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Characterizations of homomorphisms of skew fields

WALTER BENZ

Summary. The functional equations

fa@+y) ) (f @)+ W) =f(=)
and
fl@+ya™) f(z)=f(2)+ f(y)

are solved for skew fields.
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1. The functional equation

r+y\  f2)+f(y)
/ (zy} B —f() @

where f : R — R is supposed to be injective was solved by S. Reich (American
Math. Monthly 78 (1971), 675). Replacing R by a prime field or by certain
Galois extensions of Q, the solutions of (1) were found by K.S. Sarkaria in [5].
T.M. K. Davison, [3], posed the problem to solve (1) for arbitrary fields F. It
was possible, [1], to find the solution, even for skew fields, replacing (1) by (2) or
(3) (see below) in order to avoid the injectivity assumption. In [1] we proved the
following theorem. If F' is an arbitrary skew field with ' # F5 and char F' # 2,
then every f : F — F satisfying equation (2), equation (3), respectively,

FlE+n@=—9™) (@ - FfW) = f @)+ @), (2)
(F@ =) (f(@+p@=—9™)) = F @)+ 1), (3)

for all elements x # y of F must be a homomorphism, an anti-homomorphism,
respectively, of F. In the present note we would like to find a characterization of
homomorphisms including the case char F' = 2. The following equations which are
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of a similar type as equation (2), will be considered.
fle@+y)™)(f@)+fy) = f), (4)
F(+y)a™) f () = f(x)+ f(y). (5)

As a matter of fact, it is not difficult to verify

Proposition 1. If F' is an arbitrary skew field and if f : F — F satisfies (5) for
all z,y € F with x # 0, then f is =2 or a homomorphism of F.

With respect to equation (4) the following result will be proved in this note.

Theorem 2. Let F be an arbitrary skew field and f : F — F be a mapping satis-
fying (4) for all x,y € F with x +y # 0. If f (1) =1, then f is a monomorphism
of F. If f(1) # 1, then f =0, or f(0) =1 and f(x) =0 for allz #0, or2f =1
for2 #0.

As a consequence of this theorem we get

Corollary 3. If F is a skew field and f : F — F a mapping satisfying 2 [f (1)]? #
f () and (4) for all x,y € F with y # —x, then f is a monomorphism of F.

In our context we also would like to refer to results of F. Halter-Koch and L.
Reich [4].

Concerning the algebraic notions in this paper see P. M. Cohn [2]. Note that
in the terminology of P. M. Cohn [2] fields are special skew fields, namely skew
fields satisfying the commutative law of multiplication.

2. In this section the first part of Theorem 2 will be proved. So let f : FF — F
satisfy f (1) =1 and (4) for all 2,y € F with y # —z.
2.1. f(0) =0 and f (z) #0 for all z # 0. Moreover,

Ve fF(A+9) 7)1+ f(y) =1 (6)

Proof. Apply (4) forx =1 and y =0. Hence 1+ f(0) =1. Forz =1 and y # —1
we get (6) from (4). If 2 # 0, then y := 1 — 1 # —1. Hence, by (6), f (z) # 0.

2.2. For all a,b € F with a # —1

f(ab) = f(a) f (b) (7)
holds true.
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Proof. We may assume ab # 0. Hence (6) and ( ) yield
F(A+a) )1+ f(a) =1,
f(b-(b+ab)™! )( (b)+f(ab)) 1 (b).
Observe (1 +a)™t =b-(b+ab)~! and f (b) # 0. Hence
Lt f (a) = [£ () + f (@)] [F (0)] ",
ie. (7).

2.3. If char F' = 2, then, obviously, (7) holds true for all a,b € F.
24. f(a)+f(1—a)=1foralla€F.
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Proof. We may assume a # 0. Hence, by 2.1, f (a) # 0. Apply (4) for x = a and

y=1—a. Then f(a)(f(a)+ f(1—a)) = f(a), i.e. 2.4.
2.5. f(2)+ f(—=1)=1and f(2) = f(-2) f(—1) hold true.

Proof. The first equation follows from 2.4, the second one from 2.2 since —2 # —1.

2.6. f(-1)(1+ f(-1—a)) = f(a) for all a # 0.
Proof. We may assume a # —1. Hence, by 2.2,

pen=f (o) =11 (2)-

If we put y := —1 — a in (6), then

! <i> (1+f(-1-a)) =1

2.7. f(=a)(f(a) + f (=1 —a)) = f(a) holds true for alla € F.

Proof. Put x = a and y = —1 — a in (4) and observe z + y # 0.

1
f(a) f(_a)=1+mforalla7é0,

Proof. Observe f (—1) # 0, inview of =1 # 0. Put k := f (—1) and r := f (—1—a

Now 2.6, 2.7 imply
l4+r=k'f(a)and f(a)+7r = [f(—a)] " f(a), ic.
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2.9. Ifchar F =2, then f (—1) = —1, and, if char F # 2, then f(—1) € {-1,3}.
The element f (—1) is hence in the center of F'.

Proof. The first statement is trivial, so assume 2 # 0. With k := f(—1) we get
f(2)=1—kand f(-2) = f(2)k~! from 2.5. Hence, by 2.8 with a = 2,

1 _17—1 —1
mﬂ(l—k)kl] =1+k"" (10)

Multiplying (10) from the right by 1 — k, we get (k + 1)(k=! —2) = 0, i.e.
k=-lork =2

2.10. If a,b € F are not both equal to —1, then (7) holds true.

Proof. Because of 2.3 we only need to consider the case 2 # 0. In view of 2.2 the
only case left is a = —1 and b # —1. Here we have

flab)=f(=0)=f(b-(=1)) =f(b) f(=1)=f(=1)f(b),

on account of 2.2 and the fact that f (—1) is in the center of F' (see 2.9).
2.11. The equation (7) holds true for all a,b € F. Moreover, f(—1) = —1.

Proof. Because of 2.3 we may assume 2 # 0. If 3 =0, then % = —1 and thus

FEDFED)=1=F(1).

Suppose now that 2 -3 # 0. There hence exists o« € F\{0,1,—1}. By observing
(-Da# -1, a# —1, a”t # —1 we get, by 2.10,

L=f((-DED) =f((-Da-a (=) =f((-Da) f(a"'(-1)
=f(=Dfla)- fla™) f(=1) =Ff(=1) flaa™) f(=1) = f(=1) f(=1).

By 2.9, f(-1) = =1 for 2 = 0. If 3 = 0, then % = —1. If 2-3 # 0, then
[f (=1)]” = 1 implies f (=1) # L. So f(=1) = —1 by 2.9.

2.12. f(—a)=—f(a) for alla € F.

Proof. This follows from 2.11.
2.13. f(1+a)=1+ f(a)foralla € F.
Proof. f(14a)=1— f(—a) =1+ f(a) by 2.4 and 2.12.

2.14. f(a+0b) = f(a)+ f () for all a,b € F.
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Proof. We may assume a # 0. Then

fla+b)=f (a(l —|—a*1b)) =f(a)f(14+a"th)
=f(a)(1+ f(a""b)) = f(a)+ [ (b)
by 2.11 and 2.13.

2.11 and 2.14 finally prove Theorem 2 in the case f (1) = 1.

3. In this section we will solve the functional equation (4) in the case f (1) # 1.
Apply (4) for  # 0 and y = 0. Then we get

(L= 7 () @) = (1) F(0) Vaso (1)
Hence f (x) = const for all z # 0, i.e.
fle) =1 (1) VYazo (12)

since 1 # 0.

If f(0) =0, then (11) implies f (z) = 0 also in the case x # 0. This leads to
the solution f =0 of (4). If f(0) # 0, then

FO)+f(y) =1 Vyzo (13)

holds true by applying (4) for z = 0 and y # 0. In the case f(0) # 0 we will
consider the two subcases a) f (1) =0 and b) f(1) # 0. If f(1) = 0 holds true,
(13) implies f (0) = 1. This leads to another solution of (4), namely to

0 x#0
fx)= for . (14)

Assume now that f (1) # 0 holds true. Since also f (1) # 1 we get F # Fj.
Suppose that « € F\{0,1}. Put x =1 and

Then (4) and (12) imply

FOU@+FD)=rQ),

ie. 2f (1) = 1. This is impossible for 2 = 0. In the case 2 # 0, we hence get
f(z) =1 for all z € F, in view of (12) and (13). This f = £ solves (4) for 2 # 0.
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