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CHAPTER 3

Matrix
Algebra

3.1 FROM ANCIENT CHINA TO ARTHUR CAYLEY

The ancient Chinese appreciated the advantages of array manipulation in dealing
with systems of linear equations, and they possessed the seed that might have
germinated into a genuine theory of matrices. Unfortunately, in the year 213
B.C., emperor Shih Hoang-ti ordered that “all books be burned and all scholars
be buried.” It is presumed that the emperor wanted all knowledge and written
records to begin with him and his regime. The edict was carried out, and it will
never be known how much knowledge was lost. The book Chiu-chang Suan-shu
(Nine Chapters on Arithmetic), mentioned in the introduction to Chapter 1, was
compiled on the basis of remnants that survived.

More than a millennium passed before further progress was documented.
The Chinese counting board with its colored rods and its applications involving
array manipulation to solve linear systems eventually found its way to Japan.
Seki Kowa (1642–1708), whom many Japanese consider to be one of the greatest
mathematicians that their country has produced, carried forward the Chinese
principles involving “rule of thumb” elimination methods on arrays of numbers.
His understanding of the elementary operations used in the Chinese elimination
process led him to formulate the concept of what we now call the determinant.
While formulating his ideas concerning the solution of linear systems, Seki Kowa
anticipated the fundamental concepts of array operations that today form the
basis for matrix algebra. However, there is no evidence that he developed his
array operations to actually construct an algebra for matrices.

From the middle 1600s to the middle 1800s, while Europe was flowering
in mathematical development, the study of array manipulation was exclusively
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80 Chapter 3 Matrix Algebra

dedicated to the theory of determinants. Curiously, matrix algebra did not evolve
along with the study of determinants.

It was not until the work of the British mathematician Arthur Cayley (1821–
1895) that the matrix was singled out as a separate entity, distinct from the
notion of a determinant, and algebraic operations between matrices were defined.
In an 1855 paper, Cayley first introduced his basic ideas that were presented
mainly to simplify notation. Finally, in 1857, Cayley expanded on his original
ideas and wrote A Memoir on the Theory of Matrices. This laid the foundations
for the modern theory and is generally credited for being the birth of the subjects
of matrix analysis and linear algebra.

Arthur Cayley began his career by studying literature at Trinity College,
Cambridge (1838–1842), but developed a side interest in mathematics, which he
studied in his spare time. This “hobby” resulted in his first mathematical paper
in 1841 when he was only 20 years old. To make a living, he entered the legal
profession and practiced law for 14 years. However, his main interest was still
mathematics. During the legal years alone, Cayley published almost 300 papers
in mathematics.

In 1850 Cayley crossed paths with James J. Sylvester, and between the two
of them matrix theory was born and nurtured. The two have been referred to
as the “invariant twins.” Although Cayley and Sylvester shared many mathe-
matical interests, they were quite different people, especially in their approach
to mathematics. Cayley had an insatiable hunger for the subject, and he read
everything that he could lay his hands on. Sylvester, on the other hand, could
not stand the sight of papers written by others. Cayley never forgot anything
he had read or seen—he became a living encyclopedia. Sylvester, so it is said,
would frequently fail to remember even his own theorems.

In 1863, Cayley was given a chair in mathematics at Cambridge University,
and thereafter his mathematical output was enormous. Only Cauchy and Euler
were as prolific. Cayley often said, “I really love my subject,” and all indica-
tions substantiate that this was indeed the way he felt. He remained a working
mathematician until his death at age 74.

Because the idea of the determinant preceded concepts of matrix algebra by
at least two centuries, Morris Kline says in his book Mathematical Thought from
Ancient to Modern Times that “the subject of matrix theory was well developed
before it was created.” This must have indeed been the case because immediately
after the publication of Cayley’s memoir, the subjects of matrix theory and linear
algebra virtually exploded and quickly evolved into a discipline that now occupies
a central position in applied mathematics.
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3.2 Addition and Transposition 81

3.2 ADDITION AND TRANSPOSITION

In the previous chapters, matrix language and notation were used simply to for-
mulate some of the elementary concepts surrounding linear systems. The purpose
now is to turn this language into a mathematical theory. 16

Unless otherwise stated, a scalar is a complex number. Real numbers are
a subset of the complex numbers, and hence real numbers are also scalar quan-
tities. In the early stages, there is little harm in thinking only in terms of real
scalars. Later on, however, the necessity for dealing with complex numbers will
be unavoidable. Throughout the text, � will denote the set of real numbers,
and C will denote the complex numbers. The set of all n -tuples of real numbers
will be denoted by �n, and the set of all complex n -tuples will be denoted
by Cn. For example, �2 is the set of all ordered pairs of real numbers (i.e.,
the standard cartesian plane), and �3 is ordinary 3-space. Analogously, �m×n

and Cm×n denote the m × n matrices containing real numbers and complex
numbers, respectively.

Matrices A = [aij ] and B = [bij ] are defined to be equal matrices
when A and B have the same shape and corresponding entries are equal. That
is, aij = bij for each i = 1, 2, . . . , m and j = 1, 2, . . . , n. In particular, this

definition applies to arrays such as u =

⎛
⎝ 1

2
3

⎞
⎠ and v = ( 1 2 3 ) . Even

though u and v describe exactly the same point in 3-space, we cannot consider
them to be equal matrices because they have different shapes. An array (or
matrix) consisting of a single column, such as u, is called a column vector,
while an array consisting of a single row, such as v, is called a row vector.

Addition of Matrices
If A and B are m × n matrices, the sum of A and B is defined to
be the m × n matrix A+B obtained by adding corresponding entries.
That is,

[A + B]ij = [A]ij + [B]ij for each i and j.

For example,(
−2 x 3

z + 3 4 −y

)
+

(
2 1 − x −2

−3 4 + x 4 + y

)
=

(
0 1 1
z 8 + x 4

)
.

16
The great French mathematician Pierre-Simon Laplace (1749–1827) said that, “Such is the ad-
vantage of a well-constructed language that its simplified notation often becomes the source of
profound theories.” The theory of matrices is a testament to the validity of Laplace’s statement.
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82 Chapter 3 Matrix Algebra

The symbol “+” is used two different ways—it denotes addition between
scalars in some places and addition between matrices at other places. Although
these are two distinct algebraic operations, no ambiguities will arise if the context
in which “+” appears is observed. Also note that the requirement that A and
B have the same shape prevents adding a row to a column, even though the two
may contain the same number of entries.

The matrix (−A), called the additive inverse of A, is defined to be
the matrix obtained by negating each entry of A. That is, if A = [aij ], then
−A = [−aij ]. This allows matrix subtraction to be defined in the natural way.
For two matrices of the same shape, the difference A−B is defined to be the
matrix A − B = A + (−B) so that

[A − B]ij = [A]ij − [B]ij for each i and j.

Since matrix addition is defined in terms of scalar addition, the familiar algebraic
properties of scalar addition are inherited by matrix addition as detailed below.

Properties of Matrix Addition
For m × n matrices A, B, and C, the following properties hold.

Closure property: A + B is again an m × n matrix.
Associative property: (A + B) + C = A + (B + C).

Commutative property: A + B = B + A.

Additive identity: The m × n matrix 0 consisting of all ze-
ros has the property that A + 0 = A.

Additive inverse: The m × n matrix (−A) has the property
that A + (−A) = 0.

Another simple operation that is derived from scalar arithmetic is as follows.

Scalar Multiplication
The product of a scalar α times a matrix A, denoted by αA (or
equivalently Aα), is defined to be the matrix obtained by multiplying
each entry of A by α. That is, [αA]ij = α[A]ij for each i and j.

For example,

2

⎛
⎝ 1 2 3

0 1 2
1 4 2

⎞
⎠ =

⎛
⎝ 2 4 6

0 2 4
2 8 4

⎞
⎠ and

⎛
⎝ 1 2

3 4
0 1

⎞
⎠ =

1
2

⎛
⎝ 2 4

6 8
0 2

⎞
⎠ .

The rules for combining addition and scalar multiplication are what you
might suspect they should be. Some of the important ones are listed below.
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3.2 Addition and Transposition 83

Properties of Scalar Multiplication
For m × n matrices A and B and for scalars α and β, the following
properties hold.

Closure property: αA is again an m × n matrix.

Associative property: (αβ)A = α(βA).

Distributive property: α(A + B) = αA + αB. Scalar multiplica-
tion is distributed over matrix addition.

Distributive property: (α + β)A = αA + βA. Scalar multiplica-
tion is distributed over scalar addition.

Identity property: 1A = A. The number 1 is an identity el-
ement under scalar multiplication.

Other properties such as αA = Aα could have been listed, but the prop-
erties singled out pave the way for the definition of a vector space on p. 160.

A matrix operation that’s not derived from scalar arithmetic is transposition
as defined below.

Transpose
The transpose of Am×n is defined to be the n × m matrix AT ob-
tained by interchanging rows and columns in A. More precisely, if
A = [aij ], then [AT ]ij = aji. For example,

⎛
⎝ 1 2

3 4
5 6

⎞
⎠T

=
(

1 3 5
2 4 6

)
.

It should be evident that for all matrices,
(
AT

)T = A.

Whenever a matrix contains complex entries, the operation of complex con-
jugation almost always accompanies the transpose operation. (Recall that the
complex conjugate of z = a + ib is defined to be z = a − ib.)
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84 Chapter 3 Matrix Algebra

Conjugate Transpose
For A = [aij ], the conjugate matrix is defined to be A = [aij ] , and
the conjugate transpose of A is defined to be ĀT = AT . From now
on, ĀT will be denoted by A∗, so [A∗]ij = aji. For example,

(
1 − 4i i 2

3 2 + i 0

)∗
=

⎛
⎝ 1 + 4i 3

−i 2 − i
2 0

⎞
⎠ .

(A∗)∗ = A for all matrices, and A∗ = AT whenever A contains only
real entries. Sometimes the matrix A∗ is called the adjoint of A.

The transpose (and conjugate transpose) operation is easily combined with
matrix addition and scalar multiplication. The basic rules are given below.

Properties of the Transpose
If A and B are two matrices of the same shape, and if α is a scalar,
then each of the following statements is true.

(A + B)T = AT + BT and (A + B)∗ = A∗ + B∗. (3.2.1)

(αA)T = αAT and (αA)∗ = αA∗. (3.2.2)

Proof.17 We will prove that (3.2.1) and (3.2.2) hold for the transpose operation.
The proofs of the statements involving conjugate transposes are similar and are
left as exercises. For each i and j, it is true that

[(A + B)T ]ij = [A + B]ji = [A]ji + [B]ji = [AT ]ij + [BT ]ij = [AT + BT ]ij .

17
Computers can outperform people in many respects in that they do arithmetic much faster
and more accurately than we can, and they are now rather adept at symbolic computation and
mechanical manipulation of formulas. But computers can’t do mathematics—people still hold
the monopoly. Mathematics emanates from the uniquely human capacity to reason abstractly
in a creative and logical manner, and learning mathematics goes hand-in-hand with learning
how to reason abstractly and create logical arguments. This is true regardless of whether your
orientation is applied or theoretical. For this reason, formal proofs will appear more frequently
as the text evolves, and it is expected that your level of comprehension as well as your ability
to create proofs will grow as you proceed.

http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html


COPYRIG
HTED

It 
is

 il
le

ga
l t

o 
pr

in
t, 

du
pl

ic
at

e,
 o

r 
di

st
rib

ut
e 

th
is

 m
at

er
ia

l
P

le
as

e 
re

po
rt

 v
io

la
tio

ns
 to

 m
ey

er
@

nc
su

.e
du

Buy online from SIAM

http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

http://www.amazon.com/exec/obidos/ASIN/0898714540

Copyright c© 2000 SIAM

3.2 Addition and Transposition 85

This proves that corresponding entries in (A + B)T and AT + BT are equal,
so it must be the case that (A + B)T = AT +BT . Similarly, for each i and j,

[(αA)T ]ij = [αA]ji = α[A]ji = α[AT ]ij =⇒ (αA)T = αAT .

Sometimes transposition doesn’t change anything. For example, if

A =

⎛
⎝ 1 2 3

2 4 5
3 5 6

⎞
⎠ , then AT = A.

This is because the entries in A are symmetrically located about the main di-
agonal—the line from the upper-left-hand corner to the lower-right-hand corner.

Matrices of the form D =

⎛
⎝ λ1 0 · · · 0

0 λ2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · λn

⎞
⎠ are called diagonal matrices,

and they are clearly symmetric in the sense that D = DT . This is one of several
kinds of symmetries described below.

Symmetries
Let A = [aij ] be a square matrix.

• A is said to be a symmetric matrix whenever A = AT , i.e.,
whenever aij = aji.

• A is said to be a skew-symmetric matrix whenever A = −AT ,
i.e., whenever aij = −aji.

• A is said to be a hermitian matrix whenever A = A∗, i.e.,
whenever aij = aji. This is the complex analog of symmetry.

• A is said to be a skew-hermitian matrix when A = −A∗, i.e.,
whenever aij = −aji. This is the complex analog of skew symmetry.

For example, consider

A =

⎛
⎝ 1 2 + 4i 1 − 3i

2 − 4i 3 8 + 6i
1 + 3i 8 − 6i 5

⎞
⎠ and B =

⎛
⎝ 1 2 + 4i 1 − 3i

2 + 4i 3 8 + 6i
1 − 3i 8 + 6i 5

⎞
⎠ .

Can you see that A is hermitian but not symmetric, while B is symmetric but
not hermitian?

Nature abounds with symmetry, and very often physical symmetry manifests
itself as a symmetric matrix in a mathematical model. The following example is
an illustration of this principle.
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Example 3.2.1

Consider two springs that are connected as shown in Figure 3.2.1.

x1 x2 x3

k1 k2Node 1 Node 2 Node 3

F1 -F1 F3-F3

Figure 3.2.1

The springs at the top represent the “no tension” position in which no force is
being exerted on any of the nodes. Suppose that the springs are stretched or
compressed so that the nodes are displaced as indicated in the lower portion
of Figure 3.2.1. Stretching or compressing the springs creates a force on each
node according to Hooke’s law 18 that says that the force exerted by a spring
is F = kx, where x is the distance the spring is stretched or compressed and
where k is a stiffness constant inherent to the spring. Suppose our springs have
stiffness constants k1 and k2, and let Fi be the force on node i when the
springs are stretched or compressed. Let’s agree that a displacement to the left
is positive, while a displacement to the right is negative, and consider a force
directed to the right to be positive while one directed to the left is negative.
If node 1 is displaced x1 units, and if node 2 is displaced x2 units, then the
left-hand spring is stretched (or compressed) by a total amount of x1−x2 units,
so the force on node 1 is

F1 = k1(x1 − x2).

Similarly, if node 2 is displaced x2 units, and if node 3 is displaced x3 units,
then the right-hand spring is stretched by a total amount of x2 − x3 units, so
the force on node 3 is

F3 = −k2(x2 − x3).

The minus sign indicates the force is directed to the left. The force on the left-
hand side of node 2 is the opposite of the force on node 1, while the force on the
right-hand side of node 2 must be the opposite of the force on node 3. That is,

F2 = −F1 − F3.

18
Hooke’s law is named for Robert Hooke (1635–1703), an English physicist, but it was generally
known to several people (including Newton) before Hooke’s 1678 claim to it was made. Hooke
was a creative person who is credited with several inventions, including the wheel barometer,
but he was reputed to be a man of “terrible character.” This characteristic virtually destroyed
his scientific career as well as his personal life. It is said that he lacked mathematical sophis-
tication and that he left much of his work in incomplete form, but he bitterly resented people
who built on his ideas by expressing them in terms of elegant mathematical formulations.
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Organize the above three equations as a linear system:

k1x1 − k1x2 = F1,

−k1x1 + (k1 + k2)x2 − k2x3 = F2,

−k2x2 + k2x3 = F3,

and observe that the coefficient matrix, called the stiffness matrix,

K =

⎛
⎝ k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2

⎞
⎠ ,

is a symmetric matrix. The point of this example is that symmetry in the physical
problem translates to symmetry in the mathematics by way of the symmetric
matrix K. When the two springs are identical (i.e., when k1 = k2 = k ), even
more symmetry is present, and in this case

K = k

⎛
⎝ 1 −1 0

−1 2 −1
0 −1 1

⎞
⎠ .

Exercises for section 3.2

3.2.1. Determine the unknown quantities in the following expressions.

(a) 3X =
(

0 3
6 9

)
. (b) 2

(
x + 2 y + 3

3 0

)
=

(
3 6
y z

)T

.

3.2.2. Identify each of the following as symmetric, skew symmetric, or neither.

(a)

⎛
⎝ 1 −3 3

−3 4 −3
3 3 0

⎞
⎠ . (b)

⎛
⎝ 0 −3 −3

3 0 1
3 −1 0

⎞
⎠ .

(c)

⎛
⎝ 0 −3 −3

−3 0 3
−3 3 1

⎞
⎠ . (d)

(
1 2 0
2 1 0

)
.

3.2.3. Construct an example of a 3 × 3 matrix A that satisfies the following
conditions.

(a) A is both symmetric and skew symmetric.
(b) A is both hermitian and symmetric.
(c) A is skew hermitian.
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3.2.4. Explain why the set of all n × n symmetric matrices is closed under
matrix addition. That is, explain why the sum of two n × n symmetric
matrices is again an n × n symmetric matrix. Is the set of all n × n
skew-symmetric matrices closed under matrix addition?

3.2.5. Prove that each of the following statements is true.
(a) If A = [aij ] is skew symmetric, then ajj = 0 for each j.
(b) If A = [aij ] is skew hermitian, then each ajj is a pure imagi-

nary number—i.e., a multiple of the imaginary unit i.
(c) If A is real and symmetric, then B = iA is skew hermitian.

3.2.6. Let A be any square matrix.
(a) Show that A+AT is symmetric and A−AT is skew symmetric.
(b) Prove that there is one and only one way to write A as the

sum of a symmetric matrix and a skew-symmetric matrix.

3.2.7. If A and B are two matrices of the same shape, prove that each of the
following statements is true.

(a) (A + B)∗ = A∗ + B∗.
(b) (αA)∗ = αA∗.

3.2.8. Using the conventions given in Example 3.2.1, determine the stiffness
matrix for a system of n identical springs, with stiffness constant k,
connected in a line similar to that shown in Figure 3.2.1.
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3.3 LINEARITY

The concept of linearity is the underlying theme of our subject. In elementary
mathematics the term “linear function” refers to straight lines, but in higher
mathematics linearity means something much more general. Recall that a func-
tion f is simply a rule for associating points in one set D —called the domain
of f —to points in another set R—the range of f. A linear function is a
particular type of function that is characterized by the following two properties.

Linear Functions
Suppose that D and R are sets that possess an addition operation as
well as a scalar multiplication operation—i.e., a multiplication between
scalars and set members. A function f that maps points in D to points
in R is said to be a linear function whenever f satisfies the conditions
that

f(x + y) = f(x) + f(y) (3.3.1)

and
f(αx) = αf(x) (3.3.2)

for every x and y in D and for all scalars α. These two conditions
may be combined by saying that f is a linear function whenever

f(αx + y) = αf(x) + f(y) (3.3.3)

for all scalars α and for all x, y ∈ D.

One of the simplest linear functions is f(x) = αx, whose graph in �2 is a
straight line through the origin. You should convince yourself that f is indeed
a linear function according to the above definition. However, f(x) = αx + β
does not qualify for the title “linear function”—it is a linear function that has
been translated by a constant β. Translations of linear functions are referred to
as affine functions. Virtually all information concerning affine functions can
be derived from an understanding of linear functions, and consequently we will
focus only on issues of linearity.

In �3, the surface described by a function of the form

f(x1, x2) = α1x1 + α2x2

is a plane through the origin, and it is easy to verify that f is a linear function.
For β �= 0, the graph of f(x1, x2) = α1x1 + α2x2 + β is a plane not passing
through the origin, and f is no longer a linear function—it is an affine function.
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90 Chapter 3 Matrix Algebra

In �2 and �3, the graphs of linear functions are lines and planes through
the origin, and there seems to be a pattern forming. Although we cannot visualize
higher dimensions with our eyes, it seems reasonable to suggest that a general
linear function of the form

f(x1, x2, . . . , xn) = α1x1 + α2x2 + · · · + αnxn

somehow represents a “linear” or “flat” surface passing through the origin 0 =
(0, 0, . . . , 0) in �n+1. One of the goals of the next chapter is to learn how to
better interpret and understand this statement.

Linearity is encountered at every turn. For example, the familiar operations
of differentiation and integration may be viewed as linear functions. Since

d(f + g)
dx

=
df

dx
+

dg

dx
and

d(αf)
dx

= α
df

dx
,

the differentiation operator Dx(f) = df/dx is linear. Similarly,∫
(f + g)dx =

∫
fdx +

∫
gdx and

∫
αfdx = α

∫
fdx

means that the integration operator I(f) =
∫

fdx is linear.
There are several important matrix functions that are linear. For example,

the transposition function f(Xm×n) = XT is linear because

(A + B)T = AT + BT and (αA)T = αAT

(recall (3.2.1) and (3.2.2)). Another matrix function that is linear is the trace
function presented below.

Example 3.3.1

The trace of an n × n matrix A = [aij ] is defined to be the sum of the entries
lying on the main diagonal of A. That is,

trace (A) = a11 + a22 + · · · + ann =
n∑

i=1

aii.

Problem: Show that f(Xn×n) = trace (X) is a linear function.

Solution: Let’s be efficient by showing that (3.3.3) holds. Let A = [aij ] and
B = [bij ], and write

f(αA + B) = trace (αA + B) =
n∑

i=1

[αA + B]ii =
n∑

i=1

(αaii + bii)

=
n∑

i=1

αaii +
n∑

i=1

bii = α

n∑
i=1

aii +
n∑

i=1

bii = α trace (A) + trace (B)

= αf(A) + f(B).
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Example 3.3.2

Consider a linear system

a11x1 + a12x2 + · · · + a1nxn = u1,

a21x1 + a22x2 + · · · + a2nxn = u2,

...
am1x1 + am2x2 + · · · + amnxn = um,

to be a function u = f(x) that maps x =

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ ∈ �n to u =

⎛
⎜⎜⎝

u1

u2
...

um

⎞
⎟⎟⎠ ∈ �m.

Problem: Show that u = f(x) is linear.

Solution: Let A = [aij ] be the matrix of coefficients, and write

f(αx + y) = f

⎛
⎜⎜⎝

αx1 + y1

αx2 + y2
...

αxn + yn

⎞
⎟⎟⎠ =

n∑
j=1

(αxj + yj)A∗j =
n∑

j=1

(αxjA∗j + yjA∗j)

=
n∑

j=1

αxjA∗j +
n∑

j=1

yjA∗j = α

n∑
j=1

xjA∗j +
n∑

j=1

yjA∗j

= αf(x) + f(y).

According to (3.3.3), the function f is linear.

The following terminology will be used from now on.

Linear Combinations
For scalars αj and matrices Xj , the expression

α1X1 + α2X2 + · · · + αnXn =
n∑

j=1

αjXj

is called a linear combination of the Xj ’s.
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Exercises for section 3.3

3.3.1. Each of the following is a function from �2 into �2. Determine which
are linear functions.

(a) f

(
x
y

)
=

(
x

1 + y

)
. (b) f

(
x
y

)
=

(
y
x

)
.

(c) f

(
x
y

)
=

(
0
xy

)
. (d) f

(
x
y

)
=

(
x2

y2

)
.

(e) f

(
x
y

)
=

(
x

sin y

)
. (f) f

(
x
y

)
=

(
x + y
x − y

)
.

3.3.2. For x =

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ , and for constants ξi, verify that

f(x) = ξ1x1 + ξ2x2 + · · · + ξnxn

is a linear function.

3.3.3. Give examples of at least two different physical principles or laws that
can be characterized as being linear phenomena.

3.3.4. Determine which of the following three transformations in �2 are linear.

θ

f(p)

p

f(p)

p

y =
 x

f(p)

p

Rotate counterclockwise

through an angle θ.
Reflect about

the x -axis.

Project onto

the line y = x.
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3.4 WHY DO IT THIS WAY

If you were given the task of formulating a definition for composing two ma-
trices A and B in some sort of “natural” multiplicative fashion, your first
attempt would probably be to compose A and B by multiplying correspond-
ing entries—much the same way matrix addition is defined. Asked then to defend
the usefulness of such a definition, you might be hard pressed to provide a truly
satisfying response. Unless a person is in the right frame of mind, the issue of
deciding how to best define matrix multiplication is not at all transparent, es-
pecially if it is insisted that the definition be both “natural” and “useful.” The
world had to wait for Arthur Cayley to come to this proper frame of mind.

As mentioned in §3.1, matrix algebra appeared late in the game. Manipula-
tion on arrays and the theory of determinants existed long before Cayley and his
theory of matrices. Perhaps this can be attributed to the fact that the “correct”
way to multiply two matrices eluded discovery for such a long time.

Around 1855, Cayley became interested in composing linear functions.19 In
particular, he was investigating linear functions of the type discussed in Example
3.3.2. Typical examples of two such functions are

f(x) = f

(
x1

x2

)
=

(
ax1 + bx2

cx1 + dx2

)
and g(x) = g

(
x1

x2

)
=

(
Ax1 + Bx2

Cx1 + Dx2

)
.

Consider, as Cayley did, composing f and g to create another linear function

h(x) = f
(
g(x)

)
= f

(
Ax1 + Bx2

Cx1 + Dx2

)
=

(
(aA + bC)x1 + (aB + bD)x2

(cA + dC)x1 + (cB + dD)x2

)
.

It was Cayley’s idea to use matrices of coefficients to represent these linear
functions. That is, f, g, and h are represented by

F =
(

a b
c d

)
, G =

(
A B
C D

)
, and H =

(
aA + bC aB + bD
cA + dC cB + dD

)
.

After making this association, it was only natural for Cayley to call H the
composition (or product) of F and G, and to write(

a b
c d

) (
A B
C D

)
=

(
aA + bC aB + bD
cA + dC cB + dD

)
. (3.4.1)

In other words, the product of two matrices represents the composition of the
two associated linear functions. By means of this observation, Cayley brought to
life the subjects of matrix analysis and linear algebra.

19
Cayley was not the first to compose linear functions. In fact, Gauss used these compositions
as early as 1801, but not in the form of an array of coefficients. Cayley was the first to make
the connection between composition of linear functions and the composition of the associated
matrices. Cayley’s work from 1855 to 1857 is regarded as being the birth of our subject.
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94 Chapter 3 Matrix Algebra

Exercises for section 3.4

Each problem in this section concerns the following three linear transformations
in �2.

Rotation: Rotate points counterclockwise
through an angle θ. θ

f(p)

p

Reflection: Reflect points about the x -axis.

f(p)

p

Projection: Project points onto the line
y = x in a perpendicular
manner.

y =
 x

f(p)

p

3.4.1. Determine the matrix associated with each of these linear functions.
That is, determine the aij ’s such that

f(p) = f

(
x1

x2

)
=

(
a11x1 + a12x2

a21x1 + a22x2

)
.

3.4.2. By using matrix multiplication, determine the linear function obtained
by performing a rotation followed by a reflection.

3.4.3. By using matrix multiplication, determine the linear function obtained
by first performing a reflection, then a rotation, and finally a projection.
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3.5 MATRIX MULTIPLICATION

The purpose of this section is to further develop the concept of matrix multipli-
cation as introduced in the previous section. In order to do this, it is helpful to
begin by composing a single row with a single column. If

R = ( r1 r2 · · · rn ) and C =

⎛
⎜⎜⎝

c1

c2
...

cn

⎞
⎟⎟⎠ ,

the standard inner product of R with C is defined to be the scalar

RC = r1c1 + r2c2 + · · · + rncn =
n∑

i=1

rici.

For example,

( 2 4 −2 )

⎛
⎝ 1

2
3

⎞
⎠ = (2)(1) + (4)(2) + (−2)(3) = 4.

Recall from (3.4.1) that the product of two 2 × 2 matrices

F =
(

a b
c d

)
and G =

(
A B
C D

)

was defined naturally by writing

FG =
(

a b
c d

) (
A B
C D

)
=

(
aA + bC aB + bD
cA + dC cB + dD

)
= H.

Notice that the (i, j) -entry in the product H can be described as the inner
product of the ith row of F with the jth column in G. That is,

h11 = F1∗G∗1 = ( a b )
(

A
C

)
, h12 = F1∗G∗2 = ( a b )

(
B
D

)
,

h21 = F2∗G∗1 = ( c d )
(

A
C

)
, h22 = F2∗G∗2 = ( c d )

(
B
D

)
.

This is exactly the way that the general definition of matrix multiplication is
formulated.

http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html


COPYRIG
HTED

It 
is

 il
le

ga
l t

o 
pr

in
t, 

du
pl

ic
at

e,
 o

r 
di

st
rib

ut
e 

th
is

 m
at

er
ia

l
P

le
as

e 
re

po
rt

 v
io

la
tio

ns
 to

 m
ey

er
@

nc
su

.e
du

Buy online from SIAM

http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

http://www.amazon.com/exec/obidos/ASIN/0898714540

Copyright c© 2000 SIAM

96 Chapter 3 Matrix Algebra

Matrix Multiplication

• Matrices A and B are said to be conformable for multiplication
in the order AB whenever A has exactly as many columns as B
has rows—i.e., A is m × p and B is p × n.

• For conformable matrices Am×p = [aij ] and Bp×n = [bij ], the
matrix product AB is defined to be the m × n matrix whose
(i, j) -entry is the inner product of the ith row of A with the jth

column in B. That is,

[AB]ij = Ai∗B∗j = ai1b1j + ai2b2j + · · · + aipbpj =
p∑

k=1

aikbkj .

• In case A and B fail to be conformable—i.e., A is m × p and B
is q × n with p �= q —then no product AB is defined.

For example, if

A =
(

a11 a12 a13

a21 a22 a23

)
2×3

and B =

⎛
⎝ b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

⎞
⎠

3×4

↑
inside ones match

↑�⏐⏐⏐
shape of the product

�⏐⏐⏐

then the product AB exists and has shape 2 × 4. Consider a typical entry of
this product, say, the (2,3)-entry. The definition says [AB]23 is obtained by
forming the inner product of the second row of A with the third column of B

(
a11 a12 a13

a21 a22 a23

)⎛
⎝ b11

b21

b31

b12

b22

b32

b13

b23

b33

b14

b24

b34

⎞
⎠ ,

so

[AB]23 = A2∗B∗3 = a21b13 + a22b23 + a23b33 =
3∑

k=1

a2kbk3.
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For example,

A =
(

2 1 −4
−3 0 5

)
, B =

⎛
⎝ 1 3 −3 2

2 5 −1 8
−1 2 0 2

⎞
⎠ =⇒ AB =

(
8 3 −7 4

−8 1 9 4

)
.

Notice that in spite of the fact that the product AB exists, the product BA
is not defined—matrix B is 3 × 4 and A is 2 × 3, and the inside dimensions
don’t match in this order. Even when the products AB and BA each exist
and have the same shape, they need not be equal. For example,

A=
(

1 −1
1 −1

)
, B=

(
1 1
1 1

)
=⇒ AB=

(
0 0
0 0

)
, BA=

(
2 −2
2 −2

)
. (3.5.1)

This disturbing feature is a primary difference between scalar and matrix algebra.

Matrix Multiplication Is Not Commutative
Matrix multiplication is a noncommutative operation—i.e., it is possible
for AB �= BA, even when both products exist and have the same shape.

There are other major differences between multiplication of matrices and
multiplication of scalars. For scalars,

αβ = 0 implies α = 0 or β = 0. (3.5.2)

However, the analogous statement for matrices does not hold—the matrices given
in (3.5.1) show that it is possible for AB = 0 with A �= 0 and B �= 0. Related
to this issue is a rule sometimes known as the cancellation law. For scalars,
this law says that

αβ = αγ and α �= 0 implies β = γ. (3.5.3)

This is true because we invoke (3.5.2) to deduce that α(β − γ) = 0 implies
β − γ = 0. Since (3.5.2) does not hold for matrices, we cannot expect (3.5.3) to
hold for matrices.

Example 3.5.1

The cancellation law (3.5.3) fails for matrix multiplication. If

A =
(

1 1
1 1

)
, B =

(
2 2
2 2

)
, and C =

(
3 1
1 3

)
,

then

AB =
(

4 4
4 4

)
= AC but B �= C

in spite of the fact that A �= 0.
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There are various ways to express the individual rows and columns of a
matrix product. For example, the ith row of AB is

[AB]i∗ =
[
Ai∗B∗1 |Ai∗B∗2 | · · · |Ai∗B∗n

]
= Ai∗B

= ( ai1 ai2 · · · aip )

⎛
⎜⎜⎝

B1∗
B2∗

...
Bp∗

⎞
⎟⎟⎠ = ai1B1∗ + ai2B2∗ + · · · + aipBp∗.

As shown below, there are similar representations for the individual columns.

Rows and Columns of a Product
Suppose that A = [aij ] is m × p and B = [bij ] is p × n.

• [AB]i∗ = Ai∗B
[
( ith row of AB )=( ith row of A )×B

]
. (3.5.4)

• [AB]∗j = AB∗j

[
( jth col of AB )= A× ( jth col of B )

]
. (3.5.5)

• [AB]i∗ = ai1B1∗ + ai2B2∗ + · · · + aipBp∗ =
∑p

k=1 aikBk∗. (3.5.6)

• [AB]∗j = A∗1b1j + A∗2b2j + · · · + A∗pbpj =
∑p

k=1 A∗kbkj . (3.5.7)
These last two equations show that rows of AB are combinations of
rows of B, while columns of AB are combinations of columns of A.

For example, if A =
(

1 −2 0
3 −4 5

)
and B =

⎛
⎝ 3 −5 1

2 −7 2
1 −2 0

⎞
⎠ , then the

second row of AB is

[AB]2∗ = A2∗B = ( 3 −4 5 )

⎛
⎝ 3 −5 1

2 −7 2
1 −2 0

⎞
⎠ = ( 6 3 −5 ) ,

and the second column of AB is

[AB]∗2 = AB∗2 =
(

1 −2 0
3 −4 5

) ⎛
⎝−5

−7
−2

⎞
⎠ =

(
9
3

)
.

This example makes the point that it is wasted effort to compute the entire
product if only one row or column is called for. Although it’s not necessary to
compute the complete product, you may wish to verify that

AB =
(

1 −2 0
3 −4 5

) ⎛
⎝ 3 −5 1

2 −7 2
1 −2 0

⎞
⎠ =

(
−1 9 −3

6 3 −5

)
.
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Matrix multiplication provides a convenient representation for a linear sys-
tem of equations. For example, the 3 × 4 system

2x1 + 3x2 + 4x3 + 8x4 = 7,

3x1 + 5x2 + 6x3 + 2x4 = 6,

4x1 + 2x2 + 4x3 + 9x4 = 4,

can be written as Ax = b, where

A3×4 =

⎛
⎝ 2 3 4 8

3 5 6 2
4 2 4 9

⎞
⎠ , x4×1 =

⎛
⎜⎝

x1

x2

x3

x4

⎞
⎟⎠ , and b3×1 =

⎛
⎝ 7

6
4

⎞
⎠ .

And this example generalizes to become the following statement.

Linear Systems
Every linear system of m equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm,

can be written as a single matrix equation Ax = b in which

A =

⎛
⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞
⎟⎟⎠ , x =

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ , and b =

⎛
⎜⎜⎝

b1

b2
...

bm

⎞
⎟⎟⎠ .

Conversely, every matrix equation of the form Am×nxn×1 = bm×1 rep-
resents a system of m linear equations in n unknowns.

The numerical solution of a linear system was presented earlier in the text
without the aid of matrix multiplication because the operation of matrix mul-
tiplication is not an integral part of the arithmetical process used to extract a
solution by means of Gaussian elimination. Viewing a linear system as a single
matrix equation Ax = b is more of a notational convenience that can be used to
uncover theoretical properties and to prove general theorems concerning linear
systems.
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100 Chapter 3 Matrix Algebra

For example, a very concise proof of the fact (2.3.5) stating that a system
of equations Am×nxn×1 = bm×1 is consistent if and only if b is a linear
combination of the columns in A is obtained by noting that the system is
consistent if and only if there exists a column s that satisfies

b = As = (A∗1 A∗2 · · · A∗n )

⎛
⎜⎜⎝

s1

s2
...

sn

⎞
⎟⎟⎠ = A∗1s1 + A∗2s2 + · · · + A∗nsn.

The following example illustrates a common situation in which matrix mul-
tiplication arises naturally.

Example 3.5.2

An airline serves five cities, say, A, B, C, D, and H, in which H is the “hub
city.” The various routes between the cities are indicated in Figure 3.5.1.

A B

C D

H

Figure 3.5.1

Suppose you wish to travel from city A to city B so that at least two connecting
flights are required to make the trip. Flights (A → H) and (H → B) provide the
minimal number of connections. However, if space on either of these two flights
is not available, you will have to make at least three flights. Several questions
arise. How many routes from city A to city B require exactly three connecting
flights? How many routes require no more than four flights—and so forth? Since
this particular network is small, these questions can be answered by “eyeballing”
the diagram, but the “eyeball method” won’t get you very far with the large
networks that occur in more practical situations. Let’s see how matrix algebra
can be applied. Begin by creating a connectivity matrix C = [cij ] (also known
as an adjacency matrix) in which

cij =
{ 1 if there is a flight from city i to city j,

0 otherwise.
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3.5 Matrix Multiplication 101

For the network depicted in Figure 3.5.1,

C =

⎛
⎜⎜⎜⎜⎝

A B C D H

A 0 0 1 0 1
B 1 0 0 0 1
C 0 0 0 1 1
D 0 1 0 0 1
H 1 1 1 1 0

⎞
⎟⎟⎟⎟⎠.

The matrix C together with its powers C2,C3,C4, . . . will provide all of the
information needed to analyze the network. To see how, notice that since cik

is the number of direct routes from city i to city k, and since ckj is the
number of direct routes from city k to city j, it follows that cikckj must be
the number of 2-flight routes from city i to city j that have a connection at
city k. Consequently, the (i, j) -entry in the product C2 = CC is

[C2]ij =
5∑

k=1

cikckj = the total number of 2-flight routes from city i to city j.

Similarly, the (i, j) -entry in the product C3 = CCC is

[C3]ij =
5∑

k1,k2=1

cik1ck1k2ck2j = number of 3-flight routes from city i to city j,

and, in general,

[Cn]ij =
5∑

k1,k2,···,kn−1=1

cik1ck1k2 · · · ckn−2kn−1ckn−1j

is the total number of n -flight routes from city i to city j. Therefore, the total
number of routes from city i to city j that require no more than n flights
must be given by

[C]ij + [C2]ij + [C3]ij + · · · + [Cn]ij = [C + C2 + C3 + · · · + Cn]ij .

For our particular network,

C2=

⎛
⎜⎜⎜⎝

1 1 1 2 1
1 1 2 1 1
1 2 1 1 1
2 1 1 1 1
1 1 1 1 4

⎞
⎟⎟⎟⎠, C3=

⎛
⎜⎜⎜⎝

2 3 2 2 5
2 2 2 3 5
3 2 2 2 5
2 2 3 2 5
5 5 5 5 4

⎞
⎟⎟⎟⎠, C4=

⎛
⎜⎜⎜⎝

8 7 7 7 9
7 8 7 7 9
7 7 8 7 9
7 7 7 8 9
9 9 9 9 20

⎞
⎟⎟⎟⎠,
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102 Chapter 3 Matrix Algebra

and

C + C2 + C3 + C4 =

⎛
⎜⎜⎜⎝

11 11 11 11 16
11 11 11 11 16
11 11 11 11 16
11 11 11 11 16
16 16 16 16 28

⎞
⎟⎟⎟⎠ .

The fact that [C3]12 = 3 means there are exactly 3 three-flight routes from city
A to city B, and [C4]12 = 7 means there are exactly 7 four-flight routes—try
to identify them. Furthermore, [C + C2 + C3 + C4]12 = 11 means there are 11
routes from city A to city B that require no more than 4 flights.

Exercises for section 3.5

3.5.1. For A =

⎛
⎝ 1 −2 3

0 −5 4
4 −3 8

⎞
⎠ , B =

⎛
⎝ 1 2

0 4
3 7

⎞
⎠ , and C =

⎛
⎝ 1

2
3

⎞
⎠ , compute

the following products when possible.
(a) AB, (b) BA, (c) CB, (d) CT B, (e) A2, (f) B2,
(g) CT C, (h) CCT , (i) BBT , (j) BT B, (k) CT AC.

3.5.2. Consider the following system of equations:

2x1 + x2 + x3 = 3,

4x1 + 2x3 = 10,

2x1 + 2x2 = − 2.

(a) Write the system as a matrix equation of the form Ax = b.
(b) Write the solution of the system as a column s and verify by

matrix multiplication that s satisfies the equation Ax = b.
(c) Write b as a linear combination of the columns in A.

3.5.3. Let E =

⎛
⎝ 1 0 0

0 1 0
3 0 1

⎞
⎠ and let A be an arbitrary 3 × 3 matrix.

(a) Describe the rows of EA in terms of the rows of A.
(b) Describe the columns of AE in terms of the columns of A.

3.5.4. Let ej denote the jth unit column that contains a 1 in the jth

position and zeros everywhere else. For a general matrix An×n, describe
the following products. (a) Aej (b) eT

i A (c) eT
i Aej
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3.5 Matrix Multiplication 103

3.5.5. Suppose that A and B are m × n matrices. If Ax = Bx holds for
all n × 1 columns x, prove that A = B. Hint: What happens when
x is a unit column?

3.5.6. For A =
(

1/2 α
0 1/2

)
, determine limn→∞ An. Hint: Compute a few

powers of A and try to deduce the general form of An.

3.5.7. If Cm×1 and R1×n are matrices consisting of a single column and
a single row, respectively, then the matrix product Pm×n = CR is
sometimes called the outer product of C with R. For conformable
matrices A and B, explain how to write the product AB as a sum of
outer products involving the columns of A and the rows of B.

3.5.8. A square matrix U = [uij ] is said to be upper triangular whenever
uij = 0 for i > j —i.e., all entries below the main diagonal are 0.

(a) If A and B are two n × n upper-triangular matrices, explain
why the product AB must also be upper triangular.

(b) If An×n and Bn×n are upper triangular, what are the diagonal
entries of AB?

(c) L is lower triangular when �ij = 0 for i < j. Is it true that
the product of two n × n lower-triangular matrices is again
lower triangular?

3.5.9. If A = [aij(t)] is a matrix whose entries are functions of a variable t,
the derivative of A with respect to t is defined to be the matrix of
derivatives. That is,

dA
dt

=
[
daij

dt

]
.

Derive the product rule for differentiation

d(AB)
dt

=
dA
dt

B + A
dB
dt

.

3.5.10. Let Cn×n be the connectivity matrix associated with a network of n
nodes such as that described in Example 3.5.2, and let e be the n × 1
column of all 1’s. In terms of the network, describe the entries in each
of the following products.

(a) Interpret the product Ce.
(b) Interpret the product eT C.

http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html


COPYRIG
HTED

It 
is

 il
le

ga
l t

o 
pr

in
t, 

du
pl

ic
at

e,
 o

r 
di

st
rib

ut
e 

th
is

 m
at

er
ia

l
P

le
as

e 
re

po
rt

 v
io

la
tio

ns
 to

 m
ey

er
@

nc
su

.e
du

Buy online from SIAM

http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

http://www.amazon.com/exec/obidos/ASIN/0898714540

Copyright c© 2000 SIAM

104 Chapter 3 Matrix Algebra

3.5.11. Consider three tanks each containing V gallons of brine. The tanks are
connected as shown in Figure 3.5.2, and all spigots are opened at once.
As fresh water at the rate of r gal/sec is pumped into the top of the
first tank, r gal/sec leaves from the bottom and flows into the next
tank, and so on down the line—there are r gal/sec entering at the top
and leaving through the bottom of each tank.

r  gal / sec

r  gal / sec

r  gal / sec

r  gal / sec

Figure 3.5.2

Let xi(t) denote the number of pounds of salt in tank i at time t, and
let

x =

⎛
⎜⎝

x1(t)

x2(t)

x3(t)

⎞
⎟⎠ and

dx
dt

=

⎛
⎜⎝

dx1/dt

dx2/dt

dx3/dt

⎞
⎟⎠ .

Assuming that complete mixing occurs in each tank on a continuous
basis, show that

dx
dt

= Ax, where A =
r

V

⎛
⎝−1 0 0

1 −1 0
0 1 −1

⎞
⎠ .

Hint: Use the fact that

dxi

dt
= rate of change =

lbs
sec

coming in − lbs
sec

going out.
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3.6 Properties of Matrix Multiplication 105

3.6 PROPERTIES OF MATRIX MULTIPLICATION

We saw in the previous section that there are some differences between scalar
and matrix algebra—most notable is the fact that matrix multiplication is not
commutative, and there is no cancellation law. But there are also some important
similarities, and the purpose of this section is to look deeper into these issues.

Although we can adjust to not having the commutative property, the situa-
tion would be unbearable if the distributive and associative properties were not
available. Fortunately, both of these properties hold for matrix multiplication.

Distributive and Associative Laws
For conformable matrices each of the following is true.

• A(B + C) = AB + AC (left-hand distributive law).

• (D + E)F = DF + EF (right-hand distributive law).

• A(BC) = (AB)C (associative law).

Proof. To prove the left-hand distributive property, demonstrate the corre-
sponding entries in the matrices A(B + C) and AB + AC are equal. To this
end, use the definition of matrix multiplication to write

[A(B + C)]ij = Ai∗(B + C)∗j =
∑

k

[A]ik[B + C]kj =
∑

k

[A]ik ([B]kj + [C]kj)

=
∑

k

([A]ik[B]kj + [A]ik[C]kj) =
∑

k

[A]ik[B]kj +
∑

k

[A]ik[C]kj

= Ai∗B∗j + Ai∗C∗j = [AB]ij + [AC]ij

= [AB + AC]ij .

Since this is true for each i and j, it follows that A(B + C) = AB + AC. The
proof of the right-hand distributive property is similar and is omitted. To prove
the associative law, suppose that B is p × q and C is q × n, and recall from
(3.5.7) that the jth column of BC is a linear combination of the columns in
B. That is,

[BC]∗j = B∗1c1j + B∗2c2j + · · · + B∗qcqj =
q∑

k=1

B∗kckj .
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Use this along with the left-hand distributive property to write

[A(BC)]ij = Ai∗[BC]∗j = Ai∗

q∑
k=1

B∗kckj =
q∑

k=1

Ai∗B∗kckj

=
q∑

k=1

[AB]ikckj = [AB]i∗C∗j = [(AB)C]ij .

Example 3.6.1

Linearity of Matrix Multiplication. Let A be an m × n matrix, and f be
the function defined by matrix multiplication

f(Xn×p) = AX.

The left-hand distributive property guarantees that f is a linear function be-
cause for all scalars α and for all n × p matrices X and Y,

f(αX + Y) = A(αX + Y) = A(αX) + AY = αAX + AY

= αf(X) + f(Y).

Of course, the linearity of matrix multiplication is no surprise because it was
the consideration of linear functions that motivated the definition of the matrix
product at the outset.

For scalars, the number 1 is the identity element for multiplication because
it has the property that it reproduces whatever it is multiplied by. For matrices,
there is an identity element with similar properties.

Identity Matrix
The n × n matrix with 1’s on the main diagonal and 0’s elsewhere

In =

⎛
⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎠

is called the identity matrix of order n. For every m × n matrix A,

AIn = A and ImA = A.

The subscript on In is neglected whenever the size is obvious from the
context.
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Proof. Notice that I∗j has a 1 in the jth position and 0’s elsewhere. Recall
from Exercise 3.5.4 that such columns were called unit columns, and they
have the property that for any conformable matrix A,

AI∗j = A∗j .

Using this together with the fact that [AI]∗j = AI∗j produces

AI = (AI∗1 AI∗2 · · · AI∗n ) = (A∗1 A∗2 · · · A∗n ) = A.

A similar argument holds when I appears on the left-hand side of A.

Analogous to scalar algebra, we define the 0th power of a square matrix to
be the identity matrix of corresponding size. That is, if A is n × n, then

A0 = In.

Positive powers of A are also defined in the natural way. That is,

Ak = AA· · ·A︸ ︷︷ ︸
k times

.

The associative law guarantees that it makes no difference how matrices are
grouped for powering. For example, AA2 is the same as A2A, so that

A3 = AAA = AA2 = A2A.

Also, the usual laws of exponents hold. For nonnegative integers r and s,

ArAs = Ar+s and (Ar)s = Ars.

We are not yet in a position to define negative or fractional powers, and due to
the lack of conformability, powers of nonsquare matrices are never defined.

Example 3.6.2

A Pitfall. For two n × n matrices, what is (A + B)2? Be careful! Because
matrix multiplication is not commutative, the familiar formula from scalar alge-
bra is not valid for matrices. The distributive properties must be used to write

(A + B)2 = (A + B)︸ ︷︷ ︸(A + B) = (A + B)︸ ︷︷ ︸A + (A + B)︸ ︷︷ ︸B

= A2 + BA + AB + B2,

and this is as far as you can go. The familiar form A2+2AB+B2 is obtained only
in those rare cases where AB = BA. To evaluate (A + B)k

, the distributive
rules must be applied repeatedly, and the results are a bit more complicated—try
it for k = 3.
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108 Chapter 3 Matrix Algebra

Example 3.6.3

Suppose that the population migration between two geographical regions—say,
the North and the South—is as follows. Each year, 50% of the population in
the North migrates to the South, while only 25% of the population in the South
moves to the North. This situation is depicted by drawing a transition diagram
such as that shown in Figure 3.6.1.

N S

.25

.5

.5 .75

Figure 3.6.1

Problem: If this migration pattern continues, will the population in the North
continually shrink until the entire population is eventually in the South, or will
the population distribution somehow stabilize before the North is completely
deserted?

Solution: Let nk and sk denote the respective proportions of the total popula-
tion living in the North and South at the end of year k and assume nk +sk = 1.
The migration pattern dictates that the fractions of the population in each region
at the end of year k + 1 are

nk+1 = nk(.5) + sk(.25),
sk+1 = nk(.5) + sk(.75).

(3.6.1)

If pT
k = (nk, sk) and pT

k+1 = (nk+1, sk+1) denote the respective population
distributions at the end of years k and k + 1, and if

T =
( N S

N .5 .5
S .25 .75

)

is the associated transition matrix, then (3.6.1) assumes the matrix form
pT

k+1 = pT
k T. Inducting on pT

1 = pT
0 T, pT

2 = pT
1 T = pT

0 T2, pT
3 = pT

2 T =
pT

0 T3, etc., leads to
pT

k = pT
0 Tk. (3.6.2)

Determining the long-run behavior involves evaluating limk→∞ pT
k , and it’s clear

from (3.6.2) that this boils down to analyzing limk→∞ Tk. Later, in Example
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7.3.5, a more sophisticated approach is discussed, but for now we will use the
“brute force” method of successively powering T until a pattern emerges. The
first several powers of T are shown below with three significant digits displayed.

T2 =
(

.375 .625

.312 .687

)
T3 =

(
.344 .656
.328 .672

)
T4 =

(
.328 .672
.332 .668

)

T5 =
(

.334 .666

.333 .667

)
T6 =

(
.333 .667
.333 .667

)
T7 =

(
.333 .667
.333 .667

)

This sequence appears to be converging to a limiting matrix of the form

T∞ = lim
k→∞

Tk =
(

1/3 2/3
1/3 2/3

)
,

so the limiting population distribution is

pT
∞ = lim

k→∞
pT

k = lim
k→∞

pT
0 Tk = pT

0 lim
k→∞

Tk = (n0 s0 )
(

1/3 2/3
1/3 2/3

)

=
(

n0 + s0

3
2(n0 + s0)

3

)
= ( 1/3 2/3 ) .

Therefore, if the migration pattern continues to hold, then the population dis-
tribution will eventually stabilize with 1/3 of the population being in the North
and 2/3 of the population in the South. And this is independent of the initial
distribution! The powers of T indicate that the population distribution will be
practically stable in no more than 6 years—individuals may continue to move,
but the proportions in each region are essentially constant by the sixth year.

The operation of transposition has an interesting effect upon a matrix
product—a reversal of order occurs.

Reverse Order Law for Transposition
For conformable matrices A and B,

(AB)T = BT AT .

The case of conjugate transposition is similar. That is,

(AB)∗ = B∗A∗.
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Proof. By definition,

(AB)T
ij = [AB]ji = Aj∗B∗i.

Consider the (i, j)-entry of the matrix BT AT and write[
BT AT

]
ij

=
(
BT

)
i∗

(
AT

)
∗j

=
∑

k

[
BT

]
ik

[
AT

]
kj

=
∑

k

[B]ki[A]jk =
∑

k

[A]jk[B]ki

= Aj∗B∗i.

Therefore, (AB)T
ij =

[
BT AT

]
ij

for all i and j, and thus (AB)T = BT AT .

The proof for the conjugate transpose case is similar.

Example 3.6.4

For every matrix Am×n, the products AT A and AAT are symmetric matrices
because(

AT A
)T

= AT AT T
= AT A and

(
AAT

)T
= AT T

AT = AAT .

Example 3.6.5

Trace of a Product. Recall from Example 3.3.1 that the trace of a square
matrix is the sum of its main diagonal entries. Although matrix multiplication
is not commutative, the trace function is one of the few cases where the order of
the matrices can be changed without affecting the results.

Problem: For matrices Am×n and Bn×m, prove that

trace (AB) = trace (BA).

Solution:

trace (AB) =
∑

i

[AB]ii =
∑

i

Ai∗B∗i =
∑

i

∑
k

aikbki =
∑

i

∑
k

bkiaik

=
∑

k

∑
i

bkiaik =
∑

k

Bk∗A∗k =
∑

k

[BA]kk = trace (BA).

Note: This is true in spite of the fact that AB is m × m while BA is n × n.
Furthermore, this result can be extended to say that any product of conformable
matrices can be permuted cyclically without altering the trace of the product.
For example,

trace (ABC) = trace (BCA) = trace (CAB).

However, a noncyclical permutation may not preserve the trace. For example,

trace (ABC) �= trace (BAC).
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Executing multiplication between two matrices by partitioning one or both
factors into submatrices—a matrix contained within another matrix—can be
a useful technique.

Block Matrix Multiplication
Suppose that A and B are partitioned into submatrices—often referred
to as blocks—as indicated below.

A =

⎛
⎜⎜⎝

A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
. . .

...
As1 As2 · · · Asr

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

B11 B12 · · · B1t

B21 B22 · · · B2t
...

...
. . .

...
Br1 Br2 · · · Brt

⎞
⎟⎟⎠ .

If the pairs (Aik,Bkj) are conformable, then A and B are said to
be conformably partitioned. For such matrices, the product AB is
formed by combining the blocks exactly the same way as the scalars are
combined in ordinary matrix multiplication. That is, the (i, j) -block in
AB is

Ai1B1j + Ai2B2j + · · · + AirBrj .

Although a completely general proof is possible, looking at some examples
better serves the purpose of understanding this technique.

Example 3.6.6

Block multiplication is particularly useful when there are patterns in the matrices
to be multiplied. Consider the partitioned matrices

A =

⎛
⎜⎜⎝

1 2 1 0
3 4 0 1

1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ =

(
C I
I 0

)
, B =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

1 2 1 2
3 4 3 4

⎞
⎟⎟⎠ =

(
I 0
C C

)
,

where

I =
(

1 0
0 1

)
and C =

(
1 2
3 4

)
.

Using block multiplication, the product AB is easily computed to be

AB =
(

C I
I 0

) (
I 0
C C

)
=

(
2C C
I 0

)
=

⎛
⎜⎜⎝

2 4 1 2
6 8 3 4

1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .
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112 Chapter 3 Matrix Algebra

Example 3.6.7

Reducibility. Suppose that Tn×nx = b represents a system of linear equa-
tions in which the coefficient matrix is block triangular. That is, T can be
partitioned as

T =
(

A B
0 C

)
, where A is r × r and C is n − r × n − r. (3.6.3)

If x and b are similarly partitioned as x =
(

x1

x2

)
and b =

(
b1

b2

)
, then block

multiplication shows that Tx = b reduces to two smaller systems

Ax1 + Bx2 = b1,

Cx2 = b2,

so if all systems are consistent, a block version of back substitution is possible—
i.e., solve Cx2 = b2 for x2, and substituted this back into Ax1 = b1 − Bx2,
which is then solved for x1. For obvious reasons, block-triangular systems of
this type are sometimes referred to as reducible systems, and T is said to
be a reducible matrix. Recall that applying Gaussian elimination with back
substitution to an n × n system requires about n3/3 multiplications/divisions
and about n3/3 additions/subtractions. This means that it’s more efficient to
solve two smaller subsystems than to solve one large main system. For exam-
ple, suppose the matrix T in (3.6.3) is 100 × 100 while A and C are each
50 × 50. If Tx = b is solved without taking advantage of its reducibility, then
about 106/3 multiplications/divisions are needed. But by taking advantage of
the reducibility, only about (250 × 103)/3 multiplications/divisions are needed
to solve both 50 × 50 subsystems. Another advantage of reducibility is realized
when a computer’s main memory capacity is not large enough to store the entire
coefficient matrix but is large enough to hold the submatrices.

Exercises for section 3.6

3.6.1. For the partitioned matrices

A =

⎛
⎝ 1 0 0 3 3 3

1 0 0 3 3 3

1 2 2 0 0 0

⎞
⎠ and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1

0 0
0 0

−1 −2
−1 −2
−1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

use block multiplication with the indicated partitions to form the prod-
uct AB.
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3.6 Properties of Matrix Multiplication 113

3.6.2. For all matrices An×k and Bk×n, show that the block matrix

L =
(

I − BA B
2A − ABA AB − I

)

has the property L2 = I. Matrices with this property are said to be
involutory, and they occur in the science of cryptography.

3.6.3. For the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1/3 1/3 1/3
0 1 0 1/3 1/3 1/3
0 0 1 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎠ ,

determine A300. Hint: A square matrix C is said to be idempotent
when it has the property that C2 = C. Make use of idempotent sub-
matrices in A.

3.6.4. For every matrix Am×n, demonstrate that the products A∗A and
AA∗ are hermitian matrices.

3.6.5. If A and B are symmetric matrices that commute, prove that the
product AB is also symmetric. If AB �= BA, is AB necessarily sym-
metric?

3.6.6. Prove that the right-hand distributive property is true.

3.6.7. For each matrix An×n, explain why it is impossible to find a solution
for Xn×n in the matrix equation

AX − XA = I.

Hint: Consider the trace function.

3.6.8. Let yT
1×m be a row of unknowns, and let Am×n and bT

1×n be known
matrices.

(a) Explain why the matrix equation yT A = bT represents a sys-
tem of n linear equations in m unknowns.

(b) How are the solutions for yT in yT A = bT related to the
solutions for x in AT x = b?
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114 Chapter 3 Matrix Algebra

3.6.9. A particular electronic device consists of a collection of switching circuits
that can be either in an ON state or an OFF state. These electronic
switches are allowed to change state at regular time intervals called clock
cycles. Suppose that at the end of each clock cycle, 30% of the switches
currently in the OFF state change to ON, while 90% of those in the ON
state revert to the OFF state.

(a) Show that the device approaches an equilibrium in the sense
that the proportion of switches in each state eventually becomes
constant, and determine these equilibrium proportions.

(b) Independent of the initial proportions, about how many clock
cycles does it take for the device to become essentially stable?

3.6.10. Write the following system in the form Tn×nx = b, where T is block
triangular, and then obtain the solution by solving two small systems as
described in Example 3.6.7.

x1 + x2 + 3x3 + 4x4 = − 1,

2x3 + 3x4 = 3,

x1 + 2x2 + 5x3 + 6x4 = − 2,

x3 + 2x4 = 4.

3.6.11. Prove that each of the following statements is true for conformable ma-
trices.

(a) trace (ABC) = trace (BCA) = trace (CAB).
(b) trace (ABC) can be different from trace (BAC).
(c) trace

(
AT B

)
= trace

(
ABT

)
.

3.6.12. Suppose that Am×n and xn×1 have real entries.
(a) Prove that xT x = 0 if and only if x = 0.
(b) Prove that trace

(
AT A

)
= 0 if and only if A = 0.
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3.7 MATRIX INVERSION

If α is a nonzero scalar, then for each number β the equation αx = β has a
unique solution given by x = α−1β. To prove that α−1β is a solution, write

α(α−1β) = (αα−1)β = (1)β = β. (3.7.1)

Uniqueness follows because if x1 and x2 are two solutions, then

αx1 = β = αx2 =⇒ α−1(αx1) = α−1(αx2)

=⇒ (α−1α)x1 = (α−1α)x2

=⇒ (1)x1 = (1)x2 =⇒ x1 = x2.

(3.7.2)

These observations seem pedantic, but they are important in order to see how
to make the transition from scalar equations to matrix equations. In particular,
these arguments show that in addition to associativity, the properties

αα−1 = 1 and α−1α = 1 (3.7.3)

are the key ingredients, so if we want to solve matrix equations in the same
fashion as we solve scalar equations, then a matrix analogue of (3.7.3) is needed.

Matrix Inversion
For a given square matrix An×n, the matrix Bn×n that satisfies the
conditions

AB = In and BA = In

is called the inverse of A and is denoted by B = A−1. Not all square
matrices are invertible—the zero matrix is a trivial example, but there
are also many nonzero matrices that are not invertible. An invertible
matrix is said to be nonsingular, and a square matrix with no inverse
is called a singular matrix.

Notice that matrix inversion is defined for square matrices only—the con-
dition AA−1 = A−1A rules out inverses of nonsquare matrices.

Example 3.7.1

If

A =
(

a b
c d

)
, where δ = ad − bc �= 0,

then

A−1 =
1
δ

(
d −b

−c a

)
because it can be verified that AA−1 = A−1A = I2.
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Although not all matrices are invertible, when an inverse exists, it is unique.
To see this, suppose that X1 and X2 are both inverses for a nonsingular matrix
A. Then

X1 = X1I = X1(AX2) = (X1A)X2 = IX2 = X2,

which implies that only one inverse is possible.
Since matrix inversion was defined analogously to scalar inversion, and since

matrix multiplication is associative, exactly the same reasoning used in (3.7.1)
and (3.7.2) can be applied to a matrix equation AX = B, so we have the
following statements.

Matrix Equations
• If A is a nonsingular matrix, then there is a unique solution for X

in the matrix equation An×nXn×p = Bn×p, and the solution is

X = A−1B. (3.7.4)

• A system of n linear equations in n unknowns can be written as a
single matrix equation An×nxn×1 = bn×1 (see p. 99), so it follows
from (3.7.4) that when A is nonsingular, the system has a unique
solution given by x = A−1b.

However, it must be stressed that the representation of the solution as
x = A−1b is mostly a notational or theoretical convenience. In practice, a
nonsingular system Ax = b is almost never solved by first computing A−1 and
then the product x = A−1b. The reason will be apparent when we learn how
much work is involved in computing A−1.

Since not all square matrices are invertible, methods are needed to distin-
guish between nonsingular and singular matrices. There is a variety of ways to
describe the class of nonsingular matrices, but those listed below are among the
most important.

Existence of an Inverse
For an n × n matrix A, the following statements are equivalent.

• A−1 exists (A is nonsingular). (3.7.5)

• rank (A) = n. (3.7.6)

• A
Gauss–Jordan

−−−−−−−−→ I. (3.7.7)

• Ax = 0 implies that x = 0. (3.7.8)
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Proof. The fact that (3.7.6)⇐⇒ (3.7.7) is a direct consequence of the defi-
nition of rank, and (3.7.6)⇐⇒ (3.7.8) was established in §2.4. Consequently,
statements (3.7.6), (3.7.7), and (3.7.8) are equivalent, so if we establish that
(3.7.5)⇐⇒ (3.7.6), then the proof will be complete.

Proof of (3.7.5) =⇒ (3.7.6). Begin by observing that (3.5.5) guarantees
that a matrix X = [X∗1 |X∗2 | · · · |X∗n] satisfies the equation AX = I if and
only if X∗j is a solution of the linear system Ax = I∗j . If A is nonsingular,
then we know from (3.7.4) that there exists a unique solution to AX = I, and
hence each linear system Ax = I∗j has a unique solution. But in §2.5 we learned
that a linear system has a unique solution if and only if the rank of the coefficient
matrix equals the number of unknowns, so rank (A) = n.

Proof of (3.7.6) =⇒ (3.7.5). If rank (A) = n, then (2.3.4) insures that
each system Ax = I∗j is consistent because rank[A | I∗j ] = n = rank (A).
Furthermore, the results of §2.5 guarantee that each system Ax = I∗j has a
unique solution, and hence there is a unique solution to the matrix equation
AX = I. We would like to say that X = A−1, but we cannot jump to this
conclusion without first arguing that XA = I. Suppose this is not true—i.e.,
suppose that XA − I �= 0. Since

A(XA − I) = (AX)A − A = IA − A = 0,

it follows from (3.5.5) that any nonzero column of XA−I is a nontrivial solution
of the homogeneous system Ax = 0. But this is a contradiction of the fact that
(3.7.6)⇐⇒ (3.7.8). Therefore, the supposition that XA − I �= 0 must be false,
and thus AX = I = XA, which means A is nonsingular.

The definition of matrix inversion says that in order to compute A−1, it is
necessary to solve both of the matrix equations AX = I and XA = I. These
two equations are necessary to rule out the possibility of nonsquare inverses. But
when only square matrices are involved, then either one of the two equations will
suffice—the following example elaborates.

Example 3.7.2

Problem: If A and X are square matrices, explain why

AX = I =⇒ XA = I. (3.7.9)

In other words, if A and X are square and AX = I, then X = A−1.

Solution: Notice first that AX = I implies X is nonsingular because if X is
singular, then, by (3.7.8), there is a column vector x �= 0 such that Xx = 0,
which is contrary to the fact that x = Ix = AXx = 0. Now that we know X−1

exists, we can establish (3.7.9) by writing

AX = I =⇒ AXX−1 = X−1 =⇒ A = X−1 =⇒ XA = I.

Caution! The argument above is not valid for nonsquare matrices. When
m �= n, it’s possible that Am×nXn×m = Im, but XA �= In.
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Although we usually try to avoid computing the inverse of a matrix, there are
times when an inverse must be found. To construct an algorithm that will yield
A−1 when An×n is nonsingular, recall from Example 3.7.2 that determining
A−1 is equivalent to solving the single matrix equation AX = I, and due to
(3.5.5), this in turn is equivalent to solving the n linear systems defined by

Ax = I∗j for j = 1, 2, . . . , n. (3.7.10)

In other words, if X∗1,X∗2, . . . ,X∗n are the respective solutions to (3.7.10), then
X = [X∗1 |X∗2 | · · · |X∗n] solves the equation AX = I, and hence X = A−1.
If A is nonsingular, then we know from (3.7.7) that the Gauss–Jordan method
reduces the augmented matrix [A | I∗j ] to [I |X∗j ], and the results of §1.3 insure
that X∗j is the unique solution to Ax = I∗j . That is,

[A | I∗j ]
Gauss–Jordan

−−−−−−−−→
[
I
∣∣∣ [A−1]∗j

]
.

But rather than solving each system Ax = I∗j separately, we can solve them
simultaneously by taking advantage of the fact that they all have the same
coefficient matrix. In other words, applying the Gauss–Jordan method to the
larger augmented array [A | I∗1 | I∗2 | · · · | I∗n] produces

[A | I∗1 | I∗2 | · · · | I∗n]
Gauss–Jordan

−−−−−−−−→
[
I
∣∣∣ [A−1]∗1

∣∣∣ [A−1]∗2
∣∣∣ · · · ∣∣∣ [A−1]∗n

]
,

or more compactly,

[A | I]
Gauss–Jordan

−−−−−−−−→ [I |A−1]. (3.7.11)

What happens if we try to invert a singular matrix using this procedure?
The fact that (3.7.5)⇐⇒ (3.7.6)⇐⇒ (3.7.7) guarantees that a singular matrix
A cannot be reduced to I by Gauss–Jordan elimination because a zero row will
have to emerge in the left-hand side of the augmented array at some point during
the process. This means that we do not need to know at the outset whether A
is nonsingular or singular—it becomes self-evident depending on whether or not
the reduction (3.7.11) can be completed. A summary is given below.

Computing an Inverse
Gauss–Jordan elimination can be used to invert A by the reduction

[A | I]
Gauss–Jordan

−−−−−−−−→ [I |A−1]. (3.7.12)

The only way for this reduction to fail is for a row of zeros to emerge
in the left-hand side of the augmented array, and this occurs if and only
if A is a singular matrix. A different (and somewhat more practical)
algorithm is given Example 3.10.3 on p. 148.
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3.7 Matrix Inversion 119

Although they are not included in the simple examples of this section, you
are reminded that the pivoting and scaling strategies presented in §1.5 need to
be incorporated, and the effects of ill-conditioning discussed in §1.6 must be con-
sidered whenever matrix inverses are computed using floating-point arithmetic.
However, practical applications rarely require an inverse to be computed.

Example 3.7.3

Problem: If possible, find the inverse of A =

⎛
⎝ 1 1 1

1 2 2
1 2 3

⎞
⎠ .

Solution:

[A | I] =

⎛
⎝ 1 1 1 1 0 0

1 2 2 0 1 0
1 2 3 0 0 1

⎞
⎠ −→

⎛
⎝ 1 1 1 1 0 0

0 1 1 −1 1 0
0 1 2 −1 0 1

⎞
⎠

−→

⎛
⎝ 1 0 0 2 −1 0

0 1 1 −1 1 0
0 0 1 0 −1 1

⎞
⎠ −→

⎛
⎝ 1 0 0 2 −1 0

0 1 0 −1 2 −1
0 0 1 0 −1 1

⎞
⎠

Therefore, the matrix is nonsingular, and A−1 =

⎛
⎝ 2 −1 0

−1 2 −1
0 −1 1

⎞
⎠ . If we wish

to check this answer, we need only check that AA−1 = I. If this holds, then the
result of Example 3.7.2 insures that A−1A = I will automatically be true.

Earlier in this section it was stated that one almost never solves a nonsin-
gular linear system Ax = b by first computing A−1 and then the product
x = A−1b. To appreciate why this is true, pay attention to how much effort is
required to perform one matrix inversion.

Operation Counts for Inversion
Computing A−1

n×n by reducing [A|I] with Gauss–Jordan requires
• n3 multiplications/divisions,
• n3 − 2n2 + n additions/subtractions.

Interestingly, if Gaussian elimination with a back substitution process is
applied to [A|I] instead of the Gauss–Jordan technique, then exactly the same
operation count can be obtained. Although Gaussian elimination with back sub-
stitution is more efficient than the Gauss–Jordan method for solving a single
linear system, the two procedures are essentially equivalent for inversion.
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120 Chapter 3 Matrix Algebra

Solving a nonsingular system Ax = b by first computing A−1 and then
forming the product x = A−1b requires n3 + n2 multiplications/divisions and
n3−n2 additions/subtractions. Recall from §1.5 that Gaussian elimination with
back substitution requires only about n3/3 multiplications/divisions and about
n3/3 additions/subtractions. In other words, using A−1 to solve a nonsingular
system Ax = b requires about three times the effort as does Gaussian elimina-
tion with back substitution.

To put things in perspective, consider standard matrix multiplication be-
tween two n × n matrices. It is not difficult to verify that n3 multiplications
and n3−n2 additions are required. Remarkably, it takes almost exactly as much
effort to perform one matrix multiplication as to perform one matrix inversion.
This fact always seems to be counter to a novice’s intuition—it “feels” like ma-
trix inversion should be a more difficult task than matrix multiplication, but this
is not the case.

The remainder of this section is devoted to a discussion of some of the
important properties of matrix inversion. We begin with the four basic facts
listed below.

Properties of Matrix Inversion
For nonsingular matrices A and B, the following properties hold.

•
(
A−1

)−1 = A. (3.7.13)

• The product AB is also nonsingular. (3.7.14)

• (AB)−1 = B−1A−1 (the reverse order law for inversion). (3.7.15)

•
(
A−1

)T =
(
AT

)−1 and
(
A−1

)∗ = (A∗)−1
. (3.7.16)

Proof. Property (3.7.13) follows directly from the definition of inversion. To
prove (3.7.14) and (3.7.15), let X = B−1A−1 and verify that (AB)X = I by
writing

(AB)X = (AB)B−1A−1 = A(BB−1)A−1 = A(I)A−1 = AA−1 = I.

According to the discussion in Example 3.7.2, we are now guaranteed that
X(AB) = I, and we need not bother to verify it. To prove property (3.7.16), let
X =

(
A−1

)T and verify that AT X = I. Make use of the reverse order law for
transposition to write

AT X = AT
(
A−1

)T
=

(
A−1A

)T
= IT = I.

Therefore,
(
AT

)−1 = X =
(
A−1

)T
. The proof of the conjugate transpose case

is similar.
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3.7 Matrix Inversion 121

In general the product of two rank-r matrices does not necessarily have to
produce another matrix of rank r. For example,

A =
(

1 2
2 4

)
and B =

(
2 4

−1 −2

)
each has rank 1, but the product AB = 0 has rank 0. However, we saw in
(3.7.14) that the product of two invertible matrices is again invertible. That
is, if rank (An×n) = n and rank (Bn×n) = n, then rank (AB) = n. This
generalizes to any number of matrices.

Products of Nonsingular Matrices Are Nonsingular
If A1,A2, . . . ,Ak are each n × n nonsingular matrices, then the prod-
uct A1A2 · · ·Ak is also nonsingular, and its inverse is given by the
reverse order law. That is,

(A1A2 · · ·Ak)−1 = A−1
k · · ·A−1

2 A−1
1 .

Proof. Apply (3.7.14) and (3.7.15) inductively. For example, when k = 3 you
can write

(A1{A2A3})−1 = {A2A3}−1A−1
1 = A−1

3 A−1
2 A−1

1 .

Exercises for section 3.7

3.7.1. When possible, find the inverse of each of the following matrices. Check
your answer by using matrix multiplication.

(a)
(

1 2
1 3

)
(b)

(
1 2
2 4

)
(c)

⎛
⎝ 4 −8 5

4 −7 4
3 −4 2

⎞
⎠

(d)

⎛
⎝ 1 2 3

4 5 6
7 8 9

⎞
⎠ (e)

⎛
⎜⎝

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

⎞
⎟⎠

3.7.2. Find the matrix X such that X = AX + B, where

A =

⎛
⎝ 0 −1 0

0 0 −1
0 0 0

⎞
⎠ and B =

⎛
⎝ 1 2

2 1
3 3

⎞
⎠ .
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122 Chapter 3 Matrix Algebra

3.7.3. For a square matrix A, explain why each of the following statements
must be true.

(a) If A contains a zero row or a zero column, then A is singular.
(b) If A contains two identical rows or two identical columns, then

A is singular.
(c) If one row (or column) is a multiple of another row (or column),

then A must be singular.

3.7.4. Answer each of the following questions.
(a) Under what conditions is a diagonal matrix nonsingular? De-

scribe the structure of the inverse of a diagonal matrix.
(b) Under what conditions is a triangular matrix nonsingular? De-

scribe the structure of the inverse of a triangular matrix.

3.7.5. If A is nonsingular and symmetric, prove that A−1 is symmetric.

3.7.6. If A is a square matrix such that I − A is nonsingular, prove that

A(I − A)−1 = (I − A)−1A.

3.7.7. Prove that if A is m × n and B is n × m such that AB = Im and
BA = In, then m = n.

3.7.8. If A, B, and A + B are each nonsingular, prove that

A(A + B)−1B = B(A + B)−1A =
(
A−1 + B−1

)−1
.

3.7.9. Let S be a skew-symmetric matrix with real entries.
(a) Prove that I−S is nonsingular. Hint: xT x = 0 =⇒ x = 0.
(b) If A = (I + S)(I − S)−1, show that A−1 = AT .

3.7.10. For matrices Ar×r, Bs×s, and Cr×s such that A and B are nonsin-
gular, verify that each of the following is true.

(a)
(

A 0
0 B

)−1

=
(

A−1 0
0 B−1

)

(b)
(

A C
0 B

)−1

=
(

A−1 −A−1CB−1

0 B−1

)
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3.7 Matrix Inversion 123

3.7.11. Consider the block matrix
(

Ar×r Cr×s

Rs×r Bs×s

)
. When the indicated in-

verses exist, the matrices defined by

S = B − RA−1C and T = A − CB−1R

are called the Schur complements
20 of A and B, respectively.

(a) If A and S are both nonsingular, verify that

(
A C
R B

)−1

=
(

A−1 + A−1CS−1RA−1 −A−1CS−1

−S−1RA−1 S−1

)
.

(b) If B and T are nonsingular, verify that

(
A C
R B

)−1

=
(

T−1 −T−1CB−1

−B−1RT−1 B−1 + B−1RT−1CB−1

)
.

3.7.12. Suppose that A, B, C, and D are n × n matrices such that ABT

and CDT are each symmetric and ADT − BCT = I. Prove that

AT D − CT B = I.

20
This is named in honor of the German mathematician Issai Schur (1875–1941), who first studied
matrices of this type. Schur was a student and collaborator of Ferdinand Georg Frobenius
(p. 662). Schur and Frobenius were among the first to study matrix theory as a discipline
unto itself, and each made great contributions to the subject. It was Emilie V. Haynsworth
(1916–1987)—a mathematical granddaughter of Schur—who introduced the phrase “Schur
complement” and developed several important aspects of the concept.
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3.8 INVERSES OF SUMS AND SENSITIVITY

The reverse order law for inversion makes the inverse of a product easy to deal
with, but the inverse of a sum is much more difficult. To begin with, (A + B)−1

may not exist even if A−1 and B−1 each exist. Moreover, if (A + B)−1 exists,
then, with rare exceptions, (A + B)−1 �= A−1 + B−1. This doesn’t even hold
for scalars (i.e., 1 × 1 matrices), so it has no chance of holding in general.

There is no useful general formula for (A+B)−1, but there are some special
sums for which something can be said. One of the most easily inverted sums is
I + cdT in which c and d are n × 1 nonzero columns such that 1 + dT c �= 0.
It’s straightforward to verify by direct multiplication that(

I + cdT
)−1

= I − cdT

1 + dT c
. (3.8.1)

If I is replaced by a nonsingular matrix A satisfying 1 + dT A−1c �= 0, then
the reverse order law for inversion in conjunction with (3.8.1) yields

(A + cdT )−1 =
(
A(I + A−1cdT )

)−1

= (I + A−1cdT )−1A−1

=
(
I − A−1cdT

1 + dT A−1c

)
A−1 = A−1 − A−1cdT A−1

1 + dT A−1c
.

This is often called the Sherman–Morrison 21 rank-one update formula because
it can be shown (Exercise 3.9.9, p. 140) that rank (cdT ) = 1 when c �= 0 �= d.

Sherman–Morrison Formula

• If An×n is nonsingular and if c and d are n × 1 columns such
that 1 + dT A−1c �= 0, then the sum A + cdT is nonsingular, and

(
A + cdT

)−1
= A−1 − A−1cdT A−1

1 + dT A−1c
. (3.8.2)

• The Sherman–Morrison–Woodbury formula is a generalization. If C
and D are n × k such that (I + DT A−1C)−1 exists, then

(A + CDT )−1 = A−1 − A−1C(I + DT A−1C)−1DT A−1. (3.8.3)

21
This result appeared in the 1949–1950 work of American statisticians J. Sherman and W. J.
Morrison, but they were not the first to discover it. The formula was independently presented
by the English mathematician W. J. Duncan in 1944 and by American statisticians L. Guttman
(1946), Max Woodbury (1950), and M. S. Bartlett (1951). Since its derivation is so natural, it
almost certainly was discovered by many others along the way. Recognition and fame are often
not afforded simply for introducing an idea, but rather for applying the idea to a useful end.
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3.8 Inverses of Sums and Sensitivity 125

The Sherman–Morrison–Woodbury formula (3.8.3) can be verified with di-
rect multiplication, or it can be derived as indicated in Exercise 3.8.6.

To appreciate the utility of the Sherman–Morrison formula, suppose A−1

is known from a previous calculation, but now one entry in A needs to be
changed or updated—say we need to add α to aij . It’s not necessary to start
from scratch to compute the new inverse because Sherman–Morrison shows how
the previously computed information in A−1 can be updated to produce the
new inverse. Let c = ei and d = αej , where ei and ej are the ith and jth

unit columns, respectively. The matrix cdT has α in the (i, j)-position and
zeros elsewhere so that

B = A + cdT = A + αeieT
j

is the updated matrix. According to the Sherman–Morrison formula,

B−1 =
(
A + αeieT

j

)−1
= A−1 − α

A−1eieT
j A−1

1 + αeT
j A−1ei

= A−1 − α
[A−1]∗i[A−1]j∗
1 + α[A−1]ji

(recall Exercise 3.5.4).

(3.8.4)

This shows how A−1 changes when aij is perturbed, and it provides a useful
algorithm for updating A−1.

Example 3.8.1

Problem: Start with A and A−1 given below. Update A by adding 1 to a21,
and then use the Sherman–Morrison formula to update A−1 :

A =
(

1 2
1 3

)
and A−1 =

(
3 −2

−1 1

)
.

Solution: The updated matrix is

B =
(

1 2
2 3

)
=

(
1 2
1 3

)
+

(
0 0
1 0

)
=

(
1 2
1 3

)
+

(
0
1

)
( 1 0 ) = A + e2eT

1 .

Applying the Sherman–Morrison formula yields the updated inverse

B−1 = A−1 − A−1e2eT
1 A−1

1 + eT
1 A−1e2

= A−1 − [A−1]∗2[A−1]1∗
1 + [A−1]12

=
(

3 −2
−1 1

)
−

(
−2

1

)
( 3 −2 )

1 − 2
=

(
−3 2

2 −1

)
.
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Another sum that often requires inversion is I − A, but we have to be
careful because (I−A)−1 need not always exist. However, we are safe when the
entries in A are sufficiently small. In particular, if the entries in A are small
enough in magnitude to insure that limn→∞ An = 0, then, analogous to scalar
algebra,

(I − A)(I + A + A2 + · · · + An−1) = I − An → I as n → ∞,

so we have the following matrix version of a geometric series.

Neumann Series
If limn→∞ An = 0, then I − A is nonsingular and

(I − A)−1 = I + A + A2 + · · · =
∞∑

k=0

Ak. (3.8.5)

This is the Neumann series. It provides approximations of (I − A)−1

when A has entries of small magnitude. For example, a first-order ap-
proximation is (I − A)−1 ≈ I+A. More on the Neumann series appears
in Example 7.3.1, p. 527, and the complete statement is developed on
p. 618.

While there is no useful formula for (A + B)−1 in general, the Neumann
series allows us to say something when B has small entries relative to A, or
vice versa. For example, if A−1 exists, and if the entries in B are small enough
in magnitude to insure that limn→∞

(
A−1B

)n = 0, then

(A + B)−1 =
(
A

(
I −

[
−A−1B

]) )−1

=
(
I −

[
−A−1B

] )−1

A−1

=

( ∞∑
k=0

[
−A−1B

]k

)
A−1,

and a first-order approximation is

(A + B)−1 ≈ A−1 − A−1BA−1. (3.8.6)

Consequently, if A is perturbed by a small matrix B, possibly resulting from
errors due to inexact measurements or perhaps from roundoff error, then the
resulting change in A−1 is about A−1BA−1. In other words, the effect of a
small perturbation (or error) B is magnified by multiplication (on both sides)
with A−1, so if A−1 has large entries, small perturbations (or errors) in A can
produce large perturbations (or errors) in the resulting inverse. You can reach
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essentially the same conclusion from (3.8.4) when only a single entry is perturbed
and from Exercise 3.8.2 when a single column is perturbed.

This discussion resolves, at least in part, an issue raised in §1.6—namely,
“What mechanism determines the extent to which a nonsingular system Ax = b
is ill-conditioned?” To see how, an aggregate measure of the magnitude of the
entries in A is needed, and one common measure is

‖A‖ = max
i

∑
j

|aij | = the maximum absolute row sum. (3.8.7)

This is one example of a matrix norm, a detailed discussion of which is given in
§5.1. Theoretical properties specific to (3.8.7) are developed on pp. 280 and 283,
and one property established there is the fact that ‖XY‖ ≤ ‖X‖ ‖Y‖ for all
conformable matrices X and Y. But let’s keep things on an intuitive level for
the time being and defer the details. Using the norm (3.8.7), the approximation
(3.8.6) insures that if ‖B‖ is sufficiently small, then∥∥A−1 − (A + B)−1

∥∥ ≈
∥∥A−1BA−1

∥∥ ≤
∥∥A−1

∥∥ ‖B‖
∥∥A−1

∥∥ ,

so, if we interpret x <∼ y to mean that x is bounded above by something not
far from y, we can write∥∥A−1 − (A + B)−1

∥∥
‖A−1‖

<∼
∥∥A−1

∥∥ ‖B‖ =
∥∥A−1

∥∥ ‖A‖
{‖B‖
‖A‖

}
.

The term on the left is the relative change in the inverse, and ‖B‖ / ‖A‖ is the
relative change in A. The number κ =

∥∥A−1
∥∥ ‖A‖ is therefore the “magnifi-

cation factor” that dictates how much the relative change in A is magnified.
This magnification factor κ is called a condition number for A. In other
words, if κ is small relative to 1 (i.e., if A is well conditioned), then a small
relative change (or error) in A cannot produce a large relative change (or error)
in the inverse, but if κ is large (i.e., if A is ill conditioned), then a small rela-
tive change (or error) in A can possibly (but not necessarily) result in a large
relative change (or error) in the inverse.

The situation for linear systems is similar. If the coefficients in a nonsingular
system Ax = b are slightly perturbed to produce the system (A + B)x̃ = b,
then x = A−1b and x̃ = (A + B)−1b so that (3.8.6) implies

x − x̃ = A−1b − (A + B)−1b ≈ A−1b −
(
A−1 − A−1BA−1

)
b = A−1Bx.

For column vectors, (3.8.7) reduces to ‖x‖ = maxi |xi|, and we have

‖x − x̃‖ <∼
∥∥A−1

∥∥ ‖B‖ ‖x‖ ,
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128 Chapter 3 Matrix Algebra

so the relative change in the solution is

‖x − x̃‖
‖x‖

<∼
∥∥A−1

∥∥ ‖B‖ =
∥∥A−1

∥∥ ‖A‖
{‖B‖
‖A‖

}
= κ

{‖B‖
‖A‖

}
. (3.8.8)

Again, the condition number κ is pivotal because when κ is small, a small
relative change in A cannot produce a large relative change in x, but for larger
values of κ, a small relative change in A can possibly result in a large relative
change in x. Below is a summary of these observations.

Sensitivity and Conditioning

• A nonsingular matrix A is said to be ill conditioned if a small
relative change in A can cause a large relative change in A−1.
The degree of ill-conditioning is gauged by a condition number
κ = ‖A‖ ‖A−1‖, where ‖	‖ is a matrix norm.

• The sensitivity of the solution of Ax = b to perturbations (or
errors) in A is measured by the extent to which A is an ill-
conditioned matrix. More is said in Example 5.12.1 on p. 414.

Example 3.8.2

It was demonstrated in Example 1.6.1 that the system

.835x + .667y = .168,

.333x + .266y = .067,

is sensitive to small perturbations. We can understand this in the current context
by examining the condition number of the coefficient matrix. If the matrix norm
(3.8.7) is employed with

A =
(

.835 .667

.333 .266

)
and A−1 =

(
−266000 667000

333000 −835000

)
,

then the condition number for A is

κ = κ = ‖A‖ ‖A−1‖ = (1.502)(1168000) = 1, 754, 336 ≈ 1.7 × 106.

Since the right-hand side of (3.8.8) is only an estimate of the relative error in
the solution, the exact value of κ is not as important as its order of magnitude.
Because κ is of order 106, (3.8.8) holds the possibility that the relative change
(or error) in the solution can be about a million times larger than the relative
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3.8 Inverses of Sums and Sensitivity 129

change (or error) in A. Therefore, we must consider A and the associated linear
system to be ill conditioned.

A Rule of Thumb. If Gaussian elimination with partial pivoting is used to
solve a well-scaled nonsingular system Ax = b using t -digit floating-point
arithmetic, then, assuming no other source of error exists, it can be argued that
when κ is of order 10p, the computed solution is expected to be accurate to
at least t − p significant digits, more or less. In other words, one expects to
lose roughly p significant figures. For example, if Gaussian elimination with 8-
digit arithmetic is used to solve the 2 × 2 system given above, then only about
t − p = 8 − 6 = 2 significant figures of accuracy should be expected. This
doesn’t preclude the possibility of getting lucky and attaining a higher degree of
accuracy—it just says that you shouldn’t bet the farm on it.

The complete story of conditioning has not yet been told. As pointed out ear-
lier, it’s about three times more costly to compute A−1 than to solve Ax = b,
so it doesn’t make sense to compute A−1 just to estimate the condition of A.
Questions concerning condition estimation without explicitly computing an in-
verse still need to be addressed. Furthermore, liberties allowed by using the ≈
and <∼ symbols produce results that are intuitively correct but not rigorous.
Rigor will eventually be attained—see Example 5.12.1 on p. 414.

Exercises for section 3.8

3.8.1. Suppose you are given that

A =

⎛
⎝ 2 0 −1

−1 1 1
−1 0 1

⎞
⎠ and A−1 =

⎛
⎝ 1 0 1

0 1 −1
1 0 2

⎞
⎠ .

(a) Use the Sherman–Morrison formula to determine the inverse of
the matrix B that is obtained by changing the (3, 2)-entry in
A from 0 to 2.

(b) Let C be the matrix that agrees with A except that c32 = 2
and c33 = 2. Use the Sherman–Morrison formula to find C−1.

3.8.2. Suppose A and B are nonsingular matrices in which B is obtained
from A by replacing A∗j with another column b. Use the Sherman–
Morrison formula to derive the fact that

B−1 = A−1 −
(
A−1b − ej

)
[A−1]j∗

[A−1]j∗b
.
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130 Chapter 3 Matrix Algebra

3.8.3. Suppose the coefficient matrix of a nonsingular system Ax = b is up-
dated to produce another nonsingular system (A + cdT )z = b, where
b, c,d ∈ �n×1, and let y be the solution of Ay = c. Show that
z = x − ydT x/(1 + dT y).

3.8.4. (a) Use the Sherman–Morrison formula to prove that if A is non-
singular, then A + αeieT

j is nonsingular for a sufficiently small
α.

(b) Use part (a) to prove that I + E is nonsingular when all εij ’s
are sufficiently small in magnitude. This is an alternative to using
the Neumann series argument.

3.8.5. For given matrices A and B, where A is nonsingular, explain why
A + εB is also nonsingular when the real number ε is constrained to
a sufficiently small interval about the origin. In other words, prove that
small perturbations of nonsingular matrices are also nonsingular.

3.8.6. Derive the Sherman–Morrison–Woodbury formula. Hint: Recall Exer-
cise 3.7.11, and consider the product

(
I C
0 I

)(
A C
DT −I

)(
I 0

DT I

)
.

3.8.7. Using the norm (3.8.7), rank the following matrices according to their
degree of ill-conditioning:

A =

⎛
⎝ 100 0 −100

0 100 −100
−100 −100 300

⎞
⎠ , B =

⎛
⎝ 1 8 −1

−9 −71 11
1 17 18

⎞
⎠ ,

C =

⎛
⎝ 1 22 −42

0 1 −45
−45 −948 1

⎞
⎠ .

3.8.8. Suppose that the entries in A(t), x(t), and b(t) are differentiable
functions of a real variable t such that A(t)x(t) = b(t).

(a) Assuming that A(t)−1 exists, explain why

dA(t)−1

dt
= −A(t)−1A′(t)A(t)−1.

(b) Derive the equation

x′(t) = A(t)−1b′(t) − A(t)−1A′(t)x(t).

This shows that A−1 magnifies both the change in A and the
change in b, and thus it confirms the observation derived from
(3.8.8) saying that the sensitivity of a nonsingular system to
small perturbations is directly related to the magnitude of the
entries in A−1.
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3.9 ELEMENTARY MATRICES AND EQUIVALENCE

A common theme in mathematics is to break complicated objects into more
elementary components, such as factoring large polynomials into products of
smaller polynomials. The purpose of this section is to lay the groundwork for
similar ideas in matrix algebra by considering how a general matrix might be
factored into a product of more “elementary” matrices.

Elementary Matrices
Matrices of the form I−uvT , where u and v are n × 1 columns such
that vT u �= 1 are called elementary matrices, and we know from
(3.8.1) that all such matrices are nonsingular and

(
I − uvT

)−1
= I − uvT

vT u − 1
. (3.9.1)

Notice that inverses of elementary matrices are elementary matrices.

We are primarily interested in the elementary matrices associated with the
three elementary row (or column) operations hereafter referred to as follows.

• Type I is interchanging rows (columns) i and j.

• Type II is multiplying row (column) i by α �= 0.

• Type III is adding a multiple of row (column) i to row (column) j.

An elementary matrix of Type I, II, or III is created by performing an elementary
operation of Type I, II, or III to an identity matrix. For example, the matrices

E1 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ , E2 =

⎛
⎝ 1 0 0

0 α 0
0 0 1

⎞
⎠ , and E3 =

⎛
⎝ 1 0 0

0 1 0
α 0 1

⎞
⎠ (3.9.2)

are elementary matrices of Types I, II, and III, respectively, because E1 arises
by interchanging rows 1 and 2 in I3, whereas E2 is generated by multiplying
row 2 in I3 by α, and E3 is constructed by multiplying row 1 in I3 by α
and adding the result to row 3. The matrices in (3.9.2) also can be generated by
column operations. For example, E3 can be obtained by adding α times the
third column of I3 to the first column. The fact that E1, E2, and E3 are of
the form (3.9.1) follows by using the unit columns ei to write

E1 = I−uuT , where u = e1−e2, E2 = I−(1−α)e2eT
2 , and E3 = I+αe3eT

1 .
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132 Chapter 3 Matrix Algebra

These observations generalize to matrices of arbitrary size.
One of our objectives is to remove the arrows from Gaussian elimination

because the inability to do “arrow algebra” limits the theoretical analysis. For
example, while it makes sense to add two equations together, there is no mean-
ingful analog for arrows—reducing A → B and C → D by row operations does
not guarantee that A + C → B + D is possible. The following properties are
the mechanisms needed to remove the arrows from elimination processes.

Properties of Elementary Matrices
• When used as a left-hand multiplier, an elementary matrix of Type

I, II, or III executes the corresponding row operation.

• When used as a right-hand multiplier, an elementary matrix of Type
I, II, or III executes the corresponding column operation.

Proof. A proof for Type III operations is given—the other two cases are left to
the reader. Using I+αejeT

i as a left-hand multiplier on an arbitrary matrix A
produces

(
I + αejeT

i

)
A = A + αejAi∗ = A + α

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0
...

...
...

ai1 ai2 · · · ain
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ ← jth row .

This is exactly the matrix produced by a Type III row operation in which the
ith row of A is multiplied by α and added to the jth row. When I + αejeT

i

is used as a right-hand multiplier on A, the result is

A
(
I + αejeT

i

)
= A + αA∗jeT

i = A + α

⎛
⎜⎜⎜⎜⎝

ith col
↓

0 · · · a1j · · · 0
0 · · · a2j · · · 0
...

...
...

0 · · · anj · · · 0

⎞
⎟⎟⎟⎟⎠.

This is the result of a Type III column operation in which the jth column of A
is multiplied by α and then added to the ith column.
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Example 3.9.1

The sequence of row operations used to reduce A =

⎛
⎝ 1 2 4

2 4 8
3 6 13

⎞
⎠ to EA is

indicated below.

A =

⎛
⎝ 1 2 4

2 4 8
3 6 13

⎞
⎠ R2 − 2R1

R3 − 3R1

−→

⎛
⎝ 1 2 4

0 0 0
0 0 1

⎞
⎠

Interchange R2 and R3−−−−−−−−→

⎛
⎝ 1 2 4

0 0 1
0 0 0

⎞
⎠ R1 − 4R2

−→

⎛
⎝ 1 2 0

0 0 1
0 0 0

⎞
⎠ = EA.

The reduction can be accomplished by a sequence of left-hand multiplications
with the corresponding elementary matrices as shown below.⎛

⎝ 1 −4 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠

⎛
⎝ 1 0 0

0 1 0
−3 0 1

⎞
⎠

⎛
⎝ 1 0 0

−2 1 0
0 0 1

⎞
⎠A = EA.

The product of these elementary matrices is P =

⎛
⎝ 13 0 −4

−3 0 1
−2 1 0

⎞
⎠ , and you can

verify that it is indeed the case that PA = EA. Thus the arrows are eliminated
by replacing them with a product of elementary matrices.

We are now in a position to understand why nonsingular matrices are pre-
cisely those matrices that can be factored as a product of elementary matrices.

Products of Elementary Matrices
• A is a nonsingular matrix if and only if A is the product

of elementary matrices of Type I, II, or III.
(3.9.3)

Proof. If A is nonsingular, then the Gauss–Jordan technique reduces A to
I by row operations. If G1,G2, . . . ,Gk is the sequence of elementary matrices
that corresponds to the elementary row operations used, then

Gk · · ·G2G1A = I or, equivalently, A = G−1
1 G−1

2 · · ·G−1
k .

Since the inverse of an elementary matrix is again an elementary matrix of the
same type, this proves that A is the product of elementary matrices of Type I,
II, or III. Conversely, if A = E1E2 · · ·Ek is a product of elementary matrices,
then A must be nonsingular because the Ei ’s are nonsingular, and a product
of nonsingular matrices is also nonsingular.
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Equivalence
• Whenever B can be derived from A by a combination of elementary

row and column operations, we write A ∼ B, and we say that A
and B are equivalent matrices. Since elementary row and column
operations are left-hand and right-hand multiplication by elementary
matrices, respectively, and in view of (3.9.3), we can say that

A ∼ B ⇐⇒ PAQ = B for nonsingular P and Q.

• Whenever B can be obtained from A by performing a sequence
of elementary row operations only, we write A row∼ B, and we say
that A and B are row equivalent. In other words,

A row∼ B ⇐⇒ PA = B for a nonsingular P.

• Whenever B can be obtained from A by performing a sequence of
column operations only, we write A col∼ B, and we say that A and
B are column equivalent. In other words,

A col∼ B ⇐⇒ AQ = B for a nonsingular Q.

If it’s possible to go from A to B by elementary row and column oper-
ations, then clearly it’s possible to start with B and get back to A because
elementary operations are reversible—i.e., PAQ = B =⇒ P−1BQ−1 = A. It
therefore makes sense to talk about the equivalence of a pair of matrices without
regard to order. In other words, A ∼ B ⇐⇒ B ∼ A. Furthermore, it’s not
difficult to see that each type of equivalence is transitive in the sense that

A ∼ B and B ∼ C =⇒ A ∼ C.

In §2.2 it was stated that each matrix A possesses a unique reduced row
echelon form EA, and we accepted this fact because it is intuitively evident.
However, we are now in a position to understand a rigorous proof.

Example 3.9.2

Problem: Prove that EA is uniquely determined by A.

Solution: Without loss of generality, we may assume that A is square—
otherwise the appropriate number of zero rows or columns can be adjoined to A
without affecting the results. Suppose that A row∼ E1 and A row∼ E2, where E1

and E2 are both in reduced row echelon form. Consequently, E1
row∼ E2, and

hence there is a nonsingular matrix P such that

PE1 = E2. (3.9.4)
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Furthermore, by permuting the rows of E1 and E2 to force the pivotal 1’s to
occupy the diagonal positions, we see that

E1
row∼ T1 and E2

row∼ T2, (3.9.5)

where T1 and T2 are upper-triangular matrices in which the basic columns in
each Ti occupy the same positions as the basic columns in Ei. For example, if

E =

⎛
⎝ 1 2 0

0 0 1
0 0 0

⎞
⎠ , then T =

⎛
⎝ 1 2 0

0 0 0
0 0 1

⎞
⎠ .

Each Ti has the property that T2
i = Ti because there is a permutation

matrix Qi (a product of elementary interchange matrices of Type I) such that

QiTiQT
i =

(
Iri Ji

0 0

)
or, equivalently, Ti = QT

i

(
Iri Ji

0 0

)
Qi,

and QT
i = Q−1

i (see Exercise 3.9.4) implies T2
i = Ti. It follows from (3.9.5)

that T1
row∼ T2, so there is a nonsingular matrix R such that RT1 = T2. Thus

T2 = RT1 = RT1T1 = T2T1 and T1 = R−1T2 = R−1T2T2 = T1T2.

Because T1 and T2 are both upper triangular, T1T2 and T2T1 have the same
diagonal entries, and hence T1 and T2 have the same diagonal. Therefore, the
positions of the basic columns (i.e., the pivotal positions) in T1 agree with those
in T2, and hence E1 and E2 have basic columns in exactly the same positions.
This means there is a permutation matrix Q such that

E1Q =
(

Ir J1

0 0

)
and E2Q =

(
Ir J2

0 0

)
.

Using (3.9.4) yields PE1Q = E2Q, or(
P11 P12

P21 P22

) (
Ir J1

0 0

)
=

(
Ir J2

0 0

)
,

which in turn implies that P11 = Ir and P11J1 = J2. Consequently, J1 = J2,
and it follows that E1 = E2.

In passing, notice that the uniqueness of EA implies the uniqueness of the
pivot positions in any other row echelon form derived from A. If A row∼ U1

and A row∼ U2, where U1 and U2 are row echelon forms with different pivot
positions, then Gauss–Jordan reduction applied to U1 and U2 would lead to
two different reduced echelon forms, which is impossible.

In §2.2 we observed the fact that the column relationships in a matrix A
are exactly the same as the column relationships in EA. This observation is a
special case of the more general result presented below.
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Column and Row Relationships

• If A row∼ B, then linear relationships existing among columns of A
also hold among corresponding columns of B. That is,

B∗k =
n∑

j=1

αjB∗j if and only if A∗k =
n∑

j=1

αjA∗j . (3.9.6)

• In particular, the column relationships in A and EA must be iden-
tical, so the nonbasic columns in A must be linear combinations of
the basic columns in A as described in (2.2.3).

• If A col∼ B, then linear relationships existing among rows of A must
also hold among corresponding rows of B.

• Summary. Row equivalence preserves column relationships, and col-
umn equivalence preserves row relationships.

Proof. If A row∼ B, then PA = B for some nonsingular P. Recall from (3.5.5)
that the jth column in B is given by

B∗j = (PA)∗j = PA∗j .

Therefore, if A∗k =
∑

j αjA∗j , then multiplication by P on the left produces
B∗k =

∑
j αjB∗j . Conversely, if B∗k =

∑
j αjB∗j , then multiplication on the

left by P−1 produces A∗k =
∑

j αjA∗j . The statement concerning column
equivalence follows by considering transposes.

The reduced row echelon form EA is as far as we can go in reducing A by
using only row operations. However, if we are allowed to use row operations in
conjunction with column operations, then, as described below, the end result of
a complete reduction is much simpler.

Rank Normal Form
If A is an m × n matrix such that rank (A) = r, then

A ∼ Nr =
(

Ir 0
0 0

)
. (3.9.7)

Nr is called the rank normal form for A, and it is the end product
of a complete reduction of A by using both row and column operations.
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3.9 Elementary Matrices and Equivalence 137

Proof. It is always true that A row∼ EA so that there is a nonsingular matrix
P such that PA = EA. If rank (A) = r, then the basic columns in EA are
the r unit columns. Apply column interchanges to EA so as to move these r
unit columns to the far left-hand side. If Q1 is the product of the elementary
matrices corresponding to these column interchanges, then PAQ1 has the form

PAQ1 = EAQ1 =
(

Ir J
0 0

)
.

Multiplying both sides of this equation on the right by the nonsingular matrix

Q2 =
(

Ir −J
0 I

)
produces PAQ1Q2 =

(
Ir J
0 0

) (
Ir −J
0 I

)
=

(
Ir 0
0 0

)
.

Thus A ∼ Nr because P and Q = Q1Q2 are nonsingular.

Example 3.9.3

Problem: Explain why rank
(

A 0
0 B

)
= rank (A) + rank (B).

Solution: If rank (A) = r and rank (B) = s, then A ∼ Nr and B ∼ Ns.
Consequently,

(
A 0
0 B

)
∼

(
Nr 0
0 Ns

)
=⇒ rank

(
A 0
0 B

)
= rank

(
Nr 0
0 Ns

)
= r + s.

Given matrices A and B, how do we decide whether or not A ∼ B,

A row∼ B, or A col∼ B? We could use a trial-and-error approach by attempting to
reduce A to B by elementary operations, but this would be silly because there
are easy tests, as described below.

Testing for Equivalence
For m × n matrices A and B the following statements are true.
• A ∼ B if and only if rank (A) = rank (B). (3.9.8)
• A row∼ B if and only if EA = EB. (3.9.9)

• A col∼ B if and only if EAT = EBT . (3.9.10)

Corollary. Multiplication by nonsingular matrices cannot change rank.

http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html


COPYRIG
HTED

It 
is

 il
le

ga
l t

o 
pr

in
t, 

du
pl

ic
at

e,
 o

r 
di

st
rib

ut
e 

th
is

 m
at

er
ia

l
P

le
as

e 
re

po
rt

 v
io

la
tio

ns
 to

 m
ey

er
@

nc
su

.e
du

Buy online from SIAM

http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

http://www.amazon.com/exec/obidos/ASIN/0898714540

Copyright c© 2000 SIAM

138 Chapter 3 Matrix Algebra

Proof. To establish the validity of (3.9.8), observe that rank (A) = rank (B)
implies A ∼ Nr and B ∼ Nr. Therefore, A ∼ Nr ∼ B. Conversely, if A ∼ B,
where rank (A) = r and rank (B) = s, then A ∼ Nr and B ∼ Ns, and
hence Nr ∼ A ∼ B ∼ Ns. Clearly, Nr ∼ Ns implies r = s. To prove (3.9.9),
suppose first that A row∼ B. Because B row∼ EB, it follows that A row∼ EB. Since
a matrix has a uniquely determined reduced echelon form, it must be the case
that EB = EA. Conversely, if EA = EB, then

A row∼ EA = EB
row∼ B =⇒ A row∼ B.

The proof of (3.9.10) follows from (3.9.9) by considering transposes because

A col∼ B ⇐⇒ AQ = B ⇐⇒ (AQ)T = BT

⇐⇒ QT AT = BT ⇐⇒ AT row∼ BT .

Example 3.9.4

Problem: Are the relationships that exist among the columns in A the same
as the column relationships in B, and are the row relationships in A the same
as the row relationships in B, where

A =

⎛
⎝ 1 1 1

−4 −3 −1
2 1 −1

⎞
⎠ and B =

⎛
⎝−1 −1 −1

2 2 2
2 1 −1

⎞
⎠?

Solution: Straightforward computation reveals that

EA = EB =

⎛
⎝ 1 0 −2

0 1 3
0 0 0

⎞
⎠ ,

and hence A row∼ B. Therefore, the column relationships in A and B must be
identical, and they must be the same as those in EA. Examining EA reveals
that E∗3 = −2E∗1 + 3E∗2, so it must be the case that

A∗3 = −2A∗1 + 3A∗2 and B∗3 = −2B∗1 + 3B∗2.

The row relationships in A and B are different because EAT �= EBT .

On the surface, it may not seem plausible that a matrix and its transpose
should have the same rank. After all, if A is 3 × 100, then A can have as
many as 100 basic columns, but AT can have at most three. Nevertheless, we
can now demonstrate that rank (A) = rank

(
AT

)
.
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3.9 Elementary Matrices and Equivalence 139

Transposition and Rank
Transposition does not change the rank—i.e., for all m × n matrices,

rank (A) = rank
(
AT

)
and rank (A) = rank (A∗). (3.9.11)

Proof. Let rank (A) = r, and let P and Q be nonsingular matrices such that

PAQ = Nr =
(

Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
.

Applying the reverse order law for transposition produces QT AT PT = NT
r .

Since QT and PT are nonsingular, it follows that AT ∼ NT
r , and therefore

rank
(
AT

)
= rank

(
NT

r

)
= rank

(
Ir 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

)
= r = rank (A).

To prove rank (A) = rank (A∗), write Nr = Nr = PAQ = P̄ĀQ̄, and use the
fact that the conjugate of a nonsingular matrix is again nonsingular (because
K̄−1 = K−1 ) to conclude that Nr ∼ A, and hence rank (A) = rank

(
Ā

)
. It

now follows from rank (A) = rank
(
AT

)
that

rank (A∗) = rank
(
ĀT

)
= rank

(
Ā

)
= rank (A).

Exercises for section 3.9

3.9.1. Suppose that A is an m × n matrix.
(a) If [A|Im] is row reduced to a matrix [B|P], explain why P

must be a nonsingular matrix such that PA = B.

(b) If
[
A
In

]
is column reduced to

[
C
Q

]
, explain why Q must be a

nonsingular matrix such that AQ = C.
(c) Find a nonsingular matrix P such that PA = EA, where

A =

⎛
⎝ 1 2 3 4

2 4 6 7
1 2 3 6

⎞
⎠ .

(d) Find nonsingular matrices P and Q such that PAQ is in rank
normal form.
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3.9.2. Consider the two matrices

A =

⎛
⎝ 2 2 0 −1

3 −1 4 0
0 −8 8 3

⎞
⎠ and B =

⎛
⎝ 2 −6 8 2

5 1 4 −1
3 −9 12 3

⎞
⎠ .

(a) Are A and B equivalent?
(b) Are A and B row equivalent?
(c) Are A and B column equivalent?

3.9.3. If A row∼ B, explain why the basic columns in A occupy exactly the
same positions as the basic columns in B.

3.9.4. A product of elementary interchange matrices—i.e., elementary matrices
of Type I—is called a permutation matrix. If P is a permutation
matrix, explain why P−1 = PT .

3.9.5. If An×n is a nonsingular matrix, which (if any) of the following state-
ments are true?

(a) A ∼ A−1. (b) A row∼ A−1. (c) A col∼ A−1.

(d) A ∼ I. (e) A row∼ I. (f) A col∼ I.

3.9.6. Which (if any) of the following statements are true?

(a) A ∼ B =⇒ AT ∼ BT . (b) A row∼ B =⇒ AT row∼ BT .

(c) A row∼ B =⇒ AT col∼ BT . (d) A row∼ B =⇒ A ∼ B.

(e) A col∼ B =⇒ A ∼ B. (f) A ∼ B =⇒ A row∼ B.

3.9.7. Show that every elementary matrix of Type I can be written as a product
of elementary matrices of Types II and III. Hint: Recall Exercise 1.2.12
on p. 14.

3.9.8. If rank (Am×n) = r, show that there exist matrices Bm×r and Cr×n

such that A = BC, where rank (B) = rank (C) = r. Such a factor-
ization is called a full-rank factorization. Hint: Consider the basic
columns of A and the nonzero rows of EA.

3.9.9. Prove that rank (Am×n) = 1 if and only if there are nonzero columns
um×1 and vn×1 such that

A = uvT .

3.9.10. Prove that if rank (An×n) = 1, then A2 = τA, where τ = trace (A).

http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html


COPYRIG
HTED

It 
is

 il
le

ga
l t

o 
pr

in
t, 

du
pl

ic
at

e,
 o

r 
di

st
rib

ut
e 

th
is

 m
at

er
ia

l
P

le
as

e 
re

po
rt

 v
io

la
tio

ns
 to

 m
ey

er
@

nc
su

.e
du

Buy online from SIAM

http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

http://www.amazon.com/exec/obidos/ASIN/0898714540

Copyright c© 2000 SIAM

3.10 The LU Factorization 141

3.10 THE LU FACTORIZATION

We have now come full circle, and we are back to where the text began—solving
a nonsingular system of linear equations using Gaussian elimination with back
substitution. This time, however, the goal is to describe and understand the
process in the context of matrices.

If Ax = b is a nonsingular system, then the object of Gaussian elimination
is to reduce A to an upper-triangular matrix using elementary row operations.
If no zero pivots are encountered, then row interchanges are not necessary, and
the reduction can be accomplished by using only elementary row operations of
Type III. For example, consider reducing the matrix

A =

⎛
⎝ 2 2 2

4 7 7
6 18 22

⎞
⎠

to upper-triangular form as shown below:

⎛
⎝ 2 2 2

4 7 7
6 18 22

⎞
⎠ R2 − 2R1

R3 − 3R1

−→

⎛
⎝ 2 2 2

0 3 3
0 12 16

⎞
⎠

R3 − 4R2

−→

⎛
⎝ 2 2 2

0 3 3
0 0 4

⎞
⎠ = U.

(3.10.1)

We learned in the previous section that each of these Type III operations can be
executed by means of a left-hand multiplication with the corresponding elemen-
tary matrix Gi, and the product of all of these Gi ’s is

G3G2G1 =

⎛
⎝ 1 0 0

0 1 0
0 −4 1

⎞
⎠

⎛
⎝ 1 0 0

0 1 0
−3 0 1

⎞
⎠

⎛
⎝ 1 0 0

−2 1 0
0 0 1

⎞
⎠ =

⎛
⎝ 1 0 0

−2 1 0
5 −4 1

⎞
⎠ .

In other words, G3G2G1A = U, so that A = G−1
1 G−1

2 G−1
3 U = LU, where

L is the lower-triangular matrix

L = G−1
1 G−1

2 G−1
3 =

⎛
⎝ 1 0 0

2 1 0
3 4 1

⎞
⎠ .

Thus A = LU is a product of a lower-triangular matrix L and an upper-
triangular matrix U. Naturally, this is called an LU factorization of A.
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Observe that U is the end product of Gaussian elimination and has the
pivots on its diagonal, while L has 1’s on its diagonal. Moreover, L has the
remarkable property that below its diagonal, each entry �ij is precisely the
multiplier used in the elimination (3.10.1) to annihilate the (i, j)-position.

This is characteristic of what happens in general. To develop the gen-
eral theory, it’s convenient to introduce the concept of an elementary lower-
triangular matrix, which is defined to be an n × n triangular matrix of the
form

Tk = I − ckeT
k ,

where ck is a column with zeros in the first k positions. In particular, if

ck =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

µk+1

...
µn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, then Tk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · −µk+1 1 · · · 0
...

...
...

...
. . .

...
0 0 · · · −µn 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.10.2)

By observing that eT
k ck = 0, the formula for the inverse of an elementary matrix

given in (3.9.1) produces

T−1
k = I + ckeT

k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · µk+1 1 · · · 0
...

...
...

...
. . .

...
0 0 · · · µn 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.10.3)

which is also an elementary lower-triangular matrix. The utility of elementary
lower-triangular matrices lies in the fact that all of the Type III row operations
needed to annihilate the entries below the kth pivot can be accomplished with
one multiplication by Tk. If

Ak−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ · · · α1 ∗ · · · ∗
0 ∗ · · · α2 ∗ · · · ∗
...

...
. . .

...
...

...
0 0 · · · αk ∗ · · · ∗
0 0 · · · αk+1 ∗ · · · ∗
...

...
...

...
. . .

...
0 0 · · · αn ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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is the partially triangularized result after k − 1 elimination steps, then

TkAk−1 =
(
I − ckeT

k

)
Ak−1 = Ak−1 − ckeT

k Ak−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ · · · α1 ∗ · · · ∗
0 ∗ · · · α2 ∗ · · · ∗
...

...
. . .

...
...

...
0 0 · · · αk ∗ · · · ∗
0 0 · · · 0 ∗ · · · ∗
...

...
...

...
. . .

...
0 0 · · · 0 ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, where ck =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0

αk+1/αk

...
αn/αk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

contains the multipliers used to annihilate those entries below αk. Notice that
Tk does not alter the first k − 1 columns of Ak−1 because eT

k [Ak−1]∗j = 0
whenever j ≤ k−1. Therefore, if no row interchanges are required, then reducing
A to an upper-triangular matrix U by Gaussian elimination is equivalent to
executing a sequence of n − 1 left-hand multiplications with elementary lower-
triangular matrices. That is, Tn−1 · · ·T2T1A = U, and hence

A = T−1
1 T−1

2 · · ·T−1
n−1U. (3.10.4)

Making use of the fact that eT
j ck = 0 whenever j ≤ k and applying (3.10.3)

reveals that

T−1
1 T−1

2 · · ·T−1
n−1 =

(
I + c1eT

1

) (
I + c2eT

2

)
· · ·

(
I + cn−1eT

n−1

)
= I + c1eT

1 + c2eT
2 + · · · + cn−1eT

n−1.
(3.10.5)

By observing that

ckeT
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 0 0 · · · 0
0 0 · · · �k+1,k 0 · · · 0
...

...
...

...
. . .

...
0 0 · · · �nk 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the �ik ’s are the multipliers used at the kth stage to annihilate the entries
below the kth pivot, it now follows from (3.10.4) and (3.10.5) that

A = LU,
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where

L = I + c1eT
1 + c2eT

2 + · · · + cn−1eT
n−1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
�21 1 0 · · · 0
�31 �32 1 · · · 0
...

...
...

. . .
...

�n1 �n2 �n3 · · · 1

⎞
⎟⎟⎟⎟⎠ (3.10.6)

is the lower-triangular matrix with 1’s on the diagonal, and where �ij is precisely
the multiplier used to annihilate the (i, j) -position during Gaussian elimination.
Thus the factorization A = LU can be viewed as the matrix formulation of
Gaussian elimination, with the understanding that no row interchanges are used.

LU Factorization
If A is an n × n matrix such that a zero pivot is never encountered
when applying Gaussian elimination with Type III operations, then A
can be factored as the product A = LU, where the following hold.
• L is lower triangular and U is upper triangular. (3.10.7)
• �ii = 1 and uii �= 0 for each i = 1, 2, . . . , n. (3.10.8)
• Below the diagonal of L, the entry �ij is the multiple of row j that

is subtracted from row i in order to annihilate the (i, j) -position
during Gaussian elimination.

• U is the final result of Gaussian elimination applied to A.

• The matrices L and U are uniquely determined by properties
(3.10.7) and (3.10.8).

The decomposition of A into A = LU is called the LU factorization
of A, and the matrices L and U are called the LU factors of A.

Proof. Except for the statement concerning the uniqueness of the LU fac-
tors, each point has already been established. To prove uniqueness, observe
that LU factors must be nonsingular because they have nonzero diagonals. If
L1U1 = A = L2U2 are two LU factorizations for A, then

L−1
2 L1 = U2U−1

1 . (3.10.9)

Notice that L−1
2 L1 is lower triangular, while U2U−1

1 is upper triangular be-
cause the inverse of a matrix that is upper (lower) triangular is again up-
per (lower) triangular, and because the product of two upper (lower) trian-
gular matrices is also upper (lower) triangular. Consequently, (3.10.9) implies
L−1

2 L1 = D = U2U−1
1 must be a diagonal matrix. However, [L2]ii = 1 =

[L−1
2 ]ii, so it must be the case that L−1

2 L1 = I = U2U−1
1 , and thus L1 = L2

and U1 = U2.

http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html


COPYRIG
HTED

It 
is

 il
le

ga
l t

o 
pr

in
t, 

du
pl

ic
at

e,
 o

r 
di

st
rib

ut
e 

th
is

 m
at

er
ia

l
P

le
as

e 
re

po
rt

 v
io

la
tio

ns
 to

 m
ey

er
@

nc
su

.e
du

Buy online from SIAM

http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

http://www.amazon.com/exec/obidos/ASIN/0898714540

Copyright c© 2000 SIAM

3.10 The LU Factorization 145

Example 3.10.1

Once L and U are known, there is usually no need to manipulate with A. This
together with the fact that the multipliers used in Gaussian elimination occur in
just the right places in L means that A can be successively overwritten with the
information in L and U as Gaussian elimination evolves. The rule is to store
the multiplier �ij in the position it annihilates—namely, the (i, j)-position of
the array. For a 3 × 3 matrix, the result looks like this:⎛

⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ Type III operations

−−−−−−−−→

⎛
⎝ u11 u12 u13

�21 u22 u23

�31 �32 u33

⎞
⎠ .

For example, generating the LU factorization of

A =

⎛
⎝ 2 2 2

4 7 7
6 18 22

⎞
⎠

by successively overwriting a single 3 × 3 array would evolve as shown below:⎛
⎝ 2 2 2

4 7 7
6 18 22

⎞
⎠ R2 − 2R1

R3 − 3R1

−→

⎛
⎝ 2 2 2
©2 3 3
©3 12 16

⎞
⎠

R3 − 4R2

−→

⎛
⎝ 2 2 2
©2 3 3
©3 ©4 4

⎞
⎠ .

Thus

L =

⎛
⎝ 1 0 0

2 1 0
3 4 1

⎞
⎠ and U =

⎛
⎝ 2 2 2

0 3 3
0 0 4

⎞
⎠ .

This is an important feature in practical computation because it guarantees that
an LU factorization requires no more computer memory than that required to
store the original matrix A.

Once the LU factors for a nonsingular matrix An×n have been obtained,
it’s relatively easy to solve a linear system Ax = b. By rewriting Ax = b as

L(Ux) = b and setting y = Ux,

we see that Ax = b is equivalent to the two triangular systems

Ly = b and Ux = y.

First, the lower-triangular system Ly = b is solved for y by forward substi-
tution. That is, if⎛

⎜⎜⎜⎜⎝
1 0 0 · · · 0

�21 1 0 · · · 0
�31 �32 1 · · · 0
...

...
...

. . .
...

�n1 �n2 �n3 · · · 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

y1

y2

y3
...

yn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

b1

b2

b3
...

bn

⎞
⎟⎟⎟⎟⎠ ,
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set
y1 = b1, y2 = b2 − �21y1, y3 = b3 − �31y1 − �32y2, etc.

The forward substitution algorithm can be written more concisely as

y1 = b1 and yi = bi −
i−1∑
k=1

�ikyk for i = 2, 3, . . . , n. (3.10.10)

After y is known, the upper-triangular system Ux = y is solved using the
standard back substitution procedure by starting with xn = yn/unn, and setting

xi =
1

uii

(
yi −

n∑
k=i+1

uikxk

)
for i = n − 1, n − 2, . . . , 1. (3.10.11)

It can be verified that only n2 multiplications/divisions and n2 − n addi-
tions/subtractions are required when (3.10.10) and (3.10.11) are used to solve
the two triangular systems Ly = b and Ux = y, so it’s relatively cheap to
solve Ax = b once L and U are known—recall from §1.2 that these operation
counts are about n3/3 when we start from scratch.

If only one system Ax = b is to be solved, then there is no significant
difference between the technique of reducing the augmented matrix [A|b] to
a row echelon form and the LU factorization method presented here. However,
suppose it becomes necessary to later solve other systems Ax = b̃ with the
same coefficient matrix but with different right-hand sides, which is frequently
the case in applied work. If the LU factors of A were computed and saved
when the original system was solved, then they need not be recomputed, and
the solutions to all subsequent systems Ax = b̃ are therefore relatively cheap
to obtain. That is, the operation counts for each subsequent system are on the
order of n2, whereas these counts would be on the order of n3/3 if we would
start from scratch each time.

Summary
• To solve a nonsingular system Ax = b using the LU factorization

A = LU, first solve Ly = b for y with the forward substitution
algorithm (3.10.10), and then solve Ux = y for x with the back
substitution procedure (3.10.11).

• The advantage of this approach is that once the LU factors for
A have been computed, any other linear system Ax = b̃ can
be solved with only n2 multiplications/divisions and n2 − n ad-
ditions/subtractions.
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Example 3.10.2

Problem 1: Use the LU factorization of A to solve Ax = b, where

A =

⎛
⎝ 2 2 2

4 7 7
6 18 22

⎞
⎠ and b =

⎛
⎝ 12

24
12

⎞
⎠ .

Problem 2: Suppose that after solving the original system new information is
received that changes b to

b̃ =

⎛
⎝ 6

24
70

⎞
⎠ .

Use the LU factors of A to solve the updated system Ax = b̃.

Solution 1: The LU factors of the coefficient matrix were determined in Example
3.10.1 to be

L =

⎛
⎝ 1 0 0

2 1 0
3 4 1

⎞
⎠ and U =

⎛
⎝ 2 2 2

0 3 3
0 0 4

⎞
⎠ .

The strategy is to set Ux = y and solve Ax = L(Ux) = b by solving the two
triangular systems

Ly = b and Ux = y.

First solve the lower-triangular system Ly = b by using forward substitution:⎛
⎝ 1 0 0

2 1 0
3 4 1

⎞
⎠

⎛
⎝ y1

y2

y3

⎞
⎠ =

⎛
⎝ 12

24
12

⎞
⎠ =⇒

y1 = 12,
y2 = 24 − 2y1 = 0,
y3 = 12 − 3y1 − 4y2 = −24.

Now use back substitution to solve the upper-triangular system Ux = y:⎛
⎝ 2 2 2

0 3 3
0 0 4

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ 12

0
−24

⎞
⎠ =⇒

x1 = (12 − 2x2 − 2x3)/2 = 6,
x2 = (0 − 3x3)/3 = 6,
x3 = −24/4 = −6.

Solution 2: To solve the updated system Ax = b̃, simply repeat the forward
and backward substitution steps with b replaced by b̃. Solving Ly = b̃ with
forward substitution gives the following:⎛

⎝ 1 0 0
2 1 0
3 4 1

⎞
⎠

⎛
⎝ y1

y2

y3

⎞
⎠ =

⎛
⎝ 6

24
70

⎞
⎠ =⇒

y1 = 6,
y2 = 24 − 2y1 = 12,
y3 = 70 − 3y1 − 4y2 = 4.

Using back substitution to solve Ux = y gives the following updated solution:⎛
⎝ 2 2 2

0 3 3
0 0 4

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ 6

12
4

⎞
⎠ =⇒

x1 = (6 − 2x2 − 2x3)/2 = −1,
x2 = (12 − 3x3)/3 = 3,
x3 = 4/4 = 1.
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Example 3.10.3

Computing A−1. Although matrix inversion is not used for solving Ax = b,
there are a few applications where explicit knowledge of A−1 is desirable.

Problem: Explain how to use the LU factors of a nonsingular matrix An×n to
compute A−1 efficiently.

Solution: The strategy is to solve the matrix equation AX = I. Recall from
(3.5.5) that AA−1 = I implies A[A−1]∗j = ej , so the jth column of A−1

is the solution of a system Axj = ej . Each of these n systems has the same
coefficient matrix, so, once the LU factors for A are known, each system Axj =
LUxj = ej can be solved by the standard two-step process.

(1) Set yj = Uxj , and solve Lyj = ej for yj by forward substitution.
(2) Solve Uxj = yj for xj = [A−1]∗j by back substitution.

This method has at least two advantages: it’s efficient, and any code written to
solve Ax = b can also be used to compute A−1.

Note: A tempting alternate solution might be to use the fact A−1 = (LU)−1 =
U−1L−1. But computing U−1 and L−1 explicitly and then multiplying the
results is not as computationally efficient as the method just described.

Not all nonsingular matrices possess an LU factorization. For example, there
is clearly no nonzero value of u11 that will satisfy(

0 1
1 1

)
=

(
1 0

�21 1

) (
u11 u12

0 u22

)
.

The problem here is the zero pivot in the (1,1)-position. Our development of
the LU factorization using elementary lower-triangular matrices shows that if no
zero pivots emerge, then no row interchanges are necessary, and the LU factor-
ization can indeed be carried to completion. The converse is also true (its proof
is left as an exercise), so we can say that a nonsingular matrix A has an LU
factorization if and only if a zero pivot does not emerge during row reduction to
upper-triangular form with Type III operations.

Although it is a bit more theoretical, there is another interesting way to
characterize the existence of LU factors. This characterization is given in terms
of the leading principal submatrices of A that are defined to be those
submatrices taken from the upper-left-hand corner of A. That is,

A1 =
(
a11

)
, A2 =

(
a11 a12

a21 a22

)
, . . . ,Ak =

⎛
⎜⎜⎝

a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

⎞
⎟⎟⎠ , . . . .
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Existence of LU Factors
Each of the following statements is equivalent to saying that a nonsin-
gular matrix An×n possesses an LU factorization.
• A zero pivot does not emerge during row reduction to upper-

triangular form with Type III operations.
• Each leading principal submatrix Ak is nonsingular. (3.10.12)

Proof. We will prove the statement concerning the leading principal submatri-
ces and leave the proof concerning the nonzero pivots as an exercise. Assume
first that A possesses an LU factorization and partition A as

A = LU =
(

L11 0
L21 L22

) (
U11 U12

0 U22

)
=

(
L11U11 ∗

∗ ∗

)
,

where L11 and U11 are each k × k. Thus Ak = L11U11 must be nonsingular
because L11 and U11 are each nonsingular—they are triangular with nonzero
diagonal entries. Conversely, suppose that each leading principal submatrix in
A is nonsingular. Use induction to prove that each Ak possesses an LU fac-
torization. For k = 1, this statement is clearly true because if A1 = (a11) is
nonsingular, then A1 = (1)(a11) is its LU factorization. Now assume that Ak

has an LU factorization and show that this together with the nonsingularity
condition implies Ak+1 must also possess an LU factorization. If Ak = LkUk

is the LU factorization for Ak, then A−1
k = U−1

k L−1
k so that

Ak+1 =

(
Ak b

cT αk+1

)
=

(
Lk 0

cT U−1
k 1

)(
Uk L−1

k b

0 αk+1 − cT A−1
k b

)
, (3.10.13)

where cT and b contain the first k components of Ak+1∗ and A∗k+1, re-
spectively. Observe that this is the LU factorization for Ak+1 because

Lk+1 =

(
Lk 0

cT U−1
k 1

)
and Uk+1 =

(
Uk L−1

k b

0 αk+1 − cT A−1
k b

)

are lower- and upper-triangular matrices, respectively, and L has 1’s on its
diagonal while the diagonal entries of U are nonzero. The fact that

αk+1 − cT A−1
k b �= 0

follows because Ak+1 and Lk+1 are each nonsingular, so Uk+1 = L−1
k+1Ak+1

must also be nonsingular. Therefore, the nonsingularity of the leading principal
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150 Chapter 3 Matrix Algebra

submatrices implies that each Ak possesses an LU factorization, and hence
An = A must have an LU factorization.

Up to this point we have avoided dealing with row interchanges because if
a row interchange is needed to remove a zero pivot, then no LU factorization is
possible. However, we know from the discussion in §1.5 that practical computa-
tion necessitates row interchanges in the form of partial pivoting. So even if no
zero pivots emerge, it is usually the case that we must still somehow account for
row interchanges.

To understand the effects of row interchanges in the framework of an LU
decomposition, let Tk = I − ckeT

k be an elementary lower-triangular matrix as
described in (3.10.2), and let E = I−uuT with u = ek+i −ek+j be the Type I
elementary interchange matrix associated with an interchange of rows k + i and
k + j. Notice that eT

k E = eT
k because eT

k has 0’s in positions k + i and k + j.
This together with the fact that E2 = I guarantees

ETkE = E2 − EckeT
k E = I − c̃keT

k , where c̃k = Eck.

In other words, the matrix

T̃k = ETkE = I − c̃keT
k (3.10.14)

is also an elementary lower-triangular matrix, and T̃k agrees with Tk in all
positions except that the multipliers µk+i and µk+j have traded places. As be-
fore, assume we are row reducing an n × n nonsingular matrix A, but suppose
that an interchange of rows k + i and k + j is necessary immediately after the
kth stage so that the sequence of left-hand multiplications ETkTk−1 · · ·T1 is
applied to A. Since E2 = I, we may insert E2 to the right of each T to obtain

ETkTk−1 · · ·T1 = ETkE2Tk−1E2 · · ·E2T1E2

= (ETkE) (ETk−1E) · · · (ET1E)E

= T̃kT̃k−1 · · · T̃1E.

In such a manner, the necessary interchange matrices E can be “factored” to
the far-right-hand side, and the matrices T̃ retain the desirable feature of be-
ing elementary lower-triangular matrices. Furthermore, (3.10.14) implies that
T̃kT̃k−1 · · · T̃1 differs from TkTk−1 · · ·T1 only in the sense that the multipli-
ers in rows k + i and k + j have traded places. Therefore, row interchanges in
Gaussian elimination can be accounted for by writing T̃n−1 · · · T̃2T̃1PA = U,
where P is the product of all elementary interchange matrices used during the
reduction and where the T̃k ’s are elementary lower-triangular matrices in which
the multipliers have been permuted according to the row interchanges that were
implemented. Since all of the T̃k ’s are elementary lower-triangular matrices, we
may proceed along the same lines discussed in (3.10.4)—(3.10.6) to obtain

PA = LU, where L = T̃−1
1 T̃−1

2 · · · T̃−1
n−1. (3.10.15)
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3.10 The LU Factorization 151

When row interchanges are allowed, zero pivots can always be avoided when the
original matrix A is nonsingular. Consequently, we may conclude that for every
nonsingular matrix A, there exists a permutation matrix P (a product of
elementary interchange matrices) such that PA has an LU factorization. Fur-
thermore, because of the observation in (3.10.14) concerning how the multipliers
in Tk and T̃k trade places when a row interchange occurs, and because

T̃−1
k =

(
I − c̃keT

k

)−1
= I + c̃keT

k ,

it is not difficult to see that the same line of reasoning used to arrive at (3.10.6)
can be applied to conclude that the multipliers in the matrix L in (3.10.15) are
permuted according to the row interchanges that are executed. More specifically,
if rows k and k+i are interchanged to create the kth pivot, then the multipliers

( �k1 �k2 · · · �k,k−1 ) and ( �k+i,1 �k+i,2 · · · �k+i,k−1 )

trade places in the formation of L.
This means that we can proceed just as in the case when no interchanges are

used and successively overwrite the array originally containing A with each mul-
tiplier replacing the position it annihilates. Whenever a row interchange occurs,
the corresponding multipliers will be correctly interchanged as well. The per-
mutation matrix P is simply the cumulative record of the various interchanges
used, and the information in P is easily accounted for by a simple technique
that is illustrated in the following example.

Example 3.10.4

Problem: Use partial pivoting on the matrix

A =

⎛
⎜⎝

1 2 −3 4
4 8 12 −8
2 3 2 1

−3 −1 1 −4

⎞
⎟⎠

and determine the LU decomposition PA = LU, where P is the associated
permutation matrix.

Solution: As explained earlier, the strategy is to successively overwrite the array
A with components from L and U. For the sake of clarity, the multipliers �ij

are shown in boldface type. Adjoin a “permutation counter column” p that
is initially set to the natural order 1,2,3,4. Permuting components of p as the
various row interchanges are executed will accumulate the desired permutation.
The matrix P is obtained by executing the final permutation residing in p to
the rows of an appropriate size identity matrix:

[A|p] =

⎛
⎜⎝

1 2 −3 4 1
4 8 12 −8 2
2 3 2 1 3

−3 −1 1 −4 4

⎞
⎟⎠ −→

⎛
⎜⎝

4 8 12 −8 2
1 2 −3 4 1
2 3 2 1 3

−3 −1 1 −4 4

⎞
⎟⎠
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−→

⎛
⎜⎝

4 8 12 −8 2
1/4 0 −6 6 1
1/2 −1 −4 5 3

−3/4 5 10 −10 4

⎞
⎟⎠ −→

⎛
⎜⎝

4 8 12 −8 2
−3/4 5 10 −10 4

1/2 −1 −4 5 3
1/4 0 −6 6 1

⎞
⎟⎠

−→

⎛
⎜⎝

4 8 12 −8 2
−3/4 5 10 −10 4

1/2 −1/5 −2 3 3
1/4 0 −6 6 1

⎞
⎟⎠−→

⎛
⎜⎝

4 8 12 −8 2
−3/4 5 10 −10 4

1/4 0 −6 6 1
1/2 −1/5 −2 3 3

⎞
⎟⎠

−→

⎛
⎜⎝

4 8 12 −8 2
−3/4 5 10 −10 4

1/4 0 −6 6 1
1/2 −1/5 1/3 1 3

⎞
⎟⎠ .

Therefore,

L=

⎛
⎜⎝

1 0 0 0
−3/4 1 0 0

1/4 0 1 0
1/2 −1/5 1/3 1

⎞
⎟⎠, U=

⎛
⎜⎝

4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

⎞
⎟⎠, P=

⎛
⎜⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞
⎟⎠.

It is easy to combine the advantages of partial pivoting with the LU decom-
position in order to solve a nonsingular system Ax = b. Because permutation
matrices are nonsingular, the system Ax = b is equivalent to

PAx = Pb,

and hence we can employ the LU solution techniques discussed earlier to solve
this permuted system. That is, if we have already performed the factorization
PA = LU —as illustrated in Example 3.10.4—then we can solve Ly = Pb for
y by forward substitution, and then solve Ux = y by back substitution.

It should be evident that the permutation matrix P is not really needed.
All that is necessary is knowledge of the LU factors along with the final permu-
tation contained in the permutation counter column p illustrated in Example
3.10.4. The column b̃ = Pb is simply a rearrangement of the components of
b according to the final permutation shown in p. In other words, the strategy
is to first permute b into b̃ according to the permutation p, and then solve
Ly = b̃ followed by Ux = y.

Example 3.10.5

Problem: Use the LU decomposition obtained with partial pivoting to solve
the system Ax = b, where

A =

⎛
⎜⎝

1 2 −3 4
4 8 12 −8
2 3 2 1

−3 −1 1 −4

⎞
⎟⎠ and b =

⎛
⎜⎝

3
60
1
5

⎞
⎟⎠ .
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Solution: The LU decomposition with partial pivoting was computed in Ex-
ample 3.10.4. Permute the components in b according to the permutation
p = ( 2 4 1 3 ) , and call the result b̃. Now solve Ly = b̃ by applying
forward substitution:⎛

⎜⎝
1 0 0 0

−3/4 1 0 0
1/4 0 1 0
1/2 −1/5 1/3 1

⎞
⎟⎠

⎛
⎜⎝

y1

y2

y3

y4

⎞
⎟⎠ =

⎛
⎜⎝

60
5
3
1

⎞
⎟⎠ =⇒ y =

⎛
⎜⎝

y1

y2

y3

y4

⎞
⎟⎠ =

⎛
⎜⎝

60
50

−12
−15

⎞
⎟⎠ .

Then solve Ux = y by applying back substitution:

⎛
⎜⎝

4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

x1

x2

x3

x4

⎞
⎟⎠ =

⎛
⎜⎝

60
50

−12
−15

⎞
⎟⎠ =⇒ x =

⎛
⎜⎝

12
6

−13
−15

⎞
⎟⎠ .

LU Factorization with Row Interchanges
• For each nonsingular matrix A, there exists a permutation matrix

P such that PA possesses an LU factorization PA = LU.

• To compute L, U, and P, successively overwrite the array origi-
nally containing A. Replace each entry being annihilated with the
multiplier used to execute the annihilation. Whenever row inter-
changes such as those used in partial pivoting are implemented, the
multipliers in the array will automatically be interchanged in the
correct manner.

• Although the entire permutation matrix P is rarely called for, it
can be constructed by permuting the rows of the identity matrix
I according to the various interchanges used. These interchanges
can be accumulated in a “permutation counter column” p that is
initially in natural order ( 1, 2, . . . , n )—see Example 3.10.4.

• To solve a nonsingular linear system Ax = b using the LU de-
composition with partial pivoting, permute the components in b to
construct b̃ according to the sequence of interchanges used—i.e.,
according to p —and then solve Ly = b̃ by forward substitution
followed by the solution of Ux = y using back substitution.
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Example 3.10.6

The LDU factorization. There’s some asymmetry in an LU factorization be-
cause the lower factor has 1’s on its diagonal while the upper factor has a nonunit
diagonal. This is easily remedied by factoring the diagonal entries out of the up-
per factor as shown below:⎛
⎜⎜⎝

u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

u11 0 · · · 0
0 u22 · · · 0
...

...
. . .

...
0 0 · · · unn

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 u12/u11 · · · u1n/u11

0 1 · · · u2n/u22

...
...

. . .
...

0 0 · · · 1

⎞
⎟⎟⎠.

Setting D = diag (u11, u22, . . . , unn) (the diagonal matrix of pivots) and redefin-
ing U to be the rightmost upper-triangular matrix shown above allows any LU
factorization to be written as A = LDU, where L and U are lower- and upper-
triangular matrices with 1’s on both of their diagonals. This is called the LDU
factorization of A. It is uniquely determined, and when A is symmetric, the
LDU factorization is A = LDLT (Exercise 3.10.9).

Example 3.10.7

The Cholesky Factorization.22 A symmetric matrix A possessing an LU fac-
torization in which each pivot is positive is said to be positive definite .

Problem: Prove that A is positive definite if and only if A can be uniquely
factored as A = RT R, where R is an upper-triangular matrix with positive
diagonal entries. This is known as the Cholesky factorization of A, and R is
called the Cholesky factor of A.

Solution: If A is positive definite, then, as pointed out in Example 3.10.6,
it has an LDU factorization A = LDLT in which D = diag (p1, p2, . . . , pn)
is the diagonal matrix containing the pivots pi > 0. Setting R = D1/2LT

where D1/2 = diag
(√

p1,
√

p2, . . . ,
√

pn

)
yields the desired factorization because

A = LD1/2D1/2LT = RT R, and R is upper triangular with positive diagonal

22
This is named in honor of the French military officer Major André-Louis Cholesky (1875–
1918). Although originally assigned to an artillery branch, Cholesky later became attached to
the Geodesic Section of the Geographic Service in France where he became noticed for his
extraordinary intelligence and his facility for mathematics. From 1905 to 1909 Cholesky was
involved with the problem of adjusting the triangularization grid for France. This was a huge
computational task, and there were arguments as to what computational techniques should be
employed. It was during this period that Cholesky invented the ingenious procedure for solving
a positive definite system of equations that is the basis for the matrix factorization that now
bears his name. Unfortunately, Cholesky’s mathematical talents were never allowed to flower.
In 1914 war broke out, and Cholesky was again placed in an artillery group—but this time
as the commander. On August 31, 1918, Major Cholesky was killed in battle. Cholesky never
had time to publish his clever computational methods—they were carried forward by word-
of-mouth. Issues surrounding the Cholesky factorization have been independently rediscovered
several times by people who were unaware of Cholesky, and, in some circles, the Cholesky
factorization is known as the square root method.
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3.10 The LU Factorization 155

entries. Conversely, if A = RRT , where R is lower triangular with a positive
diagonal, then factoring the diagonal entries out of R as illustrated in Example
3.10.6 produces R = LD, where L is lower triangular with a unit diagonal and
D is the diagonal matrix whose diagonal entries are the rii ’s. Consequently,
A = LD2LT is the LDU factorization for A, and thus the pivots must be
positive because they are the diagonal entries in D2. We have now proven that
A is positive definite if and only if it has a Cholesky factorization. To see why
such a factorization is unique, suppose A = R1RT

1 = R2RT
2 , and factor out

the diagonal entries as illustrated in Example 3.10.6 to write R1 = L1D1 and
R2 = L2D2, where each Ri is lower triangular with a unit diagonal and Di

contains the diagonal of Ri so that A = L1D2
1L

T
1 = L2D2

2L
T
2 . The uniqueness

of the LDU factors insures that L1 = L2 and D1 = D2, so R1 = R2. Note:
More is said about the Cholesky factorization and positive definite matrices on
pp. 313, 345, and 559.

Exercises for section 3.10

3.10.1. Let A =

⎛
⎝ 1 4 5

4 18 26
3 16 30

⎞
⎠ .

(a) Determine the LU factors of A.
(b) Use the LU factors to solve Ax1 = b1 as well as Ax2 = b2,

where

b1 =

⎛
⎝ 6

0
−6

⎞
⎠ and b2 =

⎛
⎝ 6

6
12

⎞
⎠ .

(c) Use the LU factors to determine A−1.

3.10.2. Let A and b be the matrices

A =

⎛
⎜⎝

1 2 4 17
3 6 −12 3
2 3 −3 2
0 2 −2 6

⎞
⎟⎠ and b =

⎛
⎜⎝

17
3
3
4

⎞
⎟⎠ .

(a) Explain why A does not have an LU factorization.
(b) Use partial pivoting and find the permutation matrix P as well

as the LU factors such that PA = LU.
(c) Use the information in P, L, and U to solve Ax = b.

3.10.3. Determine all values of ξ for which A =

⎛
⎝ ξ 2 0

1 ξ 1
0 1 ξ

⎞
⎠ fails to have an

LU factorization.
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3.10.4. If A is a nonsingular matrix that possesses an LU factorization, prove
that the pivot that emerges after (k + 1) stages of standard Gaussian
elimination using only Type III operations is given by

pk+1 = ak+1,k+1 − cT A−1
k b,

where Ak and

Ak+1 =

(
Ak b

cT ak+1,k+1

)

are the leading principal submatrices of orders k and k + 1, respec-
tively. Use this to deduce that all pivots must be nonzero when an LU
factorization for A exists.

3.10.5. If A is a matrix that contains only integer entries and all of its pivots
are 1, explain why A−1 must also be an integer matrix. Note: This fact
can be used to construct random integer matrices that possess integer
inverses by randomly generating integer matrices L and U with unit
diagonals and then constructing the product A = LU.

3.10.6. Consider the tridiagonal matrix T =

⎛
⎜⎝

β1 γ1 0 0
α1 β2 γ2 0
0 α2 β3 γ3

0 0 α3 β4

⎞
⎟⎠ .

(a) Assuming that T possesses an LU factorization, verify that it
is given by

L =

⎛
⎜⎝

1 0 0 0
α1/π1 1 0 0

0 α2/π2 1 0
0 0 α3/π3 1

⎞
⎟⎠, U =

⎛
⎜⎝

π1 γ1 0 0
0 π2 γ2 0
0 0 π3 γ3

0 0 0 π4

⎞
⎟⎠,

where the πi ’s are generated by the recursion formula

π1 = β1 and πi+1 = βi+1 −
αiγi

πi
.

Note: This holds for tridiagonal matrices of arbitrary size
thereby making the LU factors of these matrices very easy to
compute.

(b) Apply the recursion formula given above to obtain the LU fac-
torization of

T =

⎛
⎜⎝

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎞
⎟⎠ .
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3.10.7. An×n is called a band matrix if aij = 0 whenever |i − j| > w for
some positive integer w, called the bandwidth. In other words, the
nonzero entries of A are constrained to be in a band of w diagonal lines
above and below the main diagonal. For example, tridiagonal matrices
have bandwidth one, and diagonal matrices have bandwidth zero. If
A is a nonsingular matrix with bandwidth w, and if A has an LU
factorization A = LU, then L inherits the lower band structure of A,
and U inherits the upper band structure in the sense that L has “lower
bandwidth” w, and U has “upper bandwidth” w. Illustrate why this
is true by using a generic 5 × 5 matrix with a bandwidth of w = 2.

3.10.8. (a) Construct an example of a nonsingular symmetric matrix that
fails to possess an LU (or LDU) factorization.

(b) Construct an example of a nonsingular symmetric matrix that
has an LU factorization but is not positive definite.

3.10.9. (a) Determine the LDU factors for A =

⎛
⎝ 1 4 5

4 18 26
3 16 30

⎞
⎠ (this is the

same matrix used in Exercise 3.10.1).
(b) Prove that if a matrix has an LDU factorization, then the LDU

factors are uniquely determined.
(c) If A is symmetric and possesses an LDU factorization, explain

why it must be given by A = LDLT .

3.10.10. Explain why A =

⎛
⎝ 1 2 3

2 8 12
3 12 27

⎞
⎠ is positive definite, and then find the

Cholesky factor R.

http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html


COPYRIG
HTED

It 
is

 il
le

ga
l t

o 
pr

in
t, 

du
pl

ic
at

e,
 o

r 
di

st
rib

ut
e 

th
is

 m
at

er
ia

l
P

le
as

e 
re

po
rt

 v
io

la
tio

ns
 to

 m
ey

er
@

nc
su

.e
du

Buy online from SIAM

http://www.ec-securehost.com/SIAM/ot71.html

Buy from AMAZON.com

http://www.amazon.com/exec/obidos/ASIN/0898714540

Copyright c© 2000 SIAM

158 Chapter 3 Matrix Algebra

As for everything else, so for a mathematical theory:
beauty can be perceived but not explained.

— Arthur Cayley (1821–1895)
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