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Characterization of 16-dimensional Hughes planes

By

HELMUT SALZMANN

Abstract. The well-known finite Hughes planes have compact analoga with
16-dimensional point space. The automorphism group of such a plane is a 36-dimensional
Lie group. Theorem: Assume that the compact projective plane 2 is not isomorphic to
the classical Moufang plane over the octonions. Let A be a closed subgroup of AutZ.
If dimA4 = 31 and if A has a normal torus subgroup, then 2 is a Hughes plane,
A =Aut?, and A' ~ PSL;H.

A finite Hughes plane % is a projective plane of order n?> having a Desarguesian subplane
& of order n such that each linear collineation of & is induced by an automorphism of #,
compare Liineburg [3]. Similarly, a compact 16-dimensional topological projective plane #
with automorphism group X is called a Hughes plane if 5 has a X-invariant subplane &
isomorphic to the classical Desarguesian quaternion plane #,H such that ¥ induces on & the
full automorphism group PSL;IH. There exist infinitely many non-isomorphic 16-dimen-
sional Hughes planes, see [8, § 86]. These and their 8-dimensional analoga play a prominent
role in the classification of compact, connected planes with an automorphism group of
sufficiently large dimension, compare [8, Chap. 8, Introduction] and Theorem S below.

In the following, 2 = (P,{) will always denote a topological projective plane with
compact, 16-dimensional point space P. Taken with the compact-open topology, the
automorphism group X = Aut £ is a locally compact transformation group of P, and X has a
countable basis [8, 44.3, p. 237]. Let 4 be a connected closed (hence locally compact)
subgroup of X. If the topological dimension dimA = 27, then 4 is even a Lie group
(Priwitzer-Salzmann [6]).

Theorem S. Assume that % is not the classical Moufang plane and that A is semi-simple.
If 28 < dimA4 < 36, then A = SLsH, and 2 is a Hughes plane.

Proof. Priwitzer [5] and Héahl [2].

Here, a related characterization will be given:

Theorem T. Let # be as above, and assume that A has a normal torus subgroup © = T.

If dim A > 28 and if the involution ¢ € © is not a reflection, or if dimA > 30, then O fixes a
Baer subplane, A" =~ SL;H and 2 is a Hughes plane.
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Proof of the first part. (a) Since 4 is connected and Aut @ is finite, the normal subgroup &
is contained in the center Z of A, compare [8, 93.19]. In particular, ¢ € Z.

(b) By assumption, ¢ is not a reflection, and [8, 55.29] shows that the fixed elements of ¢
form a Baer subplane &.

(c) 1€ Z implies 64 = &. Let A" = A|, = A/® be the effective action of A on &, and
consider its kernel @ = A\¢). By the result mentioned above, 4 and @ are Lie groups. From
[8, 83.22] it follows that @ is compact and that dim @ = 3. Consequently, dimA4* > 25, and
& = 2,H by [8, 84.27]. Moreover, the center of A is trivial [8, 84.10], and @ is contained in
the connected component @' of @. This excludes the possibility @' = Spin;R and shows that
O = @', see [8, 83.22]. Hence dim A* > 27, and A" fixes no element of &. The second part of
[8, 84.27] now gives A" =~ PSL3;H.

(d) According to [8, 94.27], the group 4 has a subgroup I’ locally isomorphic to the
simple group 4%, and Theorem S may be applied to I'. This shows that I = SI;IH and
that 2 is a Hughes plane. Finally, 4 = I'© implies that I' = A’ is the commutator group
of 4. O

Proof of the second part. Assume that dimA > 30 and that the involution ¢t € © is a
reflection with axis W and center a ¢ W. Again ¢ € Z and hence W4 = W. Moreover, 4 is a
Lie group. The dimension formula

dim4 = dimx? + dim 4,

will be used repeatedly, see [8, 96.10].
The following theorem of Bodi [1] plays an essential role:

(0) Ifthe fixed elements of a connected Lie group A form a connected subplane %, then A
is isomorphic to the compact 14-dimensional group G,, or A = SU3C, or dim A < 8.
(1) © acts trivially on W and consists of homologies with center a.

Otherwise, z® +z for some z € W. Let x € az\ {a,z}, and consider the connected
component /A of the stabilizer 4,. Because ® = Z, the fixed subplane %, contains the
connected orbit z® and hence is itself connected. The dimension formula together with (0)
gives dimA4 = 16 + 14, a contradiction. [J

By combining (0) and (1) we get
(2) If A fixes any quadrangle, then dim A = 8.

We may assume, in fact, that A is connected. If A= G,, then %; would be a
2-dimensional subplane [8, 83.24], but such a plane does not admit a torus group of
homologies.

(2") No subgroup of A is isomorphic to G,.

Proof. Let G, = Y < 4. All involutions in Y are conjugate [8, 11.31(d)], and there are
commuting involutions a and 8 in Y. These are either reflections or Baer involutions [8,
55.29]. In the first case, one of a, 3, or aff would have axis W and would coincide with ¢, see
[8,55.35 and 32(ii)], but ¢ ¢ Y because G is simple [8, 11.32]. Hence every involution in Y is
planar, and from [8, 55.39 and Note 6] it follows that W ~ Ss. Repeated application of
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[8, 96.35] shows that Y fixes a quadrangle and, in fact, a 2-dimensional subplane. This is
impossible by (2). O

Four cases will be treated separately: (i) 4 is transitive on W, (ii) 4 has a fixed point
v e W, (iii) 4 is doubly transitive on some orbit V C W, or (iv) 4 has none of these
properties. The last case will turn out to be the most difficult one.

(3) The group Q = Ay, w) of homologies with axis W has dimension dim Q2 = 2, and 4
induces on W a group A/ of dimension at least 29.

Proof. Let ¥ be a maximal compact subgroup of the connected component 2*. Then
Q' =wor Q' = ¥ x R by [8, 61.2]. The compact Lie group ¥ does not contain commuting
involutions and hence has torus rank at most 1, see [8, 55.32(ii) or 35]. From (1) follows
O LY and ¥ % Spin,. This leaves only the possibility ¥ = @. [

(4) If A is transitive on W, then W = S, see [8, 52.3 and 96.14]. A maximal compact
subgroup @ of 4 is also transitive on W by [8, 96.19], and @|, = SOy, compare [8, 96.22].
According to [8, 94.27], the group 4 contains a covering group H of SOy, but then ® = HO
would have torus rank > 4. This contradicts [8, 55.37], and case (i) is impossible.

(5) Lemma. Assume that G is a locally compact, connected transitive transformation group
of S = Sg \ {a,b}. Consider a maximal compact subgroup K of G and the stabilizer H = G,
of some point ¢ € S. If H = SU3C, then K = SU4C.

The proof depends on the exact homotopy sequence
o= Ty S = agH — 1, G — 1S — g H — ...

for the action of G on §, see [8, 96.12]. Note that G is a Lie group by [8, 96.14], and that there
are homotopy equivalences S ~ S; and G ~ K; the second one follows from the Mal’cev-
Iwasawa theorem [8, 93.10]. Up to g = 8 (and beyond), the homotopy groups of S and of all
compact simple Lie groups are known, compare the remarks preceding 94.36 in [8]. We have
7S =0 for g <7 and 778 = Z. The homotopy sequence gives 7, K = 7w ,H for ¢ = 5. In
particular, m K = 0 and, therefore, K is semi-simple [8, 94.31(c)]. Whenever C is compact
and almost simple, then 73C = Z, see [8, 94.36]. Hence m3K =~ Z, and K is even almost
simple. The dimension formula shows that 8 = dim K = 16. Because of (2'), only the groups
m,C with C 2= SUj;, SUy, or U;H are actually needed; these can be found in Mimura
[4, §3.2]. Generally, 75C = Z if and only if C is locally isomorphic to a group SU,C with
n > 2. Moreover, ngH = Zs and 1;H = 0. The exact sequence

7157H — .7T7K — ﬂ7§ — .7T6H

shows that 77K =2 Z, and K =~ SU4,C. O
We are now able to deal with case (ii).

(6) If ! = v € W, then A is transitive on W \ {v}.

Proof. Let v 4z € W. Together with (2), the dimension formula implies first z4 + z and
then 31 —2 - dimz4 = 8 + 8. Hence dim z4 = 8, and z* is open in W by [8, 96.11]. Because
W\ {v} is connected, the assertion follows. [
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(7) If ¥ = v € W, then A is even doubly transitive on W \ {v}.

Proof. Let V =4, for some u € W, u $ v, and note that 23 = dimV = 24. If V is not
transitive on W \ {u, v}, then, by similar arguments as in (6), there is a 7-dimensional orbit
zV C W, and V, is transitive on S = av\ {a,v}. From (0), (2), and (5) we conclude that a
maximal subgroup @ of V, must be isomorphic to SU4C, but @ < @, a contradiction. O

(8) Remarks. All locally compact doubly transitive transformation groups (I, M)
have been determined by Tits [9]. Either I is simple and M is a projective space or a
sphere, or M ~R* and I' is an extension of R¥ by a transitive subgroup G = GLiR,
compare [8, 96. 15-23]. A convenient description of the possibilities for G can be found in
Volklein [10]. The group G has an almost simple normal subgroup H which is transitive on
the (k — 1)-sphere S consisting of the rays in IR*, and a maximal compact subgoup K of H is
also transitive on S, see [8, 96.19]. It is now easy to detect the possible groups H among the
irreducible representations of almost simple Lie groups [8, 95.10], and G is contained in the
product of H and its centralizer. In particular, dim G/H = 4, even =2 if CsH 3 H.

9) If ud = W\ {v} and V = A, then V is an almost direct product of the solvable radical
V'V and a group ¥ = Sp,C.

Proof. By (2) and (3), the effective group Y = V|, = V/Q satisfies 21 = dim Y = 23,
and Y has no subgroup locally isomorphic to Spin; by (2'). With the remarks (8) it follows
that the commutator subgoup Y’ is isomorphic to the simply connected group Sp,C. The
center Z of Y is contained in €, and Y = Y'Z. The group Y’ is covered by a normal subgoup
Yofv. 0O

A maximal compact subgroup of Sp,C is isomorphic to U,HH and does not contain SU3C.
Hence (0) and (9) imply

(10) Corollary. If u? = W\ {v}, and if A fixes a quadrangle, then dim A = 7.

(11) If u? = W\ {v} and c € av\ {a,v}, then A. is doubly transitive on W\ {v} and
r=4., =SL,H

Proof. Let u &z € u?. By (10) and the dimension formula, we have
15S=dimI' =dim T, + dimz" =748,

and dim z" = 8. Hence each orbit z” is open in W and I is transitive on W \ {u, v} by the
arguments of (6). The last assertion follows with the remarks (8). O

Because of Levi’s Theorem [8, 94.28], we conclude from (9) and (11) that SL,IH must be a
subgroup of Sp,C. There are several ways to show that this is impossible. A simple reason is
the following: both groups have U,IH as maximal compact subgroups, but these are even
maximal among all subgroups [8, 94.34]. More generally, Tits [9, Th. IV B.3.3] has
determined all large maximal subgroups of the classical simple Lie groups. Thus, case (ii) has
finally led to a contradiction.

All actions of 4 on W having only fixed points and 8-dimensional orbits are covered by (i)
and (ii). Hence we may assume in case (iii) that 4 is doubly transitive on some orbit V C W
with 0 < dimV =k < 8. Let u,v,w € V, and denote the connected component of the
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stabilizer 4,,,,, by Z. From (2) and the dimension formula we obtain dim Z = 16 and then
31 = dim4 = 3k + 16. Consequently, dimV = 5. If V ~ R, then A4, fixes a 1-dimensional
subspace of R¥, and we get even 2k = 31 — 16, a contradiction. Thus, V is compact and 4|, is
simple by (8). If V is a projective space, then 4,,, fixes the (real or complex) line through u
and v, and dim 4 = 2k + 2 4 dim Z. This implies V' ~ P;R and 4|, = PSLgR, see [8, 96.17].
But then dim 4 > 63 would be to large. By (8) or [8, 96.17] we have

(12) If 4 is doubly transitive on V. C W, then V is homeomorphic to a sphere Sy with
5sk=T.

Because k > 4, the kernel @ of the action of 4 on v¥ =V acts freely on av \ {a,v}, and
dim @ = 8, dim4|,, = 23. By [8, 96.19 and 23], each transitive group on S, contains G,, and
(2') shows that k #+ 6. Therefore, only one possibility of the list [8, 96.17(b)] remains:

(13) If A is doubly transitive on V. C W, then V = S; and A|,, =2 PSU5(C, 1).

If A4 is as in (13), then A4 contains an almost simple subgroup ¥ which is locally isomorphic
to SUs(C,1), see [8, 94.27]. The kernel @ = Ay, has dimension 7 or 8, and each
representation of ¥ on the Lie algebra of @ is trivial [8, 95.10]. Hence @ = Csy¥. The
group ¥ has torus rank rk ¥ = 3. By [8, 55. 29 and 35], there exist involutions a, w € ¥ such
that o is planar, a is not the reflection with axis W, and aw = wa. Then « induces on the
fixed plane %, either a reflection or a Baer involution. The common fixed point set C = F,
is 4-dimensional, and @ acts freely on some orbit ¢® C C, but dim @ = 7. This contradiction
finally excludes case (iii). O

The general case (iv). Again, there is an orbit v =V C W with 0 < dimV < 8. Let
v+ u €V, and consider the connected components I of 4, and V of I',.

(14) The orbit u" = U is a 6-dimensional connected manifold.

Proof. u’ ~TI'/I', is a connected manifold [8, 94.3(a)]. Assume that dim U = m < 6.
Choose w € U \ {u} and ¢ € av \ {a, v}, and denote the connected component of V.,, by /.
The dimension formula gives dimA = 31 —7 — 8 — 2m = 6, and (2) implies m = 4. By [8,
83.22] and because O is a torus group of homologies, the fixed elements of A form a 4-
dimensional subplane 4 = 7. Choose z € U\ &. Then A, +1 and %, = (#,z) is a Baer
subplane. From [8, 83.9] it follows that A is compact. In fact, 4 = SU3 or A = SOy, see
Salzmann [7, (2.1)]. In the second case, A contains a central involution #, and A induces a
group A/K on the Baer subplane %, Now dim/A/K =1 by [8, 83.11], and dimK = 3 by
[8, 83.22]. This contradiction shows that /1 = SU3. For a point z as above, 8, 83.22] implies
A; = SU, and z1 ~'Ss. Hence m = 5 and z/ is open and closed in U, compare [8, 92.14 or
96.11(a)]. Because U is connected, 4 must be transitive on U, but z1 < U\ & £ U. 0O

15) If ce S=av\ {a,v}, then dim V. = 10.

Proof. Note that I', acts effectively on U and that dim I". = 20 by (14) and (2). If ', is
doubly transitive on U, then the remarks (8) and [8, 96.16 and 17] show that U ~ RS.
Moreover, a maximal semi-simple subgroup of I, is isomorphic to SU3, and dimV, = 10.
Assume now that dim V. > 10, and let /7 denote the connected component of V.. Then I, is
not doubly transitive on U, and there is some w € U\ {u} such that dimw!’ < 6. The
connected component A of I7,, satisfies 6 = dim A = 8, and dim w! > 2. As is the proof of
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step (14) it follows that % is 4-dimensional, that A, 1 for z € w7 \ %, and that A is
compact. As before, A4 =2 SU; and z ~ Ss. Again A would be transitive on the connected
manifold w'’, an obvious contradiction. [

(16) Corollary. dim A = 31 and V is transitive on S.

The same technique as in the proof of Lemma (5) can now be applied. However, only the
dimension of the stabilizer V. = IT is known, but neither the structure nor the topology of 11,
and there are several distinct possibilities. Consider maximal compact subgroups ¥ of /7 and
@ of V with ¥ = @ and the respective semi-simple commutator subgroups ¥’ and @'.
Because V is not compact and @ is normal in @, we have dim @ = 16. The group ¥’ is a
product of 3-dimensional factors, or ¥’ is locally isomorphic to SUj;, or
Y’ = 1 = U,H = Spins. The exact homotopy sequence for the action of V on S becomes

o= Ty 1S gV - @ - S — .. > mS=0.

If C is any compact, connected Lie group and g > 1, then 7,C’ = x,C by [8, 94.31(c)].
Moreover, ¥ = ;@ is infinite (because @ is a factor of @), and ¥’ < V. This excludes the
possibility ¥’ = I1. All the relevant homotopy groups of small compact simple Lie groups C
can be found in Mimura [4, §3.2]. In particular, 75 SU,, = Z for n = 3, all other groups 75C
and all groups 715C are finite.

AN 1< ¥ <@ and dim P’ = dim ¥’ + 7.

Proof. If ¥' = &', then 7, ¥ = 7, in the exact homotopy sequence, and 7,S — 7,1 ¥
is injective, but 778 = Z and 7W is finite. Hence ¥’ < &'. If ¥’ =1, then 73®’ = 0 and
@ =1 by [8, 94.36]. This contradicts the first step of the proof. From m ¥ = 7;® and
[8, 94.31(c)] it follows that the torus factors of @ and of ¥ have the same dimension.
Because @ is compact and ¥ is the connected component of @, we obtain
dim @' /¥’ =dim®/¥ =dimc? <8 O

The remaining possibilities will be discussed separately. We will need the following
lemma:

(18) If @ contains a reflection o with center u or axis au, then the elation group E with
center v (and axis av) is sharply transitive on U, and E is a 6-dimensional Lie group.

Proof. Assume that o has center u. Choose p = 0" with € I" and u” 4 u. Then op is the
elation with axis av mapping u to u”. Thus, o is unique and (y — 00”) maps the coset space
/T, continuously and injectively into E. Hence dim E = dim U = 6. By [8, 96.11(a)], each
E-orbit in U is open, and uf = U because U is connected. [

(19) dim ¥’ +3.

Proof. If ¥ is locally isomorphic to SU,, then m3®' = a3¥W’ ~ Z, and @’ is almost
simple by [8, 94.36]. The last statement of (17) implies dim@' = 10. Since
asD = a5V =~ 75S; = Z, is finite, the group @' is not locally isomorphic to SU3 by the
remarks preceding (17). Consequently, dim @' = 10. Because the group SOs cannot act on
any plane [8, 55.40], it follows that @’ = Spins = U,H is the simply connected covering
group of SOs. Again by [8, 55.40], the central involution ¢ € @' cannot be planar, and o is a
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reflection. If the axis of o is different from W, then (18) implies that the elation group E with
center v is a 6-dimensional connected Lie group. The group E is not known to be
commutative, but ¢ inverts each element of E. Therefore, @ induces a faithful
representation on the Lie algebra [E of E. The list of irreducible representations given in
[8, 95.10] shows that dim E = 8, a contradiction. Hence ¢ has axis W, and o € ©.

Consider now the involution 8 € @' corresponding to the element diag(1,—1) € U,HH.
The centralizer @ N Csf is a direct product A x B, where A =~ B =~ SU, and 8 € B. The
properties of U,IH show that a = o is the central involution in A, and that o and § are
conjugate in @'. If 8 is a reflection, then a and 8 have centers u and v and cannot be
conjugate within V. Hence f is a Baer involution, its fixed elements form an 8-dimensional
subplane 3 = 4. Either B induces the identity on %, or B|, =2 SOj3 (note that 8 € B). In the
latter case, the fixed elements of B would form a 2-dimensional subplane &, and ® would act
as a group of homologies on &, but this is impossible by [8, 32.17 or 61.26]. Therefore,
B|, =1 and, analogously, A|,; = 1. Because a and # commute, it follows from [8, 55.32]
that a|, £ 1 and, hence, that A acts faithfully on 4. Consequently, A® = U,C would induce
a 4-dimensional compact group of homologies on %. This contradicts [8, 61.26]. [

The next case can be treated in the same way:
(20) dim ¥’ +6.

Proof. If ¥ is locally isomorphic to SOy, then @' has two almost simple factors by
[8, 94.36]. With (17) we obtain dim @' = 13, and @’ has a factor = = Spins. As in the last
step, the existence of such a group leads to a contradiction. [

(21) dim ¥’ £9.

Proof. If ¥’ is a product of 3 almost simple factors, then so is @', again by [8, 94.36].
Because ¥’ < @', one of the factors of @ must have torus rank at least 2. This implies that
rk®’ = 4 and then 1k @@’ > 4. According to [8, 55.37], however, the torus rank can never
exceed 4. O

(22) dim ¥’ +38.

Proof. We argue as in step (19). If ¥’ is locally isomorphic to SU3, then 73®’ =~ Z and &’
is almost simple. From 5@’ = Z and 8 < dim @' = 15 we infer that @' is locally isomorphic
to SU4C = Sping. Because SOs cannot act on a plane, @' is even isomorphic to SUy, and its
central involution o is a reflection. In fact, o has the axis W, or else @' would act effectively
on the elation group E, see (18). The involution  corresponding to diag (1,1, —1,—1) € SU4
fixes a Baer subplane # because it commutes with 5 conjugates, see [8, 55.35]. The
centralizer of § contains a direct product A x B, where A =~ B =~ SU, and 8 € B. Exactly as
in (19), it follows that @A induces on 4 a compact, 4-dimensional group of homologies with
axis W N 4. This final contradiction completes the proof of Theorem T.
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