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emperor wanted all knowledge and written
is regime. The edict was carried out, and it will

y manipulation to solve linear systems eventually found its way to Japan.
Se (1642-1708), whom many Japanese consider to be one of the greatest
mathematicians that their country has produced, carried forward the Chinese
principles involving “rule of thumb” elimination methods on arrays of numbers.
His understanding of the elementary operations used in the Chinese elimination
process led him to formulate the concept of what we now call the determinant.
While formulating his ideas concerning the solution of linear systems, Seki Kowa
anticipated the fundamental concepts of array operations that today form the
basis for matrix algebra. However, there is no evidence that he developed his
array operations to actually construct an algebra for matrices.

From the middle 1600s to the middle 1800s, while Europe was flowering
in mathematical development, the study of array manipulation was exclusively

Buy online from SIAM
Copyright © 2000 SIAM  http://www.ec-securehost.com/SIAM/ot71.html

It is illegal to print, duplicate, or distgibut
Please report violations to me


http://www.ec-securehost.com/SIAM/ot71.html
http://www.amazon.com/exec/obidos/ASIN/0898714540

Buy from AMAZON.com

Chapter 3 Matrix Algebra

http.//www.amazon.com/exec/obidos/ASI N/0898714540

dedicated to the theory of determinants. Curiously, matrix algebra did not evolve
along with the study of determinants.

It was not until the work of the British mathematician Arthur Cayley (1821—
1895) that the matrix was singled out as a separate entity, distinct from the
notion of a determinant, and algebraic operations between matrices were defined.
In an 1855 paper, Cayley first introduced his basic ideas that were presented
mainly to simplify notation. Finally, in 1857, Cayley expanded on his original
ideas and wrote A Memoir on the Theory of Matrices. This laid the foundations
for the modern theory and is generally credited for being the birth of the subjects
of matrix analysis and linear algebra.

Arthur Cayley began his career by studying literature at Trinity College,
Cambridge (1838-1842), but developed a side interest in mathendatics, whichdhe
studied in his spare time. This “hobby” resulted in his first mathematical paper
in 1841 when he was only 20 years old. To make a living; he enteredd¢the legal
profession and practiced law for 14 years. However, his main interest was still
mathematics. During the legal years alone, Cayley published almost 300 papers
in mathematics.

In 1850 Cayley crossed paths with JamessJ, Sylvester; and between the two
of them matrix theory was born and nurtured,/The two have been referred to
as the “invariant twins.” Although Cayley and Sylvester shared many mathe-
matical interests, they were quite different people, especially in their approach
to mathematics. Cayley had anfinsatiable hunger for the subject, and he read
everything that he could lay ‘his hand8yon. Sylvester, on the other hand, could
not stand the sight of papers written by others. Cayley never forgot anything
he had read or seen—heybecame a living encyclopedia. Sylvester, so it is said,
would frequently failsto remember even his own theorems.

In 1863, Cayley was given a chair in mathematics at Cambridge University,
and thereafter his mathematical output was enormous. Only Cauchy and Euler
were as prolific.\Cayley often said, “I really love my subject,” and all indica-
tions substantiate that this was indeed the way he felt. He remained a working
mathematician antil his death at age 74.

Because the idea of the determinant preceded concepts of matrix algebra by
at least two centuries, Morris Kline says in his book Mathematical Thought from
Ancientto Modern Times that “the subject of matrix theory was well developed
before it was created.” This must have indeed been the case because immediately
after the publication of Cayley’s memoir, the subjects of matrix theory and linear
algebra virtually exploded and quickly evolved into a discipline that now occupies
a central position in applied mathematics.
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3. ADDITION AND TRANSPOSITIO

In the previous chapters, matrix language and notation were used simply to for-
mulate some of the elementary concepts surrounding hnear systems The purpose
now is to turn this language into a mathematical theory

Unless otherwise stated, a scalar is a complex number. Real numbers are
a subset of the complex numbers, and hence real numbers are also scalar quan-
tities. In the early stages, there is little harm in thinking only in terms of real
scalars. Later on, however, the necessity for dealing with complex numbers will
be unavoidable. Throughout the text, R will denote the set of real mumbers,
and C will denote the complex numbers. The set of all n -tuples of zeal humbers
will be denoted by R™, and the set of all complex n-tuples will be denoted
by C". For example, R? is the set of all ordered pairs of.real nfimbers<(i.e.,
the standard cartesian plane), and R? is ordinary 3-spacet Analogously, R™*"
and C™*™ denote the m x n matrices containing real numbers and complex
numbers, respectively.

Matrices A = [a;;] and B = [b;;] are defined to be equal matrices
when A and B have the same shape and corresponding entries are equal. That
is, a;; = b;; for each i = 1,2,...,m amd 7 =41,2,»..,n. In particular, this

1
definition applies to arrays such as uy="_[n2 and v = (1 2 3). Even
3
though u and v describe exactly thelsame point in 3-space, we cannot consider
them to be equal matricés because they have different shapes. An array (or
matrix) consisting of absingle column, such as u, is called a column vector,
while an array consisting of‘ajsingle row, such as v, is called a row wvector.

Addition of Matrices

If A and B are m X n matrices, the sum of A and B is defined to
be the m x n matrix A + B obtained by adding corresponding entries.
That is,

Please report violations to meyer@ncsu.edu

[A + BJ;; = [A];; + [B];; for each i and j.
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For example,
-2 3 n 2 11—z -2\ [0 1 1
z+3 4 —y -3 44z 4+y) \z 8+z 4)°

The great French mathematician Pierre-Simon Laplace (1749-1827) said that, “Such is the ad-
vantage of a well-constructed language that its simplified notation often becomes the source of
profound theories.” The theory of matrices is a testament to the validity of Laplace’s statement.
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The symbol “+” is used two different ways—it denotes addition between
scalars in some places and addition between matrices at other places. Although
these are two distinct algebraic operations, no ambiguities will arise if the context
in which “+” appears is observed. Also note that the requirement that A and
B have the same shape prevents adding a row to a column, even though the two
may contain the same number of entries.

The matrix (—A), called the additive inverse of A, is defined to be
the matrix obtained by negating each entry of A. That is, if A = [a;;], then
—A = [—a;;]. This allows matrix subtraction to be defined in the natural way.
For two matrices of the same shape, the difference A — B is defineddo bethe
matrix A — B = A 4 (—B) so that

[A — B]U = [A]” — [B]” for each 7 and ]

Since matrix addition is defined in terms of scalar additionhe familiar algebraic
properties of scalar addition are inherited by matrix addition as detailed below.

Properties of Matrix Addition
For m x n matrices A, B, and C, the following properties hold.

Closure property: A + B is again an m X n matrix.
Associative property: (A+B)+C=A+ (B+C).
Commutative property: A+ B =B + A.

Additive identity: The m x n matrix 0 consisting of all ze-
ros has the property that A +0 = A.

Additive inverse: The m x n matrix (—A) has the property
that A 4+ (—A) =0.

Another simple operation that is derived from scalar arithmetic is as follows.

Scalar Multiplication

The product of a scalar a times a matrix A, denoted by aA (or
equivalently Aa), is defined to be the matrix obtained by multiplying
each entry of A by a. That is, [@Al];; = a[A];; for each i and j.

For example,
1 2 3 2 6 1 2 1 2 4
210 1 2])=1{0 4 and 3 4)1==-|6 8
1 4 2 0 1 0 2
The rules for combining addition and scalar multiplication are what you

might suspect they should be. Some of the important ones are listed below.
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Other properties such as uld have been listed, but the prop-
erties singled out pave the ition of a vector space on p. 160.

A matrix operation th rived from scalar arithmetic is transposition
as defined below.

Whenever a matrix contains complex entries, the operation of complex con-
jugation almost always accompanies the transpose operation. (Recall that the
complex conjugate of z = a+ ib is defined to be z =a — ib.)
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The transpose (and conjugate transpose) o
matrix addition and scalar multiplication. The b

We will prove that (3.2.1) and (3.2.2) hold for the transpose operation.
of the statements involving conjugate transposes are similar and are
ercises. For each ¢ and j, it is true that
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left
[(A+B)"];; = [A+B], =[Al];; + [Bl;; = [AT];; + [B"];; = [AT + B"];

It is illegal to print, duplicate, or distribute this material

Computers can outperform people in many respects in that they do arithmetic much faster
and more accurately than we can, and they are now rather adept at symbolic computation and
mechanical manipulation of formulas. But computers can’t do mathematics—people still hold
the monopoly. Mathematics emanates from the uniquely human capacity to reason abstractly
in a creative and logical manner, and learning mathematics goes hand-in-hand with learning
how to reason abstractly and create logical arguments. This is true regardless of whether your
orientation is applied or theoretical. For this reason, formal proofs will appear more frequently
as the text evolves, and it is expected that your level of comprehension as well as your ability
to create proofs will grow as you proceed.
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This proves that corresponding entries in (A +B)” and AT + BT are equal,
so0 it must be the case that (A +B)” = AT + BT, Similarly, for cach i and j,

[(@A)T];j = [aA];; = a[A]j; = o[AT];; = (eA)" =aAT. 1

Sometimes transposition doesn’t change anything. For example, if

1 2 3
A=[(2 4 5], then AT =A.
3 5 6

This is because the entries in A are symmetrically located about the
agonal—the line from the upper-left-hand corner to the lower-righ

M 0 - 0
0 XAy -+ O

Matrices of the form D = S are called
0 0 o A

and they are clearly symmetric in the sense that D = is is one of several

kinds of symmetries described below.
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For example, consider
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1 244 1-3i 1 2+41 1-31
A=|2-4 3 8 + 6i and B=|2+4i 3 8 + 61
1+3i 8—6i ) 1-31 84 6i )

Can you see that A is hermitian but not symmetric, while B is symmetric but
not hermitian?

Nature abounds with symmetry, and very often physical symmetry manifests
itself as a symmetric matrix in a mathematical model. The following example is
an illustration of this principle.
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Example 3.2.1

Consider two springs that are connected as shown in Figure 3.2.1.

Node 1 ky Node 2 ko Node 3

X1

= F Fy F3 Fy =

FIGURE 3.2.1

The springs at the top represent the “no tension” position in which o force is
being exerted on any of the nodes. Suppose that the springs are stretched or
compressed so that the nodes are displaced as indicated in the lower portion
of Figure 3.2.1. Stretching or compressing the Springs creates a force on each
node according to Hooke’s law ' that sayssthat the force exerted by a spring
is F = kx, where x is the distance the/springds, stretched or compressed and
where k is a stiffness constant inherent to the spring. Suppose our springs have
stiffness constants k; and ko, and let) F; bethe force on node ¢ when the
springs are stretched or compre§sed, Let’stagree that a displacement to the left
is positive, while a displacement 6 the, right is negative, and consider a force
directed to the right to be positive while one directed to the left is negative.
If node 1 is displaced®“zppunits, and if node 2 is displaced x5 units, then the
left-hand spring isstretched (ox compressed) by a total amount of 1 —xo units,
so the force on @iode 1 is
F1 = kl(l'l — 1’2).

Similarly, if node\2 is'displaced 2 units, and if node 3 is displaced x3 units,
thengthe right-hand spring is stretched by a total amount of x5 — x3 units, so
the force on‘mode 3 is

F3 = 7]{52(3']2 — 1133).

The'minus sign indicates the force is directed to the left. The force on the left-
hand side of node 2 is the opposite of the force on node 1, while the force on the
right-hand side of node 2 must be the opposite of the force on node 3. That is,

Fy=—F — F.

It is illegal to print, duplicate, or distribute this material
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18
Hooke’s law is named for Robert Hooke (1635-1703), an English physicist, but it was generally

known to several people (including Newton) before Hooke’s 1678 claim to it was made. Hooke
was a creative person who is credited with several inventions, including the wheel barometer,
but he was reputed to be a man of “terrible character.” This characteristic virtually destroyed
his scientific career as well as his personal life. It is said that he lacked mathematical sophis-
tication and that he left much of his work in incomplete form, but he bitterly resented people
who built on his ideas by expressing them in terms of elegant mathematical formulations.
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Organize the above three equations as a linear system:

kix1 — kyzo = I,
—k1x1 + (k1 + k2)xa — kows = Fy,
—kozo + koxs = F,

and observe that the coefficient matrix, called the stiffness matriz,

k1 —kq 0
(—U K= —kl kl + k2 —kz ,
= 0 —ko ko
Q
© _g is a symmetric matrix. The point of this example is that symm
S () problem translates to symmetry in the mathematics by
0 s matrix K. When the two springs are identical (i.e., w
< 8 more symmetry is present, and in this case
o <
50 1 -1
No] E K=k| -1 1
= > 0
A2
© £
Exepcises for section 3.2
QP
— C
8 el 3.2.1. Determine the unknown ntities in the following expressions.
)
= ®©
Q — T
S5 O (a) 0 ' (b) 2 r+2 y+3\_(3 6 '
T > 6 9 3 0 Yy oz
P
£ 0
E_ g— ich of the following as symmetric, skew symmetric, or neither.
9o o 1 -3 3 0 -3 -3
= % -3 4 =3|. (b) 3 0 1
O o 3 3 0 3 -1 0
2a
= 0 -3 -3 12 0
2] (c) -3 0 3. (d (2 1 0).
= -3 3 1

3.2.3. Construct an example of a 3 x 3 matrix A that satisfies the following
conditions.
(a) A is both symmetric and skew symmetric.
(b) A is both hermitian and symmetric.
(¢) A is skew hermitian.
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3.2.4.

3.2.5.

3.2.6.

3.2.7.

3.2.8.
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Explain why the set of all n x n symmetric matrices is closed under
matrix addition. That is, explain why the sum of two n X n symmetric
matrices is again an n X n symmetric matrix. Is the set of all n x n
skew-symmetric matrices closed under matrix addition?

Prove that each of the following statements is true.
(a) If A =a;;] is skew symmetric, then a;; =0 for each j.

(b) If A = [a;;] is skew hermitian, then each aj; is a pure imagi-

nary number—i.e., a multiple of the imaginary unit i.

(¢) If A isreal and symmetric, then B =iA is skew

Let A be any square matrix.
(a) Show that A+AT is symmetricand A—A7 iss etric.
(b) Prove that there is one and only o a write” A as the

sum of a symmetric matrix and a s sym ic matrix.

If A and B are two matrices of e, prove that each of the

following statements is true.
(x) (A+B) =A"+
(b) (aA)" =aA*.

xample 3.2.1, determine the stiffness

Using the conven
matrix for a entlcal springs, Wlth stiffness constant k,
connecb 1lar to that shown in Figure 3.2.1.
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The concept of linearity is the underlying theme of our subject. In elementary
mathematics the term “linear function” refers to straight lines, but in higher
mathematics linearity means something much more general. Recall that a func-
tion f is simply a rule for associating points in one set D —called the domain
of f—to points in another set R —the range of f. A linear function is a
particular type of function that is characterized by the following two properties.

Linear Functions

Suppose that D and R are sets that possess an addition operation as
well as a scalar multiplication operation—i.e., a multiplication between
scalars and set members. A function f that maps pointsin D to points
in R issaid to be a linear function whenever f satisfies the conditions
that

flz+y) = flx)+ fy) (33.1)

and

flaz) = af(x) (3.3.2)

for every z and y in D and for all scalars «. These two conditions
may be combined by saying that f is a linear function whenever

flaz +y) = af(z) + f(y) (3.3.3)

for all scalars « and for allx,y € D.

Ong of the siplest linear functions is f(x) = awx, whose graph in R? is a
straight line through the origin. You should convince yourself that f is indeed
aflinear funetion according to the above definition. However, f(z) = ax + 8
does not|qualify for the title “linear function”—it is a linear function that has
beenitranslated by a constant (. Translations of linear functions are referred to
as affine functions. Virtually all information concerning affine functions can
be derived from an understanding of linear functions, and consequently we will
focus only on issues of linearity.

In R3, the surface described by a function of the form

flz1,22) = a1z1 + oo

is a plane through the origin, and it is easy to verify that f is a linear function.
For 8 # 0, the graph of f(z1,22) = @121 + @y + [ is a plane not passing
through the origin, and f is no longer a linear function—it is an affine function.
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In R2 and N3, the graphs of linear functions are lines and planes through
the origin, and there seems to be a pattern forming. Although we cannot visualize
higher dimensions with our eyes, it seems reasonable to suggest that a general
linear function of the form

flx,22,...,2,) = 1@y + 22 + - - + oy

somehow represents a “linear” or “flat” surface passing through the origin 0 =
(0,0,...,0) in R**L. One of the goals of the next chapter is to learn how to
better interpret and understand this statement.
Linearity is encountered at every turn. For example, the familiar eperations
of differentiation and integration may be viewed as linear functions, Sinee
AW +g) _df dg o def) _ df

dz T dx + dx dx d:r

the differentiation operator D, (f) = df /dx is linear. Similarly,

/(f+g)da:=/fdx+/gdx and /afd:vzoz/fda:

means that the integration operator I(f)& [ fda 18 linear.
There are several important matrix functions that are linear. For example,
the transposition function f(X,,x,) =X tis liiear because

(A+B)" =AT+B” “and (aA)" =aA”

(recall (3.2.1) and (3.2.2)), Another matrix function that is linear is the trace
function presented beléws

ple 3.3.1

The trace of an “myp¢ matrix A = [a;;] is defined to be the sum of the entries
lying on the main diagonal of A. That is,

trace (A) = a1y +ag + -+ app = Zaii-

Problem: Show that f(X,xn) = trace(X) is a linear function.

Solution: Let’s be efficient by showing that (3.3.3) holds. Let A = [a;;] and
B = [b;;], and write

It is illegal to print, dl@)licate, or distribute this material
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n

f(aA + B) = trace (¢A + B) = Z[aA +BjJ; = z": (aai; + bi;)
i=1

i=1
= Z aa;; + Z bi, =« Z ai; + Z bi; = atrace (A) + trace (B)
i=1 i=1 i=1 i=1
= af(A) + f(B).
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Example 3.3.2
Consider a linear system
anzy + apprz + 0+ a1y, = Ui,
(2171 + G272 + 0+ AT = Uz,
am1T1 + am2®2 + 0+ AmpZn = Um,
Ty
T2
to be a function u = f(x) that maps x=| . | € R" to u=
Tn
Problem: Show that u = f(x) is linear.
Solution: Let A = [a;;] be the matrix of coefficientspand
ary +y1
ax + Y2 = -
flax+y)=f : = (ady + : (awj Asj + yiAsj)
: J Jj=1
OTp + Yn

Accordi

@ 3); the function f is linear.

ollowing terminology will be used from now on.

It is illegal to print, duplicate, or distribute this material
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Exercises for section 3.3

3.3.1. Each of the following is a function from R2? into R2. Determine which
are linear functions.

@ s()=0) @ ()
@ 1G)=() @ e(G)-();
@ ()= ()0 o)

x1
T2
3.3.2. For x = . | , and for constants &;, veri at

Tn

f(X) = &1 2T + &y

is a linear function.

3.3.3. Give examples_ of at lea o different physical principles or laws that
can be charac s being linear phenomena.

. Determi ch of the following three transformations in ®? are linear.

//'\-

3§

)

Please report violations to meyer@ncsu.edu
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! f(p)
ROTATE COUNTERCLOCKWISE REFLECT ABOUT PROJECT ONTO
THROUGH AN ANGLE 0. THE X -AXIS. THE LINE Y = T.

Buy online from SIAM
Copyright © 2000 SIAM  http://www.ec-securehost.com/SIAM/ot71.html


http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

Why Do It This Way 93

http /lwww.amazon. com/exec/obldos/ASIN/089871 4540
3.4 WHY DO IT THIS WAY

If you were given the task of formulating a definition for composing two ma-
trices A and B in some sort of “natural” multiplicative fashion, your first
attempt would probably be to compose A and B by multiplying correspond-
ing entries—much the same way matrix addition is defined. Asked then to defend
the usefulness of such a definition, you might be hard pressed to provide a truly
satisfying response. Unless a person is in the right frame of mind, the issue of
deciding how to best define matrix multiplication is not at all transparent, es-
pecially if it is insisted that the definition be both “natural” and “useful.” The
world had to wait for Arthur Cayley to come to this proper frame.of mind.

As mentioned in §3.1, matrix algebra appeared late in the game. Manipula-
tion on arrays and the theory of determinants existed long beforexCayley and his
theory of matrices. Perhaps this can be attributed to the faet that thed“correct”
way to multiply two matrices eluded discovery for suchia long time.

Around 1855, Cayley became interested in compesing lineax, functions. Y In
particular, he was investigating linear functions efitheype discussed in Example
3.3.2. Typical examples of two such functionssare

o X o ary + bﬂ]g = I o AIIZl + BIEQ
f(x)f<x2)<cm1+dx2> &l g(X)_g<m2>(Cx1+Dx2 ‘
Consider, as Cayley did, comp@sing) f andy g to create another linear function

o0 =1 (o) =gl ) = ({47 000 5 L)

It was Cayley’sdidea’ to use matrices of coefficients to represent these linear
functions. That is,0f5 ¢, and h are represented by

_fa b » (A B _ (aA+bC aB+bD
F_<c d)’ G—(c D)’ and H—(CA+dc cB+dD)'

After making this association, it was only natural for Cayley to call H the
composition (or product) of F and G, and to write

a b A B\ _(aA+bC aB+bD (3.4.1)
c d C D) \cA+dC cB+dD )" o
In other words, the product of two matrices represents the composition of the

two associated linear functions. By means of this observation, Cayley brought to
life the subjects of matrix analysis and linear algebra.

It is illegal to print, duplicate, or distribute this material
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Cayley was not the first to compose linear functions. In fact, Gauss used these compositions

as early as 1801, but not in the form of an array of coefficients. Cayley was the first to make
the connection between composition of linear functions and the composition of the associated
matrices. Cayley’s work from 1855 to 1857 is regarded as being the birth of our subject.
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Exercises for section 3.4

Each problem in this section concerns the following three linear transformations

in R2.
(p)
Rotation: Rotate points counterclockwise
through an angle 6. o8 P

o
p -
Q
c >

©
E @ . | |
w0 5 Reflection: Reflect points about the z -axis.
0
— O
o <
se
= q‘)
= >N
o .
o & .
= N
o Q . ‘
< 8 Projection: Projec - e line /
o 5 Y dicular ®
.9 -g T.
50
T >
P
c o
= a
o o
o = 3 the matrix associated with each of these linear functions.
= 8 , determine the a;; ’s such that
g ®
L) &J fp)=f 1) _ [ a11%1 + @122
= ) a1T1 + azers )
B2
=

3.4.2. By using matrix multiplication, determine the linear function obtained
by performing a rotation followed by a reflection.

3.4.3. By using matrix multiplication, determine the linear function obtained
by first performing a reflection, then a rotation, and finally a projection.
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3.5 MATRIX MULTIPLICATION

The purpose of this section is to further develop the concept of matrix multipli-
cation as introduced in the previous section. In order to do this, it is helpful to
begin by composing a single row with a single column. If

product of the i** row of F with the j** column in G. That is,

C1
C2
R=(rqy ro -+ 7m,) and C=| . |,

c—U .
= Cn
Q
g .g the standard inner product of R with C is defined to be scalar

)
2 5
_E 8 RC =7ri¢c1 +1r9c0+ - +1p0, =
o <
5®
o - For example,
= q‘)
= >
2 g 1
©
- (2 4 —2) 2 + (—2)(3) =4.
c L
QP
S S Recall from (3.4.1) that th 0 2 x 2 matrices
Q =
a = A B

o =
3% > wi 6=(2 p)
P
£ o was defi y writing
= O
o o
o= aA+bC aB+bD
+— QO =H.
— 0 cA+dC c¢B+dD
g ®

)
L] o No at the z ,7)-entry in the product H can be described as the inner
2
=

A B
hi1 =F1.G.1 = (a b)<0)’ hiz = F1.G.2 = (a b)<D>’

A B
ho1 = Fo.Gia = (c d) (C’)’ hoo = Fo., G2 = (¢ d)(D)'

This is exactly the way that the general definition of matrix multiplication is
formulated.
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For example, if

a (0 a
A= 11 13
23

2x3 b31  bza b3z b3y

. inside ones match 4T
shape of the product

t roduct AB exists and has shape 2 x 4. Consider a typical entry of
this product, say, the (2,3)-entry. The definition says [AB]s3 is obtained by
forming the inner product of the second row of A with the third column of B

air a2 a3 b1 bi2 | b1z | big
|a21 aso 0,23| b21 b22 b23 b24 5

b1 b3z | b33 | b3a

bi1 bia bz bus
and B = | by by baz boy
3x4

It is illegal to print, duplicate, or distribute this material
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SO
3

[AB],; = Ay.B.3 = a21b13 + agebas + az3bsz = Z aoxbys.
k=1
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For example,

1 3 -3 2
A:(§ (1) _§>,B: 2 5 -1 8 :>AB:<Z ‘;) _; j).
-1 2 0 2

Notice that in spite of the fact that the product AB exists, the product BA
is not defined—matrix B is 3 x4 and A is 2 x 3, and the inside dimensions
don’t match in this order. Even when the products AB and BA each exist
and have the same shape, they need not be equal. For example,

A:(} j),B:(} i) — AB=<8 8),BA:<§ :;).(3.5.1)

This disturbing feature is a primary difference between scalar and maftrix algebra.

Matrix Multiplication Is Not Commutative

Matrix multiplication is a noncommutative operation—i.e., it is possible
for AB # BA, even when both products exist and have the same shape.

There are other major differences between multiplication of matrices and
multiplication of scalars. For sealars,

af =0 implies ‘@ =0 or (=0. (3.5.2)

However, the analogots'statement for matrices does not hold—the matrices given
in (3.5.1) show that'itis possible for AB = 0 with A # 0 and B # 0. Related
to this issue is ‘@ xrule’'sometimes known as the cancellation law. For scalars,
this law saysithat

af=ay and «a#0 implies [B=n7. (3.5.3)

This is truelbécause we invoke (3.5.2) to deduce that a(8 — ) = 0 implies
B =~ = 0. Since (3.5.2) does not hold for matrices, we cannot expect (3.5.3) to
holdyfordmatrices.

gal to print, duplicate, or distribute this material
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x@mple 3.5.1

The cancellation law (3.5.3) fails for matrix multiplication. If
1 1 2 2 3 1
A_(l 1), B—(2 2>, and C_(l 3),

AB:(4 4>=AC but B#C

Itis

then

4 4
in spite of the fact that A # 0.

Buy online from SIAM
Copyright © 2000 SIAM  http://www.ec-securehost.com/SIAM/ot71.html


http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

Chapter 3 Matrix Algebra

http.l/www.amazon com/exec/obidos/ASIN/0898714540

There are various ways to express the individual rows and columns of a
matrix product. For example, the i*" row of AB is

Bl*

B2*
=(an a2 - Qp) : =anBis +appBoy 4+ - - + By

B,.

As shown below, there are similar representations for the individual co

92 0 3 =5 1
=13 4 5) and B = |2 -7 2], then the
1 -2 0

3 -5 1
A ,B=(3 —4 5)|2 -7 2|=(6 3 —5),
1 =2 0

an cond column of AB is

[AB]., = AB,, = (:1,) - g) (Ez) - (g)

This example makes the point that it is wasted effort to compute the entire
product if only one row or column is called for. Although it’s not necessary to
compute the complete product, you may wish to verify that

3 =5 1
1 -2 0 -1 9 -3
AB = 2 =7 2| = .
(3 —4 5)(1 L 0) ( 6 3 —5)
Buy online from SIAM
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Matrix multiplication provides a convenient representation for a linear sys-
tem of equations. For example, the 3 x 4 system

221 + 3x0 +4x3 +8x4 =17,
3x1 + dxo + 63 + 224 = 6,
41 + 229 + 43 + 924 = 4,

can be written as Ax = b, where

2 3 4 8 o

Azxa=[3 5 6 2|, xpa= a:2 , and by
4.2 49 3
x4

And this example generalizes to become the following ent.

It is illegal to print, duplicate, or distribute this material
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The numerical solution of a linear system was presented earlier in the text
without the aid of matrix multiplication because the operation of matrix mul-
tiplication is not an integral part of the arithmetical process used to extract a
solution by means of Gaussian elimination. Viewing a linear system as a single
matrix equation Ax = b is more of a notational convenience that can be used to
uncover theoretical properties and to prove general theorems concerning linear
systems.
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For example, a very concise proof of the fact (2.3.5) stating that a system
of equations A,,xnXpx1 = bmx1 is consistent if and only if b is a linear
combination of the columns in A is obtained by noting that the system is
consistent if and only if there exists a column s that satisfies

S1
52
b=As= (A*l A*Q A*n) : :A*lsl +A*232++A*n3n
— Sn
8
E The following example illustrates a common situation in whichihmatrix mul-
-'(_U' tiplication arises naturally.
Exanple 3.5.2
5 ple 3
< An airline serves five cities, say, A, B, C, D, and H,“in which HVis the “hub
o) city.” The various routes between the cities are indicated in Figure 3.5.1.
3
= Y
0
g ®
G N Y

\_/

FIGURE 3.5.1
Suppese youwish to travel from city A to city B so that at least two connecting
flights arefrequired to make the trip. Flights (A — H) and (H — B) provide the
minimal/mumber of connections. However, if space on either of these two flights
is not available, you will have to make at least three flights. Several questions
arise. How many routes from city A to city B require exactly three connecting
flights? How many routes require no more than four flights—and so forth? Since
this particular network is small, these questions can be answered by “eyeballing”
the diagram, but the “eyeball method” won’t get you very far with the large
networks that occur in more practical situations. Let’s see how matrix algebra

can be applied. Begin by creating a connectivity matriz C = [c;;] (also known
as an adjacency matriz) in which

Please report violations to meyer@ncsu@du
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For the network depicted in Figure 3.5.1,

A B C D H

A0 0 1 0 1
B|l1 0 0 0 1
cC=C]|]0 0 0 1 1
DO 1 0 0 1
H\1 1 1 1 0

The matrix C together with its powers C2,C3,C%,... will provide
information needed to analyze the network. To see how, notice
is the number of direct routes from city ¢ to city k, and
number of direct routes from city k£ to city j, it follows

the number of 2-flight routes from city ¢ to city j th ve a
city k. Consequently, the (i, 7)-entry in the produc i

5
[CZ]ij = Zcikckj = the total number of 2-fli tes from city 7 to city j.
k=1

Similarly, the (¢, j)-entry in the pro
5
[C¥;; = Z Ciky Chyko Chl = 3-flight routes from city 7 to city j,
k1,k2=1
and, in general,

5

n
% E : Cik1Ckiks " " Ckyy_okn_1Ckn_1j
ki,ka, e kp—1=1

is the total n er of n-flight routes from city 7 to city j. Therefore, the total
number of routes from city i to city j that require mo more than n flights
mu iven by

[Cli; + [Cz]ij + [Cg]ij +---+[C"];; =[C+ C?4+C+---+ C")ij.

For our particular network,

111 21 2 3 2 2 5 8 7 7 7 9
112 11 2 2 2 35 78 77 9
c’=|1 211 1],C*=|3 2 2 2 5]|,C*=|7 78 7 9],
2 1 1 1 1 2 2 3 2 5 7778 9
1 111 4 55 5 5 4 9 9 9 9 20
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and
11 11 11 11 16

11 11 11 11 16
C+C>’+C*+C*= |11 11 11 11 16
11 11 11 11 16
16 16 16 16 28

The fact that [C?];2 = 3 means there are exactly 3 three-flight routes from city
A to city B, and [C%;2 = 7 means there are exactly 7 four-flight routes—try
to identify them. Furthermore, [C + C? + C3 + C*];2 = 11 means theresare, 11

It is illegal to print, duplicate,
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g routes from city A to city B that require no more than 4 flights.

'ﬁxejcises for section 3.5

E

2 1 -2 3 1 2 1

= 3.51. For- A=|10 -5 4|, B=|0 4]|,and C=,| 2|, compute
9 4 -3 8 3 7 3

_8 the following products when possible.

= (a) AB, (b) BA, (c) CBI7(d)€'B, () A%, (f) B?
%) (g) C'C, () cc’, (i) BBf, () B'B, (k) CTAC.
©

| —

o 3.5.2. Consider the following system of equations:

21 4+ T2 + 3 = 3,
4xq + 2x3 = 10,
2$1 + 2$2 = —2.

(a) »Write the system as a matrix equation of the form Ax = b.
(b) ‘Write the solution of the system as a column s and verify by

matrix multiplication that s satisfies the equation Ax = b.
(e)” Write b as a linear combination of the columns in A.

0
3.5.3. Let E= 0 | and let A be an arbitrary 3 x 3 matrix.
1

w o=
o = O

(a) Describe the rows of EA in terms of the rows of A.
(b) Describe the columns of AE in terms of the columns of A.

3.5.4. Let e; denote the j'* wnit column that contains a 1 in the j
position and zeros everywhere else. For a general matrix A,,«,, describe
the following products. (a) Ae; (b) elA (c) elAe;
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3.5.5.

3.5.6.
T 3.5.7.
} -
Q
c >
SIS
@0 S
 m
= O
O < 3.5.8.
E ®
| -
.: g
D o
T £
} -
© L
y N
25
O =
X
32 3.5.9.
R
c o
£9
Qo
2o
T @
8 O
=0
0
=
3.5.10.

Copyright © 2000 SIAM

Suppose that A and B are m x n matrices. If Ax = Bx holds for
all n x 1 columns x, prove that A = B. Hint: What happens when
X is a unit column?

172 «
0 1/2
powers of A and try to deduce the general form of A™.

For A = , determine lim, .., A™. Hint: Compute a few

If Cnx1 and Riyx, are matrices consisting of a single column and
a single row, respectively, then the matrix product P,,x, ‘=,CR \is
sometimes called the outer product of C with R. Eér conformable
matrices A and B, explain how to write the product’ ABfas a sum of
outer products involving the columns of A and the rows of Bt

A square matrix U = [u;;] is said to be upper triamgular whenever
u;; = 0 for i > j—i.e., all entries below: thedmain, diagonal are 0.
(a) If A and B are two n X gfipper-triangular matrices, explain
why the product AB must alsé be upper triangular.
(b) If A,xn and B, x, @re upper triangular, what are the diagonal
entries of AB?
(c) L is lower triangularwhen (;; =0 for i < j. Is it true that
the produet ofistwo mx n lower-triangular matrices is again
lower triangular?

If A =4a;;(t)] is a matrix whose entries are functions of a variable t,
the dertwative of A with respect to t is defined to be the matrix of
deérivatives. That is,

aA _ [da
da | dt |
Berive the product rule for differentiation

d(AB) dA dB
=B+ AT.
dt a >t

Let C,x, be the connectivity matrix associated with a network of n
nodes such as that described in Example 3.5.2, and let e be the n x 1
column of all 1’s. In terms of the network, describe the entries in each
of the following products.

(a) Interpret the product Ce.

(b) Interpret the product e’ C.
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3.5.11. Consider three tanks each containing V' gallons of brine. The tanks are
connected as shown in Figure 3.5.2, and all spigots are opened at once.
As fresh water at the rate of r gal/sec is pumped into the top of the
first tank, r gal/sec leaves from the bottom and flows into the next
tank, and so on down the line—there are r gal/sec entering at the top
and leaving through the bottom of each tank.

=

r gal/sec

FIGURE 3.5.2

Leta,(t ote the number of pounds of salt in tank 7 at time ¢, and

x1 (t) d.’L’l/dt
dx
x = | x2(t) and i dxo/dt
I3 (t) d.’L‘3/dt
ssuming that complete mixing occurs in each tank on a continuous
basis, show that

It is illegal to print, duplicate, or distribute this material
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Ccll—?zAx, where A = _ 1 -1 0

Hint: Use the fact that

dx i
dt

Ibs L bs .
= rate of change = — coming in — — going out.
sec sec
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3.6 PROPERTIES OF MATRIX MULTIPLICATION

We saw in the previous section that there are some differences between scalar
and matrix algebra—most notable is the fact that matrix multiplication is not
commutative, and there is no cancellation law. But there are also some important
similarities, and the purpose of this section is to look deeper into these issues.
Although we can adjust to not having the commutative property, the situa-
tion would be unbearable if the distributive and associative properties were not
available. Fortunately, both of these properties hold for matrix multiplication.

Distributive and Associative Laws

For conformable matrices each of the following is true.
o AB+C)=AB+ AC (left-hand distributive law).
¢ (D+E)F =DF+EF (right-hand distributive law).

e A(BC)=(AB)C (associative law).

Proof. To prove the left-hagd distributive property, demonstrate the corre-
sponding entries in the mafrices A (B©C) and AB + AC are equal. To this
end, use the definition_ef matrix multiplication to write

[A(B+C)];; =AuB +C).; = > [Alix[B+Cli; = > _[Alir (Blij + [Cliy)
k k
= Z [ALik[Bli; + [Alik[Cli;) = Y _[Alik[Bli; + > _[A
k k
= Ai*B*j + A;.C,; = [AB];; + [AC]y;

Please report violations to meyer@ncsu.edu

= [AB + ACJ;;.

Since this is true for each ¢ and j, it follows that A(B + C) = AB + AC. The
proof of the right-hand distributive property is similar and is omitted. To prove
the associative law, suppose that B is p x ¢ and C is ¢ x n, and recall from
(3.5.7) that the j** column of BC is a linear combination of the columns in
B. That is,

It is illegal to print, duplicate, or distribute this material
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[BCl.j = Buicij + Buacgj + -+ + Bugey; = ZB*kaj~
k=1
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Use this along with the left-hand distributive property to write

q q
[A(BC)];; = Ain[BCl.; = A Y Burcrj = »_ AiuBucr;
k=1 k=1

q
Z chk] AB]@*C*] = [(AB)C]U |

Example 3.6.1

Linearity of Matrix Multiplication. Let A be an m x n matrix
the function defined by matrix multiplication

fXnxp) = AX.

The left-hand distributive property guarantees that f
cause for all scalars « and for all n x p matrices nd

f(@X+Y)=A(X+Y)=A(aX) X+ AY
= af(X) + f(Y).
Of course, the linearity of matrix multiplicat no surprise because it was

the consideration of linear functions the definition of the matrix

product at the outset.

ity element for multiplication because
whatever it is multiplied by. For matrices,
ith similar properties.

For scalars, the numb
it has the property thatyi
there is an identit;

It is illegal to print, duplicate, or distribute this material
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Proof. Notice that I,; has a 1 in the 4t position and 0’s elsewhere. Recall
from Exercise 3.5.4 that such columns were called unit columns, and they
have the property that for any conformable matrix A,

AL; = A,;.
Using this together with the fact that [AI],; = AL, produces
Al= (AL, AL, - AL,)=(Aa A - A.)=A.

A similar argument holds when I appears on the left-hand side of A<

Analogous to scalar algebra, we define the 0" power of a sqflare matrix/4o
be the identity matrix of corresponding size. That is, if A is @ x n§ then

A =1,.
Positive powers of A are also defined in the natural way. Thatis,
AF = AA A,
——
k times

The associative law guarantees that ‘ithmakessio difference how matrices are
grouped for powering. For example, A A%\is the same as A2A, so that

A3 ="AAA =AA? = A’A.
Also, the usual laws.of exponents hold. For nonnegative integers r and s,
A"A* =A"" and (A")"=A"

We are not yet in, a position to define negative or fractional powers, and due to
the lack 'of conformability, powers of nonsquare matrices are never defined.

xdnple 3.6.2

A Ritfall. For two n x n matrices, what is (A + B)2? Be careful! Because
matrix multiplication is not commutative, the familiar formula from scalar alge-
bra is not valid for matrices. The distributive properties must be used to write

It is illegal#o print, duplicate, or distribute this material
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(A+B’=(A+B)(A+B)=(A+B)A+(A+B)B
——— —— ———

= A? + BA + AB + B?,

and this is as far as you can go. The familiar form A2+2AB+B? is obtained only
in those rare cases where AB = BA. To evaluate (A + B)k7 the distributive
rules must be applied repeatedly, and the results are a bit more complicated—try
it for k= 3.
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Example 3.6.3

Suppose that the population migration between two geographical regions—say,
the North and the South—is as follows. Each year, 50% of the population in
the North migrates to the South, while only 25% of the population in the South
moves to the North. This situation is depicted by drawing a transition diagram
such as that shown in Figure 3.6.1.

5

TN
e oo

25

FIGURE 3.6.1

Problem: If this migration pattern continuesswill the population in the North
continually shrink until the entire population iséventually in the South, or will
the population distribution somehow, stabilizé before the North is completely
deserted?

Solution: Let n; and si dendte the respective proportions of the total popula-
tion living in the North andfSouth@t theyend of year k and assume ny + s, = 1.
The migration pattern dictates thatithe fractions of the population in each region
at the end of year k + 1 are

Ngy1 = nk(5) + Sk(.25),

Sg+1 = ng(-5) + sk (.75). (3.6.1)

If p;‘g =(n, si) and p,{ﬂ = (ng+1, Sk+1) denote the respective population
distributions‘at the end of years k£ and k+ 1, and if

N S
N/(5 5
T=5 (.25 .75>

is the associated transition matriz, then (3.6.1) assumes the matrix form
Pt = pi T. Inducting on p] = p{T, p; =pi T =pjT? pj =p3T =
pl'T3, etc., leads to

It is illegal to print, duplicate, or distribute this material
Please report violations to meyer@ncsu.edu

p; = pg T*. (3.6.2)

Determining the long-run behavior involves evaluating limg_. o pz, and it’s clear
from (3.6.2) that this boils down to analyzing limy_.., T*. Later, in Example
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7.3.5, a more sophisticated approach is discussed, but for now we will use the
“brute force” method of successively powering T until a pattern emerges. The
first several powers of T are shown below with three significant digits displayed.

, (375 625 , (344 656 . (328 672
T _<.312 6s7) T Tz e2) T T332 68

T — 334 .666 T6 — 333 .667 T — 333 .667
333 .667 333 .667 333 667

This sequence appears to be converging to a limiting matrix of the 0
. 1 /3 2 / 3
oo __ k
T = lim T = 1/3 2/3 @

so the limiting population distribution is

3 2/3
1/3 2/3

_ (n0+50 2(n0+80)>
3 3
Therefore, if the migration patt X‘ old, then the population dis-

tribution will eventually stabi the populatlon being in the North
and 2/3 of the populatio uthd-And this is independent of the initial
distribution! The powe ate that the population distribution will be
years—individuals may continue to move,
ion are essentially constant by the sixth year.

pfo hm pk = hm Po Ik — pT hm T*

transposition has an interesting effect upon a matrix
order occurs.

It is illegal to print, duplicate, or distribute this material
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Proof. By definition,
(AB);, = [AB];; = A;.B.,.
Consider the (i,7)-entry of the matrix BT AT and write

[BTAT] i (BT)i* (AT)*j = Z [BT]ik [AT] kj

k

= Z Aljr = [Aljx[Blki

k

Therefore, (AB)Z.TJ- = [BTAT]M for all i and j, and thus (AB)! =BTAT,
The proof for the conjugate transpose case is similar. i

xdnple 3.6.4

For every matrix A,,xn, the products ATA and AA™ aresymmetric matrices
because

(ATA)" = ATAT" = ATA  and _(AAT)" = APTAT — AAT.

xdgmple 3.6.5

or d@istribute thisgnaterial
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Trace of a Product. Recall from Example 3.3.1 that the trace of a square
matrix is the sum of its main diagonabentries. Although matrix multiplication
is not commutative, the trace function 1s one of the few cases where the order of
the matrices can be clianged without affecting the results.

Problem: For madtrices A,,x» and B, «,., prove that
trace (AB) = trace (BA).

Solution:

trace (AB) = Z[AB = Z A;.B,;, = Z Z aibr; = Z Z briis
i k
= Z mealk = ZBk* k= Z[BA}kk = trace (BA)

E
Note: This is true in splte of the fact that AB is m x m while BA is n x n.
Furthermore, this result can be extended to say that any product of conformable
matrices can be permuted cyclically without altering the trace of the product.
For example,

It is illegal to print, duplicate,

trace (ABC) = trace (BCA) = trace (CAB).
However, a noncyclical permutation may not preserve the trace. For example,
trace (ABC) # trace (BAC).
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Executing multiplication between two matrices by partitioning one or both
factors into submatrices—a matrix contained within another matrix—can be
a useful technique.

is possible, looking at some examples
anding this technique.

Although a completel
better serves the purpose

ple 3.6.6

articularly useful when there are patterns in the matrices
ider the partitioned matrices
(I 0
—\C C)’

C 1
—(1 O), B—
1 0 1 2
I_<0 1) and C—(3 4>.

Using block multiplication, the product AB is easily computed to be
C I I 0 2C C
s8=(T 0)(e ¢)=(T §)-

Buy online from SIAM
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Example 3.6.7

Reducibility. Suppose that T, x,x = b represents a system of linear equa-
tions in which the coefficient matrix is block triangular. That is, T can be
partitioned as

T:(‘g‘ g), where A is rx7r and Cis n—rxn—r. (3.6.3)

If x and b are similarly partitioned as x = (2) and b= (E;), then block
multiplication shows that Tx = b reduces to two smaller systems

Ax; + Bxy = by,
CX2 = b2,

so if all systems are consistent, a block version of back substitutionis possible—
i.e., solve Cxy = by for x5, and substituted this back into “Ax; = b; — Bxo,
which is then solved for x;. For obvious reasefis, blockstriangular systems of
this type are sometimes referred to as redueéble systems, and T is said to
be a reducible matrixz. Recall that applying Gaussian elimination with back
substitution to an n x n system requires aboit n?/3 multiplications/divisions
and about n?®/3 additions/subtractions, Thisaeans that it’s more efficient to
solve two smaller subsystems tlian to selve one large main system. For exam-
ple, suppose the matrix T, in (3.643)%s 100 x 100 while A and C are each
50 x 50. If Tx = b is solved without taking advantage of its reducibility, then
about 10°/3 multiplieltions,/divisions are needed. But by taking advantage of
the reducibility, ondygabout (250 x 10%)/3 multiplications/divisions are needed
to solve both 50°X 50 subsystems. Another advantage of reducibility is realized
when a computer’siiain memory capacity is not large enough to store the entire
coefficient matrix butiis large enough to hold the submatrices.

cises for section.3.6

3.6.1. For the partitioned matrices

Itis illegal togprint, duplicate, or distribute this material
Please| Eeport violations to meyer@ncsu.edu

-1 -1
1] 00] 333 0 0
A—|1]00] 3 33 and B=|_9 O
1122000 -1 -2
—1 -2
-1 -2

use block multiplication with the indicated partitions to form the prod-
uct AB.
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3.6.2.

3.6.3.

3.6.4.

3.6.5.

3.6.6.

3.6.7.

It is illegal to print, duplicate, or distribute this material
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3.6.8.
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For all matrices A, «xx and Bpx,, show that the block matrix

L_( I-BA B
“\2A-ABA AB-1I

has the property L2 = I. Matrices with this property are said to be
involutory, and they occur in the science of cryptography.

For the matrix

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/34p
1/3 1/3 148
1/3 1/34.1/3

OO OO
[N elNeNel -]
SO O OO

0

determine A3%°, Hint: A square matri®hCis said to be idempotent
when it has the property that C2_=C. Make use of idempotent sub-
matrices in A.

For every matrix A,,xsmdemonstrate that the products A*A and
AA* are hermitian matrices!

If A and B_gare 'symmetric matrices that commute, prove that the
product AB, is alse symmetric. If AB # BA, is AB necessarily sym-
metric?

Prove that the right-hand distributive property is true.
For each matrix A, xn, explain why it is impossible to find a solution
for X, «, in the matrix equation
AX -XA =1

Hint: Consider the trace function.
Let yZ.,, be arow of unknowns, and let A,,«, and b, be known
matrices.

(a) Explain why the matrix equation yZ A = bT represents a sys-

tem of n linear equations in m unknowns.

(b) How are the solutions for y7 in yZA = b’ related to the
solutions for x in ATx = b?
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3.6.9.

©
p -
Q
c >
©
EGJ 3.6.10.
Q5
o
+ 0O
o <
g5
.:g
i)
RN
o E
p -
oL
y N
25
9'% 3.6.11.
So
© >
P
c O
= 8
S g
_90) 3.
T ©
80)
=0
0
=
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A particular electronic device consists of a collection of switching circuits
that can be either in an ON state or an OFF state. These electronic
switches are allowed to change state at regular time intervals called clock
cycles. Suppose that at the end of each clock cycle, 30% of the switches
currently in the OFF state change to ON, while 90% of those in the ON
state revert to the OFF state.

(a) Show that the device approaches an equilibrium in the sense
that the proportion of switches in each state eventually becomes
constant, and determine these equilibrium proportions.

(b) Independent of the initial proportions, about how m
cycles does it take for the device to become essential

Write the following system in the form T, «,x = T 4s block
triangular, and then obtain the solution by solvi 0s stems as
described in Example 3.6.7.
Ty + 1z + 3x3_+ =91,
3 T 37
T + 2z = -2,
2&74 =
Prove that each of the f ing statements is true for conformable ma-
trices.
(a) B trace (BCA) = trace (CAB).
(b) ABC) can be different from trace (BAC).
t (ATB) = trace (ABT).
at A,,x, and X,y have real entries.

Prove that x7x = 0 if and only if x = 0.
(b) Prove that trace (ATA) =0 if and only if A =0.
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3. MATRIX INVERSION

If « is a nonzero scalar, then for each number ( the equation ax = ( has a
unique solution given by = = a~'3. To prove that a~ ! is a solution, write

ala™'p) = (a3 = (1)8 = 3. (3.7.1)
Uniqueness follows because if ;1 and zo are two solutions, then

ar] = ﬂ = Qqry — a_l(aacl) = Ck_l(O[fEQ)

= (a'a)r; = (ata)wy (3:712)

— (1)1‘1 = (1)12 — T = T2.

These observations seem pedantic, but they are important indorder(to see how
to make the transition from scalar equations to matrix equations. In patticular,
these arguments show that in addition to associativitythe properties

ac”t=1 and o lta=1 (3.7.3)
are the key ingredients, so if we want to solve matrix equations in the same
fashion as we solve scalar equations, then & matrix analogue of (3.7.3) is needed.

Matrix Inversion

For a given square matrix A, x,, the matrix B, «, that satisfies the

conditions
AB=1, and BA-=1,

is called the inverse of A and is denoted by B = A~!. Not all square
matrices are invertible—the zero matrix is a trivial example, but there
are also many nonzero matrices that are not invertible. An invertible
matrix is said to be nonsingular, and a square matrix with no inverse
is called a singular matriz.

Notice that matrix inversion is defined for square matrices only—the con-
ditionA'A~! = A~'A rules out inverses of nonsquare matrices.

Please report violations to meyer@ncsu.edu
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xample 3.7.1
If

It |3rJIIegaI to print, duplicate, or distribute this material

a b
A_(c d)’ where & = ad — be # 0,

1 d —b
-1 _
at=5(7)

because it can be verified that AA™! = A71A =1,.

then
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Although not all matrices are invertible, when an inverse exists, it is unique.
To see this, suppose that X; and Xy are both inverses for a nonsingular matrix
A. Then
X; =X1I=X(AX;) = (X1A)X, = IX, = Xo,

which implies that only one inverse is possible.

Since matrix inversion was defined analogously to scalar inversion, and since
matrix multiplication is associative, exactly the same reasoning used in (3.7.1)
and (3.7.2) can be applied to a matrix equation AX = B, so we have the
following statements.

However, it must be the representation of the solution as
x = A7 'b is mostl i or theoretical convenience. In practice, a
nonsingular syste is almost never solved by first computing A~' and
then the produ ."The reason will be apparent when we learn how

much work is in n computing A~
re matrices are invertible, methods are needed to distin-
ular and singular matrices. There is a variety of ways to

It is illegal to print, duplicate, or distribute this material
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Proof. The fact that (3.7.6) <= (3.7.7) is a direct consequence of the defi-
nition of rank, and (3.7.6) <= (3.7.8) was established in §2.4. Consequently,
statements (3.7.6), (3.7.7), and (3.7.8) are equivalent, so if we establish that
(3.7.5) <= (3.7.6), then the proof will be complete.

Proof of (3.7.5) = (3.7.6). Begin by observing that (3.5.5) guarantees
that a matrix X = [X,q | Xya| | Xy, satisfies the equation AX =T if and
only if X,; is a solution of the linear system Ax = L.;. If A is nonsingular,
then we know from (3.7.4) that there exists a unique solution to AX =1, and
hence each linear system Ax = I,; has a unique solution. But in §2.5 we leazned
that a linear system has a unique solution if and only if the rank of theoefficient
matrix equals the number of unknowns, so rank (A) = n.

Proof of (3.7.6) = (3.7.5). If rank(A) = n, then (238.4) imsuresithat
each system Ax = I,; is consistent because rank[A |Lg4p=nl= rank(A).
Furthermore, the results of §2.5 guarantee that each system Ax =(I.; has a
unique solution, and hence there is a unique solutien to the, matrix equation
AX = 1. We would like to say that X = A~', but we cannot jump to this
conclusion without first arguing that XA = I.\Suppose this is not true—i.e.,
suppose that XA — I # 0. Since

AXA-T)=(AX) A—A<LTIA A =0,

it follows from (3.5.5) that any nonzero.colummyef X A —1I is a nontrivial solution
of the homogeneous system Axf=0.)But this is a contradiction of the fact that
(3.7.6) <= (3.7.8). Therefore, the supposition that XA — I # 0 must be false,
and thus AX =1 = XA, which means” A is nonsingular. [

The definition of matzix inversion says that in order to compute A~!, it is
necessary to solvel both, of the matrix equations AX =1 and XA = I. These
two equations are negessary to rule out the possibility of nonsquare inverses. But
when only s@uate matrices are involved, then either one of the two equations will
suffice—the following example elaborates.

xample 3.7.2

Problem: If A and X are square matrices, explain why
AX=1 — XA-=1 (3.7.9)
In other words, if A and X are square and AX =1, then X = A1,

Solution: Notice first that AX =1 implies X is nonsingular because if X is
singular, then, by (3.7.8), there is a column vector x # 0 such that Xx = 0,
which is contrary to the fact that x = Ix = AXx = 0. Now that we know X!
exists, we can establish (3.7.9) by writing

AX=1 = AXX!'=X"! —m A=X"'! =— XA=L

Caution! The argument above is not valid for nonsquare matrices. When
m # n, it’s possible that A, xnXuxm = Ly, but XA #£1,.

It is illegal ta=print, duplicate, or distribute this material
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Although we usually try to avoid computing the inverse of a matrix, there are
times when an inverse must be found. To construct an algorithm that will yield
A~! when A, ., is nonsingular, recall from Example 3.7.2 that determining
A~ is equivalent to solving the single matrix equation AX = I, and due to
(3.5.5), this in turn is equivalent to solving the n linear systems defined by

Ax=1, for j=12,...,n (3.7.10)

In other words, if X1, X0, ..., X, are the respective solutions to (3.7.10), then
X = [Xy1 | Xsa || Xsn] solves the equation AX = I, and hence X = A~1L.
If A is nonsingular, then we know from (3.7.7) that the Gauss—Jordandmethod
reduces the augmented matrix [A |I,;] to [I]|X,;], and the results of§1.3 insure
that X,; is the unique solution to Ax =1I,;. That is,
Gauss—Jordan

(A L] =0 1] (A1),
But rather than solving each system Ax = I,; separafely, we can solve them
simultaneously by taking advantage of the fact thatythey “all, have the same
coefficient matrix. In other words, applying thehGauss—Jordan method to the

larger augmented array [A |Li |La |- - | LigJeproduces
Gauss—Jordan T o1 1
(AL Lo | [ L] =2 A AT o |- [ (A7 [

or more compactly,

Gauss=jordan
A———TA]. (3.7.11)
What happens if we try to mvert a singular matrix using this procedure?
The fact that (3.7.5) <(8.7.6) <= (3.7.7) guarantees that a singular matrix
A cannot be reddced to I by Gauss—Jordan elimination because a zero row will
have to emerge in thedeft-hand side of the augmented array at some point during
the processt This means that we do not need to know at the outset whether A
is nonsingular or singular—it becomes self-evident depending on whether or not
the zeduetion (3/7:11) can be completed. A summary is given below.

Computing an Inverse

Please report violations to meyer@ncsu.edu

Gauss—Jordan elimination can be used to invert A by the reduction

Gauss—Jordan

1|1 =— O] 8= (3.7.12)

It is illegal to print, duplicate, or distribute this material

The only way for this reduction to fail is for a row of zeros to emerge
in the left-hand side of the augmented array, and this occurs if and only
if A is a singular matrix. A different (and somewhat more practical)
algorithm is given Example 3.10.3 on p. 148.
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Although they are not included in the simple examples of this section, you
are reminded that the pivoting and scaling strategies presented in §1.5 need to
be incorporated, and the effects of ill-conditioning discussed in §1.6 must be con-
sidered whenever matrix inverses are computed using floating-point arithmetic.
However, practical applications rarely require an inverse to be computed.

Example 3.7.3
1 1 1
Problem: If possible, find the inverse of A= |1 2 2
1 2 3
Solution:
11 1 00 1 1 1 190 0
Al=(1 2 2 01 0]—(0 1 1 |41 1T.0
1 2 3 0 0 1 01 2 =1 01
100 2 -1 0 1€0 0 2" -1 0
— |10 1 1 -1 1 0] — 40 1T 0 =1 2 -1
0 0 1 0 -1 1 040 <1 0 -1 1
2 -1 0
Therefore, the matrix is nonsing@lar,)and YA ~" = | —1 2 —1|. If we wish
0 -1 1

to check this answer, we néed only check that AA~! = I. If this holds, then the
result of Example 3.7 2%nsures thath A~'A = I will automatically be true.

Earlier in this section it was stated that one almost never solves a nonsin-
gular lineargsystem’ Ax = b by first computing A~! and then the product
x = A~b. To appreciate why this is true, pay attention to how much effort is
requiredto perform one matrix inversion.

Operation Counts for Inversion

—1
nxn

Please report violations to meyer@ncsu.edu

Computing A by reducing [A|I] with Gauss—Jordan requires

e n? multiplications/divisions,

It is illegal to print, duplicate, or distribute this material

o n3—2n% +n additions/subtractions.

Interestingly, if Gaussian elimination with a back substitution process is
applied to [A|I] instead of the Gauss—Jordan technique, then exactly the same
operation count can be obtained. Although Gaussian elimination with back sub-
stitution is more efficient than the Gauss—Jordan method for solving a single
linear system, the two procedures are essentially equivalent for inversion.
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Solving a nonsingular system Ax = b by first computing A~! and then
forming the product x = A~!'b requires n® +n? multiplications/divisions and
n® —n? additions/subtractions. Recall from §1.5 that Gaussian elimination with
back substitution requires only about n3/3 multiplications/divisions and about
n3/3 additions/subtractions. In other words, using A~ to solve a nonsingular
system Ax = b requires about three times the effort as does Gaussian elimina-
tion with back substitution.

To put things in perspective, consider standard matrix multiplication be-
tween two n x m matrices. It is not difficult to verify that n® multiplications
and n3—n? additions are required. Remarkably, it takes almost exactlyfas much
effort to perform one matrix multiplication as to perform one matzix inversion.
This fact always seems to be counter to a novice’s intuition—itg“feels” like ma-
trix inversion should be a more difficult task than matrix multiplication, but this
is not the case.

The remainder of this section is devoted to a discussien of ‘some of the
important properties of matrix inversion. We begin with thesour basic facts
listed below.

Properties of Matrix Inversion

For nonsingular matrices A and B, the following properties hold.

e (A=A (3.7.13)
e The product AB is also nonsingular. (3.7.14)
e (AB) !=B7!A"! (the reverse order law for inversion). (3.7.15)
o (AH = (A7) and (A7) = (A7) (3.7.16)

Proof. Property \(3.7.13) follows directly from the definition of inversion. To
proven(3.7.14) and (3.7.15), let X = B7'A~! and verify that (AB)X =1 by
writing

(AB)X = (AB)B'A"'=ABB YA '=ADA '=AA'=1

Please report violations to meyer@ncsu.edu

According to the discussion in Example 3.7.2, we are now guaranteed that
X(AB) =1, and we need not bother to verify it. To prove property (3.7.16), let
X = (A*I)T and verify that ATX = I. Make use of the reverse order law for
transposition to write

It is illegal to print, duplicate, or distribute this material

ATX =AT(A Y = (AA) =17 =1

Therefore, (AT)_1 =X = (A‘l)T. The proof of the conjugate transpose case
is similar. [
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In general the product of two rank-r matrices does not necessarily have to
produce another matrix of rank r. For example,

1 2 2 4
A—<2 4) and B_<—1 _2>

each has rank 1, but the product AB = 0 has rank 0. However, we saw in
(3.7.14) that the product of two invertible matrices is again invertible. That
is, if rank (Anxn) = n and rank (Bpx,) = n, then rank (AB) = n. This
generalizes to any number of matrices.

Products of Nonsingular Matrices Are Nonsingular

If Ay, Ag,..., Ak are each n X n nonsingular matrices, then the prod-
uct AjAs--- A is also nonsingular, and its inverse is given by the
reverse order law. That is,

(AAs---Ap) ' =A  ASTATL

Proof.  Apply (3.7.14) and (3.7.15) inductivelyfFor example, when k =3 you
can write

(A {A A )T = {ALA Y AT = ASTAS AT B

cises for section 3.7

3.7.1. Whenpossible, find the inverse of each of the following matrices. Check
your answer by using matrix multiplication.

It is illegal to print, duglicate, or distribute this material
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4 -8 5
1 2 1 2
(i) el o (g T
1 1 1 1
1 2 3
@ |45 6] (© }ggg)
T8 1 2 3 4

3.7.2. Find the matrix X such that X = AX + B, where

0 -1 0 1 2
A=1|0 0 -1 and B=12 1
0 0 0 3 3
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3.7.3. For a square matrix A, explain why each of the following statements
must be true.
(a) If A contains a zero row or a zero column, then A is singular.
(b) If A contains two identical rows or two identical columns, then
A is singular.
(¢) If one row (or column) is a multiple of another row (or column),
then A must be singular.

3.7.4. Answer each of the following questions.
(a) Under what conditions is a diagonal matrix nonsingular? De-
scribe the structure of the inverse of a diagonal matrix.
(b) Under what conditions is a triangular matrixgionsidgular?De-
scribe the structure of the inverse of a triangular'matrig:

3.7.5. If A is nonsingular and symmetric, prove that, A~ is symmetric.

3.7.6. If A is a square matrix such that¢I'="A is nonsingular, prove that

AI-&) = T/A) 1A

3.7.7. Prove that if A isgdmxXwi and»B is n x m such that AB =1,, and
BA =1,, then mi=n.

3.7.8. If A, B, and A + B are each nonsingular, prove that

A(A+B) 'B=B(A+B)'A=(A'+B )"

3.7.9. Let S be a skew-symmetric matrix with real entries.
(a) Prove that I—S is nonsingular. Hint: x’x =0 = x=0.
(b) If A= (I+S)I—-S)"!, show that A=t = AT,

Please report violations to meyer@ncsu.edu

3.7.10. For matrices A,yx,, Bgxs,and C,ys such that A and B are nonsin-
gular, verify that each of the following is true.

A 0o\ (A o
(@) <0 B) ( 0 B1>
A Cc\ ' (A —A-CcB!
(b) <0 B) _< 0 B! )
Buy online from SIAM
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3.7.11. Consider the block matrix ﬁr” g”s . When the indicated in-
SXT SX S

verses exist, the matrices defined by
S=B-RA'C and T=A-CB 'R
are called the Schur complements20 of A and B, respectively.

(a) If A and S are both nonsingular, verify that

A C\' [AT+AICSTIRATL —A!
R B) ~ ~S"'RA! 1

(b) If B and T are nonsingular, verify that
A c\ ' T
R B “\-B'RT}

3.7.12. Suppose that A, B, C, an ar matrices such that ABT
and CD7T are each symmet — BC” =1. Prove that

TB=1.

It is illegal to print, duplicate, or distribute this material
Please report violations to meyer@ncsu.edu

20
This is named in honor of the German mathematician Issai Schur (1875-1941), who first studied

matrices of this type. Schur was a student and collaborator of Ferdinand Georg Frobenius
(p. 662). Schur and Frobenius were among the first to study matrix theory as a discipline
unto itself, and each made great contributions to the subject. It was Emilie V. Haynsworth
(1916-1987)—a mathematical granddaughter of Schur—who introduced the phrase “Schur
complement” and developed several important aspects of the concept.
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The reverse order law for inversion makes the inverse of a product easy to deal
with, but the inverse of a sum is much more difficult. To begin with, (A + B)~!
may not exist even if A~! and B~! each exist. Moreover, if (A +B)~! exists,
then, with rare exceptions, (A +B)~! # A~! 4+ B~!. This doesn’t even hold
for scalars (i.e., 1 x 1 matrices), so it has no chance of holding in general.
There is no useful general formula for (A+B)~!, but there are some special
sums for which something can be said. One of the most easily inverted sums is
I+ cd” in which ¢ and d are n x 1 nonzero columns such that 1+d%ec 0.
It’s straightforward to verify by direct multiplication that
™1 cd”
(I+cd") =1I T dfe (381)
If T is replaced by a nonsingular matrix A satisfyingl £d” AThe®# 0, then
the reverse order law for inversion in conjunction with, (3.8.1)yyields
-1
(A +cdT)! (A(I+A ch)) — @ A ted?) TA!
B (  Aled” ) Al ASL A-ledTA™!
1+dTA ¢ 1+dTA-1c’

This is often called the Sherman-Mortison - araik-one update formula because
it can be shown (Exercise 3.9.94p. 140) that rank (cd”) =1 when ¢ # 0 # d.

Sherman—-Morrison Formula

e If A,«, is nonsingular and if ¢ and d are n x 1 columns such
that 1 +dTA~!c #0, then the sum A + cd” is nonsingular, and

- A ledTA!

Atcdl) l=at_2 22 3.8.2

(A +cd) 1+dTA ¢ (3.8.2)

e The Sherman—Morrison—Woodbury formula is a generalization. If C
and D are n x k such that (I+D?7A~1C)~! exists, then

(A+CD)'=A"'-A'CI+DTA'C)'DTATL. (38.3)

This result appeared in the 1949-1950 work of American statisticians J. Sherman and W. J.
Morrison, but they were not the first to discover it. The formula was independently presented
by the English mathematician W. J. Duncan in 1944 and by American statisticians L. Guttman
(1946), Max Woodbury (1950), and M. S. Bartlett (1951). Since its derivation is so natural, it
almost certainly was discovered by many others along the way. Recognition and fame are often
not afforded simply for introducing an idea, but rather for applying the idea to a useful end.
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The Sherman—Morrison-Woodbury formula (3.8.3) can be verified with di-
rect multiplication, or it can be derived as indicated in Exercise 3.8.6.

To appreciate the utility of the Sherman-Morrison formula, suppose A !
is known from a previous calculation, but now one entry in A needs to be
changed or updated—say we need to add a to a;;. It’s not necessary to start
from scratch to compute the new inverse because Sherman—Morrison shows how
the previously computed information in A~! can be updated to produce the
new inverse. Let ¢ = e; and d = ae;, where e; and e; are the it" and jth
unit columns, respectively. The matrix c¢d? has « in the (i, j)-position and
zeros elsewhere so that

B:A—i—ch:A—i—aeieJT

is the updated matrix. According to the Sherman—Morrison formula,

_ A lejeT A
B*l — A i T 1 — Afl _ %
(A + ae;e; ) al+aejTA*1ei
(3.8.4)
A71 *7 A71 Ed
A1 - aw (recalldExercise 3.5.4).
1+ alA=1];;

This shows how A~! changes when g, 1S perfurbed, and it provides a useful
algorithm for updating A~!.

Problem: Start with«Apand A% given below. Update A by adding 1 to a1,
and then use the Shemman-Morrison formula to update A1 :

471 2 (3 =2
RE(1 D) waa=(10 )

Solution: Theaipdated matrix is

ALID-( 1)+ (2 - ) () meneoat

Applying the Sherman—Morrison formula yields the updated inverse

B-l—A-l_ A lesef AT Al (A7 ]2 [A 1
1+elA-ley T+ [A71]

e -2

(—:1)) ?)( 11—2 (g —?)
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Another sum that often requires inversion is I — A, but we have to be
careful because (I—A)~! need not always exist. However, we are safe when the
entries in A are sufficiently small. In particular, if the entries in A are small
enough in magnitude to insure that lim, ., A™ = 0, then, analogous to scalar
algebra,

I-A)I+A+A*+.  F A" H=T-A" =1 as n— oo,

so we have the following matrix version of a geometric series.

Neumann Series

If lim,, ,oc A™ =0, then I — A is nonsingular and

o0
I-A)'=T+A+A> ... =) A" (3.8.5)
This is the Neumann series. It provides approximations of (I — A)~!
when A has entries of small magnitude. For example, a first-order ap-
proximation is (I — A)~! ~ I+A. More on the Neumann series appears
in Example 7.3.1, p. 527, and the complete statement is developed on
p- 618.

While there is no useful formula for (A + B)~! in general, the Neumann
series allows us to say semething when B has small entries relative to A, or
vice versa. For exainple, if ATY exists, and if the entries in B are small enough
in magnitude to insure that lim,, . (A‘lB)n =0, then

A+B)=(A(1-[-a7B]) )_1 — (1- [-A7'B] >_1A‘1

- (i [AlB]"'> AL

k=0

Please report violations to meyer@ncsu.edu

and a first-order approximation is

It is illegal to print, duplicate, or distribute this material

(A+B) '~ Al - A'BA L. (3.8.6)

Consequently, if A is perturbed by a small matrix B, possibly resulting from
errors due to inexact measurements or perhaps from roundoff error, then the
resulting change in A~! is about A"'BA~!. In other words, the effect of a
small perturbation (or error) B is magnified by multiplication (on both sides)
with A~1 soif A~! has large entries, small perturbations (or errors) in A can
produce large perturbations (or errors) in the resulting inverse. You can reach
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essentially the same conclusion from (3.8.4) when only a single entry is perturbed
and from Exercise 3.8.2 when a single column is perturbed.

This discussion resolves, at least in part, an issue raised in §1.6—mnamely,
“What mechanism determines the extent to which a nonsingular system Ax =b
is ill-conditioned?” To see how, an aggregate measure of the magnitude of the
entries in A is needed, and one common measure is

|A] = maxz la;j| = the maximum absolute row sum. (3.8.7)
J

This is one example of a matriz norm, a detailed discussion of whieh is given in
85.1. Theoretical properties specific to (3.8.7) are developed onpp. 280 and\283,
and one property established there is the fact that || XY || & X4 '|Y ||o for all
conformable matrices X and Y. But let’s keep things efi an intuitive level for
the time being and defer the details. Using the norm(3.8.7), the approximation
(3.8.6) insures that if ||B|| is sufficiently small, then

IA™" = (A +B)7'|| ~ AT BAgHp= [l || 1B [| A~

so, if we interpret x <y to mean that x \is bounded above by something not
far from y, we can write

|7~ (A +B)Z"IRy B
A-iB) = A 1A {5}
The term on thedéftisithe relasive change in the inverse, and ||B]|/||A] is the
relative change ‘imy A< The number x = [[A7![|[|A| is therefore the “magnifi-

cation facter”mthat dictates how much the relative change in A is magnified.
This magnification factor x is called a condition number for A. In other
words, ifl k is small relative to 1 (i.e., if A is well conditioned), then a small
rélative changé (or error) in A cannot produce a large relative change (or error)
in the inVerse, but if x is large (i.e., if A is ill conditioned), then a small rela-
tive ehange (or error) in A can possibly (but not necessarily) result in a large
relative change (or error) in the inverse.

The situation for linear systems is similar. If the coefficients in a nonsingular
system Ax = b are slightly perturbed to produce the system (A + B)x = b,
then x = A~!'b and x = (A +B)~'b so that (3.8.6) implies

It is illegal to print, duplicate, or distribute this material
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x—x=A""b-(A+B)"'brA'b— (A"~ AT'BA 7 )b=A""Bx.
For column vectors, (3.8.7) reduces to ||x|| = max; |z;|, and we have

e — x| < JATHHIB 1]l
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so the relative change in the solution is

Ix — < |A7Y[1Bl = ||A7Y ||A||{”§||} x{%}. (3.8.8)

HXH

Again, the condition number k is pivotal because when k is small, a small
relative change in A cannot produce a large relative change in x, but for larger
values of k, a small relative change in A can possibly result in a large relative
change in x. Below is a summary of these observations.

Sensitivity and Conditioning

e A nonsingular matrix A is said to be ill conditioned if a small
relative change in A can cause a large relative change in A~1!.
The degree of ill-conditioning is gauged by a condition number
k= ||A| ||A~|], where ||x|| is a matrix norm.

e The sensitivity of the solution of Ax = b to perturbations (or
errors) in A is measured by the extent to which A is an ill-
conditioned matrix. More is said in Example 5.12.1 on p. 414.

It was demonstrated ingExample 1.6.1 that the system

835z + .667y = .168,
333z + .266y = .067,

is sensitive to small perturbations. We can understand this in the current context
by.examining the condition number of the coefficient matrix. If the matrix norm
(8.8.7) is employed with

(835 .667 ,_ {—266000 667000
A(.333 .266> and A < 333000 835000)’

then the condition number for A is
k=rk=|A] HA_1|| = (1.502)(1168000) = 1,754,336 ~ 1.7 x 108,

Since the right-hand side of (3.8.8) is only an estimate of the relative error in
the solution, the exact value of k is not as important as its order of magnitude.
Because & is of order 10°, (3.8.8) holds the possibility that the relative change
(or error) in the solution can be about a million times larger than the relative
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change (or error) in A. Therefore, we must consider A and the associated linear
system to be ill conditioned.

A Rule of Thumb. If Gaussian elimination with partial pivoting is used to
solve a well-scaled nonsingular system Ax = b wusing ¢-digit floating-point
arithmetic, then, assuming no other source of error exists, it can be argued that
when & is of order 10P, the computed solution is expected to be accurate to
at least t —p significant digits, more or less. In other words, one expects to
lose roughly p significant figures. For example, if Gaussian elimination with 8-
digit arithmetic is used to solve the 2 x 2 system given above, then only about
t—p =8 —6 = 2 significant figures of accuracy should be expetted. This
doesn’t preclude the possibility of getting lucky and attaining a higher degree/of
accuracy—it just says that you shouldn’t bet the farm on it.

The complete story of conditioning has not yet beengold.»As pointed out ear-
lier, it’s about three times more costly to compute ATY than te solve Ax = b,
so it doesn’t make sense to compute A~! just e estimate the condition of A.
Questions concerning condition estimation withoutfexplieitly computing an in-
verse still need to be addressed. Furthermore, liberties allowed by using the =~
and < symbols produce results that are intditively ‘correct but not rigorous.

~

Rigor will eventually be attained—sée Example 5.12.1 on p. 414.

cises for section 3.8

3.8.1. Suppose you arehgiven that

2 0 -1 10 1
A=l -1 1 1 and A'=(0 1 -1
-1 0 1 1 0 2

(a)«Use the Sherman—Morrison formula to determine the inverse of
the matrix B that is obtained by changing the (3,2)-entry in
A from 0 to 2.

(b) Let C be the matrix that agrees with A except that cgo = 2
and cs3 = 2. Use the Sherman-Morrison formula to find C~!.

It is illegal to print, duplicategor distribute this material
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3.8.2. Suppose A and B are nonsingular matrices in which B is obtained
from A by replacing A.; with another column b. Use the Sherman—
Morrison formula to derive the fact that

(Ailb — ej)[Afl]j* .

B '=A"-
[A=1]b
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3.8.3.

3.8.4.

3.8.5.

3.8.6.

3.8.7.

3.8.8.
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Suppose the coefficient matrix of a nonsingular system Ax = b is up-
dated to produce another nonsingular system (A + cd”)z = b, where
b,c,d € R"*!, and let y be the solution of Ay = c. Show that
z=x—-yd'x/(1+dTy).

(a) Use the Sherman-Morrison formula to prove that if A is non-
singular, then A + aeiejT is nonsingular for a sufficiently small
o.

(b) Use part (a) to prove that I+ E is nonsingular when allme;; ’s
are sufficiently small in magnitude. This is an alternativé to using
the Neumann series argument.

For given matrices A and B, where A is nonsimgularf explain” why
A + B is also nonsingular when the real number, e is eounstrained to
a sufficiently small interval about the origin. dn"othemywords, prove that
small perturbations of nonsingular matrices aréyalso nomsingular.

Derive the Sherman—Morrison—Woedbury ‘formula. Hint: Recall Exer-
. . I, C A C I 0

cise 3.7.11, and consider the product (0 I ) (DT —I) (DT I) .

Using the norm (3.8.7)ank thefollowing matrices according to their

degree of ill-conditioning:

100 0 —100 1 8 -1
A= 0.0 100°>100]), B=[-9 -711 11],
=100 =100 300 117 18
1 22 —42
C= 0 1 —45
45 048 1

Suppoese that the entries in A(t), x(t), and b(t) are differentiable
fanctions of a real variable ¢ such that A(t)x(t) = b(t).
(a) Assuming that A(¢)~! exists, explain why
dA(t)~!
dt
(b) Derive the equation
x'(t) = A(t)7'b/(t) — A(t) LA (t)x(t).
This shows that A~! magnifies both the change in A and the
change in b, and thus it confirms the observation derived from
(3.8.8) saying that the sensitivity of a nonsingular system to

small perturbations is directly related to the magnitude of the
entries in AL

=—At)TTA' (A
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3. ELEMENTARY MATRICES AND EQUIVALENCE

A common theme in mathematics is to break complicated objects into more
elementary components, such as factoring large polynomials into products of
smaller polynomials. The purpose of this section is to lay the groundwork for
similar ideas in matrix algebra by considering how a general matrix might be
factored into a product of more “elementary” matrices.

Elementary Matrices

Matrices of the form I—uv”, where u and v are n x 1 columns such
that vi'u # 1 are called elementary matrices, and we know from
(3.8.1) that all such matrices are nonsingular and

l].VT

I—uw’) " =1 (3.9.1)

viu—1"
Notice that inverses of elementary matrices are elementary matrices.

We are primarily interested ingthe elementary matrices associated with the
three elementary row (or colum) operations hereafter referred to as follows.

e Type Iis interchanging tows (columns) ¢ and j.
e Type II is multiplying row (column) i by a # 0.

e Type Illis adding a multiple of row (column) ¢ to row (column) j.

An elementary matrix of Type I, II, or III is created by performing an elementary
operation of Type I, T, or III to an identity matrix. For example, the matrices

09 o 10 0 100
E;=[1 0 0], Ea=(0 a 0], and Es=[0 1 0] (392)
00 1 00 1 a 0 1

Please report violations to meyer@ncsu.edu

are elementary matrices of Types I, II, and III, respectively, because E; arises
by interchanging rows 1 and 2 in I3, whereas Es is generated by multiplying
row 2 in I3 by «, and Egz is constructed by multiplying row 1 in I3 by «
and adding the result to row 3. The matrices in (3.9.2) also can be generated by
column operations. For example, E3 can be obtained by adding « times the
third column of I3 to the first column. The fact that E;, Eo, and E3 are of
the form (3.9.1) follows by using the unit columns e; to write

It is illegal to print, duplicate, or distribute this material

E, =I-uu’, whereu=e;—e;, E;=1I-(1-a)esel, and E;=I+aeze!.
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These observations generalize to matrices of arbitrary size.

One of our objectives is to remove the arrows from Gaussian elimination
because the inability to do “arrow algebra” limits the theoretical analysis. For
example, while it makes sense to add two equations together, there is no mean-
ingful analog for arrows—reducing A — B and C — D by row operations does
not guarantee that A + C — B + D is possible. The following properties are
the mechanisms needed to remove the arrows from elimination processes.

Properties of Elementary Matrices

e When used as a left-hand multiplier, an elementary matrix of Type
I, II, or IIT executes the corresponding row operation.

e When used as a right-hand multiplier, an elementary matrix of Type
I, II, or IIT executes the corresponding column operation.

Proof. A proof for Type III operations i§ givens>the other two cases are left to
the reader. Using I+ aejeZT as a left<hand\multiplier on an arbitrary matrix A

produces
o o -+ 0

(I—l—aej )A A+ aejAy. = A +a a;1 a;2 a;n — " row.
0 O 0

Thisgis, exactly the matrix produced by a Type III row operation in which the
i" row of “Alis multiplied by o and added to the j** row. When I+ cejel
is used a$s a right-hand multiplier on A, the result is

It is illegal to print, duplicate, or distribute this material
Please report violations to meyer@ncsu.edu

it" col
1
0 Qa1j 0
a2; 0
A(I—&—aej ) A—i—aA*Je =A+a .
0 Qpj 0

This is the result of a Type III column operation in which the j** column of A
is multiplied by « and then added to the i** column. [
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Example 3.9.1
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1 2 4
The sequence of row operations used to reduce A = | 2 4 8 to Ea is
3 6 13
indicated below.
1 2 4 1 2 4
A= 2 4 8 2 —2R1 — 0 0 O
3 6 13/ Rs—3R, 0 0 1
Interchange Rz and Rs 12 4 Rl - 4R2 120
_ 0 0 1 — |10 0 1{=Ea.
0 0 O 0 040
The reduction can be accomplished by a sequence of left-hand multiplications
with the corresponding elementary matrices as shown below.
1 -4 0 1 00 1 00 Hh o 0
0 10 0 0 1 010 —2 1 0JTA=Ea.
0 o0 1 010 -3 0_1 0 0>1
13 0 —4
The product of these elementary matticesishP =/ —3 0 1 ], and you can
-2 1 0

verify that it is indeed the case'that) PA =EA. Thus the arrows are eliminated
by replacing them with a productfof elementary matrices.

We are now in_a position to understand why nonsingular matrices are pre-
cisely those matrices that can be factored as a product of elementary matrices.

Products of Elementary Matrices

e A is anonsingular matrix if and only if A is the product  (3.9.3)
of elementary matrices of Type I, II, or III.

Proof” " If A is nonsingular, then the Gauss—Jordan technique reduces A to
I by row operations. If G1,Go,..., Gy is the sequence of elementary matrices
that corresponds to the elementary row operations used, then

G-+ G2G1A =1 or, equivalently, A = Gl_le_l e G,:l.

Since the inverse of an elementary matrix is again an elementary matrix of the
same type, this proves that A is the product of elementary matrices of Type I,
I1, or ITI. Conversely, if A = E1E,---Ej is a product of elementary matrices,
then A must be nonsingular because the E;’s are nonsingular, and a product
of nonsingular matrices is also nonsingular. i
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Equivalence

e Whenever B can be derived from A by a combination of elementary
row and column operations, we write A ~ B, and we say that A
and B are equivalent matrices. Since elementary row and column
operations are left-hand and right-hand multiplication by elementary
matrices, respectively, and in view of (3.9.3), we can say that

A ~ B < PAQ =B for nonsingular P and Q.

e Whenever B can be obtained from A by performing a sequence
of elementary row operations only, we write A '* B, and we say
that A and B are row equivalent. In other words,

A'"'B < PA =B for a nonsingular P.

e Whenever B can be obtained from A by performing a sequence of

column operations only, we write A = B, and we say that A and
B are column equivalent. In other words,

AYB— AQ =B for a nonsingular Q.

If it’s possible to go from* Ad to By by elementary row and column oper-
ations, then clearly it’s possible to\start with B and get back to A because
elementary operations arefeversible —i.e., PAQ=B = P 'BQ !=A. It
therefore makes sénse to talk‘about the equivalence of a pair of matrices without
regard to order:In other words, A ~ B <= B ~ A. Furthermore, it’s not
difficult tosséérthat each type of equivalence is transitive in the sense that

A~B and B~C = A~C.

In §2.2"16"was stated that each matrix A possesses a unique reduced row
echelon form Ea, and we accepted this fact because it is intuitively evident.
However, we are now in a position to understand a rigorous proof.

gal to print, duplicate, or distribute this material
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xample 3.9.2

It islle
&

Problem: Prove that E, is uniquely determined by A.

Solution: Without loss of generality, we may assume that A is square—
otherwise the appropriate number of zero rows or columns can be adjoined to A
without affecting the results. Suppose that A '<' E; and A '~ Eg, Where E;
and E, are both in reduced row echelon form. Consequently, E; ‘<" Ey, and

hence there is a nonsingular matrix P such that
PE; = E,. (3.9.4)
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Furthermore, by permuting the rows of E; and Es to force the pivotal 1’s to
occupy the diagonal positions, we see that

row

E1 ~ T1 and E2 rfo\/W r:[‘g7 (395)

where T; and Ts are upper-triangular matrices in which the basic columns in
each T; occupy the same positions as the basic columns in E;. For example, if

1 2 0 1 2 0
E=|10 0 1], then T=|0 0 0
0 0 O 0 0 1

Each T; has the property that T? = T; because there is aspermutation
matriz Q; (a product of elementary interchange matrices of Lyped)psuch that

. . T Iri Ji . o T Iri Jz 4
QT.Q; = ( o o) % equivalently, T; = @; e Q.,

and Q7 = Q;' (see Exercise 3.9.4) implies Ty= Ty. Mt follows from (3.9.5)
that T; '~ T5, so there is a nonsingular matrix R such that RT; = Ts. Thus

Ty =RT; =RT;T; =T-T; and [T; =R T, =R 'T,Ty =TTs.

Because T; and T are both uppestriangularyi™; T and T5T; have the same
diagonal entries, and hence Tifand, Ts “have the same diagonal. Therefore, the
positions of the basic columas (i-e.gfhe pivotal positions) in Ty agree with those
in Ty, and hence E; and 'Es haye basic columns in exactly the same positions.
This means there is a“permutation ‘matrix Q such that

D IT Jl _ Ir J2
ElQ—<0 0) and EQQ(O 0).
Using (3£9.4) yields PE;Q = E2Q, or
Py Py L. Ju\_ (L J»
Py Poo O 0o/ \o0o o)
whichpin turn implies that Py; =1, and Py1J; = Jo. Consequently, J; = Jo,
and it follows that E; = Es.

Please report violations to meyer@ncsu.edu
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In passing, notice that the uniqueness of E5 implies the uniqueness of the
pivot positions in any other row echelon form derived from A. If A "' U,
and A X" U,, where U; and U, are row echelon forms with different pivot
positions, then Gauss—Jordan reduction applied to U; and Uy would lead to
two different reduced echelon forms, which is impossible.

In §2.2 we observed the fact that the column relationships in a matrix A
are exactly the same as the column relationships in Ea. This observation is a

special case of the more general result presented below.
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Proof. If A'X" B, then PA =B gular P. Recall from (3.5.5)
that the j** column in B is gi

‘= PA,;.

multiplication by P on the left produces
«k = >_;a;B,;, then multiplication on the

Therefore, if A, =
B*k = Zj ajB*j
left by P~1 p > ajA.;. The statement concerning column

onsidering transposes. i

chelon form Ep is as far as we can go in reducing A by
erations. However, if we are allowed to use row operations in
olumn operations, then, as described below, the end result of

It is illegal to print, duplicate, or distribute this material
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Proof. Tt is always true that A '<" Ea so that there is a nonsingular matrix

P such that PA = Ea. If rank (A) = r, then the basic columns in Ep are
the r unit columns. Apply column interchanges to Ea so as to move these r
unit columns to the far left-hand side. If Q; is the product of the elementary
matrices corresponding to these column interchanges, then PAQ; has the form

PAQ, =EAQ; = (IOT g)

Multiplying both sides of this equation on the right by the nonsingular matrix

L. -J (L. J I. -Jo (1. 0
Qg—(o I)producesPAQ1Q2—<0 0)<0 I)_<0 0).

Thus A ~ N, because P and Q = Q;Q2 are nongingular. "I

Problem: Explain why rank(ﬁ g) =gank (A) + rank (B).

Solution: If rank (A) =r and ragk (B),='s,,then A ~ N, and B ~ N,.
Consequently,

AONNT0:>kAO_kNTO_+
0 B 0 N. ran o B)=Twm 0 N, =r-4+s.

Givengmatrices A and B, how do we decide whether or not A ~ B,

AR Blor A @ B?"We could use a trial-and-error approach by attempting to
reduce, A to B/by elementary operations, but this would be silly because there
atre easy tests, as described below.

Testing for Equivalence

For m x n matrices A and B the following statements are true.

e A ~ B if and only if rank (A) = rank (B). (3.9.8)
e AT B ifand only if E5 = Eg. (3.9.9)
e AYB ifand only if Ear = Egr. (3.9.10)

Corollary. Multiplication by nonsingular matrices cannot change rank.
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Proof. To establish the validity of (3.9.8), observe that rank (A) = rank (B)
implies A ~ N, and B ~ N,. Therefore, A ~ N, ~ B. Conversely, if A ~ B,
where rank(A) = r and rank (B) = s, then A ~ N, and B ~ Ny, and
hence N, ~ A ~ B ~ N;. Clearly, N, ~ N; implies r = s. To prove (3.9.9),
suppose first that A "' B. Because B 'X’ Eg, it follows that A "% Eg. Since
a matrix has a uniquely determined reduced echelon form, it must be the case

that Eg = Ea. Conversely, if Eo = Eg, then
AT EA=Eg' B = AXB.
The proof of (3.9.10) follows from (3.9.9) by considering transposes because
col T T
A~B— AQ=B<<=(AQ) =B
— QTAT =BT = AT BT, 11

Problem: Are the relationships that existfameéng the columns in A the same
as the column relationships in B, and are thegow,relationships in A the same
as the row relationships in B, where

1 1 1 -1 -1 -1
A=| -4 -34-1 and B = 2 2 217
2 10 -1 2 1 -1

Solution: Straightforward computation reveals that

1 0 -2
Ea=Eg=[0 1 3],
00 0

and hende A "' B. Therefore, the column relationships in A and B must be

identical, and they must be the same as those in Ea. Examining E reveals
that E,3 = —2E,; + 3E,», so it must be the case that

A*3 = _2A*1 + 3A*2 and B.3 = —2B,; + 3B.2.

The row relationships in A and B are different because Epr # Egr.

On the surface, it may not seem plausible that a matrix and its transpose
should have the same rank. After all, if A is 3 x 100, then A can have as
many as 100 basic columns, but A7 can have at most three. Nevertheless, we
can now demonstrate that rank (A) = rank (AT).
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Transposition and Rank

Transposition does not change the rank—i.e., for all m X n matrices,

rank (A) = rank (AT) and rank(A) = rank (A*). (3.9.11)

Proof. Let rank (A) =r, and let P and Q be nonsingular matricessuch that

1 0 _
PAQ:N:(’” rx(n=r) )
" O(m—r)xr O(m—r)x(n—r)

Applying the reverse order law for transposition produces @7 ATPT = NT.
Since QT and P7T are nonsingular, it follows that AT N7 "and therefore

1 0
rank (AT) = rank (NT) = rank < " 2 (e ) =r =rank (A).
( ) ( ) O(n—r)xr O(n—r)x(m—r)
To prove rank (A) = rank (A*), wxite N, =IN, = PAQ = PAQ, and use the
fact that the conjugate of a némsingnlarmatrix is again nonsingular (bgcause
K~' = K1) to conclude ghat Ng ~ A, and hence rank (A) = rank (A). It
now follows from rank (A) = rank(AT) that

rank(A) = rank (A") = rank (A) = rank (A). 1

ises for section 3.9

Itis illegal to pr
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319.1. Suppesé that A is an m X n matrix.
(a) If [A|L,] is row reduced to a matrix [B|P], explain why P
must be a nonsingular matrix such that PA = B.
(b) If {‘IA‘—J is column reduced to [%} , explain why Q must be a
nonsingular matrix such that AQ = C.
(¢) Find a nonsingular matrix P such that PA = E4, where

1 2 3 4
A=12 4 6 7
1 2 3 6

(d) Find nonsingular matrices P and Q such that PAQ isin rank
normal form.
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Consider the two matrices

2 2 0 -1 2 -6 8 2
A=13 -1 4 0 and B=|5 1 4 -1
0 -8 8 3 3 -9 12 3

(a) Are A and B equivalent?
(b) Are A and B row equivalent?
(¢) Are A and B column equivalent?

If A 'S B, explain why the basic columns in A occupy exa€bly the
same positions as the basic columns in B.

A product of elementary interchange matrices—i.e., elémentdry matrices
of Type I—is called a permutation matriz. If{P is a permutation
matrix, explain why P~ = P”.

If A,xn is a nonsingular matrix, whicha(if amyhof the following state-
ments are true?

(a) A~A"l. (b)) AAT D () AYAL

(d) A~L (HHAR T ) AZIL

Which (if any) of theffollowing,statements are true?

(a) A~B = AT ~BT. b) AR'B = AT BT.
) ANBy — ATZBT. (d AB = A~B.

e) A9 B{— A~B. (f) A~B = A B.
Show that every elementary matrix of Type I can be written as a product

of elementary matrices of Types II and III. Hint: Recall Exercise 1.2.12
on p. 14.

If rank (A,,xn) =7, show that there exist matrices By, x, and C,x,
such that A = BC, where rank (B) = rank (C) = r. Such a factor-
ization is called a full-rank factorization. Hint: Consider the basic
columns of A and the nonzero rows of Ea.

Prove that rank (A,,x,) = 1 if and only if there are nonzero columns
u,,x1 and v,x1 such that

A =uv’.

Prove that if rank (A,x,) =1, then A2 =7A, where 7 = trace (A).
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3.10 THE LU FACTORIZATION

We have now come full circle, and we are back to where the text began—solving
a nonsingular system of linear equations using Gaussian elimination with back
substitution. This time, however, the goal is to describe and understand the
process in the context of matrices.

If Ax = b is a nonsingular system, then the object of Gaussian elimination
is to reduce A to an upper-triangular matrix using elementary row operations.
If no zero pivots are encountered, then row interchanges are not necessaryand
the reduction can be accomplished by using only elementary row opgrations of
Type III. For example, consider reducing the matrix

2 2 2
A=|4 7 7
6 18 22

to upper-triangular form as shown below:

2 2 2 2 2 2
4 7 7| Ry—2R, —$){ 03 48
6 18 22/ Rs— 3Ry 0. 1216 ) Rs—4R,
(3.10.1)
202 2
— 0 3 3|=U.
00 4

We learned in the preyvious section that each of these Type III operations can be
executed by meansief a left-hand multiplication with the corresponding elemen-
tary matrix Gy andithe product of all of these G;’s is

1 0 0 1 00 1 00 1 0 0
G;G2Gy 0 1 0 0 1 0 21 0)=|-2 1 0
0 4 1 -3 0 1 0 0 1 5 4 1

Please report violations to meyer@ncsu.edu

In other words, G3G2G1A = U, so that A = G;'G,'G5;'U = LU, where
L is the lower-triangular matrix

It is illegal to print, duplicate, or distribute this material

100
L=G;'G;'G;'=12 1 0
3 41

Thus A = LU is a product of a lower-triangular matrix L and an upper-
triangular matrix U. Naturally, this is called an LU factorization of A.
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Observe that U is the end product of Gaussian elimination and has the
pivots on its diagonal, while L has 1’s on its diagonal. Moreover, L has the
remarkable property that below its diagonal, each entry f;; is precisely the
multiplier used in the elimination (3.10.1) to annihilate the (i,7)-position.

This is characteristic of what happens in general. To develop the gen-
eral theory, it’s convenient to introduce the concept of an elementary lower-
triangular matriz, which is defined to be an n x n triangular matrix of the
form

T, =1- ckeg,

where cj is a column with zeros in the first k& positions. In particular, if

0 10 --- 0 0 --.40
o 01 0 g

=] |, them Ti=|0 0 - 140 0. 3102
,Utk'+1 0 0 —ppr AL 0
P 0 04 puph 0 - 1

By observing that el'cy = 0, the formula fomthednverse of an elementary matrix
given in (3.9.1) produces

10 0 0 0
04 0 0 0
T, < tcpel =00 -~ 1 0 - 0], (3.10.3)
00 i1 1 - 0
00 -+ pp 0 -1

which isdlso an elementary lower-triangular matrix. The utility of elementary
lower-triangular matrices lies in the fact that all of the Type III row operations
needed to annihilate the entries below the k" pivot can be accomplished with
one multiplication by Tj. If

It is illegal to print, duplicate, or distribute this material
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0 (6%)
Ak—lz o0 --- (6%

0 0 - peq *
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is the partially triangularized result after £k — 1 elimination steps, then

TiAp—1= (I—cref) A1 = Ap_1 —cref Ay

R et
0 % -

= 0 0 -+ oap * - x|, where
00 - 0 % - =%

contains the multipliers used to annihilate those entries

A to an upper-triangular matrix U by Gaus
executing a sequence of n — 1 left-hand i elementary lower-
triangular matrices. That is, T _1---T A d hence

(3.10.4)

Making use of the fact th,
reveals that

enever j < k and applying (3.10.3)

T Tt = 1er{) (I—i—chg) (I—i—cn_lef_l)
T
By obse @

(3.10.5)

T T
=I+cie] +coey +---+cp1€,_.

00 0 0 0
00 0 0 0
el =00 - 0 0 - 0f,
0 0 Cesrr O 0
00 «++ by 0 -+ 0

where the £;;, ’s are the multipliers used at the k*" stage to annihilate the entries
below the k'* pivot, it now follows from (3.10.4) and (3.10.5) that

A =LU,
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where
1 0 0 - 0
by 1 0 0
L=TI+cel +coel +---+c, el = |1 e 1 0 [ (3.106)
bt s lug oo 1

is the lower-triangular matrix with 1’s on the diagonal, and where ¢;; is precisely
the multiplier used to annihilate the (4, ) -position during Gaussian elimimation.
Thus the factorization A = LU can be viewed as the matrix formulation of
Gaussian elimination, with the understanding that no row interchanges‘are used.

LU Factorization

If A is an m X n matrix such that a zero pivot is never encountered
when applying Gaussian elimination with Type III operations, then A
can be factored as the product A = LU, where the following hold.

e L is lower triangular and U is upper triangular. (3.10.7)
e V=1 and u;; #0 for each i =1,2,...,n. (3.10.8)

o Below the diagonal of L, the entry ¢;; is the multiple of row j that
is subtracted from row ¢ in order to annihilate the (i,7)-position
during Gaussian elimination.

e U is the final result of Gaussian elimination applied to A.
e The matrices L and U are uniquely determined by properties
(3.10.7) and (3.10.8).

The decomposition of A into A = LU is called the LU factorization
of A, and the matrices L and U are called the LU factors of A.

Proof= Except for the statement concerning the uniqueness of the LU fac-
tors, each point has already been established. To prove uniqueness, observe
thaty LU factors must be nonsingular because they have nonzero diagonals. If
LU; = A =LyU, are two LU factorizations for A, then

Please report violations to meyer@ncsu.edu

Ly'L; = U, UL (3.10.9)

It is illegal to print, duplicate, or distribute this material

Notice that Lg 'L, is lower triangular, while UgUf1 is upper triangular be-
cause the inverse of a matrix that is upper (lower) triangular is again up-
per (lower) triangular, and because the product of two upper (lower) trian-
gular matrices is also upper (lower) triangular. Consequently, (3.10.9) implies
L;lLl =D = UgUf1 must be a diagonal matrix. However, [Ls]; = 1 =
[L;l]ii, so it must be the case that L;lLl =1I= UgUfl, and thus L; = Ly
and U1 = U2. .
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Once L and U are known, there is usually no need to manipulate with A. This
together with the fact that the multipliers used in Gaussian elimination occur in
just the right places in L means that A can be successively overwritten with the
information in L and U as Gaussian elimination evolves. The rule is to store
the multiplier ¢;; in the position it annihilates—mnamely, the (¢, j)-position of
the array. For a 3 x 3 matrix, the result looks like this:

air  ai2 a3 Type 111 operations uir Uiz U13
a1 ag2 a23 I lo1 U2 ugs

az1 asz2 ass l31 l3p u33

For example, generating the LU factorization of

2 2 2
A=\|4 7 7
6 18 22
by successively overwriting a single 3 x 3 arraygwould evolve as shown below:
2 2 2 2 2 a2 2 2 2
4 7 T|R—2R — | (® 3[ 3 — | ® 3 3
6 18 22/ R3—3R; (3) @216 ) R3= 4R, ® @ 4
Thus
1 040 2 2 2
L=|2da 0 and U=[0 3 3
3 4 1 0 0 4

This is an importantsfeature in practical computation because it guarantees that
an LU factorization requires no more computer memory than that required to
store the originalimatrix A.

Once the LU \factors for a nonsingular matrix A, «, have been obtained,
it’serelatively easy to solve a linear system Ax = b. By rewriting Ax =Db as

L(Ux)=b and setting y = Ux,
we se€'that Ax = b is equivalent to the two triangular systems
Ly=b and Ux=y.

First, the lower-triangular system Ly = b is solved for y by forward substi-
tution. That is, if

1 0 o --- 0 U1 by
021 1 0 - 0 Y2 bo
l31 €3 1 -+ 0 ys | = | bs
enl €n2 €n3 tee 1 Yn bn
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set
y1 =0b1, w2 ="0ba — Loy, y3=0bz—{L31y1 — L3292, etc.

The forward substitution algorithm can be written more concisely as

i—1
y1=0 and y; =0b; — Z&kyk for i=2,3,...,n. (3.10.10)
k=1

After y is known, the upper-triangular system Ux = y is solved using the
standard back substitution procedure by starting with z,, = y,, /un,, and@etting

= ) for i=n—1,n-2 .. 4 (38041
x Un( Zukxk> or i=n n (3.1047)

k=i+1

It can be verified that only n? multiplications/divisionshand n3& n addi-

tions/subtractions are required when (3.10.10) and 8.10.11)are used to solve
the two triangular systems Ly =b and Ux =y, soit’s relatively cheap to
solve Ax =Db once L and U are known—recall'frein 51.2,that these operation
counts are about n3/3 when we start fromi'seratch.

If only one system Ax = b is to be solved; then there is no significant
difference between the technique of €eéducing the augmented matrix [A|b] to
a row echelon form and the LU faetorization method presented here. However,
suppose it becomes necessaryfto later solve other systems Ax = b with the
same coefficient matrix but!withydifferent right-hand sides, which is frequently
the case in applied work. If the'U factors of A were computed and saved
when the original systemiwas solved, then they need not be recomputed, and
the solutions to all"subsequentisystems Ax = b are therefore relatively cheap
to obtain. Thatisy, the operation counts for each subsequent system are on the
order of p?iivhereas these counts would be on the order of n®/3 if we would
start from scrateh each time.

Summary

e To solve a nonsingular system Ax = b using the LU factorization
A = LU, first solve Ly = b for y with the forward substitution
algorithm (3.10.10), and then solve Ux =y for x with the back
substitution procedure (3.10.11).

It is illegal to print, duplicate, or distribute this material
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e The advantage of this approach is that once the LU factors for
A have been computed, any other linear system Ax = b can
be solved with only n? multiplications/divisions and n? — n ad-
ditions/subtractions.
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Example 3.10.2
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Problem 1: Use the LU factorization of A to solve Ax = b, where

2 2 2 12
A=|4 7 7 and b=| 24
6 18 22 12

Problem 2: Suppose that after solving the original system new information is
received that changes b to

} 6
b= 24
70
Use the LU factors of A to solve the updated system Ax = b

Solution 1: The LU factors of the coefficient matrix were determined indxample
3.10.1 to be

L=

NG )
- o o

20,2
and U=, 0"3
00

C: W DN =
o W

The strategy is to set Ux =y and solvefAx =L(Ux) = b by solving the two
triangular systems

Ly=b "and " WUx&=y.

First solve the lower-triangulax@ystem Ly,= b by using forward substitution:

1 0 0 Y1 12 Y1 = 12,
210 ya | = | 24 = y2=24-2y; =0,
3 4 1 Y3 12 ys = 12 — 3y; — 4y = —24.
Now use back s@bstitution to solve the upper-triangular system Ux = y:
2 2072 T, 12 x1 = (12 — 2z9 — 223)/2 = 6,
0f3 3 Ty | = 0 = x9=(0—3x3)/3 =6,
0% 0 4 x3 —24 x3 = —24/4 = —6.

Solutiofl 2: To solve the updated system Ax = b, simply repeat the forward

andbagkward substitution steps with b replaced by b. Solving Ly = b with
forward substitution gives the following:

1 0 0 Y1 6 Yy = 63
2 10 yo | = 24 = Yy =24—2y; =12,
3 41 Y3 70 ys = 70 — 3y — 4ys = 4.
Using back substitution to solve Ux =y gives the following updated solution:
2 2 2 Iy 6 1'1:(6—21'2—21'3)/2:—1,
0 3 3 T = 12 — T9 = (12 — 3:1,'3)/3 = 3,
0 0 4 x3 4 x3=4/4=1.
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Example 3.10.3

Computing A~'. Although matrix inversion is not used for solving Ax = b,
there are a few applications where explicit knowledge of A~! is desirable.

Problem: Explain how to use the LU factors of a nonsingular matrix A, x, to
compute A1 efficiently.

Solution: The strategy is to solve the matrix equation AX = I. Recall from
(3.5.5) that AA~! =T implies A[A7!],; = e;, so the j column of A~!
is the solution of a system Ax; = e;. Each of these n systems has the same
coefficient matrix, so, once the LU factors for A are known, each systeml Ax; =
LUx; = e; can be solved by the standard two-step process.

(1) Set y; = Ux;, and solve Ly; = e; for y; by forwardésubstitution.
(2) Solve Ux; = y; for x; = [A™!],; by back substitlition.

This method has at least two advantages: it’s efficienty and any code written to
solve Ax = b can also be used to compute A A

Note: A tempting alternate solution might besto use the fact A~! = (LU)~! =
U~'L~!'. But computing U~! and LA expli¢itly and then multiplying the
results is not as computationally efficient as the method just described.

Not all nonsingular matrice§ possess‘an, LU factorization. For example, there
is clearly no nonzero value of “ujy shat will satisfy

0,1\ (1 0 Uil U2
19 h 621 1 0 U22 '

The problem hereyisfthe zero pivot in the (1,1)-position. Our development of
the LU faetorization using elementary lower-triangular matrices shows that if no
zero pivots emerge, then no row interchanges are necessary, and the LU factor-
ization, canyindeed be carried to completion. The converse is also true (its proof
ig left as an‘exercise), so we can say that a nonsingular matriz A has an LU
factorization if and only if a zero pivot does not emerge during row reduction to
upper=triangular form with Type III operations.

Although it is a bit more theoretical, there is another interesting way to
characterize the existence of LU factors. This characterization is given in terms
of the leading principal submatrices of A that are defined to be those
submatrices taken from the upper-left-hand corner of A. That is,

It is illegal to print, duplicate, or distribute this material
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aix a2 - alg
a1 Q22 - A2k
a1l a2
A1:(G,11>, A2: 7...,Ak: . . . . g
@21 A22 : : . :
a1 G2 - Agk
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Existence of LU Factors

Each of the following statements is equivalent to saying that a nonsin-
gular matrix A, x, possesses an LU factorization.

e A zero pivot does not emerge during row reduction to upper-
triangular form with Type III operations.

e Fach leading principal submatrix Ay is nonsingular. (3.10.12)

Proof. We will prove the statement concerning the leading prifieipahsubmeitri-
ces and leave the proof concerning the nonzero pivots as ah exercise. Assume
first that A possesses an LU factorization and partitionf A, as

Ln O Ui Uy L1 U, =
A_LU_<L21 Lzz)( 0 Uzz)_< * *)7

where Ly; and Uj; are each k x k. Thus A = L3pU;; must be nonsingular
because Lj; and Uj; are each nonsingular—<hey, are triangular with nonzero
diagonal entries. Conversely, suppose that eachdeading principal submatrix in
A is nonsingular. Use inductionfto'prove, that each Aj possesses an LU fac-
torization. For k = 1, this statementyis clearly true because if Ay = (a11) is
nonsingular, then A; = (1)(a11) s its' LU factorization. Now assume that Ay
has an LU factorizatien,and showh\that this together with the nonsingularity
condition implies Agy 1 must, also possess an LU factorization. If A, = LiUy
is the LU factorigation for Ay, then A,;l = U,;ngl so that

A A, b L, 0\ /U L, 'b (31013)
1 cT k41 - cTU,;1 1 0 ak+17cTA,;1b T

where ¢y and b contain the first & components of A i, and A,.yq, re-
spectively. Observe that this is the LU factorization for Aji; because

. L, O - Uy, L;'b
= an =
ki cTU,;1 1 i 0 Qg1 — cTAglb

are lower- and upper-triangular matrices, respectively, and L has 1’s on its
diagonal while the diagonal entries of U are nonzero. The fact that

It is illegal to print, duplicate, or distribute this material
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art1 —c A £0

follows because Ajy;1 and Lgy; are each nonsingular, so Ui = L;hAkH
must also be nonsingular. Therefore, the nonsingularity of the leading principal
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submatrices implies that each Aj possesses an LU factorization, and hence
A, = A must have an LU factorization. [

Up to this point we have avoided dealing with row interchanges because if
a row interchange is needed to remove a zero pivot, then no LU factorization is
possible. However, we know from the discussion in §1.5 that practical computa-
tion necessitates row interchanges in the form of partial pivoting. So even if no
zero pivots emerge, it is usually the case that we must still somehow account for
row interchanges.

To understand the effects of row interchanges in the framework off@mnl.U
decomposition, let Ty =1 — cie} be an elementary lower-triangular{matrix as
described in (3.10.2), and let E =I—uu? with u = ej;; — ey ;e theType I
elementary interchange matrix associated with an interchange of rows) k +iand
k + j. Notice that efE = ek because ek has 0’s in positiens k%7 and &k + j.
This together with the fact that E? = I guarantees

ET.E = E? - Ecye{E =1 —¢re}, where, ¢, =Ec;.
In other words, the matrix
T, = ET,E £1—&rel (3.10.14)

is also an elementary lower-triangular matrixgsand Ty agrees with Ty in all
positions except that the multipliers pyyvand pr4; have traded places. As be-
fore, assume we are row reducing an m X n- nonsingular matrix A, but suppose
that an interchange of rows k +% and k + j is necessary immediately after the
kth stage so that thesséquence of left-hand multiplications ET,Ts_q---T; is
applied to A. SineéE? = I, we may insert E? to the right of each T to obtain

ET,Ti - - T, = ET,E>T,_,E?.. . E*>T,E?
= (ETE) (ET,_,E)--- (ET,E)E
=T, Ty_1---T1E.

In such agmanner, the necessary interchange matrices E can be “factored” to
theyfar-right-hand side, and the matrices T retain the desirable feature of be-
ing ‘elementary lower-triangular matrices. Furthermore, (3.10.14) implies that
’i‘k’i‘k 1> ’i‘l differs from TyTx_1---T; only in the sense that the multipli-
ers in rows k+1¢ and k+ j have traded places. Therefore, row interchanges in
Gaussian elimination can be accounted for by writing T,_1---ToTPA = U,
where P is the product of all elementary interchange matrlces used during the
reduction and where the T}, ’s are elementary lower-triangular matrices in which
the multipliers have been permuted according to the row interchanges that were
implemented. Since all of the T} ’s are elementary lower-triangular matrices, we
may proceed along the same lines discussed in (3.10.4)—(3.10.6) to obtain

It is illegal to print, duplicate, or distribute this material
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PA =LU, where L=T7'T;'---T; . (3.10.15)
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When row interchanges are allowed, zero pivots can always be avoided when the
original matrix A is nonsingular. Consequently, we may conclude that for every
nonsingular matriz A, there exists a permutation matric P (a product of
elementary interchange matrices) such that PA has an LU factorization. Fur-
thermore, because of the observation in (3.10.14) concerning how the multipliers
in T, and T}, trade places when a row interchange occurs, and because

Ty = (1—&ef) ' =T+&el,

it is not difficult to see that the same line of reasoning used to arrive at (3#20.6)
can be applied to conclude that the multipliers in the matrix L in (340.15) are
permuted according to the row interchanges that are executed. Moré specifically,
if rows k and k+i are interchanged to create the k' pivot, thef theanultipliers

(b1 lroe -+ legp—1) and (Lprin Lryio & Crvig—af)

trade places in the formation of L.

This means that we can proceed just as in the case when no interchanges are
used and successively overwrite the array originally'centaining A with each mul-
tiplier replacing the position it annihilates«<WHhenever, a row interchange occurs,
the corresponding multipliers will be correctlyfinterehanged as well. The per-
mutation matrix P is simply the cumulative record of the various interchanges
used, and the information in P _dspeasily aecounted for by a simple technique
that is illustrated in the following example:

, or distribute this material
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X

ate

ple 3.10.4
Problem: Use partidl pivoting on the matrix

1 2 -3 4
4 8 12 -8
2 3 2 1
-3 -1 1 -4

A_:

and’ determine the LU decomposition PA = LU, where P is the associated
permutation matrix.

Solution: As explained earlier, the strategy is to successively overwrite the array
A with components from L and U. For the sake of clarity, the multipliers ¢;;
are shown in boldface type. Adjoin a “permutation counter column” p that
is initially set to the natural order 1,2,3,4. Permuting components of p as the
various row interchanges are executed will accumulate the desired permutation.
The matrix P is obtained by executing the final permutation residing in p to
the rows of an appropriate size identity matrix:

It is illegal to print, duplic

1 2 =3 4 1 4 8§ 12 -8 2

[Alp] = 4 8§ 12 -8 2 N 1 2 -3 4 1
2 3 2 1 3 2 3 2 1 3

-3 -1 1 —4 4 -3 -1 1 -4 4
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4 8§ 12 -8 2 4 8§ 12 -8 2
1/4 0 —6 6 1 . -3/4 5 10 -10 4
1/2 -1 —4 5| 3 1/2 -1 —4 5 | 3
-3/4 5 10 —-10 4 1/4 0 —6 6 1
4 8 12 =8 2 4 8 12 =8 2
-3/4 5 10 —10 4 . -3/4 5 10 —10 4
1/2 -1/5 -2 3 | 3 1/4 0 -6 6 | 1
1/4 0 -6 6 | 1 1/2 -1/5 -2 31 3
4 8 12 -8 2
-3/4 5 10 -10 4
1/4 0 -6 6 | 1
1/2 -1/5 1/3 1| 3
Therefore,
1 0 0 0 4 8 12 -8 00 0 0
[ -3/4 1 0 0 o 5 10 -0 o0 01
L= s 0o 1 0/ Y |oo 60 6T o000
/2 —1/5 1/3 1 00 _0 1 0010

It is easy to combine the advantages of partial pivoting with the LU decom-
position in order to solve a nonsingular system Ax = b. Because permutation
matrices are nonsingular, the systemm Ax=b is equivalent to

PAx = Pb,

and hence we can employ the LU solution techniques discussed earlier to solve
this permuted system.\That sy if we have already performed the factorization
PA = LU —as illustrated in Example 3.10.4—then we can solve Ly = Pb for
y by forward substitution, and then solve Ux =y by back substitution.

It should be evident that the permutation matrix P is not really needed.
All that ismecessary is knowledge of the LU factors along with the final permu-
tation contained in the permutation counter column p illustrated in Example
3.10.4. The column b = Pb is simply a rearrangement of the components of
b “ageording to the final permutation shown in p. In other words, the strategy
is to first permute b into b according to the permutation p, and then solve
Ly = b followed by Ux =1y.

gal to print, duplicate, or distribute this material
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His ille

xample 3.10.5

Problem: Use the LU decomposition obtained with partial pivoting to solve
the system Ax = b, where

1 2 -3 4 3

4 8 12 -8 60

A= 9 3 9 1 and b= 1
-3 -1 1 —4 5
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Solution: The LU decomposition with partial pivoting was computed in Ex-
ample 3.10.4. Permute the components in b according to the permutation

p=(2 4 1 3), and call the result b. Now solve Ly = b by applying
forward substitution:

1 0 0 0 " 60 " 60
—3/4 1 0 0 ya | 5 R’ 50
4 0 1 o)lwl =l 3] =7 Y ly] |12
12 —1/5 1/3 1) \y 1 U -1
Then solve Ux =y by applying back substitution:
4 8 12 -8 1 60 1
0 5 10 -10 z2 | 50 .
0 0 —6 6 z3 | | —12 —
00 0 1 T4 —15 —15

It is illegal to print, duplicate, or distribute this material
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Example 3.10.6

The LDU factorization. There’s some asymmetry in an LU factorization be-
cause the lower factor has 1’s on its diagonal while the upper factor has a nonunit
diagonal. This is easily remedied by factoring the diagonal entries out of the up-
per factor as shown below:

Ul U2 v Uiy g 0 - 0 1 wig/uin -+ win/unn
0 way -+ uUap 0 wuyy -+ 0 0 1 e Uy /U2

0 0 - Unn 0 0 - Upp 0 0 1
Setting D = diag (u11, uag, . .., Un,) (the diagonal matrix of pivets) and redefin-
ing U to be the rightmost upper-triangular matrix shown aboveyallows any LU
factorization to be written as A = LDU, where L and Uf are lower- and upper-
triangular matrices with 1’s on both of their diagonals*This is called the LDU

factorization of A. It is uniquely determined, and when AWis,symmetric, the
LDU factorization is A = LDLT (Exercise 3.10.9).

xathple 3.10.7

The Cholesky Factorization” A symmetric matrix A possessing an LU fac-
torization in which each pivot is pesitive,is‘said to be positive definite.

or disttbute this material
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Problem: Prove that A is positive definite if and only if A can be uniquely
factored as A = RTR, where' R is an upper-triangular matrix with positive
diagonal entries. This ds,known as the Cholesky factorization of A, and R is
called the Choleskyfactor-of \A.

Solution: If A is positive definite, then, as pointed out in Example 3.10.6,
it has an LDU factorization A = LDLT in which D = diag (p1,p2,--.,0n)
is the didgonal matrix containing the pivots p; > 0. Setting R = DY/2L7
where D2 = diag (\/p_l VT \/p_n) yields the desired factorization because
AETID2PIALT = RTR, and R is upper triangular with positive diagonal

22
Thishis named in honor of the French military officer Major André-Louis Cholesky (1875—

1918). Although originally assigned to an artillery branch, Cholesky later became attached to
the Geodesic Section of the Geographic Service in France where he became noticed for his
extraordinary intelligence and his facility for mathematics. From 1905 to 1909 Cholesky was
involved with the problem of adjusting the triangularization grid for France. This was a huge
computational task, and there were arguments as to what computational techniques should be
employed. It was during this period that Cholesky invented the ingenious procedure for solving
a positive definite system of equations that is the basis for the matrix factorization that now
bears his name. Unfortunately, Cholesky’s mathematical talents were never allowed to flower.
In 1914 war broke out, and Cholesky was again placed in an artillery group—but this time
as the commander. On August 31, 1918, Major Cholesky was killed in battle. Cholesky never
had time to publish his clever computational methods—they were carried forward by word-
of-mouth. Issues surrounding the Cholesky factorization have been independently rediscovered
several times by people who were unaware of Cholesky, and, in some circles, the Cholesky
factorization is known as the square root method.
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entries. Conversely, if A = RR”, where R is lower triangular with a positive
diagonal, then factoring the diagonal entries out of R as illustrated in Example
3.10.6 produces R = LD, where L is lower triangular with a unit diagonal and
D is the diagonal matrix whose diagonal entries are the r;;’s. Consequently,
A = LD?L” is the LDU factorization for A, and thus the pivots must be
positive because they are the diagonal entries in D?. We have now proven that
A is positive definite if and only if it has a Cholesky factorization. To see why
such a factorization is unique, suppose A = RiRY = RyoRZ, and factor out
the diagonal entries as illustrated in Example 3.10.6 to write R; = L;D4, and

(a) Explain why A does not have an LU factorization.

(b) Use partial pivoting and find the permutation matrix P as well
as the LU factors such that PA = LU.

(c) Use the information in P, L, and U to solve Ax =b.

© Ry = LsDs, where each R,; is lower triangular with a unit diagonalland“D;
5 contains the diagonal of R; so that A = L;D?LT = LyD3LI. The tmiguenass
T > of the LDU factors insures that L; = Lo and D; = Dy, so R{ = R,." Note:
e 8 More is said about the Cholesky factorization and positive definite/matrices on
@ 5 pp. 313, 345, and 559.

ExeBcises for section 3.10

_.q__a =

a © 1 4 5

= 2 3.10.1. Let A= (4 18 26

2 o 3 16 30

-S S (a) Determine the LU factors of, A«

o9 (b) Use the LU factors to solve Ax; = by as well as Axy = ba,
o) 8 where N 6

3.8 bi= 0] and by=[ 6

ot % —6 12

-8 S (c) €Use the LU factors to determine A~1.

P

c O )

= a 3.10.2. Let A“and“b» be the matrices

g' o 12 4 17 17

:% A:36—12 3 and b — 3

C 2 3 -3 2 3

O 02 -2 6 4

= 0

@

=

— s DN

13 0
3.10.3. Determine all values of ¢ for which A= | 1 1 | fails to have an
0 £

LU factorization.
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3.10.4.

3.10.5.

3.10.6.
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If A is a nonsingular matrix that possesses an LU factorization, prove
that the pivot that emerges after (k+ 1) stages of standard Gaussian
elimination using only Type III operations is given by

T A —1
Pk+1 = Qgr1k+1 —C ApDb,

A Ay b
k4+1 =
cr Qk41,k+1

are the leading principal submatrices of orders k& and k + 4§ respec-
tively. Use this to deduce that all pivots must be nonzerogwhen,an LU
factorization for A exists.

where A, and

If A is a matrix that contains only integer entadesiand all ef its pivots
are 1, explain why A~! must also be an integér matrix. Note: This fact
can be used to construct random integer matrices that>possess integer
inverses by randomly generating integer matricesh L. and U with unit
diagonals and then constructing thé producty A =LU.

im0 0
ar P2 o2 O
0 a2 B35 73
0 0 (6 %3 ﬁ4
(a) Assuming that Thpossesses an LU factorization, verify that it

Consider the tridiagonal matrix E =

is given by
1 0 0 0 m m 0 0
L 061/71'1 1 0 0 o 0 T2 72 0
'R 0 042/71'2 1 o U= 0 0 ™ Y3 ’
0 0 as/m 1 0 0 0 my

where the m;’s are generated by the recursion formula

az’%

U

m =0 and Ty = Big1 —

Note: This holds for tridiagonal matrices of arbitrary size
thereby making the LU factors of these matrices very easy to
compute.

(b) Apply the recursion formula given above to obtain the LU fac-

torization of
2 -1 0 0

-1 2 -1 0
0 -1 2 -1
0 0 -1 1

T =

Buy online from SIAM
http://www.ec-securehost.com/SIAM/ot71.html


http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com
3.10

The LU Factorization 157

http://www.amazon.com/exec/obidos/ASIN/0898714540

3.10.7. A, ., is called a band matriz if a;; = 0 whenever |i — j| > w for
some positive integer w, called the bandwidth. In other words, the
nonzero entries of A are constrained to be in a band of w diagonal lines
above and below the main diagonal. For example, tridiagonal matrices
have bandwidth one, and diagonal matrices have bandwidth zero. If
A is a nonsingular matrix with bandwidth w, and if A has an LU
factorization A = LU, then L inherits the lower band structure of A,
and U inherits the upper band structure in the sense that L has “lower
bandwidth” w, and U has “upper bandwidth” w. Illustrate why, this
is true by using a generic 5 X 5 matrix with a bandwidth of 4= 2.

3.10.8. (a) Construct an example of a nonsingular symmeétric aflatrix that
fails to possess an LU (or LDU) factorization:

(b) Construct an example of a nonsingularsymmetric. matrix that
has an LU factorization but is not p@sitive definite.

1 %4 5
3.10.9. (a) Determine the LDU factors for Ahv="{4 18 26 | (this is the
3 16 30

same matrix used_in Exercisen310.1).

(b) Prove that if afmatrix has an LDU factorization, then the LDU
factors arediniquely determined.

(¢) If A isssymmetrie and possesses an LDU factorization, explain
why.it must be given by A = LDLT.

1 2 3
3.10.10. Explain why YA = [ 2 8 12 | is positive definite, and then find the
3 12 27

Cholesky factor R.
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As for everything else, so for a mathematical theory:
beauty can be perceived but not explained.
— Arthur Cayley (1821-1895)
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