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Introduction

This book grew out of a two-semester course given to sophomore
and junior engineering majors at the U.S. Naval Academy. These stu-
dents had just completed three semesters of traditional calculus and a
fourth semester of ordinary differential equations. Consequently, it was
assumed that they understood single and multivariable calculus, the
calculus of single-variable, vector-valued functions, and how to solve a
constant coefficient, ordinary differential equation.

The first five chapters were taught to system and electrical engi-
neers because they needed transform methods to solve ordinary differ-
ential and difference equations. The last six chapters served mechanical,
aeronautical, and other engineering majors. These students focused on
the general topics of boundary-value problems, linear algebra, and vec-
tor calculus.

The book has been designed so that the instructor may inject his
own personality into the course. For example, the instructor who enjoys
the more theoretical aspects may dwell on them during his lecture with
the confidence that the mechanics of how to solve the problems are
completely treated in the text. Those who enjoy working problems may
choose from a wealth of problems and topics. References are given to
original sources and classic expositions so that the theoretically inclined
may deepen their understanding of a given subject.

Overall this book consists of two parts. The first half involves ad-
vanced topics in single variable calculus, either with real or complex
variables, while the second portion involves advanced topics in multi-



variable calculus. Unlike most engineering mathematics books, we begin
with complex variables because they provide powerful techniques in un-
derstanding and computing Fourier, Laplace, and z-transforms.

Chapter 1 starts by reviewing complex numbers; in particular, we
find all of the roots of a complex number, z1/™, where n is an integer
and z is a complex number. This naturally leads to complex algebra
and complex functions. Finally, we define the derivative of a complex
function.

The remaining portion of Chapter 1 is devoted to contour inte-
gration on the complex plane. First, we compute contour integrals by
straightforward line integration. Focusing on closed contours, we in-
troduce the Cauchy-Goursat theorem, Cauchy’s integral theorem, and
Cauchy’s residue theorem to greatly facilitate the evaluation of these
integrals. This analysis includes the classification of singularities. Al-
though Chapter 1 is not necessary for most of this book, some sections
or portions of some sections (2.5, 2.6, 3.1-3.6, 4.5, 4.10, 5.1, 5.3-5.5,
6.1, 6.5, 7.5-7.6, 8.4, 8.7, 9.4, 9.6, 11.6) require this material and must
therefore be excluded when encountered. If the students have had ele-
mentary complex arithmetic (Section 1.1), the affected sections drop to
3.4,3.6,4.10, 5.3, 5.5, 7.5, 8.4, and 9.6.

Chapter 2 lays the foundation for transform methods and the so-
lution of partial differential equations. We begin by deriving the classic
Fourier series and working out some interesting problems. Next we in-
vestigate the properties of Fourier series, including Gibbs phenomena,
and whether we can differentiate or integrate a Fourier series. Then we
reexpress the classic Fourier series in alternative forms. Finally we use
Fourier series to solve ordinary differential equations with periodic forc-
ing. As a postscript we apply Fourier series to situations where there is
a finite number of data values.

In Chapter 3 we introduce the Fourier transform. We compute
some Fourier transforms and find their inverse by partial fractions and
contour integration. Furthermore, we explore various properties of this
transform, including convolution. Finally, we find the particular solution
of an ordinary differential equation using Fourier transforms.

Chapter 4 presents Laplace transforms. This chapter includes find-
ing a Laplace transform from its definition and using various theorems.
We find the inverse by partial fractions, convolution, and contour in-
tegration. With these tools, the student can then solve an ordinary
differential equation with initial conditions and a piece-wise continu-
ous forcing. We also include systems of ordinary differential equations.
Finally, we examine the importance of the transfer function, impulse
response, and step response.

With the rise of digital technology and its associated difference
equations, a version of the Laplace transform, the z-transform, was de-



veloped. In Chapter 5 we find a z-transform from its definition or by
using various theorems. We also illustrate how to compute the inverse
by long division, partial fractions, and contour integration. Finally, we
use z-transforms to solve difference equations, especially with respect to
the stability of the system.

Chapter 6 is a transitional chapter. We expand the concept of
Fourier series so that it includes solutions to the Sturm-Liouville prob-
lem and show how any piece-wise continuous function can be reexpressed
in terms of an expansion of these solutions. In particular, we focus on
expansions that involve Bessel functions and Legendre polynomials.

Chapter 7, 8, and 9 deal with solutions to the wave, heat, and
Laplace’s equations, respectively. They serve as prototypes of much
wider classes of partial differential equations. Of course, considerable
attention is given to the technique of separation of variables. However,
additional methods such as Laplace and Fourier transforms and integral
representations are also included. Finally, we include a section on the
numerical solution of each of these equations.

Chapter 10 is devoted to vector calculus. In this book we focus on
the use of the del operator. This includes such topics as line integrals,
surface integrals, the divergence theorem, and Stokes’ theorem.

Finally, in Chapter 11 we present some topics from linear algebra.
From this vast field of mathematics we study the solution of systems of
linear equations because this subject is of greatest interest to engineers.
Consequently, we shall cover such topics as matrices, determinants, and
Cramer’s rule. For the solution of systems of ordinary differential equa-
tions we discuss the classic eigenvalue problem.

This book contains a wealth of examples. Furthermore, in addition
to the standard rote problems, I have sought to include many problems
from the scientific and engineering literature. I have formulated many of
the more complicated problems or computations as multistep projects.
These problems may be given outside of class to deepen the students’
understanding of a particular topic.

The answers to the odd problems are given in the back of the book
while the worked solutions to all of the problems are available from
the publisher. It is hoped that by including problems from the open
literature some of the academic staleness that often pervades college
texts will be removed.
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Chapter 1

Complex Variables

The theory of complex variables was originally developed by math-
ematicians as an aid in understanding functions. Functions of a complex
variable enjoy many powerful properties that their real counterparts do
not. That is not why we will study them. For us they provide the
keys for the complete mastery of transform methods and differential
equations.

In this chapter all of our work points to one objective: integration
on the complex plane by the method of residues. For this reason we
will minimize discussions of limits and continuity which play such an
important role in conventional complex variables in favor of the com-
putational aspects. We begin by introducing some simple facts about
complex variables. Then we progress to differential and integral calculus
on the complex plane.

1.1 COMPLEX NUMBERS

A complex number is any number of the form a + bi, where a and
b are real and i = \/=1. We denote any member of a set of complex
numbers by the complez variable z = z + iy. The real part of z, usually
denoted by Re(z), is ¢ while the imaginary part of z, Im(z), is y. The
complez conjugate, 7 or z*, of the complex number a + bi is a — b:.
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Complex numbers obey the fundamental rules of algebra. Thus,
two complex numbers a + bi and ¢ + di are equal if and only if a = ¢
and b = d. Just as real numbers have the fundamental operations of
addition, subtraction, multiplication, and division, so too do complex
numbers. These operations are defined:

Addition

(a+bi)+ (c+di)=(a+c)+ (b+d) (1.1.1)
Subtraction

(a+b)—(c+di)=(a—c)+(b—d)i (1.1.2)
Multiplication

(a+ bi)(c + di) = ac+ bei + adi + i°bd = (ac — bd) + (ad + be)i (1.1.3)
Division

a+bi _a+bic—di ac —adi + bei — bdi? _ ac+ bd + (bc — ad)i
c+di c+dic—di 2 +d? - ¢? + d?

(1.1.4)
The absolute value or modulus of a complex number a + b, written
|a + bi|, equals va? + b2. Additional properties include:

|2122Z3--‘zn| = |21||22||Z3|‘-'|2n| (115)

|21/22] = |21]/|22] if 22 #0 (1.1.6)
|21 + 22 4+ 23+ -+ -+ 2n| < |z1| + |22 + |23] + - + [ 2n] (1.1.7)

and
|Z1 + Zzl > |21| - |22| (118)

The use of inequalities with complex variables has meaning only when
they involve absolute values.

It is often useful to plot the complex number z + iy as a point (z, y)
in the zy plane, now called the complex plane. Figure 1.1.1 illustrates
this representation.

This geometrical interpretation of a complex number suggests an
alternative method of expressing a complex number: the polar form.
From the polar representation of « and y,

z =rcos(f) and y=rsin(f), (1.1.9)

where 7 = /22 + y? is the modulus, amplitude, or absolute value of z
and @ is the argument or phase, we have that

z = & + iy = r[cos(f) + isin(F)]. (1.1.10)



Complex Variables 3

y A

(x.y)

bk -

Figure 1.1.1: The complex plane.

However, from the Taylor expansion of the exponential in the real case,

0 = (00)F

e’ =y ( k!) . (1.1.11)
k=0
Expanding (1.1.11),
; 62 6% ¢ 6 6 6
10 Pned — — —— — . y — — — — — ...

=l +z<0 T tE -t ) (1.1.12)
= cos(#) + isin(F). (1.1.13)

Equation (1.1.13) is Euler’s formula. Consequently, we may express
(1.1.10) as
z = re'?, (1.1.14)

which is the polar form of a complex number. Furthermore, because
2" = et (1.1.15)
by the law of exponents,
2" = r*[cos(nf) + isin(nb)]. (1.1.16)

Equation (1.1.16) is De Moivre’s theorem.
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e Example 1.1.1

Let us simplify the following complex number:

3—21 _ 3-2t -—-1-1 —3-3i+2i+2% —5-—1 5 i

A+ A4 T1=i T 1+1 =73 2 7%

o Example 1.1.2

Let us reexpress the complex number —/6 — #v/2 in polar form.
From (1.1.9) r = /6 + 2 and 6 = tan~'(b/a) = tan~*(1/V/3) = 7/6 or
77/6. Because —/6 — i1/2 lies in the third quadrant of the complex
plane, § = 77 /6 and

—V6 — iV/2 = 2/2e7/8, (1.1.18)

Note that (1.1.18) is not a unique representation because +2n7 may be
added to 77/6 and we still have the same complex number since

e'PE20™) — cos( + 2n7) + isin(d £ 2n7) = cos(f) + isin(f) = '’
(1.1.19)
For uniqueness we will often choose n = 0 and define this choice as the
principal branch. Other branches correspond to different values of n.

e Example 1.1.3

Find the curve described by the equation |z — zg| = a.
From the definition of the absolute value,

V(Ee=-20)? +(y—w)*=a (1.1.20)

or
(z —20)* + (¥ — w0)* = a®. (1.1.21)

Equation (1.1.21), and hence |z — zy| = a, describes a circle of radius a
with its center located at (zq, yo). Later on, we shall use equations such
as this to describe curves in the complex plane.

e Example 1.1.4
As an example in manipulating complex numbers, let us show that

a -+ bi
b+ a2

=1 (1.1.22)
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We begin by simplifying

a+bi a+bi b—ai 2ab b2 — a2
biai bta b—w 2xp Teret (1.1.23)

Therefore,
a+ bi 4a2h? —2a%b% +a*  [a® 420202 + %
b+ ai (a? + b2)2 (a2 + b2)2 (a? + b2)?
(1.1.24)
Problems

Simplify the following complex numbers. Represent the solution in the
Cartesian form a + bi:

5i 5+5 20
1. 9.

2+: s—4 Ta+ 3

142 2—i o
e 4 (L—i)

5. i(1—iv3)(V3+1)

Represent the following complex numbers in polar form:

6. —i 7. —4
8. 24231 9. —5+5¢
10. 2-2 11. —1++3i

12. By the law of exponents, e(®+8) = ¢ioeif Use Euler’s formula to
obtain expressions for cos(a + ) and sin(a + §) in terms of sines and
cosines of « and 3.

13. Using the property.that E,ILO " = (1 — ¢V*t1)/(1 - ¢) and the
geometric series Zﬁ:o '™ obtain the following sums of trigonometric

functions:
cos(nt) = cos Nt\ sin{(N + 1)t/2]
Z (nt) = ( 2 ) sin(t/2)

and

. sin[(N + 1)t/2]
Zsm(nt) s1n< 5 ) en@2)

These results are often called Lagrange’s trigonometric identities.
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14. (a) Using the property that S o q" =1/(1—9q),if |g| < 1, and the
geometric series Y~ o "', |¢| < 1, show that

o]
1 — € cos(t)
n —
r;)e cos(nt) = 1+ €2 — 2¢ cos(t)

and

i €" sin(nt) ¢ sin(t)
nt) = :
ot 1+ €2 — 2¢ cos(t)

(b) Let ¢ = =%, where a > 0. Show that
. e sin()
2 Z e sin(nt) = cosh(a) — cos(t)”

n=1

1.2 FINDING ROOTS

The concept of finding roots of a number, which is rather straight-
forward in the case of real numbers, becomes more difficult in the case
of complex numbers. By finding the roots of a complex number, we wish
to find all the solutions w of the equation w™ = 2, where n is a positive
integer for a given z.

We begin by writing z in the polar form:

z=re'? (1.2.1)

while we write

w = Re'® (1.2.2)
for the unknown. Consequently,
w" = R"e'™® = re'? = 2. (1.2.3)
We satisfy (1.2.3) if
R*=r and n®=¢+2kw, k=0,%1,£2,..., (1.2.4)

because the addition of any multiple of 27 to the argument is also a
solution. Thus, R = r!/" where R is the uniquely determined real
positive root, and

k
<p,,=§+2i, k=0,+1,42,... (1.2.5)

n
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X
%
Figure 1.2.1: The zeros of 2° = —32.
Because wy = wg4n, 1t 1s sufficient to take £ = 0,1,2,...,n— 1. There-
fore, there are exactly n solutions:
. 2wk
wy = Re®* = pl/n exp [z (2 + L)] (1.2.6)
n n

with £ = 0,1,2,...,n — 1. They are the n roots of z. Geometrically
we can locate these wy’s on a circle, centered at the point (0,0), with
radius R and separated from each other by 27 /n radians. These roots
also form the vertices of a regular polygon of n sides inscribed inside of
a circle of radius R. (See Example 1.2.1.)

In summary, the method for finding the n roots of a complex num-
ber zg is as follows. First, write zo in its polar form: zy = re!?. Then
multiply the polar form by ¢?7*. Using the law of exponents, take the
1/n power of both sides of the equation. Finally, using Euler’s formula,
evaluate the roots for k =0,1,...,n - 1.

e Example 1.2.1

Let us find all of the values of z for which z° = —32 and locate
these values on the complex plane.
Because
—32 = 32™ = 2%™, (1.2.7)

wi  2wik
Zr = 2exp €+ 5

), k=0,1,2,3,4, (1.2.8)
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Figure 1.2.2: The zeros of z® = —1 + 1.

or
) T L. T
zg = 2exp <€) =2 [cos (g) + 2sin (g)] ,
z1 = 2ex @ =2 |cos 3—7T + isin 3—77
1 = p 5 - 5 5 )
z2 = 2exp(wi) = -2,
z3 = 2ex m =2 -7—7£ -+ isin 7_7r
L AN A AN 5
and

9me 97 .. {97
24 = 2exp (T) =2 [cos <?) + 2sin (?)] .

(1.2.9)

(1.2.10)

(1.2.11)

(1.2.12)

(1.2.13)

Figure 1.2.1 shows the location of these roots in the complex plane.

e Example 1.2.2

Let us find the cube roots of —1 + ¢ and locate them graphically.
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Because —1 + i = /2 exp(37i/4),

zk:21/6exp<?+22;k), k=0,1,2 (1.2.14)
or

=95 exp (™) = 21/5 [cos (T) +sin (T

z0 = 2 exp(4)_2 [cos(4)+zs1n(4)], (1.2.15)

117 19%:¢ 11m
— 91/6 =T —9l/8 fakulid isin [ ——
21 =2 exp( 1 )_2 [cos(12)+zs1n<12 )] (1.2.16)

and

1972 197 197
_9l/6 _ 91/6 s
22 =2 exp< 19 ) 2 [cos(12)+zsm(12 )] (1.2.17)

Figure 1.2.2 gives the location of these zeros on the complex plane.
Problems

Extract all of the possible roots of the following complex numbers:

1. 8i/s 2. (=1)/3

3. (=93 4. (=27i)V/¢

5. Find algebraic expressions for the square roots of a — b, where a > 0
and b > 0.

6. Find all of the roots for the algebraic equation 2% — 3iz%2 — 2 = 0.
7. Find all of the roots for the algebraic equation 2% + 6i22 + 16 = 0.

1.3 THE DERIVATIVE IN THE COMPLEX PLANE:
THE CAUCHY-RIEMANN EQUATIONS

In the previous two sections, we have done complex arithmetic.
We are now ready to introduce the concept of function as it applies to
complex variables.

We have already introduced the complex variable z = ¢ + iy, where
z and y are variable. We now define another complex variable w = u+iv
so that for each value of 2 there corresponds a value of w = f(2). From
all of the possible complex functions that we might invent, we will focus
on those functions where for each z there is one, and only one, value of
w. These functions are single-valued. They differ from functions such



10 Advanced Engineering Mathematics

z-plane w-plane

Figure 1.3.1: The complex function w = z2.

as the square root, logarithm, and inverse sine and cosine, where there
are multiple answers for each z. These multivalued functions do arise in
various problems. However, they are beyond the scope of this book and
we shall always assume that we are dealing with single-valued functions.

A popular method for representing a complex function involves
drawing some closed domain in the z-plane and then showing the corre-
sponding domain in the w-plane. This procedure is called mapping and
the z-plane illustrates the domain of the function while the w-plane il-
lustrates its image or range. Figure 1.3.1 shows the z-plane and w-plane
for w = 2?; a pie-shaped wedge in the z-plane maps into a semicircle on
the w-plane.

e Example 1.3.1
Given the complex function w = 6_22, let us find the corresponding

u(z,y) and v(z,y).
From Euler’s formula,

w= et = em@HIV) — yP-a?=2izy ey2_”2[cos(2:vy) — tsin(2zy)].

(1.3.1)
Therefore, by inspection,
u(z,y) = v’ - cos(2zy) and v(z,y) = —ev’ %’ sin(2zy).
(1.3.2)

Note that there is no 7 in the expression for v(z,y). The function w =
f(2) is single-valued because for each distinct value of z, there is an
unique value of u(z,y) and v(z, y).

e Example 1.3.2

As counterpoint, let us show that w = /7 is a multivalued function.
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We begin by writing z = re!®+27% where r = /22 + ¢ and 0 =
tan~1(y/z). Then,

wy = /ret?/24TE L p =01, (1.3.3)
or
wo = /T [cos(8/2) + isin(f/2)] and  w; = —wp. (1.3.4)
Therefore,

up(z,y) = Vreos(8/2), = wo(z,y) = V/rsin(4/2) (1.3.5)

and
uy(z,y) = —/r cos(6/2), u(z,y) =’—\/Fsin(0/2). (1.3.6)

Each solution wy or wy is a branch of the multivalued function /z. We
can make /2 single-valued by restricting ourselves to a single branch,
say wo. In that case, the Re(w) > 0 if we restrict —7 < 6 < 7. Although
this is not the only choice that we could have made, it is a popular one.
For example, most digital computers use this definition in their complex
square root function. The point here is our ability to make a multivalued
function single-valued by defining a particular branch.

Although the requirement that a complex function be single-valued
is important, it is still too general and would cover all functions of two
real variables. To have a useful theory, we must introduce additional
constraints. Because an important property associated with most func-
tions is the ability to take their derivative, let us examine the derivative
in the complex plane.

Following the definition of a derivative for a single real variable, the
derivative of a complex function w = f(z) is defined as

dw lim Aw lim flz 4+ Az) - f(z)'

= = lim = =
dz Aaz—0 Az az—0 Az

(1.3.7)

A function of a complex variable that has a derivative at every point
within a region of the complex plane is said to be analytic (or regular
or holomorphic) over that region. If the function is analytic everywhere
in the complex plane, it is entire.

Because the derivative is defined as a limit and limits are well be-
haved with respect to elementary algebraic operations, the following
operations carry over from elementary calculus:

% [cf(z)] =cf'(2), ¢ a constant (1.3.8)
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d ! !
- [f(z) + Q(Z)] = fl(z2) £ ¢'(2) (1.3.9)

& [f (Z>y<z>] = /(2)9(2) + £(2)'(2) (1.3.10)

47 _ 6@ - g (@)
&z L(z)] ) (13.11)

diiz-{f[g(z)]} = f'[9(2)]d'(2), the chain rule. (1.3.12)

Another important property that carries over from real variables is
’Hospital rule: Let f(z) and g(z) be analytic at zg, where f(z) has a
zero! of order m and g(z) has a zero of order n. Then, if m > n,

f(z) _ .
Jim =55 =0; (1.3.13)
if m=n,
f(z) _ J(20)
zll»zo g(z) g(m)(ZQ) (1.3.14)
and if m < n,
1) _ o, (1.3.15)

2% 9(2)

o Example 1.3.3
Let us evaluate lim,_;(z!® + 1)/(z% + 1). From I’Héspital rule,

. 21041 lim 102° 5. a_5
zl—rle' 26+1 _zl—u 625 _321—IBZ 3

(1.3.16)

So far we have introduced the derivative and some of its properties.
But how do we actually know whether a function is analytic or how
do we compute its derivative? At this point we must develop some
relationships involving the known quantities u(z,y) and v(z,y).

We begin by returning to the definition of the derivative. Because
Az = Az+iAy, there is an infinite number of different ways of approach-
ing the limit Az — 0. Uniqueness of that limit requires that (1.3.7) must
be independent of the manner in which Az approaches zero. A simple

! An analytic function f(z) has a zero of order m at zo if and only if

F(z0) = f/(z0) = -+ - = f™=V(2z0) = 0 and f™)(z) # 0.
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Figure 1.3.2: Although educated as an engineer, Augustin-Louis
Cauchy (1789-1857) would become a mathematician’s mathematician,
publishing 789 papers and 7 books in the fields of pure and applied
mathematics. His greatest writings established the discipline of mathe-
matical analysis as he refined the notions of limit, continuity, function,
and convergence. It was this work on analysis that led him to develop
complex function theory via the concept of residues. (Portrait courtesy
of the Archives de I’Académie des sciences, Paris.)

examplé is to take Az in the z-direction so that Az = Agz; another is
to take Az in the y-direction so that Az = iAy. These examples yield

dw i _A_w_

Au+iAv  du  .Ov
o = dm &= lim =gt (131D

and

dw . Aw . Au+iAv  Ov Ou
_— = —_ —— e — . 1.3.18
dz AI:I-EO Az Al;r_r_}o iAy dy 16y ( )
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Figure 1.3.3: Despite his short life, (Georg Friedrich) Bernhard Rie-
mann’s (1826-1866) mathematical work contained many imaginative
and profound concepts. It was in his doctoral thesis on complex func-
tion theory (1851) that he introduced the Cauchy-Riemann differential
equations. Riemann’s later work dealt with the definition of the integral

and the foundations of geometry and non-Euclidean (elliptic) geometry.
(Portrait courtesy of Photo AKG, London.)

In both cases we are approaching zero from the positive side. For the
limit to be unique and independent of path, (1.3.17) must equal (1.3.18),
or

ou_o L o
ax - 6y n 6y - 61“ (1.3.19)
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These equations which v and v must both satisfy are the Cauchy-
Riemann equations. They are necessary but not sufficient to ensure that
a function is differentiable. The following example will illustrate this.

e Example 1.3.4

Consider the complex function

w = {z5/|z|4, z#0 (1.3.20)

0, z=0.
The derivative at z = 0 is given by

dw . (AP/|Az)t=0 . (Az)?
N — = Am A

(1.3.21)

provided that this limit exists. However, this limit does not exist be-
cause, in general, the numerator depends upon the path used to ap-
proach zero. For example, if Az = re™/% with r — 0, dw/dz = —1. On
the other hand, if Az = re™/? with r — 0, dw/dz = 1.

Are the Cauchy-Riemann equations satisfied in this case? To check
this, we first compute

Az \*

uz(0,0) = (le|) =1, (1.3.22)
iny\*

vy (0, 0)_A1;TO(IA;’I) =1, (1.3.23)
; 5

uy(0,0) = hm Re [A(yTAAyzjl‘*] =0 (1.3.24)

and

v,(0,0)= lim Im [(Iixl) l =0. (1.3.25)

Hence, the Cauchy-Riemann equations are satisfied at the origin. Thus,
even though the derivative is not uniquely defined, (1.3.21) happens to
have the same value for paths taken along the coordinate axes so that
the Cauchy-Riemann equations are satisfied.

In summary, if a function is differentiable at a point, the Cauchy-
Riemann equations hold. Similarly, if the Cauchy-Riemann equations
are not satisfied at a point, then the function is not differentiable at that
point. This is one of the important uses of the Cauchy-Riemann equa-
tions: the location of nonanalytic points. Isolated nonanalytic points
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of an otherwise analytic function are called isolated singularities. Func-
tions that contain isolated singularities are called meromorphic.

The Cauchy-Riemann condition can be modified so that it is a
sufficient condition for the derivative to exist. Let us require that ug,
uy, ¥z, and vy be continuous in some region surrounding a point zy and
satisfy the Cauchy-Riemann conditions there. Then

f(2) = f(z0) = [u(z) = u(20)] + i[v(2) — v(20))] (1.3.26)
= [uz(20)(z — x0) + uy(20)(¥ — %o)
+ €1(z — zo) + €2(y — wo)]
+ i{vz(20)(z — z0) + vy(20)(y — o)
+ €3(z — zo) + €4(y — yo)] (1.3.27)
= [uz(20) + vz (20)](2 — 20)
+ (€1 + te3)(x — =o) + (€2 + tea)(y — yo), (1.3.28)

where we have used the Cauchy-Riemann equations and €1, €2, €3, €4 — 0
as Az, Ay — 0. Hence,

f'(z0) = lim W = uz(20) + vz (20), (1.3.29)

because |Az| < |Az| and |Ay| < |Az|. Using (1.3.29) and the Cauchy-
Riemann equations, we can obtain the derivative from any of the fol-
lowing formulas:

dw Ou . Ov Hv Ou

E: 6—x+za—x-: -a—y—la (1.3.30)

and

dw v Ov _ Odu .0Ou

T =95 9= 55 5y (1.3.31)

Furthermore, f/(zg) is continuous because the partial derivatives are.
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o Example 1.3.5

Let us show that sin(z) is an entire function.

w = sin(z) (1.3.32)
u + iv = sin(¢ + iy) = sin(z) cos(7y) + cos(z) sin(zy) (1.3.33)
= sin(z) cosh(y) + ¢ cos(z) sinh(y), (1.3.34)

because
cos(iy) = L[e!¥) + eW)] = L]e¥ + e~Y] = cosh(y) (1.3.35)
and
sin(iy) = & [0V — ¢~i(@W)] = —3:[€¥ —e7Y] = isinh(y) (1.3.36)
so that
u(z,y) = sin(z) cosh(y) and v(z,y) = cos(z)sinh(y). (1.3.37)

Differentiating both u(z, y) and v(z, y) with respect to « and y, we have
that

5; = cos(x) cosh(y) a—z = sin(z) sinh(y) (1.3.38)
o _ —sin(z) sinh(y) o cos(z) cosh(y) (1.3.39)
i y ay—os:ccos Yy 3.

and u(z,y) and v(z,y) satisfy the Cauchy-Riemann equations for all
values of z and y. Furthermore, u., u,, vz, and v, are continuous for
all x and y. Therefore, the function w = sin(z) is an entire function.

e Example 1.3.6

Consider the function w = 1/z. Then

: z iy
= = — — . 1.3.40
w=u+1iv Pl S B ( )
Therefore,
(2,9) = = 4 o(z,) 2 (1.3.41)
u(e,y) = ———  an v(z,y) = ———ox. 3.
V=201 y FERY
Now P 2 2 2_ .2
2 -2 _
ou _Hy)—27 y - (1.3.42)

Oz

aitd /R B (1"2 + y2)2’
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6‘1)__(:L'2—+-3/2)—2y2 o yi—a? Ou

A = = 3.
By @+9)? @ tP)E o (1.3.43)
Ov 0 —2zy 2y
e (1.3.44)
and du  0-2 2 9
4 ki v _ (1.3.45)

N N CE D
The function is analytic at all points except the origin because the func-

tion itself ceases to exist when both z and y are zero and the modulus
of w becomes infinite.

o Example 1.3.7

Let us find the derivative of sin(z).
Using (1.3.30) and (1.3.34),

df. . du .Ov
o [sm(z)] =5 + i (1.3.46)
= cos(z) cosh(y) — ¢sin(z)sinh(y) (1.3.47)
= cos(z + iy) = cos(z). (1.3.48)
Similarly,
d {1\ y? —z? 2izy
g;('z') T (224 y2)? + (22 + 12)? (1.3.49)
1 1

= GIwE = # (1.3.50)

The results in the above examples are identical to those for z real.
As we showed earlier, the fundamental rules of elementary calculus apply
to complex differentiation. Consequently, it is usually simpler to apply
those rules to find the derivative rather than breaking f(z) down into
its real and imaginary parts, applying either (1.3.30) or (1.3.31), and
then putting everything back together.

An additional property of analytic functions follows by cross differ-
entiating the Cauchy-Riemann equations or

oPu v _ O 0%u  0%u
Ou _ _ O gu 07U _ 1.3.51
-~ _—3z8y 7 or o= + 5 0 (1.3.51)
and
2 2 2 2 2
v _ 0w _ v 0w O (1.3.52)

822~ dzdy - —W 0z? = Oy?
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Any function that has continuous partial derivatives of second order
and satisfies Laplace’s equation (1.3.51) or (1.3.52) is called a harmonic
function. Because both u(z,y) and v(z,y) satisfy Laplace’s equation
if f(2) = u + tv is analytic, u(z,y) and v(z,y) are called conjugate
harmonic functions.

e Example 1.3.8
Given that u(z,y) = e *[rsin(y) — ycos(y)], let us show that u

is harmonic and find a conjugate harmonic function v(z,y) such that
f(2) = u + iv is analytic.

Because
0%u o z —z
922 = —2e~7 sin(y) + e~ " sin(y) — ye ™ cos(y) (1.3.53)
and
8%u e e —z
o = —ze " sin(y) + 2e~ " sin(y) + ye 7 cos(y), (1.3.54)

it follows that uzz + uyy = 0. Therefore, u(z, y) is harmonic. From the
Cauchy-Riemann equations,

v Ou . . e
Eialy i e~ 7 sin(y) — ze” " sin(y) + ye~ " cos(y) (1.3.55)
and
v Ou e - -
B oy e~ 7 cos(y) — ze™7 cos(y) — ye~ T sin(y). (1.3.56)

Integrating (1.3.55) with respect to y,
v(z,y) = ye " sin(y) + ze~" cos(y) + g(z). (1.3.57)
Using (1.3.56),

vy = —ye” " sin(y)—ze~ " cos(y) + e~ cos(y) + ¢'(x)
= e~ " cos(y) — e~ cos(y) — ye 7 sin(z). (1.3.58)

Therefore, g'(xz) = 0 or g{x) = constant. Consequently,
v(z,y) = e “[ysin(y) + z cos(y)] + constant. (1.3.59)

Hence, for our real harmonic function u(z,y), there are infinitely many
harmonic conjugates v(z, y) which differ from each other by an additive
constant.
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Problems

Show that the following functions are entire:

1. flz)=iz+2 2. f(z)=e*
3. f(z)=2° 4. f(z) = cosh(z)

Find the derivative of the following functions:

5. f(z) = (1+2°)%? 6. f(z) = (242113

7. f(e)=(1+4i)22-32-2 8. f(z) =(2z—1)/(z+2i)
9. f(z)=(iz—-1)"3

Evaluate the following limits:

. 22—2iz2-1 .z —sin(z)
0 e o

12. Show that the function f(z) = z* is nowhere differentiable.

For each of the following u(z, y), show that it is harmonic and then find
a corresponding v(z,y) such that f(z) = u + iv is analytic.

13.
u(z,y) =z° -y’
14.
u(z,y) =2t — 622y’ +y' + 2
15.
u(z,y) = z cos(z)e™ — ysin(z)e™¥
16.

u(z, y) = (z° — y*) cos(y)e” — 2zysin(y)e”

1.4 LINE INTEGRALS

So far, we discussed complex numbers, complex functions, and com-
plex differentiation. We are now ready for integration.

Just as we have integrals involving real variables, we can define an
integral that involves complex variables. Because the z-plane is two-
dimensional there is clearly greater freedom in what we mean by a com-
plex integral. For example, we might ask whether the integral of some
function between points A and B depends upon the curve along which



Complex Variables 21

we integrate. (In general it does.) Consequently, an important ingredi-
ent in any complex integration is the contour that we follow during the
integration.

The result of a line integral is a complex number or expression. Un-
like its counterpart in real variables, there is no physical interpretation
for this quantity, such as area under a curve. Generally, integration in
the complex plane is an intermediate process with a physically realizable
quantity occurring only after we take its real or imaginary part. For ex-
ample, in potential fluid flow, the lift and drag are found by taking the
real and imaginary part of a complex integral, respectively.

How do we compute fC f(2) dz? Let us deal with the definition; we
will illustrate the actual method by examples.

A popular method for evaluating complex line integrals consists of
breaking everything up into real and imaginary parts. This reduces the
integral to line integrals of real-valued functions which we know how to
handle. Thus, we write f(z) = u(z,y) + iv(z,y) as usual, and because
z = z + iy, formally dz = dz + idy. Therefore,

/ f(z)dz = / [u(z, y) + iv(z, y)][dx + i dy] (1.4.1)
C C

= / u(z,y)dz — v(z,y)dy + z/ v(z,y)dz + u(z,y) dy.
C C
(14.2)

The exact method used to evaluate (1.4.2) depends upon the exact path
specified.

From the definition of the line integral, we have the following self-
evident properties:

/Cf(z) dz = _/c: f(z)dz, (1.4.3)

where C” is the contour C taken in the opposite direction of C' and

/ f(z)dz = f(z)dz +/ f(z)dz. (1.4.4)
C1+C2 Cy Cz

o Example 1.4.1

Let us evaluate fc 2*dz from z = 0 to z = 4+ 2¢ along two different
contours. The first consists of the parametric equation z = t2 +it. The
second consists of two “dog legs”: the first leg runs along the imaginary
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o+
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Figure 1.4.1: Contour used in Example 1.4.1.

axis from z = 0 to z = 2¢ and then along a line parallel to the z-axis
from z = 24 to 2 = 4 + 2i. See Figure 1.4.1.

For the first case, the points z = 0 and z = 4+ 2i on C; correspond
tot = 0 and t = 2, respectively. Then the line integral equals

2 2
/C z*dz :/0 (82 4+ it)* d(t? + it) :/0 (2t —it* +t)dt =10~ &.
(1.4.5)
The line integral for the second contour C; equals

/ z*dz:/ z*dz+/ 2" dz, (1.4.6)
C2 Cga Cap

where C, denotes the integration from z = 0 to z = 2i while Cs,
denotes the integration from z = 2i to 2 = 4+ 2i. For the first integral,

2
/ 2'dz = / (z — iy)(dz + idy) = / ydy =2, (1.4.7)
C2a Caa 0

because £ = 0 and dz = 0 along C5,. On the other hand, along Ca,
¥y =2 and dy = 0 so that

4 4
/ z*dz:/ (z — iy)(dz + idy) :/ z‘d:c-}—i/ ~2dx =8 - 8i.
Ca2p Cap 0 0
(1.4.8)
Thus the value of entire C contour integral equals the sum of the two
parts or 10 — 84.

The point here is that integration along two different paths has
given us different results even though we integrated from z = 0 to
z = 4 + 2i both times. This results foreshadows a general result that
1s extremely important. Because the integrand contains nonanalytic
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Figure 1.4.2: Contour used in Example 1.4.2.

points along and inside the region enclosed by our two curves, as shown
by the Cauchy-Riemann equations, the results depend upon the path
taken. Since complex integrations often involve integrands that have
nonanalytic points, many line integrations depend upon the contour
taken.

o Example 1.4.2

Let us integrate the entire function f(z) = z* along the two paths
from z = 0 to z = 2 + i shown in Figure 1.4.2. For the first integration,
z = 2y while along the second path we have two straight paths: z =0
toz=2and z=2toz=2+41.

For the first contour integration,

1
/ 22dz = / (2y + 1y)*(2dy + i dy) (1.4.9)
(oY 0
1
= / (397 + 4y*)(2dy + i dy) (1.4.10)
0

1
=/ 6y? dy + 8y%idy + 3y?idy — 4y’ dy (1.4.11)
0

1

=/ 2y% dy + 11g%i dy (1.4.12)
0

2308 + Wil = 2448 (1.4.13)

For our second integration,

/ 22dz = / 22dz + / 22 dz. (1.4.14)
C2 Caq Ca
Along Cs, we find that y = dy = 0 so that

2
/ 22dz = / ?de=133=% (1.4.15)
Cae 0
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Figure 1.4.3: Contour used in Example 1.4.3.

and
2 ' 2 ¥ ' '
/ zdz:/(2+zy) zdy:z(4y+22y——3—) =4i-2-3,
Cap 0 0
(1.4.16)
because z = 2 and dz = 0. Consequently,
9 2 11z
2°dz = - + —. 1.4.17
=545 (1417)

In this problem we obtained the same results from two different contours
of integration. Exploring other contours, we would find that the results
are always the same; the integration is path-independent. But what
makes these results path-independent while the integration in Example
1.4.1 was not? Perhaps it is the fact that the integrand is analytic
everywhere on the complex plane and there are no nonanalytic points.
We will explore this later.

Finally, an important class of line integrals involves closed contours.
We denote this special subclass of line integrals by placing a circle on
the integral sign: §. Consider now the following examples:

e Example 1.4.3

Let us integrate f(z) = z around the closed contour shown in Figure
1.4.3.
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From Figure 1.4.3,

fzdz:/ zdz+/ zdz+/ zdz. (1.4.18)
[0} Cy C Cs

Now
0 0 y? |
/ zdz:/ iy(idy):—/ ydy=— =—| = -, (1.4.19)
Cy 1 1 2 1 2
-1 91—1
z 1
zdz = / zde= —| =2 1.4.20)
,/C2 0 2 |, 2 (
and
/2 0261 |72
/ zdz:/ efliefido = —| = -1, (1.4.21)
Ca - 2 -

where we have used z = ¢%® around the portion of the unit circle. There-

fore, the closed line integral equals zero.
e Example 1.4.4

Let us integrate f(z) = 1/(z — @) around any circle centered on
z = a. The Cauchy-Riemann equations show that f(z) is a meromorphic
function. It is analytic everywhere except at the isolated singularity
z=a.

If we introduce polar coordinates by letting z — a = re?® and dz =
irefide,

27 .. 0% 2T
f dz :/ T do=i [ do=2mi (1.4.22)
(o) 0

z—a refi o

Note that the integrand becomes undefined at z = a. Furthermore, the
answer is independent of the size of the circle. Our example suggests
that when we have a closed contour integration it is the behavior of the
function within the contour rather than the exact shape of the closed
contour that is of importance. We will return to this point in later
sections.

Problems

1. Evaluate §.(z*)? dz around the circle |z] = 1 taken in the counter-
clockwise direction.

2. Evaluate §. |z|®dz around the square with vertices at (0,0), (1,0),
(1,1), and (0,1) taken in the counterclockwise direction.
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Figure 1.5.1: Diagram used in proving the Cauchy-Goursat theorem.

3. Evaluate [, |z|dz eﬂong the right half of the circle |z| = 1 from z = —
toz=1.

4. Evaluate [, e” dz along the line y = z from (-1, —1) to (1, 1).
5. Evaluate [,(z*)? dz along the line y = z? from (0, 0) to (1, 1).

6. Evaluate [, 271/2dz, where C is (a) the upper semicircle |z| = 1 and
(b) the lower semicircle |z| = 1. If z = re®®, restrict —7 < # < 7. Take
both contours in the counterclockwise direction.

1.5 THE CAUCHY-GOURSAT THEOREM

In the previous section we showed how to evaluate line integrations
by brute-force reduction to real-valued integrals. In general, this direct
approach is quite difficult and we would like to apply some of the deeper
properties of complex analysis to work smarter. In the remaining por-
tions of this chapter we will introduce several theorems that will do just
that.

If we scan over the examples worked in the previous section, we
see considerable differences when the function was analytic inside and
on the contour and when it was not. We may formalize this anecdotal
evidence into the following theorem:

Cauchy-Goursat theorem?: Let f(z) be analytic in a domain D and

2 See Goursat, E., 1900: Sur la définition générale des fonctions an-
alytiques, d’aprés Cauchy. Trans. Am. Math. Soc., 1, 14-16.
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(a) (b)

S

A
y

Figure 1.5.2: Examples of a (a) simply closed curve and (b) not simply
closed curve.

let C be a simple Jordan curve® inside D so that f(z) is analytic on and
inside of C. Then §, f(z)dz = 0.

Proof: Let C denote the contour around which we will integrate w =
f(z). We divide the region within C into a series of infinitesimal rect-
angles. See Figure 1.5.1. The integration around each rectangle equals
the product of the average value of w on each side and its length,

Ow dz ow Ow d(iy) .
[w+0:c ]d +[ + xdm+——.y ]d(zy)

N [w+ w dz a? )d(zy)] (—dz) + [w+ 5%"(;”)] d(—iy)
= (g‘;’ f’a’”) (i dz dy) (1.5.1)

Substituting w = u + v into (1.5.1),

dw Ow du Ov .fOv Ou
5o (o 5) (G 5) (1.32)

Because the function is analytic, the right side of (1.5.1) and (1.5.2)
equals zero. Thus, the integration around each of these rectangles also
equals zero.

3 A Jordan curve is a simply closed curve. It looks like a closed loop
that does not cross itself. See Figure 1.5.2.
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We note next that in integrating around adjoining rectangles we
transverse each side in opposite directions, the net result being equiva-
lent to integrating around the outer curve C'. We therefore arrive at the
result §, f(z)dz = 0, where f(z) is analytic within and on the closed
contour. a

The Cauchy-Goursat theorem has several useful implications. Sup-
pose we have a domain where f(z) is analytic. Within this domain let
us evaluate a line integral from point A to B along two different con-
tours Cy and C3. Then, the integral around the closed contour formed
by integrating along C; and then back along C3, only in the opposite
direction, is

}4 f(z)dz = / f(z)dz — f(z)dz=0 (1.5.3)
C Cy Ca

or

f(z)dz = f(z)dz. (1.5.4)
C, Cs
Because C; and C3 are completely arbitrary, we have the result that
if, in a domain, f(z) is analytic, the integral between any two points
within the domain is path independent.

One obvious advantage of path independence is the ability to choose
the contour so that the computations are made easier. This obvious
choice immediately leads to

The principle of deformation of contours: The value of a line in-
tegral of an analytic function around any simple closed contour remains
unchanged if we deform the contour in such a manner that we do not
pass over a nonanalytic poind.

e Example 1.5.1
Let us integrate f(z) = 27! around the closed contour C in the
counterclockwise direction. This contour consists of a square, -centered
on the origin, with vertices at (1, 1), (1,-1), (—1,1), and (-1, -1).
The direct integration of fc z7ldz around the original contour is
very cumbersome. However, because the integrand is analytic every-
where except at the origin, we may deform the origin contour into a cir-
cle of radius r, centered on the origin. Then, z = re?® and dz = rie®*df

so that on .
f / ”eh do = 2/ df = 2ri. (1.5.5)
c V4 rée 0

The point here is that no matter how bizarre the contour is, as long as it
encircles the origin and is a simply closed contour, we can deform it into
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a circle and we will get the same answer for the contour integral. This
suggests that it is not the shape of the closed contour that makes the
difference but whether we enclose any singularities [points where f(2)
becomes undefined] that matters. We shall return to this idea many
times in the next few sections.

Finally, suppose that we have a function f(z) such that f(z) is an-
alytic in some domain. Furthermore, let us introduce the analytic func-
tion F'(z) such that f(z) = F'(z). We would like to evaluate fab f(2)dz
in terms of F(z).

We begin by noting that we can represent F, f as F((z) = U + iV
and f(z) = u + iv. From (1.3.30) we have that u = U, and v = V;.
Therefore,

b b
/ f(z)dz:/ (u + iv)(de + i dy) (1.5.6)
a ab )
:/ dez'—dey+i/ Vede + U, dy (1.5.7)
ab ab
=/ Urda:+Uydy+i/ Vede + V, dy (1.5.8)

b b
=/ﬂw+a/dV=F@-F@) (1.5.9)

or )
/ f(z)dz = F(b) — F(a). (1.5.10)

Equation (1.5.10) is the complex variable form of the fundamental the-
orem of calculus. Thus, if we can find the antiderivative of a function
f(z) that is analytic within a specific region, we can evaluate the in-
tegral by evaluating the antiderivative at the endpoints for any curves
within that region.

e Example 1.5.2

Let us evaluate foﬂ z sin(z?) dz.
The integrand f(z) = z sin(z?) is an entire function and has the
antiderivative —1 cos(z?). Therefore,

i .
/ z sin(z?) dz = —L cos(22)|] (1.5.11)
0

= 3[cos(0) — cos(—7?)] (1.5.12)
= (1 — cos(n?)]. (1.5.13)
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Figure 1.6.1: Diagram used to prove Cauchy’s integral formula.
Problems

For the following integrals, show that they are path independent and
determine the value of the integral:

2+43mi 27
1. / e~ dz 2. / [e* — cos(z)] dz
1 0

-7
2

3. /sinz(z)dz 4. (z+1)dz
0 i

1.6 CAUCHY'S INTEGRAL FORMULA

In the previous section, our examples suggested that the presence
of a singularity within a contour really determines the value of a closed
contour integral. Continuing with this idea, let us consider a class of
closed contour integrals that explicitly contain a single singularity within
the contour, namely §. g(z) dz, where g(z) = f(z)/(z — z9) and f(2) is
analytic within and on the contour C. We have closed the contour in
the positive sense where the enclosed area lies to your left as you move
along the contour.

We begin by examining a closed contour integral where the closed
contour consists of the Cy, Cs, Cs, and Cy as shown in Figure 1.6.1. The
gap or cut between C; and Cj is very small. Because g(2) is analytic
within and on the closed integral, we have that

LZ)dz+ —Mdz+ —fgidz+ —fﬁdzzo.
c, %~ %20 Cc, £ 20 Cs 220 C, ¢ %0
(1.6.1)
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It can be shown that the contribution to the integral from the path
C5 going into the singularity will cancel the contribution from the path
C, going away from the singularity as the gap between them vanishes.
Because f(z) is analytic at zg, we can approximate its value on C3 by
f(z) = f(z0) + 6(2), where ¢ is a small quantity. Substituting into
(1.6.1),

S dz = ~f(z0) [ ! dz_/ 26 g (162
C

CIZ—Z — 2p 3.’.’—Z()

Consequently, as the gap between C3 and C4 vanishes, the contour C;
becomes the closed contour C' so that (1.6.2) may be written

27
G 4o = omifzo)+i [ 648, (1.6.3)
0

cZ— <2

where we have set z — zg = ee?® and dz = iee?* d#.
Let M denote the value of the integral on the right side of (1.6.3)
and A equal the greatest value of the modulus of 6 along the circle.

Then
27

27
|M| < / 15|d0 < | Ado = 27A. (1.6.4)
0 0

As the radius of the circle diminishes to zero, A also diminishes to zero.
Therefore, | M|, which is positive, becomes less than any finite quantity,
however small, and M itself equals zero. Thus, we have that

f(z0) = 5}; A ;L_(—ZZ—O (1.6.5)

This equation is Cauchy’s integral formula. By taking n derivatives of
(1.6.5), we can extend Cauchy’s integral formula® to

F™(z0) = 2—;}{0(&0& (1.6.6)

z — zo)"H!

4 See Carrier, G. F., Krook, M., and Pearson, C. E., 1966: Functions
of a Complex Variable: Theory and Technique, McGraw-Hill, New York,
pp. 39-40 for the proof.
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forn = 1,2,3,.... For computing integrals, it is convenient to rewrite
(1.6.6) as
f(2) 27 (n)
—————dz = — . 1.6.7
fetlgme= e, aen

e Example 1.6.1

Let us find the value of the integral

cos(mz)
SO\ TE) 4, 1.6.8
A (1o
where C is the circle |z| = 5. Using partial fractions,
! ! ! (1.6.9)

(z—l)(z—2):z—2_z—l

and

fi Ez‘%'d"’ = fi el aa - fc g (1610)

By Cauchy’s integral formula with zo = 2 and 2o = 1,

f cos(rz) dz = 2mi cos(27) = 2mi (1.6.11)
c < 2
and
% cc;s(ﬂ'z) dz = 2micos(m) = —2mi, (1.6.12)
. z—

because 29 = 1 and zp = 2 lie inside C and cos(7z) is analytic there.
Thus the required integral has the value

cos(mz) ) = dri
fé——(z TPy dz = 4ri. (1.6.13)

o Example 1.6.2

Let us use Cauchy’s integral formula to evaluate

I= ‘%i?'l:? md:{ (1614)

We need to convert (1.6.14) into the form (1.6.7). To do this, we
rewrite (1.6.14) as

¢ g £/,
.ﬁq:z (z-1)2(z-3) dz = v%iz|=2 (z—1)2 dz. (1.6.15)
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Therefore, f(z) = ¢?/(z —3), n = 1 and 2o = 1. The function f(z) is
analytic within the closed contour because the point zp = 3 lies outside
of the contour. Applying Cauchy’s integral formula,

et 2ri d e?
S = .6.16
ey = T b= (Sl wew
| €f e?
= 2mi L_?) - (z_3)2] . (1.6.17)
_3mie (1.6.18)
2
Problems

Use Cauchy’s integral formula to evaluate the following integrals.
Assume all of the contours are in the positive sense.

6 -
g jI{A:l :lﬁ 7(rz/)6 dz 2. }lgn:l %dz
3. ]|{z|=1 ;(22—1+74—)-dz 4 fi;:l E%de
2
> }I{z—1|=1/2Z?)1(z—7)dz 6. ]|{z|=5exi¥dz
S 2

7. f?;_uq ; i 74 8. fizl:z (z_il_yxdz
i’ }I{zI:z (7%(12 10. }I{z|=1 Z_C;(TZl)dz

1.7 TAYLOR AND LAURENT EXPANSIONS AND SINGULARITIES

In the previous section we showed what a crucial role singularities
play in complex integration. Before we can find the most general way of
computing a closed complex integral, our understanding of singularities
must deepen. For this, we employ power series.

One reason why power series are so important is their ability to
provide locally a general representation of a function even when its ar-
guments are complex. For example, when we were introduced to trigono-
metric functions in high school, it was in the context of a right triangle
and a real angle. However, when the argument becomes complex this
geometrical description disappears and power series provide a formalism
for defining the trigonometric functions, regardless of the nature of the
argument.



34 Advanced Engineering Mathematics

Let us begin our analysis by considering the complex function f(z)
which is analytic everywhere on the boundary and the interior of a circle
whose center is at z = z5. Then, if z denotes any point within the circle,
we have from Cauchy’s integral formula that

_ 1 f(©) _L}{ f©) [ 1
fz) = 2m'f;c—zdc‘ prrl) gl §uny papsy raupeys K3
(1.7.1)
where C' denotes the closed contour. Expanding the bracketed term as

a geometric series, we find that

f()—2m[fc d¢ + ( z-z)}( zo)zd““'
+ (2 - }{(C fiC)nH dC+---]. (1.7.2)

Applying Cauchy’s 1ntegra.l formula to each integral in (1.7.2), we finally
obtain

(z Zo)f( RO Gl )i )f(n)(z)+ - (1.7.3)

f(z) = f(z0) +
or the familiar formula for a Taylor expansion. Consequently, we can
expand any analytic function into a Taylor series. Interestingly, the
radius of convergence® of this series may be shown to be the distance
between zy and the nearest nonanalytic point of f(z).

e Example 1.7.1

Let us find the expansion of f(z) = sin(2) about the point 2o = 0.
Because f(z) is an entire function, we can construct a Taylor ex-
pansion anywhere on the complex plane. For zg = 0,

f(z) = FO)+ L (0)z + £ £7(0)22 + L " (0) 22 + - - (1.7.4)

Because f(0) =0, f'(0) =1, f(0) =0, f""(0) = —1 and so forth,

2 8 7

f(z):z—g-l-a—ﬁ-l-"' (1.7.5)
Because sin(z) is an entire function, the radius of convergence is |z—0| <
00, L.e., all z.

5 A positive number h such that the series diverges for |z — 29| > h
but converges absolutely for |z — 2| < h.
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yll

-

X

Figure 1.7.1: Contour used in deriving the Laurent expansion.
e Example 1.7.2

Let us find the expansion of f(z) = 1/(1—2z) about the point zg = 0.
From the formula for a Taylor expansion,

f(z) = F0) + L (0)z + 5 77(0)2% + F(0)22 +--- (1.7.6)
Because f(")(0) = n!, we find that

1
f(z)=1+z+z2+za+z4+~-=-1—. (1.7.7)
-z
Equation (1.7.7) is the familiar result for a geometric series. Because
the only nonanalytic point is at z = 1, the radius of convergence is
[z — 0] < 1, the unit circle centered at z = 0.

Consider now the situation where we draw two concentric circles
about some arbitrary point zg; we denote the outer circle by C' while
we denote the inner circle by Cy. See Figure 1.7.1. Let us assume that
f(z) is analytic inside the annulus between the two circles. Outside of
this area, the function may or may not be analytic. Within the annulus
we pick a point z and construct a small circle around it, denoting the
circle by Cy. As the gap or cut in the annulus becomes infinitesimally
small, the line integrals that connect the circle Cs to C; and € sum to
zero, leaving
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£(©) 1O 4er § 1O, .
fiva=f fasf B ary
Because f() is analytic everywhere within Cs,
: £,
2mif(z) = }iz = (1.7.9)
Using the relationship:
S . [ f©)
}{clc—zdc— clz—CdC’ (1.7.10)
(1.7.8) becomes
- f() 1 f©)
f) = 5 ]{C e (1.7.11)
Now, ,
1 1 1 1

C—Z:C_zo_z+zo:C_ZOI—(Z—ZO)/(C—Z()) (1.7.12)

1 z— 2o z—2p 2 z—2\"
N [1+(C—Zo)+<C—Zo) R = }

(1.7.13)

where |z — z0|/|¢ — 20| < 1 and

1 1 1 1
z—C—z—~zo—-C+zo_z—zol—(C—ZO)/(z—zo) (1.7.14)

= 1 |:1+(C_ZO)+(C_Z0)2++(C__z0)n+j|,
z— 2 z— 2 z -2 z—zp

(1.7.15)

where |¢ — 20|/|z — 20| < 1. Upon substituting these expressions into
(1.7.11),

flz) = [2irzﬁ<f-(-?o d¢ + 22—”:0}2(({(2)2 ¢+ -
=1 f et

L—Zo?m% 7€) <+ 2)22”.1}{ Q) — z0)dC+ -

}{ FIOC —20)* 71 dC + - - ] (1.7.16)

(z — zo)™ 2mi
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or
— al a2 .. ——_———an
f(z)_z—z0+(z—zo)2+ +(z—z0)"
+b0+b1(z—zo)+~--+bn(z—zo)"+-~~ (1717)

Equation (1.7.17) is a Laurent ezpansion.’ If f(z) is analytic at 2o,
then a; = a2 = --- = a, = --- = 0 and the Laurent expansion reduces
to a Taylor expansion. If zg is a singularity of f(z), then the Laurent
expansion will include both positive and negative powers. The coefficient
of the (z —zp) ™! term, a1, is the residue, for reasons that will appear in
the next section.

Unlike the Taylor series, there is no straightforward method for
obtaining a Laurent series. For the remaining portions of this section
we will illustrate their construction. These techniques include replacing
a function by its appropriate power series, the use of geometric series
to expand the denominator, and the use of algebraic tricks to assist in
applying the first two method.

o Example 1.7.3

Laurent expansions provide a formalism for the classification of
singularities of a function. Isolated singularities fall into three types;
they are

e Essential Singularity: Consider the function f(z) = cos(1/z). Using
the expansion for cosine,

1 1 1 1
8 (;) =l-gataa g T (1.7.18)

for 0 < |z| < co. Note that this series never truncates in the inverse
powers of z. Essential singularities have Laurent expansions which have
an infinite number of inverse powers of z — zg. The value of the residue
for this essential singularity at z = 0 is zero.

e Removable Singularity: Consider the function f(z) = sin(z)/z. This
function has a singularity at z = 0. Upon applying the expansion for
sine,

sin(z) 1 P
L A A 1.7.19
: z<z CTITR TR (1.7.19)

22 4 8 28

:1'§+5_7T+§_‘” (1.7.20)

6 See Laurent, M., 1843: Extension du théoréme de M. Cauchy relatif

4 la convergence du développement d’une fonction suivant les puissances
ascendantes de la variable . C. R. Acad. Sci., 17, 938-942.
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for all z, if the division is permissible. We have made f(z) analytic by
defining it by (1.7.20) and, in the process, removed the singularity. The
residue for a removable singularity always equals zero.

o Pole of order n: Consider the function

1

&=

(1.7.21)

This function has two singularities: one at z = 1 and the other at
z = —1. We shall only consider the case z = 1. After a little algebra,

1 1
T (z=13 24+ (z-1)
11 1
T2(z-13 1+(z=1)/2
1 1 z—1 z—1)2 z—1)3
5(2—-1)3[1_ 2 +! 4) - 8)
1 1 1 1

T3G-1p Az-1¢ 8-1) 167" (1.7.25)

f(z) (1.7.22)

(1.7.23)

+- ] (1.7.24)

for 0 < |2—1] < 2. Because the largest inverse (negative) power is three,
the singularity at z = 1 is a third-order pole; the value of the residue is
1/8. Generally, we refer to a first-order pole as a simple pole.

o Example 1.7.4

Let us find the Laurent expansion for

z

f(z) = GoDGE=3) (1.7.26)
about the point z = 1.
We begin by rewriting f(z) as
_ 1+(z2-1)
f(z) = G2+ G =1 (1.7.27)
1 1+(z-1)
-5 G-DI-1G-1)] (1.7.28)
=P eyt
1 1 3 3 3
=_§ﬁ-Z—g(z—l)—ﬁ(z—l)h--- (1.7.30)
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provided 0 < |z — 1| < 2. Therefore we have a simple pole at z = 1 and
the value of the residue is —1/2. A similar procedure would yield the
Laurent expansion about z = 3.

For complicated complex functions, it is very difficult to determine
the nature of the singularities by finding the complete Laurent expansion
and we must try another method. We shall call it “a poor man’s Laurent
expansion”. The idea behind this method is the fact that we generally
need only the first few terms of the Laurent expansion to discover its
nature. Consequently, we compute these terms through the application
of power series where we retain only the leading terms. Consider the
following example.

o Example 1.7.5

Let us discover the nature of the singularity at z = 0 of the function

etz

fz) = (1.7.31)

zsinh(az)’
where a and t are real.

We begin by replacing the exponential and hyperbolic sine by their
Taylor expansion about z = 0. Then

14tz 422224

= . 1.7.32
1) z(az —a323/6 4+ - ) ( )
Factoring out az in the denominator,
floy= Lt 2y (1.7.33)
T az?(1—-a222/64 1) o

Within the parentheses all of the terms except the leading one are small.
Therefore, by long division, we formally have that

f(z)= a—;—(l +tz+t22%/24 )1 +a?2%/6+ ) (1.7.34)
= a%(l +tz+1222/2 4 a%22 6+ ) (1.7.35)
1 t  3t2+a?
= — 4 — 4t 1.7.36
az? + az t % + ( )

Thus, we have a second-order pole at z = 0 and the residue equals t/a.
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Figure 1.8.1: Contour used in deriving the residue theorem.
Problems
1. Find the Taylor expansion of f(z) = (1—2z)~2 about the point z = 0.

2. Find the Taylor expansion of f(2) = (z —1)e* about the point z = 1.
[Hint: Don’t find the expansion by taking derivatives.]

By constructing a Laurent expansion, describe the type of singularity
and give the residue at 2o for each of the following functions:

3. f(z) = 21%"Y, =0 4. f(z) = 27 3sin?(2); 20 =0
5. f(z) = C°Sh(zzz) —1 =0 6. f(z) = (2_4:27; 2 = —2
T f(z) = e_zf_ll; 2=0 8. f(z) = m 20 = bi
g,f(z)zz(zl_2); 20 =2 10-f(z)=?%&zﬁ; 20 =0

1.8 THEORY OF RESIDUES

Having shown that around any singularity we may construct a Lau-
rent expansion, we now use this result in the integration of closed com-
plex integrals. Consider a closed contour in which the function f(2) has
a number of isolated singularities. As we did in the case of Cauchy’s
integral formula, we introduce a new contour ¢’ which excludes all of
the singularities because they are isolated. See Figure 1.8.1. Therefore,
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%Cf(z)dz—fc1 f(z)dz—---—'?inf(z)dzz‘%le(z)dzzo. (1.8.1)

Consider now the mth integral, where 1 < m < n. Constructing a
Laurent expansion for the function f(z) at the isolated singularity z =
Zm, this integral equals

]{ fz)dz_zak}{ o )kdz+2bk}§ (z =z )F dz.

(1.8.2)
Because (z — 2,,)* is an entire function if k¥ > 0, the integrals equal
zero for each term in the second summation. We use Cauchy’s integral
formula to evaluate the remaining terms. The analytic function in the
numerator is 1. Because d*~1(1)/dz*~! = 0 if k > 1, all of the terms
vanish except for k = 1. In that case, the integral equals 27¢a;, where
ay is the value of the residue for that particular singularity. Applying
this approach to each of the singularities, we obtain

Cauchy’s residue theorem?: If f(z) is analytic inside and on a closed
contour C' (taken in the positive sense) except at points z1,z3,..., 2
where f(z) has singularities, then

% f(z)dz = 27rii Res([f(2); ], (1.8.3)
c =

where Res[f(z); z;] denotes the residue of the jth isolated singularity of
f(z) located at z = z;.

e Example 1.8.1

Let us compute ﬁzlzz z2/(z + 1) dz by the residue theorem, assum-
ing that we take the contour in the positive sense.

Because the contour is a circle of radius 2, centered on the origin,
the singularity at 2 = —1 lies within the contour. If the singularity were

" See Mitrinovié, D. S. and Ke¢ki¢, J. D., 1984: The Cauchy Method
of Residues: Theory and Applications, D. Reidel Publishing, Boston.
Section 10.3 gives the historical development of the residue theorem.
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not inside the contour, then the integrand would have been analytic
inside and on the contour C. In this case, the answer would then be
zero by the Cauchy-Goursat theorem.

Returning to the original problem, we construct the Laurent ex-
pansion for the integrand around the point z = 1 by noting that

2 [z+D-17 1
z4+1 z+1 Tz+1

-2+ (z+1). (1.8.4)

The singularity at z = —1 is a simple pole and by inspection the value
of the residue equals 1. Therefore,

22
f dz = 271 (1.8.5)
|z|=2 % +1

As it presently stands, it would appear that we must always con-
struct a Laurent expansion for each singularity if we wish to use the
residue theorem. This becomes increasingly difficult as the structure of
the integrand becomes more complicated. In the following paragraphs
we will show several techniques that avoid this problem in practice.

We begin by noting that many functions that we will encounter
consist of the ratio of two polynomials, i.e., rational functions: f(z) =
9(2)/h(z). Generally, we can write h(z) as (z — 21)™(z — 22)™% - -
Here we have assumed that we have divided out any common factors
between g(z) and h(z) so that g(z) does not vanish at z1, 23, .. .. Clearly
z1,zs,..., are singularities of f(z). Further analysis shows that the
nature of the singularities are a pole of order m; at z = 21, a pole of
order ms at z = z3, and so forth.

Having found the nature and location of the singularity, we compute
the residue as follows. Suppose we have a pole of order n. Then we know
that its Laurent expansion is

an an-1

(z = 20)" + (z = 20)" !

f(z) = +"-+b0+b1(z—20)+'-- (186)

Multiplying both sides of (1.8.6) by (z — z0)",

F(z) = (2 — 20)" f(2)
=ap +an_1(z — 20) + -+ bo(z — 2z0)" + b1z — zo)"H 4.
(1.8.7)

Because F(z) is analytic at z = z, it has the Taylor expansion

F(n-—l)(zO)

1) (z—20)" " '+--- (1.8.8)

F(z) = F(z0)+F'(20)(z—20)+ -+
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Matching powers of z — zp in (1.8.7) and (1.8.8), the residue equals

F(n—l)(ZO)

Res[f(2); 20] = a1 = ==—35;

(1.8.9)

Substituting in F(z) = (z — z0)" f(2), we can compute the residue of a
pole of order n by

n—1
Res[f(z); 2] = ﬁ zli.I?j % [(z - zj)"f(z)] .

(1.8.10)
For a simple pole (1.8.10) simplifies to
Res[f(2); z;] = zl_i_,r?.(z - z;) f(2).
7
(1.8.11)

Quite often, f(z) = p(z)/q(z). From I'Hospital’s rule, it follows that

p(z)
q'(z;)

Res[f(z); z;] =

(1.8.12)
Remember that these formulas work only for finite-order poles. For
an essential singularity we must compute the residue from its Laurent
expansion; however, essential singularities are very rare in applications.

e Example 1.8.2

Let us evaluate

}{ L (1.8.13)
C

22 +a?
where C' is any contour that includes both z = %a7 and is in the positive

sense.
From Cauchy’s residue theorem,

eiz ) eiz . eiz .
fc ;:—a—z-dz = 2w [Res (m;az) + Res (m; —az)].

(1.8.14)
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The singularities at z = =zai are simple poles. The corresponding
residues are

eiz Eiz e=a
Res [ —;ai ) = lim (z — ai) ————= = —— (1.8.15
s <z2 Taz ‘”) Jim (2 ‘”)(z “ai)(z +ai)  2Zia ( )
and
eiz eiz ot
Res | ———:—ai ] = | N ¢ __t_
® (z2 +a?’ az> zlrzlai(z + az)(z —ai)(z + ai) 2ia
(1.8.16)
Consequently,
eiz 27[' _ 27{' ]
.%C Pl s dz = ~5, (ea —e a) = - sinh(a). (1.8.17)
o Example 1.8.3
Let us evaluate
1 etz
=P o5 ¢ 1.8.18
27ri}{cvz2(z2+2z+2) % ( )

where C includes all of the singularities and is in the positive sense.

The integrand has a second-order pole at z = 0 and two simple
poles at z = —1 % i which are the roots of 22 + 2z + 2 = 0. Therefore,
the residue at z =0 is

Res —et_z__.o =1 li ( 0)2 _etz__
22(22 4+ 22+ 2)’ = |V 22(22 4+ 224 2)
(1.8.19)
. tet? (2z + 2)e** t—1
= lim - = = .
20|22+ 2242 (224224 2) 2
(1.8.20)

The residue at z = -1+ 7 1s

etz

22(22 4224 2)
(1.8.21)

I e'’ . z+1~-1
z_,l...nil.}.j 22 z—vl—nl]+i Z2 + 22’ =+ 2

(1.8.22)
_ exp[(—1 +1)t] _ exp[(—1 +7)t]
2i(—1 +1)2 1 '

etz

Res 2222+ 224 2);_

z—-—1

1+i] = lim [ = (=1+9)

(1.8.23)
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Similarly, the residue at z = —1 — i is
et? . . _ et?
Res [z?(;:2 +2z+42) 1= Z] - z—!l—nll-i[z —(=1-9) 22(22+2242)
(1.8.24)
= ( lim it—z-) ( Im z_—l—i)
zo—1—i 22 zo—1-i 22 + 2242
(1.8.25)
exp[(=1 —9)t] _ exp[(—1— i)t]
T Ri(-1-i2 1 '
(1.8.26)

Then by the residue theorem,

1 etz [ et‘z
LI S .9
2mi }i 22(22 4+ 22+ 2) z = Res [ 22(22 + 22+ 2)’ ]

etz

Res | 5—————=—1
+Res zz(z +2z+2) +Z]
etz
—_—;—1—1 8.2

_zz(z2+2z+2)’ Z] (1.8.27)

_t-1 4 exp((—1 +1)t] 4 exp[(—1 — i)t]

+ Res

2 4 4
(1.8.28)
=1[t—1+e " cos(t)]. (1.8.29)

Problems

Assuming that all of the following closed contours are in the positive
sense, use the residue theorem to evaluate the following integrals:

z+1 (z +4)°
1. —_d . —_—
}ﬁ 1z‘*—2z3 ‘ 2 fi;I 124+5z3+672d
2_y4
5 ¢ z R
2]=1 1—6 1z)=2 (z = 1)*
5% 6. 2% dz, n>0
2)=2 #* —1 lz]=1

7. % *cos(1/z)dz 8,‘% M@dz
l2]=1 =2 2(z —1)°
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1.9 EVALUATION OF REAL DEFINITE INTEGRALS

One of the important applications of the theory of residues consists
in the evaluation of certain types of real definite integrals. Similar tech-
niques apply when the integrand contains a sine or cosine. See Section
3.4.

o Example 1.9.1

Let us evaluate the integral

*° dz 1 [ dr
= == . 191
/0 z2+1 2 ,/_oo z2+1 ( )

This integration occurs along the real axis. In terms of complex variables
we can rewrite (1.9.1) as

[ dz 1 dz
—_— == —_ 1.9.2
/0 z2 41 2/01 2241’ ( )

where the contour Cj is the line Im(z) = 0. However, the use of the
residue theorem requires an integration along a closed contour. Let us
choose the one pictured in Figure 1.9.1. Then

dz dz dz
= —_ 1.93
fczz+1 /(;122+1+/czz2+1’ ( )

where C' denotes the complete closed contour and C» denotes the inte-
gration path along a semicircle at infinity. Clearly we want the second
integral on the right side of (1.9.3) to vanish; otherwise, our choice of
the contour C» is poor. Because z = Re®® and dz = iRe%'d#,

dz ™ Rdf
—_ < —_ 9.
/sz2+1 —/0 RT -1’ (1.9:4)

which tends to zero as R — oo. On the other hand, the residue theorem
gives

dz . 1 L. z—1 .1
}im:%rzl{es <;2—+1;z) = 27i ll_rgm:%rzx 52;:71'.
(1.9.5)

*® dz T
A ';2-+-—1 —_— 5. (1.9.6)

/7r iRexp(01) df
o 1+ RZexp(267)

Therefore,
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Figure 1.9.1: Contour used in evaluating the integral (1.9.1).

Note that we only evaluated the residue in the upper half-plane because
it is the only one inside the contour.

This example illustrates the basic concepts of evaluating definite
integrals by the residue theorem. We introduce a closed contour that
includes the real axis and an additional contour. We must then evaluate
the integral along this additional contour as well as the closed contour
integral. If we have properly chosen our closed contour, this additional
integral will vanish. For certain classes of general integrals, we shall now
show that this additional contour is a circular arc at infinity.

Theorem: If, on a circular arc Cgr with a radius R and center at the
origin, 2f(z) — 0 uniformly with |z| € Cr and as R — oo, then

lim f(z)dz = 0. (1.9.7)
R—o0 CR

This follows from the fact that if |zf(z)] < Mg, then |f(z)|] <
Mpg/R. Because the length of Cg is R, where « is the subtended
angle,

f(z)dz} < %R@ aR=aMgr — 0, (1.9.8)

Cr

because Mrp — 0 as R — oo. ]
o Example 1.9.2

A simple illustration of this theorem is the integral

e dx dz
-_— = —_— 1.99
/:oo:c2+z+1 /Clz2+z+1 ( )
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A quick check shows that z/(2% + 2 + 1) tends to zero uniformly as
R — oco. Therefore, if we use the contour pictured in Figure 1.9.1,

o dz dz 1
—_— = — =9 . 1l
/_Oox2+x+1 ji-z2+z+1 71-1R“es(z2—{~,z+l’ 2t %"

(1.9.10)
1 27
=2m lim = —. 1.9.11
z—»—%-&-igi (22 + 1) \/5 ( )
e Example 1.9.3
Let us evaluate o g
z
—_ 1.9.12
In place of an infinite semicircle in the upper half-plane, consider
the following integral
d
}{ = (1.9.13)
c ? + 1

where we show the closed contour in Figure 1.9.2. We chose this contour
for two reasons. First, we only have to evaluate one residue rather than
the three enclosed in a traditional upper half-plane contour. Second, the
contour integral along Cj3 simplifies to a particularly simple and useful
form.

Because the only enclosed singularity lies at z = e™/¢

dz . 1 i/6 . . 2 — e™i/6
‘i m = 277 Res <26 T 1,6 =27 z_l,leIP;/s z6—+1— (1914)

.. 1 T o
= 2mi z.ller’{l'/s 6= —?e" s, (1.9.15)

Let us now evaluate (1.9.12) along each of the legs of the contour:

dz *  dx
- = e 1.9.16
/c,z6+1 /0 T (1.9.16)

dz
— =0 1.9.17

because of (1.9.7) and

dz 0 emi/3 gp . mi/3 *® dr 1918
T[S e [T ey
e 5 +1 ), 11 ) 041
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\n/ 3

C, X

Y

Figure 1.9.2: Contour used in evaluating the integral (1.9.13).

since z = re™/3,

Substituting into (1.9.15),

. *®  dz T
_ ,mi/3 _ _ "t wi/6
(1-e )/0 e (1.9.19)
or
©  de e 2ie™i/6 T T
_m_ & _ =T (1920
/0 2841 6 emi/6 (em/6 — -7i/6) "~ Bsin(n/6) 3 ( )

Problems

Use the residue theorem to verify the following integral:

1.
/°° dz __7r\/§
o xi+17 4
2.
/°° dz _T
oo (22 +42+5)2 2
3.
/°° zdz T
oo (2 (22 +224+2) 5
4.

o gl T
— dr ==
/0 S+17 7%
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5.
/°° dz _w
o (22+1)? T4
6.
/ ” da _ o
o (24 1)(z2+4)2 " 288
7.

SNE

/°° t2 gt = 1 1—h/a
o @+ D[Ee/h+ 1)+ (a/h— D] T+h/a|’
where h/a < 1.

8. During an electromagnetic calculation, Strutt® needed to prove that

smh (oz) 9 Z cos[(n+ %) (z — )]
cosh(mr) — o2+ (n+i )

=l

Verify his proof.

Step 1: Using the residue theorem, show that

bl

1 f sinh(zz) dz sinh(oz) Y. (=) sin[(n+ 3) 2]
- m =7 - E 3 1
271 Jo, cosh(mz)z—o cosh(om) | c—i(n+3)

where Cy is a circular contour that includes the poles z = o and z, =
+i(n+3),n=0,1,2,...,N.

Step 2: Show that in the limit of N — oo, the contour integral vanishes.
[Hint: Examine the behavior of z sinh(zz)/[(z—0) cosh(72)] as |z| — co.
Use (1.9.7) where Cpg is the circular contour.]

Step 3: Break the infinite series in Step 1 into two parts and simplify.

In the next chapter we shall show how we can obtain the same series
by direct integration.

8 Strutt, M. J. O., 1934: Berechnung des hochfrequenten Feldes
einer Kreiszylinderspule in einer konzentrischen leitenden Schirmhiulle
mit ebenen Deckeln. Hochfrequenztechn. Elecktroak., 43, 121-123.



Chapter 2

Fourier Series

Fourier series arose during the eighteenth century as a formal solu-
tion to the classic wave equation. Later on, it was used to describe phys-
ical processes in which events recur in a regular pattern. For example, a
musical note usually consists of a simple note, called the fundamental,
and a series of auxiliary vibrations, called overtones. Fourier’s theo-
rem provides the mathematical language which allows us to precisely
describe this complex structure.

2.1 FOURIER SERIES

One of the crowning glories! of nineteenth century mathematics

! “Fourier’s Theorem ... is not only one of the most beautiful re-
sults of modern analysis, but may be said to furnish an indispensable
instrument in the treatment of nearly every recondite question in mod-
ern physics. To mention only sonorous vibrations, the propagation of
electric signals along a telegraph wire, and the conduction of heat by
the earth’s crust, as subjects in their generality intractable without it,
is to give but a feeble idea of its importance.” (Quote taken from Thom-
son, W. and Tait, P. G., 1879: Treatise on Natural Philosophy, Part I,
Cambridge University Press, Cambridge, Section 75.)
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was the discovery that the infinite series

+Zan cos( )+b sin ("gt> (2.1.1)

can represent a function f(¢) under certain general conditions. This
series, called a Fourier series, converges to the value of the function
f(t) at every point in the interval [—L, L] with the possible exceptions
of the points at any discontinuities and the endpoints of the interval.
Because each term has a period of 2L, the sum of the series also has the
same period. The fundamental of the periodic function f(¢) is then =1
term while the harmonics are the remaining terms whose frequencies
are integer multiples of the fundamental.

We must now find some easy method for computing the a,’s and
b,’s for a given function f(¢). As a first attempt, we integrate (2.1.1)
term by term? from —L to L. On the right side, all of the integrals
multiplied by a,, and b, vanish because the average of cos(nwt/L) and
sin(nwt/L) is zero. Therefore, we are left with

a0 = l/L £() dt. (2.1.2)

Consequently ag is twice the mean value of f(¢) over one period.
We next multiply each side of (2.1.1) by cos(m=t/L), where m is a
fixed integer. Integrating from —L to L,

[ ()
S [ o (7)o (1)
+§: /sm("”) os(mgrt) dt. (2.1.3)

The ap and b,, terms vanish by direct integration. Finally all of the a,

2 We assume that the integration of the series can be carried out term
by term. This is sometimes difficult to justify but we do it anyway.
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integrals vanish when n # m. Consequently, (2.1.3) simplifies to

L
an = —}:/_L f(t) cos (nTﬂ> dt,

(2.1.4)

because f_LL cos?(nwt/L)dt = L. Finally, by multiplying both sides of
(2.1.1) by sin(mnt/L) (m is again a fixed integer) and integrating from

—~L to L,

L
by = %/_L f(t)sin (nTﬂ) dt.

(2.1.5)

Although (2.1.2), (2.1.4), and (2.1.5) give us ao, a,, and b, for
periodic functions over the interval [—L, L], in certain situations it is
convenient to use the interval [r, 7 + 2L], where 7 is any real number.

In that case, (2.1.1) still gives the Fourier series of f(t) and

1=

T74+2L
/ £(t) dt,

T

(2.1.6)

These results follow when we recall that the function f(t) is a peri-
odic function that extends from minus infinity to plus infinity. The
results must remain unchanged, therefore, when we shift from the inter-
val [-L, L] to the new interval [, 7+ 2L].

We now ask the question: what types of functions have Fourier
series? Secondly, if a function is discontinuous at a point, what value
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will the Fourier series give? Dirichlet®* answered these questions in
the first half of the nineteenth century. He showed that if any arbitrary
function is finite over one period and has a finite number of maxima and
minima, then the Fourier series converges. If f(¢) is discontinuous at the
point ¢ and has two different values at f(¢~) and f(¢*), where t* and
t~ are points infinitesimally to the right and left of ¢, the Fourler series
converges to the mean value of [f(¢*) + f(t7)]/2. Because Dirichlet’s
conditions are very mild, it is very rare that a convergent Fourier series
does not exist for a function that appears in an engineering or scientific
problem.

e Example 2.1.1

Let us find the Fourier series for the function

0, -T<t<0
o) = {t, 0<t< (2.1.7)

We compute the Fourier coefficients e, and b, using (2.1.6) by
letting L = w and 7 = —w. We then find that

1 /7 1 [ T

ap = ; . f(t) dt = ;A tdt = 5, (218)
an = l/ t cos(nt) dt = 1 [tSIH(nt) + cos(2nt)] (2.1.9)

T Jo T n n 0

_cos(nm) -1 (=1)" -1
= (2.1.10)
because cos(n7) = (—1)" and

by = l/ tsin(nt)dt = — ["t cos(nt) | Sln(:t)] (2.1.11)

7 Jo T n n 0
_ _cos(nm) _ (=)™ (2.1.12)

n n

3 Dirichlet, P. G. L., 1829: Sur la convergence des séries trigonométri-
ques qui servent & représenter une fonction arbitraire entre des limites
données. J. reine angew. Math., 4, 157-169.

* Dirichlet, P. G. L., 1837: Sur I'usage des intégrales définies dans
la sommation des séries finies ou infinies. J. reine angew. Math., 17,
57-67.
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Figure 2.1.1: A product of the French Revolution, (Jean Baptiste)
Joseph Fourier (1768-1830) held positions within the Napoleonic Em-
pire during his early career. After Napoleon’s fall from power, Fourier
devoted his talents exclusively to science. Although he won the Institut
de France prize in 1811 for his work on heat diffusion, criticism of its
mathematical rigor and generality led him to publish the classic book
Théorie analytique de la chaleur in 1823. Within this book he intro-
duced the world to the series that bears his name. (Portrait courtesy of
the Archives de I’Académie des sciences, Paris.)

for n=1,2,3,.... Thus, the Fourier series for f(t) is

)n+1

5

sin(nt)  (2.1.13)

W

f) ==+ E — )n L cos(nt) LU

=1

|
SN

2 & cos[(2m — 1)t - .
- Z;l 2m— 1)2)] nZ:::l(—n—sm(nt). (21.14)
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Figure 2.1.2: Second to Gauss, Peter Gustav Lejeune Dirichlet (1805-
1859) was Germany’s leading mathematician during the first half of the
nineteenth century. Initially drawn to number theory, his later studies
m analysis and applied mathematics led him to consider the conver-
gence of Fourier series. These studies eventually produced the modern
concept of a function as a correspondence that associates with each real
z in an interval some unique value denoted by f(z). (Taken from the
frontispiece of Dirichlet, P. G. L., 1889: Werke. Druck und Verlag von
Georg Reimer, Berlin, 644 pp.) ’

We note that at the points t = +(2n — I)m, where n = 1,2,3, ..,
the function jumps from zero to 7. To what value does the Fourier
series converge at these points? From Dirichlet’s conditions, the series
converges to the average of the values of the function just to the right
and left of the point of discontinuity, i.e., (7 + 0)/2 = n/2. At the
remaining points the series converges to f(t).

In Figure 2.1.3 we show how well (2.1.13) approximates the function
by graphing various partial sums of (2.1.13) as we include more and more
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5 T T

mean plus 1 term

mean plus 2 terms

mean plus 3 terms

mean plus 4 terms

mean plus 5 terms

Figure 2.1.3: Partial sum of the Fourier series for (2.1.7).

57

terms (harmonics). As the figure shows, successive corrections are made
to the mean value of the series, /2. As each harmonic is added, the

Fourier series fits the function better in the sense of least squares:

T+2L
/ (f(x) - fn (17)]2 dr = minimum,

where fxn(z) is the truncated Fourier series of N terms.

e Example 2.1.2

(2.1.15)

Let us calculate the Fourier series of the function f(¢) = |t| which
is defined over the range —7 <t < 7.
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From the definition of the Fourier coefficients,

1 0 w
a():—[/ —tdt—i—/ tdt]:
m -7 0

an = [/0 —~t cos(nt) dt + /;W t cos(nt) dt] (2.1.17)

-7

+g=m (2.1.16)

o N

nt sin(nt) + cos(nt) 0

+ ntsin(nt) + cos(nt) |

= 2.1.18
n?mw o nw 0 ( )
2 n
- m[(_l) —1] (2.1.19)
and
1 0 X
b, = p [/ —tsin(nt) dt +/ t sin(nt) dt] (2.1.20)
-7 0
. 0 . T
_n cos(nt) —sin(nt)|"  ntcos(nt) — sin(nt) —0 (2121)
nir o nin 0
forn =1,2,3,.... Therefore,
T 2 = 1)" T4 cos[(2m — 1)t]
= — — —_——
i 2 T z_: COS(-nt) 2 E (2m —1)2

(2.1.22)
for - <t <.

In Figure 2.1.4 we show how well (2.1.22) approximates the function
by graphing various partial sums of (2.1.22). As the figure shows, the
Fourier series does very well even when we use very few terms. The
reason for this rapid convergence is the nature of the function: it does
not possess any jump discontinuities.

e Example 2.1.3
Sometimes the function f(t) is an even or odd function.® Can we

use this property to simplify our work? The answer is yes.
Let f(t) be an even function. Then

L L
a0 = %/_L f(t)dt = %/0 £(t) dt (2.1.23)

5 An even function f.(t) has the property that f.(—t) = fe(t); an
odd function f,(t) has the property that f,(—t) = —fo(t).
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mean plus | term
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mean plus 2 terms
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mean plus 6 terms

Figure 2.1.4: Partial sum of the Fourier series for f(t) = |t|.

and

L
a, = %[_L f(t) cos ("_21

whereas

L
by = %/_L f(t)sin ("T“) dt = 0.

Here we have used the properties that f_LL fe(z)dz = 2f0L fe(z) dz and

f_LL Jo(z)dz = 0. Thus, if we have an even function, we merely compute

59

) dt = %/OL £(2) cos ("—2’1) dt (21.24)

(2.1.25)

ao and a, via (2.1.23)-(2.1.24) and b, = 0. Because the corresponding
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series contains only cosine terms, it is often called a Fourier cosine
series.

Similarly, if f(t) is odd, then

L
ag=2a, =0 and b, = —2—/ f(t)sin (n—ﬂ> dt. (2.1.26)
L J, L

Thus, if we have an odd function, we merely compute b, via (2.1.26)
and ag = a, = 0. Because corresponding series contains only sine terms,
it is often called a Fourier sine series.

o Example 2.1.4

In the case when f(z) consists of a constant and/or trigonometric
functions, it is much easier to find the corresponding Fourier series by
inspection rather than by using (2.1.6). For example, let us find the
Fourier series for f(z) = sin’(z) defined over the range —7 <z < 7.

We begin by rewriting f(z) = sin’(z) as f(z) = %[1 — cos(2z)].
Next, we note that any function defined over the range —7 < = < 7 has
the Fourier series

flz) = a2_0 + nz—:l an cos(nz) + by sin(ne) (2.1.27)
= 02—0 + aj cos(z) + by sin(z) + aa cos(22) + basin(2z) + - - -
(2.1.28)

On the other hand,

f(z) = § — § cos(2z) (2.1.29)
L +0cos(z) + Osin(z) — § cos(2z) + Osin(2z) +---  (2.1.30)

Consequently, by inspection, we can immediately write that
ags=1,a1=b; =0,ay = —‘%,bQ =0,a,=b,=0,n>3. (2.1.31)

Thus, instead of the usual expansion involving an infinite number of
sine and cosine terms, our Fourier series contains only two terms and is
simply

f(z) =1~ Lcos(2z), —r<r<m. (2.1.32)

o Example 2.1.5: Quieting snow tires

An application of Fourier series to a problem in industry occurred
several years ago, when drivers found that snow tires produced a loud
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whine® on dry pavement. Tire sounds are produced primarily by the
dynamic interaction of the tread elements with the road surface.” As
each tread element passes through the contact patch, it contributes a
pulse of acoustic energy to the total sound field radiated by the tire.

For evenly spaced treads we envision that the release of acoustic
energy resembles the top of Figure 2.1.5. If we perform a Fourier analysis
of this distribution, we find that

—7/24¢ n/2+4¢
ol [ [ e | m] e (2.1.33)
T ™

T —m/2—¢ /2—¢

where ¢ is half of the width of the tread and

1 —7m/2+4¢€ m/24€
ap, = = / cos(nt) dt +/ cos(nt)dt| (2.1.34)
T —7r/2—¢ Tf2~¢
1 g, - .
=— [sm(nt)|_:;§tz + sin(nt) :ﬁi] (2.1.35)
171, nmw . nmw
= o [sm (—? + nc) ~ s1n (—7 - ne)
+ sin (712_7r + ne) - sin (712_7r - ne)] (2.1.36)
1 nw nmw\] .
=— [2 cos (——2—) + 2 cos (7)] sin(ne) (2.1.37)
4 nwy .
= ——cos (—2—-) sin(ne). (2.1.38)

Because f(t) is an even function, b, = 0.

The question now arises of how to best illustrate our Fourier coeffi-
cients. In Section 2.4 we will show that any harmonic can be represented
as a single wave A, cos(nwt/L + ¢,) or Ay sin(nnt/L + 4,), where the
amplitude A, = /a2 + 2. At the bottom of Figure 2.1.5, we have
plotted this amplitude, usually called the amplitude or frequency spec-
trum 3\/a2 + b2, as a function of n for an arbitrarily chosen € = 7/12.
Although the value of ¢ will affect the exact shape of the spectrum,
the qualitative arguments that we will present remain unchanged. We
have added the factor % so that our definition of the frequency spec-
trum is consistent with that for a complex Fourier series stated after
(2.5.15). The amplitude spectrum in Figure 2.1.5 shows that the spec-

trum for periodically placed tire treads has its largest amplitude at small

® Information based on Varterasian, J. H., 1969: Math quiets rotating
machines. SAE J., 77(10), 53.

" Willett, P. R., 1975: Tire tread pattern sound generation. Tire Sci.
Tech., 3, 252-266.
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Figure 2.1.5: Temporal spacing (over two periods) and frequency spec-
trum of a uniformly spaced snow tire.

n. This produces one loud tone plus strong harmonic overtones because
the n = 1 term (the fundamental) and its overtones are the dominant
terms in the Fourier series representation.

Clearly this loud, monotone whine is undesirable. How might we
avoid it? Just as soldiers marching in step produce a loud uniform sound,
we suspect that our uniform tread pattern is the problem. Therefore,
let us now vary the interval between the treads so that the distance
between any tread and its nearest neighbor is not equal. Figure 2.1.6
illustrates a simple example. Again we perform a Fourier analysis and
obtain that

1 —1I'/2+€ 1I'/4+€ 46
a0 =~ / 1clt+/ 1dt| = —, (2.1.39)
T ™

-mf2—¢€ [/4—c¢
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Figure 2.1.6: Temporal spacing and frequency spectrum of a nonuni-
formly spaced snow tire.

1 —7/2+4€ w[4+e
an —/ cos(nt)dt+/ cos(nt)dt| (2.1.40)

w —m/2—¢ T/d-¢
1 —m/24¢ w/44¢€
= —ssin(nt) + — sin(nt) (2.1.41)
nmw —rj2-¢ N7 T/4—¢

i ) ()
[sm ( ne) — sin (—— - ne)] (2.1.42)

= % [cos( 5 ) + cos (714—71-)] sin(ne) (2.1.43)

and
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b, =

A~

n/2—-¢ w/d4—e€

= _n%r [cos (%ﬂ: — nc) — cos (n2—ﬂ' + ne)]
1 nw nm
Y [cos (T + ne) — cos (71— - ne)] (2.1.45)
-2 [sin (27) - sin (%)] sin(ne). (2.1.46)

nmw 4

—7n/24¢ /4+e
[/ sin(nt) dt + / sin(nt) dt] (2.1.44)

Figure 2.1.6 illustrates the amplitude of each harmonic as a function
of n. The important point is that our new choice for the spacing of the
treads has reduced or eliminated some of the harmonics compared to
the case of equally spaced treads. On the negative side we have excited
some of the harmonics that were previously absent. However, the net
effect is advantageous because the treads produce less noise at more
frequencies rather than a lot of noise at a few select frequencies.

If we were to extend this technique so that the treads occurred at
completely random positions, then the treads would produce very little
noise at many frequencies and the total noise would be comparable to
that generated by other sources within the car. To find the distribution
of treads with the whitest noise® is a process of trial and error. Assuming
a distribution, we can perform a Fourier analysis to obtain the frequency
spectrum. If annoying peaks are present in the spectrum, we can then
adjust the elements in the tread distribution that may contribute to the
peak and analyze the revised distribution. You are finished when no
peaks appear.

Problems

Find the Fourier series for the following functions. Plot various partial
sums and compare them against the exact function.

1.
-T<t<0

17
f(t)z{o, O<t<m

t, -T<t<0
f(t)_{O, O<t<m

8 White noise is sound that is analogous to white light in that it is
uniformly distributed throughout the complete audible sound spectrum.
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10.

11.

12.

13.

-, —-rT<t<0
o={7T TS

0, —-T1<t<0
f(t):{ t, 0<t< /2

7 —t, 7/2<t< T

1

1+t -1<t<0
t)=<2 S
1® {%—t, 0<t<1
fy=e*, —-L<it<lL

0, -r<t<0
fo) = {sin(t), 0<t<r

fO)=t+t*, -—-L<t<lL
t -i1<t<t
) = ) 2>t 3
0 {1—t, 3<t<3
0, —-r<t< ~-n/2
f(t) = < sin(2t), —7r/2<t< w2
0, T/2<t< 7w
0, —a<t<0
f(t)_{Qt O0<t<a
T—1
fit) = 7 0<t<2

65
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14.
Tr<t<0

0’ - =
f(t):{ﬂ, 0<t<m

- f(t) = sinh [a (% - ltl)] ,  —r<t<m

2.2 PROPERTIES OF FOURIER SERIES

In the previous section we introduced the Fourier series and showed
how to compute one given the function f(¢). In this section we examine
some particular properties of these series.

I Differentiation of a Fourier series '

In certain instances we only have the Fourier series representation
of a function f(t). Can we find the derivative or the integral of f(t)
merely by differentiating or integrating the Fourier series term by term?
Is this permitted? Let us consider the case of differentiation first.

Consider a function f(t) of period 2L which has the derivative f/(t).
Let us assume that we can expand f/(t) as a Fourier series. This implies
that f'(t) is continuous except for a finite number of discontinuities and
f(t) is continuous over an interval that starts at ¢ = 7 and ends at
t =7+ 2L. Then

/

- +Za cos( )+b' i ("Tﬂ) (2.2.1)

where we have denoted the Fourier coefficients of f’(¢) with a prime.
Computing the Fourier coefficients,

1 742L 1

a = f/ F)dt= 3 +20) - f(] =0,  (2.22)

if f(1+2L) = f(7). Similarly, by integrating by parts,

, 1 T+2L , t
o, = f/, £(t) cos (%) dt (2.2.3)
T+2L T+2L

- % [f(t)cos ("T’”)] o %’;} f(t)sm( ) dt (2.2.4)
L (2.2.5)

L
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and
T+2L
B, = % / " ity sin ("T”t) dt (2.2.6)
T+2L 74+2L
_ %[f(t)sin (f?)] - - T ' f(t)cos( - ) dt (2.2.7)
=—"¥“. (2.2.8)

Consequently, if we have a function f(t) whose derivative f’(t) is contin-
uous except for a finite number of discontinuities and f(7) = f(r+2L),

then
>\ nw nmwt . nnt
"t) = ; T [bn cos (T) — ap sin (T)] . (2.2.9)

That is, the derivative of f(¢) is given by a term-by-term differentiation
of the Fourier series of f(t).

e Example 2.2.1

The Fourier series for the function

0, —r<t<0
ﬂnz{ t, 0<t< /2 (2.2.10)
T —1, rf2<t<™

is

ft) = % _ %; COS([;(l?f 1—) 21)11 % Zz: )" > sin[(2n — 1)t].

(2.1.11)
Because f(t) is continuous over the entire interval (-, 7) and f(—7) =
f(m) =0, we can find f'(¢) by taking the derivative of (2.2.11) term by
term:

£(t) = Z sm[22(jri—1 1)¢] %Z

n=1

cos[(2n - 1)t]. (2.2.12)

This is the Fourier series that we would have obtained by computing
the Fourier series for

0, -T<t<0
F@)= { 1, 0<t< /2 (2.2.13)
-1, r/2<t< .
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I Integration of a Fourier series

To determine whether we can find the integral of f(t) by term-by-
term integration of its Fourier series, consider a form of the antideriva-

tive of f(¢):

F(t) = /Ot[ f(r) = 2] ar (2.2.14)
Now
F(t+2L)=/0t -2 dr+[t+2L - 2] dar (2215)
= F(t) + /_ [£(r) - 5‘22] dr (2.2.16)
=ro+ [ () dr — Lao = F(0), (22.17)

so that F'(?) has a period of 2L. Consequently we may expand F(t) as
the Fourier series

F(t)=22 4 f:An cos ( ) + B, sin ("Lt) . (2.2.18)

For A,,,

1 [E nwt
1 sin(nwt/L)] | 1 ff ag} . [nnt
=1 [F(f)w} vy [ = ] sin (77 ) at
(2.2.20)
by,
=TT (2.2.21)
Similarly,
an :
Ba= o tr (2.2.22)
Therefore,
_ aot Ao 2\ a, sin(nwt/L) ~ by, cos(nmt/L)
/ f(r +5 =+ -3 . (2.2.23)

n=1
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This is identical to a term-by-term integration of the Fourier series for
f(t). Thus, we can always find the integral of f(t) by a term-by-term
integration of its Fourier series.

e Example 2.2.2

The Fourier series for f(t) =t for —7 <t < wis

fty=-25" (=1 sin(nt). (2.2.24)

n

To find the Fourier series for f(t) = t?, we integrate (2.2.24) term by
term and find that

t =2 i (_12)n cos(nt) — 2 i (=" (2.2.25)
0 n=1 n=1

2
2 n n?

But 5.°°,(—1)"/n? = —x?/12. Substituting and multiplying by 2, we
obtain the final result that

) _ T — (="
t° = £l +4Z 5— cos(nt). (2.2.26)
n=1

n
L Parseval’s equality

One of the fundamental quantities in engineering is power. The
power content of a periodic signal f(t) of period 2L is fTT+2L f(t)dt/L.
This mathematical definition mirrors the power dissipation I?R that
occurs in a resistor of resistance R where I is the root mean square
(RMS) of the current. We would like to compute this power content as
simply as possible given the coefficients of its Fourier series.

Assume that f(¢) has the Fourier series

f@) = 229 + Z @y COS (nTﬂ) + by, sin (nTﬂ) . (2.2.27)
n=1
Then,
1 74+2L a 742L
7 / F2(t)dt = 5% f(t)dt
o an T+2L nw
— t _ t
+nZ=:1 : f( )cos( 7 ) d

0 T42L
+Zlbf"/r ’ () sin (Pth> dt  (2.2.28)

2 oQ
- %" + 3 (a? +52). (2.2.29)
n=1
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Equation (2.2.29) is Parseval’s equality.® It allows us to sum squares
of Fourier coefficients (which we have already computed) rather than

performing the integration fT+2L F?

(t) dt analytically or numerically.
e Example 2.2.3

The Fourier series for f(t) = t* over the interval [-r, ] is

= % Z cos(nt). (2.2.30)
Then, by Parseval’s equality,
1 . 2% |7 4rt 1
;/_"t dt = 5, =TT 167;7—Iz (2.2.31)
2 4\ 4, 1
'(3 _ Tg) = 16; — (2.2.32)
S |
5= > = (2.2.33)

I Gibbs phenomena

In the actual application of Fourier series, we cannot sum an infinite
number of terms but must be content with N terms. If we denote this
partial sum of the Fourier series by Sy(t), we have from the definition
of the Fourier series:

N :
Sn(t) = $ao +,Zan cos(nt) + by, sin(nt) (2.2.34)
n=1
1

27
= ﬁ A f(:c) dz

% Parseval, M.-A., 1805: Mémoire sur les séries et sur Pintégration
compléte d’une equatlon aux différences partielles linéaires du second
ordre, & coefficients constants. Mémoires présentés a I'Institut des sci-
ences, lettres et arts, par divers savans, el lus dans ses assemblées:
Sciences mathématiques et Physiques, 1, 638-648.
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Figure 2.2.1: The scanning function over 0 < z < 27 for N = 5.

1 2% N
+ ; f(z) [ E cos(nt) cos(nz) + sin(nt) sin(nx):| dz
) (2.2.35)
27 N
Sn(t) = % /0. f(z) {% + Z cos[n(t — x)]} dz (2.2.36)
1 [ sin[(NV + 1)(z — 1)) p (2.2.37)

~ar )y () sin[2(z —t)]

The quantity sin[(N + 3)(z —1)]/ sin[3(z —1)] is called a scanning func-
tion. Over the range 0 < z < 27 it has a very large peak at z =t where
the amplitude equals 2N + 1. See Figure 2.2.1. On either side of this
peak there are oscillations which decrease rapidly with distance from
the peak. Consequently, as N — oo, the scanning function becomes
essentially a long narrow slit corresponding to the area under the large
peak at z = t. If we neglect for the moment the small area under the
minor ripples adjacent to this slit, then the integral (2.2.37) essentially
equals f(t) times the area of the slit divided by 27. If 1/2x times the
area of the slit equals unity, then the value of Sy(t) & f(t) to a good
approximation for large V.
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For a relatively small value of N, the scanning function deviates
considerably from its ideal form, and the partial sum Sy (t) only crudely
approximates the given function f(¢). As the partial sum includes more
terms and N becomes relatively large, the form of the scanning function
improves and so does the degree of approximation between Sy (t) and
f(t). The improvement in the scanning function is due to the large
hump becoming taller and narrower. At the same time, the adjacent
ripples become larger in number and hence also become narrower in the
same proportion as the large hump becomes narrower.

The reason why Sy(t) and f(¢) will never become identical, even
in the limit of N — o0, is the presence of the positive and negative side
lobes near the large peak. Because

sin[(N + $)(z — t)]
sin[3(z — t)]

N
=1+2 Z cos[n(t — z)], (2.2.38)

an integration of the scanning function over the interval 0 to 27 shows
that the total area under the scanning function equals 2x. However,
from Figure 2.2.1 the net area contributed by the ripples is numerically
negative so that the area under the large peak must exceed the value
of 27 if the area of the entire function equals 27. Although the exact
value depends upon N, it is important to note that this excess does not
become zero as N — oo.

Thus, the presence of these negative side lobes explains the depar-
ture of our scanning function from the idealized slit of area 27. To
illustrate this departure, consider the function:

ft) = {_11 7?<<tt<<2”7r' (2.2.39)
Then,
_ 1 [Tsin[(N + Dz -1)) 1 [?"sin[(N + %)(z —1)]
Sw(t) = %/0 sin[%(; —1)] i sin[1(z — 1)] da
(2.2.40)
1 [T sinl(N+3)—1)]  sinl(N +5)(z +1)] .
= 27r/0 { sl 0] T sl 4] }
(2.2.41)
1 [™!sin[(N + 1)g] 1 ™ sin[(N + 1))
T om /_, sin(%t?)2 d0 - %,/, sin(%ﬁ)2 6.
(2.2.42)

The first integral in (2.2.42) gives the contribution to Sx(t) from the
Jump discontinuity at ¢ = 0 while the second integral gives the con-
tribution from ¢ = x. In Figure 2.2.2 we have plotted the numerical
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Figure 2.2.2: The finite Fourier series representation Sy(t) for the
function (2.2.39) for the range ~1 <t < 7 for N = 27 and N = 81.

integration of (2.2.42) for N = 27 and N = 81. Residual discrepancies
remain even for very large values of N. Indeed, even as N increases this
figure changes only in that the ripples in the vicinity of the discontinuity
of f(t) show a proportionally increased rate of oscillation as a function
of ¢ while their relative magnitude remains the same. As N — oo these
ripples compress into a single vertical line at the point of discontinu-
ity. True, these oscillations occupy smaller and smaller spaces but they
still remain. Thus, we can never approximate a function in the vicin-
ity of a discontinuity by a finite Fourier series without suffering from
this over- and undershooting of the series. This peculiarity of Fourier
series is called the Gibbs phenomena.’® Gibbs phenomena can only be
eliminated by removing the discontinuity.!?

10 Gibbs, J. W., 1898: Fourier’s series. Nature, 59, 200; Gibbs, J.
W., 1899: Fourier’s series. Nature, 59, 606. For the historical develop-
ment, see Hewitt, E. and Hewitt, R. E., 1979: The Gibbs-Wilbraham
phenomenon: An episode in Fourier analysis. Arch. Hist. Ezact Seci.,
21, 129-160.

! For a particularly clever method for improving the convergence of
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Problems

Additional Fourier series representation can be generated by differenti-
ating or integrating known Fourier series. Work out the following two
examples.

1. Given
oo
x? —27r:c Z cos{(2n + 1)z ], 0<z<m
— (2n+1)2 -
obtain
2, oo
w2z — wz? =Zsm[2n+l)z’] 0<z<m

(2n+1)3 °

by term-by-term integration. Could we go the other way, i.e., take the
derivative of the second equation to obtain the first? Explain.

2. Given
7 =322 & n+1 cos(ne)
i § _ +1Z7P\ ) _
12 - "_1( 1) n2 ) T S x S T,
obtain

z - 23 1)n+1s1n(n:c) r<z<n

IIM8

by term-by-term integration. Could we go the other way, i.e., take the
derivative of the second equation to obtain the first? Explain.

3. (a) Show that the Fourier series for the odd function:

2+ -2<t<0
f(t)_{Qt—tz, 0<t<2

1s

£(t) = 3—3§ T [(2”‘2”“] |

a trigonometric series, see Kantorovich, L. V. and Krylov, V. 1., 1964:
Approzimate Methods of Higher Analysis. Interscience, New York, pp.
77-88.
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(b) Use Parseval’s equality to show that

6 Ao 1

960 ; (2n—1)8"

This series converges very rapidly to 7°/960 and provides a convenient
method for computing .

2.3 HALF-RANGE EXPANSIONS

In certain applications, we will find that we need a Fourler series
representation for a function f(z) that applies over the interval (0, L)
rather than (—L, L). Because we are completely free to define the func-
tion over the interval (—L, 0), it is simplest to have a series that consists
only of sines or cosines. In this section we shall show how we can obtain
these so-called half-range expansions.

Recall in Example 2.1.3 how we saw that if f(z) is an even function
[fo(z) = 0], then b, = 0 for all n. Similarly, if f(z) is an odd function
[fe(z) = 0], then ag = a, = 0 for all n. We now use these results to find
a Fourier half-range expansion by extending the function defined over
the interval (0,L) as either an even or odd function into the interval
(—L,0). If we extend f(x) as an even function, we will get a half-range
cosine series; if we extend f(x) as an odd function, we obtain a half-
range sine series.

It is important to remember that half-range expansions are a special
case of the general Fourier series. For any f(z) we can construct either
a Fourlier sine or cosine series over the interval (—L, L). Both of these
series will give the correct answer over the interval of (0, L). Which one
we choose to use depends upon whether we wish to deal with a cosine
or sine series.

e Example 2.3.1

Let us find the half-range sine expansion of

f(z) =1, O<z <. (2.3.1)
We begin by defining the periodic odd function
= -1, —T<r<0
f(w)—{ 1 O<eoe<n (2.3.2)
with f(z 4 27) = f(z). Because f(z) is odd, ap = a, = 0 and
2 [ 2 x
b, = ;/0 Isin(ne)dz = - cos(n)l, (2.3.3)

—% [cos(nm) — 1] = —;12—” (=)™ =1]. (2.3.4)
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Figure 2.3.1: Partial sum of N terms in the Fourier half-range sine
representation of a square wave.

The Fourier half-range sine series expansion of f(z) is therefore

2 — 1) ] 4 >, sin[(2m — 1)z]
= ; Z sm(n.L') . Z W (235)
n=1 m=1
As counterpoint, let us find the half-range cosine expansion of
f(z)=1,0 <z <. Now, we have that b, = 0,

ap = 2/ lde =2 (2.3.6)
T Jo
and
2 /7r cos(nz) dz 2 sin(nz)|; =0 (2.3.7)
a" = - = — = . Y N
T Jo nw 0

Thus, the Fourier half-range cosine expansion equals the single term:
f(z) =1, D<ez <. (2.3.8)

This is perfectly reasonable. To form a half-range cosine expansion we
extend f(z) as an even function into the interval (—,0). In this case,
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we would obtain f(z) = 1 for =7 < z < 7. Finally, we note that the
Fourier series of a constant is simply that constant.

In practice it is impossible to sum (2.3.5) exactly and we actu-
ally sum only the first N terms. Figure 2.3.1 illustrates f(z) when
the Fourier series (2.3.5) contains N terms. As seen from the figure,
the truncated series tries to achieve the infinite slope at ¢ = 0, but
in the attempt, it overshoots the discontinuity by a certain amount (in
this particular case, by 17.9%). This is another example of the Gibbs
phenomena. Increasing the number of terms does not remove this pe-
culiarity; it merely shifts it nearer to the discontinuity.

o Example 2.3.2: Inertial supercharging of an engine

An important aspect of designing any gasoline engine involves the
motion of the fuel, air, and exhaust gas mixture through the engine.
Ordinarily an engineer would consider the motion as steady flow; but
in the case of a four-stroke, single-cylinder gasoline engine, the closing
of the intake valve interrupts the steady flow of the gasoline-air mixture
for nearly three quarters of the engine cycle. This periodic interruption
sets up standing waves in the intake pipe — waves which can build up
an appreciable pressure amplitude just outside the input value.

When one of the harmonics of the engine frequency equals one of the
resonance frequencies of the intake pipe, then the pressure fluctuations
at the valve will be large. If the intake valve closes during that portion
of the cycle when the pressure is less than average, then the waves
will reduce the power output. However, if the intake valve closes when
the pressure is greater than atmospheric, then the waves will have a
supercharging effect and will produce an increase of power. This effect
is called inertia supercharging.

While studying this problem, Morse et al.!? found it necessary to
express the velocity of the air-gas mixture in the valve, given by

0, —r<wt<—7/4
f(t) = { wcos(2wt)/2, —wf4 <wt < 7w/4 (2.3.9)
0, rfd<wt<m

in terms of a Fourier expansion. The advantage of working with the
Fourier series rather than the function itself lies in the ability to write
the velocity as a periodic forcing function that highlights the various
harmonics that might be resonant with the structure comprising the
fuel line.

12 Morse, P. M., Boden, R. H., and Schecter, H., 1938: Acoustic vibra-
tions and internal combustion engine performance. I. Standing waves in
the intake pipe system. J. Appl. Phys., 9, 16-23.
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Figure 2.3.2: The spectral coefficients of the Fourier cosine series of
the function (2.3.9).

Clearly f(t) is an even function and its Fourier representation will

be a cosine series. In this problem 7 = —7/w and L = 7 /w. Therefore,
2 7r/4w 7/ 4w
ap = — z cos(2wt) dt = %sin(?wt)l_/:/4 =1 (2.3.10)
T Jow/dw 2 it
and
9 /4w +
an = — Zcos(2¢.ut) cos (nl) dt (2.3.11)
T Jorfaw 2 7!'/0.1
w /4w
= - {cos[(n + 2)wt] + cos[(n — 2)wt]} dt (2.3.12)
2 -7 /4w .
[(n200t]  sinftn=20 |
sin[(n42)wt sin[(n—2)wt
2ng) T 2(n—2)w y n#F2
= | w1 (2.3.13)
th_*_sm!:wt! , n=2
—m /4w
= { NG cos (%), n#2 (2.3.14)
) n=2.

Because these Fourier coefficients become small rapidly (see Figure
2.3.2), Morse et al. showed that there are only about three resonances
where the acoustic properties of the intake pipe can enhance engine
performance. These peaks occur when ¢ = 30¢/NL = 3,4, or 5, where ¢
is the velocity of sound in the air-gas mixture, L is the effective length
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1220 RPM.
2.56" diam.

Figure 2.3.3: Experimental verification of the resonance of the n =
3,4, and 5 harmonics of the Fourier representation (2.3.14) of the flow
of an air-gas mixture with the intake pipe system. The parameter ¢ is
defined in the text. (From Morse, P., Boden, R. H., and Schecter, H.,
1938: Acoustic vibrations and internal combustion engine performance.
J. Appl. Phys., 9, 17 with permission.)

of the intake pipe, and N is the engine speed in rpm. See Figure 2.3.3.
Subsequent experiments!? verified these results.

Such analyses are valuable to automotive engineers. Engineers are
always seeking ways to optimize a system with little or no additional
cost. Our analysis shows that by tuning the length of the intake pipe
so that it falls on one of the resonance peaks, we could obtain higher
performance from the engine with little or no extra work. Of course,
the problem is that no car always performs at some optimal condition.

Problems

Find the Fourier cosine and sine series for the following functions:

- =t o0<t<~
2.
f(t)y=m—1t, O<t<m
> t 0<t<i
f(t)={1_’t’ 1<i<

13 Boden, R. H. and Schecter, H., 1944: Dynamics of the inlet system
of a four-stroke engine. NACA Tech. Note 935.
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10.

11.

12.

13.

Advanced Engineering Mathematics

f(t)=n% %
ro={}
0)
fty=qt-5
%a
1
-+
2t
f(t) = { 3ai;t
2a
2
w={,
f =",
Oy
=91
07
£ = t(a=1),

f(t) =€,

O<t<nm

0<t<1
1<t<?2

0<t<$
a 2a
§<t<?
2?"<t<a

0<t< g
$<t<a

0<t< 2
f£<t<a

0<t< g
f<t<a

0<t<a

0<t< §

3
F<t<F
34—a<t<a

O<t<a

O<t<a
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A= 0, 0<t<$
16y = 1, $<t<a

14.

15. The function

t 3 s
f@)=1-(+a)-+(@-Dz+(@+tl)z-a5, 0<t<m

is a curve fit to the observed pressure trace of an explosion wave in the
atmosphere. Because the observed transmission of atmospheric waves
depends on the five-fourths power of the frequency, Reed'* had to re-
express this curve fit as a Fourier sine series before he could use the
transmission law. He found that

f(t) = %Z % [ %} sin(2nt)

1 OZ 2(a—-1) 48a .
el zz: 2n 1 [ 71_2(2,1 — 1) - T@n— 1) sin[(2n - 1)t].

=1

Confirm his result.
2.4 FOURIER SERIES WITH PHASE ANGLES

Sometimes it is desirable to rewrite a general Fourier series as a
purely cosine or purely sine series with a phase angle. Engineers often
like to speak of some quantity leading or lagging another quantity. Re-
expressing a Fourier series in terms of amplitude and phase provides a
convenient method for determining these phase relationships.

Suppose, for example, that we have a function f(¢) of period 2L,
given in the interval [—L, L], whose Fourier series expansion is

f =3+ Z ap cos < ) + by sin ("zt) . (2.4.1)

We wish to replace (2.4.1) by the series:

ft) = %9 + ) Bpsin (”T” + <pn> . (2.4.2)
n=1

14 From Reed, J. W., 1977: Atmospheric attenuation of explosion
waves. J. Acoust. Soc. Am., 61, 39-47 with permission.
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To do this we note that

. nmt nnt . nwt
B, sin (T + go,,) = a, cos (T) + b, sin (T) (2.4.3)
(1 t
= By sin (%) cos(pn) + By sin(ey, ) cos (%) .
(2.4.4)

We equate coefficients of sin(nnt/L) and cos(nwt/L) on both sides and
obtain

an = By sin(py) and bn = By cos(py). (2.4.5)
Hence, upon squaring and adding,
By = /a2 + b2, (2.4.6)
while taking the ratio gives
@n = tan"(an /bn). (2.4.7)
Similarly we could rewrite (2.4.1) as

f(t) = —2— + E A, cos (T + gon) , (2.4.8)

n=1

where

Ap =+/a2 + b2 and on = tan"(=b,/ay) (2.4.9)
and

an = A, cos(n) and b, = — A, sin(pn). (2.4.10)
In both cases, we must be careful in computing ¢, because there are
two possible values of ¢, which satisfy (2.4.7) or (2.4.9). These ¢,’s
must give the correct a, and b, using either (2.4.5) or (2.4.10).
o Example 2.4.1

The Fourier series for f(t) = €' over the interval —L <t < L is

smh(aL) (-~ nmt
(t) = + 2s1nh aL) Z m (T)

. > arn(=1)" . [nnt
— 2smh(aL) Z m sin (—L—) . (2411)
n=1
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Let us rewrite (2.4.11) as a Fourier series with a phase angle. Regard-
less of whether we want the new series to contain cos(nwt/L + ¢,) or
sin(nwt/L + ¢,), the amplitude A, or B, is the same in both series:

A, =B, =+/a2 +b2 = M. (2.4.12)
If we want our Fourier series to read
f(t) = S‘“h(L“L) + 2sinh(aL) Z cijf%%), (2.4.13)
then
¢n = tan~! <—2—:> = tan™! (%) , (2.4.14)

where @, lies in the first quadrant if n is even and in the third quadrant
if n is odd. This ensures that the sign from the (—1)" is correct.
On the other hand, if we prefer

s1nh(aL) . o= sin(nmt/L + @)
t) = ——— + 2sinh(aL , 2.4.15
ft) = sinn(an) - ST, 241s)
then I
o=l @Y _ 1@
¢n = tan (bn) = —tan (mr) , (2.4.16)

where ¢, lies in the fourth quadrant if n is odd and in the second
quadrant if n is even.

Problems

Write the following Fourier series in both the cosine and sine phase angle
form:

1.
1 2 X sinf(2n —
o=y 255 md
2.
3 2 (=" (2n — 1)t
f(t)—2+7rnz=:l2n_1cos[ 2 ]
3.
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T 4 cos( 2n—1)t]
2_7r712=:1 (2n —1)2

2.5 COMPLEX FOURIER SERIES

So far in our discussion, we have expressed Fourier series in terms
of sines and cosines. We are now ready to reexpress a Fourier series
as a series of complex exponentials. There are two reasons for this.
First, in certain engineering and scientific applications of Fourier series,
the expansion of a function in terms of complex exponentials results
in coefficients of considerable simplicity and clarity. Secondly, these
complex Fourier series point the way to the development of the Fourier
transform in the next chapter.

We begin by introducing the variable

nw
wn = —, (2.5.1)
where n = 0,£1,£2,. ... Using Euler’s formula we can replace the sine

and cosine in the Fourier series by exponentials and find that

(o]
. . b .
ft) = 229 + E In (e +e7int) + 2—7; (ent —e7™nt)  (2.5.2)

‘—-.__q S a_"_M iwnt Eﬁ _bﬂi —iwnt
—2+E(2 2)e +<2+2)e . (25.3)

If we define ¢, as

en = 3(an — iby), (2.5.4)
then
T+2L
en = 2(an —ib,) = 3 f)[cos(wnt) — isin(w,t)]dt  (2.5.5)
1 T42L )
=57 f(t)e™*ntdt. (2.5.6)

Similarly, the complex conjugate of ¢,, ¢}, equals

1 T42L .
¢ = Han +iby) = ﬁ/ ft)entdt. (2.5.7)

To simplify (2.5.3) we note that

—N)T nmw
Won = % = —T = —Wwn, (258)
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which yields the result that

1 T42L . 1 74+2L et
-n = t)e~tw=ntg He*ridt = ¢ (2.5.
=gy [ Sttt g [T fetit= g, (259

so that we can write (2.5.3) as

00 00
_ @ giwnt * _—iwat __ 40 giwnt —twat
_7 E S "t — E +c_pe .

2
(2.5.10)
Letting n = —m in the second summation on the right side of (2.5.10),
oo ) -1 .
Z c_ne—-zw,. . Z em e—zw_mt Z em ezwmt _ Z Cnelw"t,
n=1 m=-1 m=-oo n=-—00
(2.5.11)

where we have introduced m = n into the last summation in (2.5.11).
Therefore,

-1
ft) == + ch font 4 3" cpetnt (2.5.12)

On the other hand,
T+2L
%0 = 515 f(t)dt = co = coe™, (2.5.13)

because wg = O0m/L = 0. Thus, our final result is

e .
D enetnt, (2.5.14)
n=—00
where
1 7+2L )
en = — f()e ™ n" dt (2.5.15)
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and n = 0,%1,+2,.... Note that even though ¢, is generally complex,
the summation (2.5.14) always gives a real-valued function f(?).

Just as we can represent the function f(¢) graphically by a plot of
t against f(t), we can plot ¢, as a function of n, commonly called the
frequency spectrum. Because ¢, is generally complex, it is necessary
to make two plots. Typically the plotted quantities are the amplitude
spectra |c,| and the phase spectra ¢,, where ¢, is the phase of ¢,.
However, we could just as well plot the real and imaginary parts of c,,.
Because n is an integer, these plots consist merely of a series of vertical
lines representing the ordinates of the quantity |c,| or ¢, for each n.
For this reason we refer to these plots as the line spectra.

Because 2c, = a, — tb,, the ¢,’s for an even function will be purely
real; the ¢,’s for an odd function are purely imaginary. It is important
to note that we lose the advantage of even and odd functions in the sense
that we cannot just integrate over the interval 0 to L and then double
the result. In the present case we have a line integral of a complex
function along the real axis.

o Example 2.5.1
Let us find the complex Fourier series for

1, O<t<m
£(t) = {_1, Cret<o (2.5.16)

which has the periodicity f(t + 27) = f(¢).
With L = 7 and 7 = —7, w, = nw/L = n. Therefore,

1 0 —int 1 " —int
=g [ (Dt ﬁ/o (De~™dt  (2.5.17)
1 _° 1 _ial”
- in — n 2.5.18
2nmi Inmi o ( )
_ ___i_ _ pnmi _ {p—nmi _
=-5 (1 e ) + o (e 1) , (2.5.19)

if n # 0. Because e®™ = cos(nm) + isin(n7) = (—=1)* and e~"" =
cos(—nm) + isin(—n7) = (=1)", then

i n 0, n even
Cn = —';;r'[l - (=)= {_%’ n odd (2.5.20)
with -
f&)= Y cae™ (2.5.21)

n=—o
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A amplitude
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Figure 2.5.1: Amplitude and phase spectra for the function (2.5.16).

In this particular problem we must treat the case n = 0 specially
because (2.5.18) is undefined for n = 0. In that case,

1 f° I 1 0 1, =
co =5 _”(—l)dt+ ﬁ/o (1)dt = 27(_t)|-" + ﬁ(t)|0 =0.
(2.5.22)
Because ¢y = 0, we can write the expansion:
2% i e(2m—1)it
t)=—— — 2.5.23
£ ™ mzz—:oo 2m -1~ ( )

because we can write all odd integers as 2m — 1, where m = 0,1, +2,
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+3,.... In Figure 2.5.1 we present the amplitude and phase spectra for
the function (2.5.16).

Problems

Find the complex Fourier series for the following functions:

Lft)y=1t], -n<t<n 2. f(t) =€, 0<t<?2

3.ft)=t, O0<t<?2 4. ft)=t}, —r<t<n
_ |0, -T/2<t<0 _ _

5.f(t)_{1, 0<t<m/2 6. f(t) =t¢, 1<t<1

2.6 THE USE OF FOURIER SERIES IN THE SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS

An important application of Fourier series is the solution of or-
dinary differential equations. Structural engineers especially use this
technique because the occupants of buildings and bridges often subject
these structures to forcings that are periodic in nature.!?

o Example 2.6.1

Let us find the general solution to the ordinary differential equation
y' +9y = f(t), (2.6.1)

where the forcing is
f(t) =1, —r<t<m, ft+2m) = f(t). (2.6.2)

'This equation represents an oscillator forced by a driver whose displace-
ment is the saw-tooth function.

We begin by replacing the function f(t) by its Fourier series rep-
resentation because the forcing function is periodic. The advantage of
expressing f(t) as a Fourier series is its validity for any time ¢. The
alternative would have been to construct a solution over each interval
nw <t < (n+ 1)7 and then piece together the final solution assuming
that the solution and its first derivative is continuous at each junction

'3 Timoshenko, S. P., 1943: Theory of suspension bridges. Part II.
J. Franklin Inst., 235, 327-349; Inglis, C. E., 1934: A Mathematical
Treatise on Vibrations in Railway Bridges, Cambridge University Press,
Cambridge.
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t = n7. Because the function is an even function, all of the sine terms
vanish and the Fourler series is

=2-2 Z COEQS’:)IZ)t]. (2.6.3)

Next, we note that the general solution consists of the complemen-
tary solution, which equals

ya(t) = Acos(3t) + Bsin(3t), (2.6.4)

and the particular solution y,(t) which satisfies the differential equation

T 4 = cos[(2n — 1)1]
y;,' + 9yp = 5 - ; Z —(—Z-R—'_T (265)
n=1

To determine this particular solution, we write (2.6.5) as

Yp +9yp = - — % s(t) — iﬂ_ cos(3t) — 4 cos(ot) - (2.6.6)

N 2

By the method of undetermined coefficients, we would have guessed the
particular solution:

yp(t) = ‘12—0 + ajy cos(t) + by sin(t) + az cos(3t) + by sin(3t) + - -+ (2.6.7)

or

oQ
yp(t) = Jao + Zan cos[(2n — 1)t] + by sin[(2n — 1)¢]. (2.6.8)
n=1
Because

oo

=3 —(2n - 1)*{an cos[(2n — 1)t] + b sin[(2n — 1)]}, (2.6.9)

> =(2n — 1)*{an cos[(2n — 1)t] + b, sin[(2n — 1)#]}

n=1

+ Sao + QZan cos[(2n — 1)t] + by, sin[(2n —~ 1)i]

n=1

-Tr_Z Z cosgj’i_l 1] (2.6.10)
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or

gao - g + 'lz::l {[9 —(2n - 1)Ya, + 7r—(_2—7f——1)2} cos[(2n — 1)t]

+ i[g — (2n — 1)?]b, sin[(2n — 1)t] = 0. (2.6.11)
n=1

Because (2.6.11) must hold true for any time, each harmonic must vanish
separately:
o _ 4

W9 T T IEn— 129 - (2n— 1)F
and b, = 0. All of the a,’s are finite except for n = 2, where a, becomes
undefined. The coefficient as is undefined because the harmonic cos(3t)
in the forcing function is resonating with the natural mode of the system.

Let us review our analysis to date. We found that each harmonic in
the forcing function yields a corresponding harmonic in the particular
solution (2.6.8). The only difficulty arises with the harmonic n = 2. Al-
though our particular solution is not correct because it contains cos(3t),
we suspect that if we remove that term then the remaining harmonic
solutions are correct. The problem is linear, and difficulties with one
harmonic term should not affect other harmonics. But how shall we
deal with the cos(3t) term in the forcing function? Let us denote the
particular solution for that harmonic by Y (¢) and modify our particular
solution as follows:

Yp(t) = $ao + ay cos(t) + Y (t) + azcos(5t) + - - - (2.6.13)

Substituting this solution into the differential equation and simplifying,
everything cancels except

(2.6.12)

Y'+9Y = —é—i—r cos(3t). (2.6.14)

The solution of this equation by the method of undetermined coefficients
is

Y (t) = _Q%t sin(3t). (2.6.15)

This term, called a secular term, is the most important one in the solu-
tion. While the other terms merely represent simple oscillatory motion,
the term ¢sin(3t) grows linearly with time and eventually becomes the
dominant term in the series. Consequently, the general solution equals
the complementary plus the particular solution:

y(t) = Acos(3t) + Bsin(3?)

+ L — —2—7rt sin(3t) _ %Z (2n _C(;jg([zn——(;it]— 1)2] . (2616)
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e Example 2.6.2

Let us redo the previous problem only using complex Fourier se-
ries. That is, let us find the general solution to the ordinary differential

equation
©  gi(2n-1)t

> e (2.6.17)

yll+9y=

T2
2 7
n
From the method of undetermined coefficients we guess the partic-
ular solution for (2.6.17) to be

) =co+ Y cpel@rr (2.6.18)
n=—oo
Then -
Y()= Y. —(2n - 1)2c, el (2.6.19)
n=——oo

Substituting (2.6.18) and (2.6.19) into (2.6.17),

. T 2 i ei(2n-1)t
9co+ Z [9—(2n—1)%]cpei(n—1t = Tr Z T (2.6.20)

n="—o
Because (2.6.20) must be true for any ¢,

2
7(2n - 1)2[2n—1)2 = 9]

co=— and ¢, = (2.6.21)

18
Therefore,

et(2n-1)t

WD) = 75+ Z G DA@ = gDt (2.6.22)

However, there is a problem when n = —1 and n = 2. Therefore, we
modify (2.6.22) to read

y(t) = ﬁ + cotedt 4 c_jte™ 3
9 X et(2n—1)t .
. i(n-1)t 2.6.23
t n:z_:oo (2n - 1)2[(2n—-1)2—9] ( )
n#-1,2

Substituting (2.6.23) into (2.6.17) and simplifying,

1 1
2T and C.1 = —Fﬂ'z (2624)

Cy = —
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The general solution is then

T te3it . te—3it
18~ 27Tmi = 27mi
1(271, 0t

Z Gn—1[2n—-17 -9

n# 12

(t)_AeSzt+Be—3zt+

(2.6.25)

The first two terms on the right side of (2.6.25) represent the comple-
mentary solution. Although (2.6.25) is equivalent to (2.6.16), we have
all of the advantages of dealing with exponentials rather than sines and
cosines. These advantages include ease of differentiation and integra-
tion, and writing the series in terms of amplitude and phase.

e Example 2.6.3: Temperature within a spinning satellite

In the design of artificial satellites, it is important to determine the
temperature distribution on the spacecraft’s surface. An interesting spe-
cial case is the temperature fluctuation in the skin due to the spinning
of the vehicle. If the craft is thin-walled so that there is no radial depen-
dence, Hrycak!® showed that he could approximate the nondimensional
temperature field at the equator of the rotating satellite by

d*T  dT 3 weF(n)+p/4
ol c(T—4)_—4 i (2.6.26)
where 16mS
b= 4772r2f/a, c= 7;00 <1 + ﬂ;l—ﬁ) , (2.6.27)
cos(2mn), 0<n<i3
F(n) = 0, 1<n<? (2.6.28)
cos(27n), 3<n<l,
1/4 1/4
T. = (i) (flﬂ_/f) , (2.6.29)
ToE€ 1+ 4

a is the thermal diffusivity of the shell, f is the rate of spin, r is the radius
of the spacecraft, S is the net direct solar heating, 3 is the ratio of the
emissivity of the interior shell to the emissivity of the exterior surface,
€ is the overall emissivity of the exterior surface, ¥ is the satellite’s skin
conductance, and ¢ is the Stefan-Boltzmann constant. The independent
variable 77 1s the longitude along the equator with the effect of rotation

16 Hrycak, P., 1963: Temperature distribution in a spinning spherical
space vehicle. ATAA J., 1, 96-99.
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subtracted out (27n = ¢ — 27 ft). The reference temperature T, equals
the temperature that the spacecraft would have if it spun with infinite
angular speed so that the solar heating would be uniform around the
craft. We have nondimensionalized the temperature with respect to To.
We begin our analysis by introducing the new variables
3 w3 2r2r2 f Tp?

=7 - — — ——— = Ag = — 6.
y=T 4 16+ 4n8’ v apy 0 44+ 78 (2.6.30)

and p3 = ¢ so that

d2

e pey = AoF (). (2.6.31)

+2 I/d
Pooah7

Next, we expand F'(n) as a Fourier series because it is a periodic function
of period 1. Because it is an even function,

f(n) = a0+ Zan cos(2nmn), (2.6.32)
n=1
where
1 [ der L[ e 2
= — = - 2.6.
ag 1/2/0 cos(2mz) dr + 1/2/ cos(2rz) dz - (2.6.33)
a ! /1/4 cos?(2wz) dx + ! /1 cos?(2rz) d ! (2.6.34)
= — — r= < 6.
T 12 ), 1/2 Ja4 2
and
1 1/4 1 1
an = -1—7—2-/0 cos(27z) cos(2nwz) de + 1/2/ cos(2mz) cos(2nmz) d
(2.6.35)
2(-1)» nw
—m Cos (7) y (2636)
if n > 2. Therefore,
1 2w (=1)"
f(n) = —+ —cos(27rn) Z e 1cos(4n7r7;). (2.6.37)

From the method of undetermined coefficients, the particular solu-
tion is

yp(1) = a0 + ay cos(2wn) + by sin(27n)

+ Zagn cos(4nmn) + bay, sin(4nmy), (2.6.38)

n=1
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which yields

Yp(n) = —2ma; sin(27n) + 27b; cos(27n)
o0

+ Z[—élmragn sin(4nmn) + 4nwby, cos(4nmn)]  (2.6.39)

n=1
and
Yy (1) = ~4n?ay cos(2mn) — 47?b, sin(27n)

+ Z[—lanwzagn cos(4nmn) — 16n°7%by, sin(dnwn)]. (2.6.40)

n=1

Substituting into (2.6.31),

1 Ag Ag
2p0a0 - —+ (—47r2a1 + 4w povpby — pia; — ?) cos(27n)
+ (—47r2b1 — 4mpovoar — piby) sin(27n)

> 2A0(—
+ Z [—16n27r2a2n + 8nmporoby, — pgag,, + (dn? )1)] cos(4nmn)

+ Z (—16n27r2b2,, — 8nmporoas, — pgbgn) sin(4nmn) = 0. (2.6.41)
n=1

In order to satisfy (2.6.41) for any 7, we set
24,

ap = =28 2.6.42
p3 ( )
2, 2 Ao
—(47* + p§lay + 4mpovphy = 5 (2.6.43)
4wpovpa; + (472 + pg)bl =0, (2.6.44)
24,(-1)"
and

8nmpovoasy, + (16n27r2 + pg)bgn =0 (2.6.46)

or 4 4 oA
[167%p21E + (472 + p2)?]a; = —(ﬂ-%m)ﬁ, (2.6.47)
(1672 p2v2 + (472 + p2)*]by = 27 poro Ao, (2.6.48)

240(-1)"(16n%7?% + p3) (

2.6.49
m(4n? - 1) )

[64n2m?p2ud + (160272 + p?)?]ag, =
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Figure 2.6.1: Temperature distribution along the equator of a spinning
spherical satellite. (From Hrycak, P., 1963: Temperature distribution
in a spinning spherical space vehicle. ATAA J., 1, 97. (©1963 AIAA,

reprinted with permission.)

and

16(—1)npol/onA0

2.6.50
4n2 — 1 ( )

[64n272p2vd + (160272 + pg)*]bon = —

Substituting for ag, a1, by, ass, and ba,, the particular solution is

(n) = Ao (47 4 p§)Ag cos(2mn) 2w povoAg sin(27n)
YW= =22 7 o[(an? + pR)2 + 1672p203] | (4n2 + p3)2 + 16729202
4 24p — (=1)"(16n272 + pZ) cos(2nmn)
T A (4n? - 1)[64n?7?pud + (160272 + pf)?]
= (=D)*nsin(2nmn)
— 16porpA .{2.6.51
porosio nzzzl (4n? — 1)[64n272p2vE + (160272 + p2)?] ( )

In Figure 2.6.1 we reproduce a figure from Hrycak’s paper showing
the variation of the nondimensional temperature as a function of 5 for
the spinning rate vy. The other parameters are typical of a satellite
with aluminum skin and fully covered with glass-protected solar cells.
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As a check on the solution, we show the temperature field (the dashed
line) of a nonrotating satellite where we neglect the effects of conduction
and only radiation occurs. The difference between the vy = 0 solid and
dashed lines arises primarily due to the linearization of the nonlinear
radiation boundary condition during the derivation of the governing
equations.

Problems

Solve the following ordinary differential equations by Fourier series if
the forcing is by the periodic function

1, O<t<n
f(t)‘{o, T<t<2m

and f(t) = f(t + 27):
Ly'—y=f@1t), - 2.y +y=f@), 3.y =3y +2y = f(2).

Solve the following ordinary differential equations by complez Fourier
series if the forcing is by the periodic function

F(t) = |t —-rT<t< T,
and f(t) = f(t + 27):
4.y" -y = f(1), 5.y +4y = f(t).

6. An object radiating into its nocturnal surrounding has a temperature
y(t) governed by the equation!”:

d = ,
Yy ay = Ao + Z A cos(nwt) + By, sin(nwt),
dt
n=1
where the constant a is the heat loss coefficient and the Fourier series
describes the temporal variation of the atmospheric air temperature and

the effective sky temperature. If y(0) = Ty, find y(2).

7. The equation that governs the charge ¢ on the capacitor of an LRC
electrical circuit is
qII + 2aql +w2q — sz,

17 Reprinted from Solar Energy, 28, Sodha, M. S., Transient radiative
cooling, 541, (©1982, with the kind permission from Elsevier Science
Ltd, The Boulevard, Langford Lane, Kidlington, OX5 1GB, UK.
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where o = R/2L, w? = 1/LC, R denotes resistance, C' denotes ca-
pacitance, L denotes the inductance, and E is the electromotive force
driving the circuit. If E' is given by

e
— inwot
E= E $ne )

n=—oc
find q(?).
2.7 FINITE FOURIER SERIES

In many applications we must construct a Fourier series from values
given by data or a graph. Unlike the situation for an analytic formula
where we have an infinite number of data points and, consequently, an
infinite number of terms in the Fourier series, the Fourier series contains
a finite number of sine and cosines. This number is controlled by the
number of data points; there must be at least two points (one for the
crest, the other for the trough) to resolve the highest harmonic.

Assuming that these series are useful, the next question is how do
we find the Fourier coefficients? We could compute them by numerically
integrating (2.1.6). However, the results would suffer from the trunca-
tion errors that afflict all numerical schemes. On the other hand, we
can avoid this problem if we again employ the orthogonality properties
of sines and cosines, now in their discrete form. Just as in the case of
conventional Fourier series, we can use these properties to derive formu-
las for computing the Fourier coefficients. These results will be ezact
except for roundoff errors.

We begin our analysis by deriving some preliminary results. Let us
define z,, = mP/(2N). Then, if k is an integer,

& (2mike g A=
Z exp (—-P—) = Z exp( N ) = ,,,2_:0 ™ (2.7.1)

m=0 m=0

= (2.7.2)

because r?V = exp(27ki) = 1if r # 1. If r = 1, then the sum consists of
2N terms, each of which equals one. The condition » = 1 corresponds
to k = 0,+2N,+4N, .. .. Taking the real and imaginary part of (2.7.2),

2%—:Icos 2rkzm ) _ [0, k#0,£2N, 24N, ... (2.7.3)
P ) 12N, k=0,4+2N,+4N, ... b

m=0
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and -
- ko
E sin <27r d ) =0 (2.7.4)
P
m=0
for all k.

Consider now the following sum:

zi_:lcos 2wkx,, cos 27T m
P P

m=0
1233t 20k + §)Zm 2m(k — §)Zm
=3 {cos [—P——] + cos [T]} (2.7.5)
m=0
0, |k — j| and |k + m| # 0,2N,4N, ...
=< N, |k —j| or |[k+m|#0,2N,4N,... (2.7.6)
2N, Ik — j| and |k + m| = 0,2N, 4N, ...

Let us simplify the right side of (2.7.6) by restricting ourselves to k + j
lying between 0 to 2N . This is permissible because of the periodic nature
of (2.75). Ifk+j=0,k=5=0;ifk+j=2N,k=j=N. In either
case, k — j = 0 and the right side of (2.7.6) equals 2N. Consider now
the case k # j. Then k+j # 0 or 2N and k — j # 0 or 2N. The right
side of (2.7.6) must equal 0. Finally,if k= j #0or N, then k+j #0
or 2N but k— j = 0 and the right side of (2.7.6) equals N. In summary,

2N-1 . 0 k#£j
2rkz,, 2TjTm \ ) [
E cos( 2 )cos( P )_{N k=j#0,N

m=0 2N, k=3=0,N.
(2.7.7)
In a similar manner,
IN-1 .
2rkzy\ . (27jTm
mZ=:0 cos ( WPZ )sm ( 7r_7Px > =0 (2.7.8)

for all k and j and

2N-1 . 0, k#£jg

Z sin (27r11‘:3xm)sin <27r;):cm) ={N, k=j#0,N

=0 0, k=j=0N.
(2.7.9)

Armed with (2.7.7)-(2.7.9) we are ready to find the coefficients A4,

and B, of the finite Fourier series,
N-1
A 2nk k
f(z) = —20 + kzzzl [Ak cos ( sz> + By sin (27;39:)]

An 2rNz
+ —5cos ( 2 ) , (2.7.10)
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where we have 2N data points and we now define P as the period of the
function.

To find A; we proceed as before and multiply (2.7.10) by cos(27jz/
P) (j may take on values from 0 to N) and sum from 0 to 2NV — 1. At
the point z = zy,,

2N-1 9mi 4, 2Nt omi
mzz:o f(xm) cos (—Plxm> = —22 Z cos <—Pl:cm)

+ AN i cos 27rNx cos 2—7rix
(2.7.11)

If j # 0 or N, then the first summation on the right side vanishes
by (2.7.3), the third by (2.7.9), and the fourth by (2.7.7). The second
summation does not vanish if k = j and equals N. Similar considerations
lead to the formulas for the calculation of A and Byg:

1 2 2k
Ap = ¥ mz=:0 f(zm) cos (—P—xm) , k=012...,.N (2.7.12)

and
2N-1
1 . 2nk
B, = ¥ mgzo f(zm)sin <—P—z‘m) , k=12,...,N-1. (2.7.13)

If there are 2N + 1 data points and f(zo) = f(z2n), then (2.7.12)-
(2.7.13) is still valid and we need only consider the first 2N points.
If f(zo) # f(z2n), we can still use our formulas if we require that the
endpoints have the value of [f(zo)+ f(z2n)]/2. In this case the formulas
for the coefficients A and By are

aN-1
A = % [_fﬂ)izf_(x_m_) + Z J(zm) cos (2%16.7:",)] , (2.7.14)

m=1

where £k =0,1,2,...,N and

1 2 2k
B = v mzzzl f(zm)sin (—-P—:cm) , (2.7.15)
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Table 2.7.1: The Depth of Water in the Harbor at Buffalo, NY (Minus
the Low-Water Datum of 568.8 ft) on the 15*" Day of Each Month
During 1977.

mo n depth mo n depth mo n  depth
Jan 1 1.61 May &5 3.16 Sep 9 2.42
Feb 2 1,57 Jun 6 295 Oct 10 295
Mar 3 201 Jul 7 310 Nov 11 2.74
Apr 4 268 Aug 8 290 Dec 12  2.63

where k =1,2,..., N — 1.

It is important to note that 2N data points yield 2N Fourier co-
efficients Ay and By. Consequently our sampling frequency will always
limit the amount of information, whether in the form of data points
or Fourier coefficients. It might be argued that from the Fourier series
representation of f(t) we could find the value of f(t) for any given t,
which is more than we can do with the data alone. This is not true. Al-
though we can calculate a value for f(t) at any t using the finite Fourier
series, we simply do not know whether those values are correct or not.
They are simply those given by a finite Fourier series which fit the given
data points. Despite this, the Fourier analysis of finite data sets yields
valuable physical insights into the processes governing many physical
systems.

o Example 2.7.1: Water depth at Buffalo, NY

Each entry'® in Table 2.7.1 gives the observed depth of water at Buf-
falo, NY (minus the low-water datum of 568.6 ft) on the 15 of the corre-
sponding month during 1977. Assuming that the water level is a periodic
function of 1 year, and that we took the observations at equal intervals,
we want to construct a finite Fourier series from these data. This corre-
sponds to computing the Fourier coefficients Ao, 41,. .., Ag, By, ..., Bs,
which give the mean level and harmonic fluctuations of the depth of wa-
ter, the harmonics having the periods 12 months, 6 months, 4 months,
and so forth.

In this problem, P equals 12 months, N = P/2 = 6 and z,, =
mP/(2N) = m(12 mo)/12 = m mo. That is, there should be a data

'® National Ocean Survey, 1977: Great Lakes Water Level, 1977, Daily
and Monthly Average Water Surface Elevations, National Oceanic and
Atmospheric Administration, Rockville, MD.
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point for each month. From (2.7.12) and (2.7.13),

11
1 mkw
A = g E f(zm) cos (T) , k=01,2,34,56 (2.7.16)

and

11
1 . [ mkw
By = g E f(zm)sin < 5 > , k=1,234)5. (2.7.17)

m=0

Substituting the data into (2.7.16)-(2.7.17) yields

Ag = twice the mean level = +5.120 ft
A; = harmonic component with a period of 12 mo = —0.566 ft
B; = harmonic component with a period of 12 mo = —0.128 ft
A, = harmonic component with a period of 6 mo = —0.177 ft
B, = harmonic component with a period of 6 mo = —0.372 ft
Az = harmonic component with a period of 4 mo = —0.110 ft
Bs = harmonic component with a period of 4 mo = —0.123 ft
A4 = harmonic component with a period of 3 mo = +0.025 ft
B, = harmonic component with a period of 3 mo = +0.052 ft
As = harmonic component with a period of 2.4 mo = —0.079 ft
Bs = harmonic component with a period of 2.4 mo = —0.131 ft
A¢ = harmonic component with a period of 2 mo = -0.107 ft

Figure 2.7.1 is a plot of our results using (2.7.10). Note that when
we include all of the harmonic terms, the finite Fourier series fits the
data points exactly. The values given by the series at points between
the data points may be right or they may not. To illustrate this, we
also plotted the values for the first of each month. Sometimes the values
given by the Fourier series and these intermediate data points are quite
different.

Let us now examine our results in terms of various physical pro-
cesses. In the long run the depth of water in the harbor at Buffalo,
NY depends upon the three-way balance between precipitation, evapo-
ration, and inflow-outflow of any rivers. Because the inflow and outflow
of the rivers depends strongly upon precipitation, and evaporation is of
secondary importance, the water level should correlate with the precip-
itation rate. It is well known that more precipitation falls during the
warmer months rather than the colder months. The large amplitude
of the Fourier coefficient A; and Bj, corresponding to the annual cycle
(k = 1), reflects this.

Another important term in the harmonic analysis corresponds to
the semiannual cycle (k = 2). During the winter months around Lake
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Figure 2.7.1: Partial sums of the finite Fourier series for the depth
of water in the harbor of Buffalo, NY during 1977. Circles indicate
observations on the 15 of the month; crosses are observations on the
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Figure 2.7.2: The effect of sampling in the representation of periodic
functions.

Ontario, precipitation falls as snow. Therefore, the inflow from rivers
is greatly reduced. When spring comes, the snow and ice melt and
a jump in the water level occurs. Because the second harmonic gives
periodic variations associated with seasonal variations, this harmonic
is absolutely necessary if we want to get the correct answer while the
higher harmonics do not represent any specific physical process.

o Example 2.7.2: Aliasing

In the previous example, we could only resolve phenomena with
a period of 2 months or greater although we had data for each of the
12 months. This is an example of Nyquist’s sampling criterial®: At
least two samples are required to resolve the highest frequency in a
periodically sampled record.

Figure 2.7.2 will help explain this phenomenon. In case (a) we
have quite a few data points over one cycle. Consequently our picture,
constructed from data, is fairly good. In case (b), we have only taken
samples at the ridges and troughs of the wave. Although our picture

19 Nyquist, H., 1928: Certain topics in telegraph transmission theory.
AIEE Trans., 47, 617-644.
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of the real phenomenon is poor, at least we know that there is a wave.
From this picture we see that even if we are lucky enough to take our
observations at the ridges and troughs of a wave, we need at least two
data points per cycle (one for the ridge, the other for the trough) to
resolve the highest-frequency wave.

In case (c) we have made a big mistake. We have taken a wave
of frequency N Hz and misrepresented it as a wave of frequency N/2
Hz. This mispresentation of a high-frequency wave by a lower-frequency
wave is called aliasing. It arises because we are sampling a continuous
signal at equal intervals. By comparing cases (b) and (c), we see that
there is a cutoff between aliased and nonaliased frequencies. This fre-
quency Is called the Nyquist or folding frequency. It corresponds to the
highest frequency resolved by our finite Fourier analysis.

Because most periodic functions require an infinite number of har-
monics for their representation, aliasing of signals is a common problem.
Thus the question is not “can I avoid aliasing?” but “can I live with
it?” Quite often, we can construct our experiments to say yes. An ex-
ample where aliasing.is unavoidable occurs in a Western at the movies
when we see the rapidly rotating spokes of the stagecoach’s wheel. A
movie is a sampling of continuous motion where we present the data as
a succession of pictures. Consequently, a film aliases the high rate of
revolution of the stagecoach’s wheel in such a manner so that it appears
to be stationary or rotating very slowly.

o Example 2.7.3: Spectrum of the Chesapeake Bay

For our final example we will perform a Fourier analysis of hourly
sea-level measurements taken at the mouth of the Chesapeake Bay dur-
ing the 2000 days from 9 April 1985 to 29 June 1990. Figure 2.7.3 shows
200 days of this record, starting from 1 July 1985. As this figure shows,
the measurements contain a wide range of oscillations. In particular,
note the large peak near day 90 which corresponds to the passage of
hurricane Gloria during the early hours of 27 September 1985.

Utilizing the entire 2000 days, we have plotted the amplitude of
the Fourier coefficients as a function of period in Figure 2.74. We
see a general rise of the amplitude as the period increases. Especially
noteworthy are the sharp peaks near periods of 12 and 24 hours. The
largest peak is at 12.417 hours and corresponds to the semidiurnal tide.
Thus, our Fourier analysis has shown that the dominant oscillations
at the mouth of the Chesapeake Bay are the tides. A similar situation
occurs in Baltimore harbor. Furthermore, with this spectral information
we could predict high and low tides very accurately.

Although the tides are of great interest to many, they are a nuisance
to others because they mask other physical processes that might be
occurring. For that reason we would like to remove them from the tidal
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Figure 2.7.3: The sea elevation at the mouth of the Chesapeake Bay
from its average depth as a function of time after 1 July 1985.

gauge history and see what is left. One way would be to zero out the
Fourier coefficients corresponding to the tidal components and then plot
the resulting Fourier series. Another method is to replace each hourly
report with an average of hourly reports that occurred 24 hours ahead
and behind of a particular report. We will construct this average in such
a manner that waves with periods of the tides sum to zero.?’ Such a
filteris a popular method for eliminating unwanted waves from a record.
Filters play an important role in the analysis of data. We have plotted
the filtered sea level data in Figure 2.7.5. Note that summertime (0-50
days) produces little variation in the sea level compared to wintertime
(100-150 days) when intense coastal storms occur.

Problems
Find the finite Fourier series for the following pieces of data:
1.2z(0)=0,2(1)=1,2(2)=2,2(3) =3 and N =2.

2.2000=1,2z(1)=1,2(2)=-1,2(3) =—1land N = 2.

20 See Godin, G., 1972: The Analysis of Tides, University of Toronto
Press, Toronto, Section 2.1.
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Figure 2.7.5: Same as Figure 2.7.3 but with the tides removed.
Project: Spectrum of the Earth’s Orography

Table 2.7.3 gives the orographic height of the earth’s surface used
in an atmospheric general circulation model (GCM) at a resolution of
2.5° longitude along the latitude belts of 28°S, 36°N, and 66°N. In this
project you will find the spectrum of this orographic field along the
various latitude belts.

Step 1: Write code to read in the data and find A, and B,. Although
you could code (2.7.12)-(2.7.13), no one does Fourier analysis that way
any more. They use a fast Fourier transform (FFT) that is available as
a system’s routine on their computer or use one that is given in various
computer books.?! Many of these routines deal with finite Fourier series
in its complex form. The only way that you can be confident of your
results is to first create a data set with a known Fourier series, for
example:

2wz . [ 27z 67z
f(z) =5+ cos <§—]7> + 3sin (5—1\7) + 6 cos <W> ,

21 For example, Press, W. H., Flannery, B. P., Teukolsky, S. A., and
Vetterling, W. T., 1986: Numerical Recipes: The Art of Scientific Com-
puting, Cambridge University Press, New York, chap. 12.
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Table 2.7.2: The Fourier Coefficients Generated by the IMSL Sub-
routine FFTRF with N = 8 for the Test Case Given in Step 1 of the
Project.

x f(z) Fourier coefficient Value of Fourier coefficient
0.00000 12.00000 2N A 80.00001
1.00000 9.36803 N4 8.00001
2.00000 3.58579 —-NB; —-24.00000
3.00000 2.61104 NA, 0.00000
4.00000 8.00000 —NB, 0.00001
5.00000 12.93223 NA; 48.00000
6.00000 10.65685 ~N B3 0.00001
7.00000 2.92807 NA, —0.00001
8.00000 —2.00000 —NB, 0.00000
9.00000 0.63197 NA; 0.00000

10.00000 6.41421 —NBs 0.00000
11.00000 7.38895 NAg 0.00000
12.00000  2.00000 —NBg 0.00000
13.00000 —2.93223 NA; —0.00001
14.00000 —0.65685 —N Bz 0.00000
15.00000 7.07193 2N Ag 0.00001

and then find the Fourier coefficients given by the subroutine. In Table
2.7.3 we show the results from using the IMSL routine FFTRF. From
these results, you see that the Fourier coefficients given by the subrou-
tine are multiplied by N and the B,s are of opposite sign.

Step 2: Construct several spectra by using every data point, every
other data point, etc. How do the magnitudes of the Fourier coeffi-
cient change? You might like to read about leakage from a book on
harmonic analysis.??

Step 3: Compare and contrast the spectra from the various latitude
belts. How do the magnitudes of the Fourier coefficients decrease with
n? Why are there these differences?

Step 4: You may have noted that some of the heights are negative, even
in the middle of the ocean! Take the original data (for any latitude
belt) and zero out all of the negative heights. Find the spectra for this

22 For example, Bloomfield, P., 1976: Fourier Analysis of Time Series:
An Introduction, John Wiley & Sons, New York.
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Figure 2.7.6: The orography of the earth and its spectrum in meters
along three latitude belts.

new data set. How has the spectra changed? Is there a reason why the
negative heights were introduced?
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Table 2.7.3: Orographic Heights (in m) Along Three Latitude Belts.

Longitude 28°S  36°N 66°N Longitude 28°S 36°N  66°N
-180.0 4. 3. 25632, -—825 36.  4047. 737.
-177.5 1. —2. 1665. —80.0 —64. 3938. 185.
-175.0 1. 2. 1432. -775 138.  1669. 71.
—-172.5 1. =3. 1213. -75.0 —-363.  236. 160.
—-170.0 1. 1.  501. -725 4692. 31. 823.
—167.5 1. -3. 367. -=70.0 19317. —8.  1830.
—165.0 1. 1. 963. —-67.5 21681. 0. 3000.
-162.5 0. 0. 1814. —65.0 9222. -2, 3668.
-160.0 -1 6. 2562. —62.5 1949. -2, 2147.
-157.5 0. 1. 3150. -—60.0 774. 0. 391.
—155.0 0. 3. 4008. -—57.5 955. 5. =TT7.
-152.5 1. —-2. 4980. -55.0 2268. 6. 601.
—150.0 -1 4. 6011. -525 4636. —-1.  3266.
—147.5 6. —-1. 6273. =50.0 4621. 2. 9128.
—145.0 14. 3. 5928. —475 1300. —4. 17808.
—-142.5 6. —-1. 6509. -45.0 -91. 1. 22960.
—140.0 -2. 6. 7865. —425 57. —1. 20559.
-137.5 0. 3. T752. —40.0 —25. 4. 14296.
-135.0 -2. 5. 6817. =375 13. —-1.  9783.
—132.5 1. -2. 6272, -35.0 —10. 6. 5969.
-130.0 -2. 0. 5582. -325 8. 2. 1972.
-127.5 0. 5. 4412, -30.0 —4. 22. 640.
-125.0 -2. 423. 3206. —27.5 6. 33. 379.
—-122.5 1. 3688. 2653. —25.0 -2. 39. 286.
—120.0 -3. 10919. 2702. -225 3. 2. 981.
-117.5 2. 16148. 3062. —20.0 -3. 11.  1971.
-115.0 -3. 17624. 3344. -175 1. —-6.  2576.
-112.5 7. 18132. 3444. -15.0 -1 19.  1692.
-110.0 12 19511. 3262. —125 0. -18. 357.
-107.5 9. 22619. 3001. -—10.0 -1.  490. -21.
-105.0 =5. 20273. 2931. —-7.5 0. 2164. -5.
-102.5 3. 12914. 2633. -5.0 1. 4728. -10.
—100.0 —=5. T434. 1933. -2.5 0. 5347. 0.

-97.5 6. 4311. 1473. 0.0 4. 2667. —-6.
-95.0 —8.  2933. 1689. 2.5 =5. 1213. -1
—92.5 8. 2404. 2318. 5.0 7. 1612,  -31.
-90.0 =12, 1721. 2285. 7.5 —-13. 1744. 58,
—87.5 18.  1681. 1561. 10.0 28. 1153. 381.
-85.0 —-23.  2666. 1199. 12.5 107.  838. 2472
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Table 2.7.3, contd.: Orographic Heights (in m) Along Three Latitude
Belts.

Longitude  28°S  36°N  66°N Longitude 28°S 36°N 66°N

15.0 2208. 1313. 5263. 97.5 0. 35538. 6222.
17.5 6566. 862. 5646. 100.0 —2. 31985. 5523.
20.0 9091. 1509. 3672. 102.5 0. 23246. 4823.
225 10690. 2483. 1628. 105.0 —4. 17363. 4689.
25.0 12715.  1697.  889. 107.5 2. 14315. 4698.

275 14583.  3377. 1366. 110.0 —17. 12639. 4674
30.0 11351.  7682. 1857. 112.5 302. 10543. 4435.
325 3370. 9663. 1534 115.0  1874. 4967. 3646.

35.0 15. 10197.  993. 117.5  4005. 1119. 2655.
37.5 49. 10792.  863. 120.0  4989. 696. 2065.
40.0 —-31. 11322.  756. 122.5  4887. 475. 1583.
42.5 20. 13321.  620. 125.0  4445. 1631. 3072.
45.0 —17. 15414.  626. 127.5  4362. 2933. 7290.
47.5 —19. 12873.  836. 130.0  4368. 1329. 8541.
50.0 —18. 6114. 1029. 132.5  3485. 88. 7078.
52.5 6. 2962. 946. 135.0 1921.  598. 7322
55.0 —-2. 4913.  828. 137.5 670. 1983. 9445.
57.5 3. 6600. 1247. 140.0 666. 2511. 10692.
60.0 —-3.  4885. 2091. 142.5  1275. 866. 9280.
62.5 2. 3380. 2276. 145.0  1865. 13. 8372.
65.0 —1. 5842. 1870. 1475  2452. 11. 6624.
67.5 2. 12106. 1215. 150.0  3160. —-4. 3617.
70.0 0. 23032.  680. 152.5  2676. -1. 2717.
72.5 2. 35376.  531. 155.0 697. 0. 3474.
75.0 —1. 36415.  539. 157.5 —67. —3. 4337.
77.5 1. 26544.  579. 160.0 25. 3. 4824.
80.0 0. 19363. 554. 162.5 —12. —1. 5525.
82.5 1. 17915. 632 165.0 10. 4. 6323.
85.0 —2. 22260. 791 167.5 —5. —2. 5899.
87.5 —1. 30442. 1455. 170.0 0. 1. 4330.
90.0 —3. 33601. 3194. 172.5 0. —4. 3338.
92.5 —1. 30873. 4878. 175.0 4. 3. 3408.
95.0 0. 31865. 5903. 177.5 3 —1.  3407.







Chapter 3

The Fourier Transform

In the previous chapter we showed how we could expand a periodic
function in terms of an infinite sum of sines and cosines. However, most
functions encountered in engineering are aperiodic. As we shall see,
the extension of Fourier series to these functions leads to the Fourier
transform.

3.1 FOURIER TRANSFORMS

The Fourier transform is the natural extension of Fourier series to a
function f(t) of infinite period. To show this, consider a periodic func-
tion f(t) of period 2T that satisfies the so-called Dirichlet’s conditions.!

If the integral fab |f(t)| dt exists, this function has the complex Fourier
series:

&)=Y cae™mT, (3.1.1)

! A function f(t) satisfies Dirichlet’s conditions in the interval (a, b)
if (1) it is bounded in (a,b), and (2) it has at most a finite number
of discontinuities and a finite number of maxima and minima in the
interval (a, b).
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where r
1 —inwt/T
n= 75 . 3.12
o= g7 [ O (3.1.2)

Equation (3.1.1) applies only if f(¢) is continuous at ¢; if f(¢) suffers from
a jump discontinuity at £, then the left side of (3.1.1) equals -;—[f(t*') +
f(t7)], where f(tt) = lim,_;+ f(z) and f(t~) = lim,_,,~ f(z). Substi-
tuting (3.1.2) into (3.1.1),

o0 T
f(t):i > T [ f(z)em e/ Tdy. (3.1.3)
T —~ T

Let us now introduce the notation w, = nx/T so that Aw, = wy41 —
wp = m/T. Then,

1 ;
ft) = o > Flwn)e™rt Awn, (3.1.4)
where r
F(wn)z/ f(z)e " dz. (3.1.5)
-T

As T — o0, w, approaches a continuous variable w and Aw, may be
interpreted as the infinitesimal dw. Therefore, ignoring any possible
difficulties.?

ft)= %/m F(w)e*'dw (3.1.6)
and
F(w)=/°° f(t)e ™tdt. (3.1.7)

2 For a rigorous derivation, see Titchmarsh, E. C., 1948: Introduction
to the Theory of Fourier Integrals, Clarendon Press, Oxford, chap. 1.
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Figure 3.1.1: Graph of the Fourier transform for (3.1.9).

Equation (3.1.7) is the Fourier transform of f(t) while (3.1.6) is the
inverse Fourier iransform which converts a Fourier transform back to
f(t). Alternatively, we may combine (3.1.6)-(3.1.7) to yield the equiv-
alent real form:

£(t) = %/Ooo {/_0; (z) cosfw(t — :c)]d:c} dw. (3.1.8)

Hamming? has suggested the following analog in understanding the
Fourier transform. Let us imagine that f(t) is a light beam. Then the
Fourier transform, like a glass prism, breaks up the function into its
component frequencies w, each of intensity F(w). In optics, the various
frequencies are called colors; by analogy the Fourier transform gives
us the color spectrum of a function. On the other hand, the inverse
Fourier transform blends a function’s spectrum to give back the original
function.

Most signals encountered in practice have Fourier transforms be-
cause they are absolutely integrable since they are bounded and of fi-
nite duration. However, there are some notable exceptions. Examples
include the trigonometric functions sine and cosine.

3 Hamming, R. W., 1977: Digital Filters, Prentice-Hall, Englewood
Cliffs, NJ, p. 136.
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e Example 3.1.1

Let us find the Fourier transform for

1, [t| < a

f&)= {0, it > a. (3.1.9)

From the definition of the Fourier transform,

—-a a >

F(w):/ oe-mdt+/ 1e““‘“’dt+/ Oe™*'dt (3.1.10)

—00 —a a

wai __ ,—wat :

= .e = 2sin(wa) = 2asinc(wa), (3.1.11)
wi w

where sinc(z) = sin(z)/z is the sinc function.

Although this particular example does not show it, the Fourier
transform is, in general, a complex function. The most common method
of displaying it is to plot its amplitude and phase on two separate graphs
for all values of w. See Figure 3.1.1. Of these two quantities, the am-
plitude is by far the more popular one and is given the special name of
frequency spectrum.

From the definition of the inverse Fourier transform,

_ 1 [®sin(wa) ., [1, [t < a

An important question is what value does f(¢) converge to in the
limitast — a and ¢ — —a? Because Fourier transforms are an extension
of Fourier series, the behavior at a jump is the same as that for a Fourier
sleries. For that rea.son,lf(a) = 3[f(at) + f(a7)] = 3 and f(—a) =
Lf(=a*)+ f(~a™)] = &

o Example 3.1.2: Dirac delta function

Of the many functions that have a Fourier transform, a particularly
important one is the (Dirac) delta function.* For example, in Section
3.6 we will use it to solve differential equations. We define it as the
inverse of the Fourier transform F(w) = 1. Therefore,

5(t) = 2%/ e dw. (3.1.13)

— 00

* Dirac, P. A. M., 1947: The Principles of Quantum Mechanics,
Clarendon Press, Oxford, Section 15.
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Table 3.1.1: The Fourier Transforms of Some Commonly Encountered
Functions. The Heaviside Step Function H(t) Is Defined by (3.2.16).

£(8), [t < o0 F(w)
1
1. e H(t), a>0 -
a4+ we
1
2. e H(=t), a>0 .
a— wi
1
. —atH(t —_—
3 te t), a>0 @t
-1
: atH(—t ——
4 te®H(-t), a>0 (@ wi)?
n!
—~at — y —_—
5. t"e”* H(t), Re(a) >0, n=1,2,... PR
_ 2a
6. e~dltl a>0 S ral
—4dawi
. t —a|t| R A
7 e , a>0 @+ a2y
1 T
L e—lw/at
8 1+ a2t lale
cos(at) T o—|w— —lw+
9 1+ ¢2 5 (e7lomal yemletal)
sin(at) e _
10. T 37 (e7lmel —emlvel)
1 1, lt| < a 2sin(wa)
' 0, [t] > a w
sin{at) 7/a, lw| < a
12. —_—
at 0, lw| > a

To give some insight into the nature of the delta function, consider

another band-limited transform:

_J1, lw] < Q
Fo(w) = {0’ ols 0, (3.1.14)
where € is real and positive. Then,
falt) = i/n ot g, = 25I0() (3.1.15)
M= on _Qe YET T h
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Figure 3.1.2: Graph of the function given in (3.1.15) for = 300.

Figure 3.1.2 illustrates fo(t) for a large value of Q. We observe that as
2 — 00, fa(t) becomes very large near t = 0 as well as very narrow. On
the other hand, fa(t) rapidly approaches zero as |t| increases. Therefore,
we may consider the delta function as the limit:

5(t):f}in;o@ (3.1.16)
8() = {%o ;; 8' (3.1.17)

Because the Fourier transform of the delta function equals one,
/ 6(t)e™dt = 1. (3.1.18)
— 00
Since (3.1.18) must hold for any w, we take w = 0 and find that
/ s(t)dt =1. (3.1.19)

Thus, the area under the delta function equals unity. Taking (3.1.17)
Into account, we can also write (3.1.19) as

b
/6(t)dt:1, a,b> 0. (3.1.20)

Finally, )
[ wste - to)dt = s00), (3.1.21)
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if @ < to < b. This follows from the law of the mean of integrals.

We may also use several other functions with equal validity to repre-
sent the delta function. These include the limiting case of the following
rectangular or triangular distributions:

l’ tl< £
6(t) = limy ¢ <5 (3.1.22)
e—0 | 0, [t] > 5
or
110
8(t) = lim { ¢ (1 ¢ ) < (3.1.23)
€0 0, [t] > €
and the Gaussian function:
42
5(t) = lim exp(~mt’/€), (3.1.24)

e~0 \/E

Note that the delta function is an even function.
Problems
1. Show that the Fourier transform of
fy=e, a>0,
18
2a
w? +a?’

Now plot the amplitude and phase spectra for this transform.

Fw) =

9. Show that the Fourier transform of
ft) =te M, a>0,

is .
daw1
(? + a?)? :

Now plot the amplitude and phase spectra for this transform.

F(w)=-

3. Show that the Fourier transform of
2t t<0

e b
f&y = {e", t>0

3
(2 —iw)(1 + iw)’

is

Flw) =
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Now plot the amplitude and phase spectra for this transform.

4. Show that the Fourier transform of

e~ (i) t>0
) = {—e(l"')’, t<0

1s
—2i(w +1)

P =3

Now plot the amplitude and phase spectra for this transform.

5. Show that the Fourier transform of

_ | cos(at), lt] <1
f(t)—{ 0, > 1

18

Flw) sinfw —a)  sin(w + a)
w) = .
w—a w+a

Now plot the amplitude and phase spectra for this transform.

6. Show that the Fourier transform of

_ ] sin(t), 0<t«1
f(t) _{ 0, otherwise
) (0 =1) , cos(w+1)
111 —cos(w—1 cos(w+1)—1
F(w)__'i[ w—1 w+1 ]
_ i[sin(w—1) sin(w+1)
2] w-1 w+1l |

Now plot the amplitude and phase spectra for this transform.

7. Show that the Fourier transform of

1=t/ 0<t<2r
ey = { 0, otherwise

18

F(w) =

2et [sin(wr)
wT

- cos(wr)}

w

Now plot the amplitude and phase spectra for this transform.
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8. The integral representation® of the modified Bessel function K, ( ) is

dt

B T'(v+3)(2a)> [ cos(wt
K, (a|w]|) = ( 2)( )/0 (t2+a(2)u)+1/2 ’

lwl"T (3)

where T'( ) is the gamma function, ¥ > 0 and a > 0. Use this relationship
to show that

1 _ 2wPT (3) Ky (alw])
d [(t2 + az)"“/Q] - T(v+131)(2e)y

9. Show that the Fourier transform of a constant K is 2mé(w)K.
3.2 FOURIER TRANSFORMS CONTAINING THE DELTA FUNCTION

In the previous section we stressed the fact that such simple func-
tions as cosine and sine are not absolutely integrable. Does this mean
that these functions do not possess a Fourier transform? In this section
we shall show that certain functions can still have a Fourler transform
even though we cannot compute them directly.

The reason why we can find the Fourier transform of certain func-
tions that are not absolutely integrable lies with the introduction of the
delta function because

/ 6(w — wo)e'™ dw = e'wo! (3.2.1)

— 00

for all ¢. Thus, the inverse of the Fourier transform é(w — wo) is the
complex exponential e*“°! /27 or

F (e!) = 2mé(w — wo). (3.2.2)

This yields immediately the result that
F (1) = 2wé(w), (3.2.3)
if we set wg = 0. Thus, the Fourier transform of 1 is an impulse at w = 0
with weight 27. Because the Fourier transform equals zero for allw # 0,

F(t) = 1 does not contain a nonzero frequency and is consequently a DC
signal.

5 Watson, G. N., 1966: A Treatise on the Theory of Bessel Functions,
Cambridge University Press, Cambridge, p. 185.
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Another set of transforms arises from Euler’s formula because we
have that

Flsin(wot)] = % [F (eiwe?) — F (emtwot)] (3.2.4)
= L [6(w —wo) — b(w + wo)] (3.2.5)
= —7ib(w — wo) + Tib(w + wo) (3.2.6)
and
Fleos(wot)] = 3 [F (ewo?) + F (eiwot)] (3.2.7)
= 7 [6(w — wo) + 6(w + wo)]. (3.2.8)

Note that although the amplitude spectra of sin(wgt) and cos(wgt) are
the same, their phase spectra are different.

Let us consider the Fourier transform of any arbitrary periodic func-
tion. Recall that any such function f(t) with period 2L can be rewritten
as the complex Fourier series:

&)=Y cae™ot, (3.2.9)

n=-—00

where wg = m/L. The Fourier transform of f() is

F(w) = F[f@®)] = Z 27ené(w — nwo). (3.2.10)

n=-—0oo

Therefore, the Fourier transform of any arbitrary periodic function is
a sequence of impulses with weight 27c, located at w = nwy with
n = 0,£1,%2,.... Thus, the Fourier series and transform of a peri-
odic function are closely related.

o Example 3.2.1: Fourier transform of the sign function

Consider the sign function

i, t>0

sgn(t) = { 0, t=0 (3.2.11)
-1, t <0.

The function is not absolutely integrable. However, let us approximate

it by e~<l*lsgn(t), where ¢ is a small positive number. This new function
is absolutely integrable and we have that

0 ) oo .
ete ™ dt +/ e~ et dt] (3.2.12)
—-00 0

:lim( L, b ) (3.2.13)

Flogn(0)] = liy |- |

e—0 \ € — lw €+ w
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fw#0,(3.2.13) equals 2/iw. If w =0, (3.2.13) equals 0 because

lim (_—1 + l) =0. (3.2.14)
e—0 € €
Thus, we conclude that
2/iw, w#0

Flsgn(t)] = { 0, (3.2.15)

w=0.

o Example 3.2.2: Fourier transform of the step function

An important function in transform methods is the (Heaviside) step
function:

1, t>0
H(t):{o’ oo (3.2.16)

In terms of the sign function it can be written
H(t) = 1 + §sgn(?). (3.2.17)

Because the Fourier transforms of 1 and sgn(t) are 276(w) and 2/iw,
respectively, we have that

FIH(D) = 6) + = (3.2.18)

These transforms are used in engineering but the presence of the delta
function requires extra care to ensure their proper use.

Problems
1. Verify that
Flsin(wot) H(t)] = = + = [6(w + wo) — 8(w — wo)]-
Wi —w 2

2. Verify that

Fleos(wot)H(t)] = U—Jg—if? + g[&(w + wo) + 6(w — wo)].
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3.3 PROPERTIES OF FOURIER TRANSFORMS

In principle we can compute any Fourier transform from the defini-
tion. However, it is far more efficient to derive some simple relationships
that relate transforms to each other. This is the purpose of this section.

I Linearity

If f(t) and g(¢) are functions with Fourier transforms F(w) and
G(w), respectively, then

Flei f(t) + c29(t)] = e1 F(w) + c2G(w), (3.3.1)

where ¢; and ¢z are (real or complex) constants.
This result follows from the integral definition:

[o e}

Flerf(t) + cag(t)] = / oo[clf(t) + cog(t)]e ™" dt (3.3.2)

=c /oo f®)e™™tdt + ¢, /oo g(t)e™™dt (3.3.3)

Lade

=1 F(w) + c2G(w). (3.3.4)

I Time shifting

If f(t) is a function with a Fourier transform F(w), then F{f(t —
)] = e‘i‘”F(w).
This follows from the definition of the Fourier transform:

FLf(t— 1) = /_ Y f = yemitdy = /_ Y f@)em i+ (3.3.5)

=e 7 /oo f(z)e™™“dz = e™™" F(w). (3.3.6)

e Example 3.3.1

The Fourier transform of f(t) = cos(at)H(t) is F(w) = iw/(a? —
w?) + 7[6(w + a) + 6(w — a)]/2. Therefore,

F{cos[a(t — k)| H(t — k)} = e~ ¥ Flcos(at) H (t)] (3.3.7)
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Figure 3.3.1: The amplitude and phase spectra of the Fourier trans-
form for cos(2t)H (t) (solid line) and cos[2(t — 1)]H (t — 1) (dashed line).
The amplitude becomes infinite at w = £2.

or
iwe_ik“' T ikw 5 5

(3.3.8)
In Figure 3.3.1 we present the amplitude and phase spectra for cos(2t)
H(t) (the solid line) while the dashed line gives these spectra for cos[2(t—
1)]H(t — 1). This figure shows that the amplitude spectra are identical
(why?) while the phase spectra are considerably different.

F{cos[a(t — k)]H(t - k)} =

| Scaling factor

Let f(t) be a function with a Fourier transform F(w) and k be a
real, nonzero constant. Then F[f(kt)] = F(w/k)/|k|.
From the definition of the Fourier transform:

Ff(kt)] = ” f(kt)e-"wfdt:i ” f(x)e-“w“c)xdx:iF 2.
—oo k| J oo |k (31;9)
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Figure 3.3.2: The amplitude and phase spectra of the Fourier trans-
form for e*H(t) (solid line) and e~2*H(t) (dashed line).

o Example 3.3.2

The Fourier transform of f(t) = e~ *H(t) is F(w) = 1/(1 + wi).
Therefore, the Fourier transform for f(at) = e % H(t), a > 0, is

Flf(at)] = <%) <1+:w/a) = a:wi. (3.3.10)

In Figure 3.3.2 we present the amplitude and phase spectra for e~ H(t)
(solid line) while the dashed line gives these spectra for e=2* H(t). This
figure shows that the amplitude spectra has decreased by a factor of two
for e=2' H(t) compared to e~* H(t) while the differences in the phase are
smaller.

I Symmetry

If the function f(¢) has the Fourier transform F(w), then F[F(¢)] =
27 f(—w). »
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From the definition of the inverse Fourier transform,

f(t) = él;/_oo F(w)e™'dw = 51;/_00 F(z)e'™'dz. (3.3.11)
Then
2rf(—w) = / ” F(z)e ™%de = / ” F(t)e™*“'dt = F[F(t)].
o - (3.3.12)

e Example 3.3.3

The Fourier transform of 1/(1 +t2) is me~!¢l. Therefore,

27
-ty =
F (7re ) = Tro? (3.3.13)
or 0
-ty —
FeM) = . (3.3.14)

I Derivatives of functions

Let f*)(t),k =0,1,2,...,n—1, be continuous and f(™)(t) be piece-
wise continuous. Let |f*)(#)] < Ke™%,b > 0,0 < ¢ < oo; IF®@)| <
Me* a>0,—00 <t<0,k=0,1,.,n Then, F[f("(t)] = (iw)" F(w).

We begin by noting that if the transform F[f’(t)] exists, then

FIf@®) = /_0; fl()e ™t (3.3.15)
- /_ Z (1)t [cos(wrt) — isin(wrt)] dt (3.3.16)
= (~w; +z‘w,)/_°:o f(t)e¥  [cos(wrt) — isin(w,t)] dt (3.3.17)
= iw / o:o f()e ™ dt = iwF(w). (3.3.18)
Finally,
FIfO W) = iwF[f@)] = (W) FFODO) = - = ()" F(w).

(3.3.19)
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Figure 3.3.3: The (amplitude) spectrum of a rectangular pulse (3.1.9)
with a half width a = 10 that has been modulated with cos(5t).

e Example 3.3.4

The Fourier transform of f(t) = 1/(141?)is F(w) = me~1“l. There-

fore,
2t
|

_(1_+_t2_)2] = jwme™ ¥l (3.3.20)

or

t wn
= -l
die= R

I Modulation

In communications a popular method of transmitting information
is by amplitude modulation (AM). In this process some signal is carried
according to the expression f(t)e*“°!, where wq is the carrier frequency
and f(t) is some arbitrary function of time whose amplitude spectrum
peaks at some frequency that is usually small compared to wg. We now

(3.3.21)
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Figure 3.3.4: The (amplitude) spectrum of a rectangular pulse (3.1.9)
with a half width a = 10 that has been modulated with cos(t/2).

want to show that the Fourier transform of f(t)e’“o! is F(w —wo), where
F(w) is the Fourier transform of f(t).
We begin by using the definition of the Fourier transform:

F[f(t)eo!] = /_ ” f(t)elote tdt = /_ ” f(t)eiw-wlgs (3.3.22)
= F(w —wo). (3.3.23)

Therefore, if we have the spectrum of a particular function f(t), then
the Fourier transform of the modulated function f(¢)ei°! is the same as
that for f(¢) except that it is now centered on the frequency wo rather
than on the zero frequency. /

o Example 3.3.5

Let us determine the Fourier transform of a square pulse modulated
by a cosine wave as shown in Figures 3.3.3 and 3.3.4. Because cos(wot) =
3[e*°! + ¢=#o’] and the Fourier transform of a square pulse is F(w) =
2sin{wa)/w,

sinf[(w — wo)a) = sin[(w + wo)a]
W — wp + wHwy

F[f(t) cos(wet)] = (3.3.24)
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Figure 3.3.5: The amplitude and phase spectra of the Fourier trans-
form for e=2* H(t) (solid line) and e~2* cos(4t)H (t) (dashed line).

Therefore, the Fourier transform of the modulated pulse equals one half
of the sum of the pulse centered on wp and the other that of the pulse
centered on —wg. See Figures 3.3.3 and 3.3.4.

In many practical situations, wo > 7/a. In this case we may con-
sider that the two terms are completely independent from each other
and the contribution from the peak at w = wq has a negligible effect on
the peak at w = —wy.

e Example 3.3.6

The Fourier transform of f(t) = e~ H(t) is F(w) = 1/(b + iw).
Therefore,

Fle=" cos(at)H(t)] = %]: iat=bt | o—iaty -bt) (3.3.25)
= 1
i §< w’:w_a ’ m w'=w+a) (3326)
f[e tcos (at)H(t) _1_ 1 05am
2 (b+zw)—az b+ iw) + ai 3.
b+ iw
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Figure 3.3.6: The (amplitude) spectrum |G(w)|/T of a frequency-
modulated signal (shown top) using the parameters w,;T = 27 and
woT = 107. The transform becomes undefined at w = wy.

We have illustrated this result using e=2'H(t) and e~2! cos(4t)H(t) in
Figure 3.3.5.

o Example 3.3.7: Frequency modulation

In contrast to amplitude modulation, frequency modulation (FM) trans-
mits information by instantaneous variations of the carrier frequency.

It may be expressed mathematically as exp [z fioo f(r) dr+iC] e

where C is a constant. To illustrate this concept, let us find the Fourier
transform of a simple frequency modulation:

iwol
’

_ Wi, |t| < T/2 -
ft) = { o ST (3.3.29)
and C = —w1T/2. In this case, the signal in the time domain is
t
g(t) = exp [z/ f(r)dr+ iC] giwol (3.3.30)
E_iwlleeiwot, t < _T/2
={ eiwntgivor ~T/2<t<T/2 (3.3.31)

T2t {5 T/2,
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Figure 3.3.7: The (amplitude) spectrum |G(w)|/T of a frequency-
modulated signal (shown top) using the parameters w7 = 87 and
woT = 107. The transform becomes undefined at w = wy.

We have illustrated this signal in Figures 3.3.6 and 3.3.7.
The Fourier transform of the signal G(w) equals

-T/2 T/2
G(w) - e—-iwlT/2/ ei(wo—w)t dt +/ ei(wo+w1—w)t di
—o0 -T/2
00
+e"‘“1T/2/ eflwo—w)t gy (3.3.32)
T/2
0 =5}
= e—iw,T/?/ ei(wo—w)t dt + eiw;T/?/ ei(wo—w)t dt
oo 0
0 T/2
_ e—iwlT/2/ ei(wo—w)t di +/ ei(wo+w1—w)t di
-T/2 -T/2
T/2
- e“""’T/z/ efwo=w)t gy (3.3.33)
0

Applying the fact that

/ eXi dt = n6(a) £ z—! (3.3.34)
0



The Fourier Transform 133

G(w) = 7é(w — wo) [e’.““T/2 + e_i‘”’T/z]

N [ei(wo+w1—w)T/2 _ e—z’(wo+w1—w)T/2]

t(wo +wy —w)
[ei(wg+w1—w)T/2 _ e—i(wg-{—wl—w)T/Z}
_ (3.3.35)

i(wo - w)

= 27é(w —wp) cos(w1T/2) + 2wy sin((w — wo —w1)T/2]

(w bt wo)(w — Wy — wl)

. (3.3.36)

In Figures 3.3.6 and 3.3.7 we have illustrated the amplitude spectrum
for various parameters. In general, the transform is not symmetric, with
an increasing number of humped curves as w; T increases.

L Parseval’s equality

In applying Fourier methods to practical problems we may en-
counter a situation where we are interested in computing the energy
of a system. Energy is usually expressed by the integral ffooo |£(1)]? dt.
Can we compute this integral if we only have the Fourier transform of

F(w)?
From the definition of the inverse Fourier transform
1 [* .
f(t) = —/ F(w)e*'dw, (3.3.37)
27 J_ oo

we have that

/ If@)|dt = i/ f(@® [/ F(u)eiwfdw] dt. (3.3.38)
-0 2m —o0 -00
Interchanging the order of integration on the right side of (3.3.38),

/ If()|2dt = % / F(w) [ / f(t)e"wtdt] dw. (3.3.39)

However, .
F*(w) = / f(t)e™ dt. (3.3.40)
— Q0

Therefore,

| wera=g [ iF@pd (3.3.41)

-0
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This is Parseval’s equality® as it applies to Fourier transforms. The
quantity |F(w)|? is called the power spectrum.

o Example 3.3.8
In Example 3.1.1, we showed that the Fourier transform for a unit

rectangular pulse between —a < t < a is 2sin(wa)/w. Therefore, by
Parseval’s equality,

oo _: 2 a
3/ wd‘“:/ 12dt = 2a (3.3.42)
T J_oo w ~a
or ® sin(wa) '
sin“ (wa
/_oo T d = ma. (3.3.43)

| Poisson’s summation formula ‘

If f(z) is integrable over (—o0, 00), there exists a relationship be-
tween the function and its Fourier transform, commonly called Poisson’s
summation formula.”

We begin by inventing a periodic function g(z) defined by

g(x)= > flz+2mk). (3.3.44)
k=—-o00

Because g(z) is a periodic function of 27, it can be represented by the
complex Fourier series:

g(x)= D cae™” (3.3.45)
90)= > f@erk)= > cn. (3.3.46)
k=—o0 n=-o00

6 Apparently first derived by Rayleigh, J. W., 1889: On the character
of the complete radiation at a given temperature. Philos. Mag., Ser. 5,
27, 460-469.

7 Poisson, S. D., 1823: Suite du mémoire sur les intégrales définies et
sur la sommation des séries. J. Ecole Polytech., 19, 404-509. See page
451.
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Computing ¢,, we find that

Cn = L g(z)e” " dz = — Z flz + 2km)e™"" dz

2 )on T k=—oo
(3.3.47)

f ¢ + 2km)e” " dz = —/ f(z)e " de

:271'Z

(3.3.48)
F(n)

_ 3.3.4
2r ( 9)

where F(w) is the Fourier transform of f(z). Substituting (3.3.49) into
(3.3.46), we obtain

> f(27rk)=% > F(n) (3.3.50)

k=—o00 n=-—o0

or

T flak)= < T F(Q%") (3.3.51)

k=—00 n=-—00

e Example 3.3.9

One of the popular uses of Poisson’s summation formula is the
evaluation of infinite series. For example, let f(z) = 1/(a* + 2%) with a
real and nonzero. Then, F(w) = me~1%!/|a| and

o0 o0

11 glanl = L ~laln
Z a2+(2ﬂ—k)2_2nzz_:oo|a| 2' |(1+2Z al)

k=—o0 n=1

(3.3.52)

1 2 1 la|
= — | -1+ —— oth .
2|a|( *1—e-*a) 3a] (2)

(3.3.53)
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Problems

1. Find the Fourier transform of 1/(1+a?t?), where a is real, given that
F/(1+1%)]) = me~lel,

2. Find the Fourier transform of cos(at)/(1 + t2), where a is real, given
that F[1/(1 + t2)] = me~lvl.

3. Use the fact that Fle"**H(t)] = 1/(a+iw) with a > 0 and Parseval’s

equality to show that
/°° de. _ «
o T2+ a2  a’

4. Use the fact that F[1/(1+ t?)] = me~1*l and Parseval’s equality to
show that
/°° de _m
—oo (2241227

5. Use the function f(t) = e~ sin(bt)H (t) with a > 0 and Parseval’s
equality to show that

2/°° dz _ /°° dz
o (@2 +a? 022 +4a%?  J_, (2 + a2 — b%)2 + 4a2b?
™
" 2a(a? + b?)’

6. Using the modulation property and F[e=** H(t)] = 1/(b + iw), show

that
a

.7:[6 sin(at)H(t)] = m.

Plot and compare the amplitude and phase spectra for e~*H(t) and
e~tsin(2t) H(t).
7. Use Poisson’s summation formula to prove that

o0

S T - Z 5 <27f_" 3 a)

n=-—o0 n=—oo

where 6( ) is the Dirac delta function.
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3.4 INVERSION OF FOURIER TRANSFORMS

Having focused on the Fourier transform in the previous sections,
we consider in detail the inverse Fourier transform in this section. Recall
that the improper integral (3.1.6) defines the inverse. Consequently one
method of inversion is direct integration.

e Example 3.4.1

Let us find the inverse of F(w) = me~1¥l.
From the definition of the inverse Fourier transform,

f(@) :2% /:_oo re~lwleiwt gy (3.4.1)
1 /° . 1 [® :
:5/ e+t gy, 4 5/ el=1Hitw gy, (3.4.2)
—o0 0
(1+4it)w |0 (—14it)w |
L™ + (3.4.3)
2 L+t |_ L+t |
1 1 1 1
== - = . 3.4.4
2[1+it —1+it} 141¢2 ( )

Another method for inverting Fourier transforms is rewriting the
Fourier transform using partial fractions so that we can use transform
tables. The following example illustrates this technique.

o Example 3.4.2

Let us invert the transform

1
= . 4.5
Fwl = aroa=zwy (34.5)
We begin by rewriting (3.4.5) as

1 1 2 6
Flw)= 5[1 i 1-%w (1= 2w) (3.4.6)

1 1 1
+ =3 (3.4.7)

Tt Toiw 6L —iw)?
Using Table 3.1.1, we invert (3.4.7) term by term and find that

f(t) = S tH(t) + Fet/2H(~t) — ttet/2H (). (3.4.8)



138 Advanced Engineering Mathematics

Although we may find the inverse by direct integration or partial
fractions, in many instances the Fourier transform does not lend itself
to these techniques. On the other hand, if we view the inverse Fourier
transform as a line integral along the real axis in the complex w-plane,
then perhaps some of the techniques that we developed in Chapter 1
might be applicable to this problem. To this end, we rewrite the inver-
sion integral (3.1.6) as

f(t) = %/ F(W)eitw dw = %ﬁF(Z)C“Z dz — %‘/CR F(z)eitz dz,

— 00

(3.4.9)
where C denotes a closed contour consisting of the entire real axis plus
a new contour Cr that joins the point (o0, 0) to (—o0,0). There are
countless possibilities for Cg. For example, it could be the loop (o0, 0)
to (oo, R) to (—o0, R) to (—o0,0) with R > 0. However, any choice
of Cr must be such that we can compute fCR F(z)e'*? dz. When we
take that constraint into account, the number of acceptable contours
decrease to just a few. The best is given by Jordan’s lemma:8

Jordan’s lemma: Suppose that, on a circular arc Cr with radius R
and center at the origin, f(z) — 0 uniformly as R — oo. Then

(1) lim f(2)e™dz =0, (m > 0) (3.4.10)
R—o0 Cr

if Cr lies in the first and/or second quadrani;

(2) lim /C f(2)e”™*dz =0, (m>0) (3.4.11)

R—o0

if Cr lies in the third and/or fourth quadrant;

(3) lim f(z)e™*dz =0, (m >0) (3.4.12)
R—o0 Cr

if Cr lies in the second and/or third quadrant; and

4) lim f(z)e"™dz =0, (m>0) (3.4.13)
R—x Cr

if Cr lies in the first and/or fourth quadrant.

8 Jordan, C., 1894: Cours D’Analyse de I’Ecole Polytechnique. Vol.
2, Gauthier-Villars, Paris, pp. 285-286. See also Whittaker, E. T.
and Watson, G. N., 1963: A Course of Modern Analysis, Cambridge
University Press, Cambridge, p. 115.
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Technically, only (1) is actually Jordan’s lemma while the remaining
points are variations.

Proof: We shall prove the first part; the remaining portions follow by
analog. We begin by noting that

|Ir| = l/ f(z)e™ dz| < / |£(2)] || |dz]. (3.4.14)
CR CR
Now .
|dz| = Rd8, |f(z)] < Mg, (3.4.15)
lei’"zl = |exp(imRe“)| = |exp{imR[cos(f) + isin(6)]}| = e~™Rsin(®),
(3.4.16)
Therefore,
1
Hg| < RMR/ exp[—mRsin(6)] df, (3.4.17)
fo

where 0 < 6y < 6; < 7. Because the integrand is positive, the right side
of (3.4.17) is largest if we take §p = 0 and #; = 7. Then

v . /2 .
|Ir| < RMR/ e-"?RS‘"U’)de:mMR/ e~mRsin(®)gg. (3.4.18)
0 0

We cannot evaluate the integrals in (3.4.18) as they stand. However,
because sin(f) > 26/7 if 0 < # < 7/2, we can bound the value of the
integral by

/2
lIr| < 2RMR/ e2mBO/mgg — T prp (1—e~™R) . (3.4.19)
0 m

If m > 0, |Ig| tends to zero with Mg as R — oo. o
Consider now the following inversions of Fourier transforms:
o Example 3.4.3

For our first example we find the inverse for

1

= . .4.20
Fw) w? — 2ibw — a? — b? (3.4.20)
From the inversion integral,
6y = 2 /oo e d (3.4.21)
T 2m J_ o w? — 2ibw — a? — b2 v o



140 Advanced Engineering Mathematics

a+bi

L

contour

S |

Cg fort<0

Figure 3.4.1: Contour used to find the inverse of the Fourier transform
(3.4.20). The contour C consists of the line integral along the real axis
plus Cg.

or

1 eitz 1 eitz
1 = 2_7rfc 22 — 2ibz — a? — b2 dz - ﬁ‘/CR 22 — 2ibz — a® — b2 dz,
(3.4.22)

where C denotes a closed contour consisting of the entire real axis plus
Cr. Because f(z) = 1/(2% — 2ibz — a® — b%) tends to zero uniformly
as |z| — oo and m = t, the second integral in (3.4.22) will vanish by
Jordan’s lemmaif Ck is a semicircle of infinite radius in the upper half of
the z-plane when t > 0 and a semicircle in the lower half of the z-plane
when ¢ < 0.

Next we must find the location and nature of the singularities. They
are located at

22— 2bz—a? - b =0 (3.4.23)

or
z = %a+ bi. (3.4.24)

Therefore we can rewrite (3.4.22) as

1 eitz
fO) = ﬁ}é e (3.4.25)

Thus, all of the singularities are simple poles.
Consider now ¢t > 0. As stated earlier, we close the line integral
with an infinite semicircle in the upper half-plane. See Figure 3.4.1.
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Inside this closed contour there are two singularities: z = +a + bi. For
these poles,

eitz )
Res (z2 iz —a? -2’ " + bz)

eitz

= 1 —a—bi .4.26

z—l»lﬂbi(z a - bi) (z —a—bi)(z +a—bi) (3 )
_ e ie-b’[ s(at) + isin(at)] (3.4.27)
= %0 "~ 2a co sin , 4.

where we have used Euler’s formula to eliminate e!**. Similarly,

itz
Res (zz — 2in — ot bi) = —%e‘“[cos(at) — isin(at)).

(3.4.28)
Consequently the inverse Fourier transform follows from (3.4.25) after
applying the residue theorem and equals

f@) = —%e"bt sin(at) (3.4.29)

for ¢t > 0.

For t < 0 the semicircle is in the lower half-plane because the con-
tribution from the semicircle -vanishes as R — co. Because there are
no singularities within the closed contour, f(t) = 0. Therefore, we can
write in general that

f(t) = —2%6_“ sin(at) H(t). (3.4.30)

e Example 3.4.4

Let us find the inverse of the Fourlier transform

e—wz

Fo)=mra

(3.4.31)

where a is real and positive.
From the inversion integral,

f(t) 1/00 S (3.4.32)

= — w
21 J_ oo w2+ a?

i(t—1)z i(t—1)z
= i]{ S dz- i/ S _d:  (3.4.33)
27 Jo 22 4 a? 27 Jop 22+ a?
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where C denotes a closed contour consisting of the entire real axis plus
Cr. The contour Cg is determined by Jordan’s lemma because 1/(2? +
a?) — 0 uniformly as |z|] — co. Since m = t — 1, the semicircle Cg
of infinite radius lies in the upper half-plane if ¢ > 1 and in the lower
half-plane if t < 1. Thus, if t > 1,

1 ., ei(t_l)z X e—a(t—l)
f@) = %(27”)}{65 [Z—z"_{_—ag;al} = (3.4.34)
whereas for ¢t < 1,
1 9ri)R ei(t—l)z ) ea(t—l) 3.4.35
) = gr(=2miRes [ S —ai] = <o (3.4.35)

The minus sign in front of the 27 arises from the negative sense of the
contour. We may write the inverse as the single expression:

f@) = %e"‘"‘”. (3.4.36)

o Example 3.4.5

Let us evaluate the integral

/ ” costka) 4 (3.4.37)

2 27
0 ¢+ a

where a, k > 0.
We begin by noting that

<} oo ikx ikz
/ co:(k:cg dr = Re (/ —:—-—Edz) = Re (% %dZ),
—o % ta -0 X ta c, ?°ta
(3.4.38)
where C; denotes a line integral along the real axis from —oco to co. A
quick check shows that the integrand of the right side of (3.4.38) satisfies
Jordan’s lemma. Therefore,

0 eikz- eilcz . eikz )
/Oo 22+ a? de = f; . dz = 271 Res (m;az) (3.4.39)

— A\ otk2
= omi lim G T ke (3.4.40)
z—ai 22 4 a? a

where C' denotes the closed infinite semicircle in the upper half-plane.
Taking the real and imaginary parts of (3.4.40),

* cos(kz) T
/oo Pt dz = —e @ (3.4.41)
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Figure 3.4.2: Contour used in Example 3.4.6.

and

/oo sinke) ;. — . (3.4.42)

2 2
o Tt a

o Example 3.4.6

So far we have used only the first two points of Jordan’s lemma.
In this example® we illustrate how the remaining two points may be
applied.

Consider the contour integral

f cot(wz)[ e + e ] dz,
c (r+2m2)2+ B2 (1—272)2+ B2

where ¢ > 0 and 3,7 are real. Let us evaluate this contour integral
where the contour is shown in Figure 3.4.2.

® Reprinted from Int. J. Heat Mass Transfer, 15, Hsieh, T. C., and
R. Greif, Theoretical determination of the absorption coefficient and
the total band absorptance including a specific application to carbon
monoxide, 1477-1487, (©1972, with kind permission from Elsevier Sci-
ence Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.
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From the residue theorem,
e—CZ e—CZ
t d
fc cot(mz) [(‘r +27z)? 4 32 + (r—272)2 + ﬁz] ¢

o o= e—¢?
=2ni 3 Res{cot(r:) et )

n=1

/ e e rl+gi
+ 27 Res{cot(frz)[(r+2ﬂz)z + 32 + = 972)? +ﬂ2]’ o }
' e ) lrl-pi
+ 271t Res{cot(ﬂz)[(r+ 2712)2 + 32 + (r = 972)? +ﬂ2]’ o }
(3.4.43)
Now
e—¢? e—¢?
Res{“’“”) [(r+ 2m2) + B2 (r = 272)° +ﬂ2J ;"}
- (2 — n)cos(nz) . e—¢? e—c* ]
= sin(mz) i [(7- +272)? + 32 + (r=272)2 + 32
(3.4.44)
1 e—n¢ P
= T [(7- +2nm)2 + 32 + (r = Inm)? + ﬁz}’ (3.4.45)
e |rl+5i
Res{ cot(wz)[(r+ 212)2 + 32 + (r —2r7)2 +,32]’ = }
_ cot(mz)
T a—(Ir|+Bi)/2n An?
(z = || = Bi)e~e: (z = |r| = Bi)e=c*
* [(Z + 7'/27r)2 + ,32/47r2 + (z — 7'/27!‘)2 + 132/4772] (3'4‘46)
— ot(I7l/2 + Bi/2) exp(—c||/2m)[cos(cB/27) — isin(cB/2r)]
- 470
(3.4.47)
and
e—¢% e—¢* . ITI _ IBZ
Res{ COt(”)[(r+27rz)2 + 32 + r = 272)? +ﬂ2]’ o }
_ cot{mz)
amrl-Biyj2r  4n?
(z = Irl + Bi)e== (z = |r| + Bi)e=*
* [(z +7/2m)2 4+ B2 /a2 T (2 —1/27)2 ¥ ﬂ3/47r2} (3.4.48)

_ cot(|r|/2 - Bif2) exp(—c|r|/2m)[cos(cB/27) + isin(cB/27)]
—4r3i

(3.4.49)
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Therefore,

et e~
.?i'COt(WZ) [(T+ 212)? + 32 + (r—272)2 + ﬂz] 4

-nc

) o e e—n¢
= E [(r + 2nm)? + 32 + (r —2n7)? + ﬁz]

n=1

i eilml o of
n %%ﬁ-i—;e‘clrl/z”[cos(cﬂ/%r) — isin(cf/2)]

el e
—'2—15 z;%;e"clrl/z”[cos(cﬂ/%r) + ¢sin{eB/27)] (3.4.50)

. o e~ e e—ne
- 22; [(‘r + 2nm)? + 32 + (7 —2nm)? + ﬂz]
_ i sinh(p) cos(cf/2m) + sin(|7]) sin(cB/27) _or/2n

I¢; cosh(3) — cos(T) ¢ 7, (3451)

where cot(a) = i(e?* 4 1)/(e*> — 1) and we have made extensive use
of Euler’s formula.

Let us now evaluate the contour integral by direct integration. The
contribution from the integration along the semicircle at infinity van-
ishes according to Jordan’s lemma. Indeed that is why this particular
contour was chosen. Therefore,

f cot(wz)[ e + e ]dz
c (r+2r2)24+ 52 (r—27z)% + (2

[ ottt + ]
- ,-OOCO ‘ (T+272)2 4+ 682 (r—2mz2)? + (2 ¢

-cz —cz
€

e
4./e cot(rz) [(7‘ ¥ 212) + B2 + (r—2m2)? + 52] 4

—100 e—cz e—cz
e e e L
(3.4.52)

Now, because z = iy,

/” cot(mz) e~ + e d
oo (T4 2Znz)2 + B2 (r—2me) +52)

€ . e-icy e~t d
= /oo coth(my) [(7’ FImig)? 4 B (7 2mig) + ﬁz] ’
(3.4.53)

. /°° coth(my)(7? + B2 — 4n?y?)e 'Y

3.4.54
(T2 + 3% — An2y?)? + 16m2r2y? Y, ( )
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/—iOO t( ) e~ % N e~ 2 J
e conmz (r+2m2)2+ 82 (r—2m2)? 4+ 32 g

—o0 N ety et d
B /_ coth(my) [(r Y I ey ﬂ:'] !
(3.4.55)

oS 2 2 _ Ax22) ety
_ 2/ coth(my)(7* + 57 — 4n°y*)e d (3.4.56)
e (7487 —4n?y?)? + 167272y

and

/ cot(7rz)|: e =+ e ,,] dz
c. (r+2m2)2+ 0% (r—27mz)2 + B2

—m2ro mee?! T
:/ [W—T—"']€lezd9
w/2

exp(—cee®?) exp(—cee®?)
- - .(3.4.57
X [(7‘ + 2mee®)2 + 32 (7 — 2mee??)? + 32 ( )

In the limit of € — 0,

f cot(mz) e + e dz
™
NN Fr 2 1 B2 (- 2m2)? + B2
. [ coth(my)(r? + 3% — 47%y?) sin(cy) 2
= - 3.4.58
4’/0 (72 + B2 — dn2y?)? 1 167277y° dy— T3 ( )

. e—nc e—ﬂc
- 212[ T+ 2nw)?2 + 32 + (‘r—2n7r)2+ﬂ2]
i sinh(B) cos(cB/27) + sin(|r|) sin(cB/27) oclrl/2r
B cosh(f3) — cos(T)

(3.4.59)

or

4 /°° coth(my)(r? + 8% — 4x?y?) sin(cy)
o (2 + 02 — 4n%y?)? + 167272y

e—nc e—nc
- 2; [(7‘ + 2nw)? + (2 + (7 —-2nm)% + ,32]
_ 1sinh(8) cos(cB/2w) + sin(|7]) sin(cB/2) o-elrl/zm

B cosh(B3) — cos(T)
2

72 +,82
If we let y = z/2m,

8 coth(z/2)(7% + 8% — z?)sin(cz/27)
/ 7-2 + ﬂZ _ x2) + 47-21.2 dx

+ (3.4.60)
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Figure 3.4.3: The correspondence between the location of the simple
poles of the Fourier transform F'(w) and the behavior of f(¢).
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o0 e—ne e—ne
= 25; [(’r + 2nm)? 4+ B2 + (1~ 2nm)? +ﬁ2]

_ sinh(B) cos(cB/2m) + sin(|7]) sin(cB/27) o—clrl/2
cosh(3) — cos(7)

2p

m. (3.4.61)

+

e Example 3.4.7

An additional benefit of understanding inversion by the residue
method is the ability to qualitatively anticipate the inverse by knowing
the location of the poles of F(w). This intuition is important because
many engineering analyses discuss stability and performance entirely in
terms of the properties of the system’s Fourier transform. In Figure 3.4.3
we have graphed the location of the poles of F(w) and the corresponding
f(t). The student should go through the mental exercise of connecting
the two pictures.

Problems
1. Use direct integration to find the inverse of the Fourier transform
wT

Flw)= Te"“".

Use partial fractions to invert the following Fourier transforms:

1 1
2. (1+w)(1 + 2iw) 3. (14+iw)(1 - iw)
w 1

(14 dw)(1 + 2iw)

(1 + iw)(1 + 2iw)?

By taking the appropriate closed contour, find the inverse of the follow-
ing Fourier transform by contour integration. The parameter a is real

and positive.

1 W
w? + a2 w? + a2
w 9 wz
(w? + a?)? " (W2 +a?)?
1 1
10, —— o
0 w? — 3iw — 3 1 (w — ia)?n+2
2
12. d 13. 3

(w? - 1) + 4a%w?

(2 — wi)(1 +wi)
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14. Find the inverse of F(w) = cos(w)/(w?+a?), a > 0, by first rewriting
the transform as

ezw e-—zw

2w+ a?) 3wt )

F(w)=
and then using the residue theorem on each term.

15. As we shall show shortly, Fourier transforms can be used to solve
differential equations. During the solution of the heat equation, Taitel
et al.'% had to invert the Fourier transform

cosh(yvw? + 1)
Vw? + 1 sinh(pvw? +1/2)’

where y and p are real. Show that they should have found

F(w)=

——|t

e—\/l-}-tln""rﬂ/p2 jt}

1= Z \/Tmp_ (%)

In this case, our time variable ¢ was their spatial variable x — €.

16. Find the inverse of the Fourier transform

ro = o { i)

where L, 8, and 7 are real and positive and sgn(z) = 1 if Re(z) > 0 and
-1 if Re(z) < 0.

Use the residue theorem to verify the following integrals:

17.

©  sin(x) T
[ s yarste=F)

o0

*  cos(z) T
SO dr = —
/0 (z2+ 1)? T %

O Reprinted from Int. J. Heat Mass Transfer, 16, Taitel, Y., M.
Bentwich and A. Tamir, Effects of upstream and downstream boundary
conditions on heat (mass) transfer with axial diffusion, 359-369, (©1973,
with kind permission from Elsevier Science Ltd., The Boulevard, Lang-
ford Lane, Kidlington OX5 1GB, UK.

18.
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19. - .
/ x—szn(ﬁ)- = me 20 a>90
—oo Z%4+ 4

20. The concept of forced convection is normally associated with heat
streaming through a duct or past an obstacle. Bentwich!! wanted to
show a similar transport can exist when convection results from a wave
traveling through an essentially stagnant fluid. In the process of com-
puting the amount of heating he had to prove the following identity:

* cosh(hz) — 1 B
/—oo T sinh(hx) cos(a:c) dz = ln[COth(lalﬂ'/h)]) h>0.

Confirm his result.

3.5 CONVOLUTION

The most important property of Fourier transforms is convolution.
We shall use it extensively in the solution of differential equations and
the design of filters because it yields in time or space the effect of mul-
tiplying two transforms together.

The convolution operation is

() xg(t) = /_°° f(x)g(t — x)dz = /—00 f(t—z)g(z)de. (3.5.1)

Then,

o]

U ot = [ e |/ ot = 2)e i

— 00

(3.5.2)
- /_ f(@)G(Ww)e" P dz = FW)C(w).  (3.5.3)

Thus, the Fourier transform of the convolution of two functions equals
the product of the Fourier transforms of each of the functions.

o Example 3.5.1

Verify the convolution theorem using the functions f(t) = H(¢ +
a)— H(t - a) and g(t) = e~*H(t), where a > 0.

"' Reprinted from Int. J. Heat Mass Transfer, 9, Bentwich, M., Con-
vection enforced by surface and tidal waves, 663-670, (©1966, with kind
permission from Elsevier Science Ltd., The Boulevard, Langford Lane,
Kidlington OX5 1GB, UK. :
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The convolution of f(t) with g(t) is

so)= [ PR - ) s+ o) = Hiz - )] de
(3.5.4)

=et /“ e"H(t — z)dr. (3.5.5)

Ift < —a, then the integrand of (3.5.5) is always zero and f(t)+*g(t) = 0.
ift>a,

f(t) xg(t) = 6”] eTdz = e~ (17 — e~ (F0), (3.5.6)

Finally, for —a <t < a,

t
f(t) = g(t) = e‘t/ efde=1— e (149, (3.5.7)
In summary,
0, t< —a
ft) xg(t) = { 1 —e=(t4e), —a<t<a (3.5.8)
e—(t=a) _ g=(t+a) t>a.

The Fourier transform of f(t) * g(t) is

F wov = [ [1-e ] et
/ [e_(t @) _ _(H'a)} e~ dt (3.5.9)

2 sm(wa) 2isin(wa)

- _ (3.5.10)
14w
- 25“3“’“) (1 :m) - F)Gw) (3.5.11)

and the convolution theorem is true for this special case.
o Example 3.5.2

Let us consider the convolution of f(t) = f+(t)H(t) with g(t) =
g4+ H(t). Note that both of the functions are nonzero only for ¢ > 0.
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From the definition of convolution,
0

s0200 = [ fit- B - D0 @HE) (3512
= /Ooo folt = 2)H(t - )9 (2) da. (3.5.13)

For t < 0, the integrand is always zero and f(t) * g(t) = 0. For t > 0,
0500 = [ f-2o@de (3519

Therefore, in general,

$0 o) = [ [ £t - (o) ] 10, (35.15)

This is the definition of convolution that we will use for Laplace trans-
forms where all of the functions equal zero for t < 0.

Problems
1. Show that
eT'H(t)x e H(t) = te ' H(t).
2. Show that
e H(t) x e’ H(—t) = Le 1.
3. Show that

etH(t)x e ®H(t) = (e7' — e~ M) H(2).

4. Show that
el —el72 t<0
eH(~t)x[Ht)~H(t-2)]={ 1-¢'-2 0<t<2
0, t> 2.
5. Show that
0, t<0

t, O<t<?2
4—t, 2<t<4
0, t>4.

(H(t) - H(t - 2)]*[H(t) - H(t - 2)] =
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6. Show that
e~lthx el = (1 4 |t])e .

7. Prove that the convolution of two Dirac delta functions is a Dirac
delta function.

3.6 SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
BY FOURIER TRANSFORMS

As with Laplace transforms, we may use Fourier transforms to solve
ordinary differential equations. However, this method gives only the
particular solution and we must find the complementary solution sepa-
rately.

Consider the differential equations

vy +y=1Le Ml —co<it< oo (3.6.1)

Taking the Fourier transform of both sides of (3.6.1),

1

(3.6.2)

where we have used the derivative rule (3.3.19) to obtain the transform
of ¥ and Y (w) = F[y(t)]. Therefore,

1

YW = i nayen (3.6.3)
Applying the inversion integral to (3.6.3),
1 0 eitw

We evaluate (3.6.4) by contour integration. For ¢ > 0 we close the line
integral with an infinite semicircle in the upper half of the w-plane. The
integration along this arc equals zero by Jordan’s lemma. Within this
closed contour we have a second-order pole at z = 7. Therefore,

eztz

ztz
Res (z2+1)(1+zi)”] B dz[ Fm T parr | NG
_te™? e -t
=t (3.6.6)
and

y(t) = L (27rz) [E + %i] = f;—t(Qt +1). (3.6.7)
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For t < 0, we again close the line integral with an infinite semicircle
but this time it is in the lower half of the w-plane. The contribution
from the line integral along the arc vanishes by Jordan’s lemma. Within

the contour, we have a simple pole at z = —i. Therefore,
eitz eitz et
Res |0— il = 1 N = _
ClE DA+ ) ’] R iy i A
(3.6.8)
and ) , .
e e
= (=2m)(-=) =2, 6.
o) = g (-m) (-5) = 5 (36.9)

The minus sign in front of the 27 results from the contour being taken
in the negative sense. Using the step function, we can combine (3.6.7)
and (3.6.9) into the single expression

y(t) = te7ltl 4 Lte=tH(2). (3.6.10)

Note that we have only found the particular or forced solution to
(3.6.1). The most general solution therefore requires that we add the
complementary solution Ae~!, yielding

y(t) = Ae™! + te~ 1l + Lte " H(2). (3.6.11)
The arbitrary constant A would be determined by the initial condition
which we have not specified.
Consider now a more general problem of

¥ +y=f@), —oco<t<oo, (3.6.12)

where ‘we assume that f(t) has the Fourier transform F(w). Then the
Fourier-transformed solution to (3.6.12) is

Y(w) = 1+1M,F(w) = Gw)F(w) (3.6.13)
y(t) = g(t) * £(2), (3.6.14)

where g(t) = F~{1/(1 + wi)] = e"*H(t). Thus, we can obtain our
solution in one of two ways. First, we can take the Fourier transform of
f(t), multiply this transform by G(w), and finally compute the inverse.
The second method requires a convolution of f(t) with g(t). Which
method is easiest depends upon f(t) and g(%).

The function g(t) may also be viewed as the particular solution of
(3.6.12) resulting from the forcing function 6(t), the Dirac delta function,
because F[6(t)] = 1. Traditionally this forced solution g(t) is called the
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Green’s function and G(w) is called the frequency response or steady-
state transfer function of our system. Engineers often extensively study
the frequency response in their analysis rather than the Green’s function
because the frequency response is easier to obtain experimentally and
the output from a linear system is just the product of two transforms
[see (3.6.13)] rather than an integration.

In summary, we may use Fourier transforms to find particular so-
lutions to differential equations. The complete solution consists of this
particular solution plus any homogeneous solution that we need to sat-
isfy the initial conditions. Convolution of the Green’s function with the
forcing function also gives the particular solution.

o Example 3.6.1: Spectrum of a damped harmonic oscillator

Second-order differential equations are ubiquitous in engineering.
In electrical engineering many electrical circuits are governed by second-
order, linear ordinary differential equations. In mechanical engineering
they arise during the application of Newton’s second law. For exam-
ple, in mechanics the damped oscillations of a mass m attached to a
spring with a spring constant k and damped with a velocity dependent
resistance is govern by the equation

my” +cy + ky = f(t), (3.6.15)

where y(t) denotes the displacement of the oscillator from its equilibrium
position, ¢ denotes the damping coefficient and f(t) denotes the forcing.
Assuming that both f(t) and y(¢) have Fourier transforms, let us
analyze this system by finding its frequency response. We begin our
analysis by solving for the Green’s function g¢(¢) which is given by

mg" + cg’ + kg = 6(t), (3.6.16)

because the Green’s function is the response of a system to a delta
function forcing. Taking the Fourier transform of both sides of (3.6.16),
the frequency response is

1 1/m

= = 3.6.17
Glw) k+icw —mw?  wi+icw/m—w?’ ( )

where wg = k/m is the natural frequency of the system. The most useful
quantity to plot is the frequency response or

_ wg
G = ky/(w? — w?)? + w?wi(c?/km) (3.6.18)
- ! (3.6.19)

kv/[(w/wo)? = 1% + (c2/km)(w/wo)?



156 Advanced Engineering Mathematics

11.0

10.0

9.0 b

8.0 F

70 |

6.0

50 F

k IG(®)

a0 |

3.0 |

20

1.0

0.0 2 A L
0.0 0.5 1.0 1.5 2.0

/0 0

Figure 3.6.1: The variation of the frequency response for a damped
harmonic oscillator as a function of driving frequency w. See the text
for the definition of the parameters.

In Figure 3.6.1 we have plotted with frequence response for different
c?/km’s. Note that as the damping becomes larger, the sharp peak at
w = wp essentially vanishes. As c?/km — 0, we obtain a very finely
tuned response curve.

Let us now find the Green’s function. From the definition of the
inverse Fourier transform,

.

—0o0

1 [e9) ez’wt
= - /_oo e P (3.6.21)

o .
ezwt

di 3.6.20
w? —idew/m — w} v (3.6.20)

where

wig =\ Jwi—v:+7i (3.6.22)

and ¥ = ¢/2m > 0. We can evaluate (3.6.21) by residues. Clearly
the poles always lie in the upper half of the w-plane. Thus, if ¢ < 0
in (3.6.21) we can close the line integration along the real axis with a
semicircle of infinite radius in the lower half of the w-plane by Jordan’s
lemma. Because the integrand is analytic within the closed contour,
g(t) = 0 for t < 0. This is simply the causality condition,'? the impulse

12 The principle stating that an event cannot precede its cause.
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t<0

Figure 3.6.2: The migration of the poles of the frequency response of
a damped harmonic oscillator as a function of =.

forcing being the cause of the excitation. Clearly, causality is closely
connected with the analyticity of the frequency response in the lower
half of the w-plane.

If t > 0, we close the line integration along the real axis with a
semicircle of infinite radius in the upper half of the w-plane and obtain

= (1) o[y
+ Res [(_z-———@%%tz_:m;wz]} (3.6.23)
= WI__iwz (efrt — giwet) (3.6.24)
= el E; _wi— 72) H(t). (3.6.25)

Let us now examine the damped harmonic oscillator by describing
the migration of the poles w; » in the complex w-plane as v increase



158 Advanced Engineering Mathematics

from 0 to co. See Figure 3.6.2. For v <« wq (weak damping), the poles
w12 are very near to the real axis, above the points twy, respectively.
This corresponds to the narrow resonance band discussed earlier and
we have an underdamped harmonic oscillator. As 7 increases from 0
to wp, the poles approach the positive imaginary axis, moving along
a semicircle of radius wg centered at the origin. They coalesce at the
point iwy for ¥ = wy, yielding repeated roots, and we have a critically
damped oscillator. For v > wg, the poles move in opposite directions
along the positive imaginary axis; one of them approaches the origin,
while the other tends to ico as ¥ — oo. The solution then has two
purely decaying, overdamped solutions.

During the early 1950s, a similar diagram was invented by Evans!
where the movement of closed-loop poles is plotted for all values of
a system parameter, usually the gain. This root-locus method is very
popular in system control theory for two reasons. First, the investigator
can easily determine the contribution of a particular closed-loop pole
to the transient response. Second, he may determine the manner in
which open-loop poles or zeros should be introduced or their location
modified so that he will achieve a desired performance characteristic for
his system.

3

o Example 3.6.2: Low frequency filter

Consider the ordinary differential equation

1
Ry + cv= f(@), (3.6.26)
where R and C are real, positive constants. If y(¢) denotes current, then
(3.6.26) would be the equation that gives the voltage across a capacitor
in a RC circuit. Let us find the frequency response and Green’s function
for this system.

We begin by writing (3.6.26) as
, 1
Rg' + roid 8(t), (3.6.27)

where g(t) denotes the Green’s function. If the Fourier transform of g(t)
1s G(w), the frequency response G(w) is given by

iWwRC(W) + 9% -1 (3.6.28)

13 Evans, W. R., 1948: Graphical analysis of control systems. Trans.
AIEE, 67, 547-551; Evans, W. R., 1954: Control-System Dynamaics,
McGraw-Hill, New York.
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Figure 3.6.3: The variation of the frequency response (3.6.30) as a
function of driving frequency w. See the text for the definition of the
parameters.

or

1 C
CWw)= ZRT1/C = TvwRC

(3.6.29)

and

C C
IG(w)] = - , (3.6.30)
V1+w2R2C? \/1 +w?fuwl

where w, = 1/(RC') is an intrinsic constant of the system. In Figure
3.6.3 we have plotted |G(w)| as a function of w. From this figure, we see
that the response is largest for small w and decreases as w increases.

This is an example of a low frequency filter because relatively more
signal passes through at lower frequencies than at higher frequencies.
To understand this, let us drive the system with a forcing function
that has the Fourier transform F(w). The response of the system will
be G(w)F(w). Thus, that portion of the forcing function’s spectrum
at the lower frequencies will be relatively unaffected because |G(w)] is
near unity. However, at higher frequencies where |G(w)| is smaller, the
magnitude of the output will be greatly reduced.

Problems
Find the particular solutions for the following differential equations:

1.y +3y +2y=e 'H(t) 2.y +4y + 4y = 1M
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3.y —4y +4y=eTH() 4.y — My = §(z),
where A has a positive real part and a negative imaginary part.



Chapter 4
The Laplace Transform

The previous chapter introduced the concept of the Fourier inte-
gral. If the function is nonzero only when ¢ > 0, a similar transform,
the Laplace transform,! exists. It is particularly useful in solving initial-
value problems involving linear, constant coefficient, ordinary and par-
tial differential equations. The present chapter develops the general
properties and techniques of Laplace transforms.

4.1 DEFINITION AND ELEMENTARY PROPERTIES

Consider a function f(t) such that f(¢) = 0 for ¢ < 0. Then the
Laplace integral

LA = F(s) = /o  ft)e-rtdr (4.1.1)

! The standard reference for Laplace transforms is Doetsch, G., 1950:
Handbuch der Laplace-Transformation. Band 1. Theorie der Laplace-
Transformation, Birkhauser Verlag, 581 pp.; Doetsch, G., 1955: Hand-
buch der Laplace-Transformation. Band 2. Anwendungen der Laplace-
Transformation. 1. Abteilung, Birkhduser Verlag, 433 pp.; Doetsch, G.,
1956: Handbuch der Laplace-Transformation. Band 3. Anwendungen
der Laplace-Transformation. 2. Abieilung, Birkhauser Verlag, 298 pp.



162 Advanced Engineering Mathematics

defines the Laplace transform of f(t), which we shall write £[f(¢)] or
F(s). The Laplace transform converts a function of ¢ into a function of
the transform variable s.

Not all functions have a Laplace transform because the integral
(4.1.1) may fail to exist. For example, the function may have infinite
discontinuities. For this reason, f(t) = tan(t) does not have a Laplace
transform. We may avoid this difficulty by requiring that f(¢) be piece-
wise continuous. That is, we can divide a finite range into a finite
number of intervals in such a manner that f(¢) is continuous inside each
interval and approaches finite values as we approach either end of any
interval from the interior.

Another unacceptable function is f(t) = 1/¢ because the integral
(4.1.1) fails to exist. This leads to the requirement that the product
t*|f(t)| is bounded near ¢t = 0 for some number n < 1.

Finally |f(t)| cannot grow too rapidly or it could overwhelm the
e™** term. To express this, we introduce the concept of functions of
exponential order. By exponential order we mean that there exists some
constants, M and k, for which

[f(t)] < Me¥ (4.1.2)

for all £ > 0. Then, the Laplace transform of f(¢) exists if s, or just the
real part of s, is greater than k.

In summary, the Laplace transform of f(t) exists, for sufficiently
large s, provided f(t) satisfies the following conditions:

e f(t)=0fort <0,
e f(t) is continuous or piece-wise continuous in every interval,
o t*|f(t)| < oo as t — 0 for some number n, where n < 1,

e e %9 f(t)] < oo as t — oo, for some number so. The quantity sg
is called the abscissa of convergence.

e Example 4.1.1

Let us find the Laplace transform of 1, e, sin(at), cos(at), and
" from the definition of the Laplace transform. From (4.1.1), direct
integration yields:

o0

o0 c—st 1
L) = / e tdt = — =-, s> 0, (4.1.3)
0 S g )
o0 )
L) = / eetdt = / e~l-atgy (4.1.4)
0 0
—(s—a)t | 1
= — ¢ = , s> a, (415)
§—a 0 s—a
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. Rl s et . °°
L[sin(at)] = /(; sin(at)e™*'dt = — ;2+—a?[s sin(at) + a cos(
(4.1.6)
a
= -82—+a—2-, s> 0, (417)

- o0
est ‘

L{cos(at)] = /000 cos(at)e™*'dt = —2_(15[_3 cos(at) + asin(at)] i

(4.1.8)
S
and
ny _ n —~st — —st _ :
L(lt)_/0 dt = n'e’z(n_ )'sm+1 = o >0,
(4.1.10)

where n is a positive integer.

The Laplace transform inherits two important properties from its
integral definition. First, the transform of a sum equals the sum of the
transforms:

Llc1f(2) + c29(t)] = el LIF(H)] + c2Lg(2)]- (4.1.11)

This linearity property holds with complex numbers and functions as
well.

o Example 4.1.2
Success with Laplace transforms often rests with the ability to ma-
nipulate a given transform into a form which you can invert by inspec-

tion. Consider the following examples.
Given F(s) = 4/s3, then

F(s)=2x 333 and f(t) = 2t° (4.1.12)

from (4.1.10).
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Table 4.1.1: The Laplace Transforms of Some Commonly Encountered
Functions.

f(t), t>0 F(s)
1 1 %
2. e~ . _41_
a
1 —at 1
3. a (1 — € ) m
_ —a 1
4 (e — ) G+aGTh)
Ll (p.—bt _ . _—at s
5. 5= (be ae~ %) GraGTh
. a
6. ) sm(at) m
s
7. cos(at) 824—_(12
8. sinh(at) s_za_a"’
9. cosh(at) sz—ja—z
. 2as
10. tsin(at) m)—z
a2
11. 1-— cos(at) m
. a®
12. at — sm(at) 82(3_2-}-(1_2)-
s2 — a2
13. tcos(at) (—mz—)z
2q3
14. sin(at) — at cos(at) m
a
15. tsinh(at) (s%afzz)?
2 2
16. t cosh(at) (;_+;)7
2a3
17. at cosh(at) — sinh(at)
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Table 4.1.1 (contd.): The Laplace Transforms of Some Commonly
Encountered Functions.

f(t), t>0 F(s)
18. e~" sin(at) G b;lz e
19. e~ cos(at) G +Sb-)}-2b_{_ )
20. (1+ a?t?)sin(at) — cos(at) (328 (_1:222)3

4a3
21. sin(at) cosh(at) — cos(at) sinh(at) Yt dad
2
22. sin(at) sinh(at) sz :a4
23. sinh(at) — sin(at) 92%{
24. cosh(at) — cos(at) ;42_(1_2—23
25. asin(aatg : ::in(bt) ,a’ # b? (s2 + a:;;z(sz +b2)
26. bsinizzl))z—_a;ir)l(bt) ,a’ # b2 (2 + az)l(sz ¥ b2)
27. w—)ﬂz # b2 (s2 + azf(sz +b?)
28. t",n>0 s:-i!-l
n-1,-at

29. t(—njel—)!, n>0 (—s_:—a);
30. ("(—;i—)l_)—,at "% n > 1 (S:a)n
31. the=*,n 20 (;:na')—nﬁ
39, — ;ntn(—;;/i) e n>1 s—n+(1/2)]
33. Jo(at) 1

VTia
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Table 4.1.1 (contd.): The Laplace Transforms of Some Commonly
Encountered Functions.

£(t), t >0 F(s)
1
34. Io(at) 52 — a2
35 L erf(v/al) !
. — erf(Va
Va svVs+a
36. \/—IT_te_‘" + Va erf(Vat) s: ¢
1 " 1
37. T ae® terfc(av/t) T
1
t
38. e®terfc(vat) st Vas
1
39. : bt — et Vs—a—+vs—b
2Vt ( )
1 %t Vs
40. Wi + ae® terf(avt) P
1 s
41. —e®(1 + 2at
\/ﬁe (1 +2at) (s—als—a
1 e, 1
42. pld erf(av?) G=avs
43. [ —ze a>0 e~2v/a
wt
44, Le-“/‘,a >0 L p-ovm
vt - s
45. erfc(\/g) ,a>0 le_2‘/‘H
t s
t a? e~avs
46. Zexp(—-L) -
6 2\/;exp( 4t) aerfc( \/_), a 55
2 be—a s
_ b t+abd a a -
47. e erfc(b\/f+ W?) + erfc(m) ,a>0 BT o)
2 -avs
48. e e’ terfe (b t+ L) ,a>0 _
Vit37) 02 VA
) 2 (% _.2
Notes: Error function: erf(z) = ;/ e ¥ dy
0

Complementary error function: erfc(z) = 1 — erf(z)
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Given 49 5
s+ s
F(s) = = 41.13
= ey T e (4.1.13)
then
f(t) = cos(t) + 2sin(t) (4.1.14)
by (4.1.7), (4.1.9), and (4.1.11).
Because ) ) )
F(s) = = - - .1.15
(s) s(s—1) s—1 s (4.1.15)
by partial fractions, then
fy=¢e" -1 (4.1.16)

by (4.1.3), (4.1.5), and (4.1.11).

The second important property deals with derivatives. Suppose
f(t) is continuous and has a piece-wise continuous derivative f'(¢). Then

LIFf®)] = /Ooo fit)e=tdt = e f(t)|o +s/000 f(t)e™*tdt (4.1.17)

by integration by parts. If f(t) is of exponential order, e *'f(t) tends
to zero as t — oo, for large enough s, so that

LIf' ()] = sF(s) — £(0). (4.1.18)

Similarly, if f(t) and f'(t) are continuous, f”(t) is piece-wise continuous,
and all three functions are of exponential order, then

LIF" (1) = sLIf' ()] = f/(0) = $*F(s) — sf(0) = f(0).  (4.1.19)

In general,

LUFM(@)] = s"F(s) = s 1f(0) =+ = sf*=D(0) = F*~D(0) | (4.1.20)

on the assumption that f(t) and its first n—1 derivatives are continuous,
f(™)(t) is piece-wise continuous, and all are of exponential order so that
the Laplace transform exists.
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The converse of (4.1.20) is also of some importance. If

u(t) = /Otf(r) dr, (4.1.21)

then
Llu®)] = /:o e st [/otf(r) dr] dt (4.1.22)
_— e:t /Ot f(r)dr :o + %/Ow f)e~*dt  (4.1.23)

and
c [ /0 "5 dr] _ I Es), (4.1.24)

where u(0) = 0.
Problems

Using the definition of the Laplace transform, find the Laplace transform
of the following function:

1. f(t) = cosh(at) 2. f(t) = cos?*(at)
3. f(t) = (t+1)? 4 f(t) = (t+ e~

_ [ O<t<?2 _ [ sin(t), O<t<m
5'f(t)_{0, t<>2< 6'f(t)_{ 0, t>mw

Using your knowledge of the transform for 1, e, sin(at), cos(at), and
t”, find the Laplace transform of

7. f(t) = 2sin(t) — cos(2t) + cos(3) — ¢
8. f(t) =t -2+ e~ —sin(5t) + cos(2).
Find the inverse of the following transforms:

9. F(s) = 1/(s + 3) 10. F(s) = 1/s*
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11. F(s) = 1/(s* + 9) 12. F(s) = (25 + 3)/(s2 +9)

13. F(s)=2/(s®+1)—15/s3+2/(s + 1) — 65/(s? + 4)

14. F(s)=3/s+15/s*+ (s +5)/(s2+ 1)~ 6/(s — 2).

15. Verify the derivative rule for Laplace transforms using the function
f(t) = sin(at).

16. Show that L[f(at)] = F (s/a) /a, where F(s) = L[f(t)].

17. Using the trigonometric identity sin?(z) = [1 — cos(2z)]/2, find the
Laplace transform of f(t) = sin®[rt/(2T)].

4.2 THE HEAVISIDE STEP AND DIRAC DELTA FUNCTIONS

Change can occur abruptly. We throw a switch and electricity sud-
denly flows. In this section we introduce two functions, the Heaviside
step and Dirac delta, that will give us the ability to construct compli-
cated discontinuous functions to express these changes.

I Heaviside step function

We define the Heaviside step function as

1, t>a
H(t—a)= {0’ t<a, ‘ (4.2.1)
where a > 0. From this definition,
L[H(t—a)] = / e~tdt = — 5> 0. (4.2.2)

Note that this transform is identical to that for f(¢) = 1 if a = 0. This
should not surprise us. As pointed out earlier, the function f(t) is zero
for all ¢ < 0 by definition. Thus, when dealing with Laplace transforms
f(t) = 1 and H(t) are identical. Generally we will take 1 rather than
H(t) as the inverse of 1/s.

The Heaviside step function is essentially a bookkeeping device that
gives us the ability to “switch on” and “switch off” a given function. For
example, if we want a function f(t) to become nonzero at time ¢t = a, we
represent this process by the product f(t)H(t — a). On the other hand,
if we only want the function to be “turned on” when a < t < b, the
desired expression is then f(¢)[H(t—a)— H(t—b)]. Fort < a, both step
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Figure 4.2.1: Largely a self-educated man, Oliver Heaviside (1850~
1925) lived the life of a recluse. It was during his studies of the im-
plications of Maxwell’s theory of electricity and magnetism that he re-
invented Laplace transforms. Initially rejected, it would require the
work of Bromwich to justify its use. (Portrait courtesy of the Institu-
tion of Electrical Engineers, London.)

functions in the brackets have the value of zero. For a < ¢t < b, the first
step function has the value of unity and the second step function has
the value of zero, so that we have f(t). For ¢t > b, both step functions
equal unity so that their difference is zero.

e Example 4.2.1

Quite often we need to express the graphical representation of a
function by a mathematical equation. We can conveniently do this
through the use of step functions in a two-step procedure. The following
example illustrates this procedure.
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Figure 4.2.2: Graphical representation of (4.2.5).

Consider Figure 4.2.2. We would like to express this graph in terms
of Heaviside step functions. We begin by introducing step functions at
each point where there is a kink (discontinuity in the first derivative)
or jump in the graph — in the present case at t = 0,¢f =1, = 2, and
t = 3. Thus,

F(t) = ao(t)H () +ar () H(t—1)+az(t) H(t—2)+as(t) H(t—3), (4.2.3)

where the coefficients ag(t), a1(t), ... are yet to be determined. Proceed-
ing from left to right in Figure 4.2.2, the coefficient of each step function
equals the mathematical expression that we want after the kink or jump
minus the expression before the kink or jump. Thus, in the present ex-
ample,

f@) = (¢=0)H(t)+(1-t)H (t-1)+[(3—t)—1]H (¢ -2)+[0—(3—t)] H(¢-3)
(4.2.4)

F(t) = tH({t)— (t—1)H(t—1)— (t—2)H(t—2)+(t-3)H(t—3). (4.2.5)

We can easily find the Laplace transform of (4.2.5) by the “second shift-
ing” theorem introduced in the next section.

o Example 4.2.2

Laplace transforms are particularly useful in solving initial-value
problems involving linear, constant coefficient, ordinary differential e-
quations where the nonhomogeneous term is discontinuous. As we shall
show in the next section, we must first rewrite the nonhomogeneous term
using the Heaviside step function before we can use Laplace transforms.
For example, given the nonhomogeneous ordinary differential equation:

t, 0<t<1

" / —_
Y +3+2y= {0’ t> 1, (4.2.6)
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o(?)

1/e

-
t=a g
Figure 4.2.3: The Dirac delta function.
we can rewrite the right side of (4.2.6) as
Y +3y +2y=t—-tH(t-1) (4.2.7)

=t—(-DH({t-1)-Ht-1). (428)

In Section 4.8 we will show how to solve this type of ordinary differential
equation using Laplace transforms.

| Dirac delta function

The second special function is the Dirac delta function or impulse
function. We define it by

00, t=a

(t—a)= {0, t+a, /0°° S(t—a)dt=1, (4.2.9)

where a > 0.
A popular way of visualizing the delta function is as a very narrow
rectangular pulse:

Y 1/e, 0<|t—al<e/2
8(t—a)= 31_1}(1){ 0, t—a| > €/2, (4.2.10)
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where € > 0 is some small number and a > 0. This pulse has a width ¢,
height 1/¢, and centered at ¢t = a so that its area is unity. Now as this
pulse shrinks in width (¢ — 0), its height increases so that it remains
centered at ¢ = a and its area equals unity. If we continue this process,
always keeping the area unity and the pulse symmetric about ¢ = a,
eventually we obtain an extremely narrow, very large amplitude pulse
at t = a. If we proceed to the limit, where the width approaches zero
and the height approaches infinity (but still with unit area), we obtain
the delta function 6(t — a).

The delta function was introduced earlier during our study of Four-
ier transforms. So what is the difference between the delta function
introduced then and the delta function now? Simply put, the delta
function can now only be used on the interval [0, 00). Outside of that,
we shall use it very much as we did with Fourier transforms.

Using (4.2.10), the Laplace transform of the delta function is

o) ate/2
L6t —a)] = / 6(t — a)e™**dt = lim - e *tdt (4.2.11)
0 e—~0¢€ a—¢ef2
—lim + (e'“’+“/2 - e"“-”/?) (4.2.12)
e—0 €S
ctim (14848 e
T 0 es 2 8 2 8
(4.2.13)
=e” %, (4.2.14)

In the special case when a = 0, £[6(¢)] = 1, a property that we will use
in Section 4.9. Note that this is exactly the result that we obtained for
the Fourier transform of the delta function.

If we integrate the impulse function,

t
/0 8(r—a)dr = {(1): i ; Z’ (4.2.15)

according to whether the impulse does or does not come within the
range of integration. This integral gives a result that is precisely the
definition of the Heaviside step function so that we can rewrite (4.2.15)

/1 (v —a)dr = H(t — a). (4.2.186)
0

Consequently the delta function behaves like the derivative of the step
function or

% [H(t - a)] = 6(t - a). (4.2.17)
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Because the conventional derivative does not exist at a point of discon-
tinuity, we can only make sense of (4.2.17) if we extend the definition
of the derivative. Here we have extended the definition formally, but a
richer and deeper understanding arises from the theory of generalized
functions.?

Problems

Sketch the following functions and express them in terms of Heaviside’s
step functions:

0, 0<t<?2
1. f(t)_{t— 2<t<3
0, t>3
0, O<i<a
1, a<t<2a
2. f)=9_1, 2a<t<3a
0, " t>3a

Rewrite the following nonhomogeneous ordinary differential equations
using Heaviside’s step functions.

0 O<t<l
/1 ' _— ]
3.y +3y+2y._{1’ i>1

0 O<t<4
! — )
‘y+4y‘{3, t>4

1N

5. ¢/ +4y +4y =

(=]

Y +3Y + 2y

1l
/—"—\ —~— r—M\
e
o
A
.S
A
e

7.9 -3y +2y=

0 0<txl
"ot = )
8. y 3y + 2y {t2, t>1

2 The generalization of the definition of a function so that it can
express in a mathematically correct form such idealized concepts as the
density of a material point, a point charge or point dipole, the space
charge of a simple or double layer, the intensity of an instantaneous
source, etc.
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" _ J sin(t), 0<t<n
9. y +y-—{ 0, (>

t
7! ! —_ 1 = —_
10. " +3y' + 2y = {ae‘('_a), t>a

4.3 SOME USEFUL THEOREMS

Although at first sight there would appear to be a bewildering num-
ber of transforms to either memorize or tabulate, there are several useful
theorems which can extend the applicability of a given transform.

| First shifting theorem

Consider the transform of the function e~ f(t), where a is any real
number. Then, by definition,

cleat ()] = /000 e=ste=e f(t) dt = / Tty d, (431

4]

or

L [e"‘”f(t)] = F(s+a). (4.3.2)

That is, if F(s) is the transform of f(t) and a is a constant, then F(s+a)
is the transform of e~% f(t).

e Example 4.3.1

Let us find the Laplace transform of f(t) = e~ % sin(bt). Because
the Laplace transform of sin(bt) is b/(s? + b?),

b

L [e= sin(bt)] = Grar e

(4.3.3)

where we have simply replaced s by s + a in the transform for sin(bt).
e Example 4.3.2

Let us find the inverse of the Laplace transform

s+ 2

TGl (#3.9)

F(s) =
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Rearranging terms,

s+2 s+2

F(s)= = 4.3.5
() s2+6s+1 (s+3)2-8 ( )
- %3 1 w2 (4.3.6)
(s+3)2-8 2v2(s+3)2-38
Immediately, from the first shifting theorem,
f(t) = e73 cosh(2v/2t) — -2%6_31 sinh(2v/2t). (4.3.7)

I Second shifting theorem '

The second shifting theorem states that if F(s) is the transform
of f(t), then e F(s) is the transform of f(t — b)H(t — b), where b
is real and positive. To show this, consider the Laplace transform of
f(t —b)H(t — b). Then, from the definition,

Lf(t—b)H(t-b)] = /oo f(t = b)H(t — b)e™*dt (4.3.8)
0
=/b f(t—-b)e"‘dt:/o e e% f(2) dx
(4.3.9)
R e z)dz 3.
—e /0 =% f(z)d (4.3.10)
. LIf(t —b)H(t —b)] = e > F(s), (4.3.11)

where we have set # = ¢t —b. This theorem is of fundamental importance
because it allows us to write down the transforms for “delayed” time
functions. That is, functions which “turn on” b units after the initial
time.

o Example 4.3.3

Let us find the inverse of the transform (1 —e~*)/s. Since

-, (4.3.12)

£ (l - 6_3) e (1> £ <e_’) = H(t)—H(t-1), (4.3.13)
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because £L71(1/s) = f(t) =1l and f(t—1)=1.
o Example 4.3.4

Let us find the Laplace transform of f(t) = (2 — 1)H(t — 1).
We begin by noting that

W -DHE-1)=[t-1+1)>-1H(E-1) (4.3.14)
=[t-1)2+2t-D}H(t-1) (4.3.15)
=(t-1)*Ht-1)+2(t-1)H(t-1). (4.3.16)

A direct application of the second shifting theorem leads then to

2e™* 2e~°

Ll -DHE-1)]= —+ (4.3.17)

52

o Example 4.3.5

In Example 4.2.2 we discussed the use of Laplace transforms in
solving ordinary differential equations. One further step along the road
consists of finding Y (s) = L{y(¢)]. Now that we have the second shifting
theorem, let us do this.

Continuing Example 4.2.2 with y(0) = 0 and y'(0) = 1, let us take
the Laplace transform of (4.2.8). Employing the second shifting theorem
and (4.1.20), we find that

s°Y (s) — sy(0) — ' (0) + 35Y (s) — 3y(0) + 2Y(s)
1 e”® e7*

= = - — = . 4.3.18
52 s2 s ( )

Substituting in the initial conditions and solving for Y (s), we finally
obtain

L 1 1
YO = 539670 T 26126+

+ (4.3.19)

PTG+  sGFGED)
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Laplace transform of t" f(t)

In addition to the shifting theorems, there are two other particularly
useful theorems that involve the derivative and integral of the transform
F(s). For example, if we write

F(s)y=L[f()] = /oo F(t)e*tdt (4.3.20)
0
and differentiate with respect to s, then
F'(s) = /oo —tf(t)e*'dt = —L[tf(2)]. (4.3.21)
0

In general, we have that

FM(s) = (=1)"L[t"f(t)]. (4.3.22)

I Laplace transform of f(t)/t

Consider the following integration of the Laplace transform F(s):

/soo F(z)dz = /Soo [/Ooo f(t)e‘”dt] dz. (4.3.23)

Upon interchanging the order of integration, we find that

/Soo F(z)dz = /Ooo f@) [/Sw e'“dz] dt (4.3.24)

= _/Ow (@) e_t” Tt = /Ooo -f(t—t)e'”dt. (4.3.25)
Therefore, 3
/300 F(z)dz=L [f—gtl] . (4.3.26)

o Example 4.3.6

Let us find the transform of ¢ sin(at). From (4.3.21),

52 +a?

Lftsin(at)] = —dis{ﬁ[sin(at)]} - -% [4‘—] (4.3.27)
2as

= Trap (4.3.28)
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o Example 4.3.7

Let us find the transform of [1 — cos(at)]/t. To solve this problem,

we apply (4.3.26) and find that
L [————1 cos(at)] / L1 - dz —/ (l - z 2) dz
s z z+a
(4.3.29)

[e o]
= In(2) - In(z? + a?)

i°= ()|
n (\/—ﬁ) .(4.3.31)

(4.3.30)

S

= In(1) - In (\/T_J,——af)

L Initial-value theorem

Let f(t) and f’(t) possess Laplace transforms. Then, from the
definition of the Laplace transform,

/Ooo F'()e~*tdt = sF(s) — f(0). (4.3.32)

Because s is a parameter in (4.3.32) and the existence of the integral is
implied by the derivative rule, we can let s — oo before we integrate.
In that case, the left side of (4.3.32) vanishes to zero, which leads to

lim sF(s) = f(0). (4.3.33)
83— 00

This is the initial-value theorem.

e Example 4.3.8

Let us verify the initial-value theorem using f(t) = e3. Because
F(s) =1/(s = 3), ims_.o s/(s — 3) = 1. This agrees with f(0) = 1.

I Final-value theorem l

Let f(t) and f'(t) possess Laplace transforms. Then, in the limit
of s — 0, (4.3.32) becomes

/°° F@)dt = tl_lglo/ f(r)dr = tl_l_glo f@t) = f(0) = }1_{1(1) sF(s) - f(0).
0 0
(4.3.34)
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Because f(0) is not a function of t or s, the quantity f{0) cancels from
the (4.3.34), leaving

tlim f(t) = ]ing sF(s). (4.3.35)
Equation (4.3.35) is the final-value theorem. It should be noted that
this theorem assumes that lim;_.o f(¢) exists. For example, it does
not apply to sinusoidal functions. Thus, we must restrict ourselves to
Laplace transforms that have singularities in the left half of the s-plane
unless they occur at the origin.
e Example 4.3.9
Let us verify the final-value theorem using f(t) = t. Because F(s) =
1/s%, lim,_o sF(s) = lim,_,q1/s = co. The limit of f(t) as t — oo is
also undefined.
Problems
Find the Laplace transform of the following functions:
1. f(t) = e 'sin(2t) 2. f(t) = e~ % cos(2t)
3. f(t) = te' +sin(3t)e! + cos(5t)e?
4. f(t) = t*e~2" + sin(3t)e’ + cos(4t)e?*
5. f(t) =t%e~! +sin(2t)e’ + cos(3t)e=>
6. f()=t*H(t-1)
7. f(t)=e*H(t-3) 8. f)=t*H({t—-1)+¢e'H(t—-2)
9. f)=@2+2)H{t-1)+H(t-2)
10. fO)=(@+1)2H({t—-1)+e'H(t-2)

1 f(t):{si(l)l(t), 0t§>t7r§7r

13.  f(t) = te=3'sin(2t)
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Find the inverse of the following Laplace transforms:

14. F(s)=1/(s+2)* 15. F(s)=s/(s+2)*

16. F(s)=s/(s*+2s+2) 17. F(s)=(s+3)/(s> +25+2)
18. F(s)=s/(s+1)3+(s+1)/(s*+25+2)

19. F(s)=s/(s+2)2+(s+2)/(s* +25+2)

20. F(s)=s/(s+2)>+(s+4)/(s* +4s+5)

21. F(s)=e3/(s-1) 22. F(s)=e % /(s+1)?

23. F(s)=se™*/(s*+25+2) 24. F(s)=e % /(s> +45+5)

25. F(s)=se /(s +4)+ e ¥/(s - 2)*

26. F(s)=e */(s*+4)+ (s — 1)e~3/s*

27. F(s)=(s+1)e*/(s* +4) +e3*/s*

28. Find the Laplace transform of f(t) = te![H(t—1)— H(t—2)] by using
(a) the definition of the Laplace transform, and (b) a joint application

of the first and second shifting theorems.

29. Write the function

t, 0<t<a
f(t):{o, t>a

in terms of Heaviside’s step functions. Then find its transform using
(a) the definition of the Laplace transform, and (b) the second shifting
theorem.

In problems 30-33, write the function f(t) in terms of Heaviside’s step
functions and then find its transform using the second shifting theorem.

30.

f(t) = {téi’ 0t5>’2<2

31.
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32,
¢, 0<t<2
ﬁ0={4—a 9<t<4
0, {>4
33.
0, 0<t<1
t—1, 1<t<?
=9, 9<t<3
0, £>3

Find Y (s) for the following ordinary differential equations:

4.y + 3y +2y=H(t - 1), y(0) =y (0)=0

35. ¢ +4y=3H(t — 4); y(0)=1, y¥(0)=0

36y + 4y +4y =tHt—2);  y(0)=0, ¥(0)=2

3.y + 3y +2y=e'H(t - 1); y(0) =¢'(0) =0

38.y' -3y +2y=e"tH(t — 2); y(0)=2, ¥(0)=0

39.y" =3y + 2y =t?H(t - 1); y(0) =0, ¥(0)=5

0.y +y=sin(t)1-H(t-m); y0)=y(0)=0

41. ¢ + 3y + 2y =t + [ae~(:=%) —t] H(t — a); y(0) = ¥ (0) = 0.

For each of the following functions, find its value at ¢t = 0. Then check
your answer using the initial-value theorem.

42. f(t) =t 43. f(t) = cos(at)
44. f(t) = te~t 45. f(t) = e*sin(3t)
For each of the following Laplace transforms, state whether you can or

cannot apply the final-value theorem. If you can, find the final value.
Check your result by finding the inverse and finding the limit as ¢ — oo.

1 1

46. F(s) = . ==

6. F(s) po 47. F(s) "
1 s
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2 2

s(s? +3s +2) 51. F(s) = s

50. F(s) = P v

4.4 THE LAPLACE TRANSFORM OF A PERIODIC FUNCTION

Periodic functions frequently occur in engineering problems and
we shall now show how to calculate their transform. They possess the
property that f(t + T) = f(t) for t > 0 and equal zero for ¢ < 0, where
T is the period of the function.

For convenience let us define a function z(t) which equals zero ex-
cept over the interval (0,7) where it equals f(t):

2(t) = {féf)’ 0t<>t; T (4.4.1)
By definition
F(s) = / ” F(t)e™tdt (4.4.2)
0
T 2T (k+1)T
=/ f(t)e™*tdt + f(t)e-"dt+---+/ ft)e tdt + -
0 T kT
(4.4.3)

Now let z = t — kT, where k = 0,1,2, ..., in the kth integral and F(s)
becomes

T T
F(s) = -sz g Te *F+ gy 4 ...
()= [ sz [ 41 +
T
+/ fz+ kT)e*GH¥dy 4 ... (4.4.4)
0

However,
a:(z):f(z)=f(z+T):...:f(z+k'T)=..., (4.4.5)

because the range of integration in each integral is from 0 to 7. Thus,
F(s) becomes

T T
F(s)= / z(z)e”*dz + e"’T/ z(2)e”*dz + - -
0 0

T
+ e_’”T/ z(z)e”Pdz+--- (4.4.6)
0
or

Fs)=(Q+eTHe T4 pe™T 4. )X(s).  (447)
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The first term on the right side of (4.4.7) is a geometric series with
common ratio e~*T. If |e=*T| < 1, then the series converges and

(4.4.8)

o Example 4.4.1

Let us find the Laplace transform of the square wave with period

jo-{% BT s

T:

By definition z(t) is

h, 0<t<T/2
z(t) = ¢ —h, T/2<t<T (4.4.10)
0, t>T.
Then
oo T/2 T
X(s)=[ =z(t)etdt= / he~*tdt+ [ (=h)e~*'dt (4.4.11)
0 0 T/2
— h —sT/2 —~sT) _ h -sT/2 2
_;(1—26 +e )—;(l—e ) (4.4.12)
and
h{1~- -sT/2 2 h(1-— —sT/2
F(s) = Qe (= (4.4.13)

s(I1—e3T) — s(l+e-2T/2)"

If we multiply numerator and denominator by exp(s7'/4) and recall that
tanh(u) = (e —e™*)/(e* + e™*), we have that

F(s) = gtanh (%) . (4.4.14)
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e Example 4.4.2

185

Let us find the Laplace transform of the periodic function

sin(27t/T), 0<t<T/2
f(t) = { ( 0 / ) T/2 <t </T. (4.4.15)
By definition z(t) is
sin(2#xt/T), 0<t<T/2
= { ( 0 ) t> T/2./ (4.4.16)
Then
TI2  (omt 21T
= in| = e ¥'dt = ———— —sT/2
X(S)—/O sm( T )e dt_32T2+47r2 (1+e ) (4.4.17)
Hence,
_ X(s) _ 2aT 1 4 e=5T/2
F(S) - 1 -_— e—ST - 32T2 + 47r2 X 1 _ e_sT (4.4.18)
27T 1
= 272 + 42 % 1 — e-sT/2" (4.4.19)
Problems

Find the Laplace transform for the following periodic functions:

1. f(t) =sin(t), 0 <t < m,

f@)y=f(t+m)

_ | sin(2), 0<t<n _
2. f(2) _{ 0, r<i<orm f(t) = f(t + 27)
st0={5 S5 S £ = £(t +2a)
1, O<t<a
0, a<t<Za —
4Lf0=3"  guvt<3a f(t) = f(t + 4a).
0, 3a <t < 4a,
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4.5 INVERSION BY PARTIAL FRACTIONS: HEAVISIDE'S EXPANSION
THEOREM

In the previous sections, we have devoted our efforts to calculating
the Laplace transform of a given function. Obviously we must have a
method for going the other way. Given a transform, we must find the
corresponding function. This is often a very formidable task. In the next
few sections we shall present some general techniques for the inversion
of a Laplace transform.

The first technique involves transforms that we can express as the
ratio of two polynomials: F'(s) = q(s)/p(s). We shall assume that the
order of q(s) is less than p(s) and we have divided out any common
factor between them. In principle we know that p(s) has n zeros, where
n is the order of the p(s) polynomial. Some of the zeros may be complex,
some of them may be real, and some of them may be duplicates of other
zeros. In the case when p(s) has n simple zeros (nonrepeating roots), a
simple method exists for inverting the transform.

We want to rewrite F'(s) in the form:

ay as an q(s)
Fs) = = L3 4.5.1
(s) S—Sl+3—32+ +s—sn p(s)’ ( )
where s1,sy,...,5, are the n simple zeros of p(s). We now multiply
both sides of (4.5.1) by s — 51 so that
(s — s1)q(s) —a (s — s1)as - (s— sl)an' (4.5.2)
p(s) §— 82 § — Sn

If we set s = s1, the right side of (4.5.2) becomes simply a;. The left side
takes the form 0/0 and there are two cases. If p(s) = (s — s1)g(s), then
a1 = q(s1)/g(s1). If we cannot explicitly factor out s — s;, ’Hospital’s
rule gives

e (ms0ae) L (5= s)d(9) +a(s) _ als)
al_sl—gl1 p(s) _sl—-sl p’(s) p’(sl)' (453)

In a similar manner, we can compute all of the ap’s, where k = 1,2/ ...,
n. Therefore,

LF(s)) = £ [Q(S)] c-l(—“1—+ e PN )

(s) s—81 S—5g §— Sy
(4.5.4)
= a1 + age®?t + -t ane’nt. (4.5.5)

This is Heaviside’s expansion theorem, applicable when p(s) has only
simple poles.
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e Example 4.5.1

Let us invert the transform s/[(s 4+ 2)(s* + 1)]. It has three simple

poles at s = —~2 and s = +i. From our earlier discussion, ¢(s) = s,

p(s) = (s +2)(s? + 1), and p'(s) = 3s? + 4s + 1. Therefore,

- [(s + 2)zs2 n 1)] =12 ——82+ et meh
b _‘42'2_ e (4.5.6)
= _ge_% + -214;“"” - —2i—4ie_it (4.5.7)
= —%e_m + i;2+_1éie“ - i%e‘“ (4.5.8)
= —%e_m + %sin(t) + %cos(t), (4.5.9)

where we have used sin(t) = (e’ — e~%*) and cos(t) = 3(e'* + e™*).
e Example 4.5.2
Let us invert the transform 1/{(s—1)(s—2)(s—3)]. There are three

simple poles at sy = 1, s = 2, and s3 = 3. In this case, the easiest
method for computing a1, a2, and as is

. s—1 1
R L P § P Py Sl (4.5.10)
. s—2
o= lm o6 ! (4.5.11)
and 3 )
. s —
as = i N T =3 2 (4.5.12)
Therefore,
1 a a a
-1 -1 1 2 3
£ (s—l)(.~;—-2)(s—3)]_-£ [s—1+s—2+s—3
= Let — e 4+ L&, (4.5.13)

Note that for inverting transforms of the form F(s)e=** witha > 0,
you should use Heaviside’s expansion theorem to first invert F'(s) and
then apply the second shifting theorem.



188 Advanced Engineering Mathematics

Let us now find the expansion when we have multiple roots, namely

q(s) q(s)
F(s)= —=% = , 4.5.14
P R P LI e P
where the order of the denominator, my +ms +- - -+ m,, is greater than
that for the numerator. Once again we have eliminated any common
factor between the numerator and denominator. Now we can write F(s)

as
n myg

Fis)=Y_ Z = S:)’i;k —— (4.5.15)

k=1j=1
Multiplying (4.5.15) by (s — s¢)™*,

s —sg)"*q(s
%ﬂ—l = agy + ar2(s — sk) + -+ -+ k(5 — )™ 7!

ey %t Onma 4516
O (A
where we have grouped together into the square-bracketed term all of
the terms except for those with ay; coefficients. Taking the limit as
§ — Sk,
—_ mk
ar = lim —(s se)™"4(s)
=k p(s)

Let us now take the derivative of (4.5.16),

a4 [(3 - Sk)'""q(s)]
ds p(s)
= apy + 2ak3(s — sp) + - + (Mg — 1)@gm, (s — s)™ =2

+ df; {(s_ sx)™ [(_s_“L T a"—"‘] } . (4.5.18)

s1)™ S—8p

(4.5.17)

Taking the limit as s — s,

aky = lim dis [(s_—sg();;k—q(s—)] : (4.5.19)
In general,
and by direct inversion,
n ms _
OEDIDY (m—:k_]—j—)!t'”“‘je”‘t. (4.5.21)
k=1j=1
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e Example 4.5.3

Let us find the inverse of

8

FO= roera

(4.5.22)

We first note that the denominator has simple zeros at s = +¢ and

a repeated root at s = —2. Therefore,
A B o D
PO =5+t sis T oo (4.5.23)
where
A= lim (s —)F(s) = g_'}—&.-, (4.5.24)
B = llm (s +i)F(s) = g2g, (4.5.25)
Y d 2 _ d s 3
C= 8&1112 I [(s +2) F(s)] E 2 Ts [32 n 1] -5z (4.5.26)
and
D= lim (s+ 2)2F(s) = 2. (4.5.27)
Thus,
f@) = 6+8¢ e + glge T — e — fte™ (4.5.28)

= & cos(t) + 5 sin(t) — Ze2 — Lte~.  (4.5.29)

In Section 4.10 we shall see that we can invert transforms just as
easily with the residue theorem.
Let us now find the inverse of

F(s) = es + (ca — wd) _ cs+('ca - wd) ' (4.5.30)
(s+a)?+w? (s+a—wi)(s+atwi)
by Heaviside’s expansion theorem. Then
c+di c—di

F(s) = .5.31
(s) 2(s+a—wi)+2(s+a+wi) (4.5.31)

T 200 72 4 d2e—bi
Ve? + de c? 4 d% (4.5.32)

= 2As+a—wi) 2s+a+wi)

where § = tan~!(d/c). Note that we must choose 6 so that it gives the
correct sign for ¢ and d.
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Taking the inverse of (4.5.32),

fit) = %, /c2 ¥ d2e—ottwtitoi 4 _21_ /c2 + d2e—0t—wti=6i (4.5.33)
= V2 + d2e~* cos(wt + 6). (4.5.34)

Equation (4.5.34) is the amplitude/phase form of the inverse of (4.5.30).
It is particularly popular with electrical engineers.

e Example 4.5.4

Let us express the inverse of

8s—3
in the amplitude/phase form.
Starting with
8s—3
F(s) = 4.5.36
)= G e 239 ( )
_ 4419i/6 4-19i/6
T s4+2-3i s+2+3 (4.5.37)
38.3675% —38.3675°%
_ 5.1017¢ 5.1017e (4.5.38)

s+2—-3 + s+2+4+ 3¢

or

f(t) - 5'10176—2t+3it+3843675°i 4 5.10176_21_3“—38'3675% (4539)
= 10.2034e ™% cos(3t + 38.3675°). (4.5.40)

o Example 4.5.5: The design of film projectors

For our final example we anticipate future work. The primary use
of Laplace transforms is the solution of differential equations. In this
example we illustrate this technique that includes Heaviside’s expansion
theorem in the form of amplitude and phase.

This problem? arose in the design of projectors for motion pictures.
An early problem was ensuring that the speed at which the film passed
the electric eye remained essentially constant; otherwise, a frequency
modulation of the reproduced sound resulted. Figure 4.5.1(A) shows a
diagram of the projector. Many will remember this design from their

3 Cook, E. D., 1935: The technical aspects of the high-fidelity repro-
ducer. J. Soc. Motion Pict. Eng., 25, 289-312.
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Film drum
head

Winding
sprocket

[ 4

A B

Figure 4.5.1: (A) The schematic for the scanning light in a motion-
picture projector and (B) interior of the film drum head.

days as a school projectist. In this section we shall show that this partic-
ular design filters out variations in the film speed caused by irregularities
either in the driving-gear trains or in the engagement of the sprocket
teeth with the holes in the film.

Let us now focus on the film head — a hollow drum of small moment
of inertia J;,. See Figure 4.5.1(B). Within it there is a concentric inner
flywheel of moment of inertia Jy, where J > J;. The remainder of the
space within the drum is filled with oil. The inner flywheel rotates on
precision ball bearings on the drum shaft. The only coupling between
the drum and flywheel is through fluid friction and the very small friction
in the ball bearings. The flection of the film loops between the drum
head and idler pulleys provides the spring restoring force for the system
as the film runs rapidly through the system.

From Figure 4.5.1 the dynamical equations governing the outer case
and inner flywheel are (1) the rate of change of the outer casing of the
film head equals the frictional torque given to the casing from the inner
flywheel plus the restoring torque due to the flection of the film, and
(2) the rate of change of the inner flywheel equals the negative of the
frictional torque given to the outer casing by the inner flywheel.

Assuming that the frictional torque between the two flywheels is
proportional to the difference in their angular velocities, the frictional
torque given to the casing from the inner flywheel is B(ws —w, ), where
B is the frictional resistance, w; and w, are the deviations of the drum
and inner flywheel from their normal angular velocities, respectively. If
r is the ratio of the diameter of the winding sprocket to the diameter
of the drum, the restoring torque due to the flection of the film and
its corresponding angular twist equals K fot (rwo — wi) dr, where K is
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the rotational stiffness and wp is the deviation of the winding sprocket
from its normal angular velocity. The quantity rwo gives the angular
velocity at which the film is running through the projector because the
winding sprocket is the mechanism that pulls the film. Consequently
the equations governing this mechanical system are

¢
Jldd% = I\/ (rwo — w1 ) dr + B{ws — w1) (4.5.41)
0
and J
Jg% = ~B(ws —wy). (4.5.42)

With the winding sprocket, the drum, and the flywheel running at
their normal uniform angular velocities, let us assume that the wind-
ing sprocket introduces a disturbance equivalent to an unit increase in
its angular velocity for 0.15 seconds, followed by the resumption of its
normal velocity. It is assumed that the film in contact with the drum
cannot slip. The initial conditions are w(0) = w2(0) = 0.

Taking the Laplace transform of (4.5.41)-(4.5.42) using (4.1.18),

(Jls +B+ I:‘) Q1(s) — B (s) = ’"sﬁgo(s) =rKL [/Otwo(r) dr]

(4.5.43)
and
—BQl(S) + (st + B)Qz(s) =0. (4544)
The solution of (4.5.43)~(4.5.44) for 4(s) is
_rK (s + a0)0(s)
D) =T A b (4.5.45)
where typical values? are
rK B BK
‘I = 908, apg = -:]—2' = 147, bo = J1J2 = 231, (4546)
K B(Jl + Jz)
bh=—=1 d by = ———u-"t =8.20. 4.5.47
1= 7 57 an 2 T 8.20 ( )
The transform €;(s) has three simple poles located at s; = —1.58, 52 =

—3.32+ 11.67, and s3 = —3.32 — 11.6¢.

4 J, = 1.84 x 10* dyne cm sec? per radian, J, = 8.43 x 10* dyne cm
sec? per radian, B = 12.4 x 10 dyne cm sec per radian, K = 2.89 x 10°
dyne c¢m per radian, and r = 0.578
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Figure 4.5.2: The deviation w; of a film drum head from its uniform
angular velocity when the sprocket angular velocity is perturbed by a
unit amount for the duration of 0.15 seconds.

Because the sprocket angular velocity deviation wo(t) is a pulse of
unit amplitude and 0.15 second duration, we express it as the difference
of two Heaviside step functions:

wolt) = H(t) — H(t — 0.15). (4.5.48)
Its Laplace transform is
1 1 _g1s,
Q(s) =~ = e (4.5.49)
s

so that (4.5.45) becomes

s) = rK (s + a0) _ —0.15s
uls) = J1 s(s — s1)(s — s2)(s — 53) (1 ) : (4.5.50)

The inversion of (4.5.50) follows directly from the second shifting
theorem and Heaviside’s expansion theorem:
wl(t) =Ko+ 1{16“1 + Ifzeht + K3€"3t
_ [.K’() + 1(1831(1—0.15) + I{zesg(t—ﬂ.lS) + 1{3633(1—0.15)]H(t _ 015)’
(4.5.51)

where

Romth st

Ji o (s=s1)(s—s2)(s —s3) |,

= 0.578, (4.5.52)
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. rK s+ ap

K== = 0.046, 4.5.53
1= s(s — s2)(s — s3) S ( )

, _rK s+ ag 165°%
Ko = — = 0.326¢ ! 4.5.54
2 Ji s(s—s1)(s — s3) s=32 ( )

and

R rK s+ ag —165%
K3 = — = 0.326¢ . 4.5.55
8 J1 s(s—s1)(s — s2) U ( )

Using Euler’s identity cos(t) = (e’* + e~")/2, we can write (4.5.51) as

w1 (t) = 0.578 + 0.046e =138 4 0.652¢ 7332 cos(11.6¢ + 165°)
~ {0.578 4 0.046¢ 13301 =01%) 1. 0 652~ 332(:-0-15)
x cos[11.6(¢ — 0.15) + 165°]} H(t — 0.15). (4.5.56)

Equation (4.5.56) is plotted in Figure 4.5.2. Note that fluctuations in
w1(t) are damped out by the particular design of this film projector. Be-
cause this mechanical device dampens unwanted fluctuations (or noise)
in the motion-picture projector, this particular device is an example of
a mechanical filter.

Problems

Use Heaviside’s expansion theorem to find the inverse of the following
Laplace transforms:

1 s+3
l.F(s):m 2.F(s):m
s—4 s—3
3P = e nesy YO T Eraeen

Find the inverse of the following transforms and express them in ampli-
tude/phase form:

1 1
5 FO) = o5 - F6) = 2613
25 -5 1
T F) = 7 8. F0) = e
9. F(s) = 12

s(s2 +4)
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4.6 CONVOLUTION

In this section we turn to a fundamental concept in Laplace trans-
forms: convolution. We shall restrict ourselves to its use in finding the
inverse of a transform when that transform consists of the product of
two simpler transforms. In subsequent sections we will use it to solve
ordinary differential equations.

We begin by formally introducing the mathematical operation of
the convolution product:

t t
£t) *g(t) = / f(t = 2)g(z) dz = / f@)g(t —z)dz.  (4.6.1)
0 0
In most cases the operations required by (4.6.1) are straightforward.

e Example 4.6.1

Let us find the convolution between cos(t) and sin(t).

cos(t) *sin(t) = /Ot sin(t — z) cos(z) dz (4.6.2)
= %/Ot[sin(t) + sin(t — 2z)] dz (4.6.3)
= -;-/Ot sin(t) dz + %/t sin(t — 2z) dx (4.6.4)

0

= Lsin(t) 2|, + L cos(t — 22)|, = Ltsin(t).  (4.6.5)

o Example 4.6.2
Similarly, the convolution between t? and sin(t) is
t
£2 % sin(t) = / (t — z)?sin(z) dx (4.6.6)
0

= —(t — z)2 cos(z)|. — t —z)cos(z)dx .6.
= —(t - 2) cos(a)], 2/0(t Jeos(z)dz  (4.6.7)

=t -2(t—=z) sin(x)|:) - 2/0 sin(z) dx (4.6.8)
=124 2cos(t) — 2 (4.6.9)

by integration by parts.
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e Example 4.6.3

Consider now the convolution between e! and the discontinuous
function H(t — 1) — H(t — 2):

et x[H(t—1)— H(t—2)] = /Ot e=*[H(z — 1) — H(z — 2)]dz (4.6.10)

=et/0 e °[H(z—1)— H(z — 2)]d=.

(4.6.11)

In order to evaluate the integral (4.6.11) we must examine various cases.
If t < 1, then both of the step functions equal zero and the convolution
equals zero. However, when 1 < ¢ < 2, the first step function equals one
while the second equals zero. Therefore,

et x [H(t—1) - H(t -2))=¢ /lte_”dx =e~l -1, (4.6.12)

because the portion of the integral from zero to one equals zero. Fi-
nally, when ¢t > 2, the integrand is only nonzero for that portion of the
integration when 1 < ¢ < 2. Consequently,

2
ex[H(t-1)~H(t-2)]= e'/ e "de=¢""! —¢'"2.  (4.6.13)
1

Thus, the convolution of e* with the pulse H(t — 1) — H(t — 2) is

0, 0<tkl
e'*[H(t—l)—H(t—2)]:{ et~ —1, 1<t<2 (4.6.14)
el —et=2 t>2.

The reason why we have introduced convolution follows from the
following fundamental theorem (often called Borel’s theorem®). If

w(t) = u(t) * v(t) (4.6.15)

then
W(s) = U(s)V (s). (4.6.16)

5 Borel, E., 1901: Legons sur les séries divergentes. Gauthier-Villars,
Paris, p. 104.
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In other words, we can invert a complicated transform by convoluting
the inverses to two simpler functions. The proof is as follows:

W(s) = /ooo [/Ot u(z)v(t — z) dx] e *tdt (4.6.17)
_ /Ooo [/:o u(z)o(t - z)e‘”dt] dz (4.6.18)
- /0 " (@) [ /0 ” v(r)e-’<'+f>dr] dz (4.6.19)

= [/Ooo u(z)e"”d:c] [/Ooo v(r)e‘"dr] =U(s)V(s), (4.6.20)
where t =r + . O
e Example 4.6.4

Let us find the inverse of the transform

(s? -18- 1)2 - 32: e 52{'_ 1= L[cos(t)]L[sin(?)] (4.6.21)
= Llcos(t) +sin(t)] = L[5t sin(?)] (4.6.22)

from Example 4.6.1.
o Example 4.6.5

Let us find the inverse of the transform

1 ] a "
(s +a2)2  aZ \s?+a? 2t al (4.6.23)
= 2 Clsin(at))lsin(a)]. (4.6.24)

Therefore,
(e _i/ts. [a(t — 2)]sin(az) d 4.6.25
Zradz]| @), in z)]sin(az) dz (4.6.25)

1 1 1 1
=32 J, cos{a(t — 2z)] dz — %7/0 cos(at) dx

(4.6.26)

1. b ‘
=-13 sinfa(t — 2z)] ~5.2 cos(at) z X (4.6.27)
= 2—(113-[sin(at) — at cos(at)]. (4.6.28)
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e Example 4.6.6

Let us use the results from Example 4.6.3 to verify the convolution
theorem.

We begin by rewriting (4.6.14) in terms of Heaviside’s step func-
tions. Using the method outline in Example 4.2.1,

fO) xg@t)= ("' =) HE -1+ (1—€"?)H({t-2). (4.6.29)
Employing the second shifting theorem,

—s —2s —2s

e”?* e e e

L(f *g] (4.6.30)

s—1 s s s—1

e~s 6—23 1 e~* e—Zs
=s(s—1)_s(s—1):s—1(T_ s ) (4.6.31)
=LEL[H(E-1) - H(t —2)] (4.6.32)

and the convolution theorem holds true. If we had not rewritten (4.6.14)
in terms of step functions, we could still have found L[f * g] from the
definition of the Laplace transform.

Problems

Verify the following convolutions and then show that the convolu-
tion theorem is true.

1.1x1=t 2. 1 % cos(at) = sin(at)/a
3.1xet=et -1 4.txt=1t3/6
5.t *sin(t) =t — sin(t) 6.txet =et—t—1
7. 2
2 ysin(at) = = — 2 sin? (&
t” xsin(at) = ~ ~ g3 sin (2)
8.
txH(t—1)=1(0t-1)2H({t-1)
9.
Ht—a)*Hit—-b)=(t—a—-b)H(t—a—-1b)
10 2 2
t*[H(t)—H(t—2)]:t——(t—2) H(t-2)

2 2
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Use the convolution theorem to invert the following functions:

11. )
F(s)= m

12. )
FO=aGTay

13. Prove that the convolution of two Dirac delta functions is a Dirac
delta function.

4.7 INTEGRAL EQUATIONS

An integral equation contains the dependent variable under an inte-
gral sign. The convolution theorem provides an excellent tool for solving
a very special class of these equations, Vollerra equation of the second
kind :®

£(t) —/0 K[t,z, f(z)]dz = g(t), O0<t<T (4.7.1)

These equations appear in history-dependent problems, such as epi-
demics,” vibration problems,® and viscoelasticity.®

e Example 4.7.1

Let us find f(t) from the integral equation

f(t) =4t — 3/0 f(z)sin(t — z) dz. (4.7.2)

8 Fock, V., 1924: Uber eine Klasse von Integralgleichungen. Math.
Z., 21, 161-173; Koizumi, S., 1931: On Heaviside’s operational solution
of a Volterra’s integral equation when its nucleus is a function of (z —¢).
Philos. Mag., Ser. 7, 11, 432-441.

7 Wang, F. J. S., 1978: Asymptotic behavior of some deterministic
epidemic models. SIAM J. Math. Anal., 9, 529-534.

& Lin, S. P., 1975: Damped vibration of a string. J. Fluid Mech., 72,
787-797.

9 Rogers, T. G. and Lee, E. H., 1964: The cylinder problem in
viscoelastic stress analysis. Q. Appl. Math., 22, 117-131.
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The integral in (4.7.2) is such that we can use the convolution
theorem to find its Laplace transform. Then, because L[sin(t)] = 1/(s?+
1), the convolution theorem yields

t
. F(s)
— = . 7.
L [/0 f(z)sin(t — 2) da:] T (4.7.3)
Therefore, the Laplace transform converts (4.7.2) into
4 3F(s)
F(s) = iy (4.7.4)
Solving for F(s),
4(s® +1)
= - —=. 7.5
F(s) s2(s% +4) (275)
By partial fractions, or by inspection,
1 3
F(s)= =+ ——. 4.7.
()= %+ o (4.7.6)
Therefore, inverting term by term,
f(t) =t + 2sin(2t). (4.7.7)
Note that the integral equation
t
fit) =4t - 3/ f(t — z)sin(z) dz (4.7.8)
0
also has the same solution.
o Example 4.7.2
Let us solve the equation
t2 !
o) =" - / (t - 2)g(z) da. (4.7.9)
0

Again the integral is one of the convolution type. Taking the
Laplace transform of (4.7.9),

G(s) = 313 _ Gl

(4.7.10)

which yields
(1 + i) Gls) = L (4.7.11)
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or
1 1 s
G(s) = EID s TET (4.7.12)
Then
g(t) = 1 — cos(t). (4.7.13)

Problems

Solve the following integral equations:

1.
fy=1+2 /Ot f(t —z)e~** dz
2.
f&) =1+ /Ot f(z)sin(t — z) dz
3.
f&)=t+ /Ot f(t —z)e~* de
4,
f(t) = 4% - /Ot f(t —z)e " dx
5.
f) =3+ /Ot f(z)sin(t — ) dz
6.
f(t) =8t> -3 /0 t f(z)sin(t — z)dz
7.
f)y=t*-2 /0 t f(t — z)sinh(2z) dz
8.
fA)=1+ 2/(: f(t — z) cos(z) de
9.
ft)=e* -2 /Ot ft — ) cos(z) dz
10.

f(@) =t2-+-/0 F(z)sin(t — z) dz
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11.
f)=et-2 /Ot f(z)cos(t — z)dzx
12. .
f(t) =6t + 4/0 f(x)(z —t)* de
13. Solve the following equation for f(¢) with the condition that f(0) =
4:
flit)y=t +/Ot f(t — z) cos(z) dz.
14. Solve the following equation for f(t) with the condition that f(0) =
0:
f/(t) =sin(t) + /ot f(t —z)cos(z) dz.
15. During a study of nucleation involving idealized active sites along a

boiling surface, Marto and Rohsenow!® had to solve the integral equa-
tion

* ()
A=Bvi+C d
Vt+ /0 N T
to find the position z(t) of the liquid/vapor interface. If A, B, and C
are constants and z(0) = 0, find the solution for them.

16. Solve the following equation for z(¢) with the condition that z(0) =
0:
t /

evm Jo VI=T
where ¢ is constant.

17. During a study of the temperature f(¢) of a heat reservoir attached
to a semi-infinite heat-conducting rod, Huber!! had to solve the integral
equation

) =a- %/ﬂ f_tl I)T dr,

where a and § are constants and f(0) = 0. Find f(¢) for him. Hint:

a « aff

s32(st2 4+ B) T s(s— %) s32(s—p%)

10 From Marto, P.J. and Rohsenow, W. M., 1966: Nucleate boiling in-
stability of alkali metals. J. Heat Transfer, 88, 183-193 with permission.

11 From Huber, A., 1934: Eine Methode zur Bestimmung der Warme-
und Temperaturleitfahigkeit. Monatsh. Math. Phys., 41, 35-42.
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18. During the solution of a diffusion problem, Zhdanov, Chikhachev,
and Yavlinskiil? solved an integral equation similar to

/Ot f(r) [t —erf (avt —7)] dr = at,

where erf(z) = 2 / %" dy is the error function. What should have
T

0
they found? Hint: You will need to prove that

4.8 SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

For the engineer, as it was for Oliver Heaviside, the primary use
of Laplace transforms is the solution of ordinary, constant coefficient,
linear differential equations. These equations are important not only
because they appear in many engineering problems but also because
they may serve as approximations, even if locally, to ordinary differ-
ential equations with nonconstant coefficients or to nonlinear ordinary
differential equations.

For all of these reasons, we wish to solve the initial-value problem

dny dn—ly dy
dt_n'l'alzﬁn—_—l--{'-*'an_la"l'any:f(t), t>0 (481)
by Laplace transforms, where a;, as, ... are constants and we know the

value of 4,9/, ..., 4"~ 1 at t = 0. The procedure is as follows. Applying
the derivative rule (4.1.20) to (4.8.1), we reduce the differentialequation
to an algebraic one involving the constants a;, as, ..., a,, the parameter
s, the Laplace transform of f(t), and the values of the initial conditions.
We then solve for the Laplace transform of y(t), Y(s). Finally, we apply
one of the many techniques of inverting a Laplace transform to find y(¢).

Similar considerations hold with systems of ordinary differential
equations. The Laplace transform of the system of ordinary differential
equations results in an algebraic set of equations containing Y1 (s), Ya(s),
..., Ya(s). By some method we solve this set of equations and in-
vert each transform Yi(s), Y2(s),...,Ya(s) in turn to give y1(t), y2(t),

e Yn(t).

12 7Zhdanov, S. K., Chikhachev, A. S., and Yavlinskii, Yu. N., 1976:
Diffusion boundary-value problem for regions with moving boundaries
and conservation of particles. Sov. Phys. Tech. Phys., 21, 883-884.




204 Advanced Engineering Mathematics

The following examples will illustrate the details of the process.
e Example 4.8.1

Let us solve the ordinary differential equation
y' + 2y =8t (4.8.2)
subject to the initial conditions that y'(0) = y(0) = 0. Taking the
Laplace transform of both sides of (4.8.2),
L(y")+2L(y) = 8L() (4.8.3)
or

s%Y (s) — sy(0) — ¢/ (0) + 25Y (s) — 2y(0) = s%’ (4.8.4)

where Y(s) = L[y(t)]. Substituting the initial conditions into (4.8.4)
and solving for Y (s),

8 A B C D
YO =gy =stets tigz (485)
8 (s+2)A+s(s+2)B+s*(s+2)C+s°D
_ _ . (4.8.6)
s3(s+2) s3(s +2)

Matching powers of s in the numerators of (4.8.6), C+D = 0, B+2C =
0, A+2B=0,and2A=80or A=4, B=-2,C=1,and D = —1.

Therefore,
4 2 1 1
Y$)=—5——=+-— .
(s) s3  s? + s s+2
Finally, performing term-by-term inversion of (4.8.7), the final solution
18

(4.8.7)

y(t) =202 — 2t + 1 — e 2, (4.8.8)
o Example 4.8.2

Let us solve the ordinary differential equation
V' +y=H@l)-H(t-1) (4.8.9)
with the initial conditions that y’(0) = y(0) = 0. Taking the Laplace
transform of both sides of (4.8.9),
1 e*

s2Y (s) — sy(0) =/ (0) + Y (s) = Pl (4.8.10)

where Y (s) = L{y(t)]. Substituting the initial conditions into (4.8.10)
and solving for Y (s),

Y(s) = (% - ﬁ) - (é - ﬁ) e (4.8.11)

Using the second shifting theorem, the final soluiion is
y(t) = 1=cos(t) — [1 — cos(t — D) H(t - 1). (4.8.12)




The Laplace Transform 205

e Example 4.8.3
Let us solve the ordinary differential equation
v +2¢ +y=f(t) (4.8.13)

with the initial conditions that y’(0) = y(0) = 0, where f(t) is an
unknown function whose Laplace transform exists. Taking the Laplace
transform of both sides of (4.8.13),

s2Y (5) — sy(0) — ¥/ (0) + 25Y (s) — 2y(0) + Y(s) = F(s), (4.8.14)

where Y (s) = L[y(¢)]. Substituting the initial conditions into (4.8.14)
and solving for Y(s),

1

G 1)21:‘(3), (4.8.15)

Y(s) =

We have written (4.8.15) in this form because the transform Y (s) equals
the product of two transforms 1/(s + 1) and F(s). Therefore, by the
convolution theorem we can immediately write

y(t) =te™t x f(t) = /0 ze T f(t — z)dx. (4.8.16)

Without knowing f(t), this is as far as we can go.
o Example 4.8.4: Forced harmonic oscillator

Let us solve the simple harmonic oscillator forced by a harmonic
forcing:
v’ +wly = cos(wt) (4.8.17)

subject to the initial conditions that 3’ (0) = y(0) = 0. Although the
complete solution could be found by summing the complementary so-
lution and a particular solution obtained, say, from the method of un-
determined coefficients, we will now illustrate how we can use Laplace
transforms to solve this problem.

Taking the Laplace transform of both sides of (4.8.17), substituting
in the initial conditions, and solving for Y (s),

Y(s) = (sTfF)—? (4.8.18)

and

y(t) = %sin(wt) * cos(wt) = -;:sin(wt). (4.8.19)
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Equation (4.8.19) gives an oscillation that grows linearly with time al-
though the forcing function is simply periodic. Why does this occur?
Recall that our simple harmonic oscillator has the natural frequency w.
But that is exactly the frequency at which we drive the system. Con-
sequently, our choice of forcing has resulted in resonance where energy
continuously feeds into the oscillator.

o Example 4.8.5
Let us solve the system of ordinary differential equations:
2z’ + y = cos(t) (4.8.20)

and
Y — 2z = sin(t) (4.8.21)

subject to the initial conditions that £(0) = 0 and y(0) = 1. Taking the
Laplace transform of (4.8.20) and (4.8.21),

s
2sX(s)+Y(s) = o) (4.8.22)
and ]
—2X(S) + SY(S) =1+ m, (4823)

after introducing the initial conditions. Solving for X (s) and Y (s),

1
X(S) - _m (4.8.24)
and 5
s s
= . 4.8.25
YO = 7t oy ( )
Taking the inverse of (4.8.24)—(4.8.25) term by term,
2(t) = 1[t cos(t) — sin(t)] (4.8.26)
and
y(t) = tsin(t) + cos(?). (4.8.27)

o Example 4.8.6

Let us determine the displacement of a mass m attached to a spring
and excited by the driving force:

F(t)=mA (1 - %) e T, (4.8.28)
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Figure 4.8.1: Displacement of a simple harmonic oscillator with nondi-
mensional frequency wT as a function of time ¢/T. The top frame shows
the forcing function.

The dynamical equation governing this system is
t
Y +ly=A (1 — T) e T, (4.8.29)

where w? = k/m and k is the spring constant. Assuming that the system



208 Advanced Engineering Mathematics

is initially at rest, the Laplace transform of the dynamical system is

A A

2 Hy(s) = - 4.8.
&+ WY = 07 ~ Ter Ty (4.8.30)
or
A A
. .8.31
i Ea Py R T e e Vi A
Partial fractions yield
Yio) = A 1 s=UT\ A
T TE\s+1/T 2+w?) T(W?+1/T2)2
2 _ 2 2 2
[1/? c: 3 22.<>‘/T w?+1/T 2/T ] (4.8.32)
s 4w s24+w?  (s+1/T)?  s+1/T
Inverting (4.8.32) term by term,
AT? —T sin(wt)
y(t) = 1307 [e — cos(wt) + T
AT? S2T? sin(wt) —T
bt m{(l bt T ) T + 2 [6 et cos(wt)]
+(1+ w2T2)(t/T)e-’/T}. (4.8.33)

The solution to this problem consists of two parts. The exponential
terms result from the forcing and will die away with time. This is the
transient portion of the solution. The sinusoidal terms are those natural
oscillations that are necessary so that the solution satisfies the initial
conditions. They are the steady-state portion of the solution. They
endure forever. Figure 4.8.1 illustrates the solution when w7 = 0.1,
1, and 2. Note that the displacement decreases in magnitude as the
nondimensional frequency of the oscillator increases.

o Example 4.8.7
Let us solve the equation
y' + 16y = 6(t — = /4) (4.8.34)
with the initial conditions that y(0) =1 and ¥’(0) = 0.
Taking the Laplace transform of (4.8.34) and inserting the initial

conditions,
(s +16)Y(s) = s+ e*"/* (4.8.35)
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or
s 6—3#/4

32+16+s2+16'
Applying the second shifting theorem,

Y(s) = (4.8.36)

y(t) = cos(4t) + Lsin[4(t — 7/4)|H(t — 7/4) (4.8.37)
= cos(4t) — sin(4t)H (t —7/4). (4.8.38)

o Example 4.8.8: Oscillations in electric circuits

During the middle of the nineteenth century, Lord Kelvin'® ana-
lyzed the LCR electrical circuit shown in Figure 4.8.2 which contains
resistance R, capacitance C, and inductance L. For reasons that we
shall shortly show, this LCR circuit has become one of the quintessen-
tial circuits for electrical engineers. In this example, we shall solve the
problem by Laplace transforms.

Because we can add the potential differences across the elements,
the equation governing the LCR circuit is

Ld—I+RI+l/tIdr—E(t) (4.8.39)
dt C Jo - ’ e

where I denotes the current in the circuit. Let us solve (4.8.39) when we
close the circuit and the initial conditions are I(0) = 0 and Q(0) = ~Qo.
Taking the Laplace transform of (4.8.39),

1) 0
(Ls +R+ @) T(s) = LI(0) — 9(% (4.8.40)
Solving for I(s),
I(s) = Qo - wiQo
I(s) = Cs(Ls + R+1/Cs)  s2 +2as+w} (4.8.41)
ek (4.8.42)

= (s + a)? + wi — a?’

where @ = R/2L and w2 = 1/(LC). From the first shifting theorem,

I(t) = ‘ﬂ%—Q—"e-a‘ sin(wt), (4.8.43)

13 Thomson, W., 1853: On transient electric currents. Philos. Mag.,
Ser. 4,5, 393-405.
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L
Figure 4.8.2: Schematic of a LCR circuit.

where w? = w? —a? > 0. The quantity w is the natural frequency of the
circuit, which is lower than the free frequency wp of a circuit formed by a
condenser and coil. Most importantly, the solution decays in amplitude
with time. ’

Although Kelvin’s solution was of academic interest when he origi-
nally published it, this radically changed with the advent of radio teleg-
raphy!? because the LCR circuit described the fundamental physical
properties of wireless transmitters and receivers.!® The inescapable con-
clusion from this analysis was that no matter how clever the receiver was
designed, eventually the resistance in the circuit would rapidly dampen
the electrical oscillations and thus limit the strength of the received
signal.

This technical problem was overcome by Armstrong!® who invented
an electrical circuit that used De Forest’s audion (the first vacuum tube)
for generating electrical oscillations and for amplifying externally im-
pressed oscillations by “regenerative action”. The effect of adding the
“thermionic amplifier” is seen by again considering the LRC circuit as
shown in Figure 4.8.3 with the modification suggested by Armstrong.!”

The governing equations of this new circuit are

dI 1

d,

2 =0 (4.8.44)

14 Gtone, J S., 1914: The resistance of the spark and its effect on the
oscillations of electrical oscillators. Proc. IRE, 2, 307-324.

15 See Hogan, J. L., 1916: Physical aspects of radio telegraphy. Proc.
IRE, 4, 397-420.

16 Armstrong, E. H., 1915: Some recent developments in the audion
receiver. Proc. IRE, 3, 215-247.

17 From Ballantine, S., 1919: The operational characteristics of therm-
ionic amplifiers. Proc. IRE, 7,129-161. ©IRE (now IEEE).
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> M

\

Figure 4.8.3: Schematic of a LCR circuit with the addition of a therm-
ionic amplifier. [From Ballantine, S., 1919: The operational character-
istics of thermionic amplifiers. Proc. IRE, 7, 155. ©IRE (now IEEE).]

and
del” + Rol, +M + C/ Idr=0 (4.8.45)

where the plate circuit has the current I, the resistance Rp, the induc-

tance Lo, and the electromotive force (emf) of p fot Idr/C. The mutual
inductance between the two circuits is given by M. Taking the Laplace
transform of (4.8.44)—(4.8.45),

Qo

el (4.8.46)

LisI(s) + RI(s) + (C) + MsI,(s) =

and

LasT,(s) + RoI,(s) + MsI(s) + %T(s) =0. (4.8.47)

Eliminating 7,(s) between (4.8.46)—(4.8.47) and solving for I(s),

_ (Las + Ro)Qo
(s) = (LiL2—M?)Cs3+(RL2+RoL1)Cs?
+(L24+CRRo—uM)s+Ro

~l

(4.8.48)

For high-frequency radio circuits, we can approximate the roots of the
denominator of (4.8.48) as

Ry
Ly +CRRy - uM

51 A — (4.8.49)

and

Ry RoLy + RL, .
7 — . 4.8.50
528~ o CRRo— pM)  2(Lily —M?) = ( )
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In the limit of M and Ry vanishing, we recover our previous result for
the LRC circuit. However, in reality, Ry is very large and our solution
has three terms. The term associated with s; is a rapidly decaying
transient while the s, and s3 roots yield oscillatory solutions with a slight
amount of damping. Thus, our analysis has shown that in the ordinary
regenerative circuit, the tube effectively introduces sufficient “negative”
resistance so that the resultant positive resistance of the equivalent LCR
circuit is relatively low, and the response of an applied signal voltage
at the resonant frequency of the circuit is therefore relatively great.
Later, Armstrong'® extended his work on regeneration by introducing an
electrical circuit — the superregenerative circuit — where the regeneration
is made large enough so that the resultant resistance is negative, and
self-sustained oscillations can occur.'® It was this circuit?® which led to
the explosive development of radio in the 1920s and 1930s.

o Example 4.8.9: Resonance transformer circuit

One of the fundamental electrical circuits of early radio telegra-
phy?! is the resonance transformer circuit shown in Figure 4.8.4. Its
development gave transmitters and receivers the ability to tune to each
other.

The governing equations follow from Kirchhoff’s law and are

an, o dL, 1 f*
and .
dl, dl, 1
M—+4 Ly— — Idr=0. .8.52
T 2dt+RIZ+Cz/O 2dr =10 (4.8.52)

Let us examine the oscillations generated if initially the system has no
currents or charges and the forcing function is E{t) = 6(t).
Taking the Laplace transform of (4.8.51)-(4.8.52),

- - T
LisIi+ MsT,+ — =1 (4.8.53)
.S‘Cl

18 Armstrong, E. H., 1922: Some recent developments of regenerative
circuits. Proc. IRE, 10, 244-260.

19 Gee Frink, F. W., 1938: The basic principles of superregenerative
reception. Proc. IRE, 26, 76-106.

20 Lewis, T., 1991: Empire of the Air: The Men Who Made Radio,
HarperCollins Publishers, New York.

21 Fleming, J. A., 1919: The Principles of Electric Wave Telegraphy
and Telephony, Longmans, Green, Chicago.
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Figure 4.8.4: Schematic of a resonance transformer circuit.

and

- - — 1
Msli+ LosIo + RIy + ;Ci =0. (4854)
2

Because the current in the second circuit is of greater interest, we solve
for I, and find that

Ms®
L1 Lo[(1 — k2)s* 4 20w?s3 + (w} + w3)s? + 2awis + wiwj]’
(4.8.55)

72(8) = —

where & = R/2Ls, w} = 1/L,C1, w3 = 1/L,C3, and k? = M?/LiLo,
the so-called coefficient of coupling.
We can obtain analytic solutions if we assume that the coupling is
weak (k? < 1). Equation (4.8.55) becomes
Ms?

Iy =— . 4.8.56
? LyLa(s? 4+ w?)(s? + 2as + w3) ( )

Using partial fractions and inverting term by term, we find that
M 20w? sin(w;t) w?(w? — w?) cos(wt)
LiLy [(w? —w})? + 402w} (wi—-w?)? +40%w]
awd — 3awiw? + 403w? _,,sin(wt)
(w3 — w?)? + da?w? w
_ wi(wi ~wi) +da’w] ot
(w2 —~ w?)? + da%w?

Iz(t) =

cos(wt)|,

(4.8.57)
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Figure 4.8.5: The resonance curve 1/,/(r? — 1)2 + 0.01 for a resonance
transformer circuit with r = ws fw;.
where w? = w? — o2

The exponentially damped solutions will eventually disappear, leav-
ing only the steady-state oscillations which vibrate with the angular fre-
quency wi, the natural frequency of the primary circuit. If we rewrite
this steady-state solution in amplitude/phase form, the amplitude is

M
L1L2\/(7'2 — 1)2 + 4(12/(#%,

(4.8.58)

where r = wa/w;. As Figure 4.8.5 shows, as r increases from zero to two,
the amplitude rises until a very sharp peak occurs at » = 1 and then
decreases just as rapidly as we approach r» = 2. Thus, the resonance
transformer circuit provides a convenient way to tune a transmitter or
receiver to the frequency wi.

Problems

Solve the following ordinary differential equations by Laplace trans-
forms:

1. y¥-2y=1-¢t;, y0)=1

2. ¥y —-4y+3y=e y0)=0,¥(0)=0
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3. Y —4y +3y=e€"; y(0)=0,y(0)=1

4. y' -6y +8y=¢e y(0)=3,y(0)=9

5. ¢ +4y +3y=e€" y(0)=1y(0)=1

6. ¥ +y=t y0)=1y(0)=0

7. ' +4y +3y=¢€'; y(0)=0,4(0)=2

8. y' —4y +5y=0; y(0)=2,9(0)=4

9. Y +y=tHt-1); y(0)=0

10. ' +3y+2y=H(t-1); y0)=0y(0)=1

1. ¢ -3y +2y=H(t-1); y0)=0,y(0)=1

12. ¢y’ +4y=3H(t—-4); y(0)=1¢4(0)=0

13. Y’ +4y +4y=4H(t-2); y(0)=0,9(0)=0

14, y' 43¢ +2y=e" H(E—1); y(0)=0,4(0)=1

15, ' =3y +2u=e"DH(E-2); y(0)=0,y(0)=0

16. ¥ -3y +2=H(t-1)-H(t-2); y0)=0,y(0)=0

17. Y +y=1-Ht-T); v0)=0,4(0)=0

5 yay= {50 OSET w0 =0w@=0

0, 1>
t, 0<t<a
19. ¥y +3W+2y= {ae—(t—a) > ar y(0) =0,y'(0) =0
t/a, 0<t<a
20. y'+uwly=<{1-(t-a)/(b-a), a<t<b
0, t > b;

¥(0)=0,y(0) =0
21. ¢/ -2/ +y=36(t—2); y(0)=0,y(0)=1

22. ' -5y +4y=6(t—-1); 0)=0,4(0)=0
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23. Y’ 45y +6y=36(t—2)—46(t-5); y(0)=y'(0)=0
24, 2 -2x+y=0,yY—-32—-4y=0; =z(0)=1,90)=0
25, 2’ -2y=12"4y—-2z=0; z(0)=y(0)=0

2. o +2-y =0, +y+z=1% =z(0)=y(0)=0

21, @ +3z—y=1L2'+y +32=0; =z(0)=2,50)=0

28.  Forster, Escobal, and Lieske?? used Laplace transforms to solve
the linearized equations of motion of a vehicle in a gravitational field
created by two other bodies. A simplified form of this problem involves
solving the following system of ordinary differential equations:

' =2y = Fi + z + 2, 2 +y' = Fo+ 22+ 3y

subject to the initial conditions that z(0) = y(0) = 2’(0) = ¥’(0) = 0.
Find the solution to this system.

4.9 TRANSFER FUNCTIONS, GREEN’S FUNCTION, AND
INDICIAL ADMITTANCE

One of the drawbacks of using Laplace transforms to solve ordinary
differential equations with a forcing term is its lack of generality. Each
new forcing function requires a repetition of the entire process. In this
section we give some methods for finding the solution in a somewhat
more general manner for stationary systems where the forcing, not any
initially stored energy (i.e., nonzero initial conditions), produces the
total output. Unfortunately, the solution must be written as an integral.

In Example 4.8.3 we solved the linear differential equation

v'+2y +y=f(t) (4.9.1)

subject to the initial conditions y(0) = y'(0) = 0. At that time we
wrote the Laplace transform of y(t), Y (s), as the product of two Laplace

transforms:
1

22 Reprinted from Astronaut. Acta, 14, Forster, K., P. R. Escobal
and H. A. Lieske, Motion of a vehicle in the transition region of the
three-body problem, 1-10, (©/1968, with kind permission from Elsevier
Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.
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One drawback in using (4.9.2) is its dependence upon an unspecified
Laplace transform F(s). Is there a way to eliminate this dependence
and yet retain the essence of the solution?

One way of obtaining a quantity that is independent of the forcing
is to consider the ratio:

b<

=G(s) = (S+;1)2 (4.9.3)

(s
F(s)

This ratio is called the transfer function because we can transfer the
input F(s) into the output Y (s) by multiplying F(s) by G(s). It depends
only upon the properties of the system.

Let us now consider a related problem to (4.9.1), namely

9" +29' +9=46(), t>0 (4.9.4)

with g(0) = ¢/(0) = 0. Because the forcing equals the Dirac delta func-
tion, g(t) is called the impulse response or Green’s function.?® Comput-
ing G(s), .

G(s) = GIE (4.9.5)
From (4.9.3) we see that G(s) is also the transfer function. Thus, an
alternative method for computing the transfer function is to subject the
system to impulse forcing and the Laplace transform of the response is
the transfer function.

From (4.9.3),
Y (s) = G(s)F(s) (4.9.6)

y(t) = 9(t) = £(1). (4.9.7)

That is, the convolution of the impulse response with the particular
forcing gives the response of the system. Thus, we may describe a
stationary system in one of two ways: (1) in the transform domain
we have the transfer function, and (2) in the time domain there is the
impulse response.

Despite the fundamental importance of the impulse response or
Green’s function for a given linear system, it is often quite difficult to
determine, especially experimentally, and a more convenient practice is
to deal with the response to the unit step H(t). This response is called
the indicial admittance or step response, which we shall denote by a(t).

23 For the origin of the Green’s function, see Farina, J. E. G., 1976:
The work and significance of George Green, the miller mathematician,
1793-1841. Bull. Inst. Math. Appl., 12, 98-105.



218 Advanced Engineering Mathematics

Because L[{H(t)] = 1/s, we can determine the transfer function from
the indicial admittance because L[a(t)] = G(s)L[H(t)] or sA(s) = G(s).
Furthermore, because

£lo() = 6(6) = g, (498)
then dalt
9(t) = (;(t) (4.9.9)

from (4.1.18).
o Example 4.9.1

Let us find the transfer function, impulse response, and step re-
sponse for the system

¥y =3y +2y = f(t) (4.9.10)
with y(0) = y/(0) = 0. To find the impulse response, we solve
g’ -3¢ +29 =6(t) (4.9.11)

with g(0) = ¢’(0) = 0. Taking the Laplace transform of (4.9.11), we

find that )

G(s) = s2—-3s+2’

(4.9.12)

which is the transfer function for this system. The impulse response
equals the inverse of G(s) or

g(t) = e* — €. (4.9.13)
To find the step response, we solve
a” —3d’ +2a = H(t) (4.9.14)

with a(0) = a/(0) = 0. Taking the Laplace transform of (4.9.14),

Als) = - i 1; ) (4.9.15)
a(t) = 3 + 3 — €. (4.9.16)

Note that a'(t) = g(t).
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e Example 4.9.2

There is an old joke about a man who took his car into a garage
because of a terrible knocking sound. Upon his arrival the mechanic took
one look at it and gave it a hefty kick.2* Then, without a moment’s
hesitation he opened the hood, bent over, and tightened up a loose
bolt. Turning to the owner, he said, “Your car is fine. That’ll be $50.”
The owner felt that the charge was somewhat excessive, and demanded
an itemized account. The mechanic said, “The kicking of the car and
tightening one bolt, cost you a buck. The remaining $49 comes from
knowing where to kick the car and finding the loose bolt.”

Although the moral of the story may be about expertise as a mar-
ketable commodity, it also illustrates the concept of transfer function.?
Let us model the car as a linear system where the equation

dny dn—ly dy _
n—(-i-tT-}-an_l(—itn__l‘F"'+ald—t+aoy—f(t) (4'9'17)

a

governs the response y(¢) to a forcing f(t). Assuming that the car
has been sitting still, the initial conditions are zero and the Laplace
transform of (4.9.17) is

K(s)Y(s) = F(s), (4.9.18)

where
K(s) =a,s” +an_18"" 4+ +ays+ ao. (4.9.19)

Hence
Y(s) = i ((Z)) = G(s)F(s), (4.9.20)

where the transfer function G(s) clearly depends only on the internal
workings of the car. So if we know the transfer function, we understand
how the car vibrates because

y(t) = /Ot g(t —z)f(x)de. (4.9.21)

But what does this have to do with our mechanic? He realized
that a short sharp kick mimics an impulse forcing with f(t) = é(t) and

24 This is obviously a very old joke.

%5 QOriginally suggested by Stern, M. D., 1987: Why the mechanic
kicked the car — A teaching aid for transfer functions. Math. Gaz., 71,
62-64.
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Figure 4.9.1: Diagram used in the derivation of Duhamel’s integral.

y(t) = g(t). Therefore, by observing the response of the car to his kick,
he diagnosed the loose bolt and fixed the car.

In this section we have shown how the response of any system may
be expressed in terms of its Green’s function and the arbitrary forcing.
Can we also determine the response using the indicial admittance a(t)?

Consider first a system that is dormant until a certain time ¢t = .
At that instant we subject the system to a forcing H (¢ — 71). Then the
response will be zero if ¢ < 7 and will equal the indicial admittance
a(t — ) when t > 7 because the indicial admittance is the response of
a system to the step function. Here ¢t — 7 is the time measured from
the instant of change.

Next, suppose that we now force the system with the value f(0)
when ¢ = 0 and hold that value until ¢t = 7;. We then abruptly change
the forcing by an amount f(1) — f(0) to the value f(7) at the time n,
and hold it at that value until t = 7,. Then we again abruptly change
the forcing by an amount f(73) — f(71) at the time 7, and so forth (see
Figure 4.9.1). From the linearity of the problem the response after the
instant ¢ = 7, equals the sum

y(t) = f(0)a(t) + [f(r1) = f(O)]a(t ~ 1) + [f(r2) = f(r1)]a(t — 72)
+ o+ [f(7n) = f(ra-1)]a(t — 7). (4.9.22)

If we write f(7)— f(me-1) = Afi and 7, —7k—1 = A7y, (4.9.22) becomes

y(t) = £(0)a(t) + ) _a(t - rk)i—’;: ATy (4.9.23)
k=1
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Finally, proceeding to the limit as the number n of jumps becomes
infinite, in such a manner that all jumps and intervals between successive
jumps tend to zero, this sum has the limit

y(t) = f(0)a(?) +/0 f(r)a(t —7) dr. (4.9.24)

Because the total response of the system equals the weighted sum [the
weights being a(t)] of the forcing from the initial moment up to the
time t, we refer to (4.9.24) as the superposition integral, or Duhamel’s
integral 28

We can also express (4.9.24) in several different forms. Integration
by parts yields

y(t) = f(t)a(0) +‘/0 f(r)d(t—r)dr (4.9.25)
_ % [ /0 f(r)a(t — 1) dr] . (4.9.26)

e Example 4.9.3

Suppose that a system has the step response of a(t) = A[1— e~t/T],
where A and T are positive constants. Let us find the response if we
force this system by f(¢) = kt, where k is a constant.

From the superposition integral (4.9.24),

t
y(t) = 0+/ kA[l — e~/ dr (4.9.27)
Q
= kAt — T(1 —e~t/T)]. (4.9.28)
Problems

For the following nonhomogeneous differential equations, find the trans-
fer function, impulse response, and step response. Assume that all of
the necessary initial conditions are zero.

Ly +ky=f(t) 2. ¥ =2y -3y=f(t)

26 Duhamel, J.-M .-C., 1833: Mémoire sur la méthode générale relative
au mouvement de la chaleur dans les corps solides plongeés dans des
milieux dont la température varie avec le temps, J. Ecole Polytech., 22,
20-77.
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3.9 +4y + 3y = f(1) 4.y -2y + 5y = f(2)
5. 9" =3y +2y = f(t) 6.y +4y +4y = f(?)
7.y -9y = f(t) 8.y +y=f(t)

9.¢v" -y = f(t)
4.10 INVERSION BY CONTOUR INTEGRATION

In Sections 4.5 and 4.6 we showed how we may use partial fractions
and convolution to find the inverse of the Laplace transform F'(s). In
many instances these methods fail simply because of the complexity of
the transform to be inverted. In this section we shall show how we may
invert transforms through the powerful method of contour integration.
Of course, the student must be proficient in the use of complex variables.

Consider the piece-wise differentiable function f(z) which vanishes
for £ < 0. We can express the function e~ f(z) by the complex Fourier
representation of

f(x)e=* = % /_0:0 elvs [/000 e'“f(t)e"""tdt] dw, (4.10.1)

for any value of the real constant ¢, where the integral

I:/O =t f(1)| dt (4.10.2)

exists. By multiplying both sides of (4.10.1) by €°* and bringing it inside
the first integral,

fle)= o= /_ " elerwire [ /0 ” f(t)e-<c+w">’dt] do.  (4.10.3)

With the substitution z = ¢+ wi, where z is a new, complex variable of
integration,

flz) = — Wm [ / f@) ‘“dt] dz. (4.10.4)

27rz —o0i

The quantity inside the square brackets is the Laplace transform F(z).
Therefore, we can express f(t) in terms of its transform by the complex
contour integral:

1 c+oot
ft)y= %/  F(z)edz. (4.10.5)

— 001
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Figure 4.10.1: An outstanding mathematician at Cambridge Uni-
versity at the turn of the twentieth century, Thomas John I’Anson
Bromwich (1875-1929) came to Heaviside’s operational calculus through
his interest in divergent series. Beginning a correspondence with Heavi-
side, Bromwich was able to justify operational calculus through the use
of contour integrals by 1915. After his premature death, individuals
such as J. R. Carson and Sir H. Jeffreys brought Laplace transforms to
the increasing attention of scientists and engineers. (Portrait courtesy
of the Royal Society of London.)

This line -integral, Bromwich’s integral,?” runs along the line z = ¢
parallel to the imaginary axis and ¢ units to the right of it, the so-called
Bromuwich contour. We select the value of ¢ sufficiently large so that
the integral (4.10.2) exists; subsequent analysis shows that this occurs
when c¢ is larger than the real part of any of the singularities of F(z).

27 Bromwich, T. J. I’A., 1916: Normal coordinates in dynamical sys-
tems. Proc. London Math. Soc., Ser. 2, 15, 401-448.
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We must now evaluate the contour integral. Because of the power of
the residue theorem in complex variables, the contour integral is usually
transformed into a closed contour through the use of Jordan’s lemma.
See Section 3.4, Equations (3.4.12) and (3.4.13). The following examples
will illustrate the proper use of (4.10.5).

e Example 4.10.1

Let us invert
—3s

F(s) = s,_,e (4.10.6)

(s—1)

From Bromwich’s integral,

1 c+001 e(t—3)z

1 e(t—3)z J 1 e(t—3)z 4 410.8
‘%}izz(z—n Z‘Er?/cnzZ(z—l) 2 (4108)

where Cr is a semicircle of infinite radius in either the right or left
half of the z-plane and C is the closed contour that includes Cg and
Bromwich’s contour. See Figure 4.10.2.

Our first task is to choose an appropriate contour so that the in-
tegral along Cg vanishes. By Jordan’s lemma this requires a semicircle
in the right half-plane if { — 3 < 0 and a semicircle in the left half-plane
if t —3 > 0. Consequently, by considering these two separate cases,
we have forced the second integral in (4.10.8) to zero and the inversion
simply equals the closed contour.

Consider the case t < 3 first. Because Bromwich’s contour lies to
the right of any singularities, there are no singularities within the closed
contour and f(¢) = 0.

Consider now the case t > 3. Within the closed contour in the left
half-plane, there is a second-order pole at z = 0 and a simple pole at
z = 1. Therefore,

Res [ 0] 4 Res [ 1 410.9
) = Res | f—i0] +Res [ £t (4109)
where
6(1—3)2 ) d ) e(t—S)z
. (t _ 3)€(t—3)z e(1=3)2
= lim [ P e PN (4.10.11)

=2—1 (4.10.12)
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t>3 r<3

(c.,0)

Figure 4.10.2: Contours used in the inversion of {4.10.6).

and

e(t=3)2

1 6(t—3)z
22(z - 1)’

Res [ } = lim (2 - 1)m =e'3 (4.10.13)

Taking our earlier results into account, the inverse equals
f@)=[e2=(t-3)~1] H(-3) (4.10.14)

which we would have obtained from the second shifting theorem and
tables.

o Example 4.10.2

For our second example of the inversion of Laplace transforms by
complex integration, let us find the inverse of

1

F(S): m,

(4.10.15)
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where a is real. From Bromwich’s integral,

() = - /cm{ _ g (4.10.16)

= — : z.
271 Jo—oo; 2sinh(az)

Here c is greater than the real part of any of the singularities in (4.10.15).

Using the infinite product for the hyperbolic sine,?®
etz etz
zsinh(az) = az?[1 + a?22/7w?][1 + a222/(472)][1 + a%22/(972)] - - -

(4.10.17)
Thus, we have a second-order pole at z = 0 and simple poles at z, =
*nri/a, where n=1,2,3,...

We may convert the line integral (4.10.16), with the Bromwich con-
tour lying parallel and slightly to the right of the imaginary axis, into a
closed contour using Jordan’s lemma through the addition of an infinite
semicircle joining 100 to —ioo as shown in Figure 4.10.3. We now apply
the residue theorem. For the second-order pole at 2 = 0,

e 1 1 . d[(z=0)%"
Res [z sinh(az)’o] - th_r.% dz [m (4.10.18)
. d zet?
= lim - [—Sinh(az)] (4.10.19)
=i et N zte'? az cosh(az)e'*
= =0 [sinh(az) " sinh(az) " sinh?(az)
(4.10.20)
t
=7 (4.10.21)

after using sinh(az) = az + O(z3). For the simple poles z, = +nri/a,

etz . (Z — zn)etz
_ =1 — .10.
es [z sinh(az)’ zn] 2ot zsinh(az) (4.10.22)
y etz
= sinh(az) + az cosh(az) (4.10.23)

_ exp(xnmit/a)

T (-D)r(Enm) (4.10.24)

28 Gradshteyn, I. S. and Ryzhik, I. M., 1965: Table of Integrals, Series
and Products, Academic Press, New York. See Section 1.431, formula 2.
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Figure 4.10.3: Contours used in the inversion of (4.10.15).

because cosh(£nwi) = cos(nw) = (—1)". Thus, summing up all of the
residues gives

e e

ft) = %_{_ E (-n» ezp(.nrit/a) _ Z (=" ex:(fmrit/a)

(4.10.25)

Q| =~

.2 i (D" sin(nwt/a) (4.10.26)
2 . .10.

In addition to computing the inverse of Laplace transforms, Brom-
wich’s integral places certain restrictions on F'(s) in order that an inverse
exists. If o denotes the minimum value that ¢ may possess, the restric-
tions are threefold.?® First, F(z) must be analytic in the half-plane
r > a, where z = z +14y. Second, in the same half-plane it must behave
as z~%, where k > 1. Finally, F(z) must be real when z > a.

29 For the proof, see Churchill, R. V., 1972: Operational Mathematics,
McGraw-Hill, New York, Section 67.
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Figure 4.10.4: The correspondence between the location of the simple
poles of the Laplace transform F(s) and the behavior of f(¢).
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e Example 4.10.3

Is the function sin(s)/(s? + 4) a proper Laplace transform? Al-
though the function satisfies the first and third criteria listed in the
previous paragraph on the half-plane x > 2, the function becomes un-
bounded as y — +oo for any fixed z > 2. Thus, sin(s)/(s* + 4) cannot
be a Laplace transform.

o Example 4.10.4

An additional benefit of understanding inversion by the residue
method is the ability to qualitatively anticipate the inverse by knowing
the location of the poles of F(s). This intuition is important because
many engineering analyses discuss stability and performance entirely in
terms of the properties of the system’s Laplace transform. In Figure
4.10.4 we have graphed the location of the poles of F(s) and the cor-
responding f(t). The student should go through the mental exercise of
connecting the two pictures.

Problems

Use Bromwich’s integral to invert the following Laplace transform:

_ s+1 ) — 1
LEO) = a1 ) 2F06)= aivap
1 1
3.F(s) = oo 4 F0) = R r e 10
e i
5F(8)2m 6.F(S):m
1 1

9. Consider a function f(t) which has the Laplace transform F'(z) which
is analytic in the half-plane Re(z) > so. Can we use this knowledge to
find g(t) whose Laplace transform G(z) equals F[p(z)], where ¢(z) is
also analytic for Re(z) > so?7 The answer to this question leads to the
Schouten3® — Van der Pol3! theorem.

30 Schouten, J. P., 1935: A new theorem in operational calculus to-
gether with an application of it. Physica, 2, 75-80.

31 Van der Pol, B., 1934: A theorem on electrical networks with ap-
plications to filters. Physica, 1, 521-530.
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Step 1: Show that the following relationships hold true:

G(2) = Flp(2)] = / " fr)e e dr

and

c4o00t
o) = 5 / Flp(=))e” dz.

c—o0i

Step 2: Using the results from Step 1, show that

s = [ 10 [ eeretai] ar

2mi ¢—o001
This is the Schouten-Van der Pol theorem.

Step 3: If G(z) = F(y/z) show that

g(t) = 2\;@ /000 Tf(7) exp (—Z—j) dr.

Hint: Do not evaluate the contour integral. Instead, ask yourself: What
function of time has a Laplace transform that equals e=%()" where T
is a parameter? Then use tables.




Chapter 5
The Z-Transform

Since the Second World War, the rise of digital technology has
resulted in a corresponding demand for designing and understanding
discrete-time (data sampled) systems. These systems are governed by
difference equations in which members of the sequence y, are coupled
to each other.

One source of difference equations is the numerical evaluation of
integrals on a digital computer. Because we can only have values at
discrete time points ty = kT for k = 0,1, 2,. .., the value of the integral

y(t) = [ f(r)dris

kT (k=1)T kT
y(kT) = f(r)dr= / f(rydr + / f(r)ydr  (5.0.1)
0 0 (k-1)T
kT
=y[(k - 1T+ / f(r)dr (5.0.2)
(k=1)T
= yl(k - )T+ Tf(kT), (5.0.3)

because f(’;il)T f(r)dr = Tf(kT). Equation (5.0.3) is an example of a
first-order difference equation because the numerical scheme couples the
sequence value y(kT') directly to the previous sequence value y[(k—1)T].
If (5.0.3) had contained y[(k — 2)T], then it would have been a second-
order difference equation, and so forth.
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Although we could use the conventional Laplace transform to solve
these difference equations, the use of z-transforms can greatly facilitate
the analysis, especially when we only desire responses at the sampling
instants. Often the entire analysis can be done using only the transforms
and the analyst does not actually find the sequence y(kT).

In this chapter we shall first define the z-transform and discuss its
properties. Then we will show how to find its inverse. Finally we shall
use them to solve difference equations.

5.1 THE RELATIONSHIP OF THE Z-TRANSFORM TO THE LAPLACE
TRANSFORM

Let f(t) be a continuous function that an instrument samples every
T units of time. We denote this data-sampled function by f§(¢). See
Figure 5.1.1. Taking ¢, the duration of an individual sampling event, to
be small, we may approximate the narrow-width pulse in Figure 5.1.1
by flat-topped pulses. Then f%(t) approximately equals

£1t) ~ % S F(nT)(H(t = nT +¢/2) — H(t —nT — ¢/2)]  (5.1.1)

ife<T.

Clearly the presence of € is troublesome in (5.1.1); it adds one more
parameter to our problem. For this reason we introduce the concept
of the ideal sampler, where the sampling time becomes infinitesimally
small so that

fs(t) = lim f(nT) [H(t -l +¢/2) ; H{t —nT - 6/2)] (5.1.2)
=" f(nT)é(t — nT). (5.1.3)

Let us now find the Laplace transform of this data-sampled func-
tion. We find from the linearity property of Laplace transforms that

Fs(s) = L{fs@t)] = £ [ 2 F(nT)é(t — nT) (5.1.4)
= 2 F(nT)L[8(t — nT)). (5.1.5)

Because L[§(t — nT))] :_e‘"’T, (5.1.5) simplifies to
Fs(s) = i f(nT)e ™7, (5.1.6)

n=0
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Figure 5.1.1: Schematic of how a continuous function f(¢) is sampled
by a narrow-width pulse sampler f5(t) and an ideal sampler fs(t).

If we now make the substitution that z = e*T, then Fs(s) becomes

F(z)=Z(fa) =Y faz ™", (5.1.7)

where F'(z) is the one-sided z-transform! of the sequence f(nT), which
we shall denote from now on by f,,. Here Z denotes the operation of tak-
ing the z-transform while Z~! represents the inverse z-transformation.
We will consider methods for finding the inverse z-transform in Section
5.3.

! The standard reference is Jury, E. L., 1964: Theory and Application
of the z-Transform Method, John Wiley & Sons, New York.
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Just as the Laplace transform was defined by an integration in
t, the z-transform is defined by a power series (Laurent series) in z.
Consequently, every z-transform has a region of convergence which must
be implicitly understood if not explicitly stated. Furthermore, just as
the Laplace integral diverged for certain functions, there are sequences
where the associated power series will diverge and its z-transform does
not exist.

Consider now the following examples of how to find the z-transform.

e Example 5.1.1

Given the unit sequence f, = 1, n > 0, let us find F(z). Substi-
tuting f, into the definition of the z-transform leads to

F(z)=Y "= ﬁ (5.1.8)

because Y oo, 2z~ " is a complex-valued geometric series with common

ratio z~!. This series converges if |z7!| < 1 or |z| > 1, which gives the
region of convergence of F(z).

e Example 5.1.2
Let us find the z-transform of the sequence
fn=e"T, n>0, (5.1.9)
for a real and a imaginary.

For a real, substitution of the sequence into the definition of the
z-transform yields

F(z)= Z e—anT,-n

n=0

i —aT, (5.1.10)

If u=e"9T2z"1 then (5.1.10) is a geometric series so that

[e¢]
1
F(z)= "= . 5.1.11
()= Y "= 1= (5.111)
n=0
Because |u| = ¢=%T|z7!|, the condition for convergence is that |z| >
e=9T Thus,

z

— —aT
F(z) = p— |z} >e™%". (5.1.12)
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For imaginary a, the infinite series in (5.1.10) converges if |z| > 1,

because |u| = |2~ !| when a is imaginary. Thus,
z
F(z) = T ea Jz| > L. (5.1.13)

Although the z-transforms in (5.1.12) and (5.1.13) are the same in these
two cases, the corresponding regions of convergence are different. If ¢ is
a complex number, then

z ~aT
F(z) = P |z] > [e7*"]. (5.1.14)

o Example 5.1.3
Let us find the z-transform of the sinusoidal sequence
fn = cos(nwT), n>0. (5.1.15)

Substituting (5.1.15) into the definition of the z-transform results

[ee]
= Z cos(nwT)z"". (5.1.16)
From Euler’s formula,

cos(nwT) = §(e"™T 4 e~ineT), (5.1.17)

so that (5.1.16) becomes

— %i( mwT -msz—n) (5.1.18)

or
F(z) = 2[Z(e™T) 4 Z(e~imT))]. (5.1.19)
From (5.1.13),
inw z

Substituting (5.1.20) into (5.1.19) and simplifying yields

z[z — cos(wT)]

1. 5.1.21
22 =2z cos(wT) + 1’ 21> ( )

F(z) =
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Table 5.1.1: Z-Transforms of Some Commonly Used Sequences.

fo, n>0 F(z) Region of
convergence
1.  fo=k = const. k . |2{ >0
fa=0,n2>1
2. fm = k = const. kz—™ |z| >0
fa =0, all other n’s
3. k = constant kz/(z—1) |z} > 1
4. kn kz/(z — 1)? Jz| > 1
5. kn? kz(z +1)/(z - 1)3 |z| > 1
6. ke=2"T g complex kz/ (z—e™°T) |z > |e=°T|
7. kne~*"T  a complex (7'“_5:_;::—)-; |z] > |e~ 97|
. zsin(woT)
8. sm(wonT) 22-22 cos(w’fT)+l |z| >1

- T
9. cos(wonT) %)ﬂﬁ lz] > 1

—anT ; 2e 77 sin(woT) —aT
10. e sin(wonT)  ;3-g7, =T cos(uoT) Fo=5T |z] > e

11 =7 cos(wonT)  srigmetrosrecelly 2| > =T
12. a" , « constant z/(z — a) |2] > o

13. na™ az/(z — a)? |z] > o

14. nZa™ az(z 4+ a)/(z — a)® |z| > &

15.  sinh(wonT) s |z| > cosh(woT)
16. cosh(wonT) % |z} > sinh(woT')
17. a/n! et/ |z} >0

18. [In(a)]?/n! al/? lz] >0




The Z-Transform 237

e Example 5.1.4

Let us find the z-transform for the sequence

1, 0<n<5
fn= {(%)n, n> 6. (5.1.22)
From the definition of the z-transform,
5 (o 1 n
Z(fn)=F(z) = ~n — 5.1.23
= =3+ 3 (5) (5.1.29)
Because
N 1— qN+1
gt =—, (5.1.24)
1-¢
n=0
1— 26 1\ & 71\
F(z) = — — 5.1.25
(2) 1-2-1 (2z) 7nZ=:0 (2z> ( )
25— 1 1\° 1
== 4 (=) — 5.1.26
26 — ;5 + (2z> -z ( )
6 _
_z2 =1l ! (5.1.27)

26— 25 (22)8 - (22)%

if n = m+6 and |2] > 1/2. We summarize some of the more commonly
encountered sequences and their transforms in Table 5.1.1 along with
their regions of convergence.

o Example 5.1.5

In many engineering studies, the analysis is done entirely using
transforms without actually finding any inverses. Consequently, it is
useful to compare and contrast how various transforms behave in very
simple test problems.

Consider the simple time function f(t) = ae~**H(t), a > 0. Its
Laplace and Fourier transform are identical, namely a/(a + iw), if we
set s = iw. In Figure 5.1.2 we have illustrated its behavior as a function
of positive w.

Let us now generate the sequence of observations that we would
measure if we sampled f(t) every T units of time apart: f, = ae~*"7.
Taking the z-transform of this sequence, it equals az/ (z — e7°T). Re-
calling that z = ¢*T = ¢“T | we can also plot this transform as a function
of positive w. For small w, the transforms agree, but as w becomes larger
they diverge markedly. Why does this occur?
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Figure 5.1.2: The amplitude of the Laplace or Fourier transform (solid
line) for ae~**H(t) and the z-transform (dashed line) for f, = ae="T
as a function of frequency w for various positive a’s and T' = 1.

Recall that the z-transform is computed from a sequence comprised
of samples from a continuous signal. One very important flaw in sam-
pled data is the possible misrepresentation of high-frequency effects as
lower-frequency phenomena. It is this aliasing or folding effect that
we are observing here. Consequently, the z-transform of a sampled
record can differ markedly from the corresponding Laplace or Fourier
transforms of the continuous record at frequencies above one half of the
sampling frequency. This also suggests that care should be exercised in
interpolating between sampling instants. Indeed, in those applications
where the output between sampling instants is very important, such as
in a hybrid mixture of digital and analog systems, we must apply the
so-called “modified z-transform”.

Problems

From the fundamental definition of the z-transform, find the transform
of the following sequences, where n > 0:

L fa=(3)" 2. fn = ein?
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0, n=20
5.fn={—1, n=1

a”, n>2

6.2 SOME USEFUL PROPERTIES
In principle we could construct any desired transform from the def-

inition of the z-transform. However, there are several general theorems
that are much more effective in finding new transforms.

I Linearity 1

From the definition of the z-transform, it immediately follows that

if hp=ci1fa+c2g9n, then H(z)=c1F(z)+c2G(2), (5.2.1)

where F(z) = Z(fs), G(2) = Z(gn), H(z) = Z(ha), and c;, c3 are
arbitrary constants.

Multiplication by an expo-
nential sequence

If g,=eTf,,n>0, then G(z)=F(ze°T). (5.2.2)

This follows from

G(z)=2(gn) =Y _gnz " =D e T fiz™™  (523)
=0 n=0

Fa(2e*T)™" = F(ze®T). (5.2.4)

WK

n=0

This is the z-transform analog to the first shifting theorem in Laplace
transforms.
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Table 5.2.1: Examples of Shifting Involving Sequences.

n fn fn—Z fn+2
0 1 0 4

1 2 0 8

2 4 1 16
3 8 2 64
4 16 4

128

I Shifting

The effect of shifting depends upon whether it is to the right or
to the left, as Table 5.2.1 illustrates. For the sequence f,_2, no values
from the sequence f, are lost; thus, we anticipate that the z-transform
of fn—2 only involves F(z). However, in forming the sequence f, 42, the
first two values of f,, are lost, and we anticipate that the z-transform
of fn4+2 cannot be expressed solely in terms of F(z) but must include
those two lost pieces of information.

Let us now confirm these conjectures by finding the z-transform of
fn+1 which is a sequence that has been shifted one step to the left. From
the definition of the z-transform, it follows that

Z(fn+1) = Z fn_Hz_" =2z Z fn+12—(n+1) (525)
n=0 n=0
:szkz_k—zfo+zfo, (5.2.6)
k=1

where we have added zero in (5.2.6). This algebraic trick allows us to
collapse the first two terms on the right side of (5.2.6) to

Z(fn+1) = ,‘:F(Z) - Zf(). (527)
In a similar manner, repeated applications of (5.2.7) yield
Z(fagm)=2"F(2) = 2" fo =27 L — o= 2fmon, (5.2.8)

where m > 0. This shifting operation transforms f,4, into an alge-
braic expression involving m. Furthermore, we have introduced initial
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sequence values, just as we introduced initial conditions when we took
the Laplace transform of the nth derivative of f(t). We will make fre-
quent use of this property in solving difference equations in Section 5.4.

Consider now shifting to the right by the positive integer k,
gn = fa—kHnzgp, n2> 0, (5.2.9)

where H,_; = 0 for n < k and 1 for n > k. Then the z-transform of
(5.2.9) is

G(z) = z7%F(2), (5.2.10)

where G(z) = Z(gn) and F(z) = Z(fn). This follows from

o0 [e]
G(z)=Y gnz™" =Y fa-kHapz™" (5.2.11)
n=0 n=0
[e ] o
=Y fagr O =R Y e (5.2.12)
=k m=0
=z"%F(2). (5.2.13)

This result is the z-transform analog to the second shifting theorem in
Laplace transforms.

I Initial-value theorem

The initial value of the sequence f,, fo, can be computed from F(z)
using the initial-value theorem:

fo = lim F(z). (5.2.14)

=00

From the definition of the z-transform,
o0
F(2)= faz " =fo+ izt + for P4 (5.2.15)

n=0

In the limit of z — oo, we obtain the desired result.
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I Final-value theorem I

The value of f,, as n — o0, is given by the final-value theorem:

foo = lin} (z = 1)F(z), (5.2.16)
where F(z) is the z-transform of f,.

We begin by noting that
Z(far1 = fa) = lim > (o1 — fr)z7E (5.2.17)
k=0
Using the shifting theorem on the left side of (5.2.17),
) n
2F(2) = 2fo = F(2) = lim kz(fk_,_l = fr)z7k. (5.2.18)
=0
Applying the limit as z approaches 1 to both sides of (5.2.18):

lim (z = 1)F(z) - fo = lim > (fes1 — fr) (5.2.19)
k=0

= lim [(i—fo)+ (o= F)+...
+(fn - fn—1)+(fn+1 —fn)+ ]

. (5.2.20)
= lim (—fo + fa+1) (5.2.21)
= —fo+t fo. (5.2.22)
Consequently,
foo = zll_I;I} (z = DF(2). (5.2.23)

Note that this limit has meaning only if f., exists. This occurs if F(z)
has no second-order or higher poles on the unit circle and no poles
outside the unit circle.

I Multiplication by n

Given
gn=nfa, n2>0, (5.2.24)
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this theorem states that

dF(z)
dz ’

where G(z) = Z(g,) and F(z) = Z(fa).

G(z) = —z (5.2.25)

This follows from

G(2)=) gnz ™" =3 nfaz"=2) nfaz "l = _z_df;iz_).
n=0 n=0

n=0
(5.2.26)
I Periodic sequence theorem l
Consider the N-periodic sequence:
fo=Afofife.. . fn-1fofr...} (5.2.27)
——
first period
and the related sequence:
_ffa, 0<n<N-1
Tn = { o WS N, (5.2.28)

This theorem allows us to find the z-transform of f, if we can find the
z-transform of z,, via the relationship

X(2)
1—2-N°

F(z) = 12N > 1, (5.2.29)

where X(z) = Z(z,).

This follows from

F(z)=)_ faz™" (5.2.30)

N-1 2N -1 3N-1

= Z Tpz "+ Z Tnonz "+ Z Tp_oNz 4.
n=N

n=2N
(5.2.31)
Application of the shifting theorem in (5.2.31) leads to

F(z)=X(2)+zVX@) + 27V X(2)+... (5.2.32)
=X(2)[1+ TN 474 ) (5.2.33)
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Equation (5.2.33) contains an infinite geometric series with common
ratio 2=, which converges if |2~V | < 1. Thus,

X(z)
1—2z-N

| Convolution ’

Given the sequences f, and g,, the convolution product of these
two sequences is

F(z) = 12N > 1. (5.2.34)

Wn = fo % gn = Z Fegn-r = Z ke (5.2.35)

k=0
Given F(z) and G(z); we then have that W(z) = F(2)G(z).
This follows from
W(z) = Z [kagn k} z7" Z Z kIn—k2 ", (5.2.36)
=0 n=0k=0

because g,_r = 0 for £ > n. Reversing the order of summation and
letting m = n — k,

W(z) = i i frgmz™(mFR) (5.2.37)
k=0m=—k
= [kaz_k] [ Z gmz~ ™| = F(2)G(2). (5.2.38)
k=0 m=0

Consider now the following examples of the properties discussed in
this section.

e Example 5.2.1

From ]
Z@") = —— 5.2.39
(a ) l_az_l ( )
for n > 0 and |2| < a , we have that
Z () = 1 (5.2.40)
1—eirz—1
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and
1

1 —e—tvgyg—1’

Z(e7"7) = (5.2.41)

if n > 0 and |z| < 1. Therefore, the sequence f, = cos(nz) has the
z-transform

F(z) = Z[cos(nz)] = L Z (7)) + 1 Z (e7"7) (5.2.42)
1 1 1 1 1 — cos(z)z7!
= - - - - = .(5.2.43
21— eivz1 +21—e‘”¢z‘1 1— 2cos(x)z~1 + 272 (5.2.43)
e Example 5.2.2
Using the z-transform,
1
"= — > 2.
Z(a") Ty n >0, (5.2.44)
we find that
ny — d —1\—1
Z(na™) = —z [(1 —az™h) ] (5.2.45)

= (—=2)(=1) (1 —az7Y) " (=a)(-1)z"2  (5.2.46)

az"t az
= (1 — az‘1)2 = (z — a)2' (5.2.47)

o Example 5.2.3

Consider F(z) = 2az~*/(1 — az™!)3, where |a| < |z} and Ja| < 1.
Here we have that

. . 2az!
fo= lim F(z)= lim (_1%_1)3 =0 (5.2.48)

from the initial-value theorem. This agrees with the inverse of X (z):

F(2) = Z[n(n+ 1)a"], n > 0. (5.2.49)

o Example 5.2.4

Given the z-transform F(z) = (1 — a)z/[(z — 1)(z — a)], where
|z} > 1> a > 0, then from the final-value theorem we have that
a

. . . 1-
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This is consistent with the inverse transform f, = 1 — a” with n > 0.
o Example 5.2.5
Using the sequences f, = 1 and g, = a®, where a is real, verify the

convolution theorem.
We first compute the convolution of f,, with g,, namely

n 1 antl
_ — k_ _

Wn=forgn=) a* = ——1—. (5.2.51)

k=0

Taking the z-transform of w,,
W) = —— o F()G()

T (I-a)(z-1) (1-a)z—a) (z=1)(z-a)

(5.2.52)

and convolution theorem holds true for this special case.
Problems

Use the properties and Table 5.1.1 to find the z-transform of the follow-
ing sequences:

— —anT _ 0, n=20
1. fn =nTe 2. fn = {nan—l’ n 2 1

0, n=0
3. fn={ 271 > 1 4. fn = a" cos(n)

[Use cos(n) = %(ei" + 7))

5. fn = cos(n — 2)Hy,_» 6. fn=3+e T
0, n=20
7. fn = sin(nwoT + 6 8. fa=d b =l =
. fn = sin(nweT + 6) Jn = 2. n=29 fava=fa
1, n =3,
9. fo = (=1)"

(Hint: It's periodic.)

10. Using the property stated in (5.2.24)-(5.2.25) twice, find the z-
transform of n? = n[n(1)"].

11. Verify the convolution theorem using the sequences f, = g, = 1.
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12. Verify the convolution theorem using the sequences f;, = 1 and
gn = 1.

13. Verify the convolution theorem using the sequences f, = gn =
1/(n!). [Hint: Use the binomial theorem with £ = 1 to evaluate the
summation.]

14. If a is a real, show that Z(a"f,) = F(z/a), where Z(f,) = F(2).
5.3 INVERSE Z-TRANSFORMS

In the previous two sections we have dealt with finding the z-
transform. In this section we find f, by inverting the z-transform F(z).
There are four methods for finding the inverse: (1) power series, (2)
recursion, (3) partial fractions, and (4) the residue method. We will
discuss each technique individually. The first three apply only to those
F(z)’s that are rational functions while the residue method is more gen-
eral.

[ Power series

By means of the long-division process, we can always rewrite F'(z)
as the Laurent expansion:

F(z)= ao+arz " taz"i4... (5.3.1)

From the definition of the z-transform
0
F(2)=Y faz " =fot+t iz 7t 4 foz 2+, (5.3.2)
n=0

the desired sequence f, is given by a,.
e Example 5.3.1

Let

F(z) = % = 11\;23 (5.3.3)
Using long division, N(z) is divided by D(z) and we obtain
Fz)=t+4zt4272423 42744+, (5.3.4)
Therefore,
ap=3%a1=1a=1,a3=1, as=1, etc. (5.3.5)
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which suggests that fo = 1 and f, = 1 for n > 1 is the inverse of F(z).
e Example 5.3.2

Let us find the inverse of the z-transform:

222 - 1.5z

F(z) = 22 —=152+0.5

(5.3.6)

By the long-division process, we have that

2 + 15271 4125272 41125273 + ...

22-15z405 |222 - 1.5z
222 - 32 + 1

152 — 1
152 =225 4+ 0.75z!
1.25  —0.75z"!
125 —1.87271 + ...

1125271 4 ...

Thus, fo =2, fi = 1.5, fo = 1.25, fz = 1.125, and so forth, or f, =
1+ (-21-)" In general, this technique only produces numerical values for
some of the elements of the sequence. Note also that our long division
must always yield the power series (5.3.1) in order for this method to
be of any use.

I Recursive method
_

An alternative to long division was suggested? several years ago. It
obtains the inverse recursively.
We begin by assuming that the z-transform is of the form

aoz™ +a12™  +axz™ 24 a1z + an
boz™ 4+ b12m=l 4 boz™ 2+ -+ b1z + by

F(z)= (5.3.7)

where some of the coefficients a; and b; may be zero and by # 0. Ap-
plying the final-value theorem,

fo= zliTo F(z) = ap/bo. (5.3.8)

2 Jury, E. 1., 1964: Theory and Application of the z- Transform Meth-
od, John Wiley & Sons, New York, p. 41; Pierre, D. A., 1963: A tabular
algorithm for z-transform inversion. Control Eng., 10(9), 110-111. The
present derivation is by Jenkins, L. B., 1967: A useful recursive form
for obtaining inverse z-transforms. Proc. IEEE, 55, 574-575. ©OIEEE.
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Next, we apply the final-value theorem to z[F(z) — fo] and find that

f1 = zll-rglo Z[F(Z) b fo] (539)
— lim 290 bofo)z™ + (a1 — b1fo)z™ t + -+ 4 (am — bm fo)
2—00 boz™ +b1zm L 4 by2™ 2+ -+ b1z + by
(5.3.10)
= (a1 — b1 fo)/bo- (5.3.11)

Note that the coefficient ag — bofo = 0 from (5.3.8). Similarly,

f2= le'rgo 2[2F(2) — 2fo — fi] (5.3.12)

(ao—bofo)z™ ¥ +(a1—b1fo—bof1)z™
+(az—=bafo~bif1)z™ 14+ =bmfa

- 211’120 zbozm 4 bzl fbozm=2 4 b2+ by
(5.3.13)
= (a2 — bafo — b1f1)/bo (5.3.14)

because ag — bofo = a1 — b1 fo — fibo = 0. Continuing this process, we
finally have that

fn=(an —bofo—bn-1fr — - = b1fa-1) /bo, (5.3.15)
where a, = b, =0 for n > m.
o Example 5.3.3
Let us redo Example 5.3.2 using the recursive method. Comparing

(537) to (536), ag=2,a,==15a,=0,bp=1,b =—L15, ba =105
and a, = b, = 0 if n > 3. From (5.3.15),

fo=ao/bo =2/1=2, (5.3.16)
fr = (a1 —b1fo)/bo =[-1.56— (-1.5)(2)]/1 = 1.5, (5.3.17)
fo = (az — bafo — b1 f1)/bo (5.3.18)

=[0—(0.5)(2) — (-=1.5)(1.5)]/1 = 1.25 (5.3.19)
and

f3=(az —bsfo—bafi — b1f2)/bo (5.3.20)
= [0— (0)(2) = (0.5)(1.5) — (~1.5)(1.25)]/1 = 1.125. (5.3.21)
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I Partial fraction expansion

One of the popular methods for inverting Laplace transforms is
partial fractions. A similar, but slightly different scheme works here.

o Example 5.3.4

Given F(z) = z/ (22 — 1), let us find f,. The first step is to obtain
the partial fraction expansion of F(z)/z. Why we want F(z)/z rather
than F(z) will be made clear in a moment. Thus,

F(z) 1 A B
e sV EE ) Rl e & (5.3.22)
where P )
A=(z-1) (Z) =_ (5.3.23)
. z=1 2
and . )
B=(:+1) 2 - (5.3.24)
z |-, 2
Multiplying (5.3.22) by z,
1 z z
= - - — . 5.3.25
F(2) 2(;:—1 z+1) (5.3.25)

Next, we find the inverse z-transform of each of the terms z/(z — 1)
and z/(z + 1) in Table 5.1.1. This yields

z-1 <Zj 1) =1 and Z-! (Zil) = (=1)". (5.3.26)

Thus, the inverse is
fa= 30— (=17, n20. (53.27)

From this example it is clear that there are two steps involved:
(1) obtain the partial fraction expansion of F(z)/z, and (2) finding the
inverse z-transform by referring to Table 5.1.1.

e Example 5.3.5
Given F(z) = 222/[(z + 2)(z + 1)?], let us find f,. We begin by
expanding F(z)/z as

F(z) 2z A B o
= = .3.28
z (z4+2)(z+1)2 z+2+z+1+(z+1)2’ (5.3.28)
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where
A=+ L8 g (5.3.29)
z z2=-2
a1, 2 F(2) _
B=- [( +1) ]z_—l 4 (5.3.30)
and
=(z+1)° (Z) = -2 (5.3.31)
z=—1
so that 4 5
F(z) = z i (5.3.32)

z+1 T z42 (z+1)2
or

fa=271 [%] -zt [;:2] -z [(z_fji)_?] . (5.3.33)

From Table 5.1.1,

z-1 <zi 1) = (=1)", (5.3.34)
z-1 (Zj_?) = (-2)" (5.3.35)

and

-1 Z — -1 z = —n(— n = (= n+1'
2 () = - 2 [eEm) = e =
(5.3.36)
Applying (5.3.34)-(5.3.36) to (5.3.33),

fa = 4(=1)" — 4(=2)" + 2n(—=1)", n > 0. (5.3.37)

o Example 5.3.6

Given F(z) = (22 + 2)/(z — 2)?, let us determine f,. Because

F(z)  z+1 1 + 3
2 (z2=22 z-2 (z-2%

(5.3.38)

fo=27" [z - 2] +27! [(—zi—z?)—z] . (5.3.39)

Referring to Table 5.1.1,

z! (Z z 2) =9" and 2! [ & ] =3n2".  (5.340)
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Substituting (5.3.40) into (5.3.39) yields

fa=(GBr+1)2" n>0. (5.3.41)

[ Residue method

The power series, recursive, and partial fraction expansion methods
are rather limited. We will now prove that f, may be computed from
the following inverse integral formula:

1 1
n=— n- , >0, 3.
f i b, "7 F(2)dz, n>0 (5.3.42)

where C is any simple curve, taken in the positive sense, that encloses
all of the singularities of F(2). It is readily shown that the power series
and partial fraction methods are special cases of the residue method.

Proof: Starting with the definition of the z-transform
F(z)=) faz™,  |z|> Ry, (5.3.43)
n=0

we multiply (5.3.43) by z"~! and integrating both sides around any
contour C' which includes all of the singularities,

1 n-—1 _ S 1 n—mdz
i f F(z)dz _mzz:ofm 27rif£~z —~. (5.3.44)

271

Let C be a circle of radius R, where R > R;. Then, changing variables
to z = Re® and dz = iz d#,

_1_ zn-—mk — R ™ o ei(n—m)ﬂdg _ 17 m=n
2ri Jo z 2 J, ~ 10, otherwise.

(5.3.45)
Substituting (5.3.45) into (5.3.44) yields the desired result that

— n-l = fa. 3.
57 Cz F(z)dz = f, (5.3.46)

O

We can easily evaluate the inversion integral (5.3.42) using Cauchy’s
residue theorem.
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o Example 5.3.7

Let us find the inverse z-transform of

1
Fiz)= —————. 5.3.47
From the inversion integral,
1 Pl
NP S A—. P 5.3.48
f 27ri_7€;(z—1)(z—2) ¢ ( )

Clearly the integral has simple poles at z = 1 and z = 2. However,
when n = 0 we also have a simple pole at z = 0. Thus the cases n =0
and n > 0 must be considered separately.

Case 1: n = 0. The residue theorem yields

Jo = Res [m;o] * Res [m”]

1
* s [;'(2_—1)(“;—_2)2] ~ (5.3.49)
Evaluating these residues,
1 1 1
fres [m;o] TESDE-Dl, 2 (5.3.50)
1 1
fies [Z(Z —1)(z - 2)’1] T 2(z-2,., -1 (5.3.51)
and
1 ] .
fles [Z(z - 1)(z - 2)’2] T z-0|,., 2 (5.3.52)

Substituting (5.3.50)~(5.3.52) into (5.3.49) yields fo = 0.

Case 2: n > 0. Here we only have contributions from z =1 and z = 2.

e e e ve=r DR
" (5.3.53)
Res [(Z _zlr;(_:_ 5 ] = jn__; = -1 (5.3.54)
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and
R [ ik 1 2] Zn—l 271—1 > 0 (5 3 55)
- i =2""%, n>0. 3.
(z=1)(z~2) 2-1],_,
Thus,
fa=2" 21 n>0. (5.3.56)
Combining our results,
0) n=>0
Jn= { 5(2°-2), n>o0. (5.3.57)

o Example 5.3.8

Let us use the inversion integral to find the inverse of

22422
F(z)= . 5.3.58
()= g (5.3.58)
The inversion theorem gives
1 2Pl 42 2+l 4 2.n
- = dr = A S | 5.3.59
I 27ri,é; (z=1)2 ‘ Res[ (z—1)2 ’]’ (5.3.59)

where the pole at z = 1 is second order. Consequently, the correspond-
ing residue is

n+1
Res [—”z 1] d ( ntl L g.n )

T = =3n+1. (5.3.60)

z=1

Thus, the inverse z-transform of (5.3.58) is

fa=3n+1, n>0. (5.3.61)

e Example 5.3.9

Let F(z) be a z-transform whose poles lie within the unit circle
|z] = 1. Then

F(z)= i faz™?, 2] > 1 (5.3.62)
n=0
and
F()F(z71) = Zf"’ + Z Z Fnfa2™ . (5.3.63)
n=0m=0

ngEm
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Figure 5.3.1: The correspondence between the location of the simple
poles of the z-transform F(z) and the behavior of f,.
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We now multiply both sides of (5.3.63) by z~! and integrate around the
unit circle C. Therefore,

1,14, _ = 2,-14
fi;|=1F(Z)F(Z )z~ dz Zfiz|=1fnz z

n=0
©
+y 3 fmf,,}{ 2™ "1z (5.3.64)
n=0m=0 lz]=1
n#EmM

after interchanging the order of integration and summation. Performing
the integration,

oo
1
o= F(2)F(z~Y)z7 1 dz, (5.3.65)
2w -
n=0 [z]=1
which is Parseval’s theorem for one-sided z-transforms. Recall that there
are similar theorems for Fourier series and transforms.

e Example 5.3.10

An additional benefit of understanding inversion by the residue
method is the ability to qualitatively anticipate the inverse by knowing
the location of the poles of F(z). This intuition is important because
many engineering analyses discuss stability and performance entirely in
terms of the properties of the system’s z-transform. In Figure 5.3.1 we
have graphed the location of the poles of F(z) and the corresponding
fn. The student should go through the mental exercise of connecting
the two pictures.

Problems

Use the power series or recursive method to compute the first few fa's
of the following z-transforms:

0.0922 4+ 0.9z + 0.09 z+1
. = 2. F =
L F(z) 12,622 — 242+ 11.4 (2) 224 - 2234222
1.5224+ 1.5z _ 622 + 62
3. F(z)= (2)= om a2 ors =7

15.2522 - 36.752 + 30.75

Use partial fractions to find the inverse of the following z-transforms:

- z(z+1) _ (1—eoT);
Rl ey yr s sy 7y SR A Ol o b ppme
7. F(z) = al 8. F(z)= {22=a=b)z

(z=1)(z~a) (z—a)(z—b)
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9. Using the property that the z-transform of g, = fr-xHp_y ifn >0
is G(z) = z7%F(z), find the inverse of

z+4+1

F(z)= m.

Use the residue method to find the inverse z-transform of the following
z-transforms:

243 A z
T (2 —-1/2)8 1. Fz) = (z+1)2%(z-2)

12. F(z) = 13. F(z) = e°/*

10. F(z)

(z+1)?*(z—1)
5.4 SOLUTION OF DIFFERENCE EQUATIONS

Having reached the point where we can take a z-transform and
then find its inverse, we are ready to use it to solve difference equations.
The procedure parallels that of solving ordinary differential equations
by Laplace transforms. Essentially we reduce the difference equation to
an algebraic problem. We then find the solution by inverting Y (z).

o Example 5.4.1
Let us solve the second-order difference equation
2Unt2 —3Yn+1 +Un=53", n >0, (5.4.1)

where yo =0 and y1 = 1.
Taking the z-transform of both sides of (5.4.1), we obtain

2Z(Yn+2) — 3Z(yn+1) + Z(yn) = 5 Z2(3"). (5.4.2)
From the shifting theorem and Table 5.1.1,

222Y (2) — 22%yo — 2211 — 3[2Y(2) — zyo] + Y (2) = zf)_z .

(5.4.3)

Substituting yo = 0 and y; = 1 into (5.4.3) and simplifying yields

(22-1)

(2z=1)(z - )Y (2) = = e (5.4.4)

or
z

Y(z) = (Z—_3)—(-;_—1)

(5.4.5)
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To obtain y, from Y (z) we can employ partial fractions or the residue
method. Applying partial fractions yields

Y (2) A B
z —z—1+z—3’ (5.4.6)
where Y(2) )
z
A= (Z - 1) —z— - = —5 (547)
and v )
B=(z-3) Y@ L (5.4.8)
2=3 2
Thus,
1 =z 1 =z
= —= = 5.4.9
Y@ =571 9773 (54.9)
or ) )
1 z 1 z
=L 2 , 5.4.10
Y 3% (z—l)+2z (z—3) ( )
From (5.4.10) and Table 5.1.1,
¥ =3(3" - 1), n>0. (5.4.11)

Two checks confirm that we have the correct solution. First, our
solution must satisfy the initial values of the sequence. Computing yo
and yi,

Yo=338"-1)=3(1-1)=0 (5.4.12)

and
w=13-1)=13-1)=1 (5.4.13)

Thus, our solution gives the correct initial values.
Our sequence y, must also satisfy the difference equation. Now

Yng2 = 3(3"F2 1) =1(93" - 1) (5.4.14)

and
Ynp1 = 53" —1)=1(33" - 1). (5.4.15)

Therefore,
242 —=3Ynt1+Un=(9-2+1)3"-1+3-1=53" (5.4.16)

and our solution is correct.
Finally, we note that the term 3"/2 is necessary to give the right
side of (5.4.1); it is the particular solution. The —1/2 term is necessary



The Z-Transform 259

so that the sequence satisfies the initial values; it is the complementary
solution.

o Example 5.4.2
Let us find the y, in the difference equation
Ynt2 — 2Unt1+Yn =1, n2>0 (5.4.17)

with the initial conditions yo = 0 and y; = 3/2.
From (5.4.17),

Z(Yn+2) — 2Z2(Yn+1) + Z2(yn) = Z2(1). (5.4.18)

The z-transform of the left side of (5.4.18) is obtained from the shifting
theorem and Table 5.1.1 yields Z(1). Thus,

22Y(2) — 22yp — zyy — 22Y(2) + 220 + Y (2) = Ll (5.4.19)
z —_—

Substituting yo = 0 and y; = 3/2 in (5.4.19) and simplifying yields

22 - Z
Y(z) = h (5.4.20)
or )
Yo = 271 [23;%1;3] : (5.4.21)

We find the inverse z-transform of (5.4.21) by the residue method or

1 32nHl pn 1 d% [3n+1 .7
SR O bk A P N AR | BT PN
Y 21rif;~ W1 -7 a2 [ ) ) ] z:l( )
= %nz + n. (5'4'23)
Thus,
Yo = in?4n, n20. (5.4.24)

Note that n?/2 gives the particular solution to (5.4.17), while n is there
so that y, satisfies the initial conditions. This problem is particularly
interesting because our constant forcing produces a response that grows
as n?, just as in the case of resonance in a time-continuous system when
a finite forcing such as sin(wpt) results in a response whose amplitude
grows as t™.
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e Example 5.4.3
Let us solve the difference equation

5*Yn + Ynt2 = 0, (5.4.25)

where |b] < 1 and the initial conditions are yy = 2 and y; = 0.
We begin by taking the z-transform of each term in (5.4.25). This
vields
b2 Z(yn) 4+ Z(Yng2) = 0. (5.4.26)

From the shifting theorem, it follows that
b2Y (2) + 22V (2) — 2%yo — zy1 = 0. (5.4.27)

Substituting yo = b2 and y; = 0 into (5.4.27),

VY (2) +22Y(2) —b%22 = 0 (5.4.28)
or p2,2
z
To find y, we employ the residue method or
1 b2+l
n = —— — < dz. 4.
Y= om c (z—1ib)(z +4b) dz (5.4.30)
Thus,
b2zn+1 b2zn+1 bn+2,in b"+2(—i)n
n = - - = 4.31
¥ z+1b z=ib z—1b z=—4b 2 * 2 (5 )
bn+2ein7r/2 bn+2e—in7r/2 nm
— — pn+2 nr
5 + 5 =b cos( 5 ) , (5.4.32)

because cos(z) = %(e"’ + e'i’). Consequently, we obtain the desired
result that nr
Yo = 0”12 cos (?) for n > 0. (5.4.33)

o Example 5.4.4: Compound interest

Finite difference equations arise in finance because the increase or
decrease in an account occurs in discrete steps. For example, the amount
of money in a compound interest saving account after n + 1 conversion
periods (the time period between interest payments) is

Yn+1 = Yn + TYn, (5.4.34)
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Figure 5.4.1: The amount in a saving account as a function of an
annual conversion period when interest is compounded at the annual
rate of 12% and a $1000 is taken from the account every period starting
with period 10.

where r is the interest rate per conversion period. The second term on
the right side of (5.4.34) is the amount of interest paid at the end of
each period.

Let us ask a somewhat more difficult question of how much money
we will have if we withdraw the amount A at the end of every period
starting after the period £. Now the difference equation becomes

Yntl =Yn +7Yn — AHpp1. (5.4.35)
Taking the z-transform of (5.4.35),

Az2—£

2Y(2)—zyo = (1 + 7)Y (2) — 1

(5.4.36)

after using (5.2.10) or

Yoz B Azt
z=(1+7) (-Dz-(1+7)]

Taking the inverse of (5.4.37),

Y(z) = (5.4.37)

A
yn = yo(l+ )" = — (147~ 1] Hao (5.4.38)
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The first term in (5.4.38) represents the growth of money by compound
interest while the second term gives the depletion of the account by
withdrawals. Figure 5.4.1 gives the values of y, for various starting
amounts assuming an annual conversion period with » = 0.12, £ = 10
years, and A = $1000. It shows that if an investor places an initial
amount of $3000 in an account bearing 12% annually, after 10 years he
can withdraw $1000 annually, essentially forever. This is because the
amount that he removes every year is replaced by the interest on the
funds that remain in the account.

o Example 5.4.5
Let us solve the following system of difference equations:
Tny1 = 4z, + 2y, (5.4.39)

and
Ynt1 = 31'71 + 3yn (5440)

with the initial values of zo = 0 and yp = 5.
Taking the z-transform of (5.4.39)-(5.4.40),

2X(2) —xoz =4X(2) +2Y(2) (5.4.41)
2Y(z) —yoz = 3X(2) + 3Y (2) (5.4.42)
(z—-4)X(2)—2Y(2)=0 (5.4.43)
3X(z) — (2= 3)Y(2) = —5z. (5.4.44)

Solving for X(z) and Y (z),

10z 2z 2z
X(Z):‘(z—6)(z—1):z—1_z—6 (5.4.45)
and
Y= o=t _ 2 | 3 (5.4.46)

T (z=6)(z=1) " z-6 " z-1
Taking the inverse of (5.4.45)—(5.4.46) term by term,

2,=2-26" and  y,=3+26". (5.4.47)
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Problems
Solve the following difference equations using z-transforms, where n > 0.
L yngy1 —vn=n% yo=1
2. Ynt2 = 2Unt1+ Y0 =0, Y=y =1
3 Yz =21+ =1 w=p=0
4. Ynt1+3yn =n, Y =0.
5. Yn41 — ByYn = cos(nm), yo =0.
6. Yny2 —4yn =1, yo =11 =0.
T Ynt2— 50 =(3)", Y=y1=0.
8. Yn+2 —OUn+1+6yn =0, Y=y =1.
9. Ynt2 = 3Ynt1+2Un =1, o=y =0.
10. Ynt2 = 2Yn41+¥n =2, % =0, y1=2.
11, zpg1 = 32n — 4Yn, Ynt1 =22, —3Yn, 20 =3, Yo = 2.
12. 2441 =22, — 10Yn, Yn41 = —2Tn —Yn, 20 =3, Yo = —2.
13. znt1 = 2n — 2Yn, Yny1 = —6yn, xo=-1, yo=-T.
14. 241 = 42, — SYn, Yn41 = Tn —2Yn, o =6, yo=2.
5.5 STABILITY OF DISCRETE-TIME SYSTEMS
When we discussed the solution of ordinary differential equations
by Laplace transforms, we introduced the concept of transfer function
and impulse response. In the case of discrete-time systems, similar con-
siderations come into play.
Consider the recursive system
Yn = alyn—-len-—l + aayn_2Hp 2+ 2,, n>0, (5.5.1)
where H,,_} is the unit step function. It equals 0 for n < k and 1 for n >
k. Equation (5.5.1) is called a recursive system because future values of

the sequence depend upon all of the previous values. At present, a; and
as are free parameters which we shall vary.
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Using (5.2.10),
22Y(2) — a;2Y(2) — aaY (2) = 22X (2) (5.5.2)

or
_Y(2) 22

T X(2)  22-aiz—as
As in the case of Laplace transforms, the ratio Y(z)/X(z) is the transfer
function. The inverse of the transfer function gives the impulse response
for our discrete-time system. This particular transfer function has two

poles, namely
2
L RN it
212 = 2 + 1 + as. (554)

At this point, we consider three cases.

G(z) (5.5.3)

Case 1: a2/4+ as < 0. In this case z; and z, are complex conjugates.
Let us write them as z; o = re¥iwol  Then

z? 22
G(z) = : — = . (5.5.5
(=) (z —reiwoT)(z — re=#woT) — 22 — 2pcos(woT)z + 12 ( )
where r2 = —ay and woT = cos~!(a;/2r). From the inversion integral,

zn+1 ]

gn = Res [22 — 2rcos(woT)z + r? ¥

zn+1
; 5.5.6
+ Res [22 — 2r cos(woT)z +r?’ zz] ’ ( )

where ¢, denotes the impulse response. Now

zn+1 i (z _ 21)2n+1

; = —_ 5.5.7

Res 22 = 2rcos(woT)z + r?’ Zl] zl-l-.Tl (z— 21 )(z — 22) ( )
nexpli(n + VwoT

= EM; - e—)ion] (5.5.8)

_ r?expli(n + 1)woT)

2isin(woT) (5.5.9)
Similarly,
z" ¥ r™ exp[—i(n + 1)woT)
: = - 5.5.10
Res [ZZ — 2rcos(woT)z + r?’ 22] 2isin(woT') ( )
and i
_ rsin[(n 4 DwoT] (5.5.11)

In = sin(woT)
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A graph of sin[(n + 1)woT]/ sin(weT’) with respect to n gives a si-
nusoidal envelope. More importantly, if |r] < 1 these oscillations will
vanish as n — 0o and the system is stable. On the other hand, if |r| > 1
the oscillation will grow without bound as n — oo and the system is
unstable.

Recall that |r| > 1 corresponds to poles that lie outside the unit
circle while |r| < 1 is exactly the opposite. Our example suggests that
for discrete-time systems to be stable, all of the poles of the transfer
function must lie within the unit circle while an unstable system has at
least one pole that lies outside of this circle.

Case 2: a3/4+ as > 0. This case leads to two real roots, 2; and z,.
From the inversion integral, the sum of the residues gives the impulse
response

n+1l _ _n+l
gn = % (5.5.12)

Once again, if the poles lie within the unit circle, |2;] < 1 and |z2] < 1,
the system is stable.

Case 3: a?/4 + a; = 0. This case yields z; = 2,

22
and ) il
_ V4 A n

This system is obviously stable if |a; /2| < 1 and the pole of the transfer
function lies within the unit circle.

In summary, finding the transfer function of a discrete-time system
is important in determining its stability. Because the location of the
poles of G(z) determines the response of the system, a stable system
will have all of its poles within the unit circle. Conversely, if any of
the poles of G(z) lie outside of the unit circle, the system is unstable.
Finally, if lim,, .o gn = ¢, the system is marginally stable. For example,
if G(z) has simple poles, some of the poles must lie on the unit circle.

e Example 5.5.1

Numerical methods of integration provide some of the simplest, yet
most important, difference equations in the literature. In this example,3

3 From Salzer, J. M., 1954: Frequency analysis of digital computers
operating in real time. Proc. IRE, 42, 457-466. (©OIRE (now IEEE).
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we show how z-transforms can be used to highlight the strengths and
weaknesses of such schemes.

Consider the trapezoidal integration rule in numerical analysis. The
integral y, is updated by adding the latest trapezoidal approximation
of the continuous curve. Thus, the integral is computed by

Yo = $T(@n + Tao1Hn1) + Yn-1Hn_1, (5.5.15)
where T is the interval between evaluations of the integrand.

We first determine the stability of this rule because it is of little
value if it is not stable. Using (5.2.10), the transfer function is

G(z) = ;8 = % (j’: i) . (5.5.16)

To find the impulse response, we use the inversion integral and find that

T no1 2+ 1
= T 5.5.17
=g b % (5.5.17)

At this point, we must consider two cases: n =0 and n > 0. For n = 0,

T r+1 T 241 T
= “Res | ————;0| + =Res | —— 1| = = 5.18
g0 2Res[z(z—1)’0]+QReS[z(z—n’ ] 2 (5.5.18)
For n > 0,
n—1
go = %Res [z—z(_z—;’—l) 1] =T (5.5.19)

w3

Therefore, the impulse response for this numerical scheme is go =
and g, =T for n > 0. Note that this is a marginally stable system (the
solution neither grows nor decays with n) because the pole associated
with the transfer function lies on the unit circle.

Having discovered that the system is not unstable, let us continue
and explore some of its properties. Recall now that z = e*7 = 7T if
s = iw. Then the transfer function becomes

T1+4e T iT wT

On the other hand, the transfer function of an ideal integrator is 1/s or
—i/w. Thus, the trapezoidal rule has ideal phase but its shortcoming
lies in its amplitude characteristic; it lies below the ideal integrator for
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Figure 5.5.1: Comparison of various quadrature formulas by ratios of
their amplitudes to that of an ideal integrator. [From Salzer, J. M.,
1954: Frequency analysis of digital computers operating in real time.
Proc. IRE, 42, p. 463. ©IRE (now IEEE) ]

0 < wT < w. We show this behavior, along with that for Simpson’s
%rd-rule and Simpson’s %th—rule, in Figure 5.5.1.

Figure 5.5.1 confirms the superiority of Simpson’s %rd rule over
his gth rule. The figure also shows that certain schemes are better at
suppressing noise at higher frequencies; an effect not generally empha-
sized in numerical calculus but often important in system design. For
example, the trapezoidal rule is inferior to all others at low frequen-
cies but only to Simpson’s %rd rule at higher frequencies. Furthermore,
the trapezoidal rule might actually be preferred not only because of its
simplicity but also because it attenuates at higher frequencies, thereby
counteracting the effect of noise.

e Example 5.5.2

Given the transfer function
2

- D(z-1/2)

is this discrete-time system stable or marginally stable?
This transfer function has two simple poles. The pole at z = 1/2
gives rise to a term that varies as ()" in the impulse response while

G(z) = (5.5.21)
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the z = 1 pole will give a constant. Because this constant will neither
grow nor decay with n, the system is marginally stable.

Problems
For the following time-discrete systems, find the transfer function and
determine whether the systems are unstable, marginally stable, or sta-
ble.
Lyn =yn_1Hn1+ 2, 2. Yn =2yn—1Hn—1"yn—2Hn—2+1'n

3. yn = 3yn—1Hn 1+ 2, 4. y, = %yn—2Hn—2 + zn



Chapter 6

The Sturm-Liouville Problem

In the next three chapters we shall be solving partial differential
equations using the technique of separation of variables. This technique
requires that we expand a piece-wise continuous function f(z) as alinear
sum of eigenfunctions, much as we used sines and cosines to reexpress
f(z) in a Fourier series. The purpose of this chapter is to explain and
illustrate these eigenfunction expansions.

6.1 EIGENVALUES AND EIGENFUNCTIONS

Repeatedly, in the next three chapters on partial differential equa-
tions, we will solve the following second-order linear differential equa-
tion:

4 [p(x -d—Z] +g(z)+Ar(z)]ly=0, a<z<h, (6.1.1)
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together with the boundary conditions:

ay(a) +By'(a) =0  and  yy(b) + 6/ (b) = 0. (6.1.2)

In (6.1.1), p(z), q(x) and r(z) are real functions of z; X is a parameter;
and p(z) and r(z) are functions that are continuous and positive on the
interval @ < z < b. Taken together, (6.1.1) and (6.1.2) constitute a
regular Sturm-Liouville problem. This name honors the French mathe-
maticians Sturm and Liouville! who first studied these equations in the
1830s. In the case when p(z) or r(z) vanishes at one of the endpoints of
the interval [a, 8] or when the interval is of infinite length, the problem
is a singular Sturm-Liouville problem.

Consider now the solutions of the Sturm-Liouville problem. Clearly
there is the trivial solution y = 0 for all A\. However, nontrivial solutions
will exist only if A takes on specific values; these values are called char-
acteristic values or eigenvalues. The corresponding nontrivial solutions
are called the characteristic functions or eigenfunctions. In particular,
we have the following theorems.

Theorem: For a regular Sturm-Liouville problem with p(z) > 0, all of
the eigenvalues are real if p(z), q(z), and r(z) are real functions and
the eigenfunclions are differentiable and continuous.

Proof: Let y(z) = u(z)+iv(z) be an eigenfunction corresponding to an
eigenvalue A = A, + i);, where X, \; are real numbers and u(z), v(z)
are real functions of z. Substituting into the Sturm-Liouville equation
yields

{p(@)[W'(z)+iv' (@)} +[g(2) + (Ar +iXi)r(2)][w(z) +iv(z)] = 0. (6.1.3)
Separating the real and imaginary parts yields
[p(z)u' ()] + [g(=) + ArJu(z) — Nir(2)v(z) = 0 (6.1.4)

and
[p(z)v'(2)l + [g() + A Jv(z) + Air(z)u(z) = 0. (6.1.5)

! For the complete history as well as the relevant papers, see Liitzen,
J., 1984: Sturm and Liouville’s work on ordinary linear differential equa-
tions. The emergence of Sturm-Liouville theory. Arch. Hist. Ezact Set.,
29, 309-376.
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Figure 6.1.1: By the time that Charles-Frangois Sturm (1803-1855)
met Joseph Liouville in the early 1830s, he had already gained fame
for his work on the compression of fluids and his celebrated theorem on
the number of real roots of a polynomial. An eminent teacher, Sturm
spent most of his career teaching at various Parisian colleges. (Portrait
courtesy of the Archives de I’Académie des sciences, Paris.)

If we multiply (6.1.4) by v and (6.1.5) by u and subtract the results, we
find that

u(z)[p(z)v'(2)) - v(@)[p(2)e' (2)) + Nir(2)[u’(z) + v*(2)] = 0. (6.1.6)

The derivative terms in (6.1.6) can be rewritten in such a manner that
it becomes

% {lp(2)v'(2)Ju(z) - [p(2)w' (2)]v(2)} + Xir(2)[u’(z) + v* ()] = 0.
(6.1.7)
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Figure 6.1.2: Although educated as an engineer, Joseph Liouville
(1809-1882) would devote his life to teaching pure and applied mathe-
matics in the leading Parisian institutions of higher education. Today
he is most famous for founding and editing for almost 40 years the Jour-
nal de Liouville. (Portrait courtesy of the Archives de I’Académie des
sciences, Paris.)

Integrating from a to b, we find that

b
X [ @) + @) dr = ple)u(a @) - o @
’ (6.1.8)
From the boundary conditions (6.1.2),

alu(a) + iv(a)] + Blu'(a) + iv'(a)] = 0 (6.1.9)

and
7[u(b) + fv(b)] + 6[u’(b) + iv/(b)] = 0. (6.1.10)
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Separating the real and imaginary parts yields
cu(a)+ Bu'(a) =0 and av(a)+ Bv'(a) =0 (6.1.11)

and
yu(b) + 6u'(b) =0 and ~yuv(b) + 6v'(b) = 0. (6.1.12)

Both @ and 8 cannot be zero; otherwise, there would be no boundary
condition at z = a. Similar considerations hold for ¥ and é. Therefore,

u(a)v'(a) — v/(a)v(a) =0 and u(b)v'(b) — u'(b)v(b) =0, (6.1.13)

if we treat a, 3, ¥, and é as unknowns in a system of homogeneous equa-
tions (6.1.11)-(6.1.12) and require that the corresponding determinants
equal zero. Applying (6.1.13) to the right side of (6.1.8), we obtain

)
Ai / r(z)[u®(z) + v (z)]dz = 0. (6.1.14)

Because r(z) > 0, the integral is positive and A; = 0. Since A; =0, A is
purely real. This implies that the eigenvalues are real. .0

If there is only one independent eigenfunction for each eigenvalue,
that eigenvalue is simple. When more than one eigenfunction belongs
to a single eigenvalue, the problem is degenerate.

Theorem: The regular Sturm-Liouville problem has infinitely many
real and simple eigenvalues A\,, n = 0,1,2,..., which can be arranged
in a monotonically increasing sequence Ag < Ay < Az < --- such that
lim, —oo Ay = c0. Every eigenfunction y,(x) associated with the corre-
sponding eigenvalue A, has ezactly n zeros in the interval (a,b). For
each eigenvalue there exists only one eigenfunction (up to a multiplica-
tive constant).

The proof is beyond the scope of this book but may be found in more
advanced treatises.?

In the following examples we will illustrate how to find these real
eigenvalues and their corresponding eigenfunctions.

2 See, for example, Birkhoff, G. and Rota, G.-C., 1989: Ordinary
Differential Equations, John Wiley & Sons, New York, chaps. 10 and 11;
Sagan, H., 1961: Boundary and Eigenvalue Problems in Mathematical
Physics, John Wiley & Sons, New York, chap. 5.
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e Example 6.1.1
Let us find the eigenvalues and eigenfunctions of
Yy +Ay=0 (6.1.15)
subject to the boundary conditions
y(0) =0  and y(r) —y'(7) = 0. (6.1.16)

Our first task is to check to see whether the problem is indeed
a regular Sturm-Liouville problem. A comparison between (6.1.1) and
(6.1.15) shows that they are the sameif p(z) = 1, ¢(z) = 0, and r(z) = 1.
Similarly, the boundary conditions (6.1.16) are identical to (6.1.2) if
a=y=1,6=-1,8=0,a=0,and b = 7.

Because the form of the solution to (6.1.15) depends on A, we con-
sider three cases: A negative, positive, or equal to zero. The general
solution of the differential equation is

y(z) = Acosh(mz) + Bsinh(mz) if X <0, (6.1.17)
y(z)=C+Dz if A=0 (6.1.18)

-and
y(z) = E cos(kz) + Fsin(kz) if A >0, (6.1.19)
where for convenience A = —m? < 0 in (6.1.17) and A = k2 > 0 in

(6.1.19). Both k and m are real and positive by these definitions.3

3 In many differential equations courses, the solution to
Yy —mly=0, m >0

is written
y(x) = c1e™* + coe™ ™%,

However, we can rewrite this solution as

y(®) = (c1 +c2)5(e™ +e7™) + (c1 — c2) L (e™® — e=m7)

= Acosh(mz) + Bsinh(mz),

where cosh(mz) = (e™* + ¢~™7)/2 and sinh(mz) = (™% — e~™*)/2.
The advantage of using these hyperbolic functions over exponentials is
the simplification that occurs when we substitute the hyperbolic func-
tions into the boundary conditions.
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Figure 6.1.3: Graphical solution of tan(rz) = z.

Turning to the condition that y(0) = 0, we find that A=C=FE =
0. The other boundary condition y(x) — y(7) = 0 gives

B(sinh(m7) — mcosh(mm)] = 0, (6.1.20)
D=0 (6.1.21)

and
F[sin(km) — kcos(km)] = 0. (6.1.22)

If we graph sinh(m=) — m cosh(mm) for all positive m, this quan-
tity is always negative. Consequently, B = 0. However, in (6.1.22), a
nontrivial solution (i.e., F' # 0) occurs if

Fcos(km)[tan(kn) — k] =0 or tan(km)==k. (6.1.23)

In summary, we have found nontrivial solutions only when A, =
k% > 0, where ky, is the nth root of the transcendental Equation (6.1.23).
We may find the roots either graphically or through the use of a numer-
ical algorithm. Figure 6.1.3 illustrates the graphical solution to the
problem. We exclude the root £ = 0 because A must be greater than
Zero.

Let us now find the corresponding eigenfunctions. Because A =
B=C=D=E =0, we are left with y(z) = Fsin(kz). Consequently,
the eigenfunction, traditionally written without the arbitrary amplitude
constant, 1is

yn(z) = sin(kn ), (6.1.24)
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Figure 6.1.4: The first four eigenfunctions sin(k, ) corresponding to
the eigenvalue problem tan(kr) = k.

because k must equal k,. Figure 6.1.4 shows the first four eigenfunc-
tions.

e Example 6.1.2
For our second example let us solve the Sturm-Liouville problem,
y'+Ay=0 (6.1.25)
with the boundary conditions
¥(0) = y'(0) =0 and y(r) -y (7)=0. (6.1.26)
Once again the three possible solutions to (6.1.25) are
y(z) = Acosh(mz) + Bsinh(mz) if A= -m? <0, (6.1.27)

yz)=C+Dz if A=0 (6.1.28)
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and
y(z) = E cos(kz) + Fsin(kz) if A=k*>0. (6.1.29)

Let us first check and see if there are any nontrivial solutions for

A < 0. Two simultaneous equations result from the substitution of
(6.1.27) into (6.1.26):

A—mB=0 (6.1.30)

[cosh(mm) — msinh(mm)]A + [sinh(m7) — m cosh(m)]B = 0. (6.1.31)
The elimination of A between the two equations yields
sinh(mn)(1 — m*)B = 0. (6.1.32)
If (6.1.27) is a nontrivial solution, then B # 0 and
sinh(mn) =0 (6.1.33)

or
m? = 1. (6.1.34)

Equation (6.1.33) cannot hold because it implies m = A = 0 which
contradicts the assumption used in deriving (6.1.27) that A < 0. On the
other hand, (6.1.34) is quite acceptable. It corresponds to the eigenvalue
A = ~1 and the eigenfunction is

yo = cosh(z) + sinh(z) = €, (6.1.35)
because it satisfies the differential equation
Yo —Y =0 (6.1.36)
and the boundary conditions
¥0(0) — y6(0) =0 (6.1.37)

and
yo(7) — yo(m) = 0. (6.1.38)

An alternative method of finding m, which is quite popular because
of its use in more difficult problems, follows from viewing (6.1.30) and
(6.1.31) as a system of homogeneous linear equations, where A and B
are the unknowns. It is well known* that in order for (6.1.30)-(6.1.31)

4 See Chapter 11.



278 Advanced Engineering Mathematics

A 'l A L " Il A il " A 1 _4 A 1 " n (] L A (]
00 05 1.0 15 20 25 3.0 35 0.0 05 1.0 15 20 25 3.0 35

X X
Figure 6.1.5: The first four eigenfunctions for the Sturm-Liouville
problem (6.1.25)-(6.1.26).

to have a nontrivial solution (i.e., A # 0 and/or B # 0) the determinant
of the coefficients must vanish:

1 —m
cosh(mm) — msinh(mn) sinh(mm) — mcosh(mn) | ~ 0. (6.1.39)
Expanding the determinant,
sinh(mm)(1 — m?) =0, (6.1.40)

which leads directly to (6.1.33) and (6.1.34).
We consider next the case of A = 0. Substituting (6.1.28) into
(6.1.26), we find that

C-D=0¢0 (6.1.41)

and
C+Dr-D=0. (6.1.42)

This set of simultaneous equations yields C = D = 0 and we have only
trivial solutions for A = 0.
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Finally, we examine the case when A > 0. Substituting (6.1.29)
into (6.1.26), we obtain
E—kF=0 (6.1.43)

and
[cos(km) + ksin(km)]E + [sin(kw) — k cos(km)]F = 0. (6.1.44)
The elimination of E from (6.1.43) and (6.1.44) gives
F(1 + k?)sin(k7) = 0. (6.1.45)
In order that (6.1.29) be nontrivial, F' # 0 and
E*=-1 (6.1.46)
or
sin(kwx) = 0. (6.1.47)

Condition (6.1.46) violates the assumption that k is real, which follows
from the fact that A = k2 > 0. On the other hand, we can satisfy
(6.1.47) if k = 1,2,3,.. ; a negative k yields the same A. Consequently
we have the additional eigenvalues A, = n?.

Let us now find the corresponding eigenfunctions. Because E = kF,
y(z) = Fsin(kz) + Fkcos(kz) from (6.1.29). Thus, the eigenfunctions
for A > 0 are

Yn(z) = sin(nz) + n cos(nz). (6.1.48)

Figure 6.1.4 illustrates some of the eigenfunctions given by (6.1.35) and
(6.1.48).

o Example 6.1.3
Consider now the Sturm-Liouville problem
v +2y=0 (6.1.49)

with

y(r) = y(-r) and (7)) =y'(-m). (6.1.50)
This is not a regular Sturm-Liouville problem because the boundary
conditions are periodic and do not conform to the canonical boundary

condition (6.1.2).
The general solution to (6.1.49) is

y(z) = Acosh(mz) + Bsinh(mz) if A= -m? <0, (6.1.51)

y(2)=C+ Dz if A=0 (6.1.52)
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and
y(z) = Ecos(kz) + Fsin(kz) if A =k%>0. (6.1.53)
Substituting these solutions into the boundary condition (6.1.50),

A cosh(mm) + Bsinh(mm) = A cosh(—mn) 4 Bsinh(—mr), (6.1.54)

C+Dr=C-Dr (6.1.55)

and
E cos(km) + Fsin(kw) = E cos(—km) + Fsin(—kx) (6.1.56)

or

Bsinh(mr) =0, D=0 and Fsin(kn) =0, (6.1.57)
because cosh(—mw) = cosh(mr), sinh(—mn) = —sinh(mr), cos(—kn)
= cos(kw), and sin(—kw) = —sin(kr). Because m must be positive,
sinh(mm) cannot equal zero and B = 0. On the other hand, if sin{kr) =
Oork=mn,n=123, ..., we have a nontrivial solution for positive A

and A, = n?. Note that we still have A, C, E, and F as free constants.
From the boundary condition (6.1.50),

Asinh(mw) = Asinh(—mn) (6.1.58)
and
—Esin(kr) + F cos(kw) = —E sin(—k7) + F cos(—kn). (6.1.59)

The solution yo(z) = C identically satisfies the boundary condition
(6.1.50) for all C. Because m and sinh(mr) must be positive, 4 = 0.
From (6.1.57), we once again have sin(k7) = 0 and k = n. Consequently,
the eigenfunction solutions to (6.1.49)—(6.1.50) are

/\0 = 0, yo(l‘) =1 (6160)

and
sin(nz)

cot(ns) (6.1.61)

An =0, yn(z) = {

and we have a degenerate set of eigenfunctions to the Sturm-Liouville
problem (6.1.49) with the periodic boundary condition (6.1.50).
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Problems
Find the eigenvalues and eigenfunctions for each of the following:
Ly +2y=0, ¥0)=0, y(L)=0
2.y +2y=0, ¥y0)=0, ¥(m)=0
3.y +dy=0, y0)+y'(0)=0, y(m)+y(m)=0
4.y +dy=0, y(0)=0, y(m) -y (r)=0
5.y +dy=0, y0)=y"(0)=0, y(IL)=y"(L)=0

Find an equation from which you could find A and give the form of the
eigenfunction for each of the following:

6.y +Ay=0, y0)+¢'(0)=0, »(1)=0
Ty +2y=0, y0)=0, y(m)+y(m)=0
8.y +Ay=0, ¥(0)=0, y(1)-¢'(1)=0
9. ¥+ 2y =0, y0)+y(0)=0, ¥(m)=0
10. " + Ay =0, y(0)+¢'(0)=0, y(m)-y'(m)=0

11. Find the eigenvalues and eigenfunctions of the Sturm-Liouville prob-
lem

d [ dy] A

— |z —y = <z <

dz [mdx]+my 0, lszzse

for each of the following boundary conditions: (a) u(1) = u(e) = 0, (b)
u(l) = u'(e) =0, and (¢) v'(1) = v/(e) = 0.

Find the eigenvalues and eigenfunctions of the following Sturm-Liouville
problems:

12.

2’y + 2y + 2y =0, y(1)=y(e)=0, 1<z<e.
13. J

T [2%y] +Azy =0, y(1)=ye")=0, 1<z<e.
14.

dL ] A
= [5v]+2v=0 s =wa =0 1sexe
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6.2 ORTHOGONALITY OF EIGENFUNCTIONS

In the previous section we saw how nontrivial solutions to the reg-
ular Sturm-Liouville problem consist of eigenvalues and eigenfunctions.
The most important property of eigenfunctions is orthogonality.

Theorem: Let the functions p(z), ¢(z), and r(x) of the regular Sturm-
Liouville problem (6.1.1)-(6.1.2) be real and continuous on the interval
[a,b]. If yo(z) and ym(z) are continuously differentiable eigenfunctions
corresponding to the distinct eigenvalues A, and Ap,, respectively, then
yn () and ym(z) satisfy the orthogonality condition:

b
/ r(2)yn(z)ym(z) dz = 0, (6.2.1)

if \n # M. When (6.2.1) is satisfied, the eigenfunction y, (z) and ym(z)
are said to be orthogonal to each other with respect to the weight func-
tion r(z). The term orthogonality appears to be borrowed from linear
algebra where a similar relationship holds between two perpendicular or
orthogonal vectors.

Proof: Let y, and y,, denote the eigenfunctions associated with two
different eigenvalues A, and A,. Then

% [p(”)%] +[a(2) + Aar(2)]ya(2) = 0, (6.2.2)
% [p(””)?_;n] +[9(2) + Amr(z)]ym () = 0 (6.2.3)

and both solutions satisfy the boundary conditions. Let us multiply the
first differential equation by y,; the second by yn. Next, we subtract
these two equations and move the terms containing y,ym to the right
side. The resulting equation is

o [0 2] = g (o) 22| = O =A@l (620

Integrating (6.2.4) from a to b yields

[z lrorie] iz o] o

= (A —,\m)/ 7(Z)YnyYmdz. (6.2.5)
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We may simplify the left side of (6.2.5) by integrating by parts to give

/ab{yn% [P(x %yf—] - yn% [p(x)cgl—;"] } dz
= [p(2)¥n¥n — P(E)YpYm] - /a"p(z)[y;ly;n — Yytnlde.  (6.2.6)

The second integral equals zero since the integrand vanishes identically.
Because y,(z) and ym,(z) satisfy the boundary condition at z = a,

ayn(a) + By, (a) =0 (6.2.7)

and
aym(a) + By, (a) = 0. (6.2.8)

These two equations are simultaneous equations in & and 3. Hence, the
determinant of the equations must be zero:

Yn(a)ym (@) — ¥m(a)ya(a) = 0. (6.2.9)

Similarly, at the other end,

Yn (b)ym (8) — U (B)yn (b) = 0. (6.2.10)
Consequently, the right side of (6.2.6) vanishes and (6.2.5) reduces to
(6.2.1). o

o Example 6.2.1

Let us verify the orthogonality condition for the eigenfunctions that
we found in Example 6.1.1.
Because r(z) = 1,a =0, b = 7, and yn(z) = sin(k, ), we find that

b T
/ () YnYm dz = / sin(kpz) sin(kme) dz (6.2.11)
a 0

=1 /Ow{cos[(kn — km)z] — cos[(kn + km)x] dz

(6.2.12)
_sin[(kn — km)z] | _ sin[(kn + km)z] i
= =i |, et i) | (6.2.13)
_ sin[(kn — km)m]  sin[(kn + k)] (6.2.14)

2(kn — km) 2kn + km)
sin(kp ) cos(km ) — cos(knm) sin(km )
2kn — km)
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sin(k, ) cos(kmm) + cos(kpm) sin(ky, 7)

_ i) (6.2.15)
b
kp, cos(kn,m) cos(kmm) — kuy, cos(k, ) cos(kp,
/ r(Z)Ynym dz = (kn) cos( 2(k') ) (kn ) cos( )
_ kn cos(knm) cos(km™) 4 km cos(kn7) cos(kp )
2(kn + km)
(6.2.16)
_ (kn — km) cos(kpm) cos(km )
B 2(kn — km)
_ (kn + km) cos(knm) cos(kmm)
T =0. (6.2.17)

We have used the relationships k, = tan(k,) ana km = tan(kn,7) to
simplify (6.2.15). Note, however, that if n = m,

/ sin(knz)sin(kpz) de = %/ [1 — cos(2k,z)] dx (6.2.18)
0 0
7w sin(2k,7)
= - ——— 219
5 e (6.2.19)
= 1[r ~ cos?(kam)] > 0 (6.2.20)

because sin(24) = 2sin(A) cos(A) and k, = tan(k,7). That is, any
eigenfunction cannot be orthogonal to itself.

In closing, we note that had we defined the eigenfunction in our
example as
sin(k,z)

- Vm — cos?(k,m)]/2

rather than y,(z) = sin(k,z), the orthogonality condition would read

yn () (6.2.21)

/ Y (2)ym (2) de = { o m#n (6.2.22)
0 )

m=n.

This process of normalizing an eigenfunction so that the orthogonality
condition becomes

0, m#n

/ab r(@)yn(@)ym (2) do = { 1, m=n (6.2.23)

generates orthonormal eigenfunctions. We will see the convenience of
doing this in the next section.
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Problems

1. The Sturm-Liouville problem 3’ + Ay = 0, y(0) = y(L) = 0 has the
eigenfunction solution y,(z) = sin(nwz/L). By direct integration verify
the orthogonality condition (6.2.1).

2. The Sturm-Liouville problem 3" + Ay = 0, ¥/(0) = ¢/(L) = 0 has the
eigenfunction solutions yo(z) = 1 and yn(z) = cos(nwz/L). By direct
integration verify the orthogonality condition (6.2.1).

3. The Sturm-Liouville problem v” + Ay = 0, y(0) = (L) = 0 has
the eigenfunction solution y,(z) = sin[(2n — 1)7z/(2L)]. By direct
integration verify the orthogonality condition (6.2.1).

4. The Sturm-Liouville problem y” + Ay = 0, ¢/(0) = y(L) = 0 has
the eigenfunction solution y,(z) = cos[(2n — 1)mz/(2L)]. By direct
integration verify the orthogonality condition (6.2.1).

6.3 EXPANSION IN SERIES OF EIGENFUNCTIONS

In calculus we learned that under certain conditions we could repre-
sent a function f(z) by a linear and infinite sum of polynomials (z—zo)".
In this section we show that an analogous procedure exists for represent-
ing a piece-wise continuous function by a linear sum of eigenfunctions.
These eigenfunction expansions will be used in the next three chapters
to solve partial differential equations.

Let the function f(z) be defined in the interval a < = < b. We
wish to reexpress f(z) in terms of the eigenfunctions yn(z) given by a
regular Sturm-Liouville problem. Assuming that the function f(x) can

be represented by a uniformly convergent series,® we write
[ee]
f(:l,‘) = 2 cnyn(x)- (6.3.1)
n=1

The orthogonality relation (6.2.1) gives us the method for computing
the coefficients c,,. First we multiply both sides of (6.3.1) by r(2)ym(z),
where m is a fixed integer, and then integrate from a to b. Because this

S If Sp(z) = Sopoy uk(z), S(x) = limp—co Sn(z) and 0 < |Sp(z) —
S(z)| < e for allm > M > 0, the series Y 7o ; ug(z) is uniformly conver-
gent if M is dependent on ¢ alone and not z.
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series is uniformly convergent and y,(x) is continuous, we can integrate
the series term by term or

b o0 )
/ r(z)f(2)ym(z)dr = Z n / (2)yn(2)ym(z) dz. (6.3.2)
a n=1 a

The orthogonality relationship states that all of the terms on the right
side of (6.3.2) must disappear except the one for which n = m. Thus,
we are left with

b )
/ r(2) f(x)ym(z) dz = ¢y / (2)Ym (2)ym(z) dz (6.3.3)

a

or

b
L@ de (63.4)

[ ()2 (z) dz

if we replace m by n in (6.3.3).

The series (6.3.1) with the coefficients found by (6.3.4) is a general-
1zed Fourier series of the function f(z) with respect to the eigenfunction
Yn(z). It is called a generalized Fourier series because we have general-
ized the procedure of reexpressing a function f(z) by sines and cosines
into one involving solutions to regular Sturm-Liouville problems. Note
that if we had used an orthonormal set of eigenfunctions, then the de-
nominator of (6.3.4) would equal one and we reduce our work by half.
The coefficients ¢, are the Fourier coefficients.

One of the most remarkable facts about generalized Fourier series
is their applicability even when the function has a finite number of
bounded discontinuities in the range [a,b]. We may formally express
this fact by the following theorem:

Theorem: If both f(z) and f'(z) are piece-wise continuous in a <
¢ < b, then f(x) can be expanded in a uniformly convergent Fourier
series (6.3.1), whose coefficients c, are given by (6.3.4). It converges
to [f(z*) + f(27)]/2 at any point = in the open interval a < < b.

The proof is beyond the scope of this book but may be found in more
advanced treatises.® If we are willing to include stronger constraints,

® For example, Titchmarsh, E. C., 1962: FEigenfunction Erpansions
Associated with Second-Order Differential Equations. Part I, Oxford
University Press, Oxford, pp. 12-16.
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we can make even stronger statements about convergence. For exam-
ple,” if we require that f(z) be a continuous function with a piece-wise
continuous first derivative, then the eigenfunction expansion (6.3.1) will
converge to f(x) uniformly and absolutely in {a, b] if f(x) satisfies the
same boundary conditions as does y,(z).

In the case when f(z) is discontinuous, we are not merely rewriting
f(z) in a new form. We are actually choosing the c,’s so that the
eigenfunctions fit f(z) in the “least squares” sense that

/ ()

Consequently we should expect peculiar things, such as spurious oscil-
lations, to occur in the neighborhood of the discontinuity. This is Gibbs
phenomena,® the same phenomena discovered with Fourier series. See
Section 2.2.

2
dz = 0. (6.3.5)

[e ]

f(z) - Z cnYn(T)

n=1

e Example 6.3.1

To illustrate the concept of an eigenfunction expansion, let us find
the expansion for f(z) = z over the interval 0 < # < 7 using the solution
to the regular Sturm-Liouville problem of

y' +dy=0, y(0) = y(7) = 0. (6.3.6)

This problem will arise when we solve the wave or heat equation by
separation of variables in the next two chapters.

Because the eigenfunctions are yn(z) = sin(nz), n = 1,2,3,..,
r(z)=1,a=0,and b = 7, (6.3.4) gives

. Jy @sin(nz)dz  —zcos(nz)/n + sin(nz)/n?|]
"7 [7sin’(nz)dz z/2 —sin(2nz)/(4n)|g (6.3.7)
= —% cos(nw) = %(—1)". (6.3.8)

Equation (6.3.1) then gives

f(z)=-2 Z (_;)n sin(nz). (6.3.9)

7 Tolstov, G. P., 1962: Fourier Series, Dover Publishers, Mineola,
NY, p. 255.

8 Apparently first discussed by Weyl, H., 1910: Die Gibbs’sche Er-
scheinung in der Theorie der Sturm-Liouvilleschen Reihen. Rend. Circ.
Mat. Palermo, 29, 321-323.
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This particular example is in fact an example of a half-range sine ex-
pansion.

Finally we must state the values of & for which (6.3.9) is valid. At
r = m the series converges to zero while f(x) = . At £ = 0 both the
series and the function converge to zero. Hence the series expansion
(6.3.9)is valid for 0 < 2 < .

o Example 6.3.2

For our second example let us find the expansion for f(z) = z over
the Interval 0 < ¢ < 7 using the solution to the regular Sturm-Liouville
problem of

Y +Ady=0,  y0)=y(m) -y (r)=0. (6.3.10)

We will encounter this problem when we solve the heat equation with
radiative boundary conditions by separation of variables.

Because r(z) = 1, a = 0, b = 7 and the eigenfunctions are y,(z) =
sin(kpz), where k, = tan(k, ), (6.3.4) give

_ [y esin(knz)dz [ asin(kaz)de
Ch = j-:]w sinz(knx) dz %fovro[l ~cos(2kna)] dz (6.3.11)
2sin(k,z)/k2 — 2z cos(knz)/ky |7r
_ 2sin(knm)/k2 — 27 cos(kn7)/kn
- 7 — sin(2kn )/ (2kn) (6.3.13)
_ 2cos(knm) — 7 cos(knw)]//cn, (6.3.14)

T — cos?(k, )

where we have used the property that sin(k, 7) = k, cos(kn7). Equation
(6.3.1) then gives

fle) =2(1—7) Z:l c [WC_osc(f:;&nw)] sin(kn ). (6.3.15)
Problems

1. The Sturm-Liouville problem y” + Ay = 0, y(0) = y(L) = 0 has
the eigenfunction solution y,(z) = sin(nmz/L). Find the eigenfunction
expansion for f(z) = z using this eigenfunction.

2. The Sturm-Liouville problem 3’ + Ay = 0, ' (0) = y'(L) = 0 has the
eigenfunction solutions yg(z) = 1 and y,(z) = cos(nwz/L). Find the
eigenfunction expansion for f{x) = z using these eigenfunctions.



The Sturm-Liouville Problem 289

3. The Sturm-Liouville problem 3’ + Ay = 0, y(0) = y'(L) = 0 has the
eigenfunction solution y,(z) = sin[(2n — 1)7z/(2L)]. Find the eigen-
function expansion for f(z) = « using this eigenfunction.

4. The Sturm-Liouville problem y” + Ay = 0, ¥/(0) = y(L) = 0 has the
eigenfunction solution y,(z) = cos[(2n — 1)m2/(2L)]. Find the eigen-
function expansion for f(x) = z using this eigenfunction.

6.4 A SINGULAR STURM-LIOUVILLE PROBLEM:
LEGENDRE’'S EQUATION

In the previous sections we used solutions to a regular Sturm-
Liouville problem in the eigenfunction expansion of the function f(z).
The fundamental reason why we could form such an expansion was the
orthogonality condition (6.2.1). This crucial property allowed us to solve
for the Fourier coefficient ¢, given by (6.3.4).

In the next few chapters, when we solve partial differential equa-
tions in cylindrical and spherical coordinates, we will find that f(z) must
be expanded in terms of eigenfunctions from singular Sturm-Liouville
problems. Is this permissible? How do we compute the Fourier coef-
ficients in this case? The final two sections of this chapter deal with
these questions by examining the two most frequently encountered sin-
gular Sturm-Liouville problems, those involving Legendre’s and Bessel’s
equations.

We begin by determining the orthogonality condition for singular
Sturm-Liouville problems. Returning to the beginning portions of Sec-
tion 6.2, we combine (6.2.5) and (6.2.6) to obtain

b
O =) [ 72100 d2 =000 0) = (B B )

= p(@)¥m (2)yn(a) + p(a)yn(a)ym(a)]-
(6.4.1)

From (6.4.1) the right side vanishes and we preserve orthogonality if
yn(z) is finite and p(z)y,(x) tends to zero at both endpoints. This is
not the only choice but let us see where it leads.

Consider now Legendre’s equation:

d%y dy
—_— 2 — — — —
(1-= )dz'z 2z T +nn+1ljy=0 (6.4.2)
7 d d
P [(1 - wz)—di] +n(n+1)y=0, (6.4.3)

where we set a = =1, b =1, A = n(n+ 1), p(z) = 1 — 22, ¢(z) = 0,
and r(z) = 1. This equation arises in the solution of partial differential
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Figure 6.4.1: Born into an affluent family, Adrien-Marie Legendre’s
(1752-1833) modest family fortune was sufficient to allow him to devote
his life to research in celestial mechanics, number theory, and the theory
of elliptic functions. In July 1784 he read before the Académie des
sctences his Recherches sur la figure des planétes. It is in this paper
that Legendre polynomials first appeared. (Portrait courtesy of the
Archives de I’Académie des sciences, Paris.)

equations involving spherical geometry. Because p(—1) = p(1) = 0, we
are faced with a singular Sturm-Liouville problem. Before we can deter-
mine if any of its solutions can be used in an eigenfunction expansion,
we must find them.

Equation (6.4.2) does not have a simple general solution. [If n = 0,
then y(z) = 1 is a solution.] Consequently we try to solve it with the
power series:

y(z) =) Arz®, (6.4.4)
k=0
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Y(z) =) kApz*! (6.4.5)
k=0
and o
y'(z) = k(k - 1) At 2 (6.4.6)
k=0

Substituting into (6.4.2),

i k(k—1)Apa®=2 + i [n(n + 1) — 2k — k(k — 1)] Axz* = 0, (6.4.7)
k=0 k=0

which equals

oQ

> m(m—1)Anz™" 2 + i [n(n+1) — k(k +1)] Axz* = 0. (6.4.8)

m=2 k=0
If we define £k = m + 2 in the first summation, then

oo

Z(k+2)(lc+ DAgyozF +§: [n(n 4 1) — k(k + 1)] Axz¥ = 0. (6.4.9)
k=0 k=0

Because (6.4.9) must be true for any z, each power of z must vanish
separately. It then follows that

(k+2)(k+ 1)Apyo = [k(k+ 1) — n(n + 1)] Ak (6.4.10)
or
[k(k+ 1) —n(n + 1)]
(k+1)(k+2)
where £ = 0,1,2,... Note that we still have the two arbitrary constants

Ap and A; that are necessary for the general solution of (6.4.2).
The first few terms of the solution associated with Aq are

A, (6.4.11)

Akg2 =

nn+1) , nr-2)n+1)(n+3) ,
TR 4 g
_n(n=2)(n-4)(n+1)(n+3)(n+5) 5

6l v

up(z) =1~

(6.4.12)

while the first few terms associated with the A; coefficient are

(n=Dn+2) 5 (1= Dn=3)n+2n+4)

3! 5!
_(n=1(n-=3)(n—5)(n+2)(n+4)(n+ 6)1‘7 L
7!

vp(z) =z —

(6.4.13)
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If n is an even positive integer (including n = 0), then the series (6.6.12)
terminates with the term involving z™: the solution is a polynomial of
degree n. Similarly, if n is an odd integer, the series (6.4.13) terminates
with the term involving . Otherwise, for n noninteger the expressions
are infinite series.

For reasons that will become apparent, we restrict ourselves to pos-
itive integers n. Actually, this includes all possible integers because the
negative integer —n — 1 has the same Legendre’s equation and solution
as the positive integer n. These polynomials are Legendre polynomials®
and we may compute them by the power series:

S (2n — 2k)! n—2k

Pa(z) = kzzo(‘l)k TH(n -l =20 (6.4.14)

where m = n/2 or m = (n — 1)/2, depending upon which is an inte-
ger. We have chosen to use (6.4.14) over (6.4.12) or (6.4.13) because
(6.4.14) has the advantage that P,(1) = 1. Table 6.4.1 gives the first
ten Legendre polynomials.

The other solution, the infinite series, is the Legendre function of
the second kind, @, (z). Figure 6.4.2 illustrates the first four Legen-
dre polynomials P,(x) while Figure 6.4.3 gives the first four Legendre
functions of the second kind @,. From this figure we see that Q,(z)
becomes infinite at the points ¢ = 1. As shown earlier, this is impor-
tant because we are only interested in solutions to Legendre’s equation
that are finite over the interval [—1, 1]. On the other hand, in problems
where we exclude the points £ = £1, Legendre functions of the second
kind will appear in the general solution.!°

In the case that n is not an integer, we can construct a solution!!
that remains finite at £ = 1 but not at £ = —1. Furthermore, we can

® Legendre, A. M., 1785: Sur ’attraction des sphéroides homogénes.
Mém. math. phys. présentés a I’Acad. sci. pars divers savants, 10,
411-434. The best reference on Legendre polynomials is given by Hob-
son, E. W., 1965:The Theory of Spherical and FEllipsoidal Harmonics,
Chelsea Publishing Co., New York.

10" See Smythe, W. R., 1950: Static and Dynamic Electricity, McGraw-
Hill, New York, Section 5.215 for an example.

11 See Carrier, G. F., Krook, M., and Pearson, C. E., 1966: Functions
of the Complex Variable: Theory and Technigue, McGraw-Hill, New
York, pp. 212-213.
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Table 6.4.1: The First Ten Legendre Polynomials.

Py(z)=1
Pz)y==z

Py(z) = 3(322 —1)

P3(z) = 3(52% — 3z)

Py(z) = 3(35z* — 3022 + 3)
Ps(z) = %(632° — 702° + 15z)
Ps(z) = £(2312° — 3152* + 10522 — 5)
Pr(z) = (42927 — 6932° + 31523 — 35z)
Ps(z) = 135(64352% — 120122° + 69302 — 126022 + 35)
Po(z) = 135(121552° — 2574027 + 180182° — 46202° + 315z)
Pio(z) = 55(46189x1° — 10939528 + 900902° — 30030z* + 346522 — 63)

construct a solution which is finite at £ = —1 but not at x = 1. Because
our solutions must be finite at both endpoints so that we can use them in
an eigenfunction expansion, we must reject these solutions from further
consideration and are left only with Legendre polynomials. From now
on, we will only consider the properties and uses of these polynomials.

Although we have the series (6.4.14) to compute P,(z), there are
several alternative methods. We obtain the first method, known as
Rodrigues’ formula,'? by writing (6.4.14) in the form

Tl! 2n —2k)! . _
Pa 13 Q"Tl' Z( k)l ((Tl _ 2’67))' gn (6.4.15)
Q”n'd:c" Z( k'(n k)' I (6.4.16)

The last summation is the binomial expansion of (2 — 1)” so that

12 Rodriques, O., 1816: Mémoire sur I’attraction des sphéroides. Cor-
respond. ’Ecole Polytech., 3, 361-385.
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Figure 6.4.2: The first four Legendre functions of the first kind.

1 4n
2"n! dzn

P.(z) = (z% - 1) (6.4.17)

Another method for computing Py (z) involves the use of recurrence
formulas. The first step in finding these formulas is to establish the fact
that

(1+h% = 22h)~/2 = Py(z) + hPi(z) + h2Py(z) + - - - (6.4.18)

The function (1 + A% — 2zh)~1/2 is the generating function for P (z).
We obtain the expansion via the formal binomial expansion

(1+h*—2zh)~Y2 = 14 L(2ch — h?) + 355:(2ch—h%)2 +... (6.4.19)

Upon expanding the terms contained in 2z — A2 and grouping like powers

of h,

(1+h% = 22h)" Y2 =1 4 gh+ (322 — Lp24 ... (6.4.20)
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Figure 6.4.3: The first four Legendre functions of the second kind.

A direct comparison between the coefficients of each power of h and the
Legendre polynomial P,(z) completes the demonstration. Note that
these results hold only if |z| and |h| < 1.

Next we define W(z, h) = (1+ k% —2zh)~/2. A quick check shows
that W (z, h) satisfies the first-order partial differential equation

(1 —2zh+h2)%¥ +(h—x)W =0. (6.4.21)
The substitution of (6.4.18) into (6.4.21) yields

(1 —2zh + h?) i nP(z)h" ' + (h —z) i P,(2)h" = 0. (6.4.22)

n=0
Setting the coefficients of ™ equal to zero, we find that
(n+ 1) Pay1(z) — 2nzPy(z) + (n — 1)Pr_1(2) + Paoa(2) —zPa(z) =0
(6.4.23)
or

(n+1)Prsar(z) — (20 + 1)z Pa(2) + nPar(2) =0 (6.4.24)
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withn=1,2,3,...
Similarly, the first-order partial differential equation
(1-2zh+ h%%—f —hW =0 (6.4.25)
leads to
o] (o)
(1-2zh+ k%)Y Pi(z)h™ = Pa(z)h™+' =0, (6.4.26)
n=0 nz=0

which implies
P, 1(x) — 22 P} (x) + P,_1(z) — Pa(2) = 0. (6.4.27)

Differentiating (6.4.24), we first eliminate P,_;(x) and then P, (z)
from the resulting equations and (6.4.27). This gives two further recur-
rence relationships:

Pi(x)—zPy(z2)—(n+ 1)Py(2) =0, n=0,1,2,... (64.28)
and '
zP.(z)— P,_,(z) —nP,(z)=0, n=1,23,... (6.4.29)
Adding (6.4.28) and (6.4.29), we obtain the more symmetric formula

na1(2) = Pr_i(2z) = (2n+1)Py(x), n=1,23,...| (6.4.30)

Given any two of the polynomials P, y1(z), Po(x) and P,_1(z), (6.4.24)
or (6.4.30) yields the third.

Having determined several methods for finding the Legendre poly-
nomial P,(z), we now turn to the actual orthogonality condition.!® Con-
sider the integral

|Al,|tl<1 (6.4.31)

! d
J:/ z
A VIF+RZ = 2zh /14142 — 2zt

= /_ll[Po(z) +hP(z)+ -+ h"Pp(z)+ -]

X [Po(z) +tPi(z)+ - +t"Po(z) + - -] dz (6.4.32)

00 oo 1
= At t™ P, (2)P,,(x)dz. 6.4.33
3P | P@)Puta) (6.4.33)

13 From Symons, B., 1982: Legendre polynomials and their orthogo-
nality. Math. Gaz., 66, 152-154 with permission.
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On the other hand, if a = (1 + h?)/2h and b = (1 + ¢2)/2t, the integral
J is

J_/l dz (6.4.34)
TS VISR Z2zh /1 12— 22t o

2\/_ \/6—_x\/?>——_5 \/_ \/E———:E+\/Tx
(6.4.35)
VatT+vb+1
T . - e ()
(6.4.36)

But ¢+ 1= (14 k% +2h)/2h = (1 + h)?/2h and a — 1 = (1 — h)?/2h.
After a little algebra,

1 1+ Vht 3

J—mln(l_\/h_) \/_(\/—-i— V(Rt)® + = \/(ht )
(6.4.37)

:2<1+%+h;_tz+...+2}::inl+...>, (6.4.38)

As we noted earlier, the coefficients of A”t™ in this series is f_ll Po(z)
Pp(z) de. If we match the powers of A”t™, the orthogonality condition
is

1 m n
[ B@pa@as={ 5 70 (6.439)

2n+41’

With the orthogonality condition (6.4.39) we are ready to show that
we can represent a function f(z), which is piece-wise differentiable in
the interval (=1, 1), by the series:

f(@)=) AmPm(z), -l1<z<l. (6.4.40)
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To find Am we multiply both sides of (6.4.40) by P,(z) and integrate
from —1 to 1:

/_ S@P(e)dz= Y A /_ Pa(@)Pn(z) da. (6.4.41)

All of the terms on the right side vanish except for n = m because of
the orthogonality condition (6.4.39). Consequently, the coefficient A, is

1 1
An/_1 Pi(z)dz :/;lf(:c)P,,(x) dz (6.4.42)

or

2n+1

A, = 5

/_1 f(z)Pa(z)dz. (6.4.43)

In the special case when f(z) and its first n derivatives are continu-
ous throughout the interval (—1,1), we may use Rodrigues’ formula to
evaluate

/_ S@)Pu(s)do = L /_ 1 f@ e =Dy (6a.4a)

2np! dz”

_ =

T 9npl

/1 (2?2 - 1)"f™(z)dz (6.4.45)
-1

by integrating by parts n times. Consequently,

2n+1 f! o ofn
A, = §r1n!/_l(l—ac?) f™(z)dz. (6.4.46)

A particularly useful result follows from (6.4.46) if f(z) is a polynomial
of degree k. Because all derivatives of f(z) of order n vanish identi-
cally when n > k, A, = 0if n > k. Consequently, any polynomial
of degree k can be expressed as a linear combination of the first k + 1
Legendre polynomials [Py(z), ..., Px(z)]. Another way of viewing this
result is to recognize that any polynomial of degree k is an expansion in
powers of z. When we expand in Legendre polynomials we are merely
regrouping these powers of z into new groups that can be identified as
Py(z), Pi(z), Py(z),..., Pi(z).
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e Example 6.4.1

Let us use Rodrigues’ formula to compute Py(z). From (6.4.17)
with n = 2,

2 2
Py(z) = L d {(acz—l)z]:édd—(:c4—2x2—1):—21-(3.1:2—1).

2291 dz? 22
(6.4.47)

o Example 6.4.2
Let us compute P3(z) from a recurrence relation. From (6.4.24)

with n = 2,
3P3((L‘) — 5.’L‘P2(:L') -+ 2P1(.’L‘) =0. (6448)

But Py(z) = (322 — 1)/2 and Pi(z) = z, so that
3P3(z) = 5z Pa(z)—2Pi(x) = 5z[(3z%—1)/2] -2z = L2352 (6.4.49)

or
Ps(z) = (52 — 3z)/2. (6.4.50)

o Example 6.4.3

We want to show that
1
/ Py(z)dz = 0. (6.4.51)

From (6.4.30),

1 1
(2n+1) /_ Pala)ds = /_ [P = PiyE)ds (6.4.52)

= Payi(2) — Paa(2)], (6.4.53)
= n+1(1)'—Pn—1(1)
- n+1(—1)+Pn—1(_1) =0, (6454)

because P,(1) =1 and P,(-1) = (-1)".
o Example 6.4.4

Let us express f(z) = z? in terms of Legendre polynomials. The
results from (6.4.46) mean that we need only worry about Py(z), Pi(z),
and Py(z):

z? = AQPQ(CL') + APy (.’L’) + A2P2(l‘). (6455)



300 Advanced Engineering Mathematics

1.5 T T v T v M v M T v T v

1.0 one term

r
|
!

0.5 |
|
|

00 fpm——m———=— 1

-0.5 A 2 I 3 2 i
1.5 T M T T M T M T T v

1.0 three terms L four terms

0.5
0.0
_0.5 A A A L A L A '3
-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0
X X

Figure 6.4.4: Representation of the function f(z) = 1for 0 < z < 1
and 0 for —1 < z < 0 by various partial summations of its Legendre
polynomial expansion. The dashed lines denote the exact function.

Substituting for the Legendre polynomials,
2¥ = Ag+ Az + 1 4,(32% - 1) (6.4.56)

and

Ao = 2 A1 =0 and Ag = % (6457)

W=

o Example 6.4.5

Let us find the expansion in Legendre polynomials of the function:

)= {

We could have done this expansion as a Fourier series but in the solution
of partial differential equations on a sphere we must make the expansion
in Legendre polynomials.

In this problem, we find that

? —~1<z<0 (6.4.58)

, 0<z<l.

_2n+1

1
Ap = 5 /0 Po(z)de. (6.4.59)
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Therefore,

1 1
A0=§/ lde = 1, Alzg-/ zde =%, (6.4.60)
0 0

1 1
Ag:%/o 2(322-1)de =0 and Ag:%/o L(5a® - 3z)de=-%

(6.4.61)
so that

f(z) = 1Po(z) + §Pi(2) — Ps(z) + 73 Ps(z) +---  (6.4.62)

Figure 6.4.4 illustrates the expansion (6.4.62) where we have used only
the first four terms. As we add each additional term in the orthogonal
expansion, the expansion fits f(z) better in the “least squares” sense
of (6.3.5). The spurious oscillations arise from trying to represent a
discontinuous function by four continuous, oscillatory functions. Even
if we add additional terms, the spurious oscillations will persist although
located nearer to the discontinuity. This is another example of Gibbs
phenomena.l* See Section 2.2.

o Example 6.4.6: Iterative solution of the radiative transfer equation

One of the fundamental equations of astrophysics is the integro-
differential equation that describes radiative transfer (the propagation
of energy by radiative, rather than conductive or convective, processes)
in a gas.

Consider a gas which varies in only one spatial direction that we
divide into infinitesimally thin slabs. As radiation enters a slab, it is
absorbed and scattered. If we assume that all of the radiation undergoes
isotropic scattering, the radiative transfer equation is

dI !
po=1- %/_1 Idy, (6.4.63)
where I is the intensity of the radiation, 7 is the optical depth (a measure
of the absorbing power of the gas and related to the distance that you
have traveled within the gas), u = cos(#), and 6 is the angle at which
radiation enters the slab. In this example, we show how the Fourier-
Legendre expansion!®

I(r,0) = 3 In(7)Pa(n) (6.4.64)
n=0

14 Weyl, H., 1910: Die Gibbs’sche Erscheinung in der Theorie der
Kugelfunktionen. Rend. Circ. Mat. Palermo, 29, 308-321.

15 Chandrasekhar, S., 1944: On the radiative equilibrium of a stellar
atmosphere. Astrophys. J., 99, 180-190. Published by University of
Chicago Press, (©1944.
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may be used to solve (6.4.63). Here I,(7) is the Fourier coefficient in the

Fourier-Legendre expansion involving the Legendre polynomial P,(p).
We begin by substituting (6.4.64) into (6.4.63),

o0

X:: [(n+ 1)P,,+2175;2 IL nPn_1(p)] %13 _ ,,2 I, P.(p) - Ip, (6.4.65)

where we have used (6.4.24) to eliminate pP,(u). Note that only the
Io(7) term remains after integrating because of the orthogonality con-
dition:

1 1
[ 1 Pwan= [ A@Pwd=o, (6.4.66)
-1 -1

if n > 0. Equating the coefficients of the various Legendre polynomials,

n dlh_1  n+1dl4
2n—-1 dr n+3 dr

forn:l,?,...andv

=1, (6.4.67)

dIl

dr
Thus, the solution for I; is I; = constant = 3F/4, where F is the net
integrated flux and an observable quantity.

= 0. (6.4.68)

Forn=1,
dIo 2dl, 3F
=1 = —. 6.4.69
5dr 4 ( )
Therefore,

Ip+ 3L =3Fr+A. (6.4.70)

The next differential equation arises from n = 2 and equals

2dl,  3dI3 _

Because [; is a constant and we only retain Iy, I;, and I in the sim-
plest approximation, we neglect dIs/dr and I, = 0. Thus, the simplest
approximate solution is

Iy=%Fr+A, I=32F and L =0. (6.4.72)

To complete our approximate solution, we must evaluate A. If
we are dealing with a stellar atmosphere where we assume no external
radiation incident on the star, I{0, ) = 0 for —1 < p < 0. Therefore,

/ (Tu)P(u)du—ZI () / Po() Palit) dpt = 52 1 (7).
(6.4.73)
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Taking the limit 7 — 0 and using the boundary condition,

9 1 ) 1
571—3;—11”(0)=/0 1(0,11)Pn(u)a’u=r;)1m(0)/0 Po(p) Prm(p) dp.

(6.4.74)
Thus, we must satisfy, in principle, an infinite set of equations. For
example, for n = 0, 1, and 2,

215(0) = Io(0) + 1 1,(0) — 313(0) + $515(0) + - -~ (6.4.75)
$11(0) = 310(0) + 311(0) + §12(0) — 55 14(0) + - - (6.4.76)

and
20,(0) = $11(0) + £ 15(0) + £13(0) — 35 15(0) + - - -. (6.4.77)

Using I;(0) = 3F/4,

%10(0) + -l-lgla(O) - 31—2]5(0) 4= %F, (6.4.78)
$16(0) + §12(0) — 55 14(0) + --- = 3 F (6.4.79)

and
21,(0) - 313(0) + ZI5(0) + - = ZF. (6.4.80)

Of the two possible Equations (6.4.78)—(6.4.79), Chandrasekhar chose
(6.4.79) from physical considerations. Thus, to first approximation, the
solution is

Hp,r)=3F (T+3)+3Fpu+---. (6.4.81)
Better approximations can be obtained by including more terms; the
interested reader is referred to the original article. In the early 1950s,
Wang and Guth!® improved the procedure for finding the successive
approximations and formulating the approximate boundary conditions.

Problems

Find the first three nonvanishing coefficients in the Legendre polynomial
expansion for the following functions:

_J0, -1<z<0 [ 1/(2¢), lz| < €
l'f(x)_{:v, 0<z<1 2.f(x)_{ 0, e<lz| <1

3. f(z) = Jz|, |z <1 4. f(z) =% |z <1

-1, —-1l<z<0 _J-1, -1<z<0
5'f($)_{1, 0<z<l 6.f(x)..{$7 0<z<l

16 Wang, M. C. and Guth, E., 1951: On the theory of multiple scatter-
ing, particularly of charged particles. Phys. Rev., Ser. 2, 84, 1092-1111.
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7. Use Rodrigues’ formula to show that Py(z) = §(35z* — 3022 + 3).

8. Given Ps(z) = 2% — 223+ 132 and Py(z) from problem 7, use the
recurrence formula for Pyyi1(z) to find Ps(z).

9. Show that (a) Pn(1) =1, (b) Pa(=1) = (=1)", (¢) P2n4+1(0) = 0 and
(d) P2n(0) = (=1)*(2n)!/(22"n!n!).

10. Prove that

[ Pyt = g Ps(a) = P

11. Given!”
2 & cos[(n+ 1)z
o /2[cos(z) — cos(8)]
_2 ™ sin[(n + 3)]
o \/2[cos(8) — cos(z')]
show that the following generalized Fourier series hoid:

V2 coii)e:;)cos(g) =Y Pafcos()]cos [(n+1)t], 0<t<b<m,

Pplcos(8)] =

if we use the eigenfunction y,(z) = cos [(n+ }) 2], 0< z < 7, r(z) = 1
and H( ) is Heaviside’s step function, and

V2 COI:((;)_—Z)COS(t) - Z Pafcos(0)]sin [(n +3)t], 0<b<t<m,
n=0

if we use the eigenfunction y,(z) =sin[(n+31)z],0<z <7, r(z)=1
and H( ) is Heaviside’s step function.

12. The series given in problem 11 are also expansions in Legendre
polynomials. In that light, show that

" _Palcos(9)] sin(9) o sin[(n+3)¢]

0 \/2cos(d) — 2cos(t) n+1i
and
T Py[cos(9)] sin(8) gg = &5 [(n+1)¢
/2 cos(t) — 2 cos(8) n+1i ’

where 0 < t < 7.

17 Hobson, E. W., 1965: The Theory of Spherical and Ellipsoidal Har-
monics, Chelsea Publishing Co., New York, pp. 26-27.
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6.5 ANOTHER SINGULAR STURM-LIOUVILLE PROBLEM:
BESSEL’S EQUATION

In the previous section we discussed the solutions to Legendre’s
equation, especially with regard to their use in orthogonal expansions.

In the section we consider another classic equation, Bessel’s equation!®
22y + oy + (Wit —n?)y =0 (6.5.1)
or p J )
y 2 n
— - _— =0. 6.5.2
dz(zdx>+<px z)y ( )

Once again, our ultimate goal is the use of its solutions in orthogonal ex-
pansions. These orthogonal expansions, in turn, are used in the solution
of partial differential equations in cylindrical coordinates.

A quick check of Bessel’s equation shows that it conforms to the
canonical form of the Sturm-Liouville problem: p(z) = z, g(z) = —n?/=,
r(z) = z, and A = p?. Restricting our attention to the interval [0, L], the
Sturm-Liouville problem involving (6.5.2) is singular because p(0) = 0.
From (6.4.1) in the previous section, the eigenfunctions to a singular
Sturm-Liouville problem will still be orthogonal over the interval [0, L]
if (1) y(z) is finite and zy/(x) is zero at = 0, and (2) y(z) satisfies the
homogeneous boundary condition (6.1.2) at z = L. Consequently, we
will only seek solutions that satisfy these conditions.

We cannot write down the solution to Bessel’s equation in a simple
closed form; as in the case with Legendre’s equation, we must find the
solution by power series. Because we intend to make the expansion
about z = 0 and this point is a regular singular point, we must use the
method of Frobenius, where n is an integer.!® Moreover, because the
quantity n? appears in (6.5.2), we may take n to be nonnegative without
any loss of generality.

To simplify matters, we first find the solution when y = 1; the
solution for p # 1 follows by substituting px for . Consequently, we
seek solutions of the form

o0
y(z) = Z ByzZkte, (6.5.3)
k=0

18 Bessel, F. W., 1824: Untersuchung des Teils der planetarischen
Stérungen, welcher aus der Bewegung der Sonne entsteht. Abh. d. K.
Akad. Wiss. Berlin, 1-52. See Dutka, J., 1995: On the early history
of Bessel functions. Arch. Hist. Ezact Sci., 49, 105-134. The classic
reference on Bessel functions is Watson, G. N., 1966: A Treatise on the
Theory of Bessel Functions, Cambridge University Press, Cambridge.

19 This case is much simpler than for arbitrary n. See Hildebrand, F.
B., 1962: Advanced Calculus for Applications. Prentice-Hall, Englewood
Cliffs, NJ, Section 4.8.



306 Advanced Engineering Mathematics

Figure 6.5.1: It was Friedrich William Bessel’s (1784-1846) appren-
ticeship to the famous mercantile firm of Kulenkamp that ignited his
interest in mathematics and astronomy. As the founder of the Ger-
man school of practical astronomy, Bessel discovered his functions while
studying the problem of planetary motion. Bessel functions arose as
coefficients in one of the series that described the gravitational interac-
tion between the sun and two other planets in elliptic orbit. (Portrait
courtesy of Photo AKG, London.)

Y(z) = (2k +5)Bp? ot (6.5.4)
k=0
and -
y'(z) = Z(?k + 5)(2k + 5 — 1)Bpz?k+e-2, (6.5.5)
k=0

where we formally assume that we can interchange the order of differen-
tiation and summation. The substitution of (6.5.3)—-(6.5.5) into (6.5.1)
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with g =1 yields

S "(2k + 5)(2k + s — 1)Bea®™F* + ) "(2k + 5) Bra®*
k=0 k=0
o0 o0
+ Z ka2k+s+2 —n? Z ka2k+s =0 (6.5.6)
k=0 k=0
or
o0 o0
Z[(?k +5)% — n?] By + Z Bra®*t? = 0. (6.5.7)
k=0 k=0

If we explicitly separate the k = 0 term from the other terms in the first
summation in (6.5.7),

o0 o0
(s> =n?)Bo+ >_[(2m+5)? = n?]Bpa®™ + Y _ Bya™*? = 0. (6.5.8)
m=1 k=0

We now change the dummy integer in the first summation of (6.5.8) by
letting m = k + 1 so that

(s> = n®)Bo + Y _{{(2k + 5 +2)* — n’]Byy1 + Br}e**? = 0. (6.5.9)
k=0

Because (6.5.9) must be true for all 2, each power of £ must vanish
identically. This yields s = #n and

[(2k + 5 +2)2 — n?Biy1 + B = 0. (6.5.10)

Since the difference of the larger indicial root from the lower root equals
the integer 2n, we are only guaranteed a power series solution of the
form (6.5.3) for s = n. If we use this indicial root and the recurrence
formula (6.5.10), this solution, known as the Bessel function of the first
kind of order n and denoted by J,(z), is

s -1 k z/2 n+2k
Ja(z) = ;%z)'— (6.5.11)

To find the second general solution to Bessel’s equation, the one
corresponding to s = —n, the most economical method?? is to express
it in terms of partial derivatives of J,(z) with respect to its order n:

Yo(z) = [6‘]55“”) —(—1)"1%”1/(—’”)] R (6.5.12)

20 See Watson, G. N., 1966: A Treatise on the Theory of Bessel
Functions, Cambridge University Press, Cambridge, Section 3.5 for the
derivation.
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Figure 6.5.2: The first four Bessel functions of the first kind over
0<z<8.

Upon substituting the power series representation (6.5.11) into (6.5.12),

2 ln—l(n— k—1)! 2%k—n
o 1S )
z n+2k
Z - k| (n 12,2): [b(k+1)+¢(k+n+1)], (6.5.13)
where
1/)(m+1):—7+1+%+...+%, (6.5.14)

¥(1) = ~v and 7 is Euler’s constant (0.5772157). In the case n = 0,
the first sum in (6.5.13) disappears. This function Y,(z) is Neumann’s
Bessel function of the second kind of order n. Consequently, the general
solution to (6.5.1) is

y(z) = AJn(pz) + BY, (uz). (6.5.15)

Figure 6.5.2 illustrates the functions Jo(z), J1(z), J2(z), and J3(z) while
Figure 6.5.3 gives Yy(x), Yi(z), Y2(z), and Y3(z).
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Figure 6.5.3: The first four Bessel functions of the second kind over
0<z<8.

An equation which is very similar to (6.5.1) is

,d%y dy 2

E—-i-a: -+ 2%y =0. (6.5.16)
It arises in the solution of partial differential equations in cylindrical
coordinates. If we substitute iz = ¢ (where i = v/—1) into (6.5.16), it

becomes Bessel’s equation:

d? dy dy
2 ay 2 _ 2y, 5
s +tdt+(t n“)y=0. (6.5.17)
Consequently, we may immediately write the solution to (6.5.16) as
y(z) = c1Jn(iz) + c2Yn(ix), (6.5.18)

if n is an integer. Traditionally the solution to (6.5.16) has been written
y(z) = c1In(x) + coKn(x) (6.5.19)
rather than in terms of J,(iz) and Yy (iz), where

= (/24



310 Advanced Engineering Mathematics

Figure 6.5.4: The first four modified Bessel functions of the first kind
over 0 <z < 3.

and
Kn(z) = gi"“ [Jn(iz) + iY, (iz)]. (6.5.21)

The function I,(z) is the modified Bessel function of the first kind, of
order n, while K, () is the modified Bessel function of the second kind,
of order n. Figure 6.5.4 illustrates Iy(z), I1(z), I2(z), and I3(z) while in
Figure 6.5.5 Ko(x), Ki(z), K2(z), and K3(z) have been graphed. Note
that K,(z) has no real zeros while I,,(z) equals zero only at z = 0 for
n>1

As our derivation suggests, modified Bessel functions are related to
ordinary Bessel functions via complex variables. In particular, J,(iz) =
i"I,(z) and I, (iz) = " J,(z) for 2 complex.

Although we have found solutions to Bessel’s equation (6.5.1), as
well as (6.5.16), can we use any of them in an eigenfunction expansion?
From Figures 6.5.2-6.5.5 we see that J,(z) and I,(z) remain finite at
z = 0 while Y,,(z) and K,,(z) do not. Furthermore, the products z.J! (z)
and zI},(z) tend to zero at z = 0. Thus, both J,(z) and I,(x) satisfy
the first requirement of an eigenfunction for a Fourier-Bessel expansion.

What about the second condition that the eigenfunction must sat-
isfy the homogeneous boundary condition (6.1.2) at z = L? From Figure
6.5.4 we see that I,(z) can never satisfy this condition while from Fig-
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Figure 6.5.5: The first four modified Bessel functions of the second
kind over 0 <z < 3.

ure 6.5.2 Jn(x) can. For that reason, we discard I,(z) from further
consideration and continue our analysis only with J,(z).

Before we can derive the expressions for a Fourier-Bessel expansion,
we need to find how J,(z) is related to Jp41(x) and J,_1(z). Assuming

that n is a positive integer, we multiply the series (6.5.11) by " and
then differentiate with respect to z. This gives

d ., N (—1)%(2n + 2k)z2nt2k-1
2" ()] = kzzo( )2£+2kk! (n)+ 5 (6.5.22)
n o -1 k x 2n—1+2k
=z k};)( k!)(n(_/l)+ o (6.5.23)
=z"J,_1(x) (6.5.24)

or

T 8" In(2)] = 2" Ju-s(2) (6.5.25)
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forn=1,2,3,.... Similarly, multiplying (6.5.11) by =", we find that

d—i— [27"Jn(2)] = =27 " Jnya(z) (6.5.26)

forn =0,1,2,3,.... If we now carry out the differentiation on (6.5.25)
and (6.5.26) and divide by the factors %", we have that

T (2) + gJ,.(z) = Jn_1(2) (6.5.27)

and
J.(z) - an(x) = —Jpp1(2). (6.5.28)

Equations (6.3.27)~(6.3.28) immediately yield the recurrence relation-
ships

Jn-1(x) + Jnyi(z) = 2?an(ac) (6.5.29)

and

Jn_l(l‘) - Jn+1(.’L‘) = QJ;(Z') (6.5.30)

forn=1,2,3,... For n = 0, we replace (6.5.30) by Jj(z) = —J1 ().

Let us now construct a Fourier-Bessel series. The exact form of
the expansion depends upon the boundary condition at ¢ = L. There
are three possible cases. One of them is the requirement that y(L) = 0
and results in the condition that J,(uxL) = 0. Another condition is
¥'(L) = 0 and gives J),(uxL) = 0. Finally, if hy(L) + /(L) = 0, then
hJn(peLl) + ped)(ux L) = 0. In all of these cases, the eigenfunction
expansion is the same, namely

f(&) = Apda(uiz), (6.5.31)
k=1
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where g is the kth positive solution of either J, (puxL) = 0, J, (px L) =0
or hdn(pue L) + peJ) (pe L) = 0.

We now need a mechanism for computing A;. We begin by multi-
plying (6.5.31) by «J,(pm) dz and integrate from 0 to L. This yields

<) L L
;Ak/o :an(,uka:)J(,um:c)dacz/O zf(2)In(umz)de. (6.5.32)

From the general orthogonality condition (6.2.1),

L
/0 eI (pr)Jn(pme)de =0 (6.5.33)

if £ # m. Equation (6.5.32) then simplifies to

L L
An / 2J2(4mz) dz = / 2 f(2)Tn (i) dz (6.5.34)
"] 0
or
1 L
Ap = ?J;/o zf(z)Jn(prz) de, (6.5.35)
where
L
Ck-—-/ zJ2(urz)dz (6.5.36)
0

and k has replaced m in (6.5.34).
The factor Cy depends upon the nature of the boundary conditions
at ¢ = L. In all cases we start from Bessel’s equation

’ n?
[} (pez)] + (u%z - ?) Jn(urz) = 0. (6.5.37)

If we multiply both sides of (6.5.37) by 2xJ}, (1txx), the resulting equation
is
d

(ua® = n®) [2(uso)]) = == [e o ()] (6.5.38)

An integration of (6.5.38) from 0 to L, followed by the subsequent use
of integration by parts, results in

L L
(i =)o) - 2 [ 272uen) do = - T |
(6.5.39)
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Because J,(0) = 0 for n > 0, Jo(0) = 1 and «J)(z) = 0 at « = 0, the
contribution from the lower limits vanishes. Thus,

L
Cy :/ J:J,f(,ukz) dz (6.5.40)
0
1
= oz (207 = )T D) 4 P D)] (65.40)
k
Because n
Tn(uez) = —Jn(pez) = prdns1(uiz) (6.5.42)

from (6.5.28), C} becomes

Cr = 3L2J75 1 (e L), (6.5.43)

if Jn(pxl) = 0. Otherwise, if J/ (prL) = 0, then

piL?
Ci = -—~—J2(,ukL) (6.5.44)

Finally,

R - n 4 L7
=B o J2 (L), (6.5.45)
k

if ppJy(peL) = —hJn(prL).

All of the preceding results must be slightly modified when n = 0
and the boundary condition is Jy(urL) = 0 or ppJi(pxL) = 0. This
modification results from the additional eigenvalue pg = 0 being present
and we must add the extra term Ag to the expansion. For this case the
series reads

f)= Ao+ > Aedo(mez), (6.5.46)
k=1
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where the equation for finding Ay is

L
= %/o f(z)zdz (6.5.47)

and (6.5.35) and (6.5.44) with n = 0 give the remaining coefficients.
e Example 6.5.1

Starting with Bessel’s equation, we want to show that the solution

to
-2 2 _ p2e2
Y2y (b2c2x2°_2 +E 2 ) y=0 (6.5.48)
z T
is
y(z) = Az®J, (bx®) + Bz®Y, (bz°), (6.5.49)

provided that bz° > 0 so that Y, (bz®) exists.
The general solution to

52 22 74 5— +(E-nH)p=0 (6.5.50)

18
n= AJ,(&) + BY,(). (6.5.51)
If we now let n = y(z)/z® and € = bz®, then

d _dxd zl=c d

P e (6.5.52)

d2 .’L‘2-2c d2 (c_ 1)1.1—2c d
de? = 22 de? b2c? de’ (6.5.53)

d ryy 1 dy a

dz (x_“) T zidr  geti? (6.5.54)

nd 1dy 2 dy a(l+a)

¥y _ Yy a ay all+a
7 (5) = gt g T e (6.5.55)

Substituting (6.5.52)—(6.5.55) into (6.5.51) and simplifying, yields the
desired result.

e Example 6.5.2
We want to show that

227! (x) = (n? = n = 22)Jn(z) + zJns1(2). (6.5.56)
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From (6.5.28),
J (z) = %Jn(x) — Tnp1(2), (6.5.57)

Ti(@) = =5 Ju(@) + 2 T4(2) = T 4a(a) (6.5.58)
and
@) = =25 Ta(@) + 2 [210(@) = Jasa(2)]

_ [Jn(z)—n+1

J,,+1(x)] (6.5.59)

after using (6.5.27) and (6.5.28). Simplifying,

J(z) = ("Zx; . 1) Jn(z) + ﬁ;—@ (6.5.60)

After multiplying (6.5.60) by z?, we obtain (6.5.56).
e Example 6.5.3

Show that
/ 2% J3(z) dz = a®J3(a) — 2a* Ju(a). (6.5.61)
0

We begin by integrating (6.5.61) by parts. If u = z? and dv =
z3J,(z) dz, then

a a
/ 25 12(2) do = 25J5(2)[ - 2 / 24 J5(2) de, (6.5.62)
0 0

because d{z3J5(x)]/dz = z2J5(z) by (6.5.25). Finally, since z%Ja(z) =
d[z*J4(z)]/dz by (6.5.25),

/a £®Jo(z) de = a®J3(a)— 2x4J4(:c)|g = a®J3(a) — 2a*J4(a). (6.5.63)
0

o Example 6.5.4

Let us expand f(z) = 2,0 < z < 1, in the series

f=) =) Ay (uix), (6.5.64)
k=1
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Figure 6.5.6: The Fourier-Bessel series representation (6.5.68) for
f(z) = z, 0 < £ < 1, when we truncate the series so that it includes
only the first, first two, first three, and first four terms.

where p; denotes the kth zero of Ji(y). From (6.5.35) and (6.5.43),

92 1
Ag = —/ 22 Jy(urz) dr. 6.5.65
k Jzz(ﬂk) o l(ﬂk ) ( )
However, from (6.5.25),
% [z272(z)] = 2% J1(2), (6.5.66)
if n = 2. Therefore, (6.5.65) becomes
222 J5(z) |M* 2
= = 6.5.67
TR |, meda(p) ( )
and the resulting expansion is
x_22 Slme) g g (6.5.68)

ped2(px)’

Figure 6.5.6 shows the Fourier-Bessel expansion of f(z) = z in truncated
form when we only include one, two, three, and four terms.
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Figure 6.5.7: The Fourier-Bessel series representation (6.5.79) for
f(z) = 2, 0 < z < 1, when we truncate the series so that it includes
only the first, first two, first three, and first four terms.

e Example 6.5.5

Let us expand the function f(z) = 2%, 0 < z < 1, in the series
f(z) =Y Ardo(uz), (6.5.69)
k=1

where p; denotes the kth positive zero of Jo(g). From (6.5.35) and
(6.5.43),

2 1
Ap = ——o 3J dz. 6.5.70
= Ty, 2 (6570

If we let t = ppz, the integration (6.5.70) becomes

2 Bk
Ap = ———/ t3Jo(2) dt. 6.5.71
© T2 () Jo o) ( )

We now let u = t? and dv = tJo(¢) dt so that integration by parts results
in
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2 123
Ap = ——— |31 (t “k—2/ 27,(t dt] 6.5.72
g /tiJf(uk)[ 1) 0 (1) ( )
2 3 /uk 2 ]
= |3 J -2 2J1(t) dt], 6.5.73
ﬂlez(Hk) [#k l(luk) o 1( ) ( )

because v = tJ1(¢) from (6.5.25). If we integrate by parts once more,
we find that

2
A = m I:/lzjl(l—‘k) — Qp%Jg(pk):l (6.5.74)
__ 2 [Jilem) _ 2J2(pk)
- J{"(uk)[ e % ] (6.5.75)

However, from (6.5.29) with n = 1,

Ti(pe) = sok [J2(pr) + Jo(ue)] (6.5.76)
Ja(pr) = M, (6.5.77)
Bk

because Jo(ur) = 0. Therefore,

2(#% - 4)J1(pr)
Ap = —E—rt 2 6.5.78
¢ pJ7 (1k) ( )
and
(#i — 9)Jo(urz)
x '—22 , O<e<l1. 6.5.79
k=1 3J1 (k) ( )

Figure 6.5.7 shows the representation of z? by the Fourier-Bessel series
(6.5.79) when we truncate it so that it includes only one, two, three, or
four terms. As we add each additional term in the orthogonal expansion,
the expansion fits f(z) better in the “least squares” sense of (6.3.5).

Problems

1. Show from the series solution that

% [Jo(k.’l:)] = —le(k(L').

From the recurrence formulas, show these following relations:
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2.
2Jg () = J2(z) — Jo(z)
3.
Ja(z) = Jg' () — Jo(z)/
+ " JO(J") 2 '
Jg'(z) = - + (;2— - 1) Jo(z)
5.
Bie) 1 @) _ 2 Jol@) _ 2 Jofa)
Ji(z) =z Ji(x) z  Ji(z) =z Ji(x)
6.
Ja(z) = (‘:_3 - S) Ji(z) - (i—;‘ - 1) Jo(®)
7.
n(n? —
Jnga2(z) = [2n +1- 2_(—1,2—1—)] In(z) + 2(n + 1)J)) ()
8. g A
J3(.’L‘) = <F - 1) Jl(:c) - ;Jo(l‘)
9.

4J;/(z) = Jn=2(z) = 2Jn(z) + Jnt2(z)

10. Show that the maximum and minimum values of J,(z) occur when

_ nJp(z) .= nJn(z)
Jny1(z)’ Jn-1(z)’

and Jn_l(il?) = Jn+1(17).

Show that
11. 4
= [2273(2z)] = —zJ3(2z) + 22%T5(22)

12. d
dz [2Jo(2?)] = Jo(z®) — 22°J1(2?)



