On b-coloring of the Kneser graphs

Ramin Javadi and Behnaz Omoomi

Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of G such that in each color class there exists a vertex having neighbors in all the other k-1 color classes. The b-chromatic number of a graph G, denoted by $\varphi(G)$, is the maximum k for which G has a b-coloring by k colors. It is obvious that $\chi(G) \leq \varphi(G)$. A graph G is b-continuous if for every k between $\chi(G)$ and $\varphi(G)$ there is a b-coloring of G by k colors. In this paper, we study the b-coloring of Kneser graphs K(n,k) and determine $\varphi(K(n,k))$ for some values of n and k. Moreover, we prove that K(n,2) is k-continuous for k is k-continuous for k-conti

Key Words: b-chromatic number, b-coloring, dominating coloring, b-continuous graph, Kneser graph, Steiner triple system.

1 Introduction

Let G be a graph without loops and multiple edges with vertex set V(G) and edge set E(G). A proper k-coloring of G is a function c defined from V(G) onto a set of colors $C = \{1, 2, ..., k\}$ such that every two adjacent vertices have different colors. In fact, for every $i, 1 \le i \le k$, the set $c^{-1}(i)$ is a nonempty independent set of vertices which is called color class i. The minimum cardinality k for which G has a proper k-coloring is the chromatic number of G, denoted by $\chi(G)$.

A b-coloring of G by k colors is a proper k-coloring of the vertices of G such that in each color class i there exists a vertex x_i having neighbors in all the other k-1 color classes. Such a vertex x_i is called a b-dominating vertex, and the set of vertices $\{x_1, x_2, \ldots, x_k\}$ is called a b-dominating system. The b-chromatic number of G, denoted by $\varphi(G)$, is the maximum k for which G has a b-coloring by k colors. It is an elementary exercise to observe that every proper coloring with $\chi(G)$ colors is a b-coloring. The b-chromatic number was introduced by R.W. Irving and D.F. Manlove in [4]. (See also [5, 6].)

Immediate and useful bound for $\varphi(G)$ is:

$$\chi(G) \le \varphi(G) \le \Delta(G) + 1,\tag{1}$$

where $\Delta(G)$ is the maximum degree of vertices in G.

The graph G is b-continuous if for every k between $\chi(G)$ and $\varphi(G)$ there is a b-coloring with k colors. A peculiar characteristic of b-coloring is that not all graphs are b-continuous. For example, the 3-dimensional cube Q_3 is not b-continuous: $\chi(Q_3) = 2$ and $\varphi(Q_3) = 4$, but Q_3 has no b-coloring with three colors [4]. Only a few classes of graphs are known to be b-continuous [1, 3].

Let $S = \{1, 2, ..., n\}$ and let V be the set of all k-subsets of S, where $k \leq \frac{n}{2}$. The $Kneser\ graph$ with parameters n and k, denoted by K(n, k), is the graph with vertex set V such that two vertices are adjacent if and only if the corresponding subsets are disjoint. It is known that $\chi(K(n, k)) = n - 2k + 2$ [8]. In this paper, we study b-coloring of Kneser graphs. We determine $\varphi(K(2k+1, k))$ for every k and $\varphi(K(n, 2))$ for every n. Also, we prove that K(n, 2) is b-continuous for $n \geq 17$.

2 Steiner triple systems

In this section we recall some necessary definitions and constructions of Steiner triple systems which will be used in the proofs of our main theorems.

A quasigroup of order n is a pair (Q, \circ) , where Q is a set of size n and " \circ " is a binary operation on Q such that for every pair of elements $a, b \in Q$, the equations $a \circ x = b$ and $y \circ a = b$ have unique solutions. A quasigroup (Q, \circ) with $Q = \{1, 2, \ldots, n\}$ is said to be idempotent if $i \circ i = i$, for $1 \le i \le n$ and commutative if $i \circ j = j \circ i$, for all $1 \le i, j \le n$. A quasigroup (Q, \circ) with $Q = \{1, 2, \ldots, 2n\}$ is said to be half-idempotent if for $1 \le i \le n$, $i \circ i = (n \circ i) \circ (n \circ i) = i$. A quasigroup (Q', \circ) , where $Q' \subseteq Q$, is called a sub-quasigroup of quasigroup (Q, \circ) .

Example 1. Let n = 2k + 1 and consider the additive group $(\mathbb{Z}_n, +)$. Since n is odd, for each $i, j \in \mathbb{Z}_n$ where $i \neq j$, we have $2i \neq 2j$. Therefore, there is a permutation σ on the set $\{1, 2, \ldots, n\}$ such that for each $i \in \mathbb{Z}_n$, $\sigma(2i) = i$. Now we define the quasigroup (Q_1, \circ) where $Q_1 = \mathbb{Z}_n$ and $i \circ j = \sigma(i + j)$ for every $i, j \in Q_1$. This quasigroup is an idempotent commutative quasigroup.

Let n=2k and consider the additive group $(\mathbb{Z}_n,+)$. In this case for each $i, 1 \leq i \leq k$, i+i=(i+k)+(i+k)=2i. We consider a permutation σ on the set $\{1,2,\ldots,n\}$ such that for each $i, 1 \leq i \leq k$, $\sigma(2i)=i$. Now we define the quasigroup (Q_2,\circ) where $Q_2=\mathbb{Z}_n$

and $i \circ j = \sigma(i+j)$ for every $i, j \in Q_2$. This quasigroup is a half-idempotent commutative quasigroup.

A design with parameters $t - (n, k, \lambda)$ is an ordered pair (S, \mathcal{B}) , where S is a set of n points or symbols and \mathcal{B} is a family of k-subsets of S called blocks, such that every t elements of S occur together in exactly λ blocks of \mathcal{B} . When $\lambda = 1$, it is called a Steiner system, and when k = 3, it is called a triple system. A design with parameters t = 2, k = 3 and k = 1 with k = 1 points is called a Steiner triple system of order k = 1, denoted by k = 1.

It is known that a Steiner triple system of order n exists if and only if $n \equiv 1, 3 \pmod{6}$ [7].

The Bose Construction: $n \equiv 3 \pmod{6}$.

Let n = 6k + 3 and (Q, \circ) be an idempotent commutative quasigroup of order 2k + 1 and define $S = Q \times \{1, 2, 3\}$. We denote an ordinary element of S by x_i , where $x \in Q$ and $i \in \{1, 2, 3\}$ and define \mathcal{B} to contain the following two types of triples:

```
Type 1: for 1 \le i \le 2k + 1, \{i_1, i_2, i_3\} \in \mathcal{B},
Type 2: for 1 \le i < j \le 2k + 1, \{i_1, j_1, (i \circ j)_2\},
\{i_2, j_2, (i \circ j)_3\}, \{i_3, j_3, (i \circ j)_1\} \in \mathcal{B}.
```

Then (S, \mathcal{B}) is a Steiner triple system of order 6k + 3 [7].

The Skolem Construction: $n \equiv 1 \pmod{6}$.

Let n = 6k + 1 and (Q, \circ) be a half-idempotent commutative quasigroup of order 2k and define $S = {\infty} \cup (Q \times \{1, 2, 3\})$. We denote an ordinary point in $Q \times \{1, 2, 3\}$ by x_i , where $x \in Q$ and $i \in \{1, 2, 3\}$ and define \mathcal{B} as follows:

```
Type 1: for 1 \le i \le k, \{i_1, i_2, i_3\} \in \mathcal{B},

Type 2: for 1 \le i \le k, \{\infty, (k+i)_1, i_2\},

\{\infty, (k+i)_2, i_3\}, \{\infty, (k+i)_3, i_1\} \in \mathcal{B},

Type 3: for 1 \le i < j \le 2k, \{i_1, j_1, (i \circ j)_2\},

\{i_2, j_2, (i \circ j)_3\}, \{i_3, j_3, (i \circ j)_1\} \in \mathcal{B}.
```

Then (S, \mathcal{B}) is a Steiner triple system of order 6k + 1 [7].

Above we have constructed Steiner triple systems of all orders $n \equiv 1, 3 \pmod{6}$. Although no STS(6k + 5) exists, we can get very close.

A pairwise balanced design or simply PBD is an ordered pair (S, \mathcal{B}) , where S is a finite set of points and \mathcal{B} is a collection of subsets of S called blocks, such that each pair of distinct elements of S occurs together in exactly one block of \mathcal{B} . When |S| = n it is denoted by PBD(n).

For all $n \equiv 5 \pmod{6}$, we produce a PBD of order n with one block of size 5 and others of size 3, called 3-blocks.

The n = 6k + 5 Construction

Let (Q, \circ) be an idempotent commutative quasiqroup of order 2k + 1 and α be the permutation $(1, 2)(3, 4) \dots (2k - 1, 2k)(2k + 1)$. Let $S = \{\infty_1, \infty_2\} \cup (Q \times \{1, 2, 3\})$, we denote an ordinary point in $Q \times \{1, 2, 3\}$ by x_i , where $x \in Q$ and $i \in \{1, 2, 3\}$. Now define \mathcal{B} to contain the following blocks:

```
Type 1: \{\infty_1, \infty_2, (2k+1)_1, (2k+1)_2, (2k+1)_3\} \in \mathcal{B},

Type 2: for 1 \le i \le k, \{\infty_1, (2i-1)_1, (2i-1)_2\}, \{\infty_1, (2i-1)_3, (2i)_1\}, \{\infty_1, (2i)_2, (2i)_3\}, \{\infty_2, (2i-1)_2, (2i-1)_3\}, \{\infty_2, (2i)_1, (2i)_2\}, \{\infty_2, (2i-1)_1, (2i)_3\} \in \mathcal{B},

Type 3: for 1 \le i < j \le 2k+1, \{i_1, j_1, (i \circ j)_2\}, \{i_2, j_2, (i \circ j)_3\}, \{i_3, j_3, (\alpha(i \circ j))_1\} \in \mathcal{B}.
```

Then (S, \mathcal{B}) is a PBD(6k + 5) with exactly one block of size 5 and all others of size 3 [7].

For results in later sections we need some steiner triple systems containing another Steiner triple system, called subsystem.

Theorem A. [2] (i) For every two integers $n, m \equiv 1, 3 \pmod{6}$ such that $n \geq 2m + 1$, there is an STS(n) containing a subsystem STS(m).

(ii) For every two integers $n, m \equiv 5 \pmod{6}$ such that $n \geq 2m + 1$, there is a PBD(n) which contains a PBD(m).

A Steiner quasigroup (Q, \circ) is a commutative quasigroup, where $i \circ i = i$ and $(i \circ j) \circ j = i$, for every $i, j \in Q$ [2].

Given a Steiner triple system, we can construct a steiner quasigroup by setting $x \circ y = z$ when $\{x, y, z\}$ is a block of the design or when x = y = z. Also given a PBD with one block of size 5 and others of size 3 and an idempotent commutative quasigroup of order 5, (Q', \circ') , we can construct an idempotent commutative quasigroup by setting $x \circ y = z$ when $\{x, y, z\}$ is a 3-block of the PBD or when x = y = z; and $x \circ y = x \circ' y$ when x, y are both in the block of size 5. Thus we have the following proposition.

Proposition 1. For every odd integer n, $n \neq 5$, there exists an idempotent commutative quasigroup of order n containing a sub-quasigroup of order 3.

3 b-chromatic number of the Kneser graph

In this section we determine $\varphi(K(2k+1,k))$ for every k and $\varphi(K(n,2))$ for every n.

Theorem 1. For every integer $k \geq 3$,

$$\varphi(K(2k+1,k)) = k+2.$$

Proof. We know that $\Delta(K(2k+1,k)) = k+1$, so by Inequality (1), $\varphi(K(2k+1,k)) \le k+2$. To prove the equality we describe a *b*-coloring of K(2k+1,k) by k+2 colors as follows. For $i, 1 \le i \le k$, we define the color class i to contain the set of vertices

$$\{\{k+1,k+2,\ldots,2k+1\}\setminus\{k+i\}\}\cup\{\{1,2,\ldots,k\}\setminus\{i\}\cup\{k+j\}\mid 1\leq j\leq k+1, j\neq i\},\$$

the color class k+1 contains the set of vertices

$$\{\{k+1, k+2, \dots, 2k\} \cup \{\{1, 2, \dots, k\} \setminus \{j\} \cup \{k+j\} \mid 1 \le j \le k\}$$

and the color class k+2 contains the set $\{\{1,2,\ldots,k\}\}.$

Now we complete the coloring as follows. Let $A \subseteq \{1, 2, ..., 2k+1\}$ be a vertex distinct from the vertices in the color classes above. If $2k+1 \in A$ then we choose an integer $i \in A^c \cap \{1, 2, ..., k\}$ and add A to the color class i. If $2k+1 \notin A$ and $2k \in A$ then we choose an integer $i \in A^c \cap \{1, 2, ..., k\}$, $i \neq k$, and add A to the color class i. If $2k, 2k+1 \notin A$ then we add A to the color class k+2. It is not hard to see that the vertices in each class have mutually nonempty intersections. Hence, such a coloring is a proper coloring.

In this proper coloring the set of vertices $\{\{k+1,k+2,\ldots,2k+1\}\setminus\{k+i\}\mid 1\leq i\leq k+1,\{1,2,\ldots,k\}\}$ is a b-dominating system. Because, the vertex $\{1,2,\ldots,k\}$ is adjacent to all vertices $\{k+1,k+2,\ldots,2k+1\}\setminus\{k+i\},\ 1\leq i\leq k+1$. Moreover, for a fixed integer $i_0,1\leq i_0\leq k+1$, the vertex $\{k+1,k+2,\ldots,2k+1\}\setminus\{k+i_0\}$ is adjacent to the vertices $\{1,2,\ldots,k\}$ and $\{1,2,\ldots,k\}\setminus\{i\}\cup\{k+i_0\},\ 1\leq i\leq k,\ i\neq i_0$ and for $1\leq i_0\leq k$, this vertex is adjacent to the vertex $\{1,2,\ldots,k\}\setminus\{i_0\}\cup\{k+i_0\}$.

In the sequel, we are going to determine $\varphi(K(n,2))$. First we mention some facts, terminology and lemmas which will be used in the proof of the main theorem.

- **Fact 1.** By the definition of STS(n), it is obvious that every Steiner triple system of order n is in fact an edge decomposition of the complete graph K_n into triangles.
- **Fact 2.** Each vertex in K(n,2) which is a 2-subset of the set $\{1,2,\ldots,n\}$ corresponds to an edge in the complete graph K_n with vertex set $\{1,2,\ldots,n\}$. Hence, two vertices of K(n,2) are nonadjacent if and only if the corresponding edges in K_n are adjacent.
- Fact 3. If A is an independent set of vertices in K(n, 2), then either all vertices in A have a common element, say a, or $A = \{\{a,b\}, \{a,c\}, \{b,c\}\}\}$, for some $a,b,c \in \{1,2,\ldots,n\}$. In other words an independent set of vertices in K(n,2) corresponds to a star subgraph with center a or a triangle subgraph in K_n . From now on we call the independent set (color

class) in K(n,2) of the first form *starlike* with center a and the second form *triangular*. Moreover, for simplicity we denote the independent set $\{\{a,b\},\{a,c\},\{b,c\}\}\}$ with $\{a,b,c\}$. Since every proper coloring is a partition of vertices into independent sets of vertices, we can consider every proper coloring of K(n,2) as an edge decomposition of the complete graph K_n into star and triangle subgraphs.

A set of vertices S is called a *dominating set*, whenever every vertex not in S has a neighbor in S. A dominating set S in S is called an *independent dominating set* when the vertices in S are mutually nonadjacent. The following proposition is a fact about dominating sets in Kneser graphs.

Proposition 2. Let $S = \{1, 2, ..., n\}$. If T is a subset of S of size 2k - 1, then the set of all k-subsets of T is an independent dominating set in the K(n, k).

Proof. Let $T \subseteq S = \{1, 2, ..., n\}$, |T| = 2k - 1 and A be a vertex in K(n, k) for which $A \not\subseteq T$. So $|A \cap T| \le k - 1$ and there is a k-subset of T, say B, for which $A \cap B = \emptyset$. Therefore, the vertices A and B are adjacent in K(n, k). Obviously, every two k-subsets of T intersect, so they are not adjacent in K(n, k). The statement follows.

By the proposition above, when a Steiner system with some special parameters exists, we can find a lower bound for the b-chromatic number of K(n, k).

Theorem 2. If (S, \mathcal{B}) is a k - (n, 2k - 1, 1) Steiner system, then $\varphi(K(n, k)) \geq |\mathcal{B}|$.

Proof. Let $\mathcal{B} = \{B_1, B_2, \dots, B_{|\mathcal{B}|}\}$. For each $i, 1 \leq i \leq |\mathcal{B}|$, we define the set of all k-subsets of B_i as the color class i. Since $|B_i| = 2k - 1$, by Proposition 2, each class i is an independent set of vertices, so this partition is a proper coloring of K(n, k). Moreover, by Proposition 2, each class i is a dominating set. Therefore, each element in a color class j has neighbors in all the other color classes. Hence, this partition is a b-coloring of K(n, k) by $|\mathcal{B}|$ colors.

Lemma 1. Assume that c is a proper coloring of K(n,2) and A_1, A_2, \ldots, A_t , $|A_i| \geq 3$, $1 \leq i \leq t$, are the starlike color classes in c, with centers a_1, a_2, \ldots, a_t , respectively. Then c is a b-coloring of K(n,2) if and only if the following conditions hold.

- (i) a_1, a_2, \ldots, a_t are distinct,
- (ii) every 2-subset of the set $\{a_1, a_2, \ldots, a_t\}$ is in $\bigcup_{k=1}^t A_k$, and
- (iii) for each $i, 1 \le i \le t$, there exists an element $x_i \notin \{a_1, a_2, \dots, a_t\}$, where $\{a_i, x_i\} \in A_i$.

Proof. Assume that c is a b-coloring of K(n,2). Suppose that $a_i = a_j$ for some $i \neq j$. Hence, $A_i \cup A_j$ is an independent set in K(n,2). This means that no vertex in the color

class A_i has a neighbor in the color class A_j , which contradicts that c is a b-coloring. So $a_i \neq a_j$ for all $1 \leq i \neq j \leq t$.

Now consider an arbitrary 2-subset $\{a_i, a_j\}$ of the set $\{a_1, a_2, \ldots, a_t\}$. If $\{a_i, a_j\} \notin \bigcup_{k=1}^t A_k$, then this vertex is in a triangular color class, say $\{a_i, a_j, b\}$. In this color class, the vertices $\{a_i, a_j\}$ and $\{a_i, b\}$ are not b-dominating vertices because they have no neighbor in the color class A_i . The vertex $\{a_j, b\}$ also is not a b-dominating vertex since it has no neighbor in the color class A_j . This is a contradiction. Thus $\{a_i, a_j\} \in \bigcup_{k=1}^t A_k$, for all i, j. Since in each starlike color class A_i we must have a b-dominating vertex, the property (iii) is obviously concluded.

Now assume that c is a proper coloring of K(n,2) that satisfies (i), (ii) and (iii). It is enough to show that in each color class of c, there is a b-dominating vertex. In the starlike color classes A_i , $1 \le i \le t$, the vertex $\{a_i, x_i\}$ is a b-dominating vertex, because in each color class A_j , $j \ne i$, there exists a vertex $\{a_j, y\}$ such that $y \ne a_i, x_i$. Moreover, by Proposition 2 each triangular color class is a dominating set. Therefore, the vertex $\{a_i, x_i\}$ has neighbors in all color classes. On the other hand for each triangular color class $\{a, b, c\}$, by (ii), we have $|\{a, b, c\} \cap \{a_1, a_2, \dots, a_t\}| \le 1$. Hence there exists at least two elements, say a and b, with $a, b \notin \{a_1, a_2, \dots, a_t\}$. Since $|A_i| \ge 3$, the vertex $\{a, b\}$ has neighbors in all starlike color classes. Furthermore, by Proposition 2 each triangular color class is a dominating set. So the vertex $\{a, b\}$ is a b-dominating vertex.

Proposition 3. If
$$n \equiv 5 \pmod{6}$$
 then $\varphi(K(n,2)) \ge \frac{n(n-1)}{6} - \frac{1}{3}$.

Proof. If $n \equiv 5 \pmod{6}$ then by the 6k + 5 construction given in Section 2, we have a PBD(n) with one block of size 5, say $\{1, 2, 3, 4, 5\}$, and 3-blocks otherwise. In this construction, number of 3-blocks is $\frac{n(n-1)}{6} - \frac{10}{3}$. Now we provide a b-coloring of K(n, 2). We consider each 3-block as a triangular color class and define the other color classes as $\{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}\}, \{\{2, 3\}, \{2, 4\}, \{2, 5\}\},$ and $\{\{3, 4\}, \{3, 5\}, \{4, 5\}\}.$ This is an edge decomposition of the complete graph K_n into stars and triangles, so by Fact 3 this is a proper coloring of K(n, 2). Furthermore, this coloring satisfies the conditions of Lemma 1 and so is a b-coloring of K(n, 2). Hence

$$\varphi(K(n,2)) \ge \frac{n(n-1)}{6} - \frac{10}{3} + 3 = \frac{n(n-1)}{6} - \frac{1}{3}.$$

Theorem 3. For every positive integer $n, n \neq 8$, we have:

$$\varphi(K(n,2)) = \begin{cases} \left\lfloor \frac{n(n-1)}{6} \right\rfloor & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{(n-1)(n-2)}{6} \right\rfloor + 3 & \text{if } n \text{ is even.} \end{cases}$$

Proof. We prove the theorem for two cases n is even and n is odd.

Case 1. n is even.

First we find an upper bound for $\varphi(K(n,2))$. Let c be a b-coloring of K(n,2) by φ colors and t starlike color classes with centers $1, \ldots, t$ of sizes n_1, \ldots, n_t , respectively. Then,

$$|V(K(n,2))| = \binom{n}{2} = \sum_{i=1}^{t} n_i + 3(\varphi - t).$$
 (2)

By Fact 3, the coloring c corresponds to an edge decomposition of the complete graph K_n into stars and triangles. For every vertex $i \in V(K_n)$, the number of edges incident to i in the triangles of the decomposition is even. Since n is even, there is an edge incident to i in a star subgraph in the decomposition. Therefore, for each i satisfying $t+1 \le i \le n$ there is a vertex in K(n,2) containing i in the starlike color classes 1 to t. Moreover, by Lemma 1, every 2-subset of the set $\{1,2,\ldots,t\}$ is in the starlike color classes. Therefore, we have

$$\sum_{i=1}^{t} n_i \ge (n-t) + \frac{t(t-1)}{2} = n + \frac{t(t-3)}{2}.$$

Hence,

$$\binom{n}{2} \ge n + \frac{t(t-9)}{2} + 3\varphi.$$

So

$$\varphi \le \frac{n(n-3)}{6} - \frac{t(t-9)}{6}.$$

The minimum of t(t-9) occurs in t=4 and t=5. Therefore,

$$\varphi \le \left\lfloor \frac{n(n-3)}{6} + \frac{10}{3} \right\rfloor = \left\lfloor \frac{(n-1)(n-2)}{6} \right\rfloor + 3. \tag{3}$$

Now we find a lower bound for $\varphi(K(n,2))$.

Case 1.1. n = 6k.

We consider an STS(6k-3) with the Bose construction. As shown in Section 2, in this construction there are 2k-1 disjoint blocks of Type 1. We denote these blocks by $\{a_1,b_1,c_1\},\{a_2,b_2,c_2\},\ldots,\{a_{2k-1},b_{2k-1},c_{2k-1}\}$. By Fact 1, this STS is an edge decomposition of the complete graph K_{n-3} into triangles. Now we add three new points a,b,c and then construct a proper coloring of K(n,2) by $\varphi_0 = \frac{n(n-3)}{6} + 3$ colors or equivalently an edge decomposition of the complete graph K_n into φ_0 stars and triangles.

We consider every block of Type 2 in the STS(6k-3) as one triangular color class. The other color classes are defined as follows. Color class A consists of

$${a, c_1}, {a, c_2}, \dots, {a, c_{2k-1}}, {a, b}.$$

Color class B consists of

$${b, a_1}, {b, a_2}, \dots, {b, a_{2k-1}}, {b, c}.$$

Color class C consists of

$$\{c, b_1\}, \{c, b_2\}, \dots, \{c, b_{2k-1}\}, \{c, a\}.$$

Also for each $i, 1 \le i \le 2k-1$, we define three triangular color classes

$${a, a_i, b_i}, {b, b_i, c_i}, {c, c_i, a_i}.$$

In the STS(6k-3) the number of blocks is $\frac{(n-3)(n-4)}{6}$, of which $2k-1=\frac{n-3}{3}$ blocks are of Type 1. Therefore, the number of color classes in the given coloring above are $\frac{(n-3)(n-4)}{6}-\frac{n-3}{3}+3+3\frac{(n-3)}{3}=\frac{n(n-3)}{6}+3=\varphi_0$.

For n=6, it is obvious that this coloring is a b-coloring of K(6,2) by 6 colors. For $k\geq 2$, we have only three starlike color classes and this coloring satisfies the conditions of Lemma 1. Hence, the given coloring is a b-coloring of K(n,2). Therefore, $\varphi\geq \frac{n(n-3)}{6}+3=\left|\frac{(n-1)(n-2)}{6}\right|+3$.

Case 1.2. $n = 6k + 2, k \ge 2, \text{ or } n = 6k + 4.$

We consider an STS(n-1) with the Bose or the Skolem construction given in Section 2. Moreover, in this construction we consider three disjoint blocks $\{a,b,c\}$, $\{a',b',c'\}$, and $\{a'',b'',c''\}$ in which $\{a,a',a''\}$ is a block. Now we add a new point d and construct a b-coloring of K(n,2) by $\varphi_0 = \frac{(n-1)(n-2)}{6} + 3$ colors as follows.

We consider every block in STS(n-1) except four blocks $\{a,b,c\}$, $\{a',b',c'\}$, $\{a'',b'',c''\}$, and $\{a,a',a''\}$ as a color class. Moreover, we add the following color classes. Color class A consists of $\{a,b\}$, $\{a,c\}$, $\{a,a'\}$. Color class B consists of $\{a',b'\}$, $\{a',c'\}$, $\{a',a''\}$. Color class C consists of $\{a'',b''\}$, $\{a'',c''\}$, $\{a'',a''\}$. Color class D consists of $\{a,x\}$, $x \notin \{b,b',b'',c,c',c''\}$. Finally, we add three triangular color classes $\{b,c,d\}$, $\{b',c',d\}$ and $\{b'',c'',d\}$. The number of these color classes is $\varphi_0 = \frac{(n-1)(n-2)}{6} - 4 + 4 + 3 = \frac{(n-1)(n-2)}{6} + 3$.

We have only four starlike color classes and this coloring satisfies the conditions of Lemma 1. Hence, the given coloring is a *b*-coloring of K(n,2). Therefore, $\varphi \ge \left|\frac{(n-1)(n-2)}{6}\right| + 3$.

Case 2. n is odd.

First we find an upper bound for $\varphi(K(n,2))$. Let c be a b-coloring of K(n,2) by $\varphi = \varphi(K(n,2))$ colors and t starlike color classes with centers $1, \ldots, t$ of sizes n_1, \ldots, n_t , respectively. Then,

$$|V(K(n,2))| = \binom{n}{2} = \sum_{i=1}^{t} n_i + 3(\varphi - t).$$
 (4)

By Lemma 1, every 2-subset of the set $\{1, 2, ..., t\}$ is in the color classes 1 to t. Moreover, in the color class i we must have a b-dominating vertex, say $\{i, x\}$, where $x \in \{t+1, t+2, ..., n\}$. Hence,

$$\sum_{i=1}^{t} n_i \ge \frac{t(t-1)}{2} + t = \frac{t(t+1)}{2}.$$

Therefore,

$$\binom{n}{2} \geq 3\varphi + \frac{t(t+1)}{2} - 3t = 3\varphi + \frac{t(t-5)}{2}.$$

So

$$\varphi \le \frac{n(n-1)}{6} - \frac{t(t-5)}{6}.$$

The minimum of the expression t(t-5) occurs in t=2 and t=3, so $\varphi \leq \frac{n(n-1)}{6}+1$.

Now we prove that $\varphi \leq \frac{n(n-1)}{6}$. Suppose $\varphi = \frac{n(n-1)}{6} + 1$, hence, t = 2 or t = 3. For every vertex $i \in V(K_n)$, the number of edges incident to i in the triangles of the decomposition is even. Since n is odd, the number of edges incident to i in the stars of the decomposition is also even. Equivalently, in the b-coloring of K(n,2) the number of vertices containing i in the starlike color classes are even numbers.

If t=3 then by Lemma 1 (ii) and (iii), the vertices $\{1,2\}$, $\{1,3\}$ and $\{2,3\}$ in K(n,2) are in the starlike color classes with centers 1, 2, or 3 and for every $i, 1 \le i \le 3$, there is a vertex $\{i,x\}$ in the starlike color classes which $x \ne 1,2,3$. So by the discussion above, for every $i, 1 \le i \le 3$, at least two vertices $\{i,x\}$ and $\{i,y\}$, where $x,y\ne 1,2,3$, are in the starlike color classes. Therefore, $\sum_{i=1}^3 n_i \ge 3 + 2 \times 3 = 9$. So by Relation (4), $\binom{n}{2} \ge 9 + 3(\varphi - 3) = 3\varphi$. Hence, $\varphi \le \frac{n(n-1)}{6}$, which contradicts our assumption.

Now let t = 2. By Lemma 1 (ii) and (iii), the starlike color class with center 1 contains vertex $\{1,2\}$ and at least one more vertex, say $\{1,3\}$. By the discussion above, if the vertex $\{1,i\}$ in K(n,2) is in the starlike color class with center 1, then the vertex $\{2,i\}$ is in the starlike color class with center 2. If the vertices $\{1,2\}$, $\{1,3\}$ and $\{2,3\}$ are the only vertices in the starlike color classes, then there is no b-dominating vertex in these classes. Therefore, the starlike color class with center 1 and consequently, the starlike color class with center 2 each one contains at least more two vertices. Hence, $\sum_{i=1}^{2} n_i = 1 + 2 \times 3 = 7$. Therefore, by Relation (4)

$$\binom{n}{2} \ge 7 + 3(\varphi - 2) = 3\varphi + 1.$$

So $\varphi \leq \frac{n(n-1)}{6}$, which contradicts our assumption.

Therefore, $\varphi \leq \left\lfloor \frac{n(n-1)}{6} \right\rfloor$. If $n \equiv 1, 3 \pmod 6$ then an STS(n) exists. Therefore, by Theorem 2, $\varphi \geq \frac{n(n-1)}{6}$. If $n \equiv 5 \pmod 6$ then by Proposition 3, $\varphi \geq \frac{n(n-1)}{6} - \frac{1}{3}$. Hence, $\varphi = \left\lfloor \frac{n(n-1)}{6} \right\rfloor$.

Since the Petersen graph is Kneser graph K(5,2), we get the following result.

Corollary 1. If P is the Petersen graph, then $\varphi(P) = 3$.

Kneser graph K(8,2) is an exception.

Proposition 4. $\varphi(K(8,2)) = 9$.

Proof. Consider the notations in the proof of Theorem 3 for Case 1. By Inequality (3), we have $\varphi(K(8,2)) \leq 10$ and the equality holds if and only if t=4 or t=5. Assume that a b-coloring of K(8,2) exists with 10 colors and A_1, A_2, \ldots, A_t are starlike color classes with centers $1, 2, \ldots, t$, respectively.

If t=4 then by Equality (2), $\sum_{i=1}^4 n_i = 10$. By Lemma 1 (ii) and (iii), every 2-subset of the set $\{1,2,3,4\}$ is in $\bigcup_{i=1}^4 A_i$ and for each $i,1 \leq i \leq 4$, there exists $x_i \notin \{1,2,3,4\}$, where $\{i,x_i\} \in A_i$. On the other hand n-t and the number of vertices containing i in triangular color classes are even numbers. So there are at least two vertices $\{i,x_i\},\{i,y_i\}$ in the starlike color classes, where $x_i,y_i \notin \{1,2,3,4\}$. Hence, $\sum_{i=1}^4 n_i = 10 \geq 6 + 4 \times 2 = 14$, which is contradiction.

If t=5 then by Equality (2), $\sum_{i=1}^{5} n_i = 13$. On the other hand, similar to the above by Lemma 1 (ii) and (iii), $\sum_{i=1}^{5} n_i = 13 \ge 10 + 5$, a contradiction. So $\varphi(K(8,2)) \le 9$.

Now we provide a b-coloring of K(8,2) by 9 colors. First we consider an STS(7) and delete one point of it. What remains is a decomposition of K_6 into 4 triangles and a 1-factor called $F = \{\{a_1, b_1\}, \{a_2, b_2\}, \{a_3, b_3\}\}$. Now we add two new points a and b and define the color classes as all triangles in the decomposition above in addition to the triangular color classes $\{a, a_1, b_1\}, \{a, a_2, b_2\}$ and $\{b, a_3, b_3\}$ and the starlike color classes $\{\{a, a_3\}, \{a, b_3\}, \{a, b\}\}$ and $\{\{b, a_1\}, \{b, b_1\}, \{b, a_2\}, \{b, b_2\}\}$. This is a proper coloring of K(8, 2) satisfying the conditions of Lemma 1, so is a b-coloring by 9 colors as desired. \Box

By Relation (1), $\varphi(K(n,k)) \leq \Delta + 1 = \binom{n-k}{k} + 1$. Hence $\varphi(K(n,k)) = O(n^k)$. Theorems 2 and 3 motivate us to propose the following conjecture.

Conjecture 1. For every integer k, we have $\varphi(K(n,k)) = \Theta(n^k)$.

4 b-continuity of the Kneser graph K(n,2)

In this section we prove that K(n,2) is b-continuous when $n \geq 17$.

Lemma 2. (a) Let n = 6k + 1 or n = 6k + 3 and (S, \mathcal{B}) be an STS(n). Also let T be a subset of $S = \{1, 2, ..., n\}$ and t be the number of blocks in \mathcal{B} on the points of T, such that:

- (i) $|T| = m \ge 3$,
- (ii) for each $i \in T$, there exists $j \in T$ such that the third point of the block containing both i, j is not in T.

Then there exists a b-coloring of K(n,2) by $\varphi - (\frac{m(m-3)}{2} - 2t)$ colors, where $\varphi = \varphi(K(n,2))$.

- (b) Let n = 6k+5 and (S, \mathcal{B}) be a PBD(n) with one block of size 5, say $\{1, 2, n, n-1, n-2\}$ and the others 3-blocks. Also let T be a subset of $S = \{1, 2, ..., n\}$ and t be the number of 3-blocks in \mathcal{B} on the points of T, such that:
- (i) $|T| = m \ge 3$,
- (ii) $1, 2 \in T \text{ and } n-2, n-1, n \notin T$,
- (iii) for each $i \in T$, $i \neq 1, 2$, there exists $j \in T$ such that the third point of the 3-block containing both i, j is not in T.

Then there exists a b-coloring of K(n,2) by $\varphi - (\frac{m(m-3)}{2} - 2t + 1)$ colors, where $\varphi = \varphi(K(n,2))$.

Proof. Let c be the b-coloring of K(n,2) by φ colors corresponding to STS(n) or PBD(n) (see Theorem 2 and Proposition 3). In the case n=6k+5, we take the centers of starlike color classes as 1 and 2.

Assume $T = \{1, 2, ..., m\}$, consider the *b*-coloring *c* and delete all triangular color classes containing a vertex $\{i, j\} \subseteq T$.

- (a) Since each vertex $\{i,j\}\subseteq T$ is contained in a triangular color class and there are exactly t triangles on the points of T, the number of deleted color classes (triangles) is $\frac{m(m-1)}{2}-3t+t$. Now we define m new color classes as follows. New color class $i,3\leq i\leq m-2$, contains the set of vertices $\{\{i,j\}\mid i+1\leq j\leq m\}$. Also new color classes 1,2,m-1 and m contain respectively the sets $\{\{1,j\}\mid 2\leq j\leq m-2\}, \{\{2,j\}\mid 3\leq j\leq m-1\}, \{\{m-1,m\},\{m-1,1\}\}$ and $\{\{m,1\},\{m,2\}\}$. Moreover, if a vertex $\{i,x\}$, where $i\in T$ and $x\notin T$ is in a deleted color class, then we add this vertex to the color class i. These m new color classes together with the old color classes give us a new proper coloring of K(n,2) by $\varphi-(\frac{m(m-1)}{2}-2t)+m$ colors.
- (b) Since each vertex $\{i,j\}\subseteq T$ except $\{1,2\}$ is contained in a triangular color class and there are exactly t triangular color classes on the points of T, the number of deleted triangles is $\frac{m(m-1)}{2}-1-3t+t$. Now we define m-2 new color classes as follows. Color class $i, 3 \leq i \leq m$, contains the set of vertices $\{\{i,j\} \mid i+1 \leq j \leq m\} \cup \{\{i,1\},\{i,2\}\}$. Moreover, if a vertex $\{i,x\}$, where $i \in T$ and $x \notin T$ is in a deleted color class, then we add

this vertex to the color class i. These m-2 new color classes together with the old color classes give us a new proper coloring by $\varphi - (\frac{m(m-1)}{2} - 1 - 2t) + m - 2$ colors.

The obtained colorings in (a) and (b) satisfy the conditions of Lemma 1, so they are b-colorings.

Lemma 3. Let $n \ge 13$ be an odd integer and let $k = \lfloor \frac{n}{6} \rfloor$. For every odd integer m, $5 \le m \le k+5$ and for every integer t, $0 \le t \le \frac{3m-11}{2}$, where $(m,t) \ne (5,2), (7,5), (k+5,0)$, there exists an STS(n) or PBD(n) and a set T satisfying the conditions of Lemma 2.

Proof. Let $l = \lfloor \frac{n}{3} \rfloor$. Depending on n, using the Bose construction, the Skolem construction or the 6k + 5 construction given in Section 2 and the quasigroups of Example 1, construct an STS(n) or a PBD(n).

If t = 0, then it is easy to find a set T with parameters (m, t). Assume $5 \le m \le k + 5$ and m is odd.

(a) If $1 \le t \le \frac{m-5}{2}$, then define

$$T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le t\} \cup \{j_1 \mid t+1 \le j \le m-4-t\} \cup \{(\sigma(l))_2, 1_3, (\sigma^{-1}(k+2)-1)_3\}.$$

(b) If $\frac{m-5}{2} < t < m-5$, then define

$$T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-5}{2}\} \cup \{(\sigma(l))_2, (\sigma(2(m-5-t)))_2, (\sigma(m-5))_2, (\sigma(2l-m+5))_2\}.$$

(c) If $m-5 \le t < 3(\frac{m-5}{2})$, then define

$$T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-5}{2}\} \cup \{(\sigma(l))_2, (\sigma(1))_2, (\sigma(3(m-5)-2t))_2, (\sigma(2l-m+5))_2\}.$$

(d) If $3(\frac{m-5}{2}) \le t \le 2m - 11$, then define

$$T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-5}{2}\} \cup \{(\sigma(l))_2, (\sigma(1))_2, (\sigma(l-1))_2, (\sigma(4(m-5)-2t))_2\}.$$

The set T given above satisfies the conditions of Lemma 2 (with an appropriate renaming of elements of S). If $m \geq 11$ then $2m-11 \geq \frac{3m-11}{2}$, hence, for each $11 \leq m \leq k+5$ and $0 \leq t \leq \frac{3m-11}{2}$, we are done. Moreover, by the construction above there exists such a set T for $(m,t)=(5,0), (m=7,0 \leq t \leq 3), (m=9,0 \leq t \leq 7)$. For (m,t)=(5,1), let $T=\{1_1,(l-1)_1,(\sigma(l))_2,1_2,(l-1)_2\}$. For (m,t)=(7,4), let $T=\{1_1,(l-1)_1,2_1,(l-2)_1,(\sigma(l))_2,(\sigma(l-1))_2\}$.

Now we construct a set T with parameters (m,t)=(9,8). Since $m \le k+5$, we have $n \ge 25$. Now if $n \equiv 1,3 \pmod 6$, then by Theorem A there is an STS(n) containing

an STS(9) on the set $T_0 = \{1, 2, ..., 9\}$. So the set $T = T_0 \cup \{10\} - \{9\}$ is the desired set with parameters (m, t) = (9, 8). If $n \equiv 5 \pmod{6}$, then we consider an idempotent commutative quasigroup containing a sub-quasigroup of order 3 (see Proposition 1). Without loss of generality we can assume that $\{1, 2, 3\}$ is the sub-quasigroup of order 3. Then by applying this quasigroup to the 6k + 5 construction (see Section 2), we construct a PBD(n) and define $T = \{\infty_1, \infty_2, 3_1, i_1, i_2, i_3 \mid i = 1, 2\}$. The set T is the desired set (with an appropirate renaming of elements of S).

Lemma 4. Let $n \ge 13$ be an odd integer and $k = \lfloor \frac{n}{6} \rfloor$. For every even integer m, $4 \le m \le k+5$ and every integer t, $0 \le t \le m-4$, there exists an STS(n) or PBD(n) and a set T satisfying the conditions of Lemma 2. Moreover, when $n \ge 19$ and $n \ne 6k+5$ such an STS and a set T exist for $(m,t) \in \{(6,4),(8,8)\}$,

Proof. Let $l = \lfloor \frac{n}{3} \rfloor$. Consider the STS(n) or PBD(n) as in the proof of Lemma 3.

If t = 0, then it is easy to find a set T with parameters (m, t). Assume $4 \le m \le k + 5$ and m is even.

(a) If $1 \le t \le \frac{m-4}{2}$, then define

$$T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le t\} \cup \{j_1 \mid t+1 \le j \le m-4-t\} \cup \{(\sigma(l))_2, 1_3, (\sigma^{-1}(k+2)-1)_3\}.$$

(b) If $\frac{m-4}{2} < t < m-4$, then define

$$T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-4}{2}\} \cup \{(\sigma(l))_2, (\sigma(2(m-4-t)))_2, (\sigma(m-4))_2\}.$$

(c) If t = m - 4, then define

$$T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-4}{2}\}$$
$$\{(\sigma(l))_2, (\sigma(1))_2, (\sigma(m-4))_2\}.$$

The set T given above satisfies the conditions of Lemma 2 (with an appropirate renaming of elements of S). Now, assume $n \geq 19$ and $n \neq 6k + 5$, we construct sets T with parameters (m,t) = (6,4), (8,8). By Theorem A there is an STS(n) containing the STS(7) on points $\{1,2,\ldots,7\}$. Now let $T = \{1,2,\ldots,6\}$, it is clear that T is a set satisfying the conditions of Lemma 2 with parameters (m,t) = (6,4). Also there is an STS(n) containing the STS(9) on points $\{1,2,\ldots,9\}$. Now let $T = \{1,2,\ldots,8\}$, it is clear that T is a set satisfying the conditions of Lemma 2 with parameters (m,t) = (8,8).

Theorem 4. For every integer $n, n \ge 17$, Kneser graph K(n, 2) is b-continuous.

Proof. We prove the theorem for two cases n odd and n even. Let X(n) be the set of numbers x for which there is a b-coloring of K(n,2) by x colors.

Case 1. n is odd.

In this case we prove the theorem by induction on n. Assume for an odd integer n, $n \geq 19$, that K(n-2,2) is b-continuous. Therefore, by the definition and Theorem 3, for every integer $x, n-4 \leq x \leq \left\lfloor \frac{(n-2)(n-3)}{6} \right\rfloor$, we have $x \in X(n-2)$. We consider a b-coloring of K(n-2,2) with x colors and provide a b-coloring of K(n,2) by x+2 colors. For this purpose, we add two new color classes $\{\{n,i\} \mid 1 \leq i \leq n-1\}, \{\{n-1,i\} \mid 1 \leq i \leq n-2\}$. This coloring satisfies the conditions of Lemma 1, so it is a b-coloring. To prove the b-continuity of K(n,2) it is enough to prove $x \in X(n)$ for every integer $x, 3 + \left\lfloor \frac{(n-2)(n-3)}{6} \right\rfloor \leq x \leq \left\lfloor \frac{n(n-1)}{6} \right\rfloor = \varphi$. For this purpose, let $\psi = \left\lfloor \frac{n(n-1)}{6} \right\rfloor - \left\lfloor \frac{(n-2)(n-3)}{6} \right\rfloor - 3$.

Claim. For every integer x, $1 \le x \le \psi$, we have $\varphi - x \in X(n)$.

Proof of claim. Let \mathcal{A} be the set of all positive integers x such that there exists a set $T \subseteq \{1, 2, \ldots, n\}$ which satisfies the assumptions of Lemma 2 with parameters (m, t), and $\frac{m(m-3)}{2} - 2t = x$.

Case 1.1
$$n = 6k + 1$$
 or $n = 6k + 3, k \ge 3$.

By Lemma 2(a), it is enough to show that for every $x,\ 1\leq x\leq \psi,\ x\in \mathcal{A}.$ By Lemma 4 there exists a set T with parameters $(m,t)=(6,4),\ (m,t)=(8,8).$ Therefore, $1,4\in \mathcal{A}.$ Moreover, by Lemma 3, for every odd integer $m,\ 5\leq m\leq k+5,$ we have $\frac{m(m-3)}{2},\frac{m(m-3)}{2}-2,\ldots,\frac{m(m-3)}{2}-(3m-11)=\frac{(m-3)(m-6)}{2}+2\in \mathcal{A}.$ Also by Lemma 4, for every even integer $m,\ 4\leq m\leq k+5,$ we have $\frac{m(m-3)}{2},\frac{m(m-3)}{2}-2,\ldots,\frac{m(m-3)}{2}-(m-4)=\frac{(m-1)(m-4)}{2}+2\in \mathcal{A}.$ Therefore, $1,2,3,4,\ldots,\frac{(k+3)k}{2}+1\in \mathcal{A}.$ Since $\frac{(k+3)k}{2}+1\geq 4k-2\geq \psi,$ we are done.

Case 1.2. n = 6k + 5.

By Lemma 2(b), it is enough to show that for every integer x, $0 \le x \le \psi - 1$, $x \in \mathcal{A}$. All things in Case 1.1 hold in this case as well, except the set T with parameters (m,t)=(6,4),(8,8). So we have $\{1,2,3,\ldots,\psi-1\}-\{1,4\}\subseteq\mathcal{A}$. Also there exists a set T with parameters (m,t)=(3,0) satisfying Lemma 2(b). Thus $0 \in \mathcal{A}$.

To complete the proof, we show that $\varphi-2$ and $\varphi-5$ are in X(n). Consider the quasigroup of Example 1 and construct a PBD(n) using the 6k+5 construction. Let c be the b-coloring of K(n,2) corresponding to this PBD by φ colors (see Proposition 3) where ∞_1, ∞_2 are the centers of the starlike color classes. Now let $T=\{\infty_1, \infty_2, (2k+1)_1, 2_1, 1_2\}$, delete all triangular color classes containing a vertex $\{i,j\}\subseteq T$ and define 3 new starlike color classes with centers $(2k+1)_1, 2_1, 1_2$. Deleted color classes are triangles $\{(2k+1)_1, 2_1, 1_2\}, \{\infty_1, 2_1, 1_3\}, \{\infty_2, 2_1, 2_2\}, \{\infty_1, 1_2, 1_1\}$ and $\{\infty_2, 1_2, 1_3\}$. Thus new coloring is a b-coloring by $\varphi-5+3$ colors. Now let $T=\{\infty_1, \infty_2, 2_1, 2_2, 2_3, (2k+1)_2, (2k+1)_3\}$, delete all triangular color classes containing a vertex $\{i,j\}\subseteq T$ and define 5 new starlike

color classes with centers $2_1, 2_2, 2_3, (2k+1)_2, (2k+1)_3$. Since we have deleted 10 triangular color classes, we obtain a *b*-coloring of K(n,2) by $\varphi - 5$ colors. So the claim is proved.

To complete the induction we need to show that K(17,2) is b-continuous. By Lemmas 3 and 4, there is a set T satisfying the conditions of Lemma 2 with parameters (m,t) shown in Table 1. The values in the table are $x=\frac{m(m-3)}{2}-2t+1$. Therefore, by Lemma 2(b) for the values x given in Table 1, $\varphi(K(17,2))-x=45-x\in X(17)$. Moreover, as it is proved in Cases 1.2, $\varphi(K(17,2))-2$ and $\varphi(K(17,2))-5$ are in X(17). Hence, for every $i, 34 \le i \le 45, i \in X(17)$.

Similarly, by Lemma 2(a) for the values x given in Table 1, $\varphi(K(15,2)) - x - 1 = 34 - x \in X(15)$. Therefore, for every i, $25 \le i \le 35$ and $i \ne 31, 34$, $i \in X(15)$. By a similar discussion, for every i, $16 \le i \le 26$ and $i \ne 22, 25$, $i \in X(13)$. We have already proved that $x \in X(n-2)$ implies $x+2 \in X(n)$. Therefore, for every i, $20 \le i \le 37$ and $i \ne 26, 33$, $i \in X(17)$. By Lemma 3, for n = 13, 15, 17 there is a set $T \subseteq \{1, 2, \ldots, n\}$ with parameters (m, t) = (9, 8). Thus, by Lemma 2, $33 \in X(17)$, $24 \in X(15)$ and $15 \in X(13)$, so $26, 19 \in X(17)$. Finally, for n = 13 there is a set T with parameters (m, t) = (7, 1), (9, 7), so $14, 13 \in X(13)$, thus $18, 17 \in X(17)$. We can easily see that $16 \in X(17)$ by constructing a b-coloring with 16 starlike color classes. This assures b-continuity of K(17, 2).

$t \diagdown m$	3	4	5	6	7
0	1	3	6	10	_
1			4	8	13
2				6	11
3					9
4					7

Table 1: The values are $\frac{m(m-3)}{2} - 2t + 1$.

Case 2. n is even.

Let $n \geq 18$ be an even integer. Then K(n-1,2) is b-continuous and $x \in X(n-1)$ holds whenever $n-3 \leq x \leq \left\lfloor \frac{(n-1)(n-2)}{6} \right\rfloor$. Now we add a new color class $\{\{n,i\} \mid 1 \leq i \leq n-1\}$ to this coloring. This is a b-coloring of K(n,2) by x+1 colors. Hence $y \in X(n)$ for every integer y with $n-2 \leq y \leq \left\lfloor \frac{(n-1)(n-2)}{6} \right\rfloor + 1 = \varphi - 2$. It is enough to prove $\varphi - 1 = \left\lfloor \frac{(n-1)(n-2)}{6} \right\rfloor + 2 \in X(n)$. For this purpose, consider the b-coloring of K(n,2) by φ colors in the proof of Theorem 3. Assume that $\{a,x,y\}$ and $\{b,x,z\}$ are two triangular color classes, where a and b are the centers of some starlike color classes, A and B. We delete them and add a new starlike color class $\{\{x,y\},\{x,z\},\{x,a\},\{x,b\}\}$. Finally, we add vertex $\{a,y\}$ to the starlike color class A and the vertex $\{b,z\}$ to the starlike color class B. The obtained coloring satisfies the conditions of Lemma 1 therefore, is a b-coloring of K(n,2) by $\varphi - 1$ colors.

References

- [1] D. Barth, J. Cohen and T. Faik, On the b-continuity property of graphs, Discrete Applied Mathematics 155, (2007) no. 13, 1761-1768.
- [2] C.J. Colbourn and A. Rosa, Triple Systems, Oxford Science Publications, (1999).
- [3] T. Faik, About the b-continuity of graphs, Electronic Notes in Discrete Mathematics 17, (2004) 151-156.
- [4] R. W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics 91, (1999) 127-141.
- [5] R. Javadi and B. Omoomi, On b-coloring of cartesian product of graphs, to appear in Ars Combinatoria.
- [6] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Mathematics **256**, (2002) 267-277.
- [7] C.C. Lindner and C.A. Rodger, Design Theory, CRC press, (1997).
- [8] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, Journal of Combinatorics Theory Ser. A 25, (1978) 319-324.