) = 0 or R(b) = 0.

The boundary condition that R(b) = 0 requires that Jo(k) = 0.
This transcendental equation yields an infinite number of k,,’s. For each
of these k,’s, the temporal part of the solution satisfies the differential
equation

dT, k2a?
—+ 2T, = .3.125
dt+ = T, =0, (8.3.125)
which has the solution
k2a?
Ta(t) = A, exp (— 22 t) . (8.3.126)
Consequently, the product solutions are
r k2a?
un(r,t) = ApJo (knz) exp (— 22 t) . (8.3.127)

The total solution is a linear superposition of all of the particular solu-
tions or

o 2,2
u(r,t) = Z AnJo (k,, %) exp (— k’l;: t) . (8.3.128)
n=1
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Our final task remains to determine A,,. From the initial condition
that u(r,0) = Ty,

(r,0) = ZA Jo (kn ) (8.3.129)

From (6.5.35) and (6.5.43),

2
An = Jf(k,,)bﬁ/ rJo (kn b) dr (8.3.130)
2T% knr ry |® 2T%
= B2k ( > h(kp)l,= 5 Ty &3131)

from (6.5.25). Thus, the final solution is

u(r,t) = 2T, Z = Jl(k )Jo (k ) exp ( k%ft) . (8.3.132)

Figure 8.3.6 illustrates the solution (8.3.132) for various Fourier numbers
a’t/b%. 1t is similar to Example 8.3.1 except that we are in cylindrical
coordinates. Heat flows from the interior and is removed at the cylin-
der’s surface where the temperature equals zero. The initial oscillations
of the solution result from Gibbs phenomena because we have a jump
in the temperature field at r = b.

e Example 8.3.8

In this example we find the evolution of the temperature field within
a cylinder of radius b as it radiatively cools from an initial uniform
temperature Tp. The heat equation is

Ou _ of%%u  10u
o 2 \ore T ror

), 0<r<bo<t, (8.3.133)

which we shall solve by separation of variables u(r,t) = R(r)T(t).
Therefore,

e Ry i o (8:3.134)

1 (dzR 1drR\ 1 dT k2

: )
because only a negative separation constant yields a R(r) which is finite
at the origin and satisfies the boundary condition. This solution is
R(r) = Jo(kr/b), where Jy is the Bessel function of the first kind and
zeroth order.
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solution

distance time

Figure 8.3.7: The temperature u(r,t)/Tp within an infinitely long
cylinder at various positions r/b and times a%¢/b? that we initially heated
to the temperature Ty and then allowed to radiatively cool with hb = 1.

The radiative boundary condition may be expressed as
6u(b t) (b)
+ hu(b,t) = T(t) + hR(b)| = 0. (8.3.135)
Because T(t) #0,
kJy(k) + hbJo(k) = —kJ1 (k) + hdJo(k) =0, (8.3.136)

where the product hb is the Biot number. The solution of the transcen-
dental equation (8.3.136) yields an infinite number of distinct k,,’s. For
each of these k,’s, the temporal part equals the solution of

dT,  kZa®

T =0, (8.3.137)
or
k2a?
Ta(t) = Apexp | — = t). (8.3.138)

The product solution is, therefore,

up(r,t) = ApJo ( b) exp ( kzzzt) (8.3.139)

and the most general solution is a sum of these product solutions

(rt) = ZA Jo( )exp( ki;ﬂt). (8.3.140)
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Finally, we must determine A,. From the initial condition that

u(r,0) = To,

o0
wr,0)=To= 3 Anlo (k,,%) , (8.3.141)
n=1
where
22T, b r
A, = n "= 8.3.14
" b2[k3,+b2h2].7§(k,,)/0 rlo (kng) dr (8.3.142)
U2T, bt . Y
= T PRI (—b-) A (k,,z)'O (8.3.143)
2k ToJ1(kn) % ToJ1(kn)
= = 3.
W+ PR e~ FiTRe) 4 PRy o
2 ToJ1(kn) 3ToJ1 (kn) (5.5.145)

= k202 (kn) + k2J2(kn)  kalJa(kn) + J2(kn)]

which follows from (6.5.25), (6.5.35), (6.5.45), and (8.3.136). Conse-
quently, the final solution is

d J1(kn) r k2a?

ulri) =20 X ey (beg) o (-5
(8.3.146)
Figure 8.3.7 illustrates the solution (8.3.146) for various Fourier
numbers a?t/b? with hb = 1. It is similar to Example 8.3.5 except
that we are in cylindrical coordinates. Heat flows from the interior and
is removed at the cylinder’s surface where it radiates to space at the
temperature zero. Note that we do not suffer from Gibbs phenomena in
this case because there is no initial jump in the temperature distribution.

o Example 8.3.9: Temperature within an electrical cable

In the design of cable installations we need the temperature reached
within an electrical cable as a function of current and other parameters.
To this end,8 let us solve the nonhomogeneous heat equation in cylin-
drical coordinates with a radiation boundary condition.

The derivation of the heat equation follows from the conservation
of energy:

heat generated = heat dissipated + heat stored

8 Iskenderian, H. P. and Horvath, W. J., 1946: Determination of the
temperature rise and the maximum safe current through multiconductor
electric cables. J. Appl. Phys., 17, 255-262.
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or

I’RN dt = —k [27"* g—: - 2m(r + Ar) g—lﬁ dt + 2nrArcpdu,

r r+Ar]

r

(8.3.147)
where [ is the current through each wire, R is the resistance of each
conductor, N is the number of conductors in the shell between radii r
and r+ Ar = 2wmrAr/(wb?), b is the radius of the cable, m is the total
number of conductors in the cable, x is the thermal conductivity, p is

the density, c is the average specific heat, and u is the temperature. In
the limit of Ar — 0, (8.3.147) becomes

Ou 9210 ([ Ou

where A = I? Rm/(wb%cp) and a® = x/(pc).

Equation (8.3.148) is the nonhomogeneous heat equation for an
infinitely long, axisymmetric cylinder. From Example 8.3.3, we know
that we must write the temperature as the sum of a steady-state and
transient solution: wu(r,t) = w(r) + v(r,t). The steady-state solution
w(r) satisfies

1d dw A
;5 (7’3) = —?‘—2- (83149)
or
Ar?
w(r) =T - -, (8.3.150)

where T is the (yet unknown) temperature in the center of the cable.
The transient solution v(r,t) is govern by

v _ 210 ( 0v
8t ror\ or

), 0<r<bo<t (8.3.151)

with the initial condition that u(r,0) = T. — Ar?/(4a?) + v(0,t) = 0.
At the surface r = b heat radiates to free space so that the boundary
condition is u, = —hu, where h is the surface conductance. Because
the steady-state temperature must be true when all transient effects die
away, it must satisfy this radiation boundary condition regardless of the
transient solution. This requires that

A (b2 b
T.= = (Z + %) : (8.3.152)

Therefore, v(r,t) must satisfy vr(b,t) = —hv(b,t) at r = b.
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solution

10 time

distance

Figure 8.3.8: The temperature field (in degrees Celsius) within an
electric copper cable containing 37 wires and a current of 22 amperes
at various positions r/b and times a®t/b%. Initially the temperature was
zero and then we allow the cable to cool radiatively as it is heated. The
parameters are hb = 1 and the radius of the cable b = 4 cm.

We find the transient solution v(r,t) by separation of variables
v(r,t) = R(r)T(t). Substituting into (8.3.151),

1 d/dR\ 1 dT
or d [ dR
—— — 2 —_—
p (r dr) +k*R=0 (8.3.154)
and AT
- +k%a’T = 0, (8.3.155)

with R'(b) = —hR(b). The only solution of (8.3.154) which remains
finite at » = 0 and satisfies the boundary condition is R(r) = Jo(kr),
where J is the zero-order Bessel function of the first kind. Substituting
Jo(kr) into the boundary condition, the transcendental equation is

kbJy (kb) — hbJo(kb) = 0. (8.3.156)

For a given value of h and b, (8.3.156) yields an infinite number of unique
zeros k.
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The corresponding temporal solution to the problem is
T, (t) = An exp(—a®k2t), (8.3.157)

so that the sum of the product solutions is

v(r,t) = i ApJo(kar)exp(—a®k2t). (8.3.158)

n=1

Our final task remains to compute A,,. By evaluating (8.3.158) at
t=0,

v(r,0) = A" -T. = ZA Jo(kar), (8.3.159)

which is a Fourier-Bessel series in Jo(k, 7). In Section 6.5 we showed that
the coefficient of a Fourier-Bessel series with the orthogonal function
Jo(ks7) and the boundary condition (8.3.156) equals

Ap = 2k, (A T, ) Jo(knr)dr (8.3.160)
" T TR20 + h202)J2(knb) Jo | \ a2  T¢) JoUEmTAT AR

from (6.5.35) and (6.5.45). Carrying out the indicated integrations,

2

(k3 + h?)J§(knb)

[(Aknb A Tek
4a? " kqba? b

Ap =

We obtained (8.3.161) by using (6.5.25) and integrating by parts in a
similar manner as was done in Example 6.5.5.

To illustrate this solution, let us compute it for the typical param-
eters b = 4 cm, hd = 1, a® = 1.14 cm?/s, A = 2.2747 °C/s, and T, =
23.94°C. The value of A corresponds to 37 wires of #6 AWG copper
wire within a cable carrying a current of 22 amp.

Figure 8.3.8 illustrates the solution as a function of radius at various
times. From an initial temperature of zero, the temperature rises due to
the constant electrical heating. After a short period of time, it reaches
its steady-state distribution given by (8.3.150). The cable is coolest at
the surface where heat is radiating away. Heat flows from the interior
to replace the heat lost by radiation.
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Problems
For problems 1-5, solve the heat equation u; = a%uz;, 0 <z < 7, 0< ¢
subject to the boundary conditions that u(0,t) = u(7,t) =0, 0 < ¢t and
the following initial conditions for 0 < ¢ < =
1. u(z,0) = A, a constant
2. u(z,0) = sin®*(z) = [3sin(z) - sin(3z)]/4
3. u(z,0)==¢

4. u(z,0) =7 —=z

_ z, 0<z<mw/2
> u(x,O)_{W_x, T/2<z<m7w

For problems 6-10, solve the heat equation u; = a’ugz;, 0 < z < T,
0 < t subject to the boundary conditions that uz(0,t) = uz(x,t) =0,
0 < t and the following initial conditions for 0 < z < 7:

6. u(z,0)=1

7. u(z,0)==z

8. u(z,0) = cos®(z) = [1 + cos(2z)]/2

9. u(z,0)=7r—2z

| Ty, O<z<m/2
10. u(x,O)_{Tl, T/2<z<m

For problems 11-17, solve the heat equation u; = a?uz;, 0 < = < w,
0 < t subject to the following boundary conditions and initial condition:

11. uz(0,8) = w(m,t) =0,0< t; u(z,0) =2’ -7}, 0<z <™
12. u(0,t) = u(m,t)=Tp, 0 < t; u(z,0) =Ty #To, 0< <™
13. u(0,¢) =0, uz(m,t) =0,0< t; u(z,0)=1,0<2z< 7™
14. u(0,8) =0, ug(m,t) =0,0< t; u(z,0)=2z,0<z <7

15. u(0,t) =0, ug(m,t)=0,0< t; u(x,0)=7—z,0< <7
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16. u(0,t) = Tp, uzx(m,t) =0,0< t; u(z,0)=T1 # Ty, 0<z < 7
17 u(0,t) = 0,u(m,t)=Tp, 0< t; u(z,0) =Ty, 0< z < 7

18. It is well known that a room with masonry walls is often very
difficult to heat. Consider a wall of thickness L, conductivity &, and
diffusivity a? which we heat at a constant rate H. The temperature of
the outside (out-of-doors) face of the wall remains constant at Ty and
the entire wall initially has the uniform temperature T,. Let us find the
temperature of the inside face as a function of time.®

We begin by solving the heat conduction problem

ou 262
= t
£ pyol 0<z<L,0<
subject to the boundary conditions that
0u(0,) H _
e =W and  u(L,t)=Tp

and the initial condition that u(z,0) = T5. Show that the temperature
field equals

(2n - 1)2n%a%
X exXp |~ ——pms——| .

Therefore, the rise of temperature at the interior wall z =0 is

HL{ _%i T [ (2n—4ll);7r2a2t]}
SjrzL Z(?n 1)2{ T exp ['%JL)TWG—%]}

For a®t/L? < 1 this last expression can be approximated!® by 4Hat!/2/
7!/2x. We thus see that the temperature will initially rise as the square

or

® Reproduced with acknowledgement to Taylor and Francis, Publish-
ers, from Dufton, A. F., 1927: The warming of walls. Philos. Mag., Ser.
7, 4, 888-889.

10 Tet us define the function

21— exp[—(2n — 1)272a% /L2
f(t)=z Pl EQn_1;2 Y ]

n=1
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root of time and diffusivity and inversely with conductivity. For an
average rock k£ = 0.0042 g/cm-s and a? = 0.0118 cm?/s while for wood
(Spruce) & = 0.0003 g/cm-s and a? = 0.0024 cm?/s.

The same set of equations applies to heat transfer within a transis-
tor operating at low frequencies.!! At the junction (z = 0) heat is pro-
duced at the rate of H and flows to the transistor’s supports (z = +L)
where it is removed. The supports are maintained at the temperature
Tp which is also the initial temperature of the transistor.

19. The linearized Boussinesq equation!?

fu  O%u

E:EL‘—E’ O<z<L,0<t

governs the height of the water table u(z,t) abovesome reference point,
where a? is the product of the storage coefficient times the hydraulic
coefficient divided by the aquifer thickness. A typical value of a? is
10 m?/min. Consider the problem of a strip of land of width L that
separates two reservoirs of depth h;. Initially the height of the water
table would be ;. Suddenly we lower the reservoir on the right z = L
to a depth hy [u(0,t) = Ay, u(L,t) = ho, and u(z,0) = h;]. Find the

Then

a®r? &
@)= 72 Zexp[—(?n— 1)2n%a®t/L7).
n=1

Consider now the integral

/°° ( a2t :cz) dz L
exp [ — = .
o P L? 2a+/t

If we approximate this integral by using the trapezoidal rule with Az =
2, then

® a’n’t , d~2°° 9 127242t/ L2
; exp | ——75~2 T Zexp[—(n— )emfa“t/L?]

n=1

and f'(t) ~ aw®/?/(4Lt'/?). Integrating and using f(0) = 0, we finally
have f(t) ~ aw3/%t1/2/(2L). The smaller a?t/L? is, the smaller the error
will be. For example, if t = L?/a?, then the error is 2.4 %.

11 Mortenson, K. E., 1957: Transistor junction temperature as a func-
tion of time. Proc. IRE, 45,504-513. Eq. (2a) should read T, = —F/k.

12 See, for example, Van Schilfgaarde, J., 1970: Theory of flow to
drains in Advances in Hydroscience, Academic Press, New York, pp.
81-85.
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height of the water table at any position z within the aquifer and any
time ¢ > 0.

20. The equation (see Problem 19)

du  %u
— = L t

3 = 922 0<z<L,0<

governs the height of the water table u(z,t). Consider the problem!3 of
a piece of land that suddenly has two drains placed at the points z = 0
and £ = L so that u(0,t) = u(L,t) = 0. If the water table initially has
the profile:

u(z,0) = 8H (L% — 3L%? + 4La® - 20%)/ L4,
1]
find the height of the water table at any point within the aquifer and
any time £ > 0.

21. We want to find the rise of the water table of an aquifer which
we sandwich between a canal and impervious rocks if we suddenly raise
the water level in the canal hy units above its initial elevation and then
maintain the canal at this level. The linearized Boussinesq equation (see
Problem 19)

ou _ 8%u

ot = 0z?’
governs the level of the water table with the boundary conditions u(0,¢)
= ho and uy(L,t) = 0 and the initial condition u(z,0) = 0. Find the
height of the water table at any point in the aquifer and any time ¢ > 0.

O<zx<L,0<t

22. Solve the nonhomogeneous heat equation

ou 0% _
‘W—aw=€x, 0<-’L'<7l',0<t
subject to the boundary conditions u(0,t) = uz(w,t) = 0, 0 < ¢, and
the initial condition u(z,0) = f(z), 0< z < m.

23. Solve the nonhomogeneous heat equation

Ou  O%u

a—w:—l, 0<zr<l,0<«t

13 For a similar problem, see Dumm, L. D., 1954: New formula for
determining depth and spacing of subsurface drains in irrigated lands.
Agric. Eng., 35, 726-730.
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subject to the boundary conditions u;(0,t) = uz(1,t) =0, 0 < ¢, and
the initial condition u(z,0) = (1 — 2?), 0 < z < 1. [Hint: Note that
any function of time satisfies the boundary conditions.]

24. Solve the nonhomogeneous heat equation

Ou o2 d%u

gt - = t

5 3oz = Acos(wt), 0<z<ml<
subject to the boundary conditions u.(0,t) = uz(7,t) =0, 0 < ¢, and
the initial condition u(z,0) = f(z), 0 < £ < x. [Hint: Note that any
function of time satisfies the boundary conditions.]

25. Solve the nonhomogeneous heat equation

0<z<m0<t

a_u_az_u_ z, O<a<n/2
ot Oz2 \|\wm—u=x, r/2<z <,

subject to the boundary conditions u(0,¢) = u(7,t) = 0, 0 < t, and the
initial condition u(z,0) = 0, 0 < # < 7. [Hint: Represent the forcing
function as a half-range Fourier sine expansion over the interval (0, ) ]

26. A uniform, conducting rod of length L and thermometric diffusivity
a? is initially at temperature zero. We supply heat uniformly throughout

the rod so that the heat conduction equation is

u  Ou
2 = —_——l
s Ty P, 0<er< L0«

where P is the rate at which the temperature would rise if there was no
conduction. If we maintain the ends of the rod at the temperature of
zero, find the temperature at any position and subsequent time.

27. Solve the nonhomogeneous heat equation

Ou 28u Ao
ooy 0 L ¢
ot Oz2 + 0<z<L,0<t,

where a2 = k/cp with the boundary conditions that

ou(0,t) Ju(L,t)
N — =0 and K—c‘?z

and the initial condition that u(z,0)=0,0< z < L.

+hu(L,t)=0, 0<t

28. Find the solution of

2
%;izg.x_;‘_u, 0<z<L,0<t
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with the boundary conditions u(0,t) = 1 and u(L,t) = 0, 0 < ¢, and the
initial condition u(z,0)=0,0< z < L.

29. Solve the heat equation in spherical coordinates

du a? 8 (2(911

— = 2 2= <
o 3y rar), 0<r<1,0<t
subject to the boundary conditions lim,_¢ |u(r,t)| < oo and u(1,t) = 0,

0 < ¢, and the initial condition u(r,0)=1,0<r < 1.

30. Solve the heat equation in cylindrical coordinates

fu a28<3u

—_—= —_ < b 4
ot r Or rar)’ 0<r<b0<
subject to the boundary conditions lim,_.¢ |u(r,t)| < co and u(b,t) = 4,

0 < t, and the initial condition u(r,0)=1,0< r < b.

31. The equationt4

ou G (62u 10u
— = v
ot p

= W ;E), 0§r<b,0<t

governs the velocity u(r,t) of an incompressible fluid of density p and
kinematic viscosity v flowing in a long circular pipe of radius b with an
imposed, constant pressure gradient —G. If the fluid is initially at rest
u(r,0) = 0, 0 < r < b, and there is no slip at the wall u(b,t) =0, 0 < ¢,
find the velocity at any subsequent time and position.

32. Solve the heat equation in cylindrical coordinates

— re-

ou_a* 0 (o
ot~ r Or

), 0<r<b o<t

subject to the boundary conditions lim,_¢ |u(r, )| < co and u,(b,) =
—hu(b,t), 0 < ¢, and the initial condition u(r,0) = 4% —r2, 0 < r < b.

14 From Szymanski, P., 1932: Quelques solutions exactes des équa-
tions de ’hydrodynamique du fluide visqueux dans le cas d’un tube
cylindrique. J. math. pures appl., Ser. 9, 11, 67-107. (©Gauthier-
Villars
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33. In their study of heat conduction within a thermocouple through
which a steady current flows, Reich and Madigan®® solved the following
nonhomogeneous heat conduction problem:

ou 0%

57—(1 W:J—P&(m—b), 0<e<L,0<t,0<b< L,

where J represents the Joule heating generated by the steady current
and the P term represents the heat loss from Peltier cooling.!® Find
u(z,t) if both ends are kept at zero [u(0,t) = u(L,t) = 0] and initially
the temperature is zero [u(z,0) = 0]. The interesting aspect of this
problem is the presence of the delta function.

Step 1: Assuming that u(z,t) equals the sum of a steady-state solution
w(z) and a transient solution v{xz,t), show that the steady-state solution
is governed by

d’w
a2W =Pé(z-b)—-J, w(0)=w(l)=0.

Step 2: Show that the steady-state solution is

w(z) = Jz(L — z)/2a? + Az, O<z<b
T Jz(L - z)/2a* + B(L — z), b<z<lL.

Step 3: The temperature must be continuous at z = b; otherwise, we
would have infinite heat conduction there. Use this condition to show
that Ab = B(L - b).
Step 4: To find a second relationship between A and B, integrate the
steady-state differential equation across the interface at £ = b and show
that bt

. d ¢

lima? 22 =P

e~0 dr b—e¢

Step 5: Using the result from Step 4, show that A + B = —P/a® and

_ { Jz(L — z)/2a® — Px(L — b)/a®L, 0<z<b
w(z) = Jz(L — z)/2a® — Pb(L — z)/a’L, b<z<L.

15 Reich, A. D. and Madigan, J. R., 1961: Transient response of a
thermocouple circuit under steady currents. J. Appl. Phys., 32, 294~
301.

16 In 1834 Jean Charles Athanase Peltier (1785-1845) discovered that
there is a heating or cooling effect, quite apart from ordinary resistance
heating, whenever an electric current flows through the junction between
two different metals.
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Step 6: Reexpress w(z) as a half-range Fourier sine expansion and show
that
4JL? &N sin[(2m — 1)wz /L)

w(z) = aZnd

— (2m —1)3
2LP X sin(nwb/L)sin(nwz/L)
) n2 '
n=1

Step 7: Use separation of variables to find the transient solution by
solving
dv 0%
s
subject to the boundary conditions v(0,¢) = v(L,t) =0, 0 < t, and the
initial condition v(z,0) = —w(z),0 < z < L.

0<ae< L,O<t

Step 8: Add the steady-state and transient solutions together and show
that

_4JL? - sin[(2m — 1)7z/L] [1 3 e—a2(2m—1)27r2t/L2]
a?rd £~ (2m - 1)3

2LP . sin(nwb/L)sin(nwz/L) —a?n?x?t/L7
 a’n? n? [l - ] '

8.4 THE LAPLACE TRANSFORM METHOD

In the previous chapter we showed that we may solve the wave
equation by the method of Laplace transforms. This is also true for the
heat equation. Once again, we take the Laplace transform with respect
to time. From the definition of Laplace transforms,

Llu{z,t)] = Ul(z, s), (8.4.1)
Lluy(z,t)] = sU(z,s) — u(z,0) (8.4.2)
and
d*U(z, s)

Llugz(z,t)] = (8.4.3)

dz?
We next solve the resulting ordinary differential equation, known as the
auziliary equation, along with the corresponding Laplace transformed
boundary conditions. The initial condition gives us the value of u(z,0).
The final step is the inversion of the Laplace transform U(x,s). We
typically use the inversion integral.
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o Example 8.4.1

To illustrate these concepts, we solve a heat conduction problem!?
in a plane slab of thickness 2L. Initially the slab has a constant temper-
ature of unity. For 0 < t we allow both faces of the slab to radiatively
cool in a medium which has a temperature of zero.

If u(x,t) denotes the temperature, a? is the thermal diffusivity, h is
the relative emissivity, ¢ is the time, and « is the distance perpendicular
to the face of the slab and measured from the middle of the slab, then
the governing equation is

du _ ,0%u

with the initial condition
u(z,0) =1, —-L<z<lL (8.4.5)
and boundary conditions

Ou(L,t)
Oz

Ou(—L,t)

+ hu(L,t)=0 and p

+hu(-L,t) =0, 0<t.
(8.4.6)
Taking the Laplace transform of (8.4.4) and substituting the initial
condition,
o2 d*U(z,s)
dz?

If we write s = a2q?, (8.4.7) becomes

—sU(z,s) =-1. (8.4.7)

1
2 —
q U(.’L‘,S) = —'a—2. (848)

d?U(z, s) B
dx?

From the boundary conditions U(z, s) is an even function in z and we
may conveniently write the solution as

U(z,s) = :t- + A cosh(gz). (8.4.9)
From (8.4.6),
qAsinh(qL) + g + hAcosh(qL) =0 (8.4.10)
and . b cosh
U(z,s) = - cosh(gz) (8.4.11)

s s[gsinh(gL) + hcosh(gqL)]’

17 Goldstein, S., 1932: The application of Heaviside’s operational
method to the solution of a problem in heat conduction. Zeit. Angew.
Math. Mech., 12, 234-243.
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The inverse of U(x,s) consists of two terms. The inverse of the
first term is simply unity. We will invert the second term by contour
integration.

We begin by examining the nature and location of the singularities
in the second term. Using the product formulas for the hyperbolic cosine
and sine functions, the second term equals

h(1+422) (1422

s[q2L (1+ﬁ%3) (1+ 9:—#3) --~+h(1+i§¥) (1+ig%3) }
(8.4.12)
Because ¢? = s/a?, (8.4.12) shows that we do not have any /s in the
transform and we need not concern ourselves with branch points and
cuts. Furthermore, we have only simple poles: one located at s = 0 and
the others where

gsinh(qL) 4+ hcosh(¢L) = 0. (8.4.13)
If we set ¢ = i), (8.4.13) becomes
hcos(AL) — Asin(AL) =0 (8.4.14)
or
ALtan(AL) = hL. (8.4.15)

From Bromwich’s integral,

_1{ h cosh(qz) }
s[gsinh(gL) + h cosh(qL)]

1 h cosh(qz)et”
Bz 4.16
27i f;- z[gsinh(qL) + h cosh(qL)] dz, (8.4.16)

where ¢ = 21/2/a and the closed contour C consists of Bromwich’s
contour plus a semicircle of infinite radius in the left half of the z-plane.
The residue at z = 0 is 1 while at z, = —a?)2,

h cosh(gz)e'* _
© z[gsinh(qL) + h cosh(qL)}’ o

h(z + a?)2) cosh(qz)et?

_ 4.17
zlir?,. z[gsinh(qL) + h cosh(qL)] (8417
. h cosh(gz)e*?
= Jim z{(1 + hL)sinh(gL) + h cosh(qL)]/(2a%q) (8.4.18)
_ __ 2ha’Asicosh(idyz) exp(=A2a%) (8.4.19)
T (—a®A2)[(1+ hL)isin(An L) + Ay Lcos(An L)] -
232
_ 2h cos(Anz) exp(—a?A2t) (8.4.20)

An[(1+ hL)sin(AnL) + ApLcos(Ap, L))



The Heat Equation 429

distance time

Figure 8.4.1: The temperature within the portion of aslab0 < z/L <
1 at various times a?t/L? if the faces of the slab radiate to free space
at temperature zero and the slab initially has the temperature 1. The
parameter hL = 1.

Therefore, the inversion of U(z, s) is

~ il cos(Anz) exp(—a®A2t)
u(:c,t) =1- {1 - 2h"X=:1 /\n[(l -+ hL) Sin(/\nL) + /\nL COS(AnL)] }

(8.4.21)

or

o cos(Anz) exp(—a®A2t)
u(z,t) = 2h ; Ml(L+ RLYSIn(An L) + AnL cos(An L)]’

(8.4.22)

We can further simplify (8.4.22) by using /A, = tan()\,L) and hL =
AnLtan(A,L). Substituting these relationships into (8.4.22) and sim-
plifying,

=< sin(A, L) cos(An2) exp(—a?A2t)
t) = . 8.4.23

u(=,t) 2;_:1 AL +sin(, L) cos(An L) ( )
o Example 8.4.2: Heat dissipation in disc brakes

Disc brakes consist of two blocks of frictional material known as
pads which press against each side of a rotating annulus, usually made
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of a ferrous material. In this problem we determine the transient tem-
peratures reached in a disc brake during a single brake application.!®
If we ignore the errors introduced by replacing the cylindrical portion
of the drum by a rectangular plate, we can model our disc brakes as
a one-dimensional solid which friction heats at both ends. Assuming
symmetry about £ = 0, the boundary condition there is u;(0,¢) = 0.
To model the heat flux from the pads, we assume a uniform disc de-
celeration that generates heat from the frictional surfaces at the rate
N(1 — Mt), where M and N are experimentally determined constants.

If u(z,t), k and a? denote the temperature, thermal conductiv-
ity, and diffusivity of the rotating annulus, respectively, then the heat
equation 1s ‘

du 0%
— =a"=— [ 4.
> aaxz, O<e<L,0< (8.4.24)
with the boundary conditions
0u(0,t) Ou(L,t)
e 0 and « Fra N(1 - Mt), 0<t. (8.4.25)

The boundary condition at # = L gives the frictional heating of the disc
pads.
Introducing the Laplace transform of u(z,t), defined as

U(z,s) = /000 u(z,t)e™*dt, (8.4.26)

the equation to be solved becomes

d2U s

T =U=0, (8.4.27)

subject to the boundary conditions that

WO0.5) _ o g ULs) N1 MY 8.4.28)
dr dr K \s s?

The solution of (8.4.27) is

U(z,s) = Acosh(gqz) + Bsinh(gz), (8.4.29)

18 From Newcomb, T. P., 1958: The flow of heat in a parallel-faced
infinite solid. Br. J. Appl. Phys., 9, 370-372. See also Newcomb,
T. P., 1958/59: Transient temperatures in brake drums and linings.
Proc. Inst. Mech. Eng., Auto. Div., 227-237; Newcomb, T. P., 1959:
Transient temperatures attained in disk brakes. Br. J. Appl. Phys.,
10, 339-340.
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where ¢ = s!/2/a. Using the boundary conditions, the solution becomes

_ N (1 MY cosh(qx)
U(z,s) = — (— - —2) gsinh(¢l)’ (8.4.30)

It now remains to invert the transform (8.4.30). We will invert
cosh(qz)/[sgsinh(gL)]; the inversion of the second term follows by ana-
log.

Our first concern is the presence of s!/2 because this is a multivalued
function. However, when we replace the hyperbolic cosine and sine
functions with their Taylor expansions, cosh(gz)/[sgsinh(gL)] contains
only powers of s and is, in fact, a single-valued function.

From Bromwich’s integral,

1 [ cosh(gz) 1 /°+°°i cosh(gz)et?
—_— | = — ———d 4.
[sq sinh(qL)] 278 Jo_oo; 2gsinh(gL) “ (8.4.31)

where ¢ = 2'/2/a. Just as in the previous example, we replace the
hyperbolic cosine and sine with their product expansion and find that
z = 0 is a second-order pole. The remaining poles are located where

z?LJa = nmi or 2z, = —n?n2a2/L?, where n = 1,2,3,.... We have
chosen the positive sign because 2/2 must be smgle—valued if we had
chosen the negative sign the answer would have been the same. Our
expansion also shows that the poles are simple.

Having classified the poles, we now close Bromwich’s contour, which
lies slightly to the right of the imaginary axis, with an infinite semicircle
in the left half-plane, and use the residue theorem. The values of the
residues are

tz
es[cosh(q:c)e _0]

zgsinh(gqL)’
1 d [ (z—0)%cosh(gz)e’
Rt zh—»o dz { zqsinh(gqL) (8.4.32)
_ d [ zcosh(gz)e™
0 { gsinh(qL) (8.4.33)
azl { [1+2.a2+ H }}
= —lim
L :—0dz 2+ L2 4.
(8.4.34)
a? d zz? L2
= le E—{1+t + 57 " g +} (8.4.35)

(8.4.36)

|
=~ 8
—
+
o
::N| 8,
o
8, &
h—v——/
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80 1 T T T

TEMPERATURE (°C)

TIME (SECONDS)

Figure 8.4.2: Typical curves of transient temperature at different lo-
cations in a brake lining. Circles denote computed values while squares
are experimental measurements. (From Newcomb, T. P., 1958: The flow
of heat in a parallel-faced infinite solid. Br. J. Appl. Phys., 9, 372 with

permission.)

and

cosh(gz)et* . cosh(gz) , . z— 1z
—_—t—z,| = ——e*]| 1 —] (8.4.37
= [zqsinh(qL) ,z 11_151" zq e sinh(qL) ( )

L cosh(qz)e'”
- 21_121“ zqcosh(qL)L/(2a%q) (8.4.38)

_ cosh(nwzi/L)exp(—n3n2a’t/L?)
= Cntna? /DY) cosh(nri)Lj(2a7) (o439

= —2—%(,;_—12)- cos(nrx/L)e'"z"zazt/Lz. (8.4.40)
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When we sum all of the residues from both inversions, the solution is

( t)_c_z_z_]_\f_ t+i L_z
WEE =T 2a2  6a?

2LN X (—=1)»
_ Z_:l( 2)

n2x2a3t/L?

— ~ cos(nwz/L)e”

a’NM (¢ + tz?  tL? + et 2%L? + TL4
kL 2  2a%2 6a?  24a* 12a*  360a?
3 X/ _1yn 2 2
_2LNM E ( 14) cos(nwe/L)e™™ ma%t/L% (8.4.41)
n

alkmt
n=1

Figure 8.4.2 shows the temperature in the brake lining at various
places within the lining [¢' = z/L] if @®> = 3.3 x 1073 cm?/sec, k =
1.8 x 1073 cal/(cm sec°C), L = 0.48 cm and N = 1.96 cal/(cm? sec).
Initially the frictional heating results in an increase in the disc brake’s
temperature. As time increases, the heating rate decreases and radiative
cooling becomes sufficiently large that the temperature begins to fall.

e Example 8.4.3

In the previous example we showed that Laplace transforms are
particularly useful when the boundary conditions are time dependent.
Consider now the case when one of the boundaries is moving.

We wish to solve the heat equation

ou _ ,8%u

- a° — t 8.4.42
5 = a7 Bt<z<o0,0< ( )

subject to the boundary conditions
u(:c,t)lx___ﬁt = f(t) and xlir{.lo |u(z, )| < oo, 0<t (84.43)
and the initial condition
u(z,0) =0, 0<z<oo. (8.4.44)

This type of problems arises in combustion problems where the bound-
ary moves due to the burning of the fuel.

We begin by introducing the coordinate n = z — #t. Then the
problem can be reformulated as

Ou v ,0%

-3—t—ﬁ55=a Erel 0<n<oo,0<t (8.4.45)
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subject to the boundary conditions
u(0,¢) = f(t) and nlirglo |u(n,t)| < oo, 0<t (8.4.46)
and the initial condition
u(n,0) = 0, 0<n<oo. (8.4.47)
Taking the Laplace transform of (8.4.45), we have that

@U(n,s) B dU(ms) s

a7 T dr —U(n,s) =0 (8.4.48)
with
U(0,s) = F(s) and lim |U(n,s)| < co. (8.4.49)
n—00
The solution to (8.4.48)—(8.4.49) is
pn _n pg?
U(n,s) = F(s)exp (_ﬁ -\ + 1z | (8.4.50)
Because
L[®(n,t)] = 7 5 8.4.51
[(U,)]—exP —'; S+m ) ( )
where
= L|—8n/2d* m__ sVt
®(n,t) = 3 [e erfc <2a\/t_ 5a
+ ePn/20% erfe < 74 M)] (8.4.52)
2av/t
and
erfe(z) =1— —/ -’ dn, (8.4.53)

we have by the convolution theorem that

u(n,t) = e_p”/z"Q/O f@t —7)®(n,7)dr (8.4.54)

or

u(z,t) = ¢~ Ale=p1)/2a7 /t ft - 7)®(z - Br, ) dr. (8.4.55)
0
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Problems
1. Solve
du _ 0%u
ot~ 0z?
subject to the boundary conditions

—a*(u - Tp), 0<z<1,0<t

ou(0,)  Ou(l,t) _
9z ~ Oz

0, 0<t

and the initial condition

u(xz,0) =0, 0<e<l.

2. Solve ,
ou _ o
ot~ 0z’
subject to the boundary conditions

O<z<1,0<t

ou(0,t)
oz

0, u(,t)=t, 0<t
and the initial condition
u(z,0) =0, 0<z<l.

3. Solve
u 0%

ot ~ 0z’
subject to the boundary conditions

0<zx<1,0<t

uw(0,0)=0, u(l,t)=1, 0<t
and the initial condition
u(z,0) =0, 0<e<l.

4. Solve
du  O%u

B8t~ 8z
subject to the boundary conditions

1 1
—§<$<§,0<t

us (=5,4) =0, uz(3,1) =6(2), 0<t



436 Advanced Engineering Mathematics

and the initial condition

u(z,0) =0, -3<z<i

5. Solve
Ou 0%

8t 0xZ
subject to the boundary conditions

1, 0<zr<l,0<t

u(0,t) = u(1,t) =0, 0<t
and the initial condition

u(z,0) =0, 0<z< 1.

6. Solvel!®
6_U _ a2 62U

ot~ 9z?’
subject to the boundary conditions

0<z<oo,0<t

w(0,)=1, lim |u(z, 1) < oo, 0<t
and the initial condition
u(z,0) =0, 0<z < oo.

[Hint: Use tables to invert the Laplace transform.]

7. Solve
ou_Bu oo 0<t
ot~ 0z?’ 700
subject to the boundary conditions
Ou(0,t)

5z — L Jim fu(z )] <o, 0<t

and the initial condition

u(z,0) = 0, 0<z<oo.

19 If u(z,t) denotes the Eulerian velocity of a viscous fluid in the half
space z > 0 and parallel to the wall located at £ = 0, then this problem
was first solved by Stokes, G. G., 1850: On the effect of the internal
friction of fluids on the motions of pendulums. Proc. Cambridge Philos.
Soc., 9, Part II, [8]-[106].
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[Hint: Use tables to invert the Laplace transform.]
8. Solve
ou_ o
ot~ 8z%’

subject to the boundary conditions

0<z<oo,0<t

u(0,t) =1, len;lo lu(z,t)| < 00, 0<t
and the initial condition
u(z,0)=e€"%, 0<z<oo.

[Hint: Use tables to invert the Laplace transform ]

9. Solve
Ou 8%u
ik [62 (1+5)—+6u] 0<z<0,0<t,

where § is a constant, subject to the boundary conditions
u(0,t) = uy, zl_i_’rglo lu(z,t)| <00, 0<t
and the initial condition
u(x,0) =0, 0<z<oo0.

Note that
£t [1 exp (—Qa\/s + 32 )] = le20Berfe <_a_ + g\/{)
S 2 \/t-

+ %e'z"ﬁerfc ( - ﬂ\/f) ,

«
Vi
where erfc is the complementary error function.

10. Solve

au 26“

—kz
5 =% 52 + Ae™ 7, 0<e<oo,0<t

subject to the boundary conditions

90 _ o tim u(e,t) = uo, 0<t

Oz " r—oo
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and the initial condition

u(z,0) = ug, 0<z<oo.

11. Solve
Ou  O%u

8t~ 0z
subject to the boundary conditions

P, O<e<L,0<t

u(0,t)=t, u(L,t)=0, 0<t
and the initial condition

u(z,0) =0, 0<z<lL.

12. An electric fuse protects electrical devices by using resistance heat-
ing to melt an enclosed wire when excessive current passes through it.
A knowledge of the distribution of temperature along the wire is impor-
tant in the design of the fuse. If the temperature rises to the melting
point only over a small interval of the element, the melt will produce
a small gap, resulting in an unnecessary prolongation of the fault and
a considerable release of energy. Therefore, the desirable temperature
distribution should melt most of the wire. For this reason, Guile and
Carne?? solved the heat conduction equation

2
%:a2%+q(l+au), —L<z<L,0<t

to understand the temperature structure within the fuse just before

meltdown. The second term on the right side of the heat conduction

equation gives the resistance heating which is assumed to vary linearly

with temperature. If the terminals at * = +L remain at a constant

temperature, which we can take to be zero, the boundary conditions are

u(—L,t) = u(L,t) =0, 0<t.
The initial condition is

u(z,0) =0, -L<z< L.

20 From Guile, A. E. and Carne, E. B., 1954: An analysis of an ana-
logue solution applied to the heat conduction problem in a cartridge
fuse. AIEE Trans., Part I, 72, 861-868. ©AIEE (now IEEE).
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Find the temperature field as a function of the parameters a, ¢, and a.

13. Solve?! 5 5 -
u u u
- 4= <
3= a7 Tron 0ST<LOSI
subject to the boundary conditions
. Ou(l,t) _
rlf})lu(r,t)|<oo, o =1, 0<t

and the initial condition
u(r,0) =0, 0<r<l.
[Hint: Use the new dependent variable v(r,t) = ru(r,t).]

14. Consider?? a viscous fluid located between two fixed walls z = +L.
At z = 0 we introduce a thin, infinitely long rigid barrier of mass m per
unit area and let it fall under the force of gravity which points in the
direction of positive z. We wish to find the velocity of the fluid u(z,1).
The fluid is governed by the partial differential equation

du &u
a—llw, 0<$<L,0<t

subject to the boundary conditions

du(0,1) _ 2u8u(0,1) _

u(L,t)=0 and e oz

g, 0<t

and the initial condition

u(z,0) =0, 0O<z< L.

15. Consider?® a viscous fluid located between two fixed walls 2 = +L.
At z = 0 we introduce a thin, infinitely long rigid barrier of mass m per

21 From Reismann, H., 1962: Temperature distribution in a spinning
sphere during atmospheric entry. J. Aerosp. Sci., 29, 151-159 with
permission.

22 Reproduced with acknowledgement to Taylor and Francis, Publish-
ers, from Havelock, T. H., 1921: The solution of an integral equation
occurring in certain problems of viscous fluid motion. Philos. May.,
Ser. 6,42, 620-628.

23 Reproduced with acknowledgement to Taylor and Francis, Publish-
ers, from Havelock, T. H., 1921: On the decay of oscillation of a solid
body in a viscous fluid. Philos. Mag., Ser. 6, 42, 628-634.
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unit area. The barrier is acted upon an elastic force in such a manner
that it would vibrate with a frequency w if the liquid were absent. We
wish to find the barrier’s deviation from equilibrium, y(t). The fluid is
governed by the partial differential equation

du 8%u

_— —_— t.
o uazz, 0<x<L,0<

The boundary conditions are

2
u(L,t) = %?;—2 aug)t)+mwy_0and3——u(0t) 0<t

and the initial conditions are

u(z,0)=0,0<z<L and y(0)=A4, y'(0)=0.

16. Solve
u  O%u

8t~ 022

subject to the boundary conditions

0<z<l10<t

u(0,t) = 0, 3a[-aiéi’—t) (lt)] 6“(1 ’)_5(t), 0<t

and the initial condition

u(z,0) =0, 0<z<l.

17. Solve?* the partial differential equation

Ou u  O%u
E""Va—z——w, 0<l‘<1,0<t,

where V is a constant, subject to the boundary conditions

u(0,t) =1 and uz(1,t) = 0, 0<t

?* Reprinted from Solar Energy, 56, Yoo, H., and E.-T. Pak, Ana-
lytical solutions to a one-dimensional finite-domain model for stratified
thermal storage tanks, 315-322, ©)1996, with kind permission from Else-
vier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB,
UK.
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and the initial condition

u(z,0) =0, <<l
18. Solve

%% (r‘;_’:) _g_;‘za(t), 0<r<a0<t
subject to the boundary conditions
}Erg) |u(r,t)] < oo, u(a,t) =0, 0<t
and the initial condition
u(r,0) =0, 0<r<a.

Note that J,(iz) = i*I,(2) and I,(iz) = i"J,(z) for all complex z.

19. Solve
Ou 10 ( Ou

== 75 T—a—r)’i—H(t), 0<r<ab«t
subject to the boundary conditions
3i_r{(1) |u(r, t)] < oo, u(a,t) =0, 0<t
and the initial condition
u(r,0) =0, 0<r<a.
Note that J,(iz) = i"I,(z) and I,(iz) = i®Jn(z) for all complex 2.
g—?:%g—;(r%), 0<r<al<t

subject to the boundary conditions

20. Solve

lim lu(r,t)| < oo, u(a,t) = e~/ 0<t
r—

and the initial condition

u(r,0) =1, 0<r<a.
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Note that J,(iz) = i”I,(z) and I,(iz) = i"J,(z) for all complex 2.

21. Solve the nonhomogeneous heat equation for the spherical shell?®

2 A
a_“—_—az(a—u+ga—u+r—4), a<r<p0<t

ot or?  ror
subject to the boundary conditions
Ou(c, t)

£ u(8,t) =0, 0<t

and the initial condition
u(r,0) =0, a<r<p.
Step 1: By introducing v(r,t) = ru(r,t), show that the problem sim-

plifies to
2 A
%;-)-:a2<%;§-+r—3), a<r<pB0<t

subject to the boundary conditions
ov(a,t)  v(a,t)
or «

and the initial condition

v(r,0) = 0, a<r<p.

=v(6,t) =0, 0<t

Step 2: Using Laplace transforms and variation of parameters, show
that the Laplace transform of u(r,t) is

A { sinh{g(8 — r)] * ag cosh(qn) +sinh(gn)
srq | aq cosh(gf) + sinh(gqf) J, (e +17)?

[ i)

Step 3: Take the inverse of U(r, s) and show that

r0=4{(55) [5-2 (5+5)

202 N sin[yn (8 — 7)) exp(—a 72t)/ sin 7n€7;) }
T 2 i) 1 otR) oGP

where 7, is the nth root of a7y + tan(¢y) =0 and 6 =1+ /L.

U(r,s) =

where ¢ = v/s/a and £ = — a.

25 Abstracted with permission from Malkovich, R. Sh., 1977: Heating
of a spherical shell by a radial current. Sov. Phys. Tech. Phys., 22
636. (©1977 American Institute of Physics.
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8.5 THE FOURIER TRANSFORM METHOD

We now consider the problem of one-dimensional heat flow in a rod
of infinite length with insulated sides. Although there are no boundary
conditions because the slab is of infinite dimension, we do require that
the solution remains bounded as we go to either positive or negative
infinity. The initial temperature within the rod is u(z,0) = f(z).

Employing the product solution technique of Section 8.3, u(z,?)
= X(2)T(t) with

T +a*XT =0 (8.5.1)

and
X"+2X =0. (8.5.2)

Solutions to (8.5.1)~(8.5.2) which remain finite over the entire z-domain
are

X(z) = E cos(kz) + Fsin(kz) (8.5.3)

and
T(t) = Cexp(—k?a’t). (8.5.4)

Because we do not have any boundary conditions, we must include all
possible values of k. Thus, when we sum all of the product solutions
according to the principle of linear superposition, we obtain the integral

u(z,t) = /OOO[A(IC) cos(kz) + B(k)sin(kz)] exp(—k?a’t) dk. (8.5.5)

We can satisfy the initial condition by choosing

A(k) = 7—1-/_0:0 f(z) cos(ke) dx (8.5.6)
and -~
B(k) = ;lr-/_oo f(z)sin(kz)dz, (8.5.7)
because the initial condition has the form of a Fourier integral
f(z) = /0 “LA(k) cos(kz) + B(k)sin(kz)] dk, (8.5.8)
when ¢t = 0.

Several important results follow by rewriting (8.5.8) as
1 (oo} o
we.)= 3 [ [ 5@ conth ostin) e
0 —o0

+/_°° F(&)sin(k€) sin(kx) d€ exp(—kZaQt) dk. (8.5.9)
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Combining terms,

= { | s@costie) costha)

+ sin(k€) sin(kz)] dg}e-k”a’t dk (8.5.10)

u(z,t)

1 o0 o0 2 2
—/ [/ f(€) cos(k(€ — z)] d&]e"‘ “tdk. (8.5.11)
T Jo -0

Reversing the order of integration,

uz,t) = %‘/j: (& [/000 cos[k(€ — z)] exp(—k?a’t) dk} d¢. (8.5.12)

The inner integral is called the source function. We may compute its
value through an integration on the complex plane; it equals

- Vi T (€~ 2)?
_ —k2q? (T -
/o cos[k(é — z)] exp(—k“a“t) dk = (4a2t) exp [ T |
(8.5.13)
if 0 < t. This gives the final form for the temperature distribution:

oo )2
u(z,t) = \/ﬁ/—w f(&)exp [-— (€4a2t) ] dg. (8.5.14)

e Example 8.5.1

Let us find the temperature field if the initial distribution is

To, z>0
u(z,0) = { _,}0’ <0, (8.5.15)

Then

T 0 2
u(z,t) = — 4a02_7rt /_oo exp [— (£4a21;) ] d¢

T = (§ —=z)°
+ N/W/o exp [— 1oy dé (8.5.16)
o0 oC
Sy [/ e~ dr — / e dr] (8.5.17)
ﬁ -z/2at z/2a\/t
z/2aV1 z/2aV/T
= % e dr = —?7_];3 e dr (8.5.18)
~z/2aVt 0

=Ty erf (2;\/{> , (8.5.19)
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where erf is the error function.
o Example 8.5.2: Kelvin's estimate of the age of the earth

In the middle of the nineteenth century Lord Kelvin?® estimated
the age of the earth using the observed vertical temperature gradient at
the earth’s surface. He hypothesized that the earth was initially formed
at a uniform high temperature Ty and that its surface was subsequently
maintained at the lower temperature of T's. Assuming that most of the
heat conduction occurred near the earth’s surface, he reasoned that he
could neglect the curvature of the earth, consider the earth’s surface
planar, and employ our one-dimensional heat conduction model in the
vertical direction to compute the observed heat flux.

Following Kelvin, we model the earth’s surface as a flat plane with
an infinitely deep earth below (z > 0). Initially the earth has the tem-
perature Tp. Suddenly we drop the temperature at the surface to Ts.
We wish to find the heat flux across the boundary at z = 0 from the
earth into an infinitely deep atmosphere.

The first step is to redefine our temperature scale v(z,t) = u(z,t)+
Ts, where v(z,t) is the observed temperature so that u(0,t) = 0 at the
surface. Next, in order to use (8.5.14), we must define our initial state
for z < 0. To maintain the temperature u(0,t) = 0, f(z) must be an
odd function or

. Ts, z>0
f(z) = {Ts—To L <0, (8.5.20)

From (8.5.14)
To—Ts {° —2)?
u(z,t) = — 04 271-'5“ exp [— (£4aéi) ] d¢

— 2
T;ZaTTE exp [—( = 2‘;) ] de (8.5.21)

= (To — Ts) erf (2 \[> (8.5.22)

following the work in the previous example.
The heat flux ¢ at the surface z = 0 is obtained by differentiating
(8.5.22) according to Fourier’s law and evaluating the result at z = 0:

ov k(Ts — To)
—K— - " 8.5.23
1= Kaz avnt ( )

26 Thomson, W., 1863: On the secular cooling of the earth. Philos.
Mag., Ser. 4,25, 157-170.
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The surface heat flux is infinite at ¢ = 0 because of the sudden appli-
cation of the temperature Ts at ¢ = 0. After that time, the heat flux
decreases with time. Consequently, the time ¢ at which we have the
temperature gradient dv(0,t)/0z is

__ (h-T5)?
~ ma?[0v(0,t)/0z)%

(8.5.24)

For the present near-surface thermal gradient of 25 K/km, Ty — Ts =
2000 K and a®> = 1 mm?/s, the age of the earth from (8.5.24) is 65
million years.

Although Kelvin realized that this was a very rough estimate, his
calculation showed that the earth had a finite age. This was a direct
frontal assault on the contemporary geological principle of uniformitar:-
anism that the earth’s surface and upper crust had remained unchanged
in temperature and other physical quantities for millions and millions
of years. This debate would rage throughout the latter half of the nine-
teenth century and feature such luminaries as Kelvin, Charles Darwin,
Thomas Huxley, and Oliver Heaviside.2” Eventually Kelvin’s arguments
would prevail and uniformitarianism would fade into history.

Today, Kelvin’s estimate is of academic interest because of the dis-
covery of radioactivity at the turn of the twentieth century. The ra-
dioactivity was assumed to be uniformly distributed around the globe
and restricted to the upper few tens of kilometers of the crust. Then
geologists would use observed heat fluxes to discover the distribution of
radioactivity within the solid earth.?® Today we know that the interior
of the earth is quite dynamic; the oceans and continents are mobile and
interconnected according to the theory of plate tectonics. However, geo-
physicists still use measured surface heat fluxes to infer the interior?® of
the earth.

Problems

For problems 1-4, find the solution of the heat equation

ou_ o
ot — = 8z%’

27 See Burchfield, 3. D., 1975: Lord Kelvin and the Age of the Earth,
Science History Publ., 260 pp.

28 See Slichter, L. B., 1941: Cooling of the earth. Bull. Geol. Soc.
Am., 52, 561-600.

2% Sclater, J. G., Jaupart, C., and Galson, D., 1980: The heat flow
through oceanic and continental crust and the heat loss of the earth.
Rev. Geophys. Space Phys., 18, 269-311.

—o <z <oo,l<t
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subject to the stated initial conditions.

1.
1, |z] < b

u(z,0) = {0, lz| > b

Lovering3® has applied this solution to problems involving the cooling
of lava.

2.
u(z,0)= e~blel
3.
0, —c0o<e <0
u(:c,O):{To, 0<z<b
0, b<z <o
4.

u(z,0) = 6(x)

5. Solve the spherically symmetric equation of diffusion,3!

Ou 2(8211 2 du
a ool

i 2 r@r)’ 0<r<oo,0<t

with u(r,0) = uo(r).

Step 1: Assuming v(r,t) = ru(r,t), show that the problem can be recast
as

ov 0%

52(16—7.2' 0ST’<O0,0<t

with v(r,0) = ruo(r).

Step 2: Using (8.5.14), show that the general solution is

1 e r—p\°
,t - — _
u(r, t) 2a'l‘\/ﬁ/o uo(p){exp[ (2a\/t_) ]
2
r+p
—exp |- (ZX2 dp.
o |- (52) o
30 Lovering, T. S., 1935: Theory of heat conduction applied to geo-
logical problems. Bull. Geol. Soc. Am., 46, 69-94.
31 Prom Shklovskii, I. S. and Kurt, V. G., 1960: Determination of

atmospheric density at a height of 430 km by means of the diffusion of
sodium vapors. ARS J., 30, 662-667 with permission.
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Hint: What is the constraint on (8.5.14) so that the solution remains
radially symmetric.

Step 3: For the initial concentration of

Ng, 0<r<r
uo(r) = { 00 r_> ro ’

show that
o) = el (7)ot (37)
e (32 o [ ) M

Tﬁ
where erf 1s the error function.

+

8.6 THE SUPERPOSITION INTEGRAL

In our study of Laplace transforms, we showed that we may con-
struct solutions to ordinary differential equations with a general forcing
f(t) by first finding the solution to a similar problem where the forcing
equals Heaviside’s step function. Then we can write the general solution
in terms of a superposition integral according to Duhamel’s theorem. In
this section we show that similar considerations hold in solving the heat
equation with time-dependent boundary conditions or forcings.

Let us solve the heat condition problem

g—;‘:azg—i‘g, 0<z<L,0<t (8.6.1)
with the boundary conditions
u(0,t) =0, u(L,t)=f(t), 0<t (8.6.2)
and the initial condition
u(z,0)=0, O<z<L. (8.6.3)

The solution of (8.6.1)-(8.6.3) is difficult because of the time-de-
pendent boundary condition. Instead of solving this system directly, let
us solve the easier problem

dA  ,8%4

'—87—0 —8;2—, 0<z<L,0<t (864)
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with the boundary conditions
A(0,t) =0, A(L,t)=1, O0<t (8.6.5)
and the initial condition
A(z,0)=0, O<z<L. (8.6.6)

Separation of variables yields the solution

r 2<(-1)" . /nmz a?n?rit
A =T+ =" (—L—) exp (— — ) . (86.7)
n=1

n

Consider the following case. Suppose that we maintain the temper-
ature at zero at the end £ = L until ¢ = 7, and then raise it to the value
of unity. The resulting temperature distribution equals zero everywhere
when t < 7, and equals A(z,t — m1) for t > 7. We have merely shifted
our time axis so that the initial condition occurs at t = 7.

Consider an analogous, but more complicated, situation of the tem-
perature at the end position £ = L held at f(0) from¢t =0tot =7
at which time we abruptly change it by the amount f(r1) — f(0) to
the value f(71). This temperature remains until t = 7 when we again
abruptly change it by an amount f(r;) — f(71). We can imagine this
process continuing up to the instant t = 7,,. Because of linear superpo-
sition, the temperature distribution at any given time equals the sum of
these temperature increments:

u(z,t) = f(0)A(z,t) + [f(r1) — f(0)])A(z,t — 7)
+ [f(r2) = f(r)] Az, t = m2) + - -
() = F(ra_1)A(2,t = 7a), (8.6.8)

where 7, is the time of the most recent temperature change. If we write
Afk = f(Tk) - f(Tk_l) and ATk =Tk — Tk—1, (8.6.9)

(8.6.8) becomes

u(z,t) = f(0)A(z,t) + Z Azt — Tk)-i—"’_&'ATk. (8.6.10)
k=1 k

Consequently, in the limit of Ar, — 0, (8.6.10) becomes

w(z,t) = F0)A(z, 1) + /0 Azt — 1)f'(r) dr, (8.6.11)
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assuming that f(t) is differentiable. Equation (8.6.11) is the superpo-
sition integral. We can obtain an alternative form by integration by
parts:

u(z,t) = f(t)A(z,0) — /0 f(r)aA(x—éf__—T—) dr (8.6.12)
u(z,t):f(t)A(x,O)—i—/o f(T)% dr, (8.6.13)
because

0A(z,t—1)  O0A(z,t—T1)
or - ot '
To illustrate the superposition integral, suppose f(t) = ¢. Then, by

(8.6.11),
sm( ”)exp [—fgﬁ(t— 7')] }dr

u(z,t):/{
(8.6.15)

zt 202 S (-1)* . /nmx a’n’n?t
:f_a27r3z n3 sm(L)[l—exp<— L2 )]
n=1

(8.6.16)

(8.6.14)

hla

200
S

o Example 8.6.1: Temperature oscillations in a wall heated by an alternating
current

In addition to finding solutions to heat conduction problems with
time-dependent boundary conditions, we may also apply the superposi-
tion integral to the nonhomogeneous heat equation when the source is
time dependent. Jeglic3? used this technique in obtaining the tempera-
ture distribution within a slab heated by alternating electric current. If
we assume that the flat plate has a surface area A and depth L, then the
heat equation for the plate when electrically heated by an alternating
current of frequency w is

du 202 29 .,
— = t t 8.6.17
5 "% a2 pCpALsmw’ 0<z< L0<t, (8.6.17)

32 Jeglic, F. A., 1962: An analytical determination of temperature
oscillations in a wall heated by alternating current. NASA Tech. Note
No. D-1286.
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where ¢ is the average heat rate caused by the current, p is the density,
C, is the specific heat at constant pressure, and a? is the diffusivity of
the slab. We will assume that we have insulated the inner wall so that

ou(0,t)
=0, o<, (8.6.18)

while we allow the outer wall to radiatively cool to free space at the
temperature of zero

Ou(L,t)
"o

+hu(L,t)=0, 0<t, (8.6.19)

where & is the thermal conductivity and h is the heat transfer coefficient.
The slab is initially at the temperature of zero

u(z,0) =0, 0<z<L. (8.6.20)

To solve the heat equation, we first solve the simpler problem of

0A ,0%A
ik 67_1’ 0<z<L,0<t (8.6.21)

with the boundary conditions
BA(;(;:,t) =0 and na—A—é—i—’-ﬂ +hA(L,t)=0, 0<t (8.6.22)

and the initial condition
A(z,0) =0, O<az< L. (8.6.23)

The solution A(z,t) is the indicial admittance because it is the response
of a system to forcing by the step function H(t).

We will solve (8.6.21)-(8.6.23) by separation of variables. We begin
by assuming that A(z,t) consists of a steady-state solution w(z) plus a
transient solution v(z,t), where

dw'(z)=~1, w'(0)=0, sw'(L)+hw(L)=0,  (8.6:24)

ov(L, ¢)

2
du _ 8%  9w(01) _ 0, k=g +hv(L,1) =0 (8.6.25)

o =% 8z Oz

and

v(z,0) = —w(z). (8.6.26)

Solving (8.6.24),
L? —2* kL

s T (8.6.27)

w(z) =
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Table 8.6.1: The First Six Roots of the Equation k, tan(k,) = h*.

h* ky ko ks k4 ks ke

0.001 0.03162 3.14191 6.28334 9.42488 12.56645 15.70803
0.002 0.04471 3.14223 6.28350 9.42499 12.56653 15.70809
0.005 0.07065 3.14318 6.28398 9.42531 12.56677 15.70828
0.010 0.09830 3.14477 6.28478 9.42584 12.56717 15.70860
0.020 0.14095 3.14795 6.28637 9.42690 12.56796 15.70924
0.050 0.22176 3.15743 6.29113 9.43008 12.57035 15.71115
0.100 0.31105 3.17310 6.29906 9.43538 12.57432 15.71433
0.200 0.43284 3.20393 6.31485 9.44595 12.58226 15.72068
0.500 0.65327 3.29231 6.36162 9.47748 12.60601 15.73972
1.000 0.86033 3.42562 6.43730 9.52933 12.64529 15.77128
2.000 1.07687 3.64360 6.57833 9.62956 12.72230 15.83361
5.000 1.31384 4.03357 6.90960 9.89275 12.93522 16.01066
10.000 1.42887 4.30580 7.22811 10.20026 13.21418 16.25336
20.000 1.49613 4.49148 7.49541 10.51167 13.54198 16.58640
oo 1.57080 4.71239 7.85399 10.99557 14.13717 17.27876

Turning to the transient solution v(z,t), we use separation of variables
and find that

ood 27,2
v(z,t) = Z C, cos (IC"T:C) exp (-—afznt) , (8.6.28)
n=1

where k, is the nth root of the transcendental equation:

kntan(k,)=hL/k = h*. (8.6.29)

Table 8.6.1 gives the first six roots for various values of hL /.

Our final task is to compute C,. After substituting ¢ = 0 into
(8.6.28), we are left with a orthogonal expansion of —w(z) using the
eigenfunctions cos(kn,z/L). From (6.3.4),

[E—uw(e)cos(baz/L)dr  —L3sin(kn)/(a%k2)
Cn = [ cos?(knz/L)de  Llkn +sin(2kn)/2]/(2kn) (8.6.30)
- 272 sin(ky,) (8‘6‘31)

 a2k2[ky, + sin(2k,) /2]
Combining (8.6.28) and (8.6.31),

v(z,t) = _2 sin(kn) knz a?knt
T Ta B2k, +sin(2ka) /2] N ) PN )

(8.6.32)
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Consequently, A(z,t) equals
P2 sl

2a? ha?

207 & sin(ky,) knx a’k2t
T LB kn + Si0(260)/2] (T) xp (“ 12 ) '

n=1 "[

Az,t) =

We now wish to use the solution (8.6.33) to find the temperature
distribution within the slab when it is heated by a time-dependent source
F(t). Asin the case of time-dependent boundary conditions, we imagine
that we can break the process into an infinite number of small changes to
the heating which occur at the times ¢t = 7, t = 73, etc. Consequently,
the temperature distribution at the time ¢ following the change at t = 7,
and before the change at t = 7,41 is

u(z,t) = f(0)A(=z,t) + Z Az, t— Tk)%fATk, (8.6.34)
k=1
where
Afy=f(m)— f(m-1) and  An =7 —7m-1.  (8.6.35)

In the limit of Am, — 0,

t

u(z,t) = f(0)A(z,t) + /0 Az, t —7)f'(r)dr (8.6.36)

= f(t)A(z,0) + /0 f(r)?-A(”(;—_T)dr. (8.6.37)

In our present problem,

—_ 2‘] sa2 ! — qu :
f(t) = o, AL sin®(wt), @) = oC, AL sin(2wt). (8.6.38)
Therefore,
2qw v L? —z* &L
u(z,t) = P—C—pﬂ/o sm(2wr){——%2— + ha?
WIS sinlh) (e
a? k2[kn + sin(2k,)/2] L

n=1

con [ ZEC i (s
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distance time

Figure 8.6.1: The nondimensional temperature a?4pCpu(z,t)/qL
within a slab that we heat by alternating electric current as a func-
tion of position z/L and time a?t/L? when we insulate the £ = 0 end
and let the £ = L end radiate to free space at temperature zero. The
initial temperature is zero, hL/x = 1, and a?/(L%w) = 1.

q L? —2? kL .
t)=-— — 2
U(.’L‘, ) pCpAL ( 2(12 + ha2) COS( wT)lO

4L%qw = sin(k,) exp(—a®k2t/L?) cos knz
a2pCp AL —~ k2[kn, + sin(2k,)/2] L

t 212
x/ sin(2wr) exp (a Lk;T> dr (8.6.40)
0

4L L? —z? K
= azApCp{[ T + T [1 — cos(2wt)]

= 4sin(ky,) cos(knz/L)
T k2[k + sin(2kn)/2][4 + a%ki /(L4w?)]

dE

Figure 8.6.1 illustrates (8.6.41) for hL/k = 1 and a?/(L?w) = 1. The
oscillating solution, reflecting the periodic heating by the alternating
current, rapidly reaches equilibrium. Because heat is radiated to space
at z = L, the temperature is maximum at £ = 0 at any given instant as
heat flows from z =0 to z = L.

a?k2
2 sin(2wt) — 2 cos(2wt) + 2 exp ( Lk;t)] } (8.6.41)
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Problems

1. Solve the heat equation33

Ou _ zau

5 =05 0<z<L0<t

subject to the boundary conditions u(0,t) = u(L,t) = f(t), 0 < t and
the initial condition u(z,0)=0,0 <z < L.

Step 1: First solve the heat conduction problem

31—05?, O<ze<L,0<t

subject to the boundary conditions A(0,t) = A(L,t) =1, 0 <t and the
initial condition A(z,0) =0, 0 < £ < L. Show that

(2n - L

Step 2: Use Duhamel’s theorem and show that
(z,t) = 47“1 2(2" —1)sin [( )”] -a®(2n-1)°z%1/L?

X/ f(T)ea2(2n—1)27rzr/L"’ dr.
0

2. A thermometer measures temperature by the thermal expansion of
a liquid (usually mercury or alcohol) stored in a bulb into a glass stem
containing an empty cylindrical channel. Under normal conditions, tem-
perature changes occur sufficiently slow so that the temperature within
the liquid is uniform. However, for rapid temperature changes (such as
those that would occur during the rapid ascension of an airplane or me-
teorological balloon), significant errors could occur. In such situations
the recorded temperature would lag behind the actual temperature be-
cause of the time needed for the heat to conduct in or out of the bulb.

33 From Tao, L. N., 1960: Magnetohydrodynamic effects on the for-
mation of Couette flow. J. Aerosp. Sci., 27, 334-338 with permission.
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d34

During his investigation of this question, McLeod®* solved

Ou  ,10 ( Ou
E—G;E(T-é;‘-), 0ST’<b,0<t

subject to the boundary conditions lim,_q |u(r,t)] < oo and u(b,t) =
¢(t), 0 < t and the initial condition u(r,0) = 0, 0 < » < b. The analysis
was as follows:

Step 1: First solve the heat conduction problem

94  ,10 [ 04
a‘t _arar(r—a—;), 057‘<b,0<t

subject to the boundary conditions lim,_.¢ |A(r,t)] < co and A(b,¢) =1,
0 < t and the initial condition A(r,0) =0, 0 < r < b. Show that

Jo(k T/b) a?k21/b2?
rt)_1—2zk Tk Y

where Jo(k,) = 0.
Step 2: Use Duhamel’s theorem and show that

gg N kn Jo(knr/b)

—a?k3(t-7)/b%
710k (T)e dr.

u(r,t) =

n=1
Step 3: If p(t) = Gt, show that

Jo(k T‘/b b2 —a?k2t/b2
T't)—2GZk Jl(k) [ Zk?l (e nt/ —1) .

McLeod found that for a mercury thermometer of 10-cm length a
lag of 0.01°C would occur for a warming rate of 0.032°C s™! (a warming
gradient of 1.9°C per thousand feet and a descent of one thousand feet
per minute). Although this is a very small number, when he included

34 Reproduced with acknowledgement to Taylor and Francis, Publish-
ers, from McLeod, A. R., 1919: On the lags of thermometers with spher-
ical and cylindrical bulbs in a medium whose temperature is changing at
a constant rate. Philos. Mag., Ser. 6, 37, 134-144. See also Bromwich,
T. J. ’A., 1919: Examples of operational methods in mathematical
physics. Philos. Mag., Ser. 6, 37, 407-419; McLeod, A. R., 1922: On
the lags of thermometers. Philos. Mag., Ser. 6, 43, 49-70.
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the surface conductance of the glass tube, the lag increased to 0.85°C.
Similar problems plague bimetal thermometers3® and thermistors3® used
in radiosondes (meteorological sounding balloons).

3. A classic problem?®” in fluid mechanics is the motion of a semi-infinite
viscous fluid that results from the sudden movement of the adjacent wall
starting at ¢ = 0. Initially the fluid is at rest. If we denote the velocity
of the fluid parallel to the wall by u(z,t), the governing equation is

o _ o
- Voz2

with the boundary conditions

0<z<o0,0<t

u(0,t) = V(¢), Iim u(z,t) — 0, 0<t
T=—=00
and the initial condition u(z,0) =0, 0 < z < 0.

Step 1: Find the step response by solving

04 _ 0%
ot _Va.’cz’

subject to the boundary conditions

A(0,t)=1 and zlinolo A(z,t) — 0, 0<t

0<z<o0,0<t

and the initial condition A(z,0) = 0, 0 < £ < co. Show that
z 2 [

A(z,t) = erfc (————) = —

( ) 2yt \/7—I' z/2V/vi

where erf is the error furiction. Hint: Use Laplace transforms.

e dn,

Step 2: Use Duhamel’s theorem and show that the solution is

z exp(—2?/4vT)

t
u(:c,t):[) V(t—T)——T\/;rT—T.é——dT
(e o] 2 2
:—2—/ V(t—- x2>€—n dn
T Jo /Aot 4vn

35 Mitra, H. and Datta, M. B., 1954: Lag coefficient of bimetal ther-
mometer of chronometric radiosonde. Indian J. Meteorol. Geophys., 5,
257-261.

36 Badgley, F. 1., 1957: Response of radiosonde thermistors. Rev. Sci.
Instrum., 28, 1079-1084.

37 This problem was first posed and partially solved by Stokes, G. G.,
1850: On the effect of the internal friction of fluids on the motions of
pendulums. Proc. Cambridge Philos. Soc., 9, Part II, [8]-[106].
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8.7 NUMERICAL SOLUTION OF THE HEAT EQUATION

In the previous chapter we showed how we may use finite difference

techniques to solve the wave equation.

In this section we show that

similar considerations hold for the heat equation.

Starting with the heat equation

ou _
at

,0%u
=% 2

(8.7.1)

we must first replace the exact derivatives with finite differences. Draw-

ing upon our work in Section 7.6,

ou(zm,tn) _ uptl —ul
5t = Y, + O(At) (8.7.2)
and
%u (xm; n) _ ur';l+1 - 2unm + u:ln—l 2
o = e +0[(Az)?), (8.7.3)

where the notation u], denotes u(zm,tn

). Figure 8.7.1 illustrates our

numerical scheme when we hold both ends at the temperature of zero.
Substituting (8.7.2)—(8.7.3) into (8.7.1) and rearranging,

a?At

m = (Az)? (un Umn41

up Tt = Uy 4 ——

- 2un +ul,

(8.7.4)

-1)-

The numerical integration begins with n = 0 and the value of u2,,, u),

and u2,_, are given by f(mAxz).

Once again we must check the convergence, stability and consistency

of our scheme. We begin by writing u, ., uy,_; and up;

n+1 i terms of the

exact solution u and its derivatives evaluated at the pomt T, = mAzx

and t, = nAt. By Taylor’s expansion,

ou|™ 02u m
up 1 = up +A1‘6—z +1 (A:c)2
n Ou|™ 62u m
unm—l =Uy — Al‘(—?—; . %(A )2
and
n+1 +1 2v v
at +2(AY) 8t2

3 |m

%(A:c)sa - , (8.7.5)
Bu|™

- %(Axf'é;c—3 + .- (8.7.6)
Bul™

+1(At)3aT;‘ +... (8.7.7)
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t A

n+1
u
m
un u " u "
mleg m ¢ m+l
S
1 v 1
2~ L |
=

LAx-d—

X
=

0
Figure 8.7.1: Schematic of the numerical solution of the heat equation
when we hold both ends at a temperature of zero.

Substituting into (8.7.4), we obtain

n+1 n n n n
um+ —u . a2 Um+1 — 2um + Uy

At (Az)?
Ou o2u\|™ o2u|™ otu|™
= <§ - azw) i, + %Atav . - TIE(GAZ)La—ZZ n+ e
(8.7.8)

The first term on the right side of (8.7.8) vanishes because u(z, t) satisfies
the heat equation. Thus, in the limit of Az — 0, At — 0, the right side
of (8.7.8) vanishes and the scheme is consistent.

To determine the stability of the explicit scheme, we again use the
Fourier method. Assuming a solution of the form:

u™ = 'mPeinA (8.7.9)

we substitute (8.7.9) into (8.7.4) and find that
et —1 26i0—2+e‘i9

= 8.7.10

At YT (Ao ( )
or 20 ;
ix _q_g0°8t . 5[0

et =1 4—_—(A:c)2 sin <2> . (8.7.11)
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The quantity e** will grow exponentially unless

a’At 4
-1<1- 2= . 7.
1<1 4(Ax) sin (2) <1 (8.7.12)

The right inequality is trivially satisfied if a?At/(Az)? > 0 while the
left inequality yields
a’At < 1
(Az)? = 2sin?(6/2)’

(8.7.13)

leading to the stability condition 0 < a®*At/(Az)? < L. This is a
rather restrictive condition because doubling the resolution (halfing Az)
requires that we reduce the time step by a quarter. Thus, for many
calculations the required time step may be unacceptably small. For
this reason, many use an implicit form of the finite differencing (Crank-
Nicolson implicit method®®):

uptl —u?  a? [u’,:,_H -l 4+, u',:;H ulFl 4yt th
At 2 (Az)? (Az)? ’
(8.7.14)
although it requires the solution of a simultaneous set of linear equations.
However, there are several efficient methods for their solution.

Finally we must check and see if our explicit scheme converges to the
true solution. If we let e} denote the difference between the exact and
our finite differenced solution to the heat equation, we can use (8.7.8)
to derive the equation governing e}, and find that

ntl a’At

€m =em+ (o) (ems1 — 2em + ep_1) + O[(A1)? + At(Az)?],
(8.7.15)
for m=1,2,..., M. Assuming that a®At/(Az)? < 1, then
nal a’At a’At a’At
1] < Fa sl + 1= 2555 ] el + G et
+ A[(At)? + At(Az)? (8.7.16)
< |lenll + A[(AY)? + At(Az)?, (8.7.17)
where |len|| = maxm=0,1,  m |e}|. Consequently,
llent1ll < lleall + Al(A1)? + At(Az)?). (8.7.18)

38 Crank, J. and Nicoison, P., 1947: A practical method for numeri-
cal evaluation of solutions of partial differential equations of the heat-
conduction type. Proc. Cambridge. Philos. Soc., 43, 50-67.
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Figure 8.7.2: The growth of error ||e,]|| as a function of a?t for various

resolutions. For the top line, Az = 0.1; for the middle line, Az = 0.01;
and for the bottom line, Az = 0.001.

Because ||eg]| = 0 and nAt <t,, we find that
llens1l] < An[(At)? + At(Az)?] < At,[At + (Az)?). (8.7.19)

As Az — 0, At — 0, the errors tend to zero and we have convergence.
We have illustrated (8.7.19) in Figure 8.7.2 by using the finite difference
equation (8.7.4) to compute ||e,|| during a numerical experiment that
used a?At/(Az)? = 0.5 and f(z) = sin(wz). Note how each increase of
resolution by 10 results in a drop in the error by 100.

The following examples illustrate the use of numerical methods.

o Example 8.7.1

For our first example, we redo Example 8.3.1 with a?At/(Az)? =
0.499 and 0.501. As Figure 8.7.3 shows, the solution with a2At/(Az)? <
1/2 performs well while small-scale, growing disturbances occur for
a’At/(Az)? > 1/2. This is best seen at ¢ = 0.2. It should be noted
that for the reasonable Az = L/100, it takes approximately 20,000 time
steps before we reach a®t/L? = 1.

o Example 8.7.2

In this example, we redo the previous example with an insulated
end at x = L. Using the centered differencing formula,

UZ_H - u'i_l = 0, (8.7.20)
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Figure 8.7.3: The numerical solution u(z,t) of the heat equation with
a’At/(Az)? = 0.499 (solid line) and 0.501 (jagged line) at various posi-
tions ' = «/L and times t’ = a®t/L? using (8.7.4). The initial temper-
ature u(z,0) equals 4z’(1 — z’) and we hold both ends at a temperature
of zero.

because u;(0,t) = 0. Also, at i =L,

u"+1—u"+-—-—a2At(" —2u} +u}_,) (8.7.21)
L UL (Az)? UL+1 Urp T Uur_a)- -l

Eliminating u} ; between the two equations,

n n a’At n n
uL+1 =uy + (K;)—z (2UL_1 - 2UL) . (8722)

Figure 8.7.4 illustrates our numerical solution at various positions and
times.
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Figure 8.7.4: Same as Figure 8.7.3 except we have an insulated end at
z = L. We have not plotted the jagged line in the bottom two frames
because the solution has grown very large.

Project: Implicit Numerical Integration of the Heat Equation

The difficulty in using explicit time differencing to solve the heat
equation is the very small time step that must be taken at moderate
spatial resolutions to ensure stability. This small time step translates
into an unacceptably long execution time. In this project you will in-
vestigate the Crank-Nicolson implicit scheme which allows for a much
more reasonable time step.

Step 1: Develop code to use the Crank-Nicolson equation (8.7.14) to
numerically integrate the heat equation. To do this, you will need a
tridiagonal solver to find u?t!. This is explained at the end of Section
11.1. However, many numerical methods books®® actually have code
already developed for your use. You might as well use this code.

Step 2: Test out your code by solving the heat equation given the
initial condition u(z,0) = sin(rz) and the boundary conditions u(0,t) =

39 For example, Press, W. H., Flannery, B. P., Teukolsky, S. A., and
Vetterling, W. T., 1986: Numerical Recipes: The Art of Scientific Com-
puting, Cambridge University Press, Cambridge, Section 2.6.
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Figure 8.7.5: The numerical solution u(z,t) of the heat equation
u; = a®ug, using the Crank-Nicolson method. The solid line gives the
numerical solution with a?At = 0.0005 while the dashed line gives the
solution for a?At = 0.005. Both ends are held at zero with an initial
condition of u(z,0) = 0 for 0 < = < { and u(z,0) = 1 for j<z<l

u(1,t) = 0. Find the solution for various At’s with Az = 0.01. Compare
this numerical solution against the exact solution which you can find.
How does the error (between the numerical and exact solutions) change
with At? For small At, the errors should be small. If not, then you
have a mistake in your code.

Step 3: Once you have confidence in your code, discuss the behavior
of the scheme for various values of Az and At for the initial condition
u(z,0) = 0 for 0 < z < 3 and u(z,0) = 1 for 1 < = < 1 with the
boundary conditions u(0,t) = u(1,t) = 0. Although you can take quite
a large At, what happens? Did a similar problem arise in Step 27
Explain your results.



Chapter 9

Laplace’s Equation

In the previous chapter we solved the one-dimensional heat equa-
tion. Quite often we found that the transient solution died away, leav-
ing a steady state. The partial differential equation that describes the
steady state for two-dimensional heat conduction is Laplace’s equation:

Pu  O%u
322 + £l =0. (9.0.1)

In general, this equation governs physical processes where equilibrium
has been reached. It also serves as the prototype for a wider class of
elliptic equations:

%u 0%u 0%u Oou Bu
a(:c,t)é—:;:—z + b(x,t)éza—t + C(IL‘,t)—aF =f (l‘,t, u, -a;, 5?) s (902)

where b2 < 4ac. Unlike the heat and wave equations, there are no initial
conditions and the boundary conditions completely specify the solution.
In this chapter we present some of the common techniques for solving
this equation.
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9.1 DERIVATION OF LAPLACE’S EQUATION

Let us imagine a thin, flat plate of heat-conducting material be-
tween two sheets of insulation. A sufficient time has passed so that
the temperature depends only on the spatial coordinates x and y. We
now apply the law of conservation of energy (in rate form) to a small
rectangle with sides Az and Ay.

Let ¢:(x,y) and gy(z,y) denote the heat flow rates in the z- and
y-direction, respectively. Conservation of energy requires that the heat
flow into the slab must equal the heat flow out of the slab if there is no
storage or generation of heat. Now

rate in = ¢, (z,y + Ay/2)Ay + ¢y (= + Az /2,y)Az (9.1.1)
and
rate out = ¢z(z+ Az, y+Ay/2)Ay+qy(z+ Az/2,y+ Ay)Az. (9.1.2)
If the plate has unit thickness,

l9:(2,y + Ay/2) — gz(z + Az, y + Ay/2)]Ay
+[gy(z + Az/2,y) — qy(z + Az /2,y + Ay)]Az = 0. (9.1.3)

Upon dividing through by AzAy, we obtain two differences quotients
on the left side of (9.1.3). In the limit as Az and Ay tend to zero, they
become partial derivatives, giving

04z | Ogy

+

e By =0 (9.1.4)

for any point (z,y).
We now employ Fourier’s law to eliminate the rates ¢, and gy,

yielding
0 [ ,0u 0 ( ,0u\ _
a—l' (a 6—1‘) + ay (a 8y) = 0, (915)

if we have an isotropic (same in all directions) material. Finally, if a2 is
constant, (9.1.5) reduces to

0%u  O%u

which is the two-dimensional, steady-state heat equation (i.e., u; ~ 0 as
t — 00).

Solutions of Laplace’s equation (called harmonic functions) differ
fundamentally from those encountered with the heat and wave equa-
tions. These latter two equations describe the evolution of some phe-
nomena. Laplace’s equation, on the other hand, describes things at
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Figure 9.1.1: Today we best remember Pierre-Simon Laplace (1749-
1827) for his work in celestial mechanics and probability. In his five
volumes Traité de Mécanique céleste (1799-1825), he accounted for the
theoretical orbits of the planets and their satellites. Laplace’s equation
arose during this study of gravitational attraction. (Portrait courtesy
of the Archives de I’Académie des sciences, Paris.)

equilibrium. Consequently, any change in the boundary conditions will
affect to some degree the entire domain because a change to any one
point will cause its neighbors to change in order to reestablish the equi-
librium. Those points will, in turn, affect others. Because all of these
points are in equilibrium, this modification must occur instantaneously.

Further insight follows from the mazimum principle. If Laplace’s
equation governs a region, then its solution cannot have a relative max-
imum or minimum inside the region unless the solution is constant.! If

1 See Courant, R. and Hilbert, D., 1962: Methods of Mathematical
Physics, Vol. II: Partial Differential Equations, Interscience, New York,
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we think of the solution as a steady-state temperature distribution, this
principle is clearly true because at any one point the temperature cannot
be greater than at all other nearby points. If that were so, heat would
flow away from the hot point to cooler points nearby, thus eliminating
the hot spot when equilibrium was once again restored.

It is often useful to consider the two-dimensional Laplace’s equation
in other coordinate systems. In polar coordinates, where ¢ = r cos(f),
y = rsin(f), and z = 2, Laplace’s equation becomes

8%u  10u 8%u

if the problem possesses axisymmetry. On the other hand, if the solution
is independent of z, Laplace’s equation becomes

u  10u 1 8%

In spherical coordinates, & = rcos(p)sin(d), y = rsin(p)sin(8),
and z = rcos(f), where r2 = 22 + y? + 22, 0 is the angle measured
down to the point from the z-axis (colatitude) and ¢ is the angle made
between the z-axis and the projection of the point on the zy plane. In
the case of axisymmetry (no ¢ dependence), Laplace’s equation becomes

8 [ ,0u 1 o0 1]. oul _
™ (r 5-;) + Sn(@) 56 [sm(ﬁ)—a—a] =0. (9.1.9)

9.2 BOUNDARY CONDITIONS

Because Laplace’s equation involves time-independent phenomena,
we must only specify boundary conditions. As we discussed in Section
8.2, we may classify these boundary conditions as follows:

1. Dirichlet condition: u given

du

on

2. Neumann condition: given, where n is the unit normal

direction

3. Robin condition: u + oz?E given

on

along any section of the boundary. In the case of Laplace’s equation,
if all of the boundaries have Neumann conditions, then the solution is

326-331 for the proof.
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not unique. This follows from the fact that if u(z, y) is a solution, so is
u(z,y) + ¢, where ¢ is any constant.

Finally we note that we must specify the boundary conditions along
each side of the boundary. These sides may be at infinity as in problems
with semi-infinite domains. We must specify values along the entire
boundary because we could not have an equilibrium solution if any por-
tion of the domain was undetermined.

9.3 SEPARATION OF VARIABLES

As in the case of the heat and wave equations, separation of vari-
ables is the most popular technique for solving Laplace’s equation. Al-
though the same general procedure carries over from the previous two
chapters, the following examples fill out the details.

e Example 9.3.1: Groundwater flow in a valley

Over a century ago, a French hydraulic engineer named Henri-
Philibert-Gaspard Darcy (1803-1858) published the results of a labo-
ratory experiment on the flow of water through sand. He showed that
the apparent fluid velocity q relative to the sand grains is directly pro-
portional to the gradient of the hydraulic potential —kV¢, where the
hydraulic potential ¢ equals the sum of the elevation of the point of
measurement plus the pressure potential (p/pg). In the case of steady
flow, the combination of Darcy’s law with conservation of mass V-q = 0
yields Laplace’s equation V2 = 0 if the aquifer is isotropic (same in all
directions) and homogeneous.

To illustrate how separation of variables may be used to solve La-
place’s equation, we shall determine the hydraulic potential within a
small drainage basin that lies in a shallow valley. See Figure 9.3.1. Fol-
lowing Té6th,? the governing equation is the two-dimensional Laplace
equation

%u  0%u
52 o

along with the boundary conditions

0, O0<z<L,0<y<az (9.3.1)

u(z, z0) = gzo + gcx, (9.3.2)

ur(0,y) = uz(L,y) =0 and uy(2,0) =0, (9.3.3)

where u(z, y) is the hydraulic potential, g is the acceleration due to grav-
ity, and c gives the slope of the topography. The conditions uz(L,y) = 0

2 Téth, J., J. Geophys. Res., 67, 4375-4387, 1962, copyright by the
American Geophysical Union.
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Figure 9.3.1: Cross section of a valley.

and u,(z,0) = 0 specify a no-flow condition through the bottom and
sides of the aquifer. The condition u,(0, y) = 0 ensures symmetry about
the z = 0 line. Equation (9.3.2) gives the fluid potential at the water
table, where zg is the elevation of the water table above the standard
datum. The term gex in (9.3.2) expresses the increase of the potential
from the valley bottom toward the water divide. On average it closely
follows the topography.

Following the pattern set in the previous two chapters, we assume
that u(z,y) = X(¢)Y (y). Then (9.3.1) becomes

X"Y + XY” =0. (9.3.4)

Separating the variables yields

XII Y/l

~ =7 (9.3.5)
Both sides of (9.3.5) must be constant, but the sign of that constant is
not obvious. From previous experience we anticipate that the ordinary
differential equation in the z-direction will lead to a Sturm-Liouville
problem because it possesses homogeneous boundary conditions. Pro-
ceeding along this line of reasoning, we consider three separation con-
stants.

Trying a positive constant (say, m?), (9.3.5) separates into the two

ordinary differential equations

X"-m?!X=0 and Y"+m’Y =0, (9.3.6)
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which have the solutions
X(z) = Acosh(mz) + Bsinh(mz) (9.3.7)

and
Y (y) = C cos(my) + Dsin(my). (9.3.8)
Because the boundary conditions (9.3.3) imply X'(0) = X'(L) = 0,
both A and B must be zero, leading to the trivial solution u(z, y)=0.
When the separation constant equals zero, we find a nontrivial so-
lution given by the eigenfunction Xo(z) =1 and Yo(y) = %Ao + Boy.
However, because Yg(0) = 0 from (9.3.3), Bo = 0. Thus, the particular

solution for a zero separation constant is uo(z,y) = Ao/2.
Finally, taking both sides of (9.3.5) equal to —k?,

X" +k2X =0 and Y'-kY=0 (9.3.9)
The first of these equations, along with the boundary conditions X’(0) =
X'(L) = 0, gives the eigenfunction Xy, (z) = cos(knz), with k, = nw/L,
n=1,2,3,... The function Y, (y) for the same separation constant is
Yo (y) = An cosh(kny) + Bn sinh(kny). (9.3.10)

We must take By, = 0 because Y, (0) = 0.
We now have the product solution X, (2)Y»(y), which satisfies La-

place’s equation and all of the boundary conditions except (9.3.2). By
the principle of superposition, the general solution is

u(z,y) = %2 + i Ap cos (E%E) cosh (Z‘_Zﬂ) . (9.3.11)
n=1

Applying (9.3.2), we find that

nmwzo

u(z, z0) = gzo+gcx = %0- +nZ=1An cos (%ﬂb—) cosh ( ) , (9.3.12)

which we recognize as a Fourier half-range cosine series such that

9 (L
Ao = -E/ (g20 + gex) dz (9.3.13)
0

and

9 (L
cosh (m;zo) Ap = f/ (920 + gex) cos (2%{) de. (9.3.14)
0
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Figure 9.3.2: Two-dimensional potential distribution and flow patterns
for different depths of the horizontally impermeable boundary.

Performing the integrations,
Ao = 29z9 + geL (9.3.15)
and

2gcL[l - (-1)"]

An = T n2g2 cosh(nmzo /L)’

(9.3.16)
Finally, the final solution is

_ gcL  4gclL cos[(2m — 1)mz /L] cosh[(2m — 1)7y/ L]
u(=,y) = 920 +_——-— Z (2m - 1)2cosh{(2m — 1)wzo/L]

(9.3.17)
Figure 9.3.2 presents two graphs by Téth for two different aquifers. We
see that the solution satisfies the boundary condition at the bottom and
side boundaries. Water flows from the elevated land (on the right) into
the valley (on the left), from regions of high to low hydraulic potential.

o Example 9.3.2

In the previous example, we had the advantage of homogeneous
boundary conditions along £ = 0 and z = L. In a different hydraulic
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problem, Kirkham?® solved the more difficult problem of

8%u  O%u

W+8—1/2=0 O<z<LO<y<h

subject to the Dirichlet boundary conditions
u(z,0) = Re, u(z,h) = RL, u(L,y) = RL

and

b—a

0, O0<y<a
u(O,y)={RL(y—a), a<y<b
RL, b<y<h.
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(9.3.18)

(9.3.19)

(9.3.20)

This problem arises in finding the steady flow within an aquifer resulting
from the introduction of water at the top due to a steady rainfall and
its removal along the sides by drains. The parameter L equals half of
the distance between the drains, k is the depth of the aquifer, and R is

the rate of rainfall.

The point of this example is We need homogeneous boundary con-
ditions along either the = or y boundaries for separation of variables to
work. We achieve this by breaking the original problem into two parts,

namely
u(z,y) = v(z,y) + w(z,y) + RL,
where ) ,
8%v  0%v
L = h
6x2+6y2 0 0<z<L,0<ky<
with i
v(0,y) =v(L,y) =0,  v(z,h)=0
and
v(z,0) = R(z — L);
FPw  Pw
W—FW—O, O<z<LO<y<h
with
w(;c,O):w(:c,h):O, u)(L,y):O
and
—RL, O<y<a
w(O,y):{b}iLa(y—a)—RL, a<y<hb
0, b<y<h.

(9.3.21)

(9.3.22)

(9.3.23)

(9.3.24)

(9.3.25)

(9.3.26)

(9.3.27)

3 Kirkham, D., Trans. Am. Geophys. Union, 39, 892-908, 1958,

copyright by the American Geophysical Union.
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Employing the same technique as in Example 9.3.1, we find that

= . (nmz\ sinh[nw(h - y)/L]
v(z,y) = ;An sin ( T ) snh(n7h/L) (9.3.28)
where
2 L . (nTE 2RL
Similarly, the solution to w(z,y) is found to be
= . (nwy\ sinh[nm(L — z)/h]
w(z,y) = ";B,, sin ( - ) by R (9.3.30)
where
B, =2 -RL/asiﬁ(m) d +RL/b 22 —1)sin (M) d
"% ; h )Y L \b-a ST Y
(9.3.31)

= QiL{(b _ Z)n%r [sin ("T"b) — sin ("hﬂ)] - %} (9.3.32)

The final answer consists of substituting (9.3.28) and (9.3.30) into (9.3.
21).

e Example 9.3.3

The electrostatic potential is defined as the amount of work which
must be done against electric forces to bring a unit charge from a refer-
ence point to a given point. It is readily shown* that the electrostatic
potential is described by Laplace’s equation if there is no charge within
the domain. Let us find the electrostatic potential u(r, z) inside a closed
cylinder of length L and radius a. The base and lateral surfaces have
the potential 0 while the upper surface has the potential V.

Because the potential varies in only r and z, Laplace’s equation in
cylindrical coordinates reduces to

2
1a<au)+au 0, 0<r<al<z<L  (9.3.33)

ror\'or) " 922

4 For static fields, V x E = 0, where E is the electric force. From
Section 10.4, we can introduce a potential ¢ such that E = V. From
Gauss’ law, V- E = VZp = 0.
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subject to the boundary conditions
u(a, z) = u(r, 0)=0 and wu(r,L)=V. (9.3.34)
To solve this problem by separation of variables, let u(r, z) = R(r)Z(z)

and
1 d(dR) ldzZ__k2

ity Stk IS 3.
rRdr rdr Z dz? a? (9.3.35)

Only a negative separation constant yields nontrivial solutions in the
radial direction. In that case, we have that

1d [/ dR k2
o (rﬁ-> + -a—zR =0. (9.3.36)

The solutions of (9.3.36) are the Bessel functions Jo(kr/a) and Yo(kr/a).
Because Yy(kr/a) becomes infinite at r = 0, the only permissible solu-
tion is Jo(kr/a). The condition that u(a,z) = R(a)Z(z) = 0 forces us
to choose k’s such that Jo(k) = 0. Therefore, the solution in the radial
direction is Jo(knr/a), where ky is the nth root of Jo(k) = 0.

In the z direction,

d*Z, k2
) + 2 =0. (9.3.37)

The general solution to (9.3.37) is
n kn
Z(2) = Apsinh ('%Z) + B, cosh (Tz) . (9.3.38)

Because u(r,0) = R(r)Z(0) = 0 and cosh(0) = 1, B, must equal zero.
Therefore, the general product solution is

u(r,z) = Z Apdo (lc;,_r> sinh <%) . (9.3.39)
n=1

The condition that u(r, L) = V determines the arbitrary constant
A,. Along 2 =1L,

- knr\ . (kL
u(r,L)y=V = Z ApJo (—a—) sinh ( A ) , (9.3.40)
n=1

where

o (kaL 2V L knr
sinh (T) An = a-zJ_f(—k,,_) A r Jo (—a—) dr (9341)
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Figure 9.3.3: The steady-state potential within a cylinder of equal
radius and height a when the top has the potential V while the lateral
side and bottom are at potential 0.

from (6.5.35) and (6.5.43). Thus,

(kL 2 [kar kr\[* oV
sinh (T) An = k272 (k) ( ) I (T) o kndi(kn)’
(9.3.42)
The solution is then
Jo(knr/a) sinh (knz/a)
u(r,z) = QVZ tTs () Smh (ke Lja)" (9.3.43)

Figure 9.3.3 illustrates (9.3.43) for the case when L = a where we
have included the first 20 terms of the series. Of particular interest is
the convergence of the isolines in the upper right corner. At that point,
the solution must jump from 0 along the line » = a to V along the
line z = a. For that reason our solution suffers from Gibbs phenomena
near the top boundary. Outside of that region the electrostatic potential
varies smoothly.
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o Example 9.3.4

Let us now consider a similar, but slightly different, version of ex-
ample 9.3.3, where the ends are held at zero potential while the lateral
side has the value V. Once again, the governing equation is (9.3.33)
with the boundary conditions

u(r,0)=u(r,L)=0 and u(a,z)=V. (9.3.44)
Separation of variables yields

1 d [ dR 1d’Z  k?
rRdr ( dr) T Zd:2 T L2 (9.3.45)
with Z(0) = Z(L) = 0. We have chosen a positive separation constant
because a negative constant would give hyperbolic functions in z which
cannot satisfy the boundary conditions. A separation constant of zero
would give a straight line for Z(z). Applying the boundary conditions
gives a trivial solution. Consequently, the only solution in the 2 direction
which satisfies the boundary conditions is Z,(z) = sin(nwz/L).
In the radial direction, the differential equation is

1d dR, n2n?
;‘-671: (T‘—‘F) - Tz—Rn =0. (9346)
As we showed in Section 6.5, the general solution is
nwr . (/n7T
Ra(r) = Anlo (2 z ") + BaKo (-L—) , (9.3.47)

where I and K; are modified Bessel functions of the first and second
kind, respectively, of order zero. Because Ko(z) behaves as —In(z)
as £ — 0, we must discard it and our solution in the radial direction
becomes R, (r) = Io(nwr/L). Hence, the product solution is

up(r,2) = Anlo (%C) sin ("L_ﬂ) (9.3.48)

and the general solution is a sum of these particular solutions, namely

(r,2) = Z Anly ( )sin (EZ—Z) . (9.3.49)

Finally, we use the boundary conditions that u(a,z) = V to compute
A, . This condition gives

w(a,z) =V = i Anlo (ﬁz—a) sin (%f) (9.3.50)
n=1
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Figure 9.3.4: Potential within a conducting cylinder when the top and
bottom have a potential 0 while the lateral side have a potential V.

so that

L —(_1\n
Io (."%‘3) A, = %/ Vsin (ﬁz_z) dz = W (9.3.51)
0

Therefore, the final answer is

4V f: I[(2m — 1)7r/L]sin[(2m — 1)72/ L)

u(r,z) = (2m — 1) Io[(2m ~ 1)wa/L]

(9.3.52)

m=1

Figure 9.3.4 illustrates the solution (9.3.52) for the case when L =
a. Once again, there is a convergence of equipotentials at the corners
along the right side. If we had plotted more contours, we would have
observed Gibbs phenomena in the solution along the top and bottom of
the cylinder.

o Example 9.3.5

Let us find the potential at any point P within a conducting sphere
of radius a. At the surface, the potential is held at V; in the hemisphere
0<f#<m/2and -V, forn/2 <8< .
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Laplace’s equation in spherical coordinates 18

0 [ ,0u 1 o0 1. Ou

or (’" ar) * Sn(6) 66 [S“‘( )ao] 0, 0<r<al<f<x
(9.3.53)

To solve (9.3.53) we use the separation of variables u(r,8) = R(r)0(6).
Substituting into (9.3.53), we have that

%Ed’—_ (rz%l—j-) = "si_n(19')6d_dé [sin(e)ff%] =k? (9.3.54)

or
r*R’" 4+ 2rR' —k*R=0 (9.3.55)

and
ﬁa’)d% [sin(ﬂ)%%] + k0 =0. (9.3.56)

A common substitution replaces 8 with g = cos(#). Then, as 6 varies
from 0 to m, p varies from 1 to —1. With this substitution (9.3.56)
becomes

d do
— |1 -p?)5| +k©=0. 9.3.57
Llo-m3] (9:3.57)
This is Legendre’s equation which we examined in Section 6.4. Con-
sequently, because the solution must remain finite at the poles, k=
n(n + 1) and

On(0) = Pa(p) = Pplcos()], (9.3.58)

where n =10,1,2,3,...

Turning to (9.3.55), this equation is the equidimensional or Euler-
Cauchy linear differential equation. One method of solving this equation
consists of introducing a new independent variable s so that r = e* or
s = In(r). Because

d dsd _sd
% = azl; =€ 'C'l;, (9359)

it follows that

@ _d(d_ad (d) a4
dr?2 ~ dr ds) ds ds) — ds? ds)’

(9.3.60)
Substituting into (9.3.55),
d’R, dR,
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Equation (9.3.61) is a second-order, constant coefficient ordinary differ-
ential equation which has the solution

R, (s) = Cpe™ + Dpe~(n+1)s (9.3.62)
Rn(r) = Chexp[nln(r)] + D, exp[—(n+ 1)In(r)] (9.3.63)
= Cy exp[In(r™)] + D, exp[ln(r~1~")] (9.3.64)
= Cpr* + Dpr17m, (9.3.65)

A more convenient form of the solution is
r n r =1l-n
Rn(r) = An (E) + B, (;) : (9.3.66)

where A, = a”C, and B, = D,,/a™*!. We introduced the constant a,
the radius of the sphere, to simplify future calculations.

Using the results from (9.3.58) and (9.3.66), the solution to La-
place’s equation in axisymmetric problems is

u(r,0) = i [An (E)n + B, (2)—1—71] P, [cos(8)]. (9.3.67)

n=0

In our particular problem we must take B, = 0 because the solution
becomes infinite at » = 0 otherwise. If the problem had involved the
domain @ < r < oo, then A, = 0 because the potential must remain
finite as r — oo.

Finally, we must evaluate A,. Finding the potential at the surface,

o0
Vo, O<p<l
w(a, p) =Y AnPalp) = {_;’/o, ) S"”—< 0 (9.3.68)

Upon examing (9.3.68), it is merely an expansion in Legendre polyno-
mials of the function

Vo, 0<pu<l
flw) = { Sh e (9.3.69)
Consequently, from (9.3.69),
2n + 1
An / £ (1) Pr(w) d (9.3.70)

Because f(u) is an odd function, A, = 0 if n is even. When = is odd,
however,

1
A= (2n41) /O Vo Pa(u) dp. (9.3.71)
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Figure 9.3.5: Electrostatic potential within a conducting sphere when
the upper hemispheric surface has the potential 1 and the lower surface
has the potential —1.

We can further simplify (9.3.71) by using the relationship that

1
i
'/; Pn(t) dt = m [Pn—l(m) - Pn+1(I)] , (9372)
where n > 1. In our problem, then,

A = {VO[Pn—l(O)O_ Pay1(0)), nodd (9.3.73)

, n even.

This first few terms are A; = 3V,/2, Az = —7Vu/8, and A5 = 11V,/16.

Figure 9.3.5 illustrates our solution. Here we have the convergence
of the equipotentials along the equator and at the surface. The slow rate
at which the coefficients are approaching zero suggests that the solution
will suffer from Gibbs phenomena along the surface.

o Example 9.3.6

We now find the steady-state temperature field within a metallic
sphere of radius a, which we place in direct sunlight and allow to radia-
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tively cool. This classic problem, first solved by Rayleigh,® requires the
use of spherical coordinates with its origin at the center of sphere and
its z-axis pointing toward the sun. With this choice for the coordinate
system, the incident sunlight is

D(0) cos(#), 0<6< /2

D(6):{ 0 rd<fen (9.3.74)

If the heat dissipation takes place at the surface r = a according
to Newton’s law of cooling and the temperature of the surrounding
medium is zero, the solar heat absorbed by the surface dA must balance
the Newtonian cooling at the surface plus the energy absorbed into the
sphere’s interior. This physical relationship is

0 6
(1-p)D(0)dA = eu(a,f)dA + nlg%——)- dA, (9.3.75)
where p is the reflectance of the surface (the albedo), € is the surface
conductance or coefficient of surface heat transfer, and « is the thermal
conductivity. Simplifying (9.3.75), we have that

Ou(a,6) 1
or

;”D(e) - %u(a,ﬂ) (9.3.76)

for r = a.

If the sphere has reached thermal equilibrium, Laplace’s equation
describes the temperature field within the sphere. In the previous exam-
ple, we showed that the solution to Laplace’s equation in axisymmetric
problems is

r

u(r,8) = i [An (;)" + B, (2)'1'"] Pacos(9)].  (9.3.77)

In this problem, B,, = 0 because the solution would become infinite at
r = 0 otherwise. Therefore,

[} .
u(r, 8) = ';)A,, (E) Pa[cos(8))]. (9.3.78)
Differentiation gives
du  — nrr—1
5= gOA,, —— Palcos(0)]. (9.3.79)

5> Rayleigh, J. W., 1870: On the values of the integral fol QnQn du,
Qn, Qn' being Laplace’s coefficients of the orders n, n’, with application
to the theory of radiation. Philos. Trans. R. Soc., London, 160, 579-
590.
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Figure 9.3.6: The difference (in °C) between the temperature field
within a blackened iron surface of radius 0.1 m and the surrounding
medium when we heat the surface by sunlight and allow it to radiatively

cool.

Substituting into the boundary conditions leads to

i:An (S + %) Py [cos(9)] = (l:c-_p) D(6)
D(p) = i [:(Kl—iepa)] AnPp(p) = i CrnPa(p),
where

nKk + €a
a(l-p)

We determine the coefficients by

Cp, = [ ] An, and p = cos(d).

_2n+1 2n

Cn 5

/ D()Pa()du = - -p() [ P

(9.3.80)

(9.3.81)

(9.3.82)

)dp.

(9.3.83)
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Evaluation of the first few coefficients gives

_ (1=p)D(0) _ a(l=p)D(0) _ 5a(1-p)D(0)
Ao = 4e A= 2(k +ea) ’ Az = 16(2x + €a) '’
(9.3.84)

3a(l — p)D(0)
32(4k +ea)

Figure 9.3.6 illustrates the temperature field within the interior of
the sphere with D(0) = 1200 W/m?, k = 45 W/m K, ¢ = 5 W/m?
K, p =0, and a = 0.1 m. This corresponds to a cast iron sphere with
blackened surface in sunlight. The temperature is quite warm with the
highest temperature located at the position where the solar radiation is
largest; the coolest temperatures are located in the shadow region.

A3 =0 and Ay4=-— (9.3.85)

e Example 9.3.7

In this example we will find the potential at any point P which
results from a point charge +g¢ placed at z = a on the z-axis when we
introduce a conducting, grounded sphere at z = 0. See Figure 9.3.7.
From the principle of linear superposition, the total potential u(r,6)
equals the sum of the potential from the point charge and the potential
v(r,8) due to the induced charge on the sphere

u(r,8) = "; + o(r, ). (9.3.86)

In common with the first term ¢/s, v(r, §) must be a solution of Laplace’s
equation. In Example 9.3.5 we showed that the general solution to
Laplace’s equation in axisymmetric problems is

o(r,0) = i [A,, (%)n + B, <%)_1_H]Pn[cos(0)]. (9.3.87)

n=0

Because the solutions must be valid anywhere outside of the sphere,
A, = 0; otherwise, the solution would not remain finite as r — 0.
Hence,

o0 -1-n
o(r,6) =S Bn (}) Pa[cos(6)]. (9.3.88)
n=0 0
We determine the coefficient B, by the condition that u(ro,#) = 0 or
q [e ]
= B, P, )] = 0. 9.3.89
S lon sphere + '; n[COS( )] ( )

We need to expand the first term on the left side of (9.3.89) in terms
of Legendre polynomials. From the law of cosines,

s = y/r2 4+ a? — 2arcos(f). (9.3.90)
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Figure 9.3.7: Point charge +¢ in the presence of a grounded conducting

sphere.
Consequently, if @ > r, then

1 1 r ry2] 712
S== [1 - 2cos(6’); + (;) ]
In Section 6.4, we showed that
00
(1-2zz422)"Y2 = Z Pp(x)z".
n=0

Therefore,
[e]

1= 23 Pafeos(®)] (&)

n=0

From (9.3.89),

i [2(2)" + Ba] Palcos(@)] = 0.

n=0

(9.3.91)

(9.3.92)

(9.3.93)

(9.3.94)
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We can only satisfy (9.3.94) if the square-bracketed term vanishes iden-
tically so that

B, = —% (2—°)n (9.3.95)

On substituting (9.3.95) back into (9.3.88),

v(r,6) = —q—ai::( )n . [cos(8)]. (9.3.96)

The physical interpretation of (9.3.96) is as follows. Consider a
point, such as a’ (see Figure 9.3.7) on the z-axis. If » > a’, the expression
of 1/¢' is

1 1 a\" ,
g_;r;)Pn[cos(B)] (7> , r>d. (9.3.97)

Using (9.3.97), we can rewrite (9.3.96) as

v(r,f) = —— (9.3.98)

u(r,0) =1L (9.3.99)
$

provided that ¢’ equals rog/a. In other words, when we place a ground-
ed conducting sphere near a point charge +¢, it changes the potential
in the same manner as would a point charge of the opposite sign and
magnitude ¢’ = roq/a, placed at the point @’ = rZ/a. The charge ¢’ is
the image of q.

Figure 9.3.8 illustrates the solution (9.3.96). Because the charge is
located above the sphere for any fixed r, the electrostatic potential is
largest at the point # = 0 and weakest at § = 7.

o Example 9.3.8: Poisson’s integral formula

In this example we find the solution to Laplace’s equation within a
unit disc. The problem may be posed as

u 10u 1 0%

el —— - —_ = < < < O,
3r2+r6r+r23g02 0, Osr<lbsesim (9:3.100)

with the boundary condition u(1, ¢) = f(y).
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Figure 9.3.8: Electrostatic potential outside of a grounded conducting
sphere in the presence of a point charge located at a/ro = 2. Contours
are in units of ¢/ro.

We begin by assuming the separable solution u(r,¢) = R(r)®(p)

so that
7"2R” + T'RI (DN

I =-3 k2. (9.3.101)
The solution to ®” + k*® =0 is
®(p) = Acos(kp) + Bsin(kyp). (9.3.102)
The solution to R(r) is
R(r) = Cr¥ + Dr7F. (9.3.103)

Because the solution must be bounded for all » and periodic is ¢, we
must take D = 0 and k£ = n, where n = 0,1,2,3,.... Then, the most
general solution is

u(r, ) = 3a0 + Z [an cos(ng) + by sin(np)] 7™, (9.3.104)

n=1

where a, and b, are chosen to satisfy

u(l,p) = f(p) = a0 + Z a, cos(ny) + b, sin{ny). (9.3.105)

n=1
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Because
1 [7 1 [ .
an =~ [ flp)eos(np)dp, bo=— [ flp) sin(ne) de,

7r -7
(9.3.106)
we may write u(r, p) as

u(r,p) = -}[_ﬁ flp) {% + Z r™ cos[n(f — go)]} deb. (9.3.107)

If we let @ = @ — p and z = r[cos(a) + isin(e)], then

g%rn cos(na) = Re (i zn) - Re (1 1 z) (9.3.108)

n=0

= Re [1 = rcos(a)l = irsin(a)] (9:3.109)

_ q. [L=rcos(a) + irsin(a)
=Re [ 1 — 2rcos(a) + r? (9.3.110)

for all r such that |r| < 1. Consequently,

= 1—rcos(a)
" = 3.111
nz_%r cos(na) 1 - 2rcos(a) + r? ® )
1 & 1 —rcos(a) 1
= " = - = 9.3.112
2 + ; " cos(na) 1-2rcos(a)+7% 2 ( )
2
L L-r (9.3.113)

Ta1- 2rcos(a) + r?’
Substituting (9.3.113) into (9.3.107), we finally have that

1—r2

1 T
u(r,p) = o . o) 13, R de. (9.3.114)

This solution to Laplace’s equation within the unit circle is referred to
as Poisson’s integral formula.®

6 Poisson, S. D., 1820: Mémoire sur la maniére d’exprimer les fonc-
tions par des séries de quantités périodiques, et sur l'usage de cette
transformation dans la résolution de différens problémes. J. Ecole Poly-
tech., 18, 417-489.
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Problems

Solve Laplace’s equation over the rectangular region 0 < £ < a,0 <y <
b with the following boundary conditions:

1. u(z,0) = u(z,b) = u(a,y) = 0,u(0,y) =1
2. u(z,0) =u(0,y) = u(a,y) = 0,u(z,b) =2
3. u(z,0) =u(0,y) = u(a,y) = 0,u(z,b) =2z —a
4. u(z,0) = u(0,y) = u(a,y) =0,
u(z, b) = {2(a2f/;l),/a, 2/3 o Z/Z
5. uz(0,y) = u(a,y) = u(z,0) = 0,u(z,b) =1
6. uy(x,0) = u(z,b) = u(a,y) = 0,u(0,y) =1
7. uy(z,0) = uy(x,b) = 0,u(0,y) = u(a,y) =1
8. uz(a,y) = uy(z,b) =0,u(0,y) = u(z,0) =1
9. uy(z,0) = u(z,b) = 0,u(0,y) = u(a,y) = 1
10. u(a,y) = u(z,b) = 0,u(0,y) = u(x,0) =1
11. u-(0,y) = 0,u(e,y) = u(z,0) = u(z,b) =1
12. uz(0,y) = uz(a,y) = 0,u(z,d) = uy,
weo={ 6 (LS
13. Variations in the earth’s surface temperature can arise as a result of
topographic undulations and the altitude dependence of the atmospheric
temperature. These variations, in turn, affect the temperature within
the solid earth. To show this, solve Laplace’s equation with the surface
boundary condition that
u(z,0) = Ty + AT cos(2mz/A),
where A is the wavelength of the spatial temperature variation. What

must be the condition on u(z, y) as we go towards the center of the earth
(i.e., y — 00)?
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14. T6th” generalized his earlier analysis of groundwater in an aquifer
when the water table follows the topography. Find the groundwater
potential if it varies as

u(z, 20) = g[zo0 + cx + asin(bz))
at the surface y = 2o while u;(0,y) = uz(L,y) = uy(z,0) = 0, where

g is the acceleration due to gravity. Assume that bL # nm, where
n=123,...

15. Solve
62“ 1 6u aZu
2t ta2 =0 0sr<a-l<z<li
e du(r,—L) _ Ou(r,L)
ulr,—L)  oulr, _
u(a,z)=0  and 5 =5 "= 1.
16. Solve
8u 10u O%u
gu, v Ju_ <
52 T rar T 5 0, 0<r<a0<z<h
with ou(a, )
u(a,z) _
——-ar—_u(r,h)_o
and
u(r,0) [1, 0<r<mo
0z 10, ro<r<a.
17. Solve
8%u  10u 0%u
gu, tou 0Ju_ <
orZ Ty or T 822 0, 0<r<1l0<z<d
with
du(l,z) _ Ou(r,0) _ 0
or - Oz -
and
d) = -1, 0<r<a, b<r<l
U(ra )— 1/(b2_(12)_1’ a<’r'<b‘

7 Téth, J., J. Geophys. Res., 68, 4795-4812, 1963, copyright by the
American Geophysical Union.
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18. Solve

%u 10u u O*u

vu,_ Ou u OJu_ <
az T rar 2t a2 0, 0<r<a0<z<h

with ; \
u(r,0) = u(a,2) =0 and u(r, h) — Ar.
0z
19. Solve
u 10u u  O%u
gu 0u u Ju_ <
87°2+T'67' ,,,2+6z2 0) 0_7‘<a,0<z<1
with
u(r,0) =u(r,1)=0 and u(a, z) = z.
20. Solve
v 10u u Ou
gu vu uw 0ou_ <
5r2+r8r r2+6z2 0, 0<r<al<z<h
with 5 , \
M ( 0) and u(a—rzi)‘ -
21. Solve®

v 10u  O%°u  Ou

guy 10y ou OJu_ <
6r2+r6r+622 b8z 0, 0<sr<1,0<z<00

with the boundary conditions

. Ou(l,2) _
ll_l}(l) Ju(r, 2)| < oo, —5 = —Bu(l, z), z> 0,
and
u(r,0) =1, lim |u(r, 2)| < oo, 0<r<1,

where B 1s a constant.

8 Reprinted from Int. J. Heat Mass Transfer, 19, Kern, J., and J.
O. Hansen, Transient heat conduction in cylindrical systems with an
axially moving boundary, 707-714, (©1976, with kind permission from
Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5
1GB, UK.
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22. Find the steady-state temperature within a sphere of radius a if the
temperature along its surface is maintained at the temperature u(a, §) =
100[cos(6) — cos®(6)].

23. Find the steady-state temperature within a sphere if the upper half
of the exterior surface at radius a is maintained at the temperature 100
while the lower half is maintained at the temperature 0.

24. The surface of a sphere of radius a has a temperature of zero every-
where except in a spherical cap at the north pole (defined by the cone
6 = a) where it equals Tp. Find the steady-state temperature within
the sphere.

25. Using the relationship

2%
dy 27
= , bl <1
/0 1—b cos(p) 1-82 11

and Poisson’s integral formula, find the solution to Laplace’s equation
within a unit disc if u(1, ¢) = f(¢) = Tp, a constant.

9.4 THE SOLUTION OF LAPLACE’S EQUATION ON THE UPPER
HALF-PLANE

In this section we shall use Fourier integrals and convolution to find
the solution of Laplace’s equation on the upper half-plane y > 0. We
require that the solution remains bounded over the entire domain and
specify it along the z-axis, u(z,0) = f(z). Under these conditions, we
can take the Fourier transform of Laplace’s equation and find that

o0 02 o0 02
g—%e‘i“’” dz + —a——;e"i“’” dz =0. (9.4.1)
oo O oo OV

If everything is sufficiently differentiable, we may successively integrate
by parts the first integral in (9.4.1) which yields

* 82u —twz Ou —ilwr ® . < u —-iwT
. de = ——e » + iw /_Oo 55 e (9.4.2)
. 00 o0 .
= iw u(z, y)e'“‘”‘l_oo - wz/ u(z,y)e " da
—o00
(9.4.3)
= —wU(w,y), (9.4.4)
where -

Uw,y) = / u(z, y)e ™7 dz. (9.4.5)
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The second integral becomes
® §u _,; d2 [ [* : d*U(w,y)
—e "Wdp = — T e = ———"2 (9.4.6
=g | [ e ””] ar 049

along with the boundary condition that
oQ

Fw)=U(w,0) = / f(z)e™ ™" dz. (9.4.7)
—00

Consequently we have reduced Laplace’s equation, a partial differential
equation, to an ordinary differential equation in y, where w is merely a
parameter:
?U(w,y)
—ar
with the boundary condition U (w,0) = F(w). The solution to (9.4.8) is

wiU(w,y) =0, (9.4.8)

U(w,y) = Aw)e“lV + Bw)e Iy >0. (9.4.9)

We must discard the e/“!¥ term because it becomes unbounded as we go
to infinity along the y-axis. The boundary condition results in B(w) =
F(w). Consequently,

U(w,y) = Fw)e v, (9.4.10)

The inverse of the Fourier transform e~1“l¥ equals

1 o0 ) 1 0 . o0 .
— emllvgive gy = — / eVe'T dw + — e wYerT dw
27 J_owo 27 J_ o 2 Jy
(9.4.11)
- i oo e—wye-—iwx dw 4 - oo e—wyeiwr dw
2% 0 2w 0
(9.4.12)
1 /> _,
= — e cos(wz) dw (9.4.13)
T Jo
1 [ exp(—wy) . =
= ;{W [~y cos(wz) + z sin(wz)] .
(9.4.14)
1y
= ——. 9.4.15
mzl +y? ( )

Furthermore, because (9.4.10) is a convolution of two Fourier trans-
forms, its inverse is

u(z,y) = %/: -(;—_—y{)—(:z_:?dt. (9.4.16)
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Equation (9.4.16) is Poisson’s integral formula® for the half-plane y > 0
or Schwarz’ integral formula.l®

e Example 9.4.1

As an example, let u(z,0) = 1 if 2| < 1 and u(xz,0) = 0 otherwise.
Then,

1t Y
= 1[tan—1 (1"—””) + tan~! (1 "'x)]. (9.4.18)
T ) y
Problems

Find the solution to vLaplace’s equation in the upper half-plane for the
following boundary conditions:

1.
1, Ol<exl
u(z,0) = {0, otherwise
2.
1, x>0
we0={1 120
3.
To, z<0
“(“”’0):{00 z>0
4.
275, r< -1
u(z,O):{To, ~l<z<l1
0, z>1

® Poisson, S. D., 1823: Suite du’ mémoire sur les intégrales définies
et sur la sommation des séries. J. Ecole Polytech., 19, 404-509. See pg.
462.

10 Gchwarz, H. A., 1870: Uber die Integration der partiellen Differ-
entialgleichung 82u/8z% + ?u/0y? = 0 fiir die Flache eines Kreises,
Vierteljahrsschr. Naturforsch. Ges. Zirich, 15, 113-128.
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5.
To, -1<z<0
u(x,O):{To+(T1—To):v, 0<exl1
0, otherwise
6.
To, r<a
T, a1 <z < as
u(z,0) = T3, az < r<as
Tﬂy an < z

9.5 POISSON’S EQUATION ON A RECTANGLE

Poisson’s equation!! is Laplace’s equation with a source term:

?u  8%u
—t = , Y)- 951
302 T a2 f(z,y) ( )
It arises in such diverse areas as groundwater flow, electromagnetism,
and potential theory. Let us solve it if u(0,y) = u(a,y) = u(z,0) =
u(z,b) =0.
We begin by solving a similar partial differential equation:

%y O%u

W+6_112:Au’ 0<z<al<y<d (9.5.2)

by separation of variables. If u(z,y) = X(z)Y (y), then

XII YII
Sy = (9.5.3)

Because we must satisfy the boundary conditions that X(0) = X(a) =
Y (0) = Y(b) = 0, we have the following eigenfunction solutions:

Xn(z) =sin (E-ZE) , Y (z) = sin (m;ry) (9.5.4)
with Apm = —n%72/a? —m?n?/b%; otherwise, we would only have trivial

solutions. The corresponding particular solutions are

ntr

- . [mmy
Upm = Apm sin | —— ) sin
a

(T) , (9.5.5)

11 Poisson, S. D., 1813: Remarques sur une équation qui se présente
dans la théorie des attractions des sphéroides. Nouv. Bull. Soc. Philo-
math. Paris, 3, 388-392.
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Figure 9.5.1: Siméon-Denis Poisson (1781-1840) was a product as
well as a member of the French scientific establishment of his day. Ed-
ucated at the Ecole Polytechnique, he devoted his life to teaching, both
in the classroom and with administrative duties, and to scientific re-
search. Poisson’s equation dates from 1813 when Poisson sought to
extend Laplace’s work on gravitational attraction. (Portrait courtesy of
the Archives de I’Académie des sciences, Paris.)

where n=1,2,3,...and m=1,2,3,...
For a fixed y, we can expand f(z,y) in the half-range Fourier sine
series:

flz,y) = i An(y)sin (%f) , (9.5.6)
n=1

where

An(y) = é‘/oa f(z,y)sin (ﬁj—:-:f-) dz. (9.5.7)
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However, we can also expand A,(y) in a half-range Fourier sine series:

o0

An(®) = Y anmsin (T2, (9.5.8)
where "~
am =1 [ An(g)sin ("”’y) dy (059)
/ / f(z,y)sin (P22 sin (72 dzdy (9.5.10)
and

flz,y) = Z Z Qnm sin ( ) sin (r_n#) . (9.5.11)

n=1m=1

In other words, we have reexpressed f(z,y) in terms of a double Fourter
serzes.
Because (9.5.2) must hold for each particular solution,

nrx

52 2 . .
Unm | Pnm _ (_) sin (Z"_bﬂi) , (9.5.12)
a

Ox2 Oy?

if we now associate (9.5.1) with (9.5.2). Therefore, the solution to Pois-
son’s equation on a rectangle where the boundaries are held at zero is
the double Fourier series:

. nwr\ . mny
u(z,y) = nzzlmz:l nzﬂ,z/az + m27r2/b2 ( a )sm( b ) '
(9.5.13)

Problems

1. The equation

Ou  0*u_ R 5 5

W—i-gy—z——f, —a<r<a -b<y<
describes the hydraulic potential (elevation of the water table) u(z,y)
within a rectangular island on which a recharging well is located at (0, 0).
Here R is the rate of recharging and T is the product of the hydraulic
conductivity and aquifer thickness. If the water table is at sea level
around the island so that u(—a,y) = u(a,y) = u(z, —b) = u(z,d) = 0,
find u(z,y) everywhere in the island. [Hint: Use symmetry and redo
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the above analysis with the boundary conditions: u;(0,y) = u(a,y) =
uy(z,0) = u(z,b) = 0.]

2. Let us apply the same approach that we used to find the solution
of Poisson’s equation on a rectangle to solve the axisymmetric Poisson
equation inside a circular cylinder

19 [ Ou 0%u
v or (’"g)+g—f(r,z), 0<r<a-b<z<b

subject to the boundary conditions
lirrtl) lu(r, 2)| < oo, u(a,z) =0, —b<z<b
r—

and
u(r,~b) = u(r,b)=0, 0<r<a

Step 1. Replace the original problem with

19 [ Ou 0%u
FE(TE>+5§*’\“» 0<r<a,-b<z<b

subject to the same boundary conditions. Use separation of variables
to show that the solution to this new problem is

(m+ %) Wz] ,

Unm (7, 2) = AnmJo (Ic,,g) cos ;

where k, is the nth zero of Jo(k) =0,n=1,2,3,...and m=0,1,2,...

Step 2. Show that f(r, z) can be expressed as

f(r,2) = Z Z anmJo ( ) cos [M] ,

n=1m=0

where
_ (m+3) 7z
a"m—aQszk)/ / fero )cos[ 5 rdrdz.

Step 3. Show that the general solution is

N - Jo (knr/a)cos [(m + 1) mz/b]
TR g+ (m s D

u(r,z) =
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9.6 THE LAPLACE TRANSFORM METHOD

Laplace transforms are useful in solving Laplace’s or Poisson’s equa-
tion over a semi-infinite strip. The following problem illustrates this
technique.

Let us solve Poisson’s equation within an semi-infinite circular cyl-
inder

19 ( du\ 0% _ 2
ror (’"5;)+@—3"(z)6(r—b) 0<r<a0<z<oo (9.6.1)

subject to the boundary conditions

u(r,0) =0 and lim |u(r,z)|<oo, 0<r<a (9.6.2)

and
u(a,2) =0, 0<z<o0, (9.6.3)

where 0 < b < a. This problem gives the electrostatic potential within
a semi-infinite cylinder of radius a that is grounded and has the charge
density of n(z) within an infinitesimally thin shell located at r = b.

Because the domain is semi-infinite in the z direction, we introduce
the Laplace transform

U(r,s)= /000 u(r,z)e”** dz. (9.6.4)

Thus, taking the Laplace transform of (9.6.1), we have that

%%‘ [r%:_’fl] + s2U(r, s) — su(r,0) — u,(r,0) = %N(s)&(r - b).

(9.6.5)
Although u(r,0) = 0, u,(r,0) is unknown and we denote its value by
f(r). Therefore, (9.6.5) becomes

rdr

d
14 [rfd—[]((l%s—)] + sU(r,s) = f(r) + %N(s)&(r —-b), 0<r<a
(9.6.6)
with lim,_o |U(r, s)} < oo and U(a,s) = 0.
To solve (9.6.6) we first assume that we can rewrite f(r) as the
Fourier-Bessel series:

f(ry =" Ando(kar/a), (9.6.7)
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where ky, is the nth root of the Jo(k) = 0 and

2 a
An = 53—~ kn dr. 9.6.8
77 [, O trfayrdr. (068)
Similarly, the expansion for the delta function is

N Jo(knb/a)Jo(knr/a)

6( - b) J2(kn) y

(9.6.9)

n:l

because
/a 6(r — b)Jo(knr/a)rdr = b Jo(knb/a). (9.6.10)

Why we have chosen this particular expansion will become apparent
shortly.
Thus, (9.6.6) may be rewritten as

F ) v = 5 3o OGSt )

(9.6.11)
where a; = [} f(r) Jo(knr/a)rdr.
The form of the right side of (9.6.11) suggests that we seek solutions
of the form

(r,s) = Z B,Jo(k,r/a), O0<r<a. (9.6.12)

n=1

We now understand why we rewrote the right side of (9.6.6) as a Fourier-
Bessel series; the solution U(r, s) automatically satisfies the boundary
condition U(a, s) = 0. Substituting (9.6.12) into (9.6.11), we find that

> s)Jo(knb a

(r,8) = —2—2 Z )'],:2/(12)/;3(4- )k Jo(knr/a), 0<r<a.

(9.6.13)

We have not yet determined ar. Note, however, that in order for

the inverse of (9.6.13) not to grow as e*»?/¢, the numerator must vanish
when s = ky/a. Thus, ax = —2N(k,/a)Jo(knb/a) and

0<r<a.

4 & ~ N(kn/a))Jo(knb/a
(r,s)= '_22_: 152/(:2))}1 (Sc ) / )Jo(k,,r/a),
B (9.6.14)
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The inverse of U(r,s) then follows directly from simple inversions, the
convolution theorem, and the definition of the Laplace transform. The

final solution is

u(r,2) =7 kn J2(kn)

n=1

2 i Jo(knb/a)Jo(knr/a)

x [/ n('r)ek"(‘")/“ dr —/ n(r)e'k"(””)/“ dr
0 )

o0} (o]
—/ n(f)e"k’"/“ek"”/“ dr+/ n(T)e’k"T/“e_k"z/“ dr]
0

2 & Jolknb/a)Jo(knr/a
:EZ (knb/a)Jo(knr/a)

kn 2 (kn)

n=1

o0 V-4

X [/ n(r)e‘k"("“"")/“ dr — / n(r)e'k"(“f)/“ dr
0

—/ n(T)e_k"(T")/“ dr].

2

0

0

Problems

1. Use Laplace transforms to solve

o,
8z?  Oy?

subject to the boundary conditions

u(0,9) =1,  lim u(z,y)| <oo,

and

u(z,0) = u(z,a) =0,

2. Use Laplace transforms to solve

1o (o0, P
ror \"or 822 —

subject to the boundary conditions

=0, I<z<oo,0<y<a

0<z < o0.

0<r<agl<z<

u(r,0) =1, lim |u(r, z)| < oo, 0<r<a
=00

0<y<a

(9.6.15)

(9.6.16)
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and
lin(l) lu(r,z)] < o0 and wu(a,z) =0, 0<2z< o0

9.7 NUMERICAL SOLUTION OF LAPLACE’S EQUATION

As in the case of the heat and wave equations, numerical methods
can be used to solve elliptic partial differential equations when analytic
techniques fail or are too cumbersome. They are also employed when
the domain differs from simple geometries.

The numerical analysis of an elliptic partial differential equation
begins by replacing the continuous partial derivatives by finite-difference
formulas. Employing centered differencing,

2
0%u _Umtin — 2um,n + Un—1,n

0x2 ~ (Az)? +0[(Az)?] (9.7.1)

and ) 4
_6_2 _Umny1 — 2um,n + Um -1
oy (Ay)?
where u,, , denote the solution value at the grid point m, n. If Az = Ay,
Laplace’s equation becomes the difference equation

+ 0[(Ay)Y], (9.7.2)

Untin + Un—1n + Unny1 + Um,n—-1 — 4um,n =0. (973)

Thus, we must now solve a set of simultaneous linear equations that
yield the value of the solution at each grid point.

The solution of (9.7.3) is best done using techniques developed by
algebraist. Later on, in Chapter 11, we will show that a very popu-
lar method for directly solving systems of linear equations is Gaussian
elimination. However, for many grids at a reasonable resolution, the
number of equations are generally in the tens of thousands. Because
most of the coefficients in the equations are zero, Gaussian elimination
Is unsuitable, both from the point of view of computational expense and
accuracy. For this reason alternative methods have been developed that
generally use successive corrections or iterations. The most common of
these point iterative methods are the Jacobi method, unextrapolated
Liebmann or Gauss-Seidel method, and extrapolated Liebmann or suc-
cessive over-relaxation (SOR). None of these approaches is completely
satisfactory because of questions involving convergence and efficiency.
Because of its simplicity we will focus on the Gauss-Seidel method.

We may illustrate the Gauss-Seidel method by considering the sys-
tem:

10z+y+2=39 (9.7.4)

2z + 10y + 2z = 51 (9.7.5)
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2¢ + 2y + 10z = 64. (9.7.6)

An important aspect of this system is the dominance of the coefficient
of z in the first equation of the set and that the coefficients of y and z
are dominant in the second and third equations, respectively.

The Gauss-Seidel method may be outlined as follow:

e Assign an initial value for each unknown variable. If possible, make
a good first guess. If not, any arbitrarily selected values may be cho-
sen. The initial value will not affect the convergence but will affect the
number of iterations until convergence.

e Starting with (9.7.4), solve that equation for a new value of the un-
known which has the largest coefficient in that equation, using the as-
sumed values for the other unknowns.

e Go to (9.7.5) and employ the same technique used in the previous
step to compute the unknown that has the largest coefficient in that
equation. Where possible, use the latest values.

e Proceed to the remaining equations, always solving for the unknown
having the largest coefficient in the particular equation and always us-
ing the most recently calculated values for the other unknowns in the
equation. When the last equation (9.7.6) has been solved, you have
completed a single iteration.

e Iterate until the value of each unknown does not change within a
predetermined value.

Usually a compromise must be struck between the accuracy of the solu-
tion and the desired rate of convergence. The more accurate the solution
is, the longer it will take for the solution to converge.

To illustrate this method, let us solve our system (9.7.4)-(9.7.6)
with the initial guess = y = z = 0. The first iteration yields z = 3.9,
y = 4.32, and z = 4.756. The second iteration ylelds ¢ = 2.9924,
y = 4.02592, and 2 = 4.996336. As can be readily seen, the solution is
converging to the correction solution of z = 3, y =4, and z = 5.

Applying these techniques to (9.7.3),

k+1 _ 1 k k+1 k k+1
Unn = 3 (um+1,n + Um—-1,n + Um,nt1 + um,n—l) ) (9'7'7)

where we have assumed that the calculations occur in order of increasing
m and n.
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e Example 9.7.1

To illustrate the numerical solution of Laplace’s equation, let us
redo Example 9.3.1 with the boundary condition along y = H simplified
tou(z, H)=1+1z/L.

We begin by finite-differencing the boundary conditions. The condi-
tion u.(0,y) = uz(L,y) = 0 leads to uy,, = u_y , and ULtln = UL—1n
if we employ centered differences at m = 0 and m = L. Substituting
these values in (9.7.7), we have the following equations for the left and
right boundaries:

ug,:l = 4l (2ulf,n + U'&,n+1 + u’é’:l_l) (9.7.8)

and
k41 _ 1 E+1 k E+1
Urn = 3 (2“L-1,n Ft UL py1 T "L,n_1) . (9.7.9)

On the other hand, uy(x,0) = 0 yields um ; = Um,-1 and
“fn+01 =3 (ufn+1,o + “fntll,o + 2ufn,1) . (9.7.10)
At the bottom corners, (9.7.8)-(9.7.10) simplify to
ughl = 1 (uk o+ ub ;) (9.7.11)

and
k
=4 (uft o+ ub,). (9.7.12)

These equations along with (9.7.7) were solved using the Gauss-
Seidel method. The initial guess everywhere except along the top bound-
ary was zero. In Figure 9.7.1 we illustrate the numerical solution after
100 and 300 iterations where we have taken 101 grid points in the z and
y directions.

Project: Successive Over-Relaxation

The fundamental difficulty with relaxation methods used in solving
Laplace’s equation is the rate of convergence. Assuming Az = Ay, the
most popular method for accelerating convergence of these techniques
is successive over-relaration:

uk+1

I
mmn um,n + WRm,ny

where
1 k k+1 k k41
Rm," = 3 (um+1,n + um—l,n + um,n+1 + um,n—l) .
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0 1 1 1 L L 1 1 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

/L

Figure 9.7.1: The solution to Laplace’s equation by the Gauss-Seidel
method after 100 (top) and 300 (bottom) iterations. The boundary
conditions are uz(0,y) = uz(L,y) = uy(2,0) = 0 and u(z, H) = 1+z/L.
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251
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number of iterations

158
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100 1 1

w

Figure 9.7.2: The number of iterations required so that | R, ,| < 1073
as a function of w during the iterative solution of the problem posed in
the project. We used Az = Ay = 0.01 and L = 25 = 1. The iteration
count for the boundary conditions stated in Step 1 are given by the solid
line while the iteration count for the boundary conditions given in Step
2 are shown by the dotted line. The initial guess equaled zero.

Most numerical methods dealing with partial differential equations will
discuss the theoretical reasons behind this technique;'? the optimum
value always lies between one and two.

Step 1: Solve Laplace’s equation numerically 0 < z < L, 0 < y < 29
with the following boundary conditions:

u(z,0) = 0,u(x,20) =1 +2/L,u(0,y) = y/20, and u(L,y) = 2y/ 2.

Count the number of iterations until |Ry, ,| < 1073 for all m and n.
Plot this number of iterations as a function of w. How does the curve
change with resolution Az?

Step 2: Redo Step 1 with the exception of u(0,y) = u(L,y) = 0. How
has the convergence rate changed? Can you explain why? How sensitive
are your results to the first guess?

12 For example, Young, D. M., 1971: Iterative Solution of Large Linear
Systems, Academic Press, New York.



Chapter 10
Vector Calculus

Physicists invented vectors and vector operations to facilitate their
mathematical expression of such diverse topics as mechanics and elec-
tromagnetism. In this chapter we focus on multivariable differentiations
and integrations of vector fields, such as the velocity of a fluid, where
the vector field is solely a function of its position.

10.1 REVIEW

The physical sciences and engineering abound with vectors and
scalars. Scalars are physical quantities which only possess magnitude.
Examples include mass, temperature, density, and pressure. Vectors are
physical quantities that possess both magnitude and direction. Exam-
ples include velocity, acceleration, and force. We shall denote vectors
by boldface letters.

Two vectors are equal if they have the same magnitude and direc-
tion. From the limitless number of possible vectors, two special cases
are the zero vector 0 which has no magnitude and unspecified direction
and the unit vector which has unit magnitude.

The most convenient method for expressing a vector analytically
is in terms of its components. A vector a in three-dimensional real
space is any order triplet of real numbers (components) a1, a2, and as
such that a = aii + asj + ask, where a;i, azj, and azk are vectors
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which lie along the coordinate axes and have their origin at a common
initial point. The magnitude, length, or norm of a vector a, |a|, equals
\/aE1 + ag + ag. A particularly important vector is the position vector,
defined by r = 2i+ yj + zk.

As in the case of scalars, certain arithmetic rules hold. Addition
and subtraction are very similar to their scalar counterparts:

a+b = (a1 +b1)i+ (az+b2)j+ (as + ba)k (10.1.1)

and
a—b = (a; —b)i+ (a2 —b2)j + (as — b3)k. (10.1.2)

In contrast to its scalar counterpart, there are two types of multi-
plication. The dot produci is defined as

a-b = |a||b|cos(f) = a1y + azbs + a3bs, (10.1.3)

where # is the angle between the vector such that 0 < § < 7. The
dot product yields a scalar answer. A particularly important case is
a-b = 0 with |a| # 0 and |b] # 0. In this case the vectors are orthogonal
(perpendicular) to each other.

The other form of multiplication is the cross product which is de-
fined by a x b = |a||b| sin(f)n, where 6 is the angle between the vectors
such that 0 < @ < 7 and n is a unit vector perpendicular to the plane of
a and b with the direction given by the right-hand rule. A convenient
method for computing the cross product from the scalar components of
aand b is

i j ok
_ _laz2 a3 s a; as|. a; asq
axb = a, az ag|= b2 b3 1 b1 b3 J+ bl bz k. (1014)
by b2 b3

Two nonzero vectors a and b are parallel if and only if a x b = 0.

Most of the vectors that we will use are vector-valued functions.
These functions are vectors that vary either with a single parametric
variable ¢ or multiple variables, say z, y, and z.

The most commonly encountered example of a vector-valued func-
tion which varies with a single independent variable involves the tra-
Jjectory of particles. If a space curve is parameterized by the equations
z = f(t), y = g(t), and z = h(t) with @ < t < b, the position vector
r(t) = f(t)i+ g(t)j + h(t)k gives the location of a point P as it moves
from its initial position to its final position. Furthermore, because the
increment quotient Ar/At is in the direction of a secant line, then the

limit of this quotient as At — 0, r/(t), gives the tangent to the curve at
P.
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o Example 10.1.1: Foucault pendulum

One of the great experiments of mid-nineteenth century physics
was the demonstration by J. B. L. Foucault (1819-1868) in 1851 of
the earth’s rotation by designing a (spherical) pendulum, supported by
a long wire, that essentially swings in an nonaccelerating coordinate
system. This problem demonstrates many of the fundamental concepts
of vector calculus.

The total force! acting on the bob of the pendulum is F = T +mG,
where T is the tension in the pendulum and G is the gravitational
attraction per unit mass. Using Newton’s second law,

d%r T
- == +G, (10.1.5)

inertial "M

where r is the position vector from a fixed point in an inertial coordi-
nate system to the bob. This system is inconvenient because we live in
a rotating coordinate system. Employing the conventional geographic
coordinate system,? (10.1.5) becomes

d’r Q dr Q T G

dt2+2 x ot x(Qxr)= —+G, (10.1.6)
where € is the angular rotation vector of the earth and r now denotes
a position vector in the rotating reference system with its origin at the
center of the earth and terminal point at the bob. If we define the
gravity vector g = G — Q2 x (2 x r), then the dynamical equation is

d’r dr T

E X ==tg, (10.1.7)
where the second term on the left side of (10.1.7) is called the Coriolis
force.

Because the equation is linear, let us break the position vector r
into two separate vectors: rog and r;, where r = ro + r;. The vector rg
extends from the center of the earth to the pendulum’s point of support
and r; extends from the support point to the bob. Because rp is a
constant in the geographic system,

d? d°ry dr1 _ T
—m FAx L= — g (10.1.8)

1 From Broxmeyer, C., 1960: Foucault pendulum effect in a Schuler-
tuned system. J. Aerosp. Sci., 27, 343-347 with permission.

2 For the derivation, see Marion, J. B., 1965: Classical Dynamics of
Particles and Systems, Academic Press, New York, Sections 12.2-12.3.
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If the length of the pendulum is L, then for small oscillations rq =
zi+ yj + Lk and the equations of motion are

dzl' dy z
— 4+ 2Qsin(A)— = — 10.1.9
gz T (NG =0 ( )
d?y ) Ty
-dt—z' - 2Q ln(/\)a = E (10110)
and p T
Yy z
A= —g = -2 10.1.11
20 cos (N g = =, (10.1.11)

where A denotes the latitude of the point and Q is the rotation rate
of the earth. The relationships between the components of tension are

Ty =2T,/L and T, = yT, /L. From (10.1.11),

T,
‘m

+9=2Q cos(/\)% =~ 0. (10.1.12)

Substituting the definitions of T, T, and (10.1.12) into (10.1.9) and
(10.1.10),

d’z g . dy
d—t,[+ fx+2Qsm(/\)Ez- =0 (10.1.13)
and 2 d
Yy g9 . z
— 4 Ly — =0. 10.1.14
F7p + Ly 2Qsin(A) 7 0 ( )

The approximate solution to these coupled differential equations is
z(t) = Ag cos[Q2sin(A)¢t] sin ( g/L t) (10.1.15)

and
y(t) = Ao sin[Qsin(A)t]sin ( g/L t) (10.1.16)

if 22 « g/L. Thus, we have a pendulum that swings with an angular
frequency +/g/L. However, depending upon the latitude ), the direc-
tion in which the pendulum swings changes counterclockwise with time,
completing a full cycle in 27 /[Q2sin(A)]. This result is most clearly seen
when A = m/2 and we are at the North Pole. There the earth is turning
underneath the pendulum. If initially we set the pendulum swinging
along the 0° longitude, the pendulum will shift with time to longitudes
east of the Greenwich median. Eventually, after 24 hours, the process
will repeat itself.

Consider now vector-valued functions that vary with several vari-
ables. A wector function of position assigns a vector value for every value
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Figure 10.1.1: A graphical example of the gradient: A vector that
is perpendicular to the isotherms T'(z,y) = constant and points in the
direction of most rapidly increasing temperatures.

of z, y, and z within some domain. Examples include the velocity field
of a fluid at a given instant:

v = u(z,y, 2)i+ v(z,y,2)j + w(z,y, 2)k. (10.1.17)

Another example arises in electromagnetism where electric and magnetic
fields often vary as a function of the space coordinates. For us, how-
ever, probably the most useful example involves the vector differential
operator, del or nabla, '
8. 0. 0

V= %l + '6_y.] + b—zk
which we apply to the multivariable differentiable scalar function
F(z,y,z) to give the gradient VF.

An important geometric interpretation of the gradient — one which
we shall use frequently — is the fact that V f is perpendicular (normal)
to the level surface at a given point P. To prove this, let the equation
F(z,y,z) = c describe a three-dimensional surface. If the differentiable
functions £ = f(t), y = g(t), and z = h(t) are the parametric equations
of a curve on the surface, then the derivative of F(f(t), g(t), h(t)] = cis

O0Fdzx OFdy OFd:z
em Ty a =" (10.1.19)

(10.1.18)

or

VF.r'=0. (10.1.20)
When r' # 0, the vector VF is orthogonal to the tangent vector.
Because our argument holds for any differentiable curve that passes

through the arbitrary point (z,y,z), then VF is normal to the level
surface at that point.
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Figure 10.1.1 gives a common application of the gradient. Consider
a two-dimensional temperature field T(z, y). The level curves T(z,y) =
constant are lines that connect points where the temperature is the
same (isotherms). The gradient in this case V7T is a vector that is
perpendicular or normal to these isotherms and points in the direction
of most rapidly increasing temperature.

e Example 10.1.2

Let us find the gradient of the function f(z,y,z) = z22%sin(4y).
Using the definition of gradient,

2,2 2,2 2,2
Olz?z sm(4y)]i+ O[22z sm(4y)].i + O[z*2? sin(4y)]
Oz Oy 0z
= 2z2%sin(4y)i + 42222 cos(4y)j + 2222 sin(4y)k. (10.1.22)

Vf=

k (10.1.21)

o Example 10.1.3

Let us find the unit normal to the unit sphere at any arbitrary point

(2,9, 2).
The surface of a unit sphere is defined by the equation f(z,y, z) =
2? + y* + z? = 1. Therefore, the normal is given by the gradient

N=Vf=2zi+2yj+ 22k (10.1.23)
and the unit normal
Vf _ 2ri42yj+ 22k

n-=— = = .’L‘i+ .+Zk,
IVl \/4z? + 4y2 + 422 .

because 2% + y? + 22 = 1.

(10.1.24)

A popular method for visualizing a vector field F is to draw space
curves which are tangent to the vector field at each z,y,z. In fluid
mechanics these lines are called streamlines while in physics they are
generally called lines of force or fluz lines for an electric, magnetic, or
gravitational field. For a fluid with a velocity field that does not vary
with time, the streamlines give the paths along which small parcels of
the fluid move.

To find the streamlines of a given vector field F with components
P(z,y,2),Q(x,y,2), and R(z,y, z), we assume that we can parameterize
the streamlines in the form r(t) = z(t)i+y(¢)j+2(t)k. Then the tangent
line is r'(t) = 2'(¢)i + ¥/ (1)j + 2’(t)k. Because the streamline must be
parallel to the vector field at any ¢, r'(t) = AF or

dz _
dt —

AP(z,y,2), %’- = AQ(z,y,2) and Z—;— = AR(z,y,2) (10.1.25)
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or
dz dy dz

P(z,y,z)  Qz,y4,2) R(z,y,2)
The solution of this system of differential equations yields the stream-
lines.

(10.1.26)

o Example 10.1.4

Let us find the streamlines for the vector field F = sec(z)i—cot(y)j+
k that passes through the point (v/4,7,1). In this particular example,
F represents a measured or computed fluid’s velocity at a particular
instant.

From (10.1.26),

dr dy dz

= - = —. 10.1.27
sec(z) cot(y) 1 ( )
This yields two differential equations:
sin(y) sin(y)
cos(z)dr = ——dy and dz=-——Ldy (10.1.28)

cos(y) cos(y)

Integrating these equations yields
sin(z) = In|cos(y)| + c1 and =z =In]|cos(y)| + ca. (10.1.29)
Substituting for the given point, we finally have that

sin(z) = In| cos(y)| + Vv2/2 and z=In]|cos(y)|+1. (10.1.30)

o Example 10.1.5

Let us find the streamlines for the vector field F = sin(z)j + e’k
that passes through the point (2,0, 0).

From (10.1.26),
de dy _dz

—_— = —= —. 10.1.31
0 sin(z) ¥ ( )

This yields two differential equations:
dz =0 and sin(z) dz = e¥ dy. (10.1.32)

Integrating these equations gives

r=c and €Y = —cos(z) + ca. (10.1.33)



514 Advanced Engineering Mathematics

Substituting for the given point, we finally have that
z=2 and e¥ =2 — cos(z). (10.1.34)
Note that (10.1.34) only applies for a certain strip in the yz-plane.
Problems

Given the following vectors a and b, verify that a-(a x b) = 0 and
b-(axb)=0:

l.a=4i-2j+5k, b=3i+j-k

2.a=i-3j+k, b=2i+4k

3.a=i+j+k b=-5i+2+3k

4. a=8i+j—6k, b=i—2j+10k

5. a=2i+7]—4k, b=i4+j—k.

6. Prove a x (b x¢c) =(a-c)b - (a-b)c.

7. Proveax (bxc)+bx (cxa)+ecx(axb)=0.

Find the gradient of the following functions:

8. f(z,y,2) = zy*/23 9. f(z,y,z) = zycos(yz)
10. f(z,y,2) =In(z? + 42 +2%) 1L f(z,y,2) = 22y*(2z + 1)?
12. f(z,y,2) = 2z — y% + 22,

Sketch the following surfaces. For each of these surfaces, find a mathe-
matical expression for the unit normal and then sketch it.

13.2=3 14. 22 + 42 =4 15. z =22 4+ ¢°
16. z = /22 + 2 17.2=y 8.z+y+z=1
19. z = z2.

Find the streamlines for the following vector fields that pass through
the specified point:

20. F=i+j+k; (0,1,1)
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21. F = 2i — y?j + 2k; (1,1,1)

22. F = 3z% — y%j + 22k; (2,1,3)

23. F = 2%+ y%j — 2%k; (1,1,1)

24. F = (1/z)i+e¥j—k; (2,0,4)

25. Solve the differential equations (10.1.13)-(10.1.14) with the initial
conditions z(0) = y(0) = ¢/ (0) = 0 and z'(0) = Ao\/g/L assuming that
02 <« g/L.

26. If a fluid is bounded by a fixed surface f(z,y, z) = ¢, show that the
fluid must satisfy the boundary condition v - Vf = 0, where v is the
velocity of the fluid.

27. A sphere of radius a is moving in a fluid with the constant velocity u.
Show that the fluid satisfies the boundary condition (v —u)-(r—ut) =0
at the surface of the sphere, if the center of the sphere coincides with
the origin at t = 0 and v denotes the velocity of the fluid.

10.2 DIVERGENCE AND CURL

Consider a vector field v defined in some region of three-dimensional
space. The function v(r) can be resolved into components along the i,
Jj, and k directions or

v(r) = u(z,y, 2)i + v(z,y, 2)j + w(z,y, 2)k. (10.2.1)

If v is a fluid’s velocity field, then we can compute the flow rate through a
small (differential) rectangular box defined by increments (Az, Ay, Az)
centered at the point (z,y, z). See Figure 10.2.1. The flow out from the
box through the face with the outwardly pointing normal n = —j is

v-(=j) = —v(z,y — Ay/2,2)AzAz (1.0.2.2)

and the flow through the face with the outwardly pointing normaln = j
is
v-j=uv(z,y+ Ay/2,2)ArAz. (10.2.3)

The net flow through the two faces is

[v(z,y + Ay/2,2) — v(z,y — Ay/2, 2)|AzAz = vy(z,y, 2) Az AyAz.
(10.2.4)
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Figure 10.2.1: Divergence of a vector function v(z,y, ).

A similar analysis of the other faces and combination of the results give
the approximate total flow from the box as

[uz(z,y, 2) + vy(2, ¥, 2) + w; (2, y, 2)]AzAyAz. (10.2.5)

Dividing by the volume AzAyAz and taking the limit as the dimensions
of the box tend to zero yield u; +vy +w, as the flow out from (z, y, z) per
unit volume per unit time. This scalar quantity is called the divergence
of the vector v:

div(v) =V -v= (B%H- %j+ (%k) (i + vj + wk) = up + vy + w,.

(10.2.6)
Thus, if the divergence is positive, either the fluid is expanding and its
density at the point is falling with time, or the point is a source at which
fluid is entering the field. When the divergence is negative, either the
fluid is contracting and its density is rising at the point, or the point is
a negative source or sink at which fluid is leaving the field.

If the divergence of a vector field is zero everywhere within a do-
main, then the flux entering any element of space exactly equals that
leaving it and the vector field is called nondivergent or solenoidal (from
a Greek word meaning a tube). For a fluid, if there are no sources or
sinks, then its density cannot change.

Some useful properties of the divergence operator are

V(F+G)=V.F+V.G, (10.2.7)
V- (¢F) =V -F+F Vyp (10.2.8)

and
V2=V -Vo =, + Pyy + Paz- (10.2.9)

The expression (10.2.9) is very important in physics and is given the
special name of the Laplacian.3

3 Some mathematicians write A instead of V2.
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Figure 10.2.2: Examples of vector fields with and without divergence
and curl.

e Example 10.2.1

If F = 2221 — 24°2%j + zy®zk, compute the divergence of F.

=9 0 3,2 0 2
VF= (@) + 5 (-2 + 5o (ev's) - (10210)
=22z - 6y°2% + 2y’ (10.2.11)

o Example 10.2.2

If r = zi + yj + zk, show that r/|r|® is nondivergent.

. (_) _ 9 [ z Lo y
e[/~ Oz (z2 + y? + z2)3/2 Oy [ (22 + 2 + 22)3/2
4 z
+ oz [(z-z +y? + z2)3/2] (10.2.12)
3 32?2 + 3y? + 322

= - =0. (10.2.13
(22 + 12+ 22)3/2 (22 + y? + 22)5/2 0. ( )

Another important vector function involving the vector field v is
the curl of v, written curl(v) or rot(v) in some older textbooks. In fluid
flow problems it is proportional to the instantaneous angular velocity of
a fluid element. In rectangular coordinates,

curl(v) = V x v = (wy — v,)i + (u, — wz)j + (vo — uy)k, (10.2.14)

where v = ui + v) + wk as before. However, it is best remembered in
the mnemonic form:

i j k
VxF = % (,;9—y % = (wy—v; )i+ (u, —wg)j+(vz —uy)k. (10.2.15)
u v ow

If the curl of a vector field is zero everywhere within a region, then the
field is irrotational.
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Figure 10.2.2 illustrates graphically some vector fields that do and
do not possess divergence and curl. Let the vectors that are illustrated
represent the motion of fluid particles. In the case of divergence only,
fluid is streaming from the point, at which the density is falling. Alter-
natively the point could be a source. In the case where there is only curl,
the fluid rotates about the point and the fluid is incompressible. Finally,
the point that possesses both divergence and curl is a compressible fluid
with rotation.

Some useful computational formulas exist for both the divergence
and curl operations:

Vx(F+G)=VxF+VxG, (10.2.16)
V x Vo =0, (10.2.17)
V.-VxF=0, (10.2.18)
Vx(pF)=¢VXxF+VpxF, (10.2.19)

V(F-G)=(F-V)G+(G-V)F+Fx(VxG)+Gx (V xF), (10.2.20)
Vx(FxG)=(G-V)F-(F-V)G+F(V-G)-G(V-F), (10.2.21)
Vx(VxF)=V(V-F)—(V-V)F (10.2.22)

and
V- (FxG)=G-VxF-F-VxG. (10.2.23)

In this book the operation VF is undefined.
e Example 10.2.3

If F = 223 — 22%yzj + 2y2*k, compute the curl of F and verify that
V-VxF=0.
From the definition of curl,

i J k
VxF=|%& = 2 (10.2.24)
rz3 —2z%yz 2yt
= [& (2v2*) - & (-20%2) | i - [& (202%) - & (22%)]
+ :a% (—2%yz) — & (1723)] k (10.2.25)
= (2z* + 22%y)i — (0 — 3z2%)j + (—4zyz — 0)k (10.2.26)
= (2z* 4 22%y)i + 322%j — 4zyzk. (10.2.27)

From the definition of divergence and (10.2.27),

_ 0 a0 2y, 0 2 O _ _
V.VxF = e (22 +2z y)+6y (3xz )+6z (—4:cyz) = 4zy+0—-4zy = 0.
(10.2.28)
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o Example 10.2.4: Potential flow theory

One of the topics in most elementary fluid mechanics courses is the
study of irrotational and nondivergent fluid flows. Because the fluid
1s irrotational, the velocity vector field v satisfies V x v .= 0. From
(10.2.17) we can introduce a potential ¢ such that v = Vy. Because
the flow field is nondivergent, V - v = VZp = 0. Thus, the fluid flow
can be completely described in terms of solutions to Laplace’s equation.
This area of fluid mechanics is called potential flow theory.

Problems

Compute V-F,VxF,V-(V xF) and V(V - F) for the following vector
fields:

1. F = 2%z + y22j + 2’k

2. F =42+ (2z + 2y2)j + 3z + *)k

3. F=(z—y)li+e "¥j+z2e¥k

4. F = 3zyi+2x2%j+ 4%k

5. F = 5yzi + z22j + 323k

6. F = Pi+ (23y? — zy)j — (3yz —z2)k

7. F=ze ¥i+yz?j+3e %k

8. F = yln(z)i + (2 — 3yz)j + zyz°k

9. F = zyzi + z3yze*j + zye’k

10. F = (z3® — 2%)i + 4z%y?zj — y*25k.

11. F = z¢%i 4 zy2%) + zycos(z)k

12. F = zy?i 4 zy2?j + zysin(2)k

13. F = zy?%i 4 zyzj + zy cos(z)k.

14. (a) Assuming continuity of all partial derivatives, show that
V x(VxF)=V(V-F)- V?F.

(b) Using F = 3zyi + 4yzj + 2zzk, verify the results in part (a).
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15. If E = E(z,y,z,t) and B = B(z,y, z,t) represent the electric and
magnetic fields in a vacuum, Maxwell’s field equations are

10B

10E

. = B=-—
vV-B=90 V x Pl

where ¢ is the speed of light. Using the results from Problem 14, show
that E and B satisfy

1 6?E 1 6°B

L) i B —

VE = = 52 and V°B RETOR

16. If f and g are continuously differentiable scalar fields, show that
Vf x Vg is solenoidal. Hint: Show that Vf x Vg =V x (fVyg).

17. An inviscid (frictionless) fluid in equilibrium obeys the relation-
ship Vp = pF, where p denotes the density of the fluid, p denotes the
pressure, and F denotes the body forces (such as gravity). Show that
F-VxF=0.

10.3 LINE INTEGRALS

Line integrals are ubiquitous in physics. In mechanics they are
used to compute work. In electricity and magnetism, they provide sim-
ple methods for computing the electric and magnetic fields for simple
geometries.

The line integral most frequently encountered is an oriented one
in which the path C is directed and the integrand is the dot product
between the vector function F(r) and the tangent of the path dr. It is
usually written in the economical form

/F'dr:/ P(z,y,2)dz+ Q(z,y,2)dy+ R(z,y,z)dz, (10.3.1)
(o} C

where F = P(zx,y,2)i+ Q(z,y,2)j + R(z,y,2)k. If the starting and
terminal points are the same so that the contour is closed, then this
closed contour integral will be denoted by §C. In the following examples
we show how to evaluate the line integrals along various types of curves.

o Example 10.3.1
If F = (322 +6y)i— 14yzj+ 20227k, let us evaluate the line integral

Jo F - dr along the parametric curves z(t) = ¢t, y(t) = t?, and z(t) = 13
from the point (0,0,0) to (1,1,1). See Figure 10.3.1.
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(1,1,1)

X

Figure 10.3.1: Diagram for the line integration in Example 10.3.1.

We begin by finding the values of ¢ which give the corresponding
end points. ‘A quick check shows that ¢t = 0 gives (0,0,0) while ¢t = 1
yields (1,1,1). It should be noted that the same value of ¢ must give
the correct coordinates in each direction. Failure to do so suggests an
error in the parameterization. Therefore,

/ F.dr= /1(3t2 + 6t%) dt — 148%(t%) d(¢?) + 20¢(¢3)2d(¢3) (10.3.2)
C 0

1
=/ 9t2 dt — 28t° dt + 60t° dt (10.3.3)
0
= (3% — 47 4+ 611} = 5. (10.3.4)

o Example 10.3.2

Let us redo the previous example with a contour that consists of
three “dog legs”, namely straight lines from (0,0,0) to (1,0,0), from
(1,0,0) to (1,1,0), and from (1,1,0) to (1,1,1). See Figure 10.3.2.

In this particular problem we break the integration down into three
distinct integrals:

/F-dr:/ F-dr+/ F-dr+/ F -dr. (10.3.5)
C Cl Cg CS
ForCy,y=2=dy=dz=0 and

1 1
/ F-dr:/ (3x2+6-0)dz——14~0-0'0+201:-02-O:/ 3z2dz = 1.
Cy 0 0
(10.3.6)
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Figure 10.3.2: Diagram for the line integration in Example 10.3.2.
ForCQ,:c:Iandz;:dz_—.dz:Osothat
1
/ F-dr:/ (3-1246y)-0—14y-0-dy+20-1-0%-0=0. (10.3.7)
Cg 0]
For C3, 2 = y =1 and do = dy = 0 so that

1 1
/ F-dr:/ (3-12+6-1)-0-14.1-z-0+20-1-z2dz:/ 2022 dz = 2.
Ca 0

0
(10.3.8)
Therefore,

/ F.dr=2. (10.3.9)
C

e Example 10.3.3

For our third calculation, we redo the first example where the con-

tour is a straight line. The parameterization in thiscaseisz =y =2z =1
with 0 <¢ < 1. See Figure 10.3.3. Then,

/F~dr=/1(3t2+6t)dt—14(t)(t)dt+20t(t)2 dt  (10.3.10)
C 0

1
= / (3% + 6t — 14t 4 20¢%) dt = 13, (10.3.11)
0

An interesting aspect of these three examples is that, although we
used a common vector field and moved from (0, 0,0) to (1,1, 1) in each
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X

Figure 10.3.3: Diagram for the line integration in Example 10.3.3.

case, we obtained a different answer in each case. Thus, for this vector
field, the line integral is path dependent. This is generally true. In the
next section we will meet conservative vector fields where the results
will be path independent.

e Example 10.3.4

If F = (224 y?)i — 2zyj + zk, let us evaluate fC F - dr if the contour
is that portion of the circle 2 + y* = a? from the point (a,0,3) to
(—a,0,3). See Figure 10.3.4.

The parametric equations for this example are z = acos(d), y =
asin(f), z = 3 with 0 < 8 < . Therefore,

/ F.dr= /W[az cos?(0) + a? sin?(8)][~asin(8) db]
c 0
— 2a? cos(8) sin(8)[a cos(0) df] + a cos(d) -0 (10.3.12)

(
=-d® / sin(f) d6 — 2a® / cos?()sin(f)dé  (10.3.13)
0 0
=a° cos(0)|;r + 243 coss(t9)l(7)r (10.3.14)
=-2d° - %a3 = - 143 (10.3.15)

e Example 10.3.5: Circulation

Let v(z,y, z) denote the velocity at the point (z,y, z) in a moving
fluid. If it varies with time, this is the velocity at a particular instant
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(a,0,3) =~

X

Figure 10.3.4: Diagram for the line integration in Example 10.3.4.

of time. The integral §. v - dr around a closed path C is called the
circulation around that path. The average component of velocity along

the path is
d -d
g, = Jeveds _ fov dr (10.3.16)

s — - y
S S

where s is the total length of the path. The circulation is thus §, v-dr =
u,s, the product of the length of the path and the average velocity
along the path. When the circulation is positive, the flow is more in
the direction of integration than opposite to it. Circulation is thus an
indication and to some extent a measure of motion around the path.

Problems
Evaluate [ F - dr for the following vector fields and curves:

1. F = ysin(wz)i+ z2e¥j + 3zzk and C is the curve z = ¢, y = t? and
z =t from (0,0, 0) to (1,1, 1).

2. F = yi+ zj + zk and C consists of the line segments (0,0,0) to
(2,3,0) and from (2, 3,0) to (2,3,4).

3. F = €1+ ze®Y) + zye®¥’k and C is the curve £ = ¢, y = t* and
z=13with0<t<2.

4. F = yzi+zzj+zyk and C is the curve z = t3, y = t? and z = ¢ with
1<t
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5. F = yi — zj + 3zyk and C consists of the semicircle 2% + y* = 4,
z =0, y > 0 and the line segment from (-2,0,0) to (2,0, 0).

6. F = (z + 2y)i+ (6y — 2z)j and C consists of the sides of the triangle
with vertices at (0,0,0), (1,1,1) and (1,1,0). Proceed from (0,0, 0) to
(1,1,1) to (1,1,0) and back to (0,0,0).

7. F = 2221+ 4y%j + 2%k and C is taken counterclockwise around the
ellipse z2/4 +y?/9=1,2= 1.

8. F = 2zi+ yj + zk and C is the contour z = ¢, y = sin(t) and
z = cos(t) + sin(t) with 0 <t < 27.

9. F = (2y* + 2)i + 4zyj + zk and C is the spiral z = cos(t), y = sin(t)
and z =t with 0 <t < 27 between the points (1,0,0) and (1,0, 27).

10. F = 2% + 3%j + (22 + 2zy)k and C consists of the edges of the
triangle with vertices at (0,0,0), (1,1,0), and (0,1,0). Proceed from
(0,0,0) to (1,1,0) to (0,1,0) and back to (0,0,0).

10.4 THE POTENTIAL FUNCTION

In Section 10.2 we showed that the curl operation applied to a
gradient produces the zero vector: V x Vo = 0. Consequently, if we
have a vector field F such that ¥V x F = 0 everywhere, then that vector
field is called a conservative field and we may compute a potential ¢
such that F = V.

o Example 10.4.1

Let us show that the vector field F = ye®¥ cos(z)i + ze™¥ cos(z)j —
%Y sin(z)k is conservative and then find the corresponding potential
function.

To show that the field is conservative, we compute the curl of F or

1 J k
VxF= = o Z =0. (104.1)
ye®¥ cos(z) xe®™¥ cos(z) —e®¥sin(z)

To find the potential we must solve three partial differential equa-
tions:
pr = ye®¥ cos(z) = F - i, (10.4.2)

py =ze"¥cos(z)=F-j (10.4.3)

and
p, = —€"¥sin(z) = F - k. (10.4.4)
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We begin by integrating any one of these three equations. Choosing
(10.4.2),
p(x,y,z) = e™ cos(z) + f(y, 2). (10.4.5)

To find f(y, z) we differentiate (10.4.5) with respect to y and find that
py = ze™ cos(z) + fy(y, z) = ze™ cos(z) (10.4.6)

from (10.4.3). Thus, f, = 0 and f(y, z) can only be a function of z, say
g(2). Then,
e(z,y,2) = ¥ cos(z) + g(z). (10.4.7)

Finally,
. = —€"¥sin(z) + ¢'(z) = —e*¥ sin(2) (10.4.8)

from (10.4.4) and g¢’(z) = 0. Therefore, the potential is

e(z,y, z) = €™ cos(z) + constant. (10.4.9)

Potentials can be very useful in computing line integrals because

/F'dr=/ <pxd:c+<pydy+gozdz:/ dp = p(B)—¢(A), (10.4.10)
C C C

where the point B is the terminal point of the integration while the
point A is the starting point. Thus, any path integration between any
two points is path independent.

Finally, if we close the path so that A and B coincide, then

f{ F-dr=0. (10.4.11)
C

It should be noted that the converse is not true. Just because §, F-dr =
0, we do not necessarily have a conservative field F.

 In summary then, an irrotational vector in a given region has three
fundamental properties: (1) its integral around every simply connected
circuit is zero, (2) its curl equals zero, (3) it is the gradient of a scalar
function. For continuously differentiable vectors these properties are
equivalent. For vectors which are only piece-wise differentiable, this is
not true. Generally the first property is the most fundamental and taken
as the definition of irrotationality.

o Example 10.4.2

Using the potential found in Example 10.4.1, let us find the value
of the line integral f. F - dr from the point (0,0,0) to (=1, 2, 7).
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From (10.4.9),

(-1,2,m)
/ F - dr = ["Y cos(z) + constant] =-1-¢"2. (10.4.12)
C (0,0,0)

Problems

Verify that the following vector fields are conservative and then find the
corresponding potential:

1. F=2zyi+ (2% + 2y2)j + (y% + 1)k

2. F = (2z + 22e)i + (2y — 1)j + ek

3.F =yzi+z2j+ xyk 4. F = 2zi+ 3y%) + 425k
5. F = [2zsin(y) + €3?])i + 2% cos(y)j + (3ze3* +4)k

6.F =(2c45)i+3y%+(1/2)k 7. F =e¥i+ 3y’ + 2ze¥°k

8.F=yi+(z+2)j+vk 9.F=(z+yi+zj+zk.
10.5 SURFACE INTEGRALS

Surface integrals appear in such diverse fields as electromagnetism
and fluid mechanics. For example, if we were oceanographers we might
be interested in the rate of volume of seawater through an instrument
which has the curved surface S. The volume rate equals ffs v -ndo,
where v is the velocity and n do is an infinitesimally small element on
the surface of the instrument. The surface element nde must have
an orientation (given by n) because it makes a considerable difference
whether the flow is directly through the surface or at right angles. More
generally, if the surface encloses a three-dimensional volume, then we
have a closed surface integral.

To illustrate the concept of computing a surface integral, we will
do three examples with simple geometries. Later we will show how to
use surface coordinates to do more complicated geometries.
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(0,1,1)

(1,0,1

! [

X
Figure 10.5.1: Diagram for the surface integration in Example 10.5.1.
e Example 10.5.1

Let us find the flux out the top of a unit cube if the vector field is
F = zi + yj + zk. See Figure 10.5.1.

The top of a unit cube consists of the surface z = 1 with0< 2 < 1
and 0 < y < 1. By inspection the unit normal to this surface is n = k
or n = —k. Because we are interested in the flux out of the unit cube,
n =k, and

1 1
//F-nda:/ /(:ci+yj+k)-kd:cdy=1 (10.5.1)
S 0 0

because z = 1.
e Example 10.5.2

Let us find the flux out of that portion of the cylinder y? + 22 =4
in the first octant bounded by = 0, z = 3, y = 0, and z = 0. The
vector field is F' = z1 4 2zj + yk. See Figure 10.5.2.

Because we are dealing with a cylinder, cylindrical coordinates are
appropriate. Let y = 2cos(6), z = 2sin(f), and z = z with 0 < 8 < /2.
To find n, we use the gradient in conjunction with the definition of the
surface of the cylinder f(z,y,2) = y* + 2% = 4. Then

Vi _ 2yi+2k _y

z
= = =Zj+ -k 5.2
agi VAay? + 422 2?2 (10.5.2)
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Figure 10.5.2: Diagram for the surface integration in Example 10.5.2.

because y2 + z2 = 4 along the surface. Because we want the flux out
of the surface, then n = yj/2 + zk/2 whereas the flux into the surface
would require n = —yj/2 — zk/2. Therefore,

Fon=(ai+ 25+ k) (%54 5k) = 3% = 6 cos(6) sin(6). (10.5.3)

What is do? Our infinitesimal surface area has a side in the z
direction of length dz and a side in the # direction of length 2 df because
the radius equals 2. Therefore, do = 2dz df.

Bringing all of these elements together,

/AF.nda=/03/0”/2 12 cos(0) sin(8) df dz (10.5.4)

3 /2 3
:6/ [sin2(0)|0 ] dz=6/ dz = 18. (10.5.5)
0 1]

As counterpoint to this example, let us find the flux out of the pie-
shaped surface at £ = 3. In this case, y = rcos(f) and z = rsin(f)
and

w/2 p2
// F.-ndo= / / [3i + 2rsin(8)j + rcos(8)k] -irdrdf (10.5.6)
5 0 0

/2 p2
= 3/ / rdrdf = 3. - (10.5.7)
0 0 :
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A

.
-

X

Figure 10.5.3: Diagram for the surface integration in Example 10.5.3.
o Example 10.5.3

Let us find the flux of the vector field F = y?i + z%j + 52k out of
the hemispheric surface ? + y? + 22 = a®, z > 0. See Figure 10.5.3.

We begin by finding the outwardly pointing normal. Because the

surface is defined by f(z,y,z) = 2% + y* + 2% = a2,

2zi+ 2yj + 22k
= Vf _ ‘o4 2y +2zk £i+ gJ+ 2 (10.5.8)
VAl 42+ 42 +4:2 a  a  a

because =% + y? + 22 = a2. This is also the outwardly pointing normal
because n = r/a, where r is the radial vector.

Using spherical coordinates, z = a cos() sin(8), y = asin(p) sin(8),
and z = acos(#), where ¢ is the angle made by the projection of the
point onto the equatorial plane, measured from the z-axis, and @ is
the colatitude or “cone angle” measured from the z-axis. To compute
do, the infinitesimal length in the 8 direction is adf while in the ¢
direction it is a sin(f) dyp, where the sin(8) factor takes into account the
convergence of the meridians. Therefore, do = a®sin(#) df dp and

2% pw/2
//F.nda:/ / , (y2i+x2j+5zk)
) 0 0

: (fi+ Yi+ fk) a’sin(f)dfdp  (10.5.9)

2T y 5 2
/ / ( +- )a sin(6) df de(10.5.10)
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]/5 F -ndo = /OW/Z ‘/027r [a* cos() sin?(¢) sin*()

+ a* cos?(¢p) sin(p) sin*(8) + 5a® cos®(6) sin(9)] dyp db

(10.5.11)
/2 a? 271 at 21
= / [— sin?(p)| sin*(8) — — cos3(p)| sin*(0)
0 3 0 3 0
+ 5a3 cos?(6) sin(ﬁ)golzw] dé (10.5.12)
w/2
= 107ra3/ cos?(#) sin(9) df (10.5.13)
0
3 /2 3
= _10ma 0y = 10§a . (10.5.14)
0

Although these techniques apply for simple geometries such as a
cylinder or sphere, we would like a general method for treating any
arbitrary surface. We begin by noting that a surface is an aggregate of
points whose coordinates are functions of two variables. For example,
in the previous example, the surface was described by the coordinates
¢ and 0. Let us denote these surface coordinates in general by u and v.
Consequently, on any surface we can reexpress z, y, and z in terms of u
and v: ¢ = z(u,v), y = y(u,v), and z = 2(u, v).

Next, we must find an infinitesimal element of area. The position
vector to the surface is r = z(u, v)i+ y(u,v)j + z(u, v)k. Therefore, the
tangent vectors along v = constant, ry, and along u = constant, ry,
equal

Ty = Tul+ YuJ + 20k (10.5.15)

and
r, = Ty1+ YuJ + 2k (10.5.16)

Consequently, the sides of the infinitesimal area is ry du and r, dv.
Therefore, the vectorial area of the parallelogram that these vectors
form is

ndo =1y X rydudv (10.5.17)

and is called the vector element of area on the surface. Thus, we may
convert F - ndo into an expression involving only u and v and then
evaluate the surface integral by integrating over the appropriate domain
in the uv-plane. Of course, we are in trouble if r, xr, = 0. Therefore, we
only treat regular points where ry xr, # 0. In the next few examples, we
show how to use these surface coordinates to evaluate surface integrals.
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* (2,0,0)

Figure 10.5.5: Diagram for the surface integration in Example 10.5.4.
o Example 10.5.4

Let us find the flux of the vector field F = zi + yj + zk through
the top of the plane 3z + 2y + z = 6 which lies in the first octant. See
Figure 10.5.5.

Our parametric equations are £ = u, y = v, and z = 6 — 3u — 2v.
Therefore,

r=ut+vj+(6—-3u—2v)k (10.5.18)
so that
r,=1-3k, r,=j-2k (10.5.19)
and
ry xr, =3i+2j+k. (10.5.20)

Bring all of these elements together,

2 p3-3u/2
//F~nd0'=/ / (Bu+2v+6—3u—2v)dvdu (10.5.21)
5 o Jo

2 3-3u/2 2
- 6/ / dvdu = 6/ (3—3u/2)du  (10.5.22)

0o Jo 0
=6 (3u— 3u?)|2 =18, (10.5.23)
To set up the limits of integration, we note that the area in u, v space

corresponds to the zy-plane. On the zy-plane, z = 0 and 3u + 2v = 6,
along with boundaries u = v = 0.
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Figure 10.5.6: Diagram for the surface integration in Example 10.5.5.
o Example 10.5.5

Let us find the flux of the vector field F = zi + yj + zk through
the top of the surface z = zy + 1 which covers the square 0 < z < 1,
0 < y < 1 in the zy-plane. See Figure 10.5.6.

Our parametric equations are z = u, y = v, and z = uv + 1 with
0<u<1and0<wv< 1 Therefore,

r=ui+vj+ (uv+ 1)k (10.5.24)
so that
ry =1+ vk, r, =j+uk (10.5.25)
and
ry X r, = —vi—uj+k (10.5.26)

Bring all of these elements together,

//SF-nda-:/01/01[Ui+vj+(uv+1)k]‘("vi—uj-i-k)dudv
(10.5.27)

=/01 /01(1—uv)dudv:/ (v — Lu2v) | dv(10.5.28)

1
0

|

1
- / (1=1o) dv = (v—3o?)| = 2. (10.5.29)
0
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Figure 10.5.7: Diagram for the surface integration in Example 10.5.6.
o Example 10.5.6

Let us find the flux of the vector field F = 4zzi+zyz2j+3zk through
the exterior surface of the cone 2?2 = z2 + y? above the zy-plane and
below z = 4. See Figure 10.5.7.

A natural choice for the surface coordinates is polar coordinates r
and 6. Because & = rcos(d) and y = rsin(f), z = r. Then

r = rcos(f)i+ rsin(8)j + rk (10.5.30)
with 0 < r <4 and 0 < 8 < 27 so that
r, = cos(0)i+ sin(6)j + k,rg = —rsin()i + r cos(h)j (10.5.31)

and
r, X rg = —rcos(f)i — rsin(9)j + rk. (10.5.32)

This is the unit area inside the cone. Because we want the exterior sur-
face, we must take the negative of (10.5.32). Bring all of these elements
together,

//5 F -ndo = A4 /OEW{[41' cos()]r[r cos(8)] + [r? sin(8) cos(8)]r2[r sin(8)]

—3r?} dfdr (10.5.33)
4
- / {w [0+ Lsin(26)] 2" + r3L sin(6) 2" — 3r"’9|§"} dr
0
(10.5.34)

4
= /o (4wr® — 6mr?) dr = (mr* — 27rr3)|3 = 1287.(10.5.35)
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Problems

Compute the surface integral [[ F -ndo for the following vector fields
and surfaces:

1. F = zi— zj+ yk and the surface is the top portion of the z = 1 plane
where 0<z<land0<y< 1

2. F = zi + yj + xzk and the surface is the top side of the cylinder
224942 =9,z=0,and z = 1.

3. F = zyi + zj + zzk and the surface consists of both exterior ends of
the cylinder defined by z% + y>’=4,z=0,and 2 =2.

4. F = zi + zj + vk and the surface is the lateral and exterior side of
the cylinder defined by 22 +y* =4, 2 = =3, and z =3.

5. F = zyi + z2j + yk and the surface is the curved exterior side of the
cylinder y? + 22 = 9 in the first octant bounded by z =0,z =1,y =0,
and z = 0.

6. F = yj + z°k and the surface is the exterior of the semicircular
cylinder y? + 22 = 4, 2 > 0 cut by the planes z =0 and z = 1.

7. F = zi + zj + yk and the surface is the curved exterior side of the
cylinder z% + y? = 4 in the first octant cut by the planes z = 1 and
z=2. .

8. F = z2i— z%j + yzk and the surface is the exterior of the hemispheric
surface of 22 + y® + 22 = 16 above the plane z = 2.

9. F=yi+zj + yk and the surface is the top of the surface z =z + 1
where —1 <z <land -1<y< L

10. F = zi+zj—3zk and the surface is the top of the plane z+y+2z = 2a
that lies above the square 0 < z < a, 0 <y < ain the zy-plane.

11. F= (g2 + 22)i+ (22 + 29)j+ (22 + y?)k and the surface is the top
of the surface z=1—z2 with -1 <z<land -2<y <2

12. F = 3*i+ zzj — k and the surface is the cone z = /z2+y?,
0 < z < 1 with the normal pointing away from the z-axis.

13. F = y%i+ 2% + 52k and the surface is the top of the plane z = y+1
where ~1 <z <land -1<y<1.
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14. F = —yi + zj + zk and the surface is the exterior or bottom of the
paraboloid z = z? + y? where 0 < z < 1.

15. F = —y1+:cJ+6z2k and the surface is the exterior of the paraboloids
z=4—-22 —y? and z = 2% + 2.

10.6 GREEN'S LEMMA

Consider a rectangle in the zy-plane which is bounded by the lines
r=a,z=0b,y=c and y = d. We assume that the boundary of the
rectangle is a piece-wise smooth curve which we denote by C. If we have
a continuously differentiable vector function F = P(z,y)i + Q(z,y)j at
each point of enclosed region R, then

/ 99 44 = / [/ }dy (10.6.1)

d
=/ Q(b,y)dy—/ Qa,y)dy  (10.6.2)
- }iQ(x,y) dy, (10.6.3)

where the last integral is a closed line integral counterclockwise around
the rectangle because the horizontal sides vanish since dy = 0. By
similar arguments,

oP
/ 3y 4= —]i P(z,y)dz (10.6.4)
so that
0Q 0P
//R (8:6 y) A = jip(l‘,y) dz + Q(z,y) dy. (10.6.5)

This result, often known as Green’s lemma, may be expressed in vector
form as

fF-dr=// V x F-kdA. (10.6.6)
C R

Although this proof was for a rectangular area, it can be general-
1zed to any simply closed region on the zy-plane as follows. Consider
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y A
(1:1)

Figure 10.6.1: Diagram for the verification of Green’s lemma in Ex-
ample 10.6.1.

an area which is surrounded by simply closed curves. Within the closed
contour we can divide the area into an infinite number of infinitesimally
small rectangles and apply (10.6.6) to each rectangle. When we sum up
all of these rectangles, we find [z V x F -k dA, where the integration is
over the entire surface area. On the other hand, away from the bound-
ary, the line integral along any one edge of a rectangle cancels the line
integral along the same edge in a contiguous rectangle. Thus, the only
nonvanishing contribution from the line integrals arises from the outside
boundary of the domain §, F - dr.

o Example 10.6.1

Let us verify Green’s lemma using the vector field F = (3z?—8y%)i+
(4y — 6zy)j and the enclosed area lies between the curves y = /7 and
y = 2. The two curves intersect at z = 0 and z = 1. See Figure 10.6.1.

We begin with the line integral:
1
% F.-dr= / (322 — 8z*)dx + (42?2 — 62%)(2z dz)
c 0
0
+ / (3z% — 8z)dz + (4z'/? — 6.1'3/2)(%91:‘1/2 d£10.6.7)
1

1
= ] (—20z% + 82 + 11z — 2)dz = &. (10.6.8)
0
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In (10.6.7) we used y = z? in the first integral and y = \/Z in our return
integration. For the areal integration,

1 pJT 1 JE
// VXF-de:/ / 10ydydz:/ 5y°|7; dz (10.6.9)
R 0 z? 0

1
= 5/0 (¢ —a*)de =2 (10.6.10)
and Green’s lemma is verified in this particular case.

e Example 10.6.2

Let us redo Example 10.6.1 except that the closed contour is the
triangular region defined by the linesz =0, y=0,and z + y = 1.
The line integral is

. .
}{F-drz/ (32> —8-0%)dz+(4-0—62-0)-0
C 0
1
+ [ 180 = 07 = 871 (~d) + b4y = 601 ~ ol dy
+/0(3-02—8y2)-0+(4y—-6-0-y)dy (10.6.11)
1

1 1 1
:/ 3z? dz—/ 4ydy+/ (-3 +4y+ 11y*)dy (10.6.12)
0 0 0

22|y — 2020 + (<3y+ 2" + L)) = &, (10.6.13)

On the other hand, the areal integration is

1 l1-z 1
// VXF-de:/'/ 10ydydx:/ 5yzl;" dz  (10.6.14)
R 0 0 0

1
= 5/ (1-z)’de=— (1 —x)3|(1) =% (10.6.15)
0

and Green’s lemma is verified in this particular case.
o Example 10.6.3

Let us verify Green’s lemma using the vector field F = (3z +4y)i+
(2z — 3y)j and the closed contour is a circle of radius two centered at
the origin of the zy-plane. See Figure 10.6.2.



Vector Calculus 539

Figure 10.6.2: Diagram for the verification of Green’s lemma in Ex-
ample 10.6.3.

Beginning with the line integration,

fc F.dr= /0 " 16 cos(8) + 8 sin(8)][~2sin(0) df]
+ [4 cos(8) — 6sin(6)][2 cos(8) d6] (10.6.16)

_ / 24 cos(6) sin(8) — 16sin?(6) + 8 cos*(8)] dB

(10.6.17)
— 12 cos?(6)]" - 8 [0 — Lsin(20)] |27 + 4 [0 + $sin(26)] |

(10.6.18)
= —87. (10.6.19)

For the areal integration,

2 p2m
// VxF-de:/ / —-2rdfdr=—87 (10.6.20)
R o Jo

and Green’s lemma is verified in the special case.
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Problems

Verify Green’s lemma for the following two-dimensional vector fields and
contours: '

1. F = (2% + 4y)i + (y — z)j and the contour is the square bounded by
thelinesz =0, y=0,z=1,andy=1.

2. F = (z — y)i + zyj and the contour is the square bounded by the
linesz=0,y=0,z=1,and y = 1.

3. F = —y*i+ %] and the contour is the triangle bounded by the lines
z=1y=0,and y = .

4. F = (e¢y—z?)i+ z%yj and the contour is the triangle bounded by the
liney=0,z=1,and y = z.

5. F = sin(y)i + z cos(y)j and the contour is the triangle bounded by
z+y=1l,y—z=1,and y =0.

6. F = y%i + 22j and the contour is the same contour used in problem
4.

7. F = —y%i + z?j and the contour is the circle z2 + y? =4.
8. F = —z?i + zy?j and the contour is the closed circle of radius a.

9. F = (6y+z)i+ (y+2z)j and the contour is the circle (z — 1)2+ (y —
2)2 = 4.

10. F = (z + y)i + (222 — y?)j and the contour is the boundary of the
region determined by the graphs of y = z? and y = 4.

11. F = 3yi + 2zj and the contour is the boundary of the region deter-
mined by the graphs of y = 0 and y = sin(z) with 0 < z < 7.

12. F = —16yi + (4e¥ + 3z%)j and the contour is the pie wedge defined
by the lines y =z, y = —z, 2+ y? =4, and y > 0.
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10.7 STOKES’ THEOREM

In Section 10.2 we introduced the vector quantity V x v which gives
a measure of the rotation of a parcel of fluid lying within the velocity
field v. In this section we show how the curl may be used to simplify
the calculation of certain closed line integrals.

This relationship between a closed line integral and a surface inte-
gral involving the curl is

Stokes’ Theorem: The circulation of F = Pi+ Qj + Rk around the
closed boundary C of an orienied surface S in the direction counter-
clockwise with respect 1o the surface’s unit normal vector n equals the
integral of V. x F -n over S or

fF-dr://VxF-nda. (10.7.1)
C S

Stokes’ theorem requires that all of the functions and derivatives be
continuous.

The proof of Stokes’ theorem is as follows: Consider a finite surface
S whose boundary is the loop C. We divide this surface into a num-
ber of small elements n do and compute the circulation dI' = fL F-dr
around each element. When we add all of the circulations together, the
contribution from an integration along a boundary line between two ad-
joining elements cancels out because the boundary is transversed once
in each direction. For this reason, the only contributions that survive
are those parts where the element boundaries form part of C. Thus, the
sum of all circulations equals §, F - dr, the circulation around the edge
of the whole surface.

Next, let us compute the circulation another way. We begin by
finding the Taylor expansion for P(z,y,z) about the arbitrary point

(1:0) Yo, ZO):

OP(z0, vo,
P(z,y,2) = P(z0, Y0, 20) + (¢ — xo)_ﬁfz@;yﬂ

OP(zq, yo, 0P (zo, Yo,
+ (y - yo)——-———(x%yyo zo) +(z— zo)————-(mézy0 20) + -

(10.7.2)
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Figure 10.7.1: Sir George Gabriel Stokes (1819-1903) was Lucasian
Professor of Mathematics at Cambridge University from 1849 until his
death. Having learned of an integral theorem from his friend Lord
Kelvin, Stokes included it a few years later among his questions on
an examination that he wrote for the Smith prize. It is this integral
theorem that we now call Stokes’ theorem. (Portrait courtesy of the
Royal Society of London.)

with similar expansions for Q(z,y, z) and R(z,y, z). Then

dF:fF-dr:P(xo,yo,zo)fdz+ 3P_(-7«‘06,!/0_,20)f(z_z0)dx
L L

OP(z0, yo,
_<zoy_020) }{ v—yo)dy+--
N QMO_) f{ (z — zo)dy + - (10.7.3)

where L denotes some small loop located in the surface S. Note that
integrals such as §; dr and §, (z — zo)dz will vanish.
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If we now require that the loop integrals be in the clockwise or
positive sense so that we preserve the right-hand screw convention, then

n-kéo= }i(z’ —zo)dy = — ﬁ(y - yo) dz, (10.7.4)
n-jéa:ﬁ(z—zo)dr:—f;(x—zo)dz, (10.7.5)
n-iéazi(y—yo)dz:—%L(z—zo)dy (10.7.6)

and

dI‘:(a—R BQ) néoc +(8P 6R)J nébo

dy Oz 0z Oz
0Q 0P _
+<%—a—y>k-néo’_VxF-néo' (10.7.7)

Therefore, the sum of all circulations in the limit when all elements are
made infinitesimally small becomes the surface integral [[sV xF-ndos
and Stokes’ theorem is proven.

In the following examples we first apply Stokes’ theorem to a few
simple geometries. We then show how to apply this theorem to more
complicated geometries.*

o Example 10.7.1

Let us verify Stokes’ theorem using the vector field ¥ = z H42zj+
22k and the closed curve is a square with vertices at (0,0,3), (1,0,3),
(1,1,3) and (0,1,3). See Figure 10.7.2.

We begin with the line integral:

fF'dr:/ F-dr+/ F-dr+/ F-dr+/ F-dr, (10.7.8)
C Cl C: Cs Cd

where C;, C2, Cs, and Cy tepresent the four sides of the square. Along
C1, ¢ varies while y = 0 and z = 3. Therefore,

1
/ F.dr:/x2d1'+2:c-0+9-0=§, (10.7.9)
C 0

because dy = dz = 0 and z = 3. Along Cs, y varies with z = 1 and
z = 3. Therefore,

1
/F-dr:/ 12.042-1-dy+9-0=2. (10.7.10)
Ca 0

4 Thus, different Stokes for different folks.
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X

Figure 10.7.2: Diagram for the verification of Stokes’ theorem in Ex-
ample 10.7.1.

Along Cs, = again varies with y = 1 and z = 3, and so,
0 .
/ F-dr:/xzd:c+2:c-0+9'0=-—%. (10.7.11)
C3 1

Note how the limits run from 1 to 0 because z is decreasing. Finally,
for C4, y again varies with # = 0 and z = 3. Hence,

0
/ F-dr=/02-0+2'0-dy+9-0=0. (10.7.12)
04 1
Hence,
'7{ F.dr=2. (10.7.13)
c
Turning to the other side of the equation,

1 ) k

5 2 @
VxF=|5 3y 9| = 2k. (10.7.14)

2 2z 22

Our line integral has been such that the normal vector must be n = k.
Therefore,

1 1
//VxF-nda:/ / 2%k - kde dy = 2 (10.7.15)
S 0 0
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X

Figure 10.7.3: Diagram for the verification of Stokes’ theorem in Ex-
ample 10.7.2.

and Stokes’ theorem is verified for this special case.
e Example 10.7.2

Let us verify Stokes’ theorem using the vector field F = (22 — y)i+
42j + 2%k, where the closed contour consists of the z and y coordinate
axes and that portion of the circle 22 + y?> = @ that lies in the first
quadrant with z = 1. See Figure 10.7.3.

The line integral consists of three parts:

fF-dr:/ F'dr+/ F~dr+/ F.dr. (10.7.16)
C C, Ca Cs

Along Cy, z varies while y = 0 and 2z = 1. Therefore,

a a3
/ F-dr:/ (z2=0)dz+4-1-0+22-0= T (10.7.17)
Cy 0

Along the circle Cy, we use polar coordinates with ¢ = acos(t), y =
asin(t) and z = 1. Therefore,

/2
/ F.dr= / [a® cos®(t) — asin(t)][—asin(?) dt]
Cz 0

+4-1-acos(t)dt + a®cos®(t) - 0
(10.7.18)
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w/2
/ F . dr= / —a cos?(t) sin(t) dt + a® sin(t) dt + 4a cos(t) dt
Ca 0

(10.7.19)
wf2 w/2
= f cos3(t) / + -(i [t - lsin(2t)] / + 4a sin(t)lg/2
3 o 2 2 o
(10.7.20)
A S S (10.7.21)
3 4 ’

because dr = —asin(t)dt and dy = acos(t)dt. Finally, along C3, y
varies with ¢ = 0 and z = 1. Therefore,

0
/ F-dr:/(Oz—y)-0+4-1-dy+02-0=—4a. (10.7.22)
C3 a

so that \
f F.dr=2" (10.7.23)
g 1

Turning to the other side of the equation,

i i k
VxF=| & & &|=-4i-2zj+k (10.7.24)
2 -y 4z 2?

From the path of our line integral, our unit normal vector must be
n = k. Then,

iy

a pmf2 2
//VxF-nda:/ / [—4i—2rcos(0)j+k]-krdt9dr:4i
s o Jo
(10.7.25)
and Stokes’ theorem is verified for this case.

o Example 10.7.3

Let us verify Stokes’ theorem using the vector field F = 2yzi— (2 +
3y — 2)j + (2% + 2)k, where the closed triangular region is that portion
of the plane z + y + z = 1 that lies in the first octant.

As shown in Figure 10.7.4, the closed line integration consists of
three line integrals:

}{F-drz/ F-dr+/ F-dr+/ F - dr. (10.7.26)
(o} C, C2 Cs
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(0,1,0)
|

(1,0,0)

X

Figure 10.7.4: Diagram for the verification of Stokes’ theorem in Ex-
ample 10.7.3.

Along Cy, z = 0 and y = 1 — #. Therefore, using « as the independent
variable,

0
F-dr:/ 21— 2)-0-dz — (2 + 3 — 3z — 2)(—dz) + (z* +0) - 0
Ch 1
= —z?|] + 2] =0. (10.7.27)

Along Cy, z = 0 and y = 1 — z. Thus,

1
/F-dr:/ 2(1 = 2)z-0—(0+3—32—2)(—dz) + (0* + z) dz
C2 0

=— 32424122 =0 (10.7.28)

Finally, along C3, y = 0 and z = 1 — z. Hence,

1
/ F.dr=/ 2.0 (1—2)de—(z+0—-2) -0+ (2% +1 - z)(—dz)
Cs 0
= —lo® g4 Lo = -3 (10.7.29)

Thus,
]{CF dr= -2 (10.7.30)
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On the other hand,

S|wtm.

1 k
VxF=|2% Z | =(-2z+2y)j+(-1-22)k
2yz —w-—3y+2 2 42
(10.7.31)
To find ndeo, we use the general coordinate system z = u, y = v, and
z=1—u—v. Therefore, r = ui+vj+ (1l —u — v)k and

i j k
ry Xxr,=|1 0 —-1|=i+j+k. (10.7.32)
01 -1
Thus,
1-— u
//VXF nda'__/ / (—2u+2v)j+ (-1 -2+ 2u + 2v)k]
S
fi+j+k]dvdu (10.7.33)
1 1-u
=/ / (4v — 3) dv du (10.7.34)
0 0
1
:/ 2(1 - )2 —3(1 — w)] du (10.7.35)
0
1
=/0 (=1 —u+2u?)du=—3 (10.7.36)

and Stokes’ theorem is verified for this case.
Problems

Verify Stokes’ theorem using the following vector fields and surfaces:
1. F = 5yi — 5zj + 3zk and the surface S is that portion of the plane

= 1 with the square at the vertices (0,0,1), (1,0,1), (1,1,1), and
(0,1,1).
2. F = z%i + y*j + 2%k and the surface S is the rectangular portion of
the plane z = 2 defined by the corners (0,0,2), (2,0,2), (2,1,2), and
(0,1,2).

3. F = zi+ zj + yk and the surface S is the triangular portion of the
plane z = 1 defined by the vertices (0,0, 1), (2,0, 1), and (0,2,1).

4. F = 2z1 — 3zj + 4yk and the surface S is that portion of the plane
z = 5 within the cylinder z2 4 y? = 4.
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5. F = zi+ zj+ yk and the surface S is that portion of the plane z = 3
bounded by the lines y = 0, = 0, and z? + y* = 4.

6. F=(2z+2)i+ (y— 2)j + (¢ + y)k and the surface S is the interior
of the triangularly shaped plane with vertices at (1,0,0), (0,1,0), and
(0,0,1).

7. F = zi+ zj + yk and the surface S is that portion of the plane
2z + y + 2z = 6 in the first octant.

8. F = zi+xzj+ yk and the surface S is that portion of the paraboloid
z =9 — 2% — y? within the cylinder z? + y% = 4.

10.8 DIVERGENCE THEOREM

Although Stokes’ theorem is useful in computing closed line inte-
grals, it is usually very difficult to go the other way and convert a surface
integral into a closed line integral because the integrand must have a
very special form, namely V x F -n. In this section we introduce a the-
orem that allows with equal facility the conversion of a closed surface
integral into a volume integral and vice versa. Furthermore, if we can
convert a given surface integral into a closed one by the introduction of
a simple surface (for example, closing a hemispheric surface by adding
an equatorial plate), it may be easier to use the divergence theorem and
subtract off the contribution from the new surface integral rather than
do the original problem.

This relationship between a closed surface integral and a volume
integral involving the divergence operator is

The Divergence or Gauss’ Theorem: Let V be a closed and bounded
region in three dimensional space with a piece-wise smooth boundary S
that is oriented outward. LetF = P(z,y,2)i+Q(z,y, 2)j+ R(z,y, 2)k be
a vector field for which P, ), and R are continuous and have continuous

first partial derivatives in a region of three dimensional space containing
V. Then

i[éF.nda://vv-de. (10.8.1)
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Figure 10.8.1: Carl Friedrich Gauss (1777-1855), the prince of math-
ematicians, must be on the list of the greatest mathematicians who ever
lived. Gauss, a child prodigy, is almost as well known for what he did
not publish during his lifetime as for what he did. This is true of Gauss’
divergence theorem which he proved while working on the theory of grav-
itation. It was only when his notebooks were published in 1898 that his
precedence over the published work of Ostrogradsky (1801-1862) was
established. (Portrait courtesy of Photo AKG, London.)

Here, the circle on the double integral signs denotes a closed surface
integral.

A nonrigorous proof of Gauss’ theorem is as follows. Imagine that
our volume V is broken down into small elements dr of volume of any
shape so long as they include all of the original volume. In general, the
surfaces of these elements are composed of common interfaces between
adjoining elements. However, for the elements at the periphery of V,
part of their surface will be part of the surface S that encloses V. Now
d® = V - Fdr is the net flux of the vector F out from the element dr.
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Figure 10.8.2: Diagram for the verification of the divergence theorem
in Example 10.8.1.

At the common interface between elements, the flux out of one element
equals the flux into its neighbor. Therefore, the sum of all such terms

yields
@:/// V.Fdr (10.8.2)
Vv

and all the contributions from these common interfaces cancel; only the
contribution from the parts on the outer surface S will be left. These
contributions, when added together, give ffF - ndo over S and the
proof is completed. D

e Example 10.8.1

Let us verify the divergence theorem using the vector field F =
4zi — 2y?j + 2%k and the enclosed surface is the cylinder z% + y? = 4,
z =0, and z = 3. See Figure 10.8.2.

We begin by computing the volume integration. Because

0(4z)  9(=2*)  9(z%) _
oz + By + 57 =4—4y+ 22z, (10.8.3)

//Vv'FdV:///‘,(4‘4y+22)dV (10.8.4)

V-F=
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3 2 o
// V-FdV = / / / [4 — 4rsin(f) + 2z]dér drdz (10.8.5)
v o Jo Jo

3 p2
:/ / [49|§"+4rcos(e)|§"+2za|§”]rdrdz (10.8.6)
¢ Jo

3 p2
=/ /(87r+47rz)rdrdz (10.8.7)
o Jo
8 2
:/ 47r(2+z)%r2|0dz (10.8.8)
0

3
= 47r/ 22+ z)dz = 87(22 + %zz)ré =84r. (10.8.9)
0

Turning to the surface integration, we have three surfaces:

#F-nda’:// F~nda’+// F-nda’-}-// F-ndo. (10.8.10)
S 5, Sz Sa

The first integral is over the exterior to the cylinder. Because the surface
is defined by f(z,y,2) =22 +y? =4,

_Vf  2zi+2yj

T
|Vf| \A4z? + 4y2 T2

i+ %j. (10.8.11)

Therefore,

//F ndo'—//s1 (22% — y*)do (10.8.12)

= / ” {2[2 cos(8))? — [25in(0)]*} 2dfdz (10.8.13)

=8 /03 /027r {%[1 + cos(26)] — sin(8) + cos?(8) sin(0)}2 dfdz

(10.8.14)
3 2
= 16/ [%0 + 5 sin(26) + cos(f) — %—coss(ﬁ)] dz
0 0
(10.8.15)
3
= 1671'/ dz = 48, (10.8.16)
0

because z = 2cos(f), y = 2sin(f) and do = 2df dz in cylindrical coor-
dinates.

Along the top of the cylinder, z = 3, the outward pointing normal
isn =k and do = rdrdf. Then,

2n 2
// F~nd0':// zzda':/ /9rdrd6’=27rx9x2=367r.
Sa Sz o Jo

(10.8.17)
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However, along the bottom of the cylinder, z = 0, the outward pointing
normal is n = —k and do = rdr df. Then,

27 p2
// F-nda’:// z2d0'=/ /0rdrd€=0. (10.8.18)
Ss Sa 0 0

Consequently, the flux out the entire cylinder is
#F-nda:487r+367r+0 = 84r (10.8.19)
s

and the divergence theorem is verified for this special case.
o Example 10.8.2

Let us verify the divergence theorem given the vector field F =
3z%y%i + yj — 6zy°zk and the volume is the region bounded by the
paraboloid z = 2% + y? and the plane z = 2y. See Figure 10.8.3.

Computing the divergence,

d(3z%y?) O —6zy?2)

. = 2 - 2: . .0,
V-F= o By P 6zy*+1—-6xy” = 1. (10.8.20)
Then,
// V-FdV:/// dv (10.8.21)
v
2sin(8) p2rsin(8)
:/ / / dzrdrdf (10.8.22)
2sin(9)
:/ / [2rsin(f) — r?] rdrdf (10.8.23)
2sin() 2sin(8)
:/ [% sin(f) — 3r ]d0 (10.8.24)
0
.—./ [42 sin*(6) — 4sin*(6)] db (10.8.25)
= / 1 sin*(0) d6 (10.8.26)
0
=1 /0 (1 — 2 cos(26) + cos®(20)] df (10.8.27)

T L

—sin(20)| +16
0

v

+ £ sin(46)
0

=

k:
=z
=z
0

(10.8.28)

L

0
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Figure 10.8.3: Diagram for the verification of the divergence theorem
in Example 10.8.2. The curve r = 2sin(#) is denoted by a dashed line.

The limits in the radial direction are given by the intersection of the
paraboloid and plane: 7?2 = 2rsin(f) or » = 2sin(f) and y is greater
than zero.

Turning to the surface integration, we have two surfaces:

#F-nda:// F-ndcr+// F -ndo, (10.8.29)
S 51 52

where S; is the plane 2 = 2y and S; is the paraboloid. For either
surface, polar coordinates are best so that = rcos(d), y = rsin(f).
For the integration over the plane, z = 2rsin(f#). Therefore,

r = rcos(#)i + rsin(8)j + 2rsin(f)k (10.8.30)
so that
r, = cos(6)i + sin(#)j + 2sin()k (10.8.31)
and
ry = —rsin()i + rcos(8)j + 2r cos(d)k. (10.8.32)
Then,
i J k
r, X rg =| cos(f) sin(f) 2sin(f) | = -2rj+rk. (10.8.33)

—rsin(8) rcos(8) 2rcos(f)
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This is an outwardly pointing normal so that we can immediately set
up the surface integral:

T p2sin(8)
// F-ndo= / / {3r* cos®(0) sin®(8)i + rsin(6)j
S 0o Jo

— 6[2rsin(8)][r cos(8)][r* sin?(0)]k} - (—2rj + rk) drd6

(10.8.34)
2sin(8)
= / / [—2r?sin(8) — 12r° sin®(6) cos(6)] dr df
0
(10.8.35)
= / -2 3|25m(0) in(6) — 2r |§Sm(€)sm ) cos(&)]
oL
(10.8.36)
= / ——sm4(0) — 128sin°(0) cos(ﬁ)] de (10.8.37)
oL
= —2 65 —sin(26)|7 + 10|7 + § sin(46)|] ] 8 sin'%(9)|
(10.8.38)
s (10.8.39)
For the surface of the paraboloid,
r = rcos(f)i + rsin(8)j + r’k (10.8.40)
so that
r, = cos(0)i +sin(8)j + 2rk (10.8.41)
and
rg = —rsin(f)i + rcos(f)]. (10.8.42)
Then,
i J k
r. Xrg = | cos(f) sin(d) 2r (10.8.43)
—rsin(f) rcos(d) 0

= —2r% cos(8)i — 2r? sin(8)j + rk. (10.8.44)

This is an inwardly pointing normal so that we must take the negative
of it before we do the surface integral. Then,

7 p2sin(f)
// F -ndo = / / ' {3r* cos?(6) sin®(8)i + rsin(8)j
S2 0 Jo

— 6r2[r cos(8)][r? sin?(8)]k }
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- [2r? cos(8)i + 2r?sin(6)j — rk| dr df
(10.8.45)

_//SF ndo'—/ /QSm(O)[GT cos>(0) sin?() + 2r3sin?(0)

+ 67 cos(8) sin?(9)] dr df
(10.8.46)

:/ [6 7|2$m(9)c053(49) sin?(6) + 1 4|25m( ) sin? )
0
+ 207|257 cos(6) sinz(B)} de (10.8.47)

= /OW{Z%§ sin®(8)[1 — sin?(8)] cos(d) + 8sin®(0)

+ Z85in®(0) cos(G)} do (10.8.48)
= 2 s1n1°(9)| — Zsin?(0)|, + / [1— cos(26)}® d
0
(10.8.49)
= / {1 — 3 cos(20) + 3 cos?(28) — cos(20)[1 — sin2(20)]} de
0
(10.8.50)
= (9|:)r — 3 sin( 20)|;r + 300+ %sin(4t9)]|:)r
-5 sm(20)|0 Lsin 26)[0 (10.8.51)
=n+3r=3m (10.8.52)
Consequently,

# F-ndo=-2r+3r=1ir (10.8.53)
S

and the divergence theorem is verified for this special case.

o Example 10.8.3: Archimedes’ Principle

Consider a solid® of volume V and surface S that is immersed in a

vessel filled with a fluid of density p. The pressure field p in the fluid is
a function of the distance from the liquid/air interface and equals

p=po— p9z, (10.8.54)

5 Adapted from Altintas, A., 1990: Archimedes’ principle as an appli-
cation of the divergence theorem. IEEE Trans. Educ., 33,222. (©IEEE.
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where g is the gravitational acceleration, z is the vertical distance mea-
sured from the interface (increasing in the k direction), and po is the
constant pressure along the liquid/air interface.

If we define F = —pk, then F - ndo is the vertical component of
the force on the surface due to the pressure and ffF -ndo is the total
lift. Using the divergence theorem and noting that V- F = pg, the total
lift also equals

// V- -FdV = pg // dV = pgV, (10.8.55)
v \%

which is the weight of the displaced liquid. This is Archimedes’ principle:
the buoyant force on a solid immersed in a fluid of constant density
equals the weight of the fluid displaced.

o Example 10.8.4: Conservation of charge

Let a charge of density p flow with an average velocity v. Then the
charge crossing the element dS per unit time is pv - dS = J - dS, where
J is defined as the conduction current vector or current density vector.
The current across any surface drawn in the medium is @SJ - dS.

The total charge inside the closed surface is [[f,, pdV. If there are
no sources or sinks inside the surface, the rate at which the charge is
decreasing is — [[f,, p: dV. Because this change is due to the outward

flow of charge,
/// o gy = # J.ds. (10.8.56)

Applying the divergence theorem,

J[(&+v-3)av =0 (108.57)

Because the result holds true for any arbitrary volume, the integrand
must vanish identically and we have the equation of continuity or the
equation of conservation of charge:

op

5 TV I=0. (10.8.58)

Problems

Verify the divergence theorem using the following vector fields and vol-
umes:

1. F = 2% + ¥*j + z’k and the volume V is the cube cut from the first
octant by the planes =1, y =1, and z = 1.



558 Advanced Engineering Mathematics

2. F = zyi+ yzj + xzk and the volume V is the cube bounded by
0<z<1,0<y<l,and0<2< 1.

3. F=(y—2)i+ (2 - y)j+ (y— )k and the volume V is the cube
bounded by -1 <z <1, -1<y<1l,and -1 <2< 1.

4. F = 221+ yj + zk and the volume V is the cylinder defined by the
surfaces 22 +y> =1, 2=0, and z = 1.

5. F = 2% + y?j + 2%k and the volume V is the cylinder defined by the
surfaces 22 +y> =4, 2 =0, and z = 1.

6. F = y?%i+z23j+ (2 — 1)’k and the volume V is the cylinder bounded
by the surface ? + y?> = 4 and the planes z = 1 and z = 5.

7. F = 6zyi +4yzj + ze~ Yk and the volume V is that region created by
the plane £ + y + z = 1 and the three coordinate planes.

8. F = yi+ zyj — 2k and the volume V is that solid created by the
paraboloid z = z? + y? and plane z = 1.



Chapter 11
Linear Algebra

Linear algebra involves the systematic solving of linear algebraic or
differential equations. These equations arise in a wide variety of situa-
tions. They usually involve some system, either electrical, mechanical,
or even human, where two or more components are interacting with each
other. In this chapter we present efficient techniques for expressing these
systems and their solution.

11.1 FUNDAMENTALS OF LINEAR ALGEBRA

In this chapter we shall study the solution of m simultaneous linear
equations in n unknowns z, s, 23, ..., &, of the form:

a2y + a122a + -+ a1ntp = b
a1 + @22%2 + - -+ AT, = by

(11.1.1)

Am121 + am2z2 + - -+ GmnTn = by,
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where the a’s and b’s are known real or complex numbers. Matriz algebra
allows us to solve these systems. First, succinct notation is introduced
so that we can replace (11.1.1) with rather simple expressions. Then
a set of rules is used to manipulate these simple expressions. In this
section we focus on developing these simple expressions.

The fundamental quantity in linear algebra is the matriz. A matrix
is an ordered rectangular array of numbers or mathematical expressions.
We shall use upper case letters to denote them. The m x n matrix

11 a2 a3 - : * Q1in

a1 @22 azz - : © Q2n
A= (11 1 .2)
. . . . aij . .
mi1 Gm2 Q4m3 : * Qmn

has m rows and n columns. The order (or size) of a matrix is determined
by the number of rows and columns; (11.1.2) is of order m by n. If
m = n, the matrix is a square matrix; otherwise, A is rectangular. The
numbers or expressions in the array a;; are the elements of A and may
be either real or complex. When all of the elements are real, A is a real
matriz. If some or all of the elements are complex, then A is a complez
matriz. For a square matrix, the diagonal from the top left corner to
the bottom right corner is the principal diagonal.

From the limitless number of possible matrices, certain ones appear
with sufficient regularity that they are given special names. A zero
matrix (sometimes called a null matrix) has all of its elements equal to
zero. It fulfills the role in matrix algebra that is analogous to that of zero
in scalar algebra. The unit or identity matrix is a n x n matrix having 1’s
along its principal diagonal and zero everywhere else. The unit matrix
serves essentially the same purpose in matrix algebra as does the number
one in scalar algebra. A symmetric matrix is one where a;; = a;; for all
1 and j.

o Example 11.1.1

Examples of zero, identity, and symmetric matrices are

0 00 10 3 2 4
O=]0 0 0 ’I=<0 1),andA: 21 0], (111.3)
0 00 4 0 5

respectively.
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A special class of matrices are column vectors and row vectors:

I

T2
x=| ., y=(n v - ). (11.1.4)

Im

We denote row and column vectors by lower case, boldface letters. The
length or norm of the vector x of n elements is

n 1/2
1x|| = <Z z§> . (11.1.5)
k=1

Two matrices A and B are equal if and only if a;; = b;; for all
possible ¢ and j and they have the same dimensions.

Having defined a matrix, let us explore some of its arithmetic prop-
erties. For two matrices A and B with the same dimensions (con-
formable for addition), the matrix C = A + B contains the elements
cij = a;j+b;j. Similarly, C = A— B contains the elements ¢;; = a;; —b;;.
Because the order of addition does not matter, addition is commutative:
A+B=B+A

Consider now a scalar constant k. The product kA is formed by
multiplying every element of A by k. Thus the matrix ¥4 has elements
k'a,:j.

So far the rules for matrix arithmetic have conformed to their scalar
counterparts. However, there are several possible ways of multiplying
two matrices together. For example, we might simply multiply together
the corresponding elements from each matrix. As we will see, the mul-
tiplication rule is designed to facilitate the solution of linear equations.

We begin by requiring that the dimensions of A be m x n while
for B they are n x p. That is, the number of columns in A must equal
the number of rows in B. The matrices A and B are then said to be
conformable for multiplication. If this is true, then C = AB will be a
matrix m X p, where its elements equal

n

cij = Eaik by;j - (11.1.6)
k=1

The right side of (11.1.6) is referred to as an inner product of the ith
row of A and the jth column of B. Although (11.1.6) is the method
used with a computer, an easier method for human computation is as
a running sum of the products given by successive elements of the ith
row of A and the corresponding elements of the jth column of B.

The product AA is usually written A?; the product AAA, A%, and
so forth.
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o Example 11.1.2

-1 4 1 2
A_(2 _3) and B_(3 4>, (11.1.7)

If

then

_ (=DM +@E) (D) + (@)
AB = <[(2)(1) +(=3)(3)] [(2)(2) + (=3)(4)] ) (11.1.8)

- (2 i‘;) (11.1.9)

Matrix multiplication is associative and distributive with respect to ad-
dition:

(kA)B = k(AB) = A(kB), (11.1.10)
A(BC) = (AB)C, (11.1.11)
(A+ B)C = AC+ BC (11.1.12)
and
C(A+B)=CA+CB. (11.1.13)

On the other hand, matrix multiplication is not commutative. In general,
AB # BA.

o Example 11.1.3

Does AB = BA if

10 11
A:(O 0) and B:(1 0)? (11.1.14)

Because

AB = ((1) 8) (i (1)> = (é é) (11.1.15)
BA:(} (1)) ((1) g>=(} 8) (11.1.16)

AB # BA. (11.1.17)

and
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e Example 11.1.4

Given

11 _ (-1 1
A-(3 3) and B—<1 _1), (11.1.18)

find the product AB.
Performing the calculation, we find that

AB = <§ ;) (_11 _11) = (g 8). (11.1.19)

The point here is that just because AB = 0, this does not imply that
either A or B equals the zero matrix.

We cannot properly speak of division when we are dealing with
matrices. Nevertheless, a matrix A is said to be nonsingular or invertible
if there exists a matrix B such that AB = BA = I. This matrix B is
the multiplicative inverse of A or simply the inverse of A, written AL
A n x n matrix is singular if it does not have a multiplicative inverse.

o Example 11.1.5

If

1 01
A=13 3 4], (11.1.20)
2 2 3

1 2 -3
Al=|-1 1 -1]. (11.1.21)
0 -2 3

We perform the check by finding AA™! or A71A,

1 01 1 2 -3 100
AAT!=1|3 3 4 -1 1 ~1]=|01 0]. (11.1.22)
2 2 3 0 -2 3 001

In a later section we will show how to compute the inverse, given A.

Another matrix operation is transposition. The transpose of a ma-
trix A with dimensions m x n is another matrix, written AT, where we
have interchanged the rows and columns from A. Clearly, (ATYT = A
as well as (A + B)T = AT 4+ BT and (k4)T = kAT. If A and B are



564 Advanced Engineering Mathematics

conformable for multiplication, then (AB)T = BT AT. Note the rever-
sal of order between the two sides. To prove this last result, we first
show that the results are true for two 3 x 3 matrices A and B and then
generalize to larger matrices.

Having introduced some of the basic concepts of linear algebra, we
are ready to rewrite (11.1.1) in a canonical form so that we may present
techniques for its solution. We begin by writing (11.1.1) as a single
column vector:

anzr + a13x2 + - 4+ aipTa by
a2121 + a3z + - 4+  az, by

: : : : =1 :]. (11.1.23)
AGm1T1 + am2T2 + - 4+ Ayunln bm

On the left side of (11.1.23) we can use the multiplication rule to write

anr @ - a4 T by
a1 azz - @y | | o2 b2
: : = (11.1.24)
Am1 Gm2 -+ QAmn Tn bm
or
Ax = b, (11.1.25)

where x is the solution vector. If b = 0, we have a homogeneous set of
equations; otherwise, we have a nonhomogeneous set. In the next few
sections, we will give a number of methods for finding x.

o Example 11.1.6: Solution of a tridiagonal system

A common problem in linear algebra involves solving systems such
as

biyi + c1y2 = dy (11.1.26)
a2yt + bay2 + coys = d (11.1.27)

aN-1YN-2 +bn_ayn—1 + envoiyn = dyog (11.1.28)
bNyN_1 +enyn = dn. (11.1.29)

Such systems arise in the numerical solution of ordinary and partial
differential equations.
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We begin our analysis by rewriting (11.1.26)—(11.1.29) in the matrix
notation:

bl 1 0 ce 0 0 0 Y1 d1

as bg Co 0 0 0 Y2 dz

0 as b3 e 0 0 0 Y3 d3

0 0 0 -+ anv—1 bn-1 eN-1 YN -1 dy-1

o 06 0 - 0 an bn YN dn
(11.1.30)

The matrix in (11.1.30) is an example of a banded matriz: a matrix
where all of the elements in each row are zero except for the diagonal
element and a limited number on either side of it. In our particular case,
we have a tridiagonal matrix in which only the diagonal element and
the elements immediately to its left and right in each row are nonzero.

Consider the nth equation. We can eliminate a, by multiplying the
(n — 1)th equation by a, /b, and subtracting this new equation from
the nth equation. The values of b, and d, become

bl, = by — ancn_1/bn_1 (11.1.31)
and

d;, = dn — andn_l/bn_l (11132)
for n = 2,3,...,N. The coefficient ¢, is unaffected. Because elements

a; and ¢y are never involved, their values can be anything or they can
be left undefined. The new system of equations may be written

bll (5] 0 -+ 0 0 0 Y1 d’l

0 blz cy 0 0 0 Y2 '2

0 0 b --- 0 0 0 v A

0 0 0 --- 0 by_; env-1] | unva e

0 0 0 --- 0 0 by yN dly
(11.1.33)

The matrix in (11.1.33) is in upper triangular form because all of
the elements below the principal diagonal are zero. This is particularly
useful because y, may be computed by back substitution. That is, we
first compute yy. Next, we calculate yy—; in terms of yx. The solution
yN—2 may then be computed in terms of yy and yny-1. We continue

this process until we find y; in terms of yn,yn—1,...,y2. In the present
case, we have the rather simple:

ynv = dy /by (11.1.34)
and

Yn = (d, — cndlyy )/, (11.1.35)
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forn=N-1,N-2,...,2,1.

As we shall show shortly, this is an example of solving a system
of linear equations by Gaussian elimination. For a tridiagonal case, we
have the advantage that the solution can be expressed in terms of a
recurrence relationship, a very convenient feature from a computational
point of view. This algorithm is very robust, being stable! as long as
la; + ¢;i| < |b;]. By stability, we mean that if we change b by Ab so that
x changes by Ax, then ||Ax|| < Me, where € > ||Ab]|, 0 < M < oo, for
any N.

Problems
Given A = (i’ ;) and B = (; ;),ﬁnd
1. A+ B,B+ A 2. A-B,B-A 3.34-2B, 324 - B)
4. AT BT (BT - 5. (A+B)T,AT+BT 6. B+BT, B— BT
7. AB,ATB,BABTA 8. A2 B? 9 BBT BTR
10. A2 -3A+1 11. A3+ 24 12. A* —4A% 4 21

Can multiplication occur between the following matrices? If so, compute
it.

2 1 —2 4
13.(_32‘;’» 41 4. (-4 6|1 2 3)
13 —6 1
2\ (32 4 6\ (1 3 6
a1 1 6. (7 5) (1 o %
2) \2 1
2\ (3 1 4
3)\2 0 6

11
IfA= (1 2) verify that
3

1

18. TA=4A+34, 19. 104 = 5(24), 20. (AT)T = A.

! Torii, T., 1966: Inversion of tridiagonal matrices and the stability
of tridiagonal systems of linear systems. Tech. Rep. Osaka Univ., 16,
403-414.
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21 1 -2 11 .
IfA—-(3 1>,B—<4 0),andC.—<1 1>,ver1fythat

91. (A+B)+C=A+(B+C), 22.(AB)C = A(BC),
93. A(B +C) = AB + AC, 24. (A + B)C = AC + BC.

Verify that the following A~! are indeed the inverse of A:
(3 -1 (21
was(3 7)) a=(2 )
0 10 010
26.A=1{1 0 0 A"l=11 0 0
0 01 0 01

Write the following linear systems of equations in matrix form: Ax = b.

27.
T — 21’2 =5
3z +x2=1
28.
2z, + x9 + 423 =2
4z + 229 + 53 =6
6z, —3z2 +Dx3 =2
29.

zo+ 223+ 324 =2

3z; —4z3—4x4=5
r1+ro+aT3t+ags=-3
20y — 3o+ 23— 324 =1T.

11.2 DETERMINANTS

Determinants appear naturally during the solution of simultaneous
equations. Consider, for example, two simultaneous equations with two
unknowns z; and 2o,

a1 +apxy = by (11.2.1)

and
az1z1 + azex2 = bs. (11.2.2)

The solution to these equations for the value of x; and z2 is

b —ajqb
2 = 01822 — 41292 (11.2.3)
a110d22 — Q124a21
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and
boaiy —az1 by

Ty = (11.2.4)

a11az2 — a1202;
Note that the denominator of (11.2.3) and (11.2.4) are the same. This
term, which will always appear in the solution of 2 x 2 systems, is
formally given the name of deferminant and written

a1 G112

= 11022 — @12021. (11.2.5)
az @z

det(A) =

Although determinants have their origin in the solution of systems
of equations, any square array of numbers or expressions possesses a
unique determinant, independent of whether it is involved in a system of
equations or not. This determinant is evaluated (or expanded) according
to a formal rule known as Laplace’s ezpansion of cofactors.? The process
revolves around expanding the determinant using any arbitrary column
or row of A. If the ith row or jth column is chosen, the determinant is
given by

det(4) = a;1An + aizAiz + - + ainAin (11.2.6)
= a1jA1j + azjAzj + - -+ anjAnj, (11.2.7)

where A;;, the cofactor of a;;, equals (-—1)i+j M;;. The minor M;; is the
determinant of the (n — 1) x (n — 1) submatrix obtained by deleting row
¢, column j of A. This rule, of course, was chosen so that determinants
are still useful in solving systems of equations.

e Example 11.2.1

Let us evaluate

2 -1 2
1 3 2
5 1 6
by an expansion in cofactors.
Using the first column,
2 -1 2
13 2|=20-17|3 Z41=12|t 2|ascn)r| Tt 2
1 6 1 6 3 2
5 1 6
(11.2.8)
= 2(16) — 1(—8) + 5(—8) = 0. (11.2.9)

2 Laplace, P. S., 1772: Recherches sur le calcul intégral et sur le
systéme du monde. Hist. Acad. R. Sci., II® Partie, 267-376. (Euvres,
8, pp. 369-501. See Muir, T., 1960: The Theory of Determinants in the
Historical Order of Development, Vol. I, Part 1, General Determinants
Up to 1841, Dover Publishers, Mineola, NY, pp. 24-33.
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The greatest source of error is forgetting to take the factor (-=1)**7 into
account during the expansion.

Although Laplace’s expansion does provide a method for calculating
det(A), the number of calculations equals (n!). Consequently, for hand
calculations, an obvious strategy is to select the column or row that
has the greatest number of zeros. An even better strategy would be
to manipulate a determinant with the goal of introducing zeros into a
particular column or row. In the remaining portion of section, we show
some operations that may be performed on a determinant to introduce
the desired zeros. Most of the properties follow from the expansion of
determinants by cofactors.

o . For every square matrix A, det(A7) = det(A).

The proof is left as an exercise.
. . If any two rows or columns of A are identical, det(A4) = 0.

To see that this is true, consider the following 3 x 3 matrix:

b1 b1 (45}
by by c2| = ci{babs — b3by) — ca(brbz — b3b1)
b3 b3 c3
+ C3(b1b2 — bzbl) =0. (11210)

. : The determinant of a triangular matrix is equal to the
product of its diagonal elements.

If A is lower triangular, successive expansions by elements in the
first column give

ai 0 N 0 try - 0

az; az --- 0 ) ) )

an1 QAn2 - Gpn n2 c1r Gnn
=.--=Q11022" " Ann. (11212)

If A is upper triangular, successive expansions by elements of the first
row proves the property.

° . If a square matrix A has either a row or a column of all
zeros, then det(A) = 0.
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The proof is left as an exercise.

. : If each element in one row (column) of a determinant is
multiplied by a number ¢, the value of the determinant is multiplied by
c.

Suppose |B| has been obtained from |A| by multiplying row i (col-
umn j) of |A| by ¢. Upon expanding |B| in terms of row i (column
J) each term in the expansion contains ¢ as a factor. Factor out the
common c, the result is just ¢ times the expansion |A| by the same row
(column).

° : If each element of a row (or a column) of a determinant
can be expressed as a binomial, the determinant can be written as the
sum of two determinants.

To understand this property, consider the following 3 x 3 determi-
nant:

aj+dy b ¢ a b o dy b o
as+dy by cnf= az by co|+|ds by co). (11213)
az+ds b3 c3 az b3 c3 dz b3 c3

The proof follows by expanding the determinant by the row (or column)
that contains the binomials.

° : If B is a matrix obtained by interchanging any two rows
(columns) of a square matrix A, then det(B) = — det(A).

The proof is by induction. It is easily shown for any 2 x 2 matrix.
Assume that this rule holds of any (n — 1) x (n — 1) matrix. If 4 is
n X n, then let B be a matrix formed by interchanging rows ¢ and j.
Expanding | B| and |A| by a different row, say k, we have that

Bl =Y (1) b, My, and  |A] = (1) **ap Ny, (11.2.14)

s=1 s=1

where My, and Ny, are the minors formed by deleting row k, column
s from |B| and |A|, respectively. For s = 1,2,...,n, we obtain N,
and M, by interchanging rows : and j. By the induction hypothesis
and recalling that Ny, and M;, are (n — 1) x (n — 1) determinants,
Ngs = =My for s = 1,2,...,n. Hence, |B| = —|A|. Similar arguments
hold if two columns are interchanged.

° : If one row (column) of a square matrix A equals to a number
¢ times some other row (column), then det(A) = 0.
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Suppose one row of a square matrix A is equal to ¢ times some
other row. If ¢ = 0, then |[A] = 0. If ¢ # 0, then |A| = c|B|, where
|B| = 0 because |B| has two identical rows. A similar argument holds
for two columns.

° : The value of det(A) is unchanged if any arbitrary multiple
of any line (row or column) is added to any other line.

To see that this is true, consider the simple example:

ag h chy b o ai+chy by a
a, by cof+ chy by coj=laz+ cby by c2], (11.2.15)
az bz c3 cbz b3z ¢3 az+cbs b3 c3

where ¢ # 0. The first determinant on the left side is our original
determinant. In the second determinant, we can again expand the first
column and find that

by b c by b
Cbz bg c2|=¢C bz bg Ca| = 0. (11.2.16)
cbs b3z c3 bz bz c3

o Example 11.2.2

Let us evaluate

1 2 3 4
-1 1 2 3
1 -1 1 2
-1 1 -1 5

using a combination of the properties stated above and expansion by
cofactors.
By adding or subtracting the first row to the other rows, we have

that
1 2 3 4; |1 2 3 4
11 2 3/ lo 3 5 7
1 -1 1 2[T|o -3 —2 -2 (11.2.17)
101 -15 lo 3 2 9

7
5|  (11.2.18)
2

\ = 63. (11.2.19)
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Problems

Evaluate the following determinants:

3 5 5 -1
1. 28 2. _84’
3 1 9 4 3 0
3. 2 4 5 4. 3 2 9
1 4 5 5 —2 _4
13 2 9 —1 9
5 411 6. 1 3 3
2 1 3 5 1 6
20 0 1 2 1 2 1
01 0 0 3 0 2 2
£ 16 1 0 8. -1 92 -1 1
11 -2 3 3 9 3 1

9. Using the properties of determinants, show that

1 1 1 1

b d
@y ¢ |=0-a-ad-al-b)d-bd-o).
a® b» 3 48

This determinant is called Vandermonde’s determinant.

10. Show that

a b+c
b a+ec
¢c a+b

e
il
e

11. Show that if all of the elements of a row or column are zero, then
det(A) = 0.

12. Prove that det(AT) = det(A).
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11.3 CRAMER’S RULE

One of the most popular methods for solving simple systems of
linear equations is Cramer’s rule.® It is very useful for 2 x 2 systems,
acceptable for 3 x 3 systems, and of doubtful use for 4 x 4 or larger
systems.

Let us have n equations with n unknowns, Ax = b. Cramer’s rule
states that

_ det(Al)

1= 7 74N 2

det(A)’

_ det(Az)

e det(An)
T det(A)’ o

det(4)’

(11.3.1)

where A; is a matrix obtained from A by replacing the ith column with
band n =1,2,3,.... Obviously, det(A) # 0 if Cramer’s rule is to work.
To prove Cramer’s rule, consider

a;jry @12 @13 - Gin
a»xr; a2 az3 -+ QG

z)det(4) = | 931%1 a3z @33 - O3n (11.3.2)
apiT1 Gn2 @n3 ' GOnn

by Rule 5 from the previous section. By adding 2 times the second
column to the first column,

a;nry +a12x¢2 a1z a1z -+ Gin
ag1xy + Qa2 G2z @23 - O2n

£y det(A) = | @31%1 + a32%2 az2 433 o0 O3n (11.3.3)
An1ZT1 + An2T2 Gn2 Qp3 - 4nn

Multiplying each of the columns by the corresponding z; and adding it
to the first column yields,

a1z + aizx2+ -+ ain&n 12 13 Gin
a2ty + a2+ -+ amTy a2z @23 Q2n
2, det(A) = | @121 +@32T2 + *- -+ d3nTs 432 033 a3n
Ap1Z1 + an2Za+ -+ Gunln An2 An3 Gnn
(11.3.4)

3 Cramer, G., 1750: Introduction d I’analyse des lignes courbes algé-

briques, Geneva, p. 657.
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The first column of (11.3.4) equals Ax and we replace it with b. Thus,

b1 a1z a3 -+ ai
bz azy a3 .- az
zidet(A) = |03 @z as oo asn | = det(4;) (11.3.5)
bn Gn2 @n3z - Gpn
o det(A4y)
€ 1
= 11.3.6
1 det(A) ( )
provided det(A) # 0. To complete the proof we do exactly the same
procedure to the jth column. nj

e Example 11.3.1

Let us solve the following system of equations by Cramer’s rule:

2z + 29 + 223 = —1, (1137)
ry+x3=-1 (1138)

and
—z1+ 329 — 223 =1T. (1139)

From the matrix form of the equations,

2 1 2 ) -1
1 0 1 o | = -1], (11.3.10)
-1 3 -2/ \z3 7

we have that

2 1 2

det(A)=(1 0 1 |=1, (11.3.11)
-1 3 -2
-1 1 2

det(A1)={-1 0 1 |=2, (11.3.12)
7T 3 -2
2 -1 2

det(A2)=|1 -1 1 (=1 (11.3.13)
-1 7 =2

and

2 1 -1

det(Az)=f1 0 -1|=-3. (11.3.14)

-1 3 7
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Finally,

L2 1 -3
171

=2, z»= 1= 1 and z3= T = —3. (11.3.15)

Problems
Solve the following systems of equations by Cramer’s rule:

1.21+229=3, 3z14+22=6

2. 281+ x9==3, z1—z2=1

3. 214 2z5—223=4, 221+ 23+ T3=—2, —zi+ro—23=2
4. 221+ 3z —23=—1, =21 — 2z + 23 =5, 3r; —T2= —2.

11.4 ROW ECHELON FORM AND GAUSSIAN ELIMINATION

So far, we have assumed that every system of equations has a unique
solution. This is not necessary true as the following examples show.

o Example 11.4.1

Consider the system
T+ T2 =2 (11.4.1)

and
2z + 2z, = —1. (1142)

This system is inconsistent because the second equation does not follow
after multiplying the first by 2. Geometrically (11.4.1) and (11.4.2) are
parallel lines; they never intersect to give a unique z; and z».

o Example 11.4.2

Even if a system is consistent, it still may not have a unique solu-
tion. For example, the system

1 +29=2 (1143)

and
2x1 + 2z, =4 (11.4.4)

is consistent, the second equation formed by multiplying the first by 2.
However, there are an infinite number of solutions.

Our examples suggest the following:
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Theorem: A system of m linear equation in n unknowns may: (1)
have no solution, in which case it is called an inconsistent system, or
(2) have ezactly one solution (called a unique solution), or (3) have an
infinite number of solutions. In the latter two cases, the system is said
to be consistent.

Before we can prove this theorem at the end of this section, we need
to introduce some new concepts.

The first one is equivalent systems. Two systems of equations in-
volving the same variables are equivalent if they have the same solution
set. Of course, the only reason for introducing equivalent systems is the
possibility of transforming one system of linear systems into another
which is easier to solve. But what operations are permissible? Also
what is the ultimate goal of our transformation?

From a complete study of possible operations, there are only three
operations for transforming one system of linear equations into another.
These three elementary row operations are

(1) interchanging any two rows in the matrix,
(2) multiplying any row by a nonzero scalar, and

(3) adding any arbitrary multiple of any row to any other
row.

Armed with our elementary row operations, let us now solve the
following set of linear equations:

Ty — 304 Teg =2, (11.4.5)
2z + 4o — deg = —1 (11.4.6)
and
-z + 13(82 - 211‘3 = 2. (1147)
We begin by writing (11.4.5)-(11.4.7) in matrix notation:
1 -3 7 T 2
2 4 3 {az]=(-1]. (11.4.8)
-1 13 -21 T3 2

The matrix in (11.4.8) is called the coefficient matriz of the system.
We now introduce the concept of the augmented matriz: a matrix
B composed of A plus the column vector b or

1 -3 7|2
B=[2 4 =-3|-1]. (11.4.9)
-1 13 -21| 2
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We can solve our original system by performing elementary row opera-
tions on the augmented matrix. Because the z;’s function essentially as
placeholders, we can omit them until the end of the computation.

Returning to the problem, the first row may be used to eliminate
the elements in the first column of the remaining rows. For this reason
the first row is called the pivotal row and the element aj; is the pivot.
By using the third elementary row operation twice (to eliminate the 2
and —1 in the first column), we finally have the equivalent system

1 -3 7|2
B=1[0 10 —17|-5]. (11.4.10)
0 10 —14| 4

At this point we choose the second row as our new pivotal row and
again apply the third row operation to eliminate the last element in the
second column. This yields

1 -3 7|2
B=1|0 10 -17|-5]. (11.4.11)
0 0 319

Thus, elementary row operations have transformed (11.4.5)~(11.4.7) into
the triangular system:

Iy - 31‘2 + 71‘3 = 2, (11412)
102y — 1723 = -5, (11.4.13)
3z3=9, (11.4.14)

which is equivalent to the original system. The final solution is obtained
by back substitution, solving from (11.4.14) back to (11.4.12). In the
present case, £3 = 3. Then, 10z2 = 17(3) — 5 or z3 = 4.6. Finally,
21 =3zy—Tzs+2=-5.2.

In general, if an n x n linear system can be reduced to triangular
form, then it will have a unique solution that we can obtain by per-
forming back substitution. This reduction involves n — 1 steps. In the
first step, a pivot element, and thus the pivotal row, is chosen from the
nonzero entries in the first column of the matrix. We interchange rows
(if necessary) so that the pivotal row is the first row. Multiples of the
pivotal row are then subtracted from each of the remaining n — 1 rows
so that there are 0’s in the (2, 1), ...,(n, 1) positions. In the second step,
a pivot element is chosen from the nonzero entries in column 2, rows 2
through n, of the matrix. The row containing the pivot is then inter-
changed with the second row (if necessary) of the matrix and is used as
the pivotal row. Multiples of the pivotal row are then subtracted from
the remaining n — 2 rows, eliminating all entries below the diagonal
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in the second column. The same procedure is repeated for columns 3
through n — 1. Note that in the second step, row 1 and column 1 remain
unchanged, in the third step the first two rows and first two columns
remain unchanged, and so on.

If elimination is carried out as described, we will arrive at an equiv-
alent upper triangular system after n — 1 steps. However, the procedure
will fail if, at any step, all possible choices for a pivot element equal
zero. Let us now examine such cases.

Consider now the system

1+ 229+ 23 = -1, (11415)
2z, + 429 + 223 = -2, (11416)
z1 +4xs + 23 = 2. (11417)
Its augmented matrix is
1 2 1|-1
B=1[|2 4 2|-2]. (11.4.18)
' 1 4 2| 2
Choosing the first row as our pivotal row, we find that
1 2 1|-1
B=|0 0 0} 0 (11.4.19)
0 2 1] 3
or
1 2 1|-1
B=[0 2 1| 3 |. (11.4.20)
0 0 00

The difficulty here is the presence of the zeros in the third row. Clearly
any finite numbers will satisfy the equation 0z; + 0xz + 0x3 = 0 and we
have an infinite number of solutions. Closer examination of the original
system shows a underdetermined system; (11.4.15) and (11.4.16) differ
by a factor of 2. An important aspect of this problem is the fact that
the final augmented matrix is of the form of a staircase or echelon form
rather than of triangular form.
Let us modify (11.4.15)—(11.4.17) to read

Ty + 229 + 23 = -1, (11421)
2z + 4z + 223 = 3, (11.4.22)
z1+4xs + 23 =2, (11423)

then the final augmented matrix is

1 2 1|-1
B=1]0 2 1|3 }. (11.4.24)
0 0 0|5
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We again have a problem with the third row because 0z;+0x,+0z3 = 5,
which is impossible. There is no solution in this case and we have an
overdetermined system. Note, once again, that our augmented matrix
has a row echelon form rather than a triangular form.

In summary, to include all possible situations in our procedure, we
must rewrite the augmented matrix in row echelon form. Row echelon
form consists of:

(1) The first nonzero entry in each row is 1.

(2) If row k does not consist entirely of zeros, the number of leading
zero entries in row k + 1 is greater than the number of leading zero
entries in row k.

(3) If there are rows whose entries are all zero, they are below the
rows having nonzero entries.

The number of nonzero rows in the row echelon form of a matrix is
known as its rank. Gaussian elimination is the process of using ele-
mentary row operations to transform a linear system into one whose
augmented matrix is in row echelon form.

e Example 11.4.3

Each of the following matrices is not of row echelon form because
they violate one of the conditions for row echelon form:

2 2 3
02 1 <8 g 8)(‘1’ 3) (11.4.25)
0 0 4

e Example 11.4.4

The following matrices are in row echelon form:

1 2 3 1 4 6 1 3 40
o1 1],f00 1),[{0o 0 1 3]. (11.4.26)
00 1 000 0000
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o Example 11.4.5

Gaussian elimination may also be used to solve the general problem
AX = B. One of the most common applications is in finding the inverse.
For example, let us find the inverse of the matrix

4 -2 2
A=|-2 -4 4 (11.4.27)
-4 2 8

by Gaussian elimination.
Because the inverse is defined by AA~! = I, our augmented matrix

4 -2 2
-2 —4 4
-4 2 8

Then, by elementary row operations,

4 -2 2(1 0 0 -2 —4 4
-2 -4 4|0 1 0] = 4 -2 2
-4 2 8|0 0 1 -4 2 8
4
2

is

100
01 0]. (11.4.28)
001

010
100 (11.4.29)
0 0 1

-2 -4 010
= 4 -2 10 0] (11.4.30)
0 0 10|10 1
—2 —4 4|0 1 0
= 0 -10 10{1 2 0} (11.4.31)
0 0 10{1 0 1
(-2 -4 4]0 1 0
=| 0 =10 0|0 2 -1} (11.4.32)
0 0 10{1 0 1
[—2 -4 0]-2/5 1 -2/5
- -10 0| 0 2 -1
0 0 10 1 o0 1
(11.4.33)
(-2 0 —2/5 1/5 0
={ 0 =10 0] 0 2 -1
0 o 100 1 0 1
(11.4.34)
1 0 0|1/5 -1/10 0
=010 0 -1/5 1/10].
0 0 1[1/10 0  1/10

(11.4.35)
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Thus, the right half of the augmented matrix yields the inverse and it
equals
1/5 -1/10 0
A=} 0 -1/5 1/10]. (11.4.36)
1/10 0 1/10

Of course, we can always check our answer by multiplying A~! by A.

Gaussian elimination may be used with overdetermined systems.
Overdetermined systems are linear systems where there are more equa-
tions than unknowns (m > n). These systems are usually (but not
always) inconsistent.

o Example 11.4.6

Consider the linear system

21 +z2=1, (11.4.37)
—z1 + 225 = =2, (11.4.38)
1 — 29 = 4. (11.4.39)

After several row operations, the augmented matrix

1 111
-1 2]-2 (11.4.40)
( 1 =11 4
becomes
1 1|1
0 1] 2 }. (11.4.41)
0 0f-7

From the last row of the augmented matrix (11.4.41) we see that the
system is inconsistent. However, if we change the system to

214+ x2 =1, (11442)
—z1 + 2z9 =5, (11.4.43)
r; = -1, (11.4.44)

the final form of the augmented matrix is

1 1)1
0 1]/2]. (11.4.45)
0 0}0

which has the unique solution z; = —1 and z2 = 2.
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Finally, by introducing the set:

T+ o =1, (11.4.46)
2, + 2z0 = 2, (11.4.47)
3z, + 323 = 3, (11.4.48)

the final form of the augmented matrix is

1 1|1
0 0]/0]. (11.4.49)
0 0]o0

There are an infinite number of solutions: ; =1 — o and z5 = a.

Gaussian elimination can also be employed with underdetermined
systems. An underdetermined linear system is one where there are fewer
equations than unknowns (m < n). These systems usually have an
infinite number of solutions although they can be inconsistent.

o Example 11.4.7
Consider the underdetermined system:

221 + 229 + 23 = —1, (11.4.50)
4z + 49 + 223 = 3. (11.4.51)

Its augmented matrix may be transformed into the form:

2 2 1| -1

(22 17). aras

Clearly this case corresponds to an inconsistent set of equations. On
the other hand, if (11.4.51) is changed to

4z, + 429 + 223 = -2, (11.4.53)

then the final form of the augmented matrix is

2 2 1|-1
(0 0 0‘ 0) (11.4.54)

and we have an infinite number of solutions, namely z3 = a, 2 = 8,
and 2z; = -1 — a — 20.

Consider now one of most important classes of linear equations: the
homogeneous equations Ax = 0. If det(A) # 0, then by Cramer’s rule
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Ty =xy=2x3=--=&, = 0. Thus, the only possibility for a nontrivial
solution is det(A) = 0. In this case, A is singular, no inverse exists, and
nontrivial solutions exist but they are not unique.

e Example 11.4.8

Consider the two homogeneous equations:
T +z2=0 (11.4.55)
z; —x2=0. (11.4.56)

Note that det{A) = —2. Solving this system yields z; = x5 = 0.
However, if we change the system to

Ty +z2=0 (11.4.57)
o1 +z2=0 (11.4.58)
which has the det(A) = 0 so that A is singular. Both equations yield

r, = —2s = «, any constant. Thus, there is an infinite number of
solutions for this set of homogeneous equations.

We close this section by outlining the proof of the theorem which
we introduced at the beginning.

Consider the system Ax = b. By elementary row operations, the
first equation in this system can be reduced to

1+ aas+ -+ ainy = P (11.4.59)
The second equation has the form
Tp+ Q2 pi1Tpy1 + -+ QonTn = P, (11.4.60)
where p > 1. The third equation has the form
Tq+ 03 g418g41 + -+ a3 = B3, (11.4.61)

where ¢ > p, and so on. To simplify the notation, we introduce z; where
we choose the first k values so that 21 = &1, 22 = &p, 23 = x,, ...
Thus, the question of the existence of solutions depends upon the three
integers: m, n, and k. The resulting set of equations have the form:

1 y2 -+ Tk 7T1k41 0 Yin o5
0 1 - 721 Y241 - Yon B

. 21 .

. Z9 :

0 0 - 1 Yer+r -0 Vin 1= B
0 0 --- 0 0 e 0 : Br+1

. Zn .

\o 0 - 0 0 - 0 ' B

(11.4.62)
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Note that Bx41, ..., Bm need not be all zero.

There are three possibilities:

(a) k < m and at least one of the elements Bry1, ..., On 1s nonzero.
Suppose that an element 3, is nonzero (p > k). Then the pth equation
1s

021 + 0294+ -- -+ 0z, = ,Bp #0. (11.4.63)

However, this is a contradiction and the equations are inconsistent.

(b) £ = n and either (i) ¥ < m and all of the elements Bi41,...,0mn
are zero, or (i) k = m. Then the equations have a unique solution which
can be obtained by back-substitution.

(¢) £ < n and either (i) k¥ < m and all of the elements Bk41, ..., 0m
are zero, or (ii) k = m. Then, arbitrary values can be assigned to the n—
k variables zg41,...,2z,. The equations can be solved for 21, 22,..., 2
and there is an infinity of solutions.

For homogeneous equations b = 0, all of the 3; are zero. In this
case, we have only two cases:

(b’) k = n, then (11.4.62) has the solution z = 0 which leads to the
trivial solution for the original system Ax = 0.

(c') ¥ < n, the equations possess an infinity of solutions given by
assigning arbitrary values to zg41,..., 2n. O

Problems

Solve the following systems of linear equations by Gaussian elimination:

1. 2.’L‘1+.’L‘2=4, 5171—21,‘2:1
2. 21+22=0, 3y —4x, =1
3. —z1+xo+223=0, 3r1+4dro+23=0, —a27+x2+223=0
4. 42y +6xo+23=2, 2x3+x9—403=3, 3r;—222+bx3=28
5. 321+ x93 —-203=-3, v —x2+203=-1, —4x, +325—6x3=4
6. 1 — 3x2+ Txz = 2, 22y + 420 — 323 = —1,

—3z1+ 729 +223=3
7. 21— z2+4 323 =5, 201 — 4z + Tz =17,

421 — 929 + 223 = —15
8. xy+ a2+ a3+ 24 =—1, 2z) — 22+ 3x3 =1,

229 + 324 = 15, ~21+ 229 + 24 = -2

Find the inverse of each of the following matrices by Gaussian elimina-
tion:

o (31) o (5 7)
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199 2 -9 1 2 5
11. -4 -1 2 12. 0 -1 2

-2 0 1
13. Does (A?)~! = (A~1)?? Justify your answer.
11.5 EIGENVALUES AND EIGENVECTORS

One of the classic problems of linear algebra* is finding all of the
A’s which satisfy the n x n system

Ax = Ax. (11.5.1)

The nonzero quantity A is the eigenvalue or characteristic value of A.
The vector x is the eigenvector or characteristic vector belonging to A.
The set of the eigenvalues of A is called the spectrum of A. The largest
of the absolute values of the eigenvalues of A is called the spectral radius
of A.
To find A and x, we first rewrite (11.5.1) as a set of homogeneous
equations:
(A= ADx = 0. (11.5.2)

From the theory of linear equations, (11.5.2) has trivial solutions unless
its determinant equals zero. On the other hand, if

det(A — AI) =0, (11.5.3)

there are an infinity of solutions.

The expansion of the determinant (11.5.3) yields an nth-degree
polynomial in A, the characteristic polynomial. The roots of the charac-
teristic polynomial are the eigenvalues of A. Because the characteristic
polynomial has exactly n roots, A will have n eigenvalues, some of which
may be repeated (with multiplicity ¥ < n) and some of which may be
complex numbers. For each eigenvalue A;, there will be a correspond-
ing eigenvector x;. This eigenvector is the solution of the homogeneous
equations (A — A; I)x; = 0.

An important property of eigenvectors is their linear independence
if there are n distinct eigenvalues. Vectors are linearly independent if
the equation

a1X1 +asXo+ -+ apx, =0 (11.5.4)

can be satisfied only by taking all of the a’s equal to zero.

4 The standard reference is Wilkinson, J. H., 1965: The Algebraic
Figenvalue Problem, Clarendon Press, Oxford.



586 Advanced Engineering Mathematics

To show that this is true in the case of n distinct eigenvalues
A1, A2,..., A, each eigenvalue A; having a corresponding eigenvector
x;, we first write down the linear dependence condition

a1Xy + aoXs + -+ apXx, = 0. (11.5.5)
Premultiplying (11.5.5) by A,
a1 Ax] +FasAxs + - -+ anAX, = a1 X1 FasAeXa + - - +ap,Anx, = 0.
(11.5.6)
Premultiplying (11.5.5) by A2,

a1 A%x a2 A%xo+- - Ha, A%x, = a1/\3x1+a2)\§xz+- . ~+an/\,21xn =0.

(11.5.7)
In similar manner, we obtain the system of equations:
1 1 1 o1X, 0
A1 Ay e A, Qa2X2 0
A A asxs | =1 0], (11.5.8)
APt oAt o ant CnXn 0
Because
1 1 1
A Xa A,
,\% ,\% . ’\?1 _ (/\2 - )\1)()\3 - /\2)(/\3 — )\1)()\4 - /\3)
: : : : (A= A2) (A = A1) #0,
/\;1—1 /\;L—l . /\2—1

(11.5.9)
since it i1s a Vandermonde determinant, a1X; = a9Xs = agXg = ---
apXn, = 0. Because the eigenvectors are nonzero, &y =az =az = ---
a, = 0 and the eigenvectors are linearly independent.

This property of eigenvectors allows us to express any arbitrary
vector x as a linear sum of the eigenvectors x; or

a

X =C1X] + CoXg+ -+ CnXp. (11.5.10)
We will make good use of this property in Example 11.5.3.

o Example 11.5.1

Let us find the eigenvalues and corresponding eigenvectors of the
matrix

A= (:‘11 _21) : (11.5.11)
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We begin by setting up the characteristic equation:

—4-A 2

det(A—-/\I)zl R

=0. (11.5.12)

Expanding the determinant,
(=4 =N (=1=X+2=22+5X1+6=(A+3)(A+2) =0. (11.5.13)

Thus, the eigenvalues of the matrix A are A; = —3 and Ay = —2.
To find the corresponding eigenvectors, we must solve the linear

system:
—4— A 2 z1y_ (0
(2 (E)=(). ms
For example, for Ay = -3,
-1 2 Iy _ 0
(3 (=)=() (1510
or
21 = 22 (11.5.16)
Thus, any nonzero multiple of the vector ? is an eigenvector belong-
ing to Ay = —3. Similarly, for A, = —2, the eigenvector is any nonzero
multiple of the vector (i

o Example 11.5.2

Let us now find the eigenvalues and corresponding eigenvectors of

the matrix
-4 5 5
A=}1-5 6 5. (11.5.17)
-5 5 6
Setting up the characteristic equation:
det(A — AI)
—4 - 5 5 -4 —A 5 5
={ -5 6—A 5 |=]| -5 6—A 5
=5 5 6—A 0 A-1 1-2A
- (11.5.18)
—4-Xx 5 5 -1 o
=A=1] -5 6-Xx 5 |=(A=-1%*-5 6-X {5
0 1 -1 0 1 -1
(11.5.19)
-1 (00 0

—(A=1)?|=5 6= (0|=(r—1)>%*6-1) =0. (11.5.20)
o 1 -1
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Thus, the eigenvalues of the matrix A are A; 2 = 1 (twice) and A3 = 6.
To find the corresponding eigenvectors, we must solve the linear
system:

(-—-4 - /\)1‘1 + 529 4+ 5z3 =0, (11.5.21)

—b521 4+ (6 — Nza + 523 =0 (11.5.22)
and

—bxy + bxoy + (6 - /\)(L‘s =0. (11523)

For A3 = 6, (11.5.21)—(11.5.23) become

—10z1 + 522 + 5x3 =0, (11.5.24)
—5z1+52z3=0 (11.5.25)

and
—bz1 + Hxy = 0. (11.5.26)

Thus, ; = 22 = z3 and the eigenvector is any nonzero multiple of the

1
vector | 1 .
1

The interesting aspect of this example involves finding the eigen-
vector for the eigenvalue Ay 2 = 1. If A\; ; = 1, then (11.5.21)-(11.5.23)
collapses into one equation

-1+ Lo+ T3 = 0 (11527)

and we have fwo free parameters at our disposal. Let us take z3 = o

1 1
and z3 = . Then the eigenvector equals « 1) +610 | for A =1

0 1
In this example our 3 x 3 matrix has three linearly independent
1 1
eigenvectors: 1 ] associated with Ay = 1, | 0 | associated with
0 1
1
Az =1, and | 1 | associated with A3 = 6. However, with repeated
1

eigenvalues this is not always true. For example,

a=(1 1 11.5.28
(s 1) (11.5.28)

has the repeated eigenvalues A; » = 1. However, there is only a single

eigenvector <(1)> for both Ay and A,.
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o Example 11.5.3

When we discussed the stability of numerical schemes for the wave
equation in Section 7.6, we examined the behavior of a prototypical
Fourier harmonic to variation in the parameter cAt/Az. In this exam-
ple we shall show another approach to determining the stability of a
numerical scheme via matrices.

Consider the explicit scheme for the numerical integration of the
wave equation (7.6.11). We can rewrite that single equation as the
coupled difference equations:

u:]+1 = 2(1 — Tz)’ll:‘n + T'Z(U::H.l + u:‘n—l) - U:;, (11529)
and
JiH =yt (11.5.30)

where 7 = cAt/Az. Let ul,, = eP2%u? and ul_; = e~P2%u],
where 3 is real. Then (11.5.29)-(11.5.30) becomes

n M ﬂAI n
uptl =2 [1 — 2r?sin? (—2— Uy — Uy (11.5.31)
and
ot = ol (11.5.32)
or in the matrix form
— 9p2gin? [ B8Z -
wiHl = (2 [1 2r Sl‘“ ( 2 )] 01> u? (11.5.33)

n
where u}, = (z,'{‘ ) The eigenvalues A of this amplification matriz are
m

given by

PL [1—2r2sin2 (ﬂ‘;’”)] A+1=0 (11.5.34)

)i )

(11.5.35)

Because each successive time step consists of multiplying the so-

lution from the previous time step by the amplification matrix, the

solution will be stable only if u?, remains bounded. This will occur only
if all of the eigenvalues have a magnitude less or equal to one because

ul =5 e Amxy = > adix, (11.5.36)
k k

or

Alg=1— 2r? sin? (E—Z;—x) + 2rsin (ﬂAI
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where A denotes the amplification matrix and x; denotes the eigen-
vectors corresponding to the eigenvalues Ax. Equation (11.5.36) follows
from our ability to express any initial condition in terms of an eigenvec-
tor expansion:

ul, = crxx. (11.5.37)
k

In our particular example, two cases arise. If r?sin?(8Az/2) < 1,

A1z =1-2r%sin? (ﬂ_?_a:) + 2risin (ﬂ?z) \/1 — r2sin? (ﬂ?w)

(11.5.38)
and |A;2] = 1. On the other hand, if r?sin®(3Az/2) > 1, |A\1 2| > 1.
Thus, we will have stability only if cAt/Az < 1.

Problems

Find the eigenvalues and corresponding eigenvectors for the following
matrices:

3 2
RN
2 -3 1
3.A=1]1 -2 1
1 -3 2
1 11
5 A=1]10 2 1 6.
0 01
4 -5 1 -2 0 1
7. A=]1 0 -1 8. A= 3 0 -1
6 1 -1 0 1 1

Project: Numerical Solution of ‘the Sturm-Liouville Problem

N
S
I

b
Il

b

S

it
/\/—\/'\

OO OO0 =W

ST N O O =
'»—lo—A <

[y

N

You may have been struck by the similarity of the algebraic eigen-
value problem to the Sturm-Liouville problem. In both cases nontrivial
solutions exist only for characteristic values of A. The purpose of this
project is to further deepen your insight into these similarities.

Consider the Sturm-Liouville problem:

Y +dy=0, y0)=y(r)=0. (11.5.39)
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- Ax -

Figure 11.5.1: Schematic for finite-differencing a Sturm-Liouville
problem into a set of difference equations.

We know that it has the nontrivial solutions Ay, = m?, ym(2) = sin(me),
where m=1,2,3,...

Step 1: Let us solve this problem numerically. Introducing centered
finite differencing and the grid shown in Figure 11.5.1, show that

y" o~ Un+1 — 2Yn + Yn-1
Az '

n=12,...,N, (11.5.40)

where Az = m/(N+1). Show that the finite-differenced form of (11.5.39)
is

—h%Yns1 + 20y — BPyn_1 = Ay (11.5.41)
with yo = yv41 = 0 and h = 1/(Az).

Step 2: Solve (11.5.41) as an algebraic eigenvalue problem using N =
1,2,.... Show that (11.5.41) can be written in the matrix form of

th —h2 0 e 0 0 0 )1 Y1
—h% 2h%2 —AZ ... 0 0 0 Yo Ya
0 -—h% 2n%2 ... 0 0 0 Y3 \ Y3
0 O 0 M '—h2 2h2 —h2 yN—l YN-1
o 0 0 -~ 0 —h* 2A? YN YN
(11.5.42)

Note that the coefficient matrix is symmetric. Except for very small
N, computing the values of A using determinants is very difficult. Con-
sequently you must use one of the numerical schemes that have been



592 Advanced Engineering Mathematics

Table 11.5.1: Eigenvalues computed from (11.5.42) as a numerical
approximation of the Sturm-Liouville problem (11.5.39).

N A A2 A3 A4 As g A7

1 0.81057

2 0.91189 2.73567

3 0.94964 3.24228 5.53491

4 0.96753 3.50056 6.63156 9.16459

5 0.97736 3.64756 7.29513 10.94269 13.61289

6 0.98333 3.73855 7.71996 12.13899 16.12040 18.87563

7 0.98721 3.79857 8.00605 12.96911 17.93217 22.13966 24.95100

8 0.98989 3.84016 8.20702 13.56377 19.26430 24.62105 28.98791
20 0.99813 3.97023 8.84993 15.52822 23.85591 33.64694 44.68265
50 0.99972 3.99498 8.97438 15.91922 24.80297 35.59203 48.24538

developed for the efficient solution of the algebraic eigenvalue problem.®
Packages for numerically solving the algebraic eigenvalue problem may
already exist on your system or you may find code in a numerical meth-
ods book.

In Table 11.5.1 1 have given the computed values of A as a function
of N using the IMSL routine EVLSF so that you may check your an-
swers. How do your computed eigenvalues compare to the eigenvalues
given by the Sturm-Liouville problem? What happens as you increase
N7 Which computed eigenvalues agree best with those given by the
Sturm-Liouville problem? Which ones compare the worst?

Step 3: Let us examine the eigenfunctions now. First, reorder (if nec-
essary) your eigenvectors so that each consecutive eigenvalue increases
in magnitude. Starting with the smallest eigenvalue, construct an zy
plot for each consecutive eigenvectors where r; = iAz, i =1,2,..., N,
and y; are the corresponding element from the eigenvector. On the
same plot, graph ym(z) = sin(mz). Which eigenvectors and eigenfunc-
tions agree the best? Which eigenvectors and eigenfunctions agree the
worst? Why? Why are there N eigenvectors and an infinite number of
eigenfunctions?

Step 4: The most important property of eigenfunctions is orthogonality.
But what do we mean by orthogonality in the case of eigenvectors?
Recall from three-dimensional vectors we had the scalar dot product:

a-b=ajb + asby + azbs. (11.5.43)

5 See Press, W. H., Flannery, B. F., Teukolsky, S. A., and Vetter-
ling, W. T., 1986: Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, Cambridge, chap. 11.
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For n-dimensional vectors, this dot product is generalized to the inner
product

n
X y= Z:ckyk. (11.5.44)
k=1

Orthogonality implies that x -y = 0 if x # y. Are your eigenvectors
orthogonal? How might you use this property with eigenvectors?

11.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

In this section we show how we may apply the classic algebraic
eigenvalue problem to solve a system of ordinary differential equations.
Let us solve the following system:

1"1 =z + 3z, (1161)

and
x5y = 3z + z2, (11.6.2)

where the primes denote the time derivative.
We begin by rewriting (11.6.1)-(11.6.2) in linear algebra notation:

x' = Ax, (11.6.3)

x = (2) and A= (; ?) (11.6.4)

1',1 _i 1\ __ s
(5) -4 (2) ¢ .

Assuming a solution of the form

where

Note that

x = xge*?, where Xg = (Z) (11.6.6)

is a constant vector, we substitute (11.6.6) into (11.6.3) and find that
Ae*ixg = Ae*xo. (11.6.7)
Because e*! does not generally equal zero, we have that
(A—-2ADxe =0, (11.6.8)

which we solved in the previous section. This set of homogeneous equa-
tions is the classic eigenvalue problem. In order for this set not to have
trivial solutions,

1-2A 3

det(A—-AI):‘ 3 1— 2

l =0. (11.6.9)
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Expanding the determinant,
(1-2)%-9=0 or A=-2/4. (11.6.10)

Thus, we have two real and distinct eigenvalues: A = —2 and 4.
We must now find the corresponding xq or eigenvector for each
eigenvalue. From (11.6.8),

(1-Na+3b=0 (11.6.11)

and
3a+ (1 —A)b=0. (11.6.12)

If X = 4, these equations are consistent and yielda = b =¢;. If A = -2,
we have that a = —b = c¢;. Therefore, the general solution in matrix
notation is

x=c (i) e* +co (_11> e~ 2t (11.6.13)

To evaluate ¢; and ¢y, we must have initial conditions. For example,
if £1(0) = x2(0) = 1, then

(i)zcl(})”z(_ll)- (11.6.14)

Solving for ¢; and ¢2, ¢4 = 1 and ¢ = 0 and the solution with this
particular set of initial conditions is

x = (}) e*. (11.6.15)

o Example 11.6.1

Let us solve the following set of linear ordinary differential equa-
tions:

z) = —zo + z3, (11.6.16)
rh =4z, — z2 — 423 (11.6.17)

and
.’C% = =3z, — x9 + 4z3; (11.6.18)

or in matrix form,

0 -1 1 1
xX=|4 -1 —-4]x, x=|z|. (11.6.19)
-3 -1 4 I3
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Assuming the solution x = xge*?,
0 -1 1
4 —1 —4|x0=x (11.6.20)
-3 -1 4
or
-A -1 1
4 —1-) -4 |xe=0. (11.6.21)
-3 -1 4-A

For nontrivial solutions,

- -1 1 0 0 1
4 —-1-X -4 |= 4 —4x —5—-X -4 (=0
-3 -1 4— ) ~34+4XA—=2%2 33— 4-)
(11.6.22)
and
A-DA=-3)(A+1)=0 or 2=-1,1,3. (11.6.23)

To determine the eigenvectors, we rewrite (11.6.21) as

—da—b+c=0, (11.6.24)
4a—(14+X2)b—4c=0 (11.6.25)

and
~3a—b+(4-A)c=0. (11.6.26)

For example, if A =1,

—a—b+c=0, (11.6.27)
4a—2b—4c=0 (11.6.28)

and
—3a—~b+3c=0; (11.6.29)

1
or a = c and b = 0. Thus, the eigenfunction for A = 1 is xo = 0) .
1

1 1
Similarly, for A = -1, xo = (2) and for A = 3, xo = (—1). Thus,

1 2
the most general solution is

1 1 1
X=c (0) el + ¢y (2) et 4¢3 (—1)63’. (11.6.30)
1 1 2
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o Example 11.6.2

Let us solve the following set of linear ordinary differential equa-
tions:
=z — 229 (11.6.31)

and
zh = 2z — 3zo; (11.6.32)

or in matrix form,

x = (; _g)x, x = (zl) (11.6.33)
- 2

Assuming the solution x = xge*?,

<1;’\ _3_2)\)::0 =0. (11.6.34)

For nontrivial solutions,

I-2A -2
2 -3-2A

‘: A+1)2=0. (11.6.35)
Thus, we have the solution

X =rc (}) e t. (11.6.36)

The interesting aspect of this example is the single solution that
the traditional approach yields because we have repeated roots. To find
the second solution, we try a solution of the form

_ a+ct —t
X = <b+dt) e ", (11.6.37)

Equation (11.6.37) was guessed based upon our knowledge of solutions
to differential equations when the characteristic polynomial has repeated
roots. Substituting (11.6.37) into (11.6.33), we find that ¢ = d = 2¢;
and a — b = ¢3. Thus, we have one free parameter, which we will choose
to be b, and set it equal to zero. This is permissible because (11.6.37)

/
can be broken into two terms: b k}) e~ ! and c; (1;%) e~!. The

first term may be incorporated into the ¢; } e~* term. Thus, the

general solution is

X =c (i)e_t+62 ((1))6"+262 (i)te"’. (11.6.38)
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o Example 11.6.3
Let us solve the system of linear differential equations:
) =2z — 3z, (11.6.39)

and
zh = 3z + 2295 (11.6.40)

or in matrix form,

’_ 2 -3 _ T
x = (3 9 )x, X = (12). (11.6.41)

Assuming the solution x = xqe*?,
(2 g A 2‘_3/\) Xo = 0. (11.6.42)
For nontrivial solutions,
Pg'\ 2—_3)\‘ —(2-A2+9=0 (11.6.43)

(5

A = 2 — 3i. Thus, the general solution is

X =c (_11) e2 3t 4 ¢y (:) eZt-3it (11.6.44)

and A =2+ 3i. If x9 = >,thenb:—aiif/\:2+3iandb:aiif

where ¢; and ¢ are arbitrary complex constants. Using Euler relation-
ships, we can rewrite (11.6.44) as

X=c3 [Z?jgg ] 2t + ey [_s‘c’(‘)(j?t)] e2t, (11.6.45)

where ¢3 = ¢1 + ¢2 and ¢4 = i{c; — ¢2).
Problems

Find the general solution of the following sets of ordinary differential
equations using matrix techniques:

1 z) =z + 222 zh =2z + z5.

2. 2 =2, — 4z, zh = 31 — 6z2.
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3. 1"1=131+.’L‘2

cx) =z + 5z
2] = -3z, — 2z,
i = =321 — 2z,

) =z — 22

z) =321 + 225

© ® N> oo

) = -2z, — 13z,

10. 2} = 32y — 2z

11. 2} = 421 — 2z,

12. z{ = =3z; — 4z,

13. 2} = 3z, + 42,

14. 2] + 521+ 24 + 322 =0

15. 2} —2y + 2 — 22, =0

Advanced Engineering Mathematics

zh = 2z, + z4.

Th =z + 3z,.

zh = —2z; — zs.

1:’2 =) + 4z,.

(L’f«z = 51!1 - 31’2.

zh = 25z; — 10zs.

17,2 =2z1 + z4.

(8/2 = —2131 — 2.
21"1+1'1+17’2+1‘2=0.

z] —bxy + 224 — Tzo = 0.

16. z = 21 — 2z, zh = zh = =5z + Tzs.
17. 2 = 224 zh = 21 + 223 zh = z3.
18. 2} = 3z, — 223 Th = —x; + 2x9 + 23 z5 = 4z — 3x3
1 2 3
19. 2} = 32y — 23 zh = =22, + 2x2 + 3 zh = 8z — 3z3



Answers
To the Odd-Numbered Problems

Section 1.1

11+2 3.-2/5 5.2+ 2iV/3
7. 4e™ 9. 51/2e37i/4 11. 2¢27i/3
Section 1.2

1.
3, 23 [1+ ﬁ] L 1e [-§+—?’i}

272 2
3.
; V3 i LoV3 i
2 2 2T 9 73
5.

w1=\/Li[—\/7a2+b2+a+i\/\/a2+b2+a], wy = —wy.
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7. zZ1,2 = :1:(1 + i); 234 = :t?(l — Z)

Section 1.3

1. u=2-y,v==zx 3. u=2z%-3zy?, v=32%y -4
5. f'(2) = 3z(1 + 2%)Y/? 7. f'(2) =2(1 +4i)z -3
9. f(z) = —3i(iz — 1)~ 11.1/6

13. v(z, y) = 2zy + constant

15. v(z,y) = zsin(z)e™Y + ye~¥ cos(z) + constant.

Section 1.4

1.0 3.2 5.14/15—14/3
Section 1.5

1. (e 2 —e™%)/2 3.7/2

Section 1.6

1. wi/32 3. mif2 5. —2mi

7. 2m: 9. —67

Section 1.7

1. .
S (n+1)2"
n=0
3. L o
_Jo_, % _E . ...__* ...
fy=2"-2+ 5 -F+ 1z T

We have an essential singularity and the residue equals —1/11!

5.
1 22 2t
R =g+g+at

We have a removable singularity where the value of the residue equals
zero.
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f(z) = ———2—-6——-2——“'

We have a simple pole and the residue equals —2.

9.
1 1 z-2

f=3:=5 1t 7% ~

We have a simple pole and the residue equals 1/2.
Section 1.8
1. -3#i/4 3. —2m7i. 5. 2w 7. 2mi

Section 2.1

1.
3.
f@t) =— + Z -t 1) L cos(nt) + —Q%Q-sin(nt)

” cos[(2m — 1)t]

cos[(2m — 1)mt

=2 Z (2m — 1)?
7. -
9. - o
f(t) = Z sm[(2m — 1)wt]

11.

| 2

B 4a — 1 (2m — 1)xt
f(t)—Q_ﬁmZ;@m—l)zcos[ a ]

2a o= (=1)* . (nwt
P Y (=)

601
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13.

f(t) = 5L7—rsin (”f’) _ % 5 (n—zlzﬂln N (nT,rt>
n=2

15.

£(8) = 4a cosl;(mr/?) Z cos[(2m — 1)t]

2 — 1\2°
m=1 a+ (2m 1)

Section 2.3

1.
T 4 <= cos[(2m — 1)z
f(’”):TFE([z#m_V”

m=1

2 (-1)"*+sin(ne
f(:c):%z&-*n_(__)

1 2 & cos[2(2m — 1)z
f@):rﬁmz1 [(2(m_1)2)]

4 & (-1)™Hsin(2m — 1)z
f@):Fz}( ) (2m[—(1)2 i

~,
—~~~
8
e
|
-\-lwl_,;
[~
—~~
¥l
—_
p—
3
+
-
——
—
N
3
o |
—
N’
3
8
—_
|
EREN]
[~
—~—
=L
 —
3
2]
=
—~
|:
nof
8
S’

sin
—1)?

fz) = 1 f: 1+ cos(nm/2) — 2(-1)" sin (nzx)

n

3

n=1
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9.
_3a 2a 2. cos(nm/2) =1 nre
flz) = —+ —~ n? OS( a )
_a [ 2 . /nr (-1 . (nwz
=23 en (5) -5 Jin (%57)
11.
1 2 & (=)™ . T 2m
f(z) = 3 + ;mzz:l m) sin (mT) cos ( am:)
4 S (=)™ [@em-Dr] . [@m-Dr
f($)=;2=1(2m)_1 sin [( 1 ]Sln[ ik a z’]
13. \
1 nerd — 1
f@) = + 2ka Z Icza)2+n21r2 cos (n:zm)
1)" ka -1] .
= Z Ic2a2)+ n?mr? ]sm ("Z:")
Section 2.4
1.
sin[(2n — 1)t}
fO=3 + Z 2n-1
1 2 cos[(2n— 1)t — w/2]
-2 F; 2n ~ 1
3.

fit)y=2 i %cos [nt +(-1)" 12[]

f(t) =2 i %sin {nt+0+ (—1)”]%}



604 Advanced Engineering Mathematics

Section 2.5

1.
T 9 ei(2m—1)t
)= —— —
f® 2 m;w (2m - 1)?
3.
: enm't
f@)=1+ ;n_—.z—oo -
n#0
5.
1 i L e22m-1)it
)= - — — _—
1) 2 m;oo 2m—1

Section 2.6

1.

y(t) = Acosh(t) + Bsinh(t) — % - %E (2ns_i-n£()2-t (—2711)? e

cos[(2n — 1)t]
2-(2n-1)22+9(2n—1)2

1
4

2 f: [2 — (2n — 1)?]sin[(2n — 1){]

T (2n - 1){[2 - (2n — 1)2]2 + 9(2n — 1)2}

600
t) = Ae* + Be' -
y(t) = Ae® + Be' + +TZ

n=1

sl ei(@n—1)t

—, (2n—1)?[4 - (2n - 1)?]

n=

2
WiPn 6z'nwot

t) =
a(t) z_:co (tnwo)? + 2ianwy + w?
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Section 2.7

1. z(t) = £ — cos(wz/2) — sin(rz/2) — § cos(z)

Section 3.3

1. we~1w/al/|a]

Section 3.4

1. —t/(1 +t2)? 3. f(t) = s tH(t) + et H(-t)

5. f(t) = e tH(t) — e 2 H(t) + Lte~*/2H(t)

7.
. 1 —alt| _ 1, t>0
@) = 2sgn(t)e , where sgn(t) = { 1, t <0
9. )
7(t) = 5o (1 = afte™ ¥
11. (—1y+
. 2n+1_—at
O =Gt ¢ H®)
13. ot
_ e t>0
) = {e", t<0.

Section 3.6

" y(t) = [(t = e + e >]H(t)
3. Lo
y(t) = { %ezfi %;e'zt, : Z g
Section 4.1
1. F(s) = s/(s% — a?) 3.F(s)=1/s+2/s?+2/s3

5. F(s) = [1—e2¢"Y] /(s - 1)

7. F(s) = 2/(s* + 1) — s/(s® + 4) + cos(3)/s — 1/s?
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9. f(t) = e~ 11. f(t) = % sin(3t)

13. f(t) = 2sin(t) — 4% + 2" — 6 cos(2t)

15. sF(s) — f(0) = as/(s* + a?) — 0 = L[f'(2))]

17. F(s) = 1/(2s) = sT?/[2(s*T? + 7))

Section 4.2

1. f(t) = (t — 2)H(t — 2) — (t — 2)H(t — 3)

3.y +3y +2y=H(t-1) 5.y +4y +4y=tH(t - 2)
Ty =3y +2=etH(t—-2) 9.y +y=sin@®)[l - H(t — )]
Section 4.3

1. F(s) =2/(s®> + 25 + 5)

3. F(s) = 1/(s — 1) + 3/(s2 — 25 + 10) + (s — 2)/(s2 — 4s + 29)

5. F(s)=2/(s+1)®+2/(s2 —2s+5)+ (s + 3)/(s? + 65 + 18)

7. F(s) = e%¢=3% /(5 — 2)

9. F(s)=2e7*/s® +2e7*/s? +3e~* /s + e~ /s

11. F(s) = (1+e™*")/(s>+1)  13. F(s) = 4(s + 3)/(s? + 65 + 13)?
15. f(t) = 1t%e72 — 1432 17. f(t) = e~* cos(t) + 2e~*sin(t)
19. f(t) = e~ — 2te=2* + cos(t)e~" + sin(t)e™"

21. f(t) = €e'"3H(t-3)

23. f(t) = e=(=Dcos(t — 1) — sin(t - ]H(t - 1)

25. f(t) = cos[2(t — )] H(t — 1) + 3(t — 3)32(* =9 H (¢ - 3)

27. £(t) = {cos[2(t — 1)] + L sin[2(t — D)]}H(t — 1) + 1(t - 3)3H(t — 3)

29. f() =t{HX) - H(t —a)|; F(s) = 1/s% — e /5% —ae % /s
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31.F(s)=1/s* —e % /s —e"2 /s

33. F(s) =e~*/s? —e 2 [s? —e™3 /s

35. Y (s) = s/(s% +4) + 3e~4/[s(s? + 4))]

37 ¥ (5) = =G (s = 1)(s + 1)(s + 2]

39. Y(s) = 5s/[(s = 1)(s — 2)] + e~ /[s3(s — 1)(s — 2)]
+2e7*/[s%(s = 1)(s = 2)] + € 7" /[s(s — 1)(s - 2)]

41.Y(s) = 1/[s*(s + 2)(s + 1)) + ae=% /[(s + 1)*(s + 2)]
~e=% /[s*(s + 1)(s +2)] — €7 /[s(s + 1)(s + 2)]

43. lim, oo SF(s) = lim,_.c 52/(s% + a?) = 1 = f(0).
45. lim, .00 $F(s) = lim,_ o 35/(s2 — 25 + 10) = 0 = f(0).
47. Yes 49. No 51. No

Section 4.4

—(1+as)e™*
82(1 — e—Zas)

1 sT 1
1. F(S) = 52—_*:—1 coth (?) 3. F(s) =

Section 4.5

1 f(t) =€t —e™? 3. f(t) = Semt — Sem2 — LBt
5. f(t) = e~ cos (t + 3F) 7. f(t) = 2.3584 cos (4t + 0.5586)
9. f(t) = 1 + ¥Ecos (2t + F)

Section 4.6

1.
L) = Slz = £(1)L(1)
3.
£l =1) = 77 - 5 = 5o = SEE)
5.

1 1 1

L[t —sin(t)] = = L(t)L{sin(t)]

—s2+1=32(32+1)=
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{8 _2h _cosan)b = 2 (-2 = ca)cpsingat))
ad s2+a2/) s

t —-b
H(t—b)*H(t—a):/ H(t—b—w)dm:—/ H(n) dn,

t—b—a

ift>aandnp=t—-b—zx.

11.
f)=¢" —t—1

13. Assuming that a,b > 0,

/té(t—x—a)é(z—-b)d:c=6(t—-b—a)

Section 4.7

Lfit)y=1+2t 3. ft)y=t+ 312

5. f(t) = t3+ 551° 7. f(t) =1* — 3t

9. f(t) = 5e?! — 4et — 2te! 11. f(t) = (1 — t)2e~!

13. f(t) = 4+ 312 + Lt 15. z(t) = 2AV1/(xC) — Bt/(2C)
17.

2, 28V 287 AV,
(t)_ﬁ<eﬁ -1+ I \/;"—/o e " du

Section 4.8

Loy(t) = 3e** — 3 + 4t 3. y(t) = &3 — e

5.yt) = —3e 3 + Te7t+ Jtemt T.y(t) = Zemt 4 Lot — L
9. y(t) = (t = DH(t — 1)

11 y(t) = e — et + [ + 22D — =1 H(t - 1)
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13. y(t) = [1 — 7202 — 2(t — 2)e" 2 =] H(t - 2)

15. (t)_‘ [1 2(t-2) _ 1 et~ 2+ le—(t 2)]H(t_2)

17. y(t) = 1 — cos(t) — {1 —

19.

cos(t =T H(t - T)

wt) =t = e - 4

—[e —(t-a) _

1 —Z(t a) _ 3 + %(t _ a)]H(t _ a)

+al}e 20~ ") +(t— a)e"("") —-1|H(t - a).

21. y(t) = te* +3(t — 2)e'"2H(t - 2)

23. y(t) = 3 [e720D) — ¢=3U-D] H(t - 2)
+4 [e—3(t-5) _ 6—2(1—5)] H(t _ 5)

25. .’L‘(t) = 2¢!/2 —2—t;y(t) —etl2_1—1

27. z(t) = 27t + 3~ y(t) = 7" — 1

Section 4.9

1. G(s) = 1/(s + k)

3.G(s)=1/(s* +4s+3)

5. G(s) = 1/[(s = 2)(s — 1)]

7.G(s)=1/(s*—-9)

9. G(s) = 1/[s(s - 1)}

g(t) =€
a(t) = (1 —e*) /k
o)==

a(t) = te73 — Je7' + i

g(t) =™ — ¢
a(t) = 3 + 3¢ — ¢
g(t) = § (¥ —e™)

a(t) = {5 (¥ +e7* - 2)
gty =€ -1

a(t)y=e -t -1
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Section 4.10

L ft) = (2—t)e™2 — 23

300 = (3* - 4t +3)e” -5

5.f(0) = [3(t=1) = § + §e V] H( 1)
7.

_ 2 8in[(2n — 1)7t/(2a))
f) = cosh( b) 8ab2( 1) 4a2b? + (2n — 1)272

»(2n — 1)mwcos[(2n — )7t /(2a
+4Z( 2 : a)2b2+[((2n—1))27r2/( )]

n=1

Section 5.1
1. F(z) = 22/(2z = 1) if 2| > 1/2.

3. F(z) = (25 — 1)/(2% — 25) if |2| > 0.

5. F(2) = (a® + a — 2)/[2(z — )] if |2| > a.

Section 5.2

1. F(z) = zTe T [(ze°T — 1)2 3. F(2) = 2(z + a)/(z — a)®

5. F(z) = [z — cos(1)]/{z[z% — 2z cos(1) + 1]}

7. F(z) = z[zsin(0) + sin(woT — 6))/[2? — 2z cos(woT) + 1]

9. F(z)=2/(z+1) 11 faoxgo=n+1  13. f, *g, = 2"/n!
Section 5.3

1. fo =0.007143, f; = 0.08503, f» = 0.1626, f3 = 0.2328

3. fo =0.09836, fi = 0.3345, fo = 0.6099, f3 = 0.7935

5. fn=8-8(3)"-6n()" 7 fa=(1-a")/(1-a)
9. fo=(3)""" Hocro+ (1)" " Hooiy

I fa=§6n=9-1"+3(3)" 13 fa=a"/(n))
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Section 5.4

Lya=1+ n(n-1)(@2n—-1) 3.y, =3n(n—-1)

5. 9 = § [5" = (=1)"] Ton=0@n-1)(3)" +(-3)"
9.y =2"—n-—1 1.2, =24+ (- ya =14+ (-1)"
13. 2 = 1 — 2(=6)"; yn = —7(—6)"

Section 5.5

1. marginally stable 3. unstable

Section 6.1

1. Ap = (2n — 1)27%/(4L?) with y(z) = cos [(2n — 1)7z/(2L))

3. do = —1, yo(x) = =% and A, = n?, ya(x) = sin(nz) — n cos(nz)
5. Ap = —n*x?/L* y,(z) = sin (nwz/L)

7. An = k2, yn(x) = sin(kpz) with k, = —tan(k,)

9. Ao = —m, yo(z) = sinh(moz) —mg cosh(moz) with coth(mom) = mo
and A, = k2, yo(2) = sin(k,z) — kn cos(knz) with k, = — cot(kn)

11.

(a) An =n’7%  yo(z) = sin[n7ln(z)]

(b) A =(2n—1)°7%/4, yau(2) =sin[(2n — D)7 In(z)/2]

(©) X=0, w(z)=1  A=n"7", ya(z) = cos[nmin(z)]
13. Ap = n2+ 1, yo(x) = 2~ sin[n In(z)]

Section 6.3

1.

n+l nrz
=23 e ()

Z ((2,,11":)12 sin [(2n ;Ll)m]
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Section 6.4

1.

f(x) = %Po(.’l:) + gpz(l’) - %P4(z) + .-

f(.l‘) 3P1(:L')— ZP3($)+ Ps(a;)+

Section 7.3

1.

0= 25 5, o ] 0

9h - 1 2nm . nre nmwet
u(z,t) = ”—2,,2-_-:1 —5sin (—3—) sin (T) cos ( T )

u(z,t) = sin (—L—) i (ch:t)

i (=1 [(Qn— 1)7r] G [(2n - 1)m]

= n-1p” 4 L
. [@2n—= et
X sin [ T

u(z, ) = _% i:: 1)n+1 i [(2n —Ll)vr:c] cos [(2n —Ll)wct]

z,t) = 8_ ~ht Z((Q,:z":;z [(271 ;Ll)ﬂ':c] {cos [t S h2]

+ hsin [t\//\nc2 - hz]/\//\,,cz _ hz},



Answers to the Odd-Numbered Problems
where A, = (2n — 1)?72/4L%.

‘Section 7.4

1.
u(z,t) = sin(2z) cos(2ct) + cos(z) sin(ct)/c
3.
(2,1) = 14 22 + 42 e® sinh(ct)
WEY = (T 27 4 22)2 + 42222 c
5.

u(z, 1) = cos (gﬁ) cos (_71'2it> N smh(aa:)ascmh(act)

Section 7.5

1.
_ 4 >\ sin[(2m — 1)wz] sin[(2m — 1)7t]

uz =3 mz_:l (@m — 1)

3.
u(z,t) = sin(mz) cos(mt) — sin(wz) sin(wt)/x
5.
u(z,t) = zt — te”% + sinh(t)e™”
+ [1 — e~ (=) 4t _ z —sinh(t — a:)] H(t - z)
7.
w(z,t) = gz 2gw? sin(Ap ) cos(Ant)
T w2 L A2(w? 4+ w?/L + A2)sin(A, L)’

where A, is the nth root of A = w? cot(AL).

9.

2¢ 2¢

4ESN 1 . [@n-Drz (2n — 1)cmt
u(:c,t)—E——-ﬂ_—nz_:l2n_lsm[ ]cos[

613
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) u(z,t) = Ei(_l)nH (t oz +c2n£)
n=0
ST 4Nz
a2
11.
p(z,t) = po — 4P;loc nio:l 2(;1)"1 sin [(Qn ;Ll)m:} sin [(Qn ;Ll)c,rt]
13.

gttt gL? 2L X (- 1)n nmwet
e =G e s () s (7

Section 8.3

1.
44 sin[(2m — 1)2] _209m_1)%
u(z,t) = — ————— e (Im-1)
T ";1 2m —1
3. , -
u(z,t) = —22 (= sin(nz)e=2""t
5.
_x (— )m +1 _ —-a?(2m-1)t
u(z,t) = Z (2 —1) 5 sin[(2m — 1)z]e
7.
_mT 4 - cos[(2m — 1)z] ~a?(2m-1)%t
u(:c,t) = 2 - mz=:1 we
9.

w(z, 1) = _725_ %Z cos{(2n — 1)z] o-a?(2n=1)%

~ (2n —1)2
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11.
(z,1) = é_i =n" (2” — 1)z e—a’(2n=1)%/4
T = (2n - 1)3 2
13.
4 o sin[(2n — 1)z/2] —a%(2n-1)’t/4
u(x,t)_—nzz;l 51 e
15.
= S 4 8(=1)"*t ] . [(@n—1Dz]| _a2(2n-1)2/4
u(@,t)= ; [2n 1 e 2 °
17.
T n?
u(z,t) = oF 4 2:0 ;sm(nx)e K
n=1
19.
u(z’t) — hl + (i2_-ll_hl_)£
h2 - — (- 1)" T a’n?n?
) $ 200 (12 (S8,
21.
u(z,t) = ho
_4ho (2n - V)7z (2n — 1)27%a%
Z2n—1 [ L ]ex"[_ 12
23. -
u(z,t) = % —t— —27 Z cos(nmwz)e”* a?n?r’t
25.

X 1\yn+1l )
u(z,t) = %Z (—(Q—n'll_ﬁ‘fsin [(2n — 1)z] [] — e~ (2n-1) t]
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27.

Ag(L? — 22 AL
we,t) = 0(2/c )+l(;

_2L2Ao Sin(ﬂn) cos (,8,,:1:) ox (_02ﬁ£t>
21 BAl1 + ksin®(k)/h L] L )*P\"z )

K
where 3, is the nth root of Ftan(g) = x/hL.

NE

29.
2 ¢ (_1)n+1 : —a’n?x?t
u(r,t) = ”_r,,z:l — sin(nnr)e

31.

_ G 5 ) 2Gb2 = Jo(lc,,r/b) vk?

where ky, is the nth root of Jo(k) = 0.

Section 8.4

1.
u(z,t) = Ty (1 - e'“at)
3. t 9 f: > n2en,
(z,t)=2+ mp sm(mr:c)e
5. -
m 4 (2m - 1)7717] (2m—1)21r2t
t) = - — - /%,
u(z,t) = = mX:l @m 1)
7. )
z t z

u(z,t) = zerfc (5-\—/—5) - 2\/;exp (_E)

9.

u(z,t) = u—;-e'é”erfc (25/5 + a1 —26)\/5)

U _, z _a(l—&)\/f
+ 26 erfc (2(1\/{ 7
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11.
u(z,t) = t(L; z) 4 Pav(;az— L) a(z- é,ggz_ 2L)
_ 2(1};:: i (- l)n (mr:v) exp (_gﬁlgﬁ)
AL S i (155) oo ().
13.

3 2= sin(A,r) JESCY

2
.
urt) = g A T 2 e

where tan(A,) = A

15.

y(t) = 4;1Aw 2 Apernt
B L xa — (ZB)(1+ 203 + w22 + N, +wt’

where ), is the nth root of A2+ 2u)3/2 coth(L/A/v )/ (my/v)+w? =0.

17.

u(z,t)=1- 26V::/2—V2t/4

y i A {(V/2)sin[An (1 — 2)] + An cos[An(1 = 2)]e™n!
(A2 + V2/4)[Ansin(An) — (14 V/2) cos(An)] ’

n=1
where ), is the nth root of A cot(A) = =V/2.

19.

_2 22 Jo(k 7’/“) -k2t/a®

u(r,t) = AT ) ,

where k,, is the nth root of Jo(k) = 0.

Section 8.5

u(z,t) = serf (\b/;—a:_t) + ferf ( b+ )

§‘
]
[
o~
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3.
u(z,t) = gToerf (\b/v) + L Tperf (\/;_Zt) _

Section 8.6

1.

u(z,t) = ﬁ f:(gm — 1)sin [(2’" = 1)7”7] e—a*(2m-1)?r2t/L?
L? = L
> /Ot f(T)eaz(zm—l)zwzr/deT
3.

2 h z? 2
= — — =n
u(z, 1) | \/F/I/WV (t 41”’2) e dpn

Section 9.3

1.
_ 4 <= sinh[(2m — 1)7(a — x)/b] sin[(2m — 1)7ry/b]
u(=,y) = ;m2=21 (2m — 1)sinh[(2m — 1)7a/b]
' )sin(nz/
2a =~ sinh(nry/a)sin(nrz a)
u(e,y) = _7?7; n sinh(nwb/a)
9.
- n+1500[(2n — 1)7y/2a] cos[(2n — 1)7z/24]
u(z,y) = _nzl( e (2n — 1)sinh[(2n — 1)7b/24]
7.
u(z,y) =1
9.
w(z,y) =1 — 4 i cosh[(2m — 1)my/a] sin[(2m — 1)7z/a)

(2m — 1) cosh[(2m — 1)7b/a]

s
m=1
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11.
u(z,y) =1
13.
u(z,y) =To + AT cos(27rx/)\)e‘2"y/"
15.

3 21 sinh(knz/a) Jo(kar/a)
u(r,z) = 2a ; k2 cosh(knL/a)J1(kn) ’

where kj, is the nth root of Jo(k) = 0.

17.

2 = [bJ1(knd) — aJi(kna)]Jo(knr) cosh(kn2)
a? Z ky, cosh(knd)JE(kn) ’

u(r,z) = P

where k,, is the nth root of J1(k) = 0.

19.

u(r z) =-= Z (= l)nll(nﬂ'r) sln(n7rz)

— n I;(nma)

21.

exp[z(1 — \/1+4k2)/2]Jo (k r)
u(r, 2) _QBZ 2 7 B9 Jo(bn)

where k,, is the nth root of k J1(k) = B Jo(k).

23.
e 2m—1
u(r,0) =50 3 [Pam-2(0) = Pam(0)] (g-) Po—1[cos(8)]
m=1
95. T
Section 9.4
1.

u(z, y) = %[tan"l (I_Tx) +tan™! (%)]
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3.
T | [z
sen=2 5o ()
u(z,y) = E[ta,n"1 (1—_£> + tan~! (1 +x>]
m Y y
Ty - T, - 1)?
L4 Oy (z—1)? + 42
27 22 4+ y?
+ u T [tan_l (1_—2) + tan-l (i)]
m Y Y
Section 9.5
1.

_ B4R & & (=1)rH(—1)m+1
u(=y) = FTZ: Z (- 1)@m - 1)
« cos[(2n — 1)rz/2a] cos[(2m — 1)7y/b]
(2n —1)(2m — 1)[(2n — 1)2/a2 + (2m — 1)2/b2]

Section 9.6

1.

4 [e.0]
=23 o

exp [_ (2m — 1)7rx] . [(2m - l)wy]

a a
Section 10.1

l.axb=-31+19j+ 10k .axb=1i-8j+ 7k
5,axb=-31-2j-5k

7.

Xx(bxc)+bx(cxa)+cx(axb)=(a-c)b—(a-b)c+ (b-a)c
—(b-c)a+(c-b)a—(c-a)b
=0
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Vf = ycos(yz)i + [z cos(yz) — zyz sin(yz)]j — zy® sin(yz)k

11.
Vf = 22y% (22 + 1)% + 22%y(22 + 1)%j + 42°y° (2 + Dk

13. Plane parallel to the zy plane at height of z =3, n = k

15. Paraboloid,

_ 2z . 2y i+ 1 X
JI+a2 +4y7  1+4a? +4yF  J1+427+ 4y

17. A plane, n = j/v2 — k/V?2

19. A parabola of infinite extent along the y-axis, n = —2zi/V1 + 422+

k/V1+ 4x?
21. y=2/(z+1); z=-exp[(y—1)/y]
23. y=«z; 22 =y/(3y—2)

Section 10.2

1.
V.-F=2z+2°
V x F = (2zy — 2yz)i + (2 - y*)j
V(V-F)=2zi+ (2z 4+ 22)k
3.

V-F=2z-y)—ze ¥ + ze?y
V x F=2zze?i—ze?j+ [2(z — y) — ye'”] k
V(V-F)=(2-e" +zye™™ + )i+ (2% + 2ze™ — 2)j

V-F=0
V x F=—z%i+ (5y—92)j + (222 - 52)k
V(V-F)=0
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7.
V-F=e¥42%2-3¢?
VxF=—-2yzi+ze Yk
V(V-F)=—e"Yj+(22+3e %)k
9.

V- -F = yz + 23z¢* + zye’
V x F = (ze* — z%ye” — 2®yze?)i+ (zy — ye*)j + (3z%yze* — z2)k
V(V-F) = (3z%ze” +ye)i+ (z+ze®)j+ (y+ 2" + 2%z¢* + zye’ )k

11.
V-F =y* + 222 — zysin(z)

VxF=][z ;os(z) — 2zyz]i — ycos(2)j + (y22 — 2zy)k
V(V-F) = [* — ysin(2)]i + [2y - zsin(z)]j + [222 — zy cos(z)| k

13.
V- F=y’+zz— zysin(z)

V x F = [z cos(z) — zy]i — ycos(2)j + (yz — 2zy)k
V(V-F) = [z — ysin(z)]i + [2y — zsin(2)]j + [¢ — zycos(z)]k
Section 10.3
1.16/7+ 2/(3) 3. e2+2e8/3+¢54/2 - 13/6 5. —4m
7.0 9. 27
Section 10.4
1. o(z,y,2) = =2y + y?z + 42 + constant
3. ¢(x,y,2) = zyz + constant
5. ¢(x,y,2z) = z?sin(y) + 23 + 4z + constant
7. o(z,y,2) = ze* + 3 + constant

9. p(z,y,2) = 2y + Tz + constant
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Section 10.5

1.1/2 3.0 5. 27/2
7.5 9.0 11.40/3
13. 86/3 15. 967

Section 10.6

1. -5 3.1 5.0

7.0 9. —167 11. -2
Section 10.7

1. 10 3.2 5.7 7.45/2
Section 10.8

1.3 3.-16 5. 4w 7.5/12
Section 11.1

1.

A+B=(§ i):B-}-A
5 10 15 2
_[7 (15 21
3A—2B_<_1 2), 3(2A—B)_<0 6)
> 4 3 4 3
T _ T T _
(A+ B) _(5 4), AT + B _<5 4)
7. 0
(11 11 ro (5 5
AB‘<5 5)’ AB_(S 8)
(4 6 v, (5 8
BA_(S 12)’ BA‘(5 8)
9. ,
r 4 ro (55
BB‘(4 8)’ BB‘(5 5)
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11.
3 _ (65 100
A +2"1“(25 40)
11 8
13. yes (227 151> 15. yes [ 8 4
5 3
19.
10 10
5(24)=110 20 ) =104
30 10
21.
(A+B)+C:(g g)=A+(B+C)
23.
9 -1
A(B+C’)_<11 _2)_AB+AC
25.
3 -1 2 1y _ /10
-5 2 5 3/ \0 1
27.
1 -2 1\ _ (5
3 1 T2 - 1
29.
0 1 2 3 1 2
3 0 -4 —4 z2) _| 5
1 1 1 1 zz |~ | =3
2 -3 1 =3 24 7
Section 11.2
1.7 3.1 5. —24 7.3

Section 11.3

o
511

1.1’1: , Ly =

3"1‘1:0)1.2:0)393:_2

17.

no
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Section 11.4

l.zo=2,2;=1 zz=aq,89=—-0a, 1 =0
5. 23 = a, £3 = 2a, 21 = -1 T.23=22,29=26,z1=1
1 2 5
- -1/13 5/13 -1
9.A1:( ) 11.A7'=]0 -1 2
2/13  3/13 9 4 11
Section 11.5
1.
2 1
A=4, xo_a<l>; A=-3 xozﬁ( 3)
3.
-1 3 1
A=1 xo=a| 0 |+8|1]; A=0, xo=7|1
1 0 1
5.
1 0 1
A=1 xg=a|0]|+8]| 1 |; A=2, x9=71|1
0 -1 0
7.

Section 11.6

1.
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5.
_ 1 /2 t t/2
X—Cl<_1)6 +Cz(_1/2_t)e .
7.
x=c (_11) e 4 ¢y (_1_;“:) e?t.
9.
_ —3 cos(2t) — 2sin(2t) 2cos(2t) — 3sin(2¢) \ ,
x=cs ( cos(2t) e sin(2t) ¢
11.
_ 2 cos(t) _3¢ 2sin(t) e
x=6 (7 cos(t) + sin(t)) et 7sin(t) — cos(t)
13.
_ — cos(2t) + sin(2t) — cos(2t) — sin(2t) ot
x=c ( cos(2t) e +ey sin(2t)
15.
X=c (—21) 3 + ¢y (—2 )e"'
17.
0 0 2
x=ci | 1) +e2|2)et+es| 1]
0 1 0
19.



Index

abscissa of convergence, 162
absolute value

of a complex number, 2
addition

of complex numbers, 2

of matrices, 561

of vectors, 508
aliasing, 103ff
amplitude

modulation, 128

spectrum, 61
analytic complex function, 11

derivative of, 11
Archimedes’ principle, 556fF
argument of a complex number, 2

back substitution, 577

Bessel
eq of order n, 305
function of the first kind, 307
function of the second kind, 308
function, modified, 309ff

recurrence formulas, 311ff

Bessel, Friedrich Wilhelm, 306
Biot number, 405
boundary conditions
Cauchy, 329
Dirichelet, 392
Neumann, 392
Robin, 393
branches of a function, 11
principal, 4
Bromwich contour, 223
Bromwich integral, 223
Bromwich, Thomas J. ’A., 223

carrier frequency, 128
Cauchy
boundary condition, 329
data, 329
integral formula, 30ff
problem, 329
Cauchy, Augustin-Louis, 13
Cauchy-Goursat theorem, 26
Cauchy-Riemann egs, 14
centered finite differences, 379
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characteristic
functions, 270
polynomial, 585
value, 270, 585
vector, 585
characteristics, 350
circulation, 523ff
closed
contour integral, 24, 520
surface integral, 527
cofactor, 568
column in a matrix, 560
column vector, 561
complementary error
function, 166
complex
conjugate, 1
Fourier coefficients, 85
Fourier integral, 113ff
Fourier series, 84fF
number, 1
plane, 2
-valued function, 11ff
variable, 1
components of a vector, 507
compound interest, 260ff
conformable
for addition of matrices, 561
for multiplication
of matrices, 561
conservative field, 525
consistency in finite differencing
for the heat eq, 459
for the wave eq, 381
consistent system
of linear eqgs, 576
contour integral, 20ff
convergence
of finite difference solution
for heat eq, 460
for wave eq, 383
of a Fourier integral, 116
of Fourier series, 54

convolution theorem
for Fourier transform, 150ff
for Laplace transform, 195ff
for z-transform, 244fF
Coriolis force, 509
Cramer’s rule, 573
Crank-Nicolson method, 460
cross product, 508
curl, 517
curve
simply closed, 27
space, 508

d’Alembert, Jean Le Rond, 351
d’Alembert’s solution, 350fF
deformation principle, 28
degenerate eigenvalue

problem, 273
del operator, 511
delta function, 116ff, 172ff
de Moivre’s theorem, 3
design of film projectors, 190
determinant, 567ff
diagonal

principal, 560
difference eq, 231
differentiation

of a Fourier series, 66
diffusivity, 391
Dirichlet conditions, 54
Dirichlet, Peter G. Lejeune-, 56
Dirichlet problem, 392
dispersion, 336
divergence

theorem, 549fF

of a vector, 516
division of complex numbers, 2
dot product, 508
double Fourier series, 497
Duhamel’s theorem

for the heat eq, 448fF

for ordinary

differential eqs, 221ff



Index

eigenfunctions, 270ff
orthogonality of, 282
eigenvalue
of a matrix, 585ff
of a Sturm-Liouville
problem, 270ff
eigenvalue problem
for matrices, 585ff
for ordinary differential
eqs, 270ff
singular, 270
eigenvectors, 585fF
orthogonality of, 592
electrical circuit, 209ff
element of a matrix, 560
elementary row operations, 576
electrostatic potential, 474
elliptic partial differential eq, 465
entire complex function, 11
equivalent system, 576
error function, 166
Euler’s formula, 3
explicit numerical method
for heat eqs, 458
for wave egs, 379
exponential order, 162

filter, 105
final-value theorem
for Laplace transforms, 179
for z-transforms, 242
finite differences approximation
to derivatives, 378ff
finite Fourier series, 97
first shifting theorem, 175
flux lines, 512
folding frequency, 104
Fourier
coefficients, 52fF, 286
cosine series, 60
series in
amplitude/phase form, 811
series of an even function, 60
series of an odd function, 60

629

series on [~L, L], 52fF
sine series, 60
Fourier, Joseph, 55
Fourier-Bessel
coefficients, 313ff
expansion, 312
Fourier-Legendre
coefficients, 298
expansion, 298
Fourier number, 401
Fourier transform, 113ff
basic properties of, 124ff
convolution for, 150ff
inverse of, 115, 137
of a constant, 121
of derivatives, 127
of sign function, 122
of step function, 123
frequency modulation, 131
frequency response, 155
frequency spectrum, 61, 86, 116
for a damped harmonic
oscillator, 155
for low frequency filter, 158
function
even extension of, 75
generalized, 174
multivalued complex, 10
odd extension of, 75
single-valued complex, 9
vector-valued, 508fF
fundamental of a Fourier series, 52

Gauss, Carl Friedrich, 550
Gauss’ divergence theorem, 549ff
Gaussian elimination, 579
Gauss-Seidel iteration, 502
generating function

for Legendre polynomials, 294ff
Gibbs phenomenon, 70ff
gradient, 511
Green’s function, 155, 217

for a damped harmonic

oscillator, 155
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Green’s function (contd.)
for the Klein-Gordon eq, 376
for low frequency filter, 158
Green’s lemma, 536fF
grid point, 378
groundwater flow, 469f

half-range expansions, 75
harmonic of a Fourier series, 52
harmonic function, 19
conjugate, 19
heat conduction
in a rotating satellite, 92ff
within a metallic sphere, 481ff
heat dissipation
in disc brakes, 429ff
heat eq
for an infinite cylinder, 411
one-dimensional, 391
nonhomogeneous, 391
for a semi-infinite bar, 443
within a solid sphere, 408
Heaviside
expansion theorem, 186fF
step function, 169ff
Heaviside, Oliver, 170
holomorphic complex function, 11
homogeneous system
of linear egs, 582
hydraulic potential, 469
hyperbolic partial
differential eq, 325

ideal sampler, 232
imaginary part

of a complex number, 1
impulse function, 116ff, 172ff
impulse response, 217
inconsistent system

of linear egs, 576
indicial admittance

for heat eq, 451

for ordinary differential eqs, 217

inertia supercharging, 77
initial
conditions, 328ff
-value problem, 203
initial-boundary value
problem, 392
initial-value theorem
for Laplace transforms, 179
for z-transforms, 241
inner product, 561
integral eq
of convolution type, 199
integrals
complex contour, 20
Fourier type, evaluation of, 142
line, 520
real, evaluation of, 46
integration of a Fourier series, 68
inverse
discrete Fourier transform, 98
Fourier transform, 137ff
Laplace transform, 186ff, 222ff
z-transform, 247ff
inversion formula
for the Fourier transform, 138ff
for the Laplace transform, 222fF
for the z-transform, 252ff
inversion
of Fourier transform, 137ff
by contour integration, 138
by direct integration, 137
by partial fractions, 137
inversion of Laplace transform
in amplitude/phase form, 189ff
by contour integration, 222ff
by convolution, 197
by partial fractions, 186ff
inversion of z-transform
by contour integration, 252ff
by partial fractions, 250fF
by power series, 247ff
by recursion, 248ff
irrotational, 517



Index

isolated singularities, 16, 37
iterative methods

Gauss-Seidel, 502

successive over-relaxation, 504
iterative solution of the radiative

transfer eq, 301ff

joint transform method, 376
Jordan curve, 27
Jordan’s lemma, 138

Klein-Gordon eq, 336
Green’s function for, 376

Lagrange’s trignometric
identity, 5
Laplace integral 161
Laplace, Pierre Simon, 467
Laplace transform(s), 1611F
basic properties of, 175ff
convolution for, 195
definition of, 1611f
of the delta function, 172
derivative of, 178
of derivatives, 167
integration of, 178
inverse of, 186ff, 222fF
of periodic functions, 183
in solving integral egs, 199
in solving ordinary
differential eqs, 203
of the step function, 169ff
Schouten-van der Pol
theorem for, 230
Laplace’s eq
in Cartesian coordinates, 466
in cylindrical coordinates, 468
numerical solution of, 502fF
solution on the half-plane, 492ff
solution by Laplace
transforms, 499fF
solution by separation
of variables, 469ff
in spherical coordinates, 468

631

Laplace’s expansion
n cofactors, 568
Laplacian, 516
Laurent expansion, 37
Lax-Wendroff scheme, 387
Legendre, Adrien-Marie, 290
Legendre polynomial, 292
recurrence formulas, 2951
Legendre’s differential eq, 289
linear dependence of vectors, 585
linearity
of Fourier transform, 124
of Laplace transform, 163
of z-transform, 239
line integral, 520fF
line spectrum, 86
lines of force, 512
Liouville, Joseph, 272
low frequency filter, 158ff

magnitude of a vector, 508
mapping of complex functions, 10
matrix, 560

algebra, 560

amplification, 589

augmented, 576

banded, 565

coefficient, 576

complex, 560

identity, 560

inverse, 563

invertible, 563

method for stability

of a numerical scheme, 589

nonsingular, 563

real, 560

rectangular, 560

singular, 563

square, 560

symmetric, 560

tridiagonal, 565

unit, 560

upper triangular, 565

zero, H60
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matrices

addition of, 561

equal, 561

multiplication of, 561
maximum principle, 467
Maxwell’s eqs, 520
mechanical filter, 194
meromorphic function, 16
method of partial fractions

for Fourier transform, 137

for Laplace transform, 186

for z-transform, 250ff
minor, 568
modified

Bessel function, first kind, 309

Bessel function,

second kind, 310

modulation, 128fF
modulus of a complex number, 2
multiplication

of complex numbers, 2

of matrices, 561
multivalued complex function, 10

nabla, 511
Neumann problem, 392
Neumann’s

Bessel function of order n, 308
Newton’s law of cooling, 404
nondivergent, 516
norm of a vector, 508, 561
normal modes, 336
normal to a surface, 511
not simply connected, 27
numerical solution

of heat eq, 458fF

of Laplace’s eq, 502ff

of wave eq, 378ff
Nyquist frequency, 104
Nyquist sampling criteria, 103

one-sided finite differences, 378
order
of a matrix, 560

of pole, 38
orthogonality

of eigenfunctions, 282ff

of eigenvectors, 592
orthonormal eigenfunctions, 284
overdetermined system

of linear egs, 581

parabolic partial
differential eq, 389
Parseval’s identity
for Fourier series, 69ff
for Fourier transform, 133ff
for z-transform, 256
partial fraction expansion
for Fourier transform, 137
for Laplace transform, 186fF
for z-transform, 250ff
path
in complex integrals, 20
in line integrals, 520
path independence
in complex integrals, 28
in line integrals, 526
phase, 2
angle in Fourier series, 81ff
spectrum, 116
pivot, 577
pivotal row, 577
Poisson, Siméon-Denis, 496
Poisson’s
eq, 495
integral formula
for a circular disk, 488
for upper half-plane, 494
summation formula, 134
polar form
of a complex number, 3
pole of order n, 38
position vector, 508
positively oriented curve, 30
potential function, 525fF
power content, 69
power spectrum, 134
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principal branch, 4

principal diagonal, 560

principle of linear
superposition, 332

quieting snow tires, 60ff

radiation condition, 329
radius of convergence, 34
rank of a matrix, 579
real part of a complex number, 1
recurrence relation
for Bessel functions, 311ff
for Legendre polynomial, 295ff
regular complex function, 11
regular Sturm-Liouville
problem, 270
relaxation methods, 502ff
residue, 37
residue theorem, 40ff
resonance, 206
Riemann, G. F. B., 14
Robin problem, 393
Rodrigues’ formula, 293
root locus method, 158
roots of a complex number, 6ff
row of a matrix, 560
row echelon form, 579
row vector, 561

scalar, 507
Schouten-van der Pol theorem

for Laplace transforms, 230
Schwarz’s integral formula, 494
second shifting theorem, 176
separation of variables

for heat eq, 393ff

for Laplace’s eq, 469fF

for Poisson’s eq, 495fF

for wave eq, 329ff
shifting

in the s variable, 175

in the ¢t variable, 124, 176
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in the w variable, 128
simple
closed curve, 27
eigenvalue, 273
pole, 38
simple harmonic oscillator, 205
simply close curve, 27
sinc function, 116
single-valued complex function, 9
singular Sturm-Liouville
problem, 270
singularity
essential, 37
i1solated, 37
pole of order n, 38
removable, 37
solenoidal, 516
solution of ordinary differential
egs by Fourier series, 88ff
space curve, 508
spectral radius, 585
spectrum of a matrix, 585
stability of numerical methods
by Fourier method
for heat eq, 459
for wave eq, 382
by matrix method
for wave eq, 589
steady-state heat eq, 466
steady-state transfer function, 155
step function, 169fF
step response, 217
Stokes, Sir George Gabriel, 542
Stokes’ theorem, 541
streamlines, 512
Sturm, Charles, 271
Sturm-Liouville
eq, 269
problem, 270
subtraction
of complex numbers, 2
of matrices, 561
of vectors, 508
successive over-relaxation, 504
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superposition integral
for heat eq, 448fF
for ordinary differential egs, 221
superposition principle, 332
surface conductance, 404
surface integral, 527ff
system of linear
homogeneous eqs, 564
linear differential eqs, 593ff
nonhomogeneous eqgs, 564

tangent vector, 508
Taylor expansion, 34
telegraph eq, 339, 3581f
thermal conductivity, 390
threadline eq, 327ff
time shifting, 124, 176
transfer function, 217
transform

Fourier, 113ff

Laplace, 161ff

z-transform, 231
transpose of a matrix, 563

underdetermined system
of linear eqgs, 582

unit
normal, 512
step function, 169ff

vector, 507

Vandermonde’s determinant, 572
vector, 507, 561

vector element of area, 531
vibrating string, 325ff

vibrating threadline, 355
Volterra eq of the second kind, 199
volume integral, 549ff

wave eq, 325ff
for a circular membrane, 343fF
damped, 339ff
for an infinite string, 350ff
one-dimensional, 327

weight function, 282

zero vector, 507

z-transform, 231fF
basic properties of, 239f
convolution for, 244
final-value theorem for, 242
initial-value theorem for, 241
inverse of, 247ff
of periodic sequences, 243
of a sequence multiplied by an

exponential sequence, 239

of a shifted sequence, 240
solving of difference egs, 257ff



