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CHAPTER 14

BESSEL FUNCTIONS

Bessel functions appear in a wide variety of physical problems. In Section 9.4 we saw
that separation of the Helmholtz, or wave, equation in circular cylindrical coordinates led
to Bessel’s equation in the coordinate describing distance from the axis of the cylindrical
system. In that same section, we also identified spherical Bessel functions (closely related
to Bessel functions of half-integral order) in Helmholtz equations in spherical coordinates.
In summarizing the forms of solutions to partial differential equations (PDEs) in these
coordinate systems, we not only identified the original and spherical Bessel functions,
but also those of imaginary argument (usually expressed as modified Bessel functions to
avoid the explicit use of imaginary quantities). Since these PDEs can describe many types
of problems ranging from stationary problems in quantum mechanics to those of spherical
or cylindrical wave propagation, a good familiarity with Bessel functions is important to
the practicing physicist.

Often problems in physics involve integrals that can be identified as Bessel functions,
even when the original problem did not explicitly involve cylindrical or spherical geom-
etry. Moreover, Bessel and closely related functions form a rich area of mathematical
analysis with many representations, many interesting and useful properties, and many
interrelations. Some of the major interrelations are developed in the present chapter.
In addition to the material presented here, we call attention to further relations in terms
of confluent hypergeometric functions; see Section 18.6.

14.1 BESSEL FUNCTIONS OF THE FIRST KIND, Jν(x)

Bessel functions of the first kind, normally labeled Jν , are those obtained by the Frobenius
method for solution of the Bessel ODE,

x2 J ′′ν + x J ′ν + (x
2
− ν2)Jν = 0. (14.1)

The term “first kind” reflects the fact that Jν(x) includes the functions that, for non-
negative integer ν, are regular at x = 0. All solutions to the Bessel ordinary differential
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equation (ODE) that are linearly independent of Jν(x) are irregular at x = 0 for all ν;
a specific choice for a second solution is denoted Yν(x) and is called a Bessel function of
the second kind.1

Generating Function for Integral Order

We start our detailed study of Bessel functions by introducing a generating function yield-
ing the Jn for integer n (of either sign). Because the Jn are not polynomials, the generating
function cannot be found by the methods of Section 12.1, but we will be able to show that
the functions defined by the generating function are indeed the solutions of the Bessel ODE
obtained by the Frobenius method.

Our generating function formula, a Laurent series, is

g(x, t)= e(x/2)(t−1/t)
=

∞∑
n=−∞

Jn(x)t
n . (14.2)

Although the Bessel ODE is homogeneous and its solutions are of arbitrary scale,
Eq. (14.2) fixes a specific scale for Jn(x). To relate Eq. (14.2) to the Frobenius solution,
Eq. (7.48), we manipulate the exponential as follows:

g(x, t)= ext/2
· e−x/2t

=

∞∑
r=0

( x

2

)r tr

r !

∞∑
s=0

(−1)s
( x

2

)s t−s

s!

=

∞∑
r=0

∞∑
s=0

(−1)s
( x

2

)r+s tr−s

r !s!
.

We now change the summation index r to n = r − s, yielding

g(x, t)=
∞∑

n=−∞

[∑
s

(−1)s

(n + s)!s!

( x

2

)n+2s
]

tn, (14.3)

where the s summation starts at max(0,−n). For n ≥ 0, the coefficient of tn is seen to be

Jn(x)=
∞∑

s=0

(−1)s

s!(n + s)!

( x

2

)n+2s
. (14.4)

Comparing with Eq. (7.48), we confirm that for n ≥ 0, Jn as given by Eq. (14.4) is the
Frobenius solution, at the specific scale given here.

If now we replace n by −n, the summation in Eq. (14.3) becomes

J−n(x)=
∞∑

s=n

(−1)s

s!(s − n)!

( x

2

)−n+2s
;

1We use the notation of AMS-55, also used by Watson in his definitive treatise (for both sources, see Additional Readings). The
Yν are sometimes also called Neumann functions; for that reason some workers write them as Nν . They were denoted Nν in
previous editions of this book.
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changing s to s + n, we reach

J−n(x)=
∞∑

s=0

(−1)s+n

s!(s + n)!

( x

2

)n+2s
= (−1)n Jn(x) (integral n), (14.5)

confirming both that J−n(x) is a solution to the Bessel ODE and that it is linearly dependent
on Jn .

If we now consider Jν with ν nonintegral, we get no information from the generating
function, but the Frobenius method then gives linearly independent solutions for both +ν
and −ν, which are both solutions of the Bessel ODE, Eq. (14.1), for the same value of ν2.
Looking at the details of the development of Eqs. (7.46) to (7.48), we see that the generali-
zation of Eq. (14.4) to noninteger ν is

Jν(x)=
∞∑

s=0

(−1)s

s!0(ν + s + 1)

( x

2

)ν+2s
, (ν 6= −1,−2, . . . ), (14.6)

and that Jν(x) as given in Eq. (14.6) is a solution to the Bessel ODE.
For ν ≥ 0 the series of Eq. (14.6) is convergent for all x , and for small x is a practi-

cal way to evaluate Jν(x). Graphs of J0, J1, and J2 are shown in Fig. 14.1. The Bessel
functions oscillate but are not periodic, except in the limit x→∞, with the amplitude of
the oscillation decreasing asymptotically as x−1/2. This behavior is discussed further in
Section 14.6.

Recurrence Relations

The Bessel functions Jn(x) satisfy recurrence relations connecting functions of contigu-
ous n, as well as some connecting the derivative J ′n to various Jn . Such recurrence rela-
tions may all be obtained by operating on the series, Eq. (14.6), although this requires a bit
of clairvoyance (or a lot of trial and error). However, if the recurrence relations are already
known, their verification is straightforward; see Exercise 14.1.8. Our approach here will
be to obtain them from the generating function g(x, t), using a process similar to that
illustrated in Example 12.1.2.

x
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J2(x)
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0
8 954

FIGURE 14.1 Bessel functions J0(x), J1(x), and J2(x).
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We start by differentiating g(x, t):

∂

∂t
g(x, t)=

x

2

(
1+

1

t2

)
e(x/2)(t−1/t)

=

∞∑
n=−∞

n Jn(x)t
n−1,

∂

∂x
g(x, t)=

1

2

(
t −

1

t

)
e(x/2)(t−1/t)

=

∞∑
n=−∞

J ′n(x)t
n .

Inserting the right-hand side of Eq. (14.2) in place of the exponentials and equating the
coefficients of equal powers of t (as illustrated in Example 12.1.2), we obtain the two
basic Bessel-function recurrence formulas:

Jn−1(x)+ Jn+1(x)=
2n

x
Jn(x), (14.7)

Jn−1(x)− Jn+1(x)= 2J ′n(x). (14.8)

Because Eq. (14.7) is a three-term recurrence relation, its use to generate Jn will require
two starting values. For example, given J0 and J1, then J2 (and any other integral order Jn

including those for n < 0) may be computed.
An important special case of Eq. (14.8) is

J ′0(x)=−J1(x). (14.9)

Equations (14.7) and (14.8) can also be combined (Exercise 14.1.4) to form the useful
additional formulas

d

dx

[
xn Jn(x)

]
= xn Jn−1(x), (14.10)

d

dx

[
x−n Jn(x)

]
=−x−n Jn+1(x), (14.11)

Jn(x)=±J ′n±1 +
n ± 1

x
Jn±1(x). (14.12)

Bessel’s Differential Equation

Suppose we consider a set of functions Zν(x) that satisfies the basic recurrence relations,
Eqs. (14.7) and (14.8), but with ν not necessarily an integer and Zν not necessarily given by
the series in Eq. (14.6). It is our objective to show that any functions that satisfy these recur-
rence relations must also be solutions to Bessel’s ODE. We start by forming (1) x2 Zν ′′(x)
from x2/2 times the derivative of Eq. (14.8), (2) x Z ′ν(x) from Eq. (14.8) multiplied by
x/2, and (3) ν2 Zν(x) from Eq. (14.7) multiplied by νx/2. Putting these together we obtain

x2 Zν
′′(x)+ x Z ′ν(x)− ν

2 Zν(x)

=
x2

2

[
Z ′ν−1(x)− Z ′ν+1(x)−

ν − 1

x
Zν−1(x)−

ν + 1

x
Zν+1(x)

]
. (14.13)
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The terms within square brackets in Eq. (14.13) can now by use of Eq. (14.12) be simplified
to −2Zν(x), so Eq. (14.13) can be rewritten

x2 Zν
′′(x)+ x Z ′ν(x)+ (x

2
− ν2)Zν(x)= 0, (14.14)

which is Bessel’s ODE. Reiterating, we have shown that any functions Zν(x) that satisfy
the basic recurrence formulas, Eqs. (14.7) and (14.8), also satisfy Bessel’s equation; that
is, the Zν are Bessel functions. For later use, we note that if the argument of Zν is kρ rather
than x , Eq. (14.14) becomes

ρ2 d2

dρ2 Zν(kρ)+ ρ
d

dρ
Zν(kρ)+ (k

2ρ2
− ν2)Zν(kρ)= 0. (14.15)

Integral Representation

It is of great value to have integral representations of Bessel functions. Starting from the
generating-function formula, we can apply the residue theorem to evaluate the contour
integral ∮

C

e(x/2)(t+1/t)

tn+1 dt =
∮
C

∑
m

Jm(x)t
m−n−1dt = 2π i Jn(x), (14.16)

where the contour C encircles the singularity at t = 0. The integral on the left-hand side
of Eq. (14.16) can now be brought to a convenient form by taking the contour to be the
unit circle and changing the integration variable by making the substitution t = eiθ. Then
dt = ieiθdθ, e(x/2)(t−1/t)

= ei x sin θ, and we have

2π i Jn(x)=

2π∫
0

ei x sin θ

e(n+1)iθ
ieiθdθ =

2π∫
0

ei(x sin θ−nθ)idθ. (14.17)

Assuming x to be real and taking the imaginary parts of both sides of Eq. (14.17), we find

Jn(x)=
1

2π

2π∫
0

cos(x sin θ − nθ)dθ =
1

π

π∫
0

cos(x sin θ − nθ)dθ, (14.18)

where the last equality only holds because we are assuming n to be an integer. Though we
will not need it now, the real part of this equation also gives an interesting formula:

2π∫
0

sin(x sin θ − nθ)dθ = 0. (14.19)

An oft-occurring special case of Eq. (14.18) is

J0(x)=
1

2π

2π∫
0

ei x cos θdθ =
1

π

π∫
0

cos(x sin θ)dθ. (14.20)
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Table 14.1 Zeros of the Bessel Functions and Their First Derivatives

Number
of zeros J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

J ′0(x) J ′1(x) J ′2(x) J ′3(x) J ′4(x) J ′5(x)

1 3.8317 1.8412 3.0542 4.2012 5.3176 6.4156
2 7.0156 5.3314 6.7061 8.0152 9.2824 10.5199
3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872
4 13.3237 11.7060 13.1704 14.5858 15.9641 17.3128
5 16.4706 14.8636 16.3475 17.7887 19.1960 20.5755

Equation (14.18) is only one of many integral representations of Jn , and some of these
can be derived (using an appropriately modified contour) for Jν of a nonintegral order.
This topic is explored in the subsection below entitled “Bessel Functions of Nonintegral
Order”.

Zeros of Bessel Functions

In many physical problems in which phenomena are described by Bessel functions, we are
interested in the points where these functions (which have oscillatory character) are zero.
For example, in a problem involving standing waves, these zeros identify the positions of
the nodes. And in boundary value problems, we may need to choose the argument of our
Bessel function to put a zero at an appropriate point.

There are no closed formulas for the zeros of Bessel functions; they must be found by
numerical methods. Because the need for them arises frequently, tables of the zeros are
available, both in compilations such as AMS-55 (see Additional Readings) and at a variety
of sources online.2 Table 14.1 lists the first few zeros of Jn(x) for integer n from n = 0
through n = 5, giving also the positions of the zeros of J ′n .

Example 14.1.1 FRAUNHOFER DIFFRACTION, CIRCULAR APERTURE

In the theory of diffraction of radiation of wavelength λ, incident normal to a circular
aperture of radius a, we encounter the integral

8∼

a∫
0

r dr

2π∫
0

eibr cos θdθ, (14.21)

2Additional roots of the Bessel functions and those of their first derivatives may be found in C. L. Beattie, Table of first 700 zeros
of Bessel functions, Bell Syst. Tech. J. 37, 689 (1958), and Bell Monogr. 3055. Roots may be also be accessed in Mathematica,
Maple, and other symbolic software.
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FIGURE 14.2 Geometry for Fraunhofer diffraction, circular aperture.

where 8 is the amplitude of the diffracted wave and (r, θ) identifies points in the aperture.
The exponent br cos θ is the phase of the radiation through (r, θ) that is diffracted to an
angle α from the incident direction, with

b=
2π

λ
sinα. (14.22)

The geometry is illustrated in Fig. 14.2. Fraunhofer diffraction, for which the above are
the relevant formulas, applies in the limit that the outgoing radiation is detected at large
distances from the aperture.

The behavior of the complex exponential will cause the amplitude to oscillate as α is
increased, creating (for each wavelength) a diffraction pattern. To understand the patterns
more fully, we need to evaluate the integral in Eq. (14.21). From Eq. (14.20) we may
immediately reduce Eq. (14.21) to

8∼ 2π

a∫
0

J0(br)rdr, (14.23)

which can be integrated in r using Eq. (14.10):

8∼ 2π

a∫
0

1

b2

d

dr

[
(br)J1(br)

]
dr =

2π

b2

[
br J1(br)

] a
0 =

2πa

b
J1(ab), (14.24)

where we have used the fact that J1(0) = 0. The intensity of the light in the diffraction
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FIGURE 14.3 Amplitude of Fraunhofer diffraction vs. deflection angle (green light,
aperture of radius 0.5 cm).

pattern is proportional to 82 and, substituting for b from Eq. (14.22),

82
∼

(
J1[(2πa/λ) sinα]

sinα

)2

. (14.25)

For visible light and apertures of reasonable size, 2πa/λ is quite small: for green light
(λ= 5.5× 10−5 cm) and an aperture with a = 0.5 cm, 2πa/λ= 57120, and these parame-
ter values lead to the pattern for 8 shown in Fig. 14.3. Note that the figure plots 8 (a plot
of 82 would make the oscillations too small to be observable on the same graph as the
maximum at α = 0). We see that 8 exhibits a central maximum at α = 0 of amplitude
∼30,000, with subsidiary extrema that by α = 0.001 radian have decreased in magnitude
to less than 1% of the central maximum. Remembering that the intensity is82, we see that
the diffraction spreading of the incident light is exceedingly small. To make a quantitative
analysis of the diffraction pattern, we need to identify the positions of its minima. They
correspond to the zeros of J1; for example, from Table 14.1 we find the first minimum
to be where (2πa/λ) sinα = 3.8317, or α ≈ 14 seconds of arc. If this analysis had been
known in the 17th century, the arguments against the wave theory of light would have
collapsed.

In mid-20th century this same diffraction pattern appears in the scattering of nuclear
particles by atomic nuclei, a striking demonstration of the wave properties of the nuclear
particles. �

Further examples of the use of Bessel functions and their roots are provided by the
following example and by the exercises of this section and Section 14.2.

Example 14.1.2 CYLINDRICAL RESONANT CAVITY

The propagation of electromagnetic waves in hollow metallic cylinders is important in
many practical devices. If the cylinder has end surfaces, it is called a cavity. Resonant
cavities play a crucial role in many particle accelerators.
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The resonant frequencies of a cavity are those of the oscillatory solutions to Maxwell’s
equations that correspond to standing wave patterns. By combining Maxwell’s equations,
we derived in Example 3.6.2 the vector Laplace equation for the electric field E in a region
free of electric charges and currents. Taking the z-axis along the axis of the cavity, our
concern here is the equation for Ez , which from Eq. (3.71) we found to have the form

∇
2 Ez =−

1

c2

∂2 Ez

∂t2 , (14.26)

which has standing-wave solutions Ez(x, y, z, t) = Ez(x, y, z) f (t), where f (t) has real
solutions sinωt and cosωt , corresponding to sinusoidal oscillations at angular frequencyω.
We are implicitly assuming that our solution has a nonzero component Ez , and we will also
set Bz = 0, so we intend to obtain solutions that are usually called the TM (for ‘‘transverse
magnetic”) modes of oscillation. Additional solutions, with Ez = 0 and Bz nonzero, corre-
spond to TE (transverse electric) modes and are the subject of Exercise 14.1.25.

Thus, for the present problem, in which our cavity is that shown in Fig. 14.4, we seek
solutions to the spatial PDE:

∇
2 Ez + k2 Ez = 0, k =

ω

c
. (14.27)

The aim of the present example is to find the values of ω for which Eq. (14.27) has solutions
consistent with the boundary conditions at the cavity walls. Assuming the metallic walls
to be perfect conductors, the boundary conditions are that the tangential components of the
electric field vanish there. Taking the cavity to have planar end caps at z = 0 and z = h, and
(in cylindrical coordinates ρ,ϕ) to be bounded by a curved surface at ρ = a, our boundary
conditions are Ex = Ey = 0 on the end caps, and Eϕ = Ez = 0 on the boundary at ρ = a.

x

y

z

h

a

FIGURE 14.4 Resonant cavity.
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Once a solution (with Bz = 0) has been found for Ez , then the remaining components of
B and E have definite values. For further details, see J. D. Jackson, Electrodynamics in
Additional Readings.

Equation (14.27) can be solved by the method of separation of variables, with solutions
of the form given in Eq. (9.64):

Ez(ρ, θ, z)= Plm(ρ)8m(ϕ)Zl(z), (14.28)

with 8m(θ) = e±imϕ or its equivalent in terms of sines and cosines, while Zl(z) and
Plm(ρ) are solutions of the ODEs

d2 Zl

dz2 =−l2 Zl , (14.29)

ρ
d

dρ

(
ρ

d Plm

dρ

)
+

(
(k2
− l2)ρ2

−m2
)

Plm = 0. (14.30)

Equation (14.29) corresponds to Eq. (9.58), but with a different choice of the sign for
the separation constant in anticipation of the fact that Zl will turn out to be oscillatory.
This change causes n2 in Eq. (9.60) to become k2

− l2, and Eq. (14.30) is then seen to
correspond exactly with Eq. (9.63).

Recognizing now Eq. (14.30) as Bessel’s ODE and Eq. (14.29) as the ODE for a classical
harmonic oscillator, we find, before imposing boundary conditions,

Ez = Jm(nρ)e
±imϕ[ A sin lz + B cos lz

]
, (14.31)

and the general solution will be an arbitrary linear combination of the above for different
values of n, m, and l . We have chosen the solution to Bessel’s ODE to be of the first kind
to maintain regularity at ρ = 0, since this ρ value is inside the cavity. We have written the
ϕ dependence of the solution as a complex exponential for notational convenience. The
physically relevant solutions will be arbitrary mixtures of the corresponding real quanti-
ties, sin mϕ and cos mϕ. Continuity and single-valuedness in ϕ dictate that m have integer
values.

The condition that Ez = 0 on the curved boundary translates into the requirement
Jm(na)= 0. Letting αmj stand for the j th positive zero of Jm , we find that

na = αmj , or k2
− l2
=

(αmj

a

)2
. (14.32)

To complete the solution we need to identify the boundary condition on Z . Because
∂Ex/∂x = ∂Ey/∂y = 0 on the end caps, we have from the Maxwell equation for ∇ ·E:

∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
= 0 −→

∂Ez

∂z
= 0, (14.33)

so we have the requirement Z ′(0)= Z ′(h)= 0, and we must choose

Z = B cos lz, with l =
pπ

h
, p = 0,1,2, . . . . (14.34)

Combining Eqs. (14.32) and (14.34), we find

k2
=

(αmj

a

)2
+

( pπ

h

)2
=
ω2

c2 , (14.35)
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thereby providing an equation for the resonant frequencies:

ωmjp = c

√
α2

mj

a2 +
p2π2

h2 ,

m = 0,1,2, . . . ,
j = 1,2,3, . . . ,
p = 0,1,2, . . . .

(14.36)

Recapitulating, the functions we have found, labeled by the indices m, j , and p, are
the spatial parts of standing-wave solutions of TM character whose time dependence and
overall amplitude are of the form Ce±iωmjp t. �

Bessel Functions of Nonintegral Order

While Jν of noninteger ν are not produced from a generating-function approach, they are
readily identified from the Taylor series expansion, and they are conventionally given a
scale consistent with that of the Jn of integer n. They then satisfy the same recurrence
relations as those derived from the generating function.

If ν is not an integer, there is actually an important simplification. The functions Jν
and J−ν are then independent solutions of the same ODE, and a relation of the form of
Eq. (14.5) does not exist. On the other hand, for ν = n, an integer, we need another solution.
The development of this second solution and an investigation of its properties form the
subject of Section 14.3.

Schlaefli Integral

It is useful to modify the integral representation, Eq. (14.16), so that it can be applied for
Bessel functions of nonintegral order. Our first step in doing so is to deform the circular
contour by stretching it to infinity on the negative real axis and opening the contour there,
as shown in Fig. 14.5. Our integral, written

Fν(x)=
1

2π i

∫
C

e(x/2)(t−1/t)

tν+1 dt, (14.37)

−∞
(t)

(t)

FIGURE 14.5 Contour, Schlaefli integral for Jν .
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now has a branch point at t = 0, and because we have opened the contour we can place the
branch cut along the negative real axis. We might anticipate that this procedure will not
affect our integral representation, as the integrand vanishes at t =−∞ on both sides of the
cut. However, that remains to be proved.

Our first step toward a proof that Fν is actually Jν is to verify that Fν still satisfies
Bessel’s ODE. If we substitute Fν and its x derivatives into the ODE, we can, after some
manipulation, reach the expression

1

2π i

∫
C

d

dt

{
e(x/2)(t−1/t)

tν

[
ν +

x

2

(
t +

1

t

)]}
dt, (14.38)

and because the integration is within a region of analyticity of the integrand, the integral
reduces to{

e(x/2)(t−1/t)

tν

[
ν +

x

2

(
t +

1

t

)]}
end

−

{
e(x/2)(t−1/t)

tν

[
ν +

x

2

(
t +

1

t

)]}
start

.

We therefore conclude that the ODE is satisfied if the above expression vanishes; in our
present situation each of the quantities in braces is zero for large negative t and positive x ,
confirming that Fν satisfies Bessel’s ODE.

We still need to show that Fν is the solution designated Jν ; to accomplish this we con-
sider its value for small x > 0. Deforming the contour to a large open circle and making a
change of variable to u = eiπ xt/2, we get (to lowest order in x)

Fν(x)≈
1

2π i

( x

2

)ν
eiνπ

∫
C ′

e−u

uν+1 du. (14.39)

Because of the change of variable, the contour C ′ becomes that which we introduced
when developing a Schlaefli integral representation of the gamma function, and, using
Eq. (13.31), we reduce Eq. (14.39) to

Fν(x)≈
( x

2

)ν sin[(ν + 1)π ]0(−ν)

π
=

1

0(ν + 1)

( x

2

)ν
, (14.40)

where the last step used the reflection formula for the gamma function, Eq. (13.23). Since
this is the leading term of the expansion for Jν , our proof is complete.

Exercises

14.1.1 From the product of the generating functions g(x, t)g(x,−t), show that

1= [J0(x)]
2
+ 2[J1(x)]

2
+ 2[J2(x)]

2
+ · · ·

and therefore that |J0(x)| ≤ 1 and |Jn(x)| ≤ 1/
√

2,n = 1,2,3, . . . .

Hint. Use uniqueness of power series, (Section 1.2).

14.1.2 Using a generating function g(x, t)= g(u + v, t)= g(u, t)g(v, t), show that

(a) Jn(u + v)=
∑
∞

s=−∞ Js(u)Jn−s(v),

(b) J0(u + v)= J0(u)J0(v)+ 2
∑
∞

s=1 Js(u)J−s(v).

These are addition theorems for the Bessel functions.
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14.1.3 Using only the generating function

e(x/2)(t−1/t)
=

∞∑
n=−∞

Jn(x)t
n

and not the explicit series form of Jn(x), show that Jn(x) has odd or even parity accord-
ing to whether n is odd or even, that is,

Jn(x)= (−1)n Jn(−x).

14.1.4 Use the basic recurrence formulas, Eqs. (14.7) and (14.8), to prove the following
formulas:

(a) d
dx [x

n Jn(x)] = xn Jn−1(x),

(b) d
dx [x

−n Jn(x)] = −x−n Jn+1(x),

(c) Jn(x)= J ′n+1 +
n+1

x Jn+1(x).

14.1.5 Derive the Jacobi-Anger expansion

eiρ cosϕ
=

∞∑
m=−∞

im Jm(ρ)e
imϕ .

This is an expansion of a plane wave in a series of cylindrical waves.

14.1.6 Show that

(a) cos x = J0(x)+ 2
∑
∞

n=1(−1)n J2n(x),

(b) sin x = 2
∑
∞

n=0(−1)n J2n+1(x).

14.1.7 To help remove the generating function from the realm of magic, show that it can be
derived from the recurrence relation, Eq. (14.7).

Hint. (a) Assume a generating function of the form

g(x, t)=
∞∑

m=−∞

Jm(x)t
m .

(b) Multiply Eq. (14.7) by tn and sum over n.

(c) Rewrite the preceding result as(
t +

1

t

)
g(x, t)=

2t

x

∂g(x, t)

∂t
.

(d) Integrate and adjust the “constant” of integration (a function of x)
so that the coefficient of the zeroth power, t0, is J0(x) as given by
Eq. (14.6).
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14.1.8 Show, by direct differentiation, that

Jν(x)=
∞∑

s=0

(−1)s

s!0(s + ν + 1)

( x

2

)ν+2s

satisfies the two recurrence relations

Jν−1(x)+ Jν+1(x)=
2ν

x
Jν(x),

Jν−1(x)− Jν+1(x)= 2J ′ν(x),

and Bessel’s differential equation

x2 J ′′ν (x)+ x J ′ν(x)+ (x
2
− ν2)Jν(x)= 0.

14.1.9 Prove that

sin x

x
=

π/2∫
0

J0(x cos θ) cos θ dθ,
1− cos x

x
=

π/2∫
0

J1(x cos θ) dθ.

Hint. The definite integral

π/2∫
0

cos2s+1 θ dθ =
2 · 4 · 6 · · · (2s)

1 · 3 · 5 · · · (2s + 1)

may be useful.

14.1.10 Derive

Jn(x)= (−1)n xn
(

1

x

d

dx

)n

J0(x).

Hint. Try mathematical induction (Section 1.4).

14.1.11 Show that between any two consecutive zeros of Jn(x) there is one and only one zero
of Jn+1(x).

Hint. Equations (14.10) and (14.11) may be useful.

14.1.12 An analysis of antenna radiation patterns for a system with a circular aperture involves
the equation

g(u)=

1∫
0

f (r)J0(ur)rdr.

If f (r)= 1− r2, show that

g(u)=
2

u2 J2(u).
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14.1.13 The differential cross section in a nuclear scattering experiment is given by dσ/d�=
| f (θ)|2. An approximate treatment leads to

f (θ)=
−ik

2π

2π∫
0

R∫
0

exp[ikρ sin θ sinϕ]ρ dρ dϕ.

Here θ is an angle through which the scattered particle is scattered. R is the nuclear
radius. Show that

dσ

d�
= (πR2)

1

π

[
J1(k R sin θ)

sin θ

]2

.

14.1.14 A set of functions Cn(x) satisfies the recurrence relations

Cn−1(x)−Cn+1(x)=
2n

x
Cn(x),

Cn−1(x)+Cn+1(x)= 2C ′n(x).

(a) What linear second-order ODE does the Cn(x) satisfy?

(b) By a change of variable transform your ODE into Bessel’s equation. This sug-
gests that Cn(x) may be expressed in terms of Bessel functions of transformed
argument.

14.1.15 (a) Show by direct differentiation and substitution that

Jν(x)=
1

2π i

∫
C

e(x/2)(t−1/t)t−ν−1dt

(this is the Schlaefli integral representation of Jν ), and that the equivalent equation,

Jν(x)=
1

2π i

( x

2

)ν ∫
C

es−x2/4ss−ν−1ds,

both satisfy Bessel’s equation. C is the contour shown in Fig. 14.5. The negative
real axis is the cut line.

Hint. This exercise is aimed at providing details of the discussion that starts at
Eq. (14.38).

(b) Show that the first integral (with n an integer) may be transformed into

Jn(x)=
1

2π

2π∫
0

ei(x sin θ−nθ)dθ =
i−n

2π

2π∫
0

ei(x cos θ+nθ)dθ.

14.1.16 The contour C in Exercise 14.1.15 is deformed to the path −∞ to −1, unit circle e−iπ

to eiπ, and finally −1 to −∞. Show that

Jν(x)=
1

π

π∫
0

cos(νθ − x sin θ)dθ −
sinνπ

π

∞∫
0

e−νθ−x sinh θdθ.

This is Bessel’s integral.
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Hint. The negative values of the variable of integration u must be represented in
a manner consistent with the presence of the branch cut, for example, by writing
u = te±i x.

14.1.17 (a) Show that

Jν(x)=
2

π1/20(ν + 1
2 )

( x

2

)ν π/2∫
0

cos(x sin θ) cos2ν θ dθ,

where ν >− 1
2 .

Hint. Here is a chance to use series expansion and term-by-term integration. The
formulas of Section 13.3 will prove useful.

(b) Transform the integral in part (a) into

Jν(x)=
1

π1/20(ν + 1
2 )

( x

2

)ν π∫
0

cos(x cos θ) sin2ν θ dθ

=
1

π1/20(ν + 1
2 )

( x

2

)ν π∫
0

e±i x cos θ sin2ν θ dθ

=
1

π1/20(ν + 1
2 )

( x

2

)ν 1∫
−1

e±i px (1− p2)ν−1/2 dp.

These are alternate integral representations of Jν(x).

14.1.18 Given that C is the contour in Fig. 14.5,

(a) From

Jν(x)=
1

2π i

( x

2

)ν ∫
C

t−ν−1et−x2/4t dt

derive the recurrence relation

J ′ν(x)=
ν

x
Jν(x)− Jν+1(x).

(b) From

Jν(x)=
1

2π i

∫
C

t−ν−1e(x/2)(t−1/t)dt

derive the recurrence relation

J ′ν(x)=
1

2

[
Jν−1(x)− Jν+1(x)

]
.
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14.1.19 Show that the recurrence relation

J ′n(x)=
1

2

[
Jn−1(x)− Jn+1(x)

]
follows directly from differentiation of

Jn(x)=
1

π

π∫
0

cos(nθ − x sin θ) dθ.

14.1.20 Evaluate
∞∫

0

e−ax J0(bx)dx, a,b> 0.

Actually the results hold for a ≥ 0, −∞< b<∞. This is a Laplace transform of J0.

Hint. Either an integral representation of J0 or a series expansion will be helpful.

14.1.21 Using the symmetries of the trigonometric functions, confirm that for integer n,

1

2π

2π∫
0

cos(x sin θ − nθ)dθ =
1

π

π∫
0

cos(x sin θ − nθ)dθ.

14.1.22 (a) Plot the intensity, 82 of Eq. (14.25), as a function of (sinα/λ) along a diameter
of the circular diffraction pattern. Locate the first two minima.

(b) Estimate the fraction of the total light intensity that falls within the central
maximum.

Hint. [J1(x)]2/x may be written as a derivative and the area integral of the intensity
integrated by inspection.

14.1.23 The fraction of light incident on a circular aperture (normal incidence) that is transmitted
is given by

T = 2

2ka∫
0

J2(x)
dx

x
−

1

2ka

2ka∫
0

J2(x)dx .

Here a is the radius of the aperture and k is the wave number, 2π/λ. Show that

(a) T = 1−
1

ka

∞∑
n=0

J2n+1(2ka), (b) T = 1−
1

2ka

2ka∫
0

J0(x)dx .

14.1.24 The amplitude U (ρ,ϕ, t) of a vibrating circular membrane of radius a satisfies the wave
equation

∇
2U ≡

∂2U

∂ρ2 +
1

ρ

∂U

∂ρ
+

1

ρ2

∂2U

∂ϕ2 =
1

v2

∂2U

∂t2 .

Here v is the phase velocity of the wave, determined by the properties of the membrane.
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(a) Show that a physically relevant solution is

U (ρ,ϕ, t)= Jm(kρ)
(

c1eimϕ
+ c2e−imϕ

)(
b1eiωt

+ b2e−iωt
)
.

(b) From the Dirichlet boundary condition Jm(ka)= 0, find the allowable values of k.

14.1.25 Example 14.1.2 describes the TM modes of electromagnetic cavity oscillation. To
obtain the transverse electric (TE) modes, we set Ez = 0 and work from the z com-
ponent of the magnetic induction B:

∇
2 Bz + α

2 Bz = 0

with boundary conditions

Bz(0)= Bz(l)= 0 and
∂Bz

∂ρ

∣∣∣∣
ρ=a
= 0.

Show that the TE resonant frequencies are given by

ωmnp = c

√
β2

mn

a2 +
p2π2

l2 , p = 1,2,3, . . . ,

and identify the quantities βmn .

14.1.26 A conducting cylinder can accommodate traveling electromagnetic waves; when used
for this purpose it is called a wave guide. The equations describing traveling waves are
the same as those of Example 14.1.2, but there is no boundary condition on Ez at z = 0
or z = h other than that its z dependence be oscillatory. For each TM mode (values
of m and j of Example 14.1.2), there is a minimum frequency that can be transmitted
through a wave guide of radius a. Explain why this is so, and give a formula for the
cutoff frequencies.

14.1.27 Plot the three lowest TM and the three lowest TE angular resonant frequencies, ωmnp ,
as a function of the ratio radius/length (a/ l) for 0≤ a/ l ≤ 1.5.

Hint. Try plotting ω2 (in units of c2/a2) vs. (a/ l)2. Why this choice?

14.1.28 Show that the integral
a∫

0

xm Jn(x)dx, m ≥ n ≥ 0,

(a) is integrable for m + n odd in terms of Bessel functions and powers of x , i.e., is
expressible as linear combinations of a p Jq(a);

(b) may be reduced for m + n even to integrated terms plus
∫ a

0 J0(x)dx .

14.1.29 Show that
α0n∫
0

(
1−

y

α0n

)
J0(y)ydy =

1

α0n

α0n∫
0

J0(y)dy.
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Hereα0n is the nth zero of J0(y). This relation is useful (see Exercise 14.2.9): The expres-
sion on the right is easier and quicker to evaluate, and is much more accurate. Taking
the difference of two terms in the expression on the left leads to a large relative error.

14.2 ORTHOGONALITY

To identify the orthogonality properties of Bessel functions, it is convenient to start by
writing Bessel’s ODE in a form that we can recognize as a Sturm-Liouville eigenvalue
problem, the general properties of which were discussed in detail starting from Eq. (8.15).
If we divide Eq. (14.15) through by ρ2 and rearrange slightly, we have

−

(
d2

dρ2 +
1

ρ

d

dρ
−
ν2

ρ2

)
Zν(kρ)= k2 Zν(kρ), (14.41)

showing that Zν(kρ) is an eigenfunction of the operator

L=−
(

d2

dρ2 +
1

ρ

d

dρ
−
ν2

ρ2

)
(14.42)

with eigenvalue k2. Since we are most often interested in problems whose solutions in
cylindrical coordinates (ρ,ϕ, z) separate into products P(ρ)8(ϕ)Z(z) and which are for
the region within a cylindrical boundary at some ρ = a, we usually have8(ϕ)= eimϕ with
m an integer (thereby causing ν2

→ m2), and find that P(ρ) = Jm(kρ). We choose P to
be a Bessel function of the first kind because ρ = 0 is interior to our region and we want a
solution that is nonsingular there.

From Sturm-Liouville theory, we find that the weight factor needed to make L of
Eq. (14.42) self-adjoint (as an ODE) is w(ρ) = ρ, and the orthogonality integral for the
two eigenfunctions Jν(kρ) and Jν(k′ρ), a case of Eq. (8.20), is (whether or not ν is an
integer)

a
[

k′ Jν(ka)J ′ν(k
′a)− k J ′ν(ka)Jν(k

′a)
]

k2 − k′2
=

a∫
0

ρ Jν(kρ)Jν(k
′ρ)dρ. (14.43)

In writing Eq. (14.43) we have used the fact that the presence of a factor ρ in the boundary
terms causes there to be no contribution from the lower limit ρ = 0.3

Equation (14.43) shows us that the Jν(k) of different k will be orthogonal (with weight
factor ρ) if we can cause the left-hand side of that equation to vanish. We may do so by
choosing k and k′ in such a way that Jν(ka)= Jν(k′a)= 0. In other words, we can require
that k and k′ be such that ka and k′a are zeros of Jν , and our Bessel functions will then
satisfy Dirichlet boundary conditions.

If now we let ανi denote the i th zero of Jν , the above analysis corresponds to the fol-
lowing orthogonality formula for the interval [0,a]:

a∫
0

ρ Jν
(
ανi

ρ

a

)
Jν
(
αν j

ρ

a

)
dρ = 0, i 6= j. (14.44)

3This will be true for all ν ≥−1, as will become more evident when we discuss Bessel functions of the second kind.
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FIGURE 14.6 Bessel functions J1(α1nρ), n = 1,2,3 on range 0≤ ρ ≤ 1.

Note that all members of our orthogonal set of Bessel functions have the same value of
the index ν, differing only in the scale of the argument of Jν . Successive members of the
orthogonal set will have increasing numbers of oscillations in the interval (0,a). Note also
that the weight factor, ρ, is just that which corresponds to unweighted orthogonality over
the region within a circle of radius a. We show in Fig. 14.6 the first three Bessel functions
of order ν = 1 that are orthogonal within the unit circle.

An alternative to the foregoing analysis would be to ensure the vanishing of the bound-
ary term of Eq. (14.43) at ρ = a by choosing values of k corresponding to the Neumann
boundary condition J ′ν(ka) = 0. The functions obtained in this way would also form an
orthogonal set.

Normalization

Our orthogonal sets of Bessel functions are not normalized, and to use them in expansions
we need their normalization integrals. These integrals may be developed by returning to
Eq. (14.43), which is valid for all k and k′, whether or not the boundary terms vanish. We
take the limits of both sides of that equation as k′→ k, evaluating the limit on the left-hand
side using l’Hôpital’s rule, which here corresponds to taking the derivatives of numerator
and denominator with respect to k′:

a∫
0

ρ [Jν(kρ)]
2 dρ = lim

k′→k

a

[
Jν(ka)

d

dk′

(
k′ J ′ν(k

′a)
)
− k J ′ν(ka)

d

dk′

(
Jν(k

′a)
)]

d

dk′
(k2
− k′2)

.
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We now simplify this equation for the case that ka = ανi , so we set Jν(ka)= 0 and reach

a∫
0

ρ
[

Jν
(
ανi

ρ

a

)]2
dρ =

−a2k
[

J ′ν(ka)
] 2

−2k
=

a2

2

[
J ′ν(ανi )

] 2
. (14.45)

Now, because ανi is a zero of Jν , Eq. (14.12) permits us to recognize that J ′ν(ανi ) =

−Jν+1(ανi ). We then obtain from Eq. (14.45) the desired result,

a∫
0

ρ
[

Jν
(
ανi

ρ

a

)]2
dρ =

a2

2

[
Jν+1(ανi )

] 2
. (14.46)

Bessel Series

If we assume that the set of Bessel functions Jν(αν jρ/a) for fixed ν and for j = 1,2,3, . . .
is complete, then any well-behaved but otherwise arbitrary function f (ρ)may be expanded
in a Bessel series

f (ρ)=
∞∑
j=1

cν j Jν
(
αν j

ρ

a

)
, 0≤ ρ ≤ a, ν >−1. (14.47)

The coefficients cν j are determined by the usual rules for orthogonal expansions. With the
aid of Eq. (14.46) we have

cν j =
2

a2[Jν+1(αν j )]2

a∫
0

f (ρ)Jν
(
αν j

ρ

a

)
ρdρ. (14.48)

As pointed out earlier, it is also possible to obtain an orthogonal set of Bessel functions
of given order ν by imposing the Neumann boundary condition J ′ν(kρ) = 0 at ρ = a,
corresponding to k = βν j/a, where βν j is the j th zero of J ′ν . These functions can also be
used for orthogonal expansions. This approach is explored in Exercises 14.2.2 and 14.2.5.

The following example illustrates the usefulness of Bessel series.

Example 14.2.1 ELECTROSTATIC POTENTIAL IN A HOLLOW CYLINDER

We consider a hollow cylinder, which in cylindrical coordinates (ρ,ϕ, z) is bounded by
a curved surface at ρ = a and end caps at z = 0 and z = h. The base (z = 0) and curved
surface are assumed to be grounded, and therefore at potential ψ = 0, while the end cap
at z = h has a known potential distribution V (ρ,ϕ,h). Our problem is to determine the
potential V (ρ,ϕ, z) throughout the interior of the cylinder.

We proceed by finding separated-variable solutions to the Laplace equation in cylindri-
cal coordinates, along the lines discussed in Section 9.4. Our first step is to identify product
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solutions, which, as in Eq. (9.64), must take the form4

ψlm(ρ,ϕ, z)= Plm(ρ)8m(ϕ)Zl(z), (14.49)

with 8m = e±imϕ , and

d2

dz2 Zl(z)= l2 Zl(z), (14.50)

ρ2 d2

dρ2 Plm + ρ
d

dρ
Plm + (l

2ρ2
−m2)Plm = 0. (14.51)

The equation for Plm is Bessel’s ODE, with solutions of relevance here Jm(lρ). To satisfy
the boundary condition at ρ = a we need to choose l = αmj/a, where j can be any positive
integer and αmj is the j th zero of Jm .

The equation for Zl has solutions e±lz ; to satisfy the boundary condition at z = 0 we
need to take the linear combination of these solutions that is equivalent to sinh lz. Combin-
ing these observations, we see that possible solutions to the Laplace equation that satisfy
all the boundary conditions other than that at z = h can be written

ψmj = cmj Jm

(
αmj

ρ

a

)
eimϕ sinh

(
αmj

z

a

)
. (14.52)

Since Laplace’s equation is homogeneous, any linear combination of the ψmj with arbi-
trary values of the cmj will be a solution, and our remaining task is to find the linear
combination of such solutions that satisfies the boundary condition at z = h. Therefore,

V (ρ,ϕ, z)=
∞∑

m=−∞

∞∑
j=1

ψmj , (14.53)

with the boundary condition at z = h expressed as
∞∑

m=−∞

∞∑
j=1

cmj Jm

(
αmj

ρ

a

)
eimϕ sinh

(
αmj

h

a

)
= V (ρ,ϕ,h). (14.54)

Our solution is both a trigonometric series and a Bessel series, each with orthogonality
properties that can be used to determine the coefficients. From Eq. (14.48) and the formula

2π∫
0

e−imϕeim′ϕ
= 2πδmm′ , (14.55)

we find

cmj =

[
πa2 sinh

(
αmj

h

a

)
J 2

m+1(αmj )

]−1

2π∫
0

dϕ

a∫
0

V (ρ,ϕ,h)Jm

(
αmj

ρ

a

)
e−imϕρdρ. (14.56)

4 Note that here Zl is a function of z arising from the separation of variables; the notation is not intended to identify it as a
Bessel function.
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These are definite integrals, that is, numbers. Substituting back into Eq. (14.52), the series
in Eq. (14.53) is specified and the potential V (ρ,ϕ, z) is determined. �

Exercises

14.2.1 Show that

(k2
− k′2)

a∫
0

Jν(kx)Jν(k
′x)xdx = a[k′ Jν(ka)J ′ν(k

′a)− k J ′ν(ka)Jν(k
′a)],

where J ′ν(ka)=
d

d(kx)
Jν(kx) |x=a , and that

a∫
0

[Jν(kx)]2xdx =
a2

2

{
[J ′ν(ka)]2 +

(
1−

ν2

k2a2

)
[Jν(ka)]2

}
, ν >−1.

These two integrals are usually called the first and second Lommel integrals.

14.2.2 (a) If βνm is the mth zero of (d/dρ)Jν(βνmρ/a), show that the Bessel functions are
orthogonal over the interval [0,a] with an orthogonality integral

a∫
0

Jν
(
βνm

ρ

a

)
Jν
(
βνn

ρ

a

)
ρ dρ = 0, m 6= n, ν >−1.

(b) Derive the corresponding normalization integral (m = n).

ANS. (b)
a2

2

(
1−

ν2

β2
νm

)
[Jν(βνm)]

2, ν >−1.

14.2.3 Verify that the orthogonality equation, Eq. (14.44), and the normalization equation,
Eq. (14.46), hold for ν >−1.

Hint. Using power-series expansions, examine the behavior of Eq. (14.43) as ρ→ 0.

14.2.4 From Eq. (11.49), develop a proof that Jν(z), ν > −1 has no complex roots (with a
nonzero imaginary part).

Hint. (a) Use the series form of Jν(z) to exclude pure imaginary roots.

(b) Assume ανm to be complex and take ανn to be α∗νm .

14.2.5 (a) In the series expansion

f (ρ)=
∞∑

m=1

cνm Jν
(
ανm

ρ

a

)
, 0≤ ρ ≤ a, ν >−1,

with Jν(ανm)= 0, show that the coefficients are given by

cνm =
2

a2[Jν+1(ανm)]2

a∫
0

f (ρ)Jν
(
ανm

ρ

a

)
ρ dρ.
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(b) In the series expansion

f (ρ)=
∞∑

m=1

dνm Jν
(
βνm

ρ

a

)
, 0≤ ρ ≤ a, ν >−1,

with (d/dρ)Jν(βνmρ/a) |ρ=a= 0, show that the coefficients are given by

dνm =
2

a2(1− ν2/β2
νm)[Jν(βνm)]2

a∫
0

f (ρ)Jν
(
βνm

ρ

a

)
ρ dρ.

14.2.6 A right circular cylinder has an electrostatic potential of ψ(ρ,ϕ) on both ends. The
potential on the curved cylindrical surface is zero. Find the potential at all interior
points.

Hint. Choose your coordinate system and adjust your z dependence to exploit the
symmetry of your potential.

14.2.7 A function f (x) is expressed as a Bessel series:

f (x)=
∞∑

n=1

an Jm(αmn x),

with αmn the nth root of Jm . Prove the Parseval relation,

1∫
0

[ f (x)]2x dx =
1

2

∞∑
n=1

a2
n[Jm+1(αmn)]

2.

14.2.8 Prove that

∞∑
n=1

(αmn)
−2
=

1

4(m + 1)
.

Hint. Expand xm in a Bessel series and apply the Parseval relation.

14.2.9 A right circular cylinder of length l and radius a has on its end caps a potential

ψ

(
z =±

l

2

)
= 100

(
1−

ρ

a

)
.

The potential on the curved surface (the side) is zero. Using the Bessel series from
Exercise 14.2.6, calculate the electrostatic potential for ρ/a = 0.0(0.2)1.0 and z/ l =
0.0(0.1)0.5. Take a/ l = 0.5.
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Hint. From Exercise 14.1.29 you have

α0n∫
0

(
1−

y

α0n

)
J0(y)ydy.

Show that this equals

1

α0n

α0n∫
0

J0(y)dy.

Numerical evaluation of this latter form rather than the former is both faster and more
accurate.

Note. For ρ/a = 0.0 and z/ l = 0.5 the convergence is slow, 20 terms giving only 98.4
rather than 100.

Check value. For ρ/a = 0.4 and z/ l = 0.3,
ψ = 24.558.

14.3 NEUMANN FUNCTIONS, BESSEL FUNCTIONS OF
THE SECOND KIND

From the theory of ODEs, it is known that Bessel’s equation has two independent solutions.
Indeed, for nonintegral order ν we have already found two solutions and labeled them
Jν(x) and J−ν(x) using the infinite series, Eq. (14.6). The trouble is that when ν is integral,
Eq. (14.5) holds and we have but one independent solution. A second solution may be
developed by the methods of Section 7.6. This yields a perfectly good second solution of
Bessel’s equation. However, that solution is not the standard form, which is called a Bessel
function of the second kind or alternatively, a Neumann function.

Definition and Series Form

The standard definition of the Neumann functions is the following linear combination of
Jν(x) and J−ν(x):

Yν(x)=
cosνπ Jν(x)− J−ν(x)

sinνπ
. (14.57)

For nonintegral ν,Yν(x) clearly satisfies Bessel’s equation, for it is a linear combination
of known solutions, Jν(x) and J−ν(x). The behavior of Yν(x) for small x (and nonintegral
ν) can be determined from the power-series expansion of J−ν , Eq. (14.6); we may write,
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calling upon Eq. (13.23),

Yν(x)=−
1

sinνπ

[
1

0(1− ν)

( x

2

)−ν
− · · ·

]
=−

0(ν)0(1− ν)

π

[
1

0(1− ν)

( x

2

)−ν
− · · ·

]
=−

0(ν)

π

( x

2

)−ν
+ · · · . (14.58)

However, for integral ν, Eq. (14.57) becomes indeterminate; in fact, Yn(x) for integral
n is defined as

Yn(x)= lim
ν→n

Yν(x). (14.59)

To determine that the limit represented by Eq. (14.59) exists and is not identically
zero (so that Yn(x) has a meaningful definition), we apply l’Hôpital’s rule to Eq. (14.57),
obtaining initially

Yn(x)=
1

π

[
d Jν
dν
− (−1)n

d J−ν
dν

]
ν=n

. (14.60)

Inserting the expansions of Jν and J−ν from Eq. (14.6), the differentiations of (x/2)2s±ν

combine to yield (2/π)Jn(x) ln(x/2), while the derivatives of 1/0(s ± n+ 1) yield terms
containing ψ(s ± n + 1)/0(s ± n + 1), where ψ is the digamma function (Section 13.2).
The final result, whose verification is the topic of Exercise 14.3.8, is

Yn(x)=
2

π
Jn(x) ln

( x

2

)
−

1

π

n−1∑
k=0

(n − k − 1)!

k!

( x

2

)2k−n

−
1

π

∞∑
k=0

(−1)k

k!(n + k)!

[
ψ(k + 1)+ψ(n + k + 1)

] ( x

2

)2k+n
, (14.61)

An explicit form for ψ(n) for integer n is given in Eq. (13.40).
Equation (14.61) shows that for n > 0, the most divergent term for small x is in agree-

ment with the result for noninteger n given in Eq. (14.58). We also see that all solutions
for integer n contain a logarithmic term with the regular function Jn multiplying the log-
arithm. In our earlier study of ODEs, we found that a second solution will usually have
a contribution of this type when the indicial equation causes the exponents of the power-
series expansion to be integers. We may also conclude from Eq. (14.61) that Yn is linearly
independent of Jn , confirming that we indeed have a second solution to Bessel’s ODE.

It is of some interest to obtain the expansion of Y0(x) in a more explicit form. Returning
to Eq. (14.61), we note that its first summation is vacant, and we have the relatively simple
expansion

Y0(x)=
2

π
J0(x) ln

( x

2

)
−

2

π

∞∑
k=0

(−1)k

k!k!
[−γ + Hk]

( x

2

)2k

=
2

π
J0(x)

[
γ + ln

( x

2

)]
−

2

π

∞∑
k=1

(−1)k

k!k!
Hk

( x

2

)2k
, (14.62)

where Hk is the harmonic number
∑k

m=1 m−1 and γ is the Euler-Mascheroni constant.
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FIGURE 14.7 Neumann functions Y0(x), Y1(x), and Y2(x).

The Neumann functions Yn(x) are irregular at x = 0, but with increasing x become
oscillatory, as may be seen from the graphs of Y0, Y1, and Y2 in Fig. 14.7. The definition
of Eq. (14.57) was specifically chosen to cause the oscillatory behavior to be at the same
scale as that of Jn and displaced asymptotically in phase by π/2, similarly to the relative
behavior of the sine and cosine. However, unlike the sine and cosine, Jn and Yn only exhibit
exact periodicity in the asymptotic limit. This point is covered in detail in Section 14.6.
Figure 14.8 compares J0(x) and Y0(x) over a large range of x .

Integral Representations

As with all the other Bessel functions, Yν(x) has integral representations. For Y0(x) we
have

Y0(x)=−
2

π

∞∫
0

cos(x cosh t)dt =−
2

π

∞∫
1

cos(xt)

(t2 − 1)1/2
dt, x > 0. (14.63)

See Exercise 14.3.7, which shows that the above integral is a solution to Bessel’s ODE that
is linearly independent of J0(x). Specific identification as Y0 is the topic of Exercise 14.4.8.

Recurrence Relations

Substituting Eq. (14.57) for Yν(x) (nonintegral ν) into the recurrence relations for Jn(x),
Eqs. (14.7) and (14.8), we see immediately that Yν(x) satisfies these same recurrence rela-
tions. This actually constitutes a proof that Yν is a solution to the Bessel ODE. Note that
the converse is not necessarily true. All solutions need not satisfy the same recurrence
relations, as the relations depend on the scales assigned to the solutions of different ν.
An example of this sort of trouble appears in Section 14.5.
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FIGURE 14.8 Oscillatory behavior of J0(x) (solid line) and Y0(x) (dashed line) for
1≤ x ≤ 30.

Wronskian Formulas

An ODE p(x)y′′ + q(x)y′ + r(x)y = 0 in self-adjoint form (so q = p′) was found in
Exercise 7.6.1 to have the following Wronskian formula connecting its solutions u and v:

u(x)v′(x)− u′(x)v(x)=
A

p(x)
. (14.64)

To bring Bessel’s equation to self-adjoint form, we need to write it as xy′′ + y′ +
(x−ν2/x)y = 0, thereby showing that for our present purposes p(x)= x , and we therefore
have for each noninteger ν

Jν J ′−ν − J ′ν J−ν =
Aν
x
. (14.65)

Since Aν is a constant but can be expected to depend on ν, it may be identified for each
ν at any convenient point, such as x = 0. From the power-series expansion, Eq. (14.6),
we obtain the following limiting behaviors for small x :

Jν→
1

0(1+ ν)

( x

2

)ν
, J ′ν→

ν

20(1+ ν)

( x

2

)ν−1
,

(14.66)

J−ν→
1

0(1− ν)

( x

2

)−ν
, J ′−ν→

−ν

20(1− ν)

( x

2

)−ν−1
.

Substitution into Eq. (14.65) yields

Jν(x)J
′
−ν(x)− J ′ν(x)J−ν(x)=

−2ν

x0(1+ ν)0(1− ν)
=−

2 sinνπ

πx
, (14.67)
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using Eq. (13.23). Although Eq. (14.67) was obtained for x → 0, comparison with
Eq. (14.65) shows that it must be true for all x , and that Aν =−(2/π) sinνπ . Note that Aν
vanishes for integral ν, showing that the Wronskian of Jn and J−n vanishes and that these
Bessel functions are linearly dependent.

Using our recurrence relations, we may readily develop a large number of alternate
forms, among which are

Jν J−ν+1 + J−ν Jν−1 =
2 sinνπ

πx
, (14.68)

Jν J−ν−1 + J−ν Jν+1 =−
2 sinνπ

πx
, (14.69)

JνY ′ν − J ′νYν =
2

πx
, (14.70)

JνYν+1 − Jν+1Yν =−
2

πx
. (14.71)

Many more will be found in the Additional Readings.
You will recall that in Chapter 7, Wronskians were of great value in two respects: (1)

in establishing the linear independence or linear dependence of solutions of differential
equations, and (2) in developing an integral form of a second solution. Here the specific
forms of the Wronskians and Wronskian-derived combinations of Bessel functions are
useful primarily in development of the general behavior of the various Bessel functions.
Wronskians are also of great use in checking tables of Bessel functions.

Uses of Neumann Functions

The Neumann functions Yν(x) are of importance for a number of reasons:

1. They are second, independent solutions of Bessel’s equation, thereby completing the
general solution.

2. They are needed for physical problems in which they are not excluded by a require-
ment of regularity at x = 0. Specific examples include electromagnetic waves in coax-
ial cables and quantum mechanical scattering theory.

3. They lead directly to the two Hankel functions, whose definition and use, particularly
in studies of wave propagation, are discussed in Section 14.4.

We close with one example in which Neumann functions play a vital role.

Example 14.3.1 COAXIAL WAVE GUIDES

We are interested in an electromagnetic wave confined between the concentric, conducting
cylindrical surfaces ρ = a and ρ = b. The equations governing the wave propagation are
the same as those discussed in Example 14.1.2, but the boundary conditions are now dif-
ferent, and our interest is in solutions that are traveling waves (compare Exercise 14.1.26).
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For wave propagation problems, it is convenient to write the solution in terms of com-
plex exponentials, with the actual physical quantities involved ultimately identified as their
real (or imaginary) parts. Thus, in place of Eq. (14.31) (the solution for standing waves in a
cylindrical cavity), we now have for Ez solutions in which the ρ dependence must involve
both Jm and Ym (as the latter is not ruled out by a requirement for regularity at ρ = 0).
Including the time dependence, we have for the TM (transverse magnetic) solutions the
separated-variable forms

Ez =
[

cmn Jm(γmnρ)+ dmnYm(γmnρ)
]

e±imϕei(lz−ωt), (14.72)

with l now permitted to have any real value (there is no boundary condition on z). The
index n identifies different possible values of γmn . As in Eq. (14.30), the relation between
γmn , l , and ω is

ω2

c2 = γ
2
mn + l2. (14.73)

The most general TM traveling-wave solution will be an arbitrary linear combination
of all functions of the form given by Eq. (14.72) with γmn , cmn , and dmn chosen so that
Ez will vanish at ρ = a and ρ = b. A main difference between this problem and that of
Example 14.1.2 is that the condition on Ez is not given by the zeros of the Bessel functions
Jm , but by zeros of linear combinations of Jm and Ym . Specifically, we require that

cmn Jm(γmna)+ dmnYm(γmna)= 0, (14.74)

cmn Jm(γmnb)+ dmnYm(γmnb)= 0. (14.75)

These transcendental equations may be solved, for each relevant m, to yield an infinite set
of solutions (indexed by n) for γmn and the ratio dmn/cmn . An example of this process is
in Exercise 14.3.10.

Returning now to the equation for ω, we observe that the smallest value it can attain for
the solution indexed by m and n is cγmn , showing that TM waves can only propagate if the
angular frequency ω of the electromagnetic radiation is equal to or larger than this cutoff.
In general, larger values of γmn correspond to higher degrees of transverse oscillation, and
modes with greater transverse oscillation will therefore have higher cutoff frequencies.

As for the circular wave guide (the subject of Exercise 14.1.26, there will also be TE
modes of propagation, also with mode-dependent cutoffs. However, the coaxial guide can
also support traveling waves in TEM (transverse electric and magnetic) modes. These
modes, not possible for a circular waveguide, do not exhibit a cutoff, are the confined
equivalent of plane waves, and correspond to the flow of current (in opposite directions)
on the coaxial conductors. �

Exercises

14.3.1 Prove that the Neumann functions Yn (with n an integer) satisfy the recurrence relations

Yn−1(x)+ Yn+1(x)=
2n

x
Yn(x),

Yn−1(x)− Yn+1(x)= 2Y ′n(x).
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Hint. These relations may be proved by differentiating the recurrence relations for Jν
or by using the limit form of Yν but not dividing everything by zero.

14.3.2 Show that for integer n

Y−n(x)= (−1)nYn(x).

14.3.3 Show that

Y ′0(x)=−Y1(x).

14.3.4 If X and Z are any two solutions of Bessel’s equation, show that

Xν(x)Z
′
ν(x)− X ′ν(x)Zν(x)=

Aν
x
,

in which Aν may depend on ν but is independent of x . This is a special case of Exer-
cise 7.6.11.

14.3.5 Verify the Wronskian formulas

Jν(x)J−ν+1(x)+ J−ν(x)Jν−1(x)=
2 sinνπ

πx
,

Jν(x)Y
′
ν(x)− J ′ν(x)Yν(x)=

2

πx
.

14.3.6 As an alternative to letting x approach zero in the evaluation of the Wronskian constant,
we may invoke the uniqueness of power-series expansions. The coefficient of x−1 in
the series expansion of uν(x)v′ν(x)− u′ν(x)vν(x) is then Aν . Show by series expansion
that the coefficients of x0 and x1 of Jν(x)J ′−ν(x)− J ′ν(x)J−ν(x) are each zero.

14.3.7 (a) By differentiating and substituting into Bessel’s ODE for ν = 0, show that∫
∞

0 cos(x cosh t)dt is a solution.
Hint. Rearrange the final integral to

∫
∞

0
d
dt

[
x sin(x cosh t) sinh t

]
dt.

(b) Show that Y0(x)=−
2
π

∫
∞

0 cos(x cosh t)dt is linearly independent of J0(x).

14.3.8 Verify the expansion formula for Yn(x) given in Eq. (14.61).

Hint. Start from Eq. (14.60) and perform the indicated differentiations on the power-
series expansions of Jν and J−ν . The digamma functions ψ arise from the differen-
tiation of the gamma function. You will need the identity (not derived in this book)
lim

z→−n
ψ(z)/0(z)= (−1)n−1n!, where n is a positive integer.

14.3.9 If Bessel’s ODE (with solution Jν ) is differentiated with respect to ν, one obtains

x2 d2

dx2

(
∂ Jν
∂ν

)
+ x

d

dx

(
∂ Jν
∂ν

)
+ (x2

− ν2)
∂ Jν
∂ν
= 2ν Jν .

Use the above equation to show that Yn(x) is a solution to Bessel’s ODE.

Hint. Equation (14.60) will be useful.

14.3.10 For the case m=0, a=1, and b=2, the coaxial wave-guide TM boundary conditions
become f (λ)= 0, with

f (x)=
J0(2x)

Y0(2x)
−

J0(x)

Y0(x)
.
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FIGURE 14.9 The function f (x) of Exercise 14.3.10.

This function is plotted in Fig. 14.9.

(a) Calculate f (x) for x = 0.0(0.1)10.0 and plot f (x) vs. x to find the approximate
location of the roots.

(b) Call a root-finding program to determine the first three roots to higher precision.

ANS. (b) 3.1230, 6.2734, 9.4182.

Note. The higher roots can be expected to appear at intervals whose length approaches π .
Why? AMS-55 (see Additional Readings) gives an approximate formula for the roots.
The function g(x)= J0(x)Y0(2x)− J0(2x)Y0(x) is much better behaved than the f (x)
previously discussed.

14.4 HANKEL FUNCTIONS

Hankel functions are solutions of Bessel’s ODE with asymptotic properties that make
them particularly useful in problems involving the propagation of spherical or cylindrical
waves. Since the functions Jν and Yν form the complete solution of this ODE, the Hankel
functions cannot be anything completely new; they must be linear combinations of the
solutions we have already found. We introduce them here via straightforward algebraic
definitions; later in this section we identify integral representations that some authors have
used as a starting point.
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Definitions

Starting from the Bessel functions of the first and second kinds, namely Jν(x) and Yν(x),
we define the two Hankel functions H (1)

ν (x) and H (2)
ν (x) (sometimes, but nowadays

infrequently referred to as Bessel functions of the third kind) as follows:

H (1)
ν (x)= Jν(x)+ iYν(x), (14.76)

H (2)
ν (x)= Jν(x)− iYν(x). (14.77)

This is exactly analogous to taking

e±iθ
= cos θ ± i sin θ. (14.78)

For real arguments, H (1)
ν and H (2)

ν are complex conjugates. The extent of the analogy
will be seen even better when their asymptotic forms are considered. Indeed, it is their
asymptotic behavior that makes the Hankel functions useful. This behavior is discussed in
Section 14.6, and in that section we provide an illustrative example in which the asymptotic
properties play a key role.

Series expansion of H (1)
ν (x) and H (2)

ν (x)may be obtained by combining Eqs. (14.6) and
(14.62). Often only the first term is of interest; it is given by

H (1)
0 (x)≈ i

2

π
ln x + 1+ i

2

π
(γ − ln 2)+ · · ·, (14.79)

H (1)
ν (x)≈−i

0(ν)

π

(
2

x

)ν
+ · · ·, ν > 0, (14.80)

H (2)
0 (x)≈−i

2

π
ln x + 1− i

2

π
(γ − ln 2)+ · · ·, (14.81)

H (2)
ν (x)≈ i

0(ν)

π

(
2

x

)ν
+ · · ·, ν > 0. (14.82)

In these equations γ is the Euler-Mascheroni constant, defined in Eq. (1.13).
Since the Hankel functions are linear combinations (with constant coefficients) of Jν

and Yν , they satisfy the same recurrence relations, Eqs. (14.7) and (14.8). For both H (1)
ν (x)

and H (2)
ν (x),

Hν−1(x)+ Hν+1(x)=
2ν

x
Hν(x), (14.83)

Hν−1(x)− Hν+1(x)= 2H ′ν(x). (14.84)

A variety of Wronskian formulas can be developed, including:

H (2)
ν H (1)

ν+1 − H (1)
ν H (2)

ν+1 =
4

iπx
, (14.85)

Jν−1 H (1)
ν − JνH (1)

ν−1 =
2

iπx
, (14.86)

Jν−1 H (2)
ν − JνH (2)

ν−1 =−
2

iπx
. (14.87)
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Contour Integral Representation of
the Hankel Functions

The integral representation (Schlaefli integral) for Jν(x) was introduced in Section 14.1,
where we established that

Jν(x)=
1

2π i

∫
C

e(x/2)(t−1/t) dt

tν+1 , (14.88)

with C the contour shown in Fig. 14.5. Recall that when ν is nonintegral, the integrand has
a branch point at t = 0 and the contour had to avoid a cut line that was drawn along the
negative real axis. In developing the Schlaefli integral for general ν, we began by showing
that Bessel’s ODE was satisfied for any open contour for which an expression of the form

e(x/2)(t−1/t)

tν

[
ν +

x

2

(
t +

1

t

)]
(14.89)

vanished at both endpoints of the contour.
We now make further use of those observations by noting that the expression in

Eq. (14.89) not only vanishes at t = −∞ on the real axis both below and above the cut,
but that it also vanishes at t = 0 when that point is approached from positive t .

We therefore consider the contour shown in Fig. 14.10, calling attention to the fact that
the upper half of the contour (from t = 0+ to t =∞eπ i ), labeled C1, meets the conditions
necessary to yield a solution to Bessel’s ODE, and that the remaining (lower) half of the
contour, labeled C2, also yields a solution. What remains to be determined is the identi-
fication of these solutions: We will show that they are the Hankel functions. For x > 0,
we assert that

H (1)
ν (x)=

1

π i

∫
C1

e(x/2)(t−1/t) dt

tν+1 , (14.90)

H (2)
ν (x)=

1

π i

∫
C2

e(x/2)(t−1/t) dt

tν+1 . (14.91)

C1
C1

C2

C2

∞eiπ

∞e −iπ

t = i

t = − i 

(t)

(t)

FIGURE 14.10 Hankel function contours.
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These expressions are particularly convenient because they may be handled by the method
of steepest descents (Section 12.7). H (1)

ν (x) has a saddle point at t =+i , whereas H (2)
ν (x)

has a saddle point at t =−i .
There remains the problem of relating Eqs. (14.90) and (14.91) to our earlier definition

of the Hankel functions, Eqs. (14.76) and (14.77). Since the contours of Eqs. (14.90) and
(14.91) combine to produce a contour yielding Jν , Eq. (14.88), we have, from the integral
representations,

Jν(x)=
1

2

[
H (1)
ν (x)+ H (2)

ν (x)
]
. (14.92)

If we can show (also from the integral representations) that

Yν(x)=
1

2i

[
H (1)
ν (x)− H (2)

ν (x)
]
, (14.93)

we will be able to recover the original definitions of the H (i)
ν .

We therefore rewrite Eq. (14.90) by replacing the integration variable t by eiπ/s, so
the integrand of that equation becomes −e(x/2)(s−1/s)e−iνπ sν−1. After the substitution the
contour (in s) is found to be the same as C1, but traversed in the opposite direction (thereby
compensating the initial minus sign in the transformed integrand). The result, with details
left as Exercise 14.4.3, is that the contour integral representation of H (1) is consistent with
the identification

H (1)
ν (x)= e−iνπ H (1)

−ν (x). (14.94)

Similar processing of Eq. (14.91), with t = e−iπ/s, leads to

H (2)
ν (x)= eiνπ H (2)

−ν (x). (14.95)

We now combine Eqs. (14.94) and (14.95) to reach

J−ν(x)=
1

2

[
eiνπ H (1)

ν (x)+ e−iνπ H (2)
ν (x)

]
, (14.96)

where again the H (i)
ν refer to the contour integral representations. Substituting Eqs. (14.92)

and (14.96) into the defining equation for Yν , Eq. (14.57), we confirm that Yν is described
properly when the H (i)

ν stand for their contour integral representations. This completes
the proof that Eqs. (14.90) and (14.91) are consistent with the original definitions of the
Hankel functions.

The reader may wonder why so much stress is placed on the development of integral
representations. There are several reasons. The first is simply aesthetic appeal. Second,
the integral representations facilitate manipulations, analysis, and the development of rela-
tions among the various special functions. We have already seen an example of this in the
development of Eqs. (14.94) to (14.96). And, probably most important of all, integral rep-
resentations are extremely useful in developing asymptotic expansions. Such expansions
can often be obtained using the method of steepest descents (Section 12.7), or by methods
involving expansion in negative powers of the expansion variable, as in Section 12.6.
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In conclusion, the Hankel functions are introduced here for the following reasons:

• As analogs of e±i x they are useful for describing traveling waves. These applications
are best studied when the asymptotic properties of the functions are in hand, and there-
fore are postponed to Section 14.6.

• They offer an alternate (contour integral) and rather elegant definition of Bessel
functions.

• We will see in Section 14.5 that they offer a route to the definition of the quantities
known as modified Bessel functions, and that in Section 14.6 they are useful for the
development of the asymptotic properties of Bessel functions.

Exercises

14.4.1 Verify the Wronskian formulas

(a) Jν(x)H
(1)′
ν (x)− J ′ν(x)H

(1)
ν (x)= 2i

πx ,

(b) Jν(x)H
(2)′
ν (x)− J ′ν(x)H

(2)
ν (x)=− 2i

πx ,

(c) Yν(x)H
(1)′
ν (x)− Y ′ν(x)H

(1)
ν (x)=− 2

πx ,

(d) Yν(x)H
(2)′
ν (x)− Y ′ν(x)H

(2)
ν (x)=− 2

πx ,

(e) H (1)
ν (x)H (2)′

ν (x)− H (1)′
ν (x)H (2)

ν (x)=− 4i
πx ,

(f) H (2)
ν (x)H (1)

ν+1(x)− H (1)
ν (x)H (2)

ν+1(x)=
4

iπx ,

(g) Jν−1(x)H
(1)
ν (x)− Jν(x)H

(1)
ν−1(x)=

2
iπx .

14.4.2 Show that the integral forms

(a)
1

iπ

∞eiπ∫
0C1

e(x/2)(t−1/t) dt

tν+1 = H (1)
ν (x),

(b)
1

iπ

0∫
∞e−iπC2

e(x/2)(t−1/t) dt

tν+1 = H (2)
ν (x)

satisfy Bessel’s ODE. The contours C1 and C2 are shown in Fig. 14.10.

14.4.3 Show that the substitution t = eiπ/s into Eq. (14.90) for H (1)
ν (x) not only produces the

integrand for the similar integral representation of H (1)
−ν (x) but that the contour in s is

identical to the original contour in t .

14.4.4 Using the integrals and contours given in Exercise 14.4.2, show that

1

2i
[H (1)

ν (x)− H (2)
ν (x)] = Yν(x).
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iπ
C3

C4
∞ − iπ

∞ + iπ 

−iπ

(γ )

(γ )

FIGURE 14.11 Hankel function contours for Exercise 14.4.5.

14.4.5 Show that the integrals in Exercise 14.4.2 may be transformed to yield

(a) H (1)
ν (x)= 1

π i

∫
C3

ex sinhγ−νγ dγ,

(b) H (2)
ν (x)= 1

π i

∫
C4

ex sinhγ−νγ dγ,

where C3 and C4 are the contours in Fig. 14.11.

14.4.6 (a) Transform H (1)
0 (x), Eq. (14.90), into

H (1)
0 (x)=

1

iπ

∫
C

ei x cosh sds,

where the contour C runs from −∞− iπ/2 through the origin of the s-plane to
∞+ iπ/2.

(b) Justify rewriting H (1)
0 (x) as

H (1)
0 (x)=

2

iπ

∞+iπ/2∫
0

ei x cosh sds.

(c) Verify that this integral representation actually satisfies Bessel’s differential equa-
tion. (The iπ/2 in the upper limit is not essential. It serves as a convergence factor.
We can replace it by iaπ/2 and take the limit a→ 0.)

14.4.7 From

H (1)
0 (x)=

2

iπ

∞∫
0

ei x cosh sds

show that

(a) J0(x)=
2
π

∫
∞

0 sin(x cosh s)ds, (b) J0(x)=
2
π

∫
∞

1
sin(xt)
√

t2−1
dt.

This last result is a Fourier sine transform.
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14.4.8 From H (1)
0 (x)=

2

iπ

∞∫
0

ei x cosh sds (see Exercises 14.4.5 and 14.4.6), show that

(a) Y0(x)=−
2

π

∞∫
0

cos(x cosh s)ds,

(b) Y0(x)=−
2

π

∞∫
1

cos(xt)√
t2 − 1)

dt.

These are the integral representations in Eq. (14.63). This last result is a Fourier cosine
transform.

14.5 MODIFIED BESSEL FUNCTIONS, Iν(x) AND Kν(x)

The Laplace and Helmholtz equations, when separated in circular cylindrical coordinates,
may lead to Bessel’s ODE in the coordinate ρ that describes distance from the cylindrical
axis. When that is the case, the behavior of the solutions as a function of ρ is inherently
oscillatory; as we have already seen, the Bessel functions Jν(kρ), and also Yν(kρ), have
for any value of ν an infinite number of zeros, and this property may be useful in causing
satisfaction of boundary conditions. However, as already shown in Section 9.4, the con-
nection constants arising when the variables are separated may have a sign opposite to that
required to yield Bessel’s ODE, and the equation in the ρ coordinate then assumes the
form

ρ2 d2

dρ2 Pν(kρ)+ ρ
d

dρ
Pν(kρ)− (k

2ρ2
+ ν2)Pν(kρ)= 0. (14.97)

Equation (14.97), known as the modified Bessel equation, differs from the Bessel ODE
only in the sign of the quantity k2ρ2, but this small change is sufficient to alter the nature
of the solutions. As we shall shortly discuss in more detail, the solutions to Eq. (14.97),
called modified Bessel functions, are not oscillatory and have behavior that is exponential
(rather than trigonometric) in character.

Fortunately, the knowledge we have developed regarding the Bessel ODE can be put
to good use for the modified Bessel equation, since the substitution k→ ik converts the
conventional Bessel ODE to its modified form, and shows that if Pν(kρ) is a solution to
the Bessel ODE, then Pν(ikρ) must be a solution to the modified Bessel equation. One
way of stating this fact is to note that the solutions of Eq. (14.97) are Bessel functions of
imaginary argument.
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Series Solution

Since any solution of Bessel’s ODE can be converted into a solution of the modified ODE
by insertion of i into its argument, let’s start by looking at the series expansion

Jν(i x)=
∞∑

s=0

(−1)s

s!0(s + ν + 1)

(
i x

2

)ν+2s

= iν
∞∑

s=0

1

s!0(s + ν + 1)

( x

2

)ν+2s
. (14.98)

Since all the terms of the summation have the same sign, it is evident that Jν(i x) cannot
exhibit oscillatory behavior. It is convenient to choose the solutions of the modified Bessel
equation in a way that causes them to be real, and we accordingly defined the modified
Bessel functions of the first kind, denoted Iν(x), as

Iν(x)= i−ν Jν(i x)= e−iνπ/2 Jν(xeiπ/2)=

∞∑
s=0

1

s!0(s + ν + 1)

( x

2

)ν+2s
. (14.99)

Like Jν for ν ≥ 0, Iν is finite at the origin, with a power-series expansion that is convergent
for all x . At small x , its limiting behavior will be of the form

Iν(x)=
xν

2ν0(ν + 1)
+ · · · . (14.100)

From the relation between Jν and J−ν , we may also conclude that Iν and I−ν are linearly
independent unless ν is an integer n; taking cognizance of the factor i−n in the definition
of In , the linear dependence takes the form

In(x)= I−n(x). (14.101)

Graphs of I0 and I1 are shown in Fig. 14.12.

Recurrence Relations for Iν

The recurrence relations satisfied by Iν(x) may be developed from the series expansions,
but it is perhaps easier to work from the existing recurrence relations for Jν(x). Our starting
point is Eq. (14.7), written for i x :

Jν−1(i x)+ Jν+1(i x)=
2n

ix
Jn(i x). (14.102)

We change J to I , related according to Eq. (14.99) by

Jν(i x)= iν Iν(x), (14.103)

thereby obtaining

iν−1 Iν−1(x)+ iν+1 Iν+1(x)=
2ν

i x
iν Iν(x),

which simplifies to

Iν−1(x)− Iν+1(x)=
2ν

x
Iν(x). (14.104)
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FIGURE 14.12 Modified Bessel functions.

In a similar fashion, Eq. (14.8) transforms into

Iν−1(x)+ Iν+1(x)= 2I ′ν(x). (14.105)

The above analysis is also the topic of Exercise 14.1.14.

Second Solution Kν

As already pointed out we have but one independent solution when ν is an integer, exactly
as for the Bessel functions Jν . The choice of a second, independent solution of Eq. (14.97)
is essentially a matter of convenience. The second solution given here is selected on the
basis of its asymptotic behavior, which we examine in the next section. The confusion of
choice and notation for this solution is perhaps greater than anywhere else in this field.5

There is also no universal nomenclature; the Kν are sometimes referred to as Whittaker
functions. Following AMS-55 (see Additional Readings for reference), we here define a
second solution in terms of the Hankel function H (1)

ν (x) as

Kν(x)≡
π

2
iν+1 H (1)

ν (i x)=
π

2
iν+1[ Jν(i x)+ iYν(i x)

]
. (14.106)

5Discussion and comparison of notations will be found in Math. Tables Aids Comput. 1: 207–308 (1944) and in AMS-55
(see Additional Readings).
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The factor iν+1 makes Kν(x) real when x is real.6 Using Eqs. (14.57) and (14.99), we may
transform Eq. (14.106) to7

Kν(x)=
π

2

I−ν(x)− Iν(x)

sinνπ
, (14.107)

somewhat analogous to Eq. (14.57) for Yν(x). The choice of Eq. (14.106) as a definition
is somewhat unfortunate in that the function Kν(x) does not satisfy the same recurrence
relations as Iν(x). The recurrence formulas for the Kν are

Kν−1(x)− Kν+1(x)=−
2ν

x
Kν(x), (14.108)

Kν−1(x)+ Kν+1(x)=−2K ′ν(x). (14.109)

To avoid this discrepancy in the recurrence relations, some authors8 have included an
additional factor of cosνπ in the definition of Kν . This would permit Kν to satisfy the
same recurrence relations as Iν (see Exercise 14.5.8), but it has the disadvantage of making
Kν = 0 for ν = 1

2 ,
3
2 ,

5
2 , . . . .

The series expansion of Kν(x) follows directly from the series form of H (1)
ν (i x), pro-

viding that we choose the branch of ln i x appropriately (see Exercise 14.5.9). Using
Eqs. (14.79) and (14.80), the lowest-order terms are then found to be

K0(x)=− ln x − γ + ln 2+ · · · , (14.110)

Kν(x)= 2ν−10(ν)x−ν + · · · . (14.111)

Because the modified Bessel function Iν is related to the Bessel function Jν , much as sinh
is related to sine, the modified Bessel functions Iν and Kν are sometimes referred to as
hyperbolic Bessel functions. K0 and K1 are shown in Fig. 14.12.

Integral Representations

I0(x) and K0(x) have the integral representations

I0(x)=
1

π

π∫
0

cosh(x cos θ)dθ, (14.112)

K0(x)=

∞∫
0

cos(x sinh t)dt =

∞∫
0

cos(xt)dt

(t2 + 1)1/2
, x > 0. (14.113)

Equation (14.112) may be derived from Eq. (14.20) for J0(x) or may be taken as a special
case of Exercise 14.5.14. The integral representation of K0, Eq. (14.113), is derived in
Section 14.6. A variety of other forms of integral representations (including ν 6= 0) appear

6If ν is not an integer, Kν (z) has a branch point at z = 0 due to the presence of a fractional power; if ν = n, an integer, Kn(z)
has a branch point at z = 0 due to the term ln z. We normally identify Kn(z) as the branch that is real for real z.
7For integral index n we take the limit as ν→ n.
8For example, Whittaker and Watson (see Additional Readings).
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in the exercises. These integral representations are useful in developing asymptotic forms
(Section 14.6) and in connection with Fourier transforms (Chapter 19).

Example 14.5.1 A GREEN’S FUNCTION

We wish to develop an expansion for the fundamental Green’s function for the Laplace
equation in cylindrical coordinates (ρ,ϕ, z). The defining equation is[

∂2

∂ρ2
1

+
1

ρ1

∂

∂ρ1
+

1

ρ2
1

∂2

∂ϕ2
1

+
∂2

∂z2
1

]
G(r1, r2)= δ(ρ1 − ρ2)

1

ρ2
1

δ(ϕ1 − ϕ2)δ(z1 − z2).

(14.114)
We now write the Dirac delta function for the ϕ coordinate in the form corresponding to
Eq. (5.27):

δ(ϕ1 − ϕ2)=
1

2π

∞∑
m=−∞

eim(ϕ1−ϕ2).

For the z coordinate, we use the continuum limit of the above formula, or, equivalently,
the large-n limit of Eq. (1.155),

δ(z1 − z2)=
1

2π

∞∫
−∞

eik(z1−z2)dk =
1

π

∞∫
0

cos k(z1 − z2)dk.

We use the last form of the above equation so that k will never be negative.
We now expand G(r1, r2) as

G(r1, r2)=
1

2π2

∑
m

∞∫
0

dkgm(k, ρ1, ρ2)e
im(ϕ1−ϕ2) cos k(z1 − z2). (14.115)

For ϕ1 and ϕ2, this is simply an expansion in orthogonal functions; the dependence on
z1, z2, and k is actually an integral transform that will be more completely justified in
Chapter 20. For our present purposes, what is significant is that we can apply the orthog-
onality properties of the expansion to find that Eq. (14.114) will be satisfied if (for all
relevant values of k and m)[

∂2

∂ρ2
1

+
1

ρ1

∂

∂ρ1
−

m2

ρ2
1

− k2

]
gm(k, ρ1, ρ2)= δ(ρ1 − ρ2). (14.116)

We now have a one-dimensional (1-D) Green’s function problem for which the homoge-
neous equation can be identified as the modified Bessel equation, with solutions Im(kρ)
and Km(kρ). Keeping in mind that Im is regular at the origin, that Km is regular at infinity,
and that the Green’s function we seek must be regular at both these limits, we write our
1-D axial Green’s function in the more explicit form

gm(kρ1, kρ2)=−Im(kρ<)Km(kρ>), (14.117)



ArfKen_17-ch14-0643-0714-
9780123846549.tex

14.5 Modi�ed Bessel Functions, Iν(x) and Kν(x) 685

where ρ< and ρ> are, respectively, the smaller and larger of ρ1 and ρ2. The coefficient in
the above equation, −1, is evaluated according to Eq. (10.19), from(

p(kρ)
[

K ′m(kρ)Im(kρ)− I ′m(kρ)Km(kρ)
])−1

.

The coefficient p is from the differential equation, and has here the value kρ; the form
involving modified Bessel functions is their Wronskian, and has the value −1/kρ; that is
the topic of Exercise 14.5.11.

Given our explicit formula for gm , Eq. (14.115) assumes the final form

G(r1, r2)=
1

2π2

∑
m

∞∫
0

dkgm(kρ1, kρ2)e
im(ϕ1−ϕ2) cos k(z1 − z2). (14.118)

This is the form quoted in Section 10.2. �

Summary

To put the modified Bessel functions Iν(x) and Kν(x) in proper perspective, note that we
have introduced them here because:

• These functions are solutions of the frequently encountered modified Bessel equation,
which arises in a variety of physically important problems,

• Kν(x) will be found useful in determining the asymptotic behavior of all the Bessel
and modified Bessel functions (Section 14.6), and

• Iν(x) and Kν(x) arise in our discussion of Green’s functions (Example 14.5.1).

Exercises

14.5.1 Show that e(x/2)(t+1/t)
=

∞∑
n=−∞

In(x)t
n, thus generating modified Bessel functions, In(x).

14.5.2 Verify the following identities

(a) 1= I0(x)+ 2
∑
∞

n=1(−1)n I2n(x),

(b) ex
= I0(x)+ 2

∑
∞

n=1 In(x),

(c) e−x
= I0(x)+ 2

∑
∞

n=1(−1)n In(x),

(d) cosh x = I0(x)+ 2
∑
∞

n=1 I2n(x),

(e) sinh x = 2
∑
∞

n=1 I2n−1(x).

14.5.3 (a) From the generating function of Exercise 14.5.1 show that

In(x)=
1

2π i

∮
e(x/2)(t+1/t) dt

tn+1 .
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(b) For n = ν, not an integer, show that the preceding integral representation may be
generalized to

Iν(x)=
1

2π i

∫
C

e(x/2)(t+1/t) dt

tν+1 .

The contour C is the same as that for Jν(x) (Fig. 14.5).

14.5.4 For ν >− 1
2 show that Iν(z) may be represented by

Iν(z)=
1

π1/20(ν + 1
2 )

( z

2

)ν π∫
0

e±z cos θ sin2ν θ dθ

=
1

π1/20(ν + 1
2 )

( z

2

)ν 1∫
−1

e±zp(1− p2)ν−1/2 dp

=
2

π1/20(ν + 1
2 )

( z

2

)ν π/2∫
0

cosh(z cos θ) sin2ν θ dθ.

14.5.5 The cylindrical cavity depicted in Fig. 14.4 has radius a and height h. For this exercise,
the end caps z = 0 and h are at zero potential, while the cylindrical wall ρ = a has a
potential of functional form V = V (ϕ, z).

(a) Show that the electrostatic potential 8(ρ,ϕ, z) has the functional form

8(ρ,ϕ, z)=
∞∑

m=0

∞∑
n=1

Im(knρ) (amn sin mϕ + bmn cos mϕ) sin knz,

where kn = nπ/h.

(b) Show that the coefficients amn and bmn are given by

amn

bmn

}
=

2− δm0

πl Im(kna)

2π∫
0

l∫
0

V (ϕ, z)

{
sin mϕ
cos mϕ

}
sin knzdzdϕ.

Hint. Expand V (ϕ, z) as a double series and use the orthogonality of the trigonometric
functions.

14.5.6 Verify that Kν(x) as defined in Eq. (14.106) is equivalent to

Kν(x)=
π

2

I−ν(x)− Iν(x)

sinνπ

and from this show that

Kν(x)= K−ν(x).
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14.5.7 Show that Kν(x) satisfies the following recurrence relations:

Kν−1(x)− Kν+1(x)=−
2ν

x
Kν(x),

Kν−1(x)+ Kν+1(x)=−2K ′ν(x).

Note. These differ from the recurrence relations for Iν .

14.5.8 If Kν = eνπ i Kν , show that Kν satisfies the same recurrence relations as Iν .

14.5.9 Show that when K0 is evaluated from its series expansion about x = 0, the formula
given as Eq. (14.110) only follows if a specific branch of its logarithmic term is chosen.

14.5.10 For ν >− 1
2 show that Kν(z) may be represented by

Kν(z)=
π1/2

0(ν + 1
2 )

( z

2

)ν ∞∫
0

e−z cosh t sinh2ν t dt, −
π

2
< arg z <

π

2

=
π1/2

0(ν + 1
2 )

( z

2

)ν ∞∫
1

e−zp(p2
− 1)ν−1/2dp.

14.5.11 Show that Iν(x) and Kν(x) satisfy the Wronskian relation

Iν(x)K
′
ν(x)− I ′ν(x)Kν(x)=−

1

x
.

14.5.12 Verify that the coefficient in the axial Green’s function of Eq. (14.117) is −1.

14.5.13 If r = (x2
+ y2)1/2, prove that

1

r
=

2

π

∞∫
0

cos(xt)K0(yt)dt.

This is a Fourier cosine transform of K0.

14.5.14 Derive the integral representation

In(x)=
1

π

π∫
0

ex cos θ cos(nθ)dθ.

Hint. Start with the corresponding integral representation of Jn(x). Equation (14.112)
is a special case of this representation.

14.5.15 Show that

K0(z)=

∞∫
0

e−z cosh t dt

satisfies the modified Bessel equation. How can you establish that this form is linearly
independent of I0(z)?
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14.5.16 The cylindrical cavity of Exercise 14.5.5 has along the cylinder walls the potential walls:

V (z)=


100

z

h
,

100
(

1−
z

h

)
,

0≤
z

h
≤ 1/2,

1/2≤
z

h
≤ 1.

With the radius-height ratio a/h = 0.5, calculate the potential for z/h = 0.1(0.1)0.5
and ρ/a = 0.0(0.2)1.0.

Check value. For z/h = 0.3 and ρ/a = 0.8, V = 26.396.

14.6 ASYMPTOTIC EXPANSIONS

Frequently in physical problems there is a need to know how a given Bessel or modified
Bessel function behaves for large values of the argument, that is, its asymptotic behavior.
This is one occasion when computers are not very helpful. One possible approach is to
develop a power-series solution of the differential equation, but now using negative pow-
ers. This is Stokes’ method, illustrated in Exercise 14.6.10. The limitation is that starting
from some positive value of the argument (for convergence of the series), we do not know
what mixture of solutions or multiple of a given solution we have. The problem is to relate
the asymptotic series (useful for large values of the variable) to the power-series or related
definition (useful for small values of the variable). This relationship can be established
is various ways, one of which is to introduce a suitable integral representation whose
asymptotic behavior can be studied by application of the method of steepest descents,
Section 12.7.

We start this process with a study of the Hankel functions, for which a contour integral
representation was introduced in Section 14.4.

Asymptotic Forms of Hankel Functions

In Section 14.4 it was shown that the Hankel functions, which satisfy Bessel’s equation,
may be defined by the contour integrals

H (1)
ν (t)=

1

π i

∫
C1

e(t/2)(z−1/z) dz

zν+1 , (14.119)

H (2)
ν (t)=

1

π i

∫
C2

e(t/2)(z−1/z) dz

zν+1 , (14.120)

where C1 and C2 are the contours shown in Fig. 14.10. We desire formulas based on these
representations for the asymptotic behavior of the Hankel functions at large positive t .

The direct and exact evaluation of these integrals appears to be nearly impossible, but
the situation does have features permitting us to use the method of steepest descents to
make an asymptotic evaluation. Referring to the exposition of that method in Section 12.7,
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we have the approximate evaluation∫
C

g(z, t)ew(z,t)dz ≈ g(z0, t)e
w(z0,t)eiθ

√
2π

|w′′(z0, t)|
, (14.121)

where the contour C passes through a saddle point at z = z0 and

θ =−
arg(w′′(z0, t))

2
+

(
π

2
or

3π

2

)
(14.122)

is a phase arising from the direction of passage through the saddle point.
We regard the common integrand of Eqs. (14.119) and (14.120) as possessing a slowly

varying factor g(z) = z−ν−1 and an exponential ew with w = (t/2)(z − z−1), and seek
saddle points by finding the zeros of

w′ =
t

2

(
1+

1

z2

)
. (14.123)

Solving the above equation, we identify the two saddle points z0 =+i and z0 =−i .
Limiting attention to H (1)

ν (t), we see that we can deform the contour C1 so that it passes
through the saddle point at z0 = i ; there is neither the need nor the possibility to deform
this contour to pass through z0 =−i . Thus, at the saddle point, we have

w(+i)= i t, w′′(+i)=−
t

z3
0

∣∣∣∣∣
z0=i

=−i t. (14.124)

The argument of w′′(z0) is −π/2, so the possible values of the phase θ (the direction of
descent from the saddle point) are 3π/4 and 7π/4. We must choose θ = 3π/4 since we
cannot get into position to cross the saddle point in the direction θ = 7π/4=−π/4 without
first crossing a region where the integrand is larger in absolute value than its value at the
saddle point.

We now have all the information needed to use Eq. (14.121) to estimate the integral.
The result is

H (1)
ν (t)≈

1

π i
e(iπ/2)(−ν−1)e3iπ/4ei t

√
2π

t

≈

√
2

π t
ei(t−νπ/2−π/4). (14.125)

This is the leading term of the asymptotic expansion of the Hankel function H (1)
ν (t) for

large t . The other Hankel function can be treated similarly, but using the saddle point at
z =−i , with result

H (2)
ν (t)≈

√
2

π t
e−i(t−νπ/2−π/4). (14.126)

Equations (14.125) and (14.126) permit us to obtain the leading terms in the asymp-
totic behavior of all the Bessel and modified Bessel functions. In particular, inserting the



ArfKen_17-ch14-0643-0714-
9780123846549.tex

690 Chapter 14 Bessel Functions

asymptotic form for H (1)(i x) into Eq. (14.106), which defines Kν(x), we find

Kν(x)∼
π

2
iν+1

√
2

iπx
e−x et−νπ/2−π/4),

∼

√
π

2x
e−x . (14.127)

Another solution to the modified Bessel equation can be obtained from H (2)(i x); its
asymptotic behavior will be proportional to e+x . Combining the present observations with
Eqs. (14.100), (14.110), and (14.111), we can conclude that:

1. The modified Bessel function Kν(x)will be irregular at x = 0 as given by Eqs. (14.110)
or (14.111), and will decay exponentially at large x ;

2. The modified Bessel function Iν(x) will (for ν ≥ 0) be finite at the origin, as given by
Eq. (14.100), and will increase exponentially at large x .

Rather than developing additional asymptotic forms from Eq. (14.127), we find it more
interesting to obtain more complete asymptotic expansions by use of a particular integral
representation of Kν .

Expansion of an Integral Representation for Kν

Here we start from the integral representation

Kν(z)=
π1/2

0(ν + 1
2 )

( z

2

)ν ∞∫
1

e−zx (x2
− 1)ν−1/2dx, ν >−

1

2
. (14.128)

For the present let us take z to be real, although Eq. (14.128) may be established for
−π/2< arg z < π/2 (i.e., for <e(z) > 0).

Before using Eq. (14.128) we need to verify that (1) the form claimed to be Kν(z)
satisfies the modified Bessel equation, (2) that it has the small-z behavior required for
Kν , and (3) that it has the required exponentially decaying asymptotic value. These three
features suffice to establish the validity of Eq. (14.128).

The fact that Eq. (14.128) is a solution of the modified Bessel equation may be verified
by direct substitution into Eq. (14.97). After some manipulation, we obtain

zν+1

∞∫
1

d

dx

[
e−zx (x2

− 1)ν+1/2]dx = 0,

which transforms the combined integrand into the derivative of a function that vanishes at
both endpoints.
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We next consider how Eq. (14.128) behaves for small z. We proceed by substituting
x = 1+ t/z:

π1/2

0(ν + 1
2 )

( z

2

)ν ∞∫
1

e−zx (x2
− 1)ν−1/2dx

=
π1/2

0(ν + 1
2 )

( z

2

)ν
e−z

∞∫
0

e−t
(

t2

z2 +
2t

z

)ν−1/2
dt

z

=
π1/2

0(ν + 1
2 )

e−z

2νzν

∞∫
0

e−t t2ν−1
(

1+
2z

t

)ν−1/2

dt. (14.129)

This substitution has changed the limits of integration to a more convenient range and has
isolated the negative exponential dependence e−z . The integral in Eq. (14.129) may now
(for ν > 0) be evaluated for z = 0 to yield 0(2ν). Then, using the duplication formula,
Eq. (13.27), we have

lim
z→0

Kν(z)=
0(ν)2ν−1

zν
, ν > 0. (14.130)

Equation (14.130) agrees with Eq. (14.111), showing that Eq. (14.128) has the proper
small-z behavior to represent Kν . Note that for ν = 0, Eq. (14.128) diverges logarithmi-
cally at z = 0 and the verification of its scale requires a different approach, which is the
topic of Exercise 14.6.4.

Finally, to complete the identification of Eq. (14.128) with Kν , we need to verify that it
decays exponentially at large z. That feature will be a by-product of our main interest here,
which is to develop an asymptotic series for Kν(z). We do so by rewriting Eq. (14.129) as

Kν(z)=

√
π

2z

e−z

0(ν + 1
2 )

∞∫
0

e−t tν−1/2
(

1+
t

2z

)ν−1/2

dt. (14.131)

We next expand (1+ t/2z)ν−1/2 by the binomial theorem and interchange the summation
and integration (valid for the asymptotic series we plan to obtain), reaching

Kν(z)=

√
π

2z

e−z

0(ν + 1
2 )

∞∑
r=0

(
ν − 1

2
r

)
(2z)−r

∞∫
0

e−t tν+r−1/2dt

=

√
π

2z
e−z

∞∑
r=0

0(ν + r + 1
2 )

r !0(ν − r + 1
2 )
(2z)−r . (14.132)

Equation (14.132) can now be rearranged to

Kν(z)∼

√
π

2z
e−z

[
1+

(4ν2
− 12)

1!8z
+
(4ν2
− 12)(4ν2

− 32)

2!(8z)2
+ · · ·

]
. (14.133)
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Equation (14.133) yields the anticipated exponential dependence, confirming that
Eq. (14.128) actually represents Kν .

Although the integral of Eq. (14.128), integrating along the real axis, was convergent only
for−π/2< arg z < π/2, Eq. (14.133) may be extended to−3π/2< arg z < 3π/2. Consid-
ered as an infinite series, Eq. (14.133) is actually divergent. However, this series is asymp-
totic, in the sense that for large enough z,Kν(z)may be approximated to any fixed degree of
accuracy with a small number of terms. Compare Section 12.6 for a definition and discus-
sion of asymptotic series. The asymptotic character arises because our binomial expansion
was valid only for t < 2z but we integrated t out to infinity. The exponential decrease of the
integrand has prevented a disaster, but the series is only asymptotic and not convergent. By
Table 7.1, z =∞ is an essential singularity of the Bessel (and modified Bessel) equations.
Fuchs’ theorem does not guarantee a convergent series and we did not get one.

It is convenient to rewrite Eq. (14.133) as

Kν(z)=

√
π

2z
e−z[ Pν(i z)+ i Qν(i z)

]
, (14.134)

where

Pν(z)∼ 1−
(µ− 1)(µ− 9)

2!(8z)2
+
(µ− 1)(µ− 9)(µ− 25)(µ− 49)

4!(8z)4
− · · ·, (14.135)

Qν(z)∼
µ− 1

1!(8z)
−
(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ · · ·, (14.136)

and µ = 4ν2. It should be noted that although Pν(z) of Eq. (14.135) and Qν(z) of
Eq. (14.136) have alternating signs, the series for Pν(i z) and Qν(i z) in Eq. (14.134) have
all positive signs. Finally, note that for z large, Pν dominates.

Additional Asymptotic Forms

We started our detailed study of asymptotic behavior with Kν because, with its properties
in hand, we can deduce the asymptotic expansions of the other members of the family of
Bessel-related functions.

1. Rearranging the definition of Kν to

H (1)
ν (x)=

2

π
e−(iπ/2)(ν+1)Kν(−i x), (14.137)

we have

H (1)
ν (z)=

√
2

π z
exp

{
i

[
z −

(
ν +

1

2

)
π

2

]} [
Pν(z)+ i Qν(z)

]
, (14.138)

which although originally derived for real values of−i x , can be analytically continued
into the larger range −π < arg z < 2π .

2. The second Hankel function is just (for real arguments) the complex conjugate of the
first, and therefore

H (2)
ν (z)=

√
2

π z
exp

{
−i

[
z −

(
ν +

1

2

)
π

2

]} [
Pν(z)− i Qν(z)

]
, (14.139)

valid for −2π < arg z < π .
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3. Since Jν(z) is the real part of H (1)
ν (z) for real z,

Jν(z)=

√
2

π z

{
Pν(z) cos

[
z −

(
ν +

1

2

)
π

2

]
− Qν(z) sin

[
z −

(
ν +

1

2

)
π

2

]}
,

(14.140)

valid for −π < arg z < π .
4. The Neumann function is the imaginary part of H (1)

ν (z) for real z, or

Yν(z)=

√
2

π z

{
Pν(z) sin

[
z −

(
ν +

1

2

)
π

2

]
+ Qν(z) cos

[
z −

(
ν +

1

2

)
π

2

]}
,

(14.141)

also valid for −π < arg z < π .
5. Finally, the modified Bessel function Iν(z) is given by

Iν(z)= i−ν Jν(i z), (14.142)

so

Iν(z)=
ez

√
2π z

[
Pν(i z)− i Qν(i z)

]
, (14.143)

valid for −π/2< arg z < π/2.

Properties of the Asymptotic Forms

Having derived the asymptotic forms of the various Bessel functions, it is opportune to
note their essential characteristics. Remembering that in the limit of large z, Pν approaches
unity while Qν ∼ 1/z, we see that at large z, all the Bessel functions have leading terms
with a 1/z1/2 dependence, multiplied by either a real or complex exponential. The modified
functions Kν and Iν , respectively, contain decreasing and increasing exponentials, while
the ordinary Bessel functions Jν and Yν have leading terms with sinusoidal oscillation
(damped by the z−1/2 factor). When multiplied by a time factor e±iωt, the Hankel functions
can describe incoming and outgoing traveling waves.

Looking at the oscillatory functions Jν , Yν , H (i)
ν in more detail, we see that exact sinu-

soidal behavior is only reached in the limit of large z, as for finite z the terms involving Qν

will to some extent alter the periodicity. The reader may wish to compare the positions of
the zeros of Jn in Table 14.1 with those predicted by its leading term, namely the zeros of

cos

[
z −

(
n +

1

2

)
π

2

]
.

We see that Jn behaves asymptotically like a phase-shifted cosine function, with the phase
shift a function of n. The asymptotic form of Yn will be that of a sine function, with (for
the same n) the same phase shift. This causes the zeros of Jn and Yn for large z to alternate,
as we saw for J0 and Y0 in Fig. 14.8.

The asymptotic behavior of the two solutions to a problem described by ordinary or
modified Bessel functions may be sufficient to eliminate immediately one of these func-
tions as a solution for a physical problem. This observation may enable us to use the behav-
ior at z =∞ as well as that at z = 0 to restrict the functional forms we need to consider.
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5.604.804.003.202.401.600.800.00
−1.20

−0.80

J0(x)

x

−0.40

0.00

0.40

0.80

1.20

2 cos (x −πx 4
π )

FIGURE 14.13 Asymptotic approximation of J0(x).

Finally, we note that the asymptotic series Pν(z) and Qν(z), Eqs. (14.135) and (14.136),
terminate for ν =±1/2, ±3/2, . . . and become polynomials (in negative powers of z). For
these special values of ν the asymptotic approximations become exact solutions.

It is of some interest to consider the accuracy of the asymptotic forms, taking for exam-
ple just the first term

Jn(x)≈

√
2

πx
cos

[
x −

(
n +

1

2

)(π
2

)]
. (14.144)

Clearly, the condition for Eq. (14.144) to be accurate is that the sine term of Eq. (14.140)
be negligible; that is,

8x � 4n2
− 1. (14.145)

In Fig. 14.13 we plot J0(x) and the leading term of its asymptotic approximation. The
agreement is nearly quantitative for x > 5. However, for n or ν > 1 the asymptotic region
may be far out.

Another use of the asymptotic formulas is to establish the constants in Wronskian for-
mulas, where we know the Wronskian of any two Bessel functions of argument x has a
1/x functional dependence but with a premultiplying constant that depends on the Bessel
functions involved.

Example 14.6.1 CYLINDRICAL TRAVELING WAVES

As an illustration of a problem in which we have chosen a specific Bessel function because
of its asymptotic properties, consider a two-dimensional (2-D) wave problem similar to the
vibrating circular membrane of Exercise 14.1.24. Now imagine that the waves are gener-
ated at r = 0 and move outward to infinity. We replace our standing waves by traveling
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ones. The differential equation remains the same, but the boundary conditions change. We
now demand that for large r the wave behave like

U ∼ ei(kr−ωt), (14.146)

to describe an outgoing wave with wavelength 2π/k. We assume, for simplicity, that there
is no azimuthal dependence, so we have circular symmetry, implying m = 0. The Bessel
function of order zero with this asymptotic dependence is H (1)

0 (kr), as can be seen from
Eq. (14.138). This boundary condition at infinity then determines our wave solution as

U (r, t)= H (1)
0 (kr)e−iωt. (14.147)

This solution diverges as r→ 0, which is the behavior to be expected with a source at the
origin. �

Exercises

14.6.1 Determine the asymptotic dependence of the modified Bessel functions Iν(x), given

Iν(x)=
1

2π i

∫
C

e(x/2)(t+1/t) dt

tν+1 .

The contour starts and ends at t =−∞, encircling the origin in a positive sense. There
are two saddle points. Only the one at z =+1 contributes significantly to the asymptotic
form.

14.6.2 Determine the asymptotic dependence of the modified Bessel function of the second
kind, Kν(x), by using

Kν(x)=
1

2

∞∫
0

e(−x/2)(s+1/s) ds

s1−ν .

14.6.3 Verify that the integral representations

In(z)=
1

π

π∫
0

ez cos t cos(nt)dt,

Kν(z)=

∞∫
0

e−z cosh t cosh(νt)dt, <e(z) > 0,

satisfy the modified Bessel equation by direct substitution into that equation. How can
you check the normalization?

14.6.4 (a) Show that when Kν is defined by Eq. (14.128),

d K0(z)

dz
=−K1(z).
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t plane

(2) (1)

−1 1

FIGURE 14.14 Modified Bessel function contours.

(b) Show that the indefinite integral of −K1(x) as defined by Eq. (14.128) has in
the limit of small z the value − ln z + C , and therefore, by comparison with
Eq. (14.110), that K0 as defined by Eq. (14.128) has the correct normalization.

14.6.5 Verify that Eq. (14.132) can be rearranged to the form given as Eq. (14.133).

14.6.6 (a) Show that

y(z)= zν
∫

e−zt (t2
− 1)ν−1/2dt

satisfies the modified Bessel equation, provided the contour is chosen so that

e−zt (t2
− 1)ν+1/2

has the same value at the initial and final points of the contour.
(b) Verify that the contours shown in Fig. 14.14 are suitable for this problem.

14.6.7 Use the asymptotic expansions to verify the following Wronskian formulas:

(a) Jν(x)J−ν−1(x)+ J−ν(x)Jν+1(x)=−2 sinνπ/πx ,

(b) Jν(x)Nν+1(x)− Jν+1(x)Nν(x)=−2/πx ,

(c) Jν(x)H
(2)
ν−1(x)− Jν−1(x)H

(2)
ν (x)= 2/ iπx ,

(d) Iν(x)K ′ν(x)− I ′ν(x)Kν(x)=−1/x ,

(e) Iν(x)Kν+1(x)+ Iν+1(x)Kν(x)= 1/x .

14.6.8 Verify that the Green’s function for the 2-D Helmholtz equation (operator ∇2
+ k2)

with outgoing-wave boundary conditions is

G(ρ1,ρ2)=
i

4
H (1)

0 (k|ρ1 − ρ2|).

Hint. H (1)
0 (kρ) is known to be an outgoing-wave solution to the homogeneous

Helmholtz equation.

14.6.9 From the asymptotic form of Kν(z), Eq. (14.134), derive the asymptotic form of
H (1)
ν (z), Eq. (14.138). Note particularly the phase, (ν + 1

2 )π/2.

14.6.10 Apply Stokes’ method for obtaining an asymptotic expansion for the Hankel function
H (1)
ν as follows:
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(a) Replace the Bessel function in Bessel’s equation by x−1/2 y(x) and show that y(x)
satisfies

y′′(x)+

(
1−

ν2
−

1
4

x2

)
y(x)= 0.

(b) Develop a power-series solution with negative powers of x starting with the
assumed form

y(x)= ei x
∞∑

n=0

an x−n .

Obtain the recurrence relation giving an+1 in terms of an . Check your result
against the asymptotic series, Eq. (14.138).

(c) From Eq. (14.125), determine the initial coefficient, a0.

14.6.11 Using the method of steepest descents, evaluate the second Hankel function given by

H (2)
ν (t)=

1

π i

∫
C2

e(t/2)(z−1/z) dz

zν+1 ,

with contour C2 as shown in Fig. 14.10.

ANS. H (2)
ν (t)≈

√
2

π t
e−i(t−π/4−νπ/2).

14.6.12 (a) In applying the method of steepest descents to the Hankel function H (1)
ν (t), show

that w(z, t), which appears in Eq. (14.121), satisfies

<e[w(z, t)]<<e[w(z0, t)] = 0

for z on the contour C1 (Fig. 14.10) but away from the point z = z0 = i .

(b) For general values of z = reiθ, show that

<e[w(z, t)]> 0 for 0< r < 1,


π

2
< θ ≤ π

−π ≤ θ <
π

2
and

<e[w(z, t)]< 0 for r > 1, −
π

2
< θ <

π

2
.

Your demonstration verifies that the distribution of the sign of w is as shown
schematically in Fig. 14.15.

(c) Explain why the contour C1 (Fig. 14.10) cannot be deformed to go through both
saddle points, and why it may not go through the saddle point at −i if it is to end
at z =−∞ with argument +π .

14.6.13 Calculate the first 15 partial sums of P0(x) and Q0(x), Eqs. (14.135) and (14.136).
Let x vary from 4 to 10 in unit steps. Determine the number of terms to be retained
for maximum accuracy and the accuracy achieved as a function of x . Specifically, how
small may x be without raising the error above 3× 10−6?

ANS. xmin = 6.
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FIGURE 14.15 Sign of w(z, t), occurring in Eq. (14.121), for integral representation of
Hankel functions.

14.7 SPHERICAL BESSEL FUNCTIONS

In Section 9.4 we discussed the separation of the Helmholtz equation in spherical coordi-
nates. We showed there that in the oft-occurring case that the boundary conditions of the
problem have spherical symmetry, the radial equation has the form given in Eq. (9.80),
namely,

r2 d2 R

dr2 + 2r
d R

dr
+
[

k2r2
− l(l + 1)

]
R = 0. (14.148)

We remind the reader that the parameter k is that from the original Helmholtz equation,
while l(l + 1) is the separation constant associated with solutions of the angular equations
identified by the index l (which is required by the boundary conditions to be an integer).

In Section 9.4 we went on to discuss the fact that the substitution

R(kr)=
Z(kr)

(kr)1/2
(14.149)

permits us to rewrite Eq. (14.148) as

r2 d2 Z

dr2 + r
d Z

dr
+

[
k2r2
−

(
l +

1

2

)2
]

Z = 0, (14.150)

which we identified in Eq. (9.84) as Bessel’s equation of order l + 1
2 .

We can now identify the general solution Z(kr) as a linear combination of Jl+1/2(kr)
and Yl+1/2(kr), which in turn means that we can write R(kr) in terms of these Bessel
functions of half-integral order, illustrated (for Jl+1/2) by

R(kr)=
C
√

kr
Jl+1/2(kr).
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Since the R(kr) describe radial functions in spherical coordinates, they are termed spheri-
cal Bessel functions. Note also that since Eq. (14.148) is homogeneous, we are free to
define our spherical Bessel functions at any scale; the scale ordinarily used is that intro-
duced in the next subsection.

Definitions

We define our spherical Bessel functions by the following equations. It is not ordinarily
useful to introduce spherical Bessel functions with indices that are not integers, so we
assume the index n to be integral (but not necessarily nonnegative).

jn(x)=

√
π

2x
Jn+1/2(x),

yn(x)=

√
π

2x
Yn+1/2(x),

(14.151)

h(1)n (x)=

√
π

2x
H (1)

n+1/2(x)= jn(x)+ iyn(x),

h(2)n (x)=

√
π

2x
H (2)

n+1/2(x)= jn(x)− iyn(x).

Referring to the definition of Yn+1/2, we see that

Yn+1/2(x)=
cos(n + 1

2 )π Jn+1/2(x)− J−n−1/2(x)

sin(n + 1
2 )π

= (−1)n+1 J
−n− 1

2
(x),

which means that

yn(x)= (−1)n+1 j−n−1(x). (14.152)

These spherical Bessel functions (Figs. 14.16 and 14.17) can be expressed in series form.
Using Eq. (14.6), we have initially

jn(x)=

√
π

2x

∞∑
s=0

(−1)s

s!0(s + n + 3
2 )

( x

2

)2s+n+1/2
. (14.153)

Writing

0(s + n + 3
2 )= 0(n +

3
2 )(n +

3
2 )s, (14.154)

where (..)s is a Pochhammer symbol, defined in Eq. (1.72), we can bring Eq. (14.153) to
the form

jn(x)=

√
π

2x

( x

2

)n+1/2 1

0(n + 3
2 )

∞∑
s=0

(−1)s

s!(n + 3
2 )s

( x

2

)2s

=
xn

(2n + 1)!!

∞∑
s=0

(−1)s

s!(n + 3
2 )s

( x

2

)2s
. (14.155)
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FIGURE 14.16 Spherical Bessel functions.
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FIGURE 14.17 Spherical Neumann functions.
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We reached the last line of Eq. (14.155) by writing 0(n + 3
2 ) using the double factorial

notation (compare with Exercise 13.1.14).
If we now develop a series expansion for yn(x) by the same method that was used for

jn(x), but starting from Eq. (14.152), we get

yn(x)=−
(2n − 1)!!

xn+1

∞∑
s=0

(−1)s

s!( 1
2 − n)s

( x

2

)2s
. (14.156)

The spherical Bessel functions are oscillatory, as can be seen from the graphs in
Figs. 14.16 and 14.17. Note that jn(x) are regular at x = 0, with limiting behavior there
proportional to xn . The yn are all irregular at x = 0, approaching that point as x−n−1.

The infinite series in Eqs. (14.155) and (14.156) can be evaluated in closed form (but
with increasing difficulty as n increases). For the special case n = 0, we can substitute into
Eq. (14.155) s! = 2−s(2s)!! and (3/2)s = 2−s(2s + 1)!!, reaching

j0(x)=
∞∑

s=0

(−1)s22s

(2s)!!(2s + 1)!!

( x

2

)2s
=

∞∑
s=0

(−1)s

(2s + 1)!
x2s

=
sin x

x
. (14.157)

A similar treatment of the expansion for y0 yields

y0(x)=−
cos x

x
. (14.158)

From the definition of the spherical Hankel functions, Eq. (14.151), we also have

h(1)0 (x)=
1

x
(sin x − i cos x)=−

i

x
ei x , (14.159)

h(2)0 (x)=
1

x
(sin x + i cos x)=

i

x
e−i x . (14.160)

Since we anticipate the availability of recurrence formulas for the spherical Bessel func-
tions, and since y0 is just − j−1, we expect all the jn and yn to be linear combinations of
sines and cosines. In fact, the recurrence formulas are good ways of getting these functions
for small n. However, we identify here an alternate approach, which depends on the fact,
noted in Section 14.6, that the asymptotic expansion for the Hankel functions actually ter-
minates when the order is a half-integer, thereby yielding exact, closed expressions. We
start from

h(1)n (x)=

√
π

2x
H (1)

n+1/2(x)

= (−i)n+1 ei x

x

[
Pn+1/2(x)+ i Qn+1/2(x)

]
, (14.161)
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where Pν and Qν are given by Eqs. (14.135) and (14.136). Now, Pn+1/2 and Qn+1/2 are
polynomials, and we can bring Eq. (14.161) to the form

h(1)n (x)= (−i)n+1 ei x

x

n∑
s=0

i s

s!(8x)s
(2n + 2s)!!

(2n − 2s)!!

= (−i)n+1 ei x

x

n∑
s=0

i s

s!(2x)s
(n + s)!

(n − s)!
. (14.162)

For real x , jn(x) is the real part of this, yn(x) the imaginary part, and h(2)n (x) the complex
conjugate. Specifically,

h(1)1 (x)= ei x
(
−

1

x
−

i

x2

)
, (14.163)

h(1)2 (x)= ei x
(

i

x
−

3

x2 −
3i

x3

)
, (14.164)

j1(x)=
sin x

x2 −
cos x

x
, (14.165)

j2(x)=

(
3

x3 −
1

x

)
sin x −

3

x2 cos x, (14.166)

y1(x)=−
cos x

x2 −
sin x

x
, (14.167)

y2(x)=−

(
3

x3 −
1

x

)
cos x −

3

x2 sin x . (14.168)

Recurrence Relations

The recurrence relations to which we now turn provide a convenient way of developing
the higher-order spherical Bessel functions. These recurrence relations may be derived
from the power-series expansions, but it is easier to substitute into the known recurrence
relations, Eqs. (14.8) and (14.9). This gives

fn−1(x)+ fn+1(x)=
2n + 1

x
fn(x), (14.169)

n fn−1(x)− (n + 1) fn+1(x)= (2n + 1) f ′n(x). (14.170)

Rearranging these relations, or substituting into Eqs. (14.10) and (14.11), we obtain

d

dx
[xn+1 fn(x)] = xn+1 fn−1(x), (14.171)

d

dx
[x−n fn(x)] = −x−n fn+1(x). (14.172)

In these equations fn may represent jn , yn , h(1)n , or h(2)n .
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By mathematical induction (Section 1.4) we may establish the Rayleigh formulas:

jn(x)= (−1)n xn
(

1

x

d

dx

)n ( sin x

x

)
, (14.173)

yn(x)=−(−1)n xn
(

1

x

d

dx

)n (cos x

x

)
, (14.174)

h(1)n (x)=−i(−1)n xn
(

1

x

d

dx

)n (ei x

x

)
, (14.175)

h(2)n (x)= i(−1)n xn
(

1

x

d

dx

)n (e−i x

x

)
. (14.176)

Limiting Values

For x � 1,9 Eqs. (14.155) and (14.156) yield

jn(x)≈
xn

(2n + 1)!!
, (14.177)

yn(x)≈−
(2n − 1)!!

xn+1 . (14.178)

The limiting values of the spherical Hankel functions for small x go as ±iyn(x).
The asymptotic values of jn , yn , h(1)n , and h(2)n may be obtained from the asymptotic

forms of the corresponding Bessel functions, as given in Section 14.6. We find

jn(x)∼
1

x
sin
(

x −
nπ

2

)
, (14.179)

yn(x)∼−
1

x
cos

(
x −

nπ

2

)
, (14.180)

h(1)n (x)∼ (−i)n+1 ei x

x
=−i

ei(x−nπ/2)

x
, (14.181)

h(2)n (x)∼ in+1 e−i x

x
= i

e−i(x−nπ/2)

x
. (14.182)

The condition for these spherical Bessel forms is that x � n(n+ 1)/2. From these asymp-
totic values we see that jn(x) and yn(x) are appropriate for a description of standing
spherical waves; h(1)n (x) and h(2)n (x) correspond to traveling spherical waves. If the time
dependence for the traveling waves is taken to be e−iωt , then h(1)n (x) yields an outgoing
traveling spherical wave, and h(2)n (x) an incoming wave. Radiation theory in electromag-
netism and scattering theory in quantum mechanics provide many applications.

9The condition that the second term in the series be negligible compared to the first is actually x � 2[(2n + 2)(2n + 3)/
(n + 1)]1/2 for jn(x).
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Orthogonality and Zeros

We may take the orthogonality integral for the ordinary Bessel functions, Eqs. (11.49) and
(11.50),

a∫
0

Jν
(
ανp

ρ

a

)
Jν
(
ανq

ρ

a

)
ρ dρ =

a2

2

[
Jν+1(ανp)

] 2
δpq ,

and rewrite it in terms of jn to obtain

a∫
0

jn
(
αnp

r

a

)
jn
(
αnq

r

a

)
r2 dr =

a3

2

[
jn+1(αnp)

] 2
δpq . (14.183)

Here αnp is the p-th positive zero of jn .
Note that in contrast to the formula for the orthogonality of the Jν , Eq. (14.183) has the

weight factor r2, not r . This of course comes from the factors x−1/2 in the definition of
jn(x), but also has the effect that if the integration is construed as being over a spherical
volume rather than a linear interval, it is the factor corresponding to uniform weight of
all volume elements. (Remember that the weight ρ for the Jν integral produces uniform
weight if we construe the integration in that case as over the area within a circle.)

As for the ordinary Bessel functions, the functions that are orthogonal on (0,a) all sat-
isfy a Dirichlet boundary condition, with zeros at r = a. We therefore find it useful to know
the values of the zeros of the jn . The first few zeros for small n, and also the locations of
the zeros of j ′n , are listed in Table 14.2.

The following example illustrates a problem in which the zeros of the jn play an essential
role.

Table 14.2 Zeros of the Spherical Bessel Functions and Their First
Derivatives

Number
of zero j0(x) j1(x) j2(x) j3(x) j4(x) j5(x)

1 3.1416 4.4934 5.7635 6.9879 8.1826 9.3558
2 6.2832 7.7253 9.0950 10.4171 11.7049 12.9665
3 9.4248 10.9041 12.3229 13.6980 15.0397 16.3547
4 12.5664 14.0662 15.5146 16.9236 18.3013 19.6532
5 15.7080 17.2208 18.6890 20.1218 21.5254 22.9046

j ′0(x) j ′1(x) j ′2(x) j ′3(x) j ′4(x) j ′5(x)

1 4.4934 2.0816 3.3421 4.5141 5.6467 6.7565
2 7.7253 5.9404 7.2899 8.5838 9.8404 11.0702
3 10.9041 9.2058 10.6139 11.9727 13.2956 14.5906
4 14.0662 12.4044 13.8461 15.2445 16.6093 17.9472
5 17.2208 15.5792 17.0429 18.4681 19.8624 21.2311
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Example 14.7.1 PARTICLE IN A SPHERE

An illustration of the use of the spherical Bessel functions is provided by the problem of a
quantum mechanical particle of mass m in a sphere of radius a. Quantum theory requires
that the wave function ψ , describing our particle, satisfy the Schrödinger equation

−
h̄2

2m
∇

2ψ = Eψ, (14.184)

subject to the conditions that (1) ψ(r) is finite for all 0 ≤ r ≤ a, and (2) ψ(a) = 0. This
corresponds to a square-well potential V = 0 for r ≤ a, V = ∞ for r > a. Here h̄ is
Planck’s constant divided by 2π . Equation (14.184) with its boundary conditions is an
eigenvalue equation; its eigenvalues E are the possible values of the particle’s energy.

Let us determine the minimum value of the energy for which our wave equation has an
acceptable solution. Equation (14.184) is Helmholtz’s equation, which after separation of
variables leads to the radial equation previously presented as Eq. (14.148):

d2 R

dr2 +
2

r

d R

dr
+

[
k2
−

l(l + 1)

r2

]
R = 0, (14.185)

with

k2
= 2m E/h̄2 (14.186)

and l (determined from the angular equation) a nonnegative integer. Comparing with
Eq. (14.150) and the definitions of the spherical Bessel functions, Eq. (14.151), we see
that the general solution to Eq. (14.185) is

R = Ajl(kr)+ Byl(kr). (14.187)

To satisfy the boundary conditions of the present problem, we must reject the solution yl

because it is singular at r = 0, and we must choose k such that jl(ka)= 0. This boundary
condition at r = a can be satisfied if

k ≡ kli =
αli

a
, (14.188)

where αli is the i th positive zero of jl . From Eq. (14.186) we see that the smallest E
will correspond to the smallest acceptable k, which in turn corresponds to the smallest αli .
Thus, scanning Table 14.2, we identify the smallest αli as the first zero of j0, a result which
we would expect after we have learned that the value l = 0 is associated with an angular
function with no kinetic energy.

We conclude this example by solving Eq. (14.186) for E with k assigned the value
α01/a = π/a10:

Emin =
π2h̄2

2ma2 =
h2

8ma2 . (14.189)

10Most of the entries in Table 14.2 are only accessible numerically, but the zeros of j0 are readily identified due to their simple
form, α0m =mπ .
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This example illustrates several features common to bound-state problems in quantum
mechanics. First, we see that for any finite sphere the particle will have a positive minimum
or zero-point energy. Second, we note that the particle cannot have a continuous range of
energy values; the energy is restricted to discrete values corresponding to the eigenvalues
of the Schrödinger equation. Third, the possible energies in this spherically symmetric
problem depend on l; as is evident from the table of zeros of jl , the minimum energy for a
given l increases with l . Finally, note that the orthogonality of the jl under the conditions
of this problem shows us that the eigenfunctions corresponding to the same l but different
i are orthogonal (with the weight factor corresponding to spherical polar coordinates). �

We close this subsection with the observation that, in addition to orthogonality with
respect to the scaling (to bring zeros to a specified r value), the spherical Bessel functions
also possess orthogonality with respect to the indices:

∞∫
−∞

jm(x) jn(x)dx = 0, m 6= n, m, n ≥ 0. (14.190)

The proof is left as Exercise 14.7.12. If m = n (compare Exercise 14.7.13), we have

∞∫
−∞

[ jn(x)]
2 dx =

π

2n + 1
. (14.191)

The spherical Bessel functions will enter again in connection with spherical waves, but
further consideration is postponed until the corresponding angular functions, the Legendre
functions, have been more thoroughly discussed.

Modifed Spherical Bessel Functions

Problems involving the radial equation

r2 d2 R

dr2 + 2r
d R

dr
−
[

k2r2
+ l(l + 1)

]
R = 0, (14.192)

which differs from Eq. (14.148) only in the sign of k2, also arise frequently in physics. The
solutions to this equation are spherical Bessel functions with imaginary arguments, leading
us to define modified spherical Bessel functions (Fig. 14.18) as follows:

in(x)=

√
π

2x
In+1/2(x), (14.193)

kn(x)=

√
2

πx
Kn+1/2(x). (14.194)

Note that the scale factor in the definition of kn differs from that of the other spherical
Bessel functions.
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FIGURE 14.18 Modified spherical Bessel functions.

With the above definitions, these functions have the following recurrence relations:

in−1(x)− in+1(x)=
2n + 1

x
in(x),

nin−1(x)+ (n + 1)in+1(x)= (2n + 1)i ′n(x), (14.195)

kn−1(x)− kn+1(x)=−
2n + 1

x
kn(x),

nkn−1(x)+ (n + 1)kn+1(x)=−(2n + 1)k′n(x).

The first few of these functions are

i0(x)=
sinh x

x
, k0(x)=

e−x

x
,

i1(x)=
cosh x

x
−

sinh x

x2 , k1(x)= e−x
(

1

x
+

1

x2

)
, (14.196)

i2(x)= sinh x

(
1

x
+

3

x3

)
−

3 cosh x

x2 , k2(x)= e−x
(

1

x
+

3

x2 +
3

x3

)
.
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Limiting values of the modified spherical Bessel functions are, for small x ,

in(x)≈
xn

(2n + 1)!!
, kn(x)≈

(2n − 1)!!

xn+1 . (14.197)

For large z, the asymptotic behavior of these functions is

in(x)∼
ex

2x
, kn(x)∼

e−x

x
. (14.198)

Example 14.7.2 PARTICLE IN A FINITE SPHERICAL WELL

As a final example, we return to the problem of a particle trapped in a spherical potential
well of radius a (Example 14.7.1), but instead of confining the particle by a wall at potential
V =∞ (equivalent to requiring that its wave function ψ vanish at r = a), we now consider
a well of finite depth, corresponding to

V (r)=

{
V0 < 0, 0≤ r ≤ a,
0, r > a.

If the particle can have an energy E < 0, it will be localized in and near the potential well,
with a wave function that decays to zero as r increases to values greater than a. A simple
case of this problem was one of our examples of an eigenvalue problem (Example 8.3.3),
but in that case we did not proceed with enough generality to identify its solutions as Bessel
functions.

This problem is governed by the Schrödinger equation, which now has the form

−
h̄2

2m
∇

2ψ + V (r)ψ = Eψ.

This is an eigenvalue equation, to be solved for ψ and E over the full three-dimensional
space, subject to the condition that ψ be continuous and differentiable for all r , and that it
be normalizable (thus approaching zero asymptotically at large r ). Here m is the mass of
the particle and h̄ is Planck’s constant divided by 2π .

While this problem is more difficult than that of Example 14.7.1, it becomes manageable
if we realize that it is equivalent to two separate problems for the respective regions 0 ≤
r ≤ a and r > a, within each of which the potential has a constant value, but constrained to
(1) have the same eigenvalue E , and (2) connect smoothly (so the r derivative will exist)
at r = a.

When our Schrödinger equation is processed by the method of separation of variables,
we obtain as its radial component

d2 R

dr2 +
2

r

d R

dr
+

(
2m

h̄2

[
E − V (r)

]
−

l(l + 1)

r2

)
R = 0,

which is either the spherical Bessel equation, Eq. (14.150), or the modified spherical Bessel
equation, Eq. (14.192), depending on the sign of E−V (r). We see that if V0 < E < 0, then
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for r ≤ a we will have E − V (r) > 0, yielding a Bessel ODE with an acceptable solution
involving jl , while for r > a we have E − V (r) < 0, leading to a modified Bessel ODE
for which we can choose the kl solution to obtain the necessary asymptotic behavior.

Summarizing the above, we have, for the two regions:

Rin(r)= Ajl(kr), k2
=

2m

h̄2 (E − V0) r ≤ a,

Rout(r)= Bkl(k
′r), k′2 =−

2m

h̄2 E r > a.

Smooth connection at r = a then corresponds to the equations

Rin(a)= Rout(a) −→ Ajl(ka)= Bkl(k
′r), (14.199)

d Rin

dr

∣∣∣
r=a
=

d Rout

dr

∣∣∣
r=a
−→ k A j ′l (ka)= k′Bk′l(k

′a). (14.200)

For l = 0 this problem reduces to that considered in Example 8.3.3, where we indicate
a numerical procedure of solving it, but we are now in a position to obtain solutions for
all l . �

Exercises

14.7.1 Show how one can obtain Eq. (14.162) starting from Eq. (14.161).

14.7.2 Show that if

yn(x)=

√
π

2x
Yn+1/2(x),

it automatically equals

(−1)n+1
√
π

2x
J−n−1/2(x).

14.7.3 Derive the trigonometric-polynomial forms of jn(z) and yn(z)11:

jn(z)=
1

z
sin
(

z −
nπ

2

) [n/2]∑
s=0

(−1)s(n + 2s)!

(2s)!(2z)2s(n − 2s)!

+
1

z
cos

(
z −

nπ

2

) [(n−1)/2]∑
s=0

(−1)s(n + 2s + 1)!

(2s + 1)!(2z)2s(n − 2s − 1)!
,

11The upper summation limit [n/2] means the largest integer that does not exceed n/2.
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yn(z)=
(−1)n+1

z
cos

(
z +

nπ

2

) [n/2]∑
s=0

(−1)s(n + 2s)!

(2s)!(2z)2s(n − 2s)!

+
(−1)n+1

z
sin
(

z +
nπ

2

) [(n−1)/2]∑
s=0

(−1)s(n + 2s + 1)!

(2s + 1)!(2z)2s+1(n − 2s − 1)!
.

14.7.4 Use the integral representation of Jν(x),

Jν(x)=
1

π1/20(ν + 1
2 )

( x

2

)ν 1∫
−1

e±i xp(1− p2)ν−1/2dp,

to show that the spherical Bessel functions jn(x) are expressible in terms of trigono-
metric functions; that is, for example,

j0(x)=
sin x

x
, j1(x)=

sin x

x2 −
cos x

x
.

14.7.5 (a) Derive the recurrence relations

fn−1(x)+ fn+1(x)=
2n + 1

x
fn(x),

n fn−1(x)− (n + 1) fn+1(x)= (2n + 1) f ′n(x)

satisfied by the spherical Bessel functions jn(x), yn(x),h
(1)
n (x), and h(2)n (x).

(b) Show, from these two recurrence relations, that the spherical Bessel function
fn(x) satisfies the differential equation

x2 f ′′n (x)+ 2x f ′n(x)+
[

x2
− n(n + 1)

]
fn(x)= 0.

14.7.6 Prove by mathematical induction (Section 1.4) that

jn(x)= (−1)n xn
(

1

x

d

dx

)n ( sin x

x

)
for n, an arbitrary nonnegative integer.

14.7.7 From the discussion of orthogonality of the spherical Bessel functions, show that a
Wronskian relation for jn(x) and nn(x) is

jn(x)y
′
n(x)− j ′n(x)yn(x)=

1

x2 .

14.7.8 Verify

h(1)n (x)h(2)
′

n (x)− h(1)
′

n (x)h(2)n (x)=−
2i

x2 .

14.7.9 Verify Poisson’s integral representation of the spherical Bessel function,

jn(z)=
zn

2n+1n!

π∫
0

cos(z cos θ) sin2n+1 θ dθ.
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14.7.10 A well-known integral representation for Kν(x) has the form

Kν(x)=
2ν0(ν + 1

2 )
√
πxν

∞∫
0

cos xt

(t2 + 1)ν+1/2 dt.

Starting from this formula, show that

kn(x)=
2n+2(n + 1)!

πxn+1

∞∫
0

k2 j0(kx)

(k2 + 1)n+2 dk.

14.7.11 Show that

∞∫
0

Jµ(x)Jν(x)
dx

x
=

2

π

sin[(µ− ν)π/2]

µ2 − ν2 , µ+ ν > 0.

14.7.12 Derive Eq. (14.190):

∞∫
−∞

jm(x) jn(x)dx = 0,

{
m 6= n,
m,n ≥ 0.

14.7.13 Derive Eq. (14.191):

∞∫
−∞

[
jn(x)

] 2
dx =

π

2n + 1
.

14.7.14 The Fresnel integrals (Fig. 14.19 and Exercise 12.7.2) occurring in diffraction theory
are given by

x(t)=

√
π

2
C

(√
π

2
t

)
=

t∫
0

cos(v2)dv,

y(t)=

√
π

2
s

(√
π

2
t

)
=

t∫
0

sin(v2)dv.

Show that these integrals may be expanded in series of spherical Bessel functions as
follows:

x(s)=
1

2

s∫
0

j−1(u)u
1/2du = s1/2

∞∑
n=0

j2n(s),

y(s)=
1

2

s∫
0

j0(u)u
1/2xdu = s1/2

∞∑
n=0

j2n+1(s).

Hint. To establish the equality of the integral and the sum, you may wish to work
with their derivatives. The spherical Bessel analogs of Eqs. (14.8) and (14.12) may
be helpful.
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FIGURE 14.19 Fresnel integrals.

14.7.15 A hollow sphere of radius a (Helmholtz resonator) contains standing sound waves.
Find the minimum frequency of oscillation in terms of the radius a and the velocity of
sound v. The sound waves satisfy the wave equation

∇
2ψ =

1

v2

∂2ψ

∂t2

and the boundary condition
∂ψ

∂r
= 0, r = a.

The spatial part of this PDE is the same as the PDE discussed in Example 14.7.1, but
here we have a Neumann boundary condition, in contrast to the Dirichlet boundary
condition of that example.

ANS. νmin = 0.3313v/a, λmax = 3.018a.

14.7.16 (a) Show that the parity of in(x) (the behavior under x→−x) is (−1)n .

(b) Show that kn(x) has no definite parity.

14.7.17 Show that the Wronskian of the spherical modified Bessel functions is given by

in(x)k
′
n(x)− i ′n(x)kn(x)=−

1

x2 .
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Additional Readings

Abramowitz, M., and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables (AMS-55). Washington, DC: National Bureau of Standards (1972), reprinted, Dover
(1974).

Jackson, J. D., Classical Electrodynamics, 3rd ed. New York: Wiley (1999).

Morse, P. M., and H. Feshbach, Methods of Theoretical Physics, 2 vols. New York: McGraw-Hill (1953). This
work presents the mathematics of much of theoretical physics in detail but at a rather advanced level.

Watson, G. N., A Treatise on the Theory of Bessel Functions, 1st ed. Cambridge: Cambridge University Press
(1922).

Watson, G. N., A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge: Cambridge University Press
(1952). This is the definitive text on Bessel functions and their properties. Although difficult reading, it is
invaluable as the ultimate reference.

Whittaker, E. T., and G. N. Watson, A Course of Modern Analysis, 4th ed. Cambridge: Cambridge University
Press (1962), paperback.
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