The Sturm-Liouville Problem 305

6.5 ANOTHER SINGULAR STURM-LIOUVILLE PROBLEM:
BESSEL’S EQUATION

In the previous section we discussed the solutions to Legendre’s
equation, especially with regard to their use in orthogonal expansions.

In the section we consider another classic equation, Bessel’s equation!®
22y + oy + (Wit —n?)y =0 (6.5.1)
or p J )
y 2 n
— - _— =0. 6.5.2
dz(zdx>+<px z)y ( )

Once again, our ultimate goal is the use of its solutions in orthogonal ex-
pansions. These orthogonal expansions, in turn, are used in the solution
of partial differential equations in cylindrical coordinates.

A quick check of Bessel’s equation shows that it conforms to the
canonical form of the Sturm-Liouville problem: p(z) = z, g(z) = —n?/=,
r(z) = z, and A = p?. Restricting our attention to the interval [0, L], the
Sturm-Liouville problem involving (6.5.2) is singular because p(0) = 0.
From (6.4.1) in the previous section, the eigenfunctions to a singular
Sturm-Liouville problem will still be orthogonal over the interval [0, L]
if (1) y(z) is finite and zy/(x) is zero at = 0, and (2) y(z) satisfies the
homogeneous boundary condition (6.1.2) at z = L. Consequently, we
will only seek solutions that satisfy these conditions.

We cannot write down the solution to Bessel’s equation in a simple
closed form; as in the case with Legendre’s equation, we must find the
solution by power series. Because we intend to make the expansion
about z = 0 and this point is a regular singular point, we must use the
method of Frobenius, where n is an integer.!® Moreover, because the
quantity n? appears in (6.5.2), we may take n to be nonnegative without
any loss of generality.

To simplify matters, we first find the solution when y = 1; the
solution for p # 1 follows by substituting px for . Consequently, we
seek solutions of the form

o0
y(z) = Z ByzZkte, (6.5.3)
k=0

18 Bessel, F. W., 1824: Untersuchung des Teils der planetarischen
Stérungen, welcher aus der Bewegung der Sonne entsteht. Abh. d. K.
Akad. Wiss. Berlin, 1-52. See Dutka, J., 1995: On the early history
of Bessel functions. Arch. Hist. Ezact Sci., 49, 105-134. The classic
reference on Bessel functions is Watson, G. N., 1966: A Treatise on the
Theory of Bessel Functions, Cambridge University Press, Cambridge.

19 This case is much simpler than for arbitrary n. See Hildebrand, F.
B., 1962: Advanced Calculus for Applications. Prentice-Hall, Englewood
Cliffs, NJ, Section 4.8.
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Figure 6.5.1: It was Friedrich William Bessel’s (1784-1846) appren-
ticeship to the famous mercantile firm of Kulenkamp that ignited his
interest in mathematics and astronomy. As the founder of the Ger-
man school of practical astronomy, Bessel discovered his functions while
studying the problem of planetary motion. Bessel functions arose as
coefficients in one of the series that described the gravitational interac-
tion between the sun and two other planets in elliptic orbit. (Portrait
courtesy of Photo AKG, London.)

Y(z) = (2k +5)Bp? ot (6.5.4)
k=0
and -
y'(z) = Z(?k + 5)(2k + 5 — 1)Bpz?k+e-2, (6.5.5)
k=0

where we formally assume that we can interchange the order of differen-
tiation and summation. The substitution of (6.5.3)—-(6.5.5) into (6.5.1)
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with g =1 yields

S "(2k + 5)(2k + s — 1)Bea®™F* + ) "(2k + 5) Bra®*
k=0 k=0
o0 o0
+ Z ka2k+s+2 —n? Z ka2k+s =0 (6.5.6)
k=0 k=0
or
o0 o0
Z[(?k +5)% — n?] By + Z Bra®*t? = 0. (6.5.7)
k=0 k=0

If we explicitly separate the k = 0 term from the other terms in the first
summation in (6.5.7),

o0 o0
(s> =n?)Bo+ >_[(2m+5)? = n?]Bpa®™ + Y _ Bya™*? = 0. (6.5.8)
m=1 k=0

We now change the dummy integer in the first summation of (6.5.8) by
letting m = k + 1 so that

(s> = n®)Bo + Y _{{(2k + 5 +2)* — n’]Byy1 + Br}e**? = 0. (6.5.9)
k=0

Because (6.5.9) must be true for all 2, each power of £ must vanish
identically. This yields s = #n and

[(2k + 5 +2)2 — n?Biy1 + B = 0. (6.5.10)

Since the difference of the larger indicial root from the lower root equals
the integer 2n, we are only guaranteed a power series solution of the
form (6.5.3) for s = n. If we use this indicial root and the recurrence
formula (6.5.10), this solution, known as the Bessel function of the first
kind of order n and denoted by J,(z), is

s -1 k z/2 n+2k
Ja(z) = ;%z)'— (6.5.11)

To find the second general solution to Bessel’s equation, the one
corresponding to s = —n, the most economical method?? is to express
it in terms of partial derivatives of J,(z) with respect to its order n:

Yo(z) = [6‘]55“”) —(—1)"1%”1/(—’”)] R (6.5.12)

20 See Watson, G. N., 1966: A Treatise on the Theory of Bessel
Functions, Cambridge University Press, Cambridge, Section 3.5 for the
derivation.
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Figure 6.5.2: The first four Bessel functions of the first kind over
0<z<8.

Upon substituting the power series representation (6.5.11) into (6.5.12),

2 ln—l(n— k—1)! 2%k—n
o 1S )
z n+2k
Z - k| (n 12,2): [b(k+1)+¢(k+n+1)], (6.5.13)
where
1/)(m+1):—7+1+%+...+%, (6.5.14)

¥(1) = ~v and 7 is Euler’s constant (0.5772157). In the case n = 0,
the first sum in (6.5.13) disappears. This function Y,(z) is Neumann’s
Bessel function of the second kind of order n. Consequently, the general
solution to (6.5.1) is

y(z) = AJn(pz) + BY, (uz). (6.5.15)

Figure 6.5.2 illustrates the functions Jo(z), J1(z), J2(z), and J3(z) while
Figure 6.5.3 gives Yy(x), Yi(z), Y2(z), and Y3(z).
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Figure 6.5.3: The first four Bessel functions of the second kind over
0<z<8.

An equation which is very similar to (6.5.1) is

,d%y dy 2

E—-i-a: -+ 2%y =0. (6.5.16)
It arises in the solution of partial differential equations in cylindrical
coordinates. If we substitute iz = ¢ (where i = v/—1) into (6.5.16), it

becomes Bessel’s equation:

d? dy dy
2 ay 2 _ 2y, 5
s +tdt+(t n“)y=0. (6.5.17)
Consequently, we may immediately write the solution to (6.5.16) as
y(z) = c1Jn(iz) + c2Yn(ix), (6.5.18)

if n is an integer. Traditionally the solution to (6.5.16) has been written
y(z) = c1In(x) + coKn(x) (6.5.19)
rather than in terms of J,(iz) and Yy (iz), where

= (/24
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Figure 6.5.4: The first four modified Bessel functions of the first kind
over 0 <z < 3.

and
Kn(z) = gi"“ [Jn(iz) + iY, (iz)]. (6.5.21)

The function I,(z) is the modified Bessel function of the first kind, of
order n, while K, () is the modified Bessel function of the second kind,
of order n. Figure 6.5.4 illustrates Iy(z), I1(z), I2(z), and I3(z) while in
Figure 6.5.5 Ko(x), Ki(z), K2(z), and K3(z) have been graphed. Note
that K,(z) has no real zeros while I,,(z) equals zero only at z = 0 for
n>1

As our derivation suggests, modified Bessel functions are related to
ordinary Bessel functions via complex variables. In particular, J,(iz) =
i"I,(z) and I, (iz) = " J,(z) for 2 complex.

Although we have found solutions to Bessel’s equation (6.5.1), as
well as (6.5.16), can we use any of them in an eigenfunction expansion?
From Figures 6.5.2-6.5.5 we see that J,(z) and I,(z) remain finite at
z = 0 while Y,,(z) and K,,(z) do not. Furthermore, the products z.J! (z)
and zI},(z) tend to zero at z = 0. Thus, both J,(z) and I,(x) satisfy
the first requirement of an eigenfunction for a Fourier-Bessel expansion.

What about the second condition that the eigenfunction must sat-
isfy the homogeneous boundary condition (6.1.2) at z = L? From Figure
6.5.4 we see that I,(z) can never satisfy this condition while from Fig-
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Figure 6.5.5: The first four modified Bessel functions of the second
kind over 0 <z < 3.

ure 6.5.2 Jn(x) can. For that reason, we discard I,(z) from further
consideration and continue our analysis only with J,(z).

Before we can derive the expressions for a Fourier-Bessel expansion,
we need to find how J,(z) is related to Jp41(x) and J,_1(z). Assuming

that n is a positive integer, we multiply the series (6.5.11) by " and
then differentiate with respect to z. This gives

d ., N (—1)%(2n + 2k)z2nt2k-1
2" ()] = kzzo( )2£+2kk! (n)+ 5 (6.5.22)
n o -1 k x 2n—1+2k
=z k};)( k!)(n(_/l)+ o (6.5.23)
=z"J,_1(x) (6.5.24)

or

T 8" In(2)] = 2" Ju-s(2) (6.5.25)
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forn=1,2,3,.... Similarly, multiplying (6.5.11) by =", we find that

d—i— [27"Jn(2)] = =27 " Jnya(z) (6.5.26)

forn =0,1,2,3,.... If we now carry out the differentiation on (6.5.25)
and (6.5.26) and divide by the factors %", we have that

T (2) + gJ,.(z) = Jn_1(2) (6.5.27)

and
J.(z) - an(x) = —Jpp1(2). (6.5.28)

Equations (6.3.27)~(6.3.28) immediately yield the recurrence relation-
ships

Jn-1(x) + Jnyi(z) = 2?an(ac) (6.5.29)

and

Jn_l(l‘) - Jn+1(.’L‘) = QJ;(Z') (6.5.30)

forn=1,2,3,... For n = 0, we replace (6.5.30) by Jj(z) = —J1 ().

Let us now construct a Fourier-Bessel series. The exact form of
the expansion depends upon the boundary condition at ¢ = L. There
are three possible cases. One of them is the requirement that y(L) = 0
and results in the condition that J,(uxL) = 0. Another condition is
¥'(L) = 0 and gives J),(uxL) = 0. Finally, if hy(L) + /(L) = 0, then
hJn(peLl) + ped)(ux L) = 0. In all of these cases, the eigenfunction
expansion is the same, namely

f(&) = Apda(uiz), (6.5.31)
k=1
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where g is the kth positive solution of either J, (puxL) = 0, J, (px L) =0
or hdn(pue L) + peJ) (pe L) = 0.

We now need a mechanism for computing A;. We begin by multi-
plying (6.5.31) by «J,(pm) dz and integrate from 0 to L. This yields

<) L L
;Ak/o :an(,uka:)J(,um:c)dacz/O zf(2)In(umz)de. (6.5.32)

From the general orthogonality condition (6.2.1),

L
/0 eI (pr)Jn(pme)de =0 (6.5.33)

if £ # m. Equation (6.5.32) then simplifies to

L L
An / 2J2(4mz) dz = / 2 f(2)Tn (i) dz (6.5.34)
"] 0
or
1 L
Ap = ?J;/o zf(z)Jn(prz) de, (6.5.35)
where
L
Ck-—-/ zJ2(urz)dz (6.5.36)
0

and k has replaced m in (6.5.34).
The factor Cy depends upon the nature of the boundary conditions
at ¢ = L. In all cases we start from Bessel’s equation

’ n?
[} (pez)] + (u%z - ?) Jn(urz) = 0. (6.5.37)

If we multiply both sides of (6.5.37) by 2xJ}, (1txx), the resulting equation
is
d

(ua® = n®) [2(uso)]) = == [e o ()] (6.5.38)

An integration of (6.5.38) from 0 to L, followed by the subsequent use
of integration by parts, results in

L L
(i =)o) - 2 [ 272uen) do = - T |
(6.5.39)
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Because J,(0) = 0 for n > 0, Jo(0) = 1 and «J)(z) = 0 at « = 0, the
contribution from the lower limits vanishes. Thus,

L
Cy :/ J:J,f(,ukz) dz (6.5.40)
0
1
= oz (207 = )T D) 4 P D)] (65.40)
k
Because n
Tn(uez) = —Jn(pez) = prdns1(uiz) (6.5.42)

from (6.5.28), C} becomes

Cr = 3L2J75 1 (e L), (6.5.43)

if Jn(pxl) = 0. Otherwise, if J/ (prL) = 0, then

piL?
Ci = -—~—J2(,ukL) (6.5.44)

Finally,

R - n 4 L7
=B o J2 (L), (6.5.45)
k

if ppJy(peL) = —hJn(prL).

All of the preceding results must be slightly modified when n = 0
and the boundary condition is Jy(urL) = 0 or ppJi(pxL) = 0. This
modification results from the additional eigenvalue pg = 0 being present
and we must add the extra term Ag to the expansion. For this case the
series reads

f)= Ao+ > Aedo(mez), (6.5.46)
k=1
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where the equation for finding Ay is

L
= %/o f(z)zdz (6.5.47)

and (6.5.35) and (6.5.44) with n = 0 give the remaining coefficients.
e Example 6.5.1

Starting with Bessel’s equation, we want to show that the solution

to
-2 2 _ p2e2
Y2y (b2c2x2°_2 +E 2 ) y=0 (6.5.48)
z T
is
y(z) = Az®J, (bx®) + Bz®Y, (bz°), (6.5.49)

provided that bz° > 0 so that Y, (bz®) exists.
The general solution to

52 22 74 5— +(E-nH)p=0 (6.5.50)

18
n= AJ,(&) + BY,(). (6.5.51)
If we now let n = y(z)/z® and € = bz®, then

d _dxd zl=c d

P e (6.5.52)

d2 .’L‘2-2c d2 (c_ 1)1.1—2c d
de? = 22 de? b2c? de’ (6.5.53)

d ryy 1 dy a

dz (x_“) T zidr  geti? (6.5.54)

nd 1dy 2 dy a(l+a)

¥y _ Yy a ay all+a
7 (5) = gt g T e (6.5.55)

Substituting (6.5.52)—(6.5.55) into (6.5.51) and simplifying, yields the
desired result.

e Example 6.5.2
We want to show that

227! (x) = (n? = n = 22)Jn(z) + zJns1(2). (6.5.56)
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From (6.5.28),
J (z) = %Jn(x) — Tnp1(2), (6.5.57)

Ti(@) = =5 Ju(@) + 2 T4(2) = T 4a(a) (6.5.58)
and
@) = =25 Ta(@) + 2 [210(@) = Jasa(2)]

_ [Jn(z)—n+1

J,,+1(x)] (6.5.59)

after using (6.5.27) and (6.5.28). Simplifying,

J(z) = ("Zx; . 1) Jn(z) + ﬁ;—@ (6.5.60)

After multiplying (6.5.60) by z?, we obtain (6.5.56).
e Example 6.5.3

Show that
/ 2% J3(z) dz = a®J3(a) — 2a* Ju(a). (6.5.61)
0

We begin by integrating (6.5.61) by parts. If u = z? and dv =
z3J,(z) dz, then

a a
/ 25 12(2) do = 25J5(2)[ - 2 / 24 J5(2) de, (6.5.62)
0 0

because d{z3J5(x)]/dz = z2J5(z) by (6.5.25). Finally, since z%Ja(z) =
d[z*J4(z)]/dz by (6.5.25),

/a £®Jo(z) de = a®J3(a)— 2x4J4(:c)|g = a®J3(a) — 2a*J4(a). (6.5.63)
0

o Example 6.5.4

Let us expand f(z) = 2,0 < z < 1, in the series

f=) =) Ay (uix), (6.5.64)
k=1
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Figure 6.5.6: The Fourier-Bessel series representation (6.5.68) for
f(z) = z, 0 < £ < 1, when we truncate the series so that it includes
only the first, first two, first three, and first four terms.

where p; denotes the kth zero of Ji(y). From (6.5.35) and (6.5.43),

92 1
Ag = —/ 22 Jy(urz) dr. 6.5.65
k Jzz(ﬂk) o l(ﬂk ) ( )
However, from (6.5.25),
% [z272(z)] = 2% J1(2), (6.5.66)
if n = 2. Therefore, (6.5.65) becomes
222 J5(z) |M* 2
= = 6.5.67
TR |, meda(p) ( )
and the resulting expansion is
x_22 Slme) g g (6.5.68)

ped2(px)’

Figure 6.5.6 shows the Fourier-Bessel expansion of f(z) = z in truncated
form when we only include one, two, three, and four terms.
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Figure 6.5.7: The Fourier-Bessel series representation (6.5.79) for
f(z) = 2, 0 < z < 1, when we truncate the series so that it includes
only the first, first two, first three, and first four terms.

e Example 6.5.5

Let us expand the function f(z) = 2%, 0 < z < 1, in the series
f(z) =Y Ardo(uz), (6.5.69)
k=1

where p; denotes the kth positive zero of Jo(g). From (6.5.35) and
(6.5.43),

2 1
Ap = ——o 3J dz. 6.5.70
= Ty, 2 (6570

If we let t = ppz, the integration (6.5.70) becomes

2 Bk
Ap = ———/ t3Jo(2) dt. 6.5.71
© T2 () Jo o) ( )

We now let u = t? and dv = tJo(¢) dt so that integration by parts results
in
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2 123
Ap = ——— |31 (t “k—2/ 27,(t dt] 6.5.72
g /tiJf(uk)[ 1) 0 (1) ( )
2 3 /uk 2 ]
= |3 J -2 2J1(t) dt], 6.5.73
ﬂlez(Hk) [#k l(luk) o 1( ) ( )

because v = tJ1(¢) from (6.5.25). If we integrate by parts once more,
we find that

2
A = m I:/lzjl(l—‘k) — Qp%Jg(pk):l (6.5.74)
__ 2 [Jilem) _ 2J2(pk)
- J{"(uk)[ e % ] (6.5.75)

However, from (6.5.29) with n = 1,

Ti(pe) = sok [J2(pr) + Jo(ue)] (6.5.76)
Ja(pr) = M, (6.5.77)
Bk

because Jo(ur) = 0. Therefore,

2(#% - 4)J1(pr)
Ap = —E—rt 2 6.5.78
¢ pJ7 (1k) ( )
and
(#i — 9)Jo(urz)
x '—22 , O<e<l1. 6.5.79
k=1 3J1 (k) ( )

Figure 6.5.7 shows the representation of z? by the Fourier-Bessel series
(6.5.79) when we truncate it so that it includes only one, two, three, or
four terms. As we add each additional term in the orthogonal expansion,
the expansion fits f(z) better in the “least squares” sense of (6.3.5).

Problems

1. Show from the series solution that

% [Jo(k.’l:)] = —le(k(L').

From the recurrence formulas, show these following relations:
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2.
2Jg () = J2(z) — Jo(z)
3.
Ja(z) = Jg' () — Jo(z)/
+ " JO(J") 2 '
Jg'(z) = - + (;2— - 1) Jo(z)
5.
Bie) 1 @) _ 2 Jol@) _ 2 Jofa)
Ji(z) =z Ji(x) z  Ji(z) =z Ji(x)
6.
Ja(z) = (‘:_3 - S) Ji(z) - (i—;‘ - 1) Jo(®)
7.
n(n? —
Jnga2(z) = [2n +1- 2_(—1,2—1—)] In(z) + 2(n + 1)J)) ()
8. g A
J3(.’L‘) = <F - 1) Jl(:c) - ;Jo(l‘)
9.

4J;/(z) = Jn=2(z) = 2Jn(z) + Jnt2(z)

10. Show that the maximum and minimum values of J,(z) occur when

_ nJp(z) .= nJn(z)
Jny1(z)’ Jn-1(z)’

and Jn_l(il?) = Jn+1(17).

Show that
11. 4
= [2273(2z)] = —zJ3(2z) + 22%T5(22)

12. d
dz [2Jo(2?)] = Jo(z®) — 22°J1(2?)



