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Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of G such
that in each color class there exists a vertex having neighbors in all the other
k − 1 color classes. The b-chromatic number of a graph G, denoted by ϕ(G),
is the maximum k for which G has a b-coloring by k colors. It is obvious
that χ(G) ≤ ϕ(G). A graph G is b-continuous if for every k between χ(G)
and ϕ(G) there is a b-coloring of G by k colors. In this paper, we study the
b-coloring of Kneser graphs K(n, k) and determine ϕ(K(n, k)) for some values
of n and k. Moreover, we prove that K(n, 2) is b-continuous for n ≥ 17.

Key Words: b-chromatic number, b-coloring, dominating coloring, b-continuous graph,

Kneser graph, Steiner triple system.

1 Introduction

Let G be a graph without loops and multiple edges with vertex set V (G) and edge set

E(G). A proper k-coloring of G is a function c defined from V (G) onto a set of colors

C = {1, 2, . . . , k} such that every two adjacent vertices have different colors. In fact, for

every i, 1 ≤ i ≤ k, the set c−1(i) is a nonempty independent set of vertices which is

called color class i. The minimum cardinality k for which G has a proper k-coloring is the

chromatic number of G, denoted by χ(G).

A b-coloring of G by k colors is a proper k-coloring of the vertices of G such that in each

color class i there exists a vertex xi having neighbors in all the other k − 1 color classes.

Such a vertex xi is called a b-dominating vertex, and the set of vertices {x1, x2, . . . , xk}
is called a b-dominating system. The b-chromatic number of G, denoted by ϕ(G), is the

maximum k for which G has a b-coloring by k colors. It is an elementary exercise to observe

that every proper coloring with χ(G) colors is a b-coloring. The b-chromatic number was

introduced by R.W. Irving and D.F. Manlove in [4]. (See also [5, 6].)
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Immediate and useful bound for ϕ(G) is:

χ(G) ≤ ϕ(G) ≤ ∆(G) + 1, (1)

where ∆(G) is the maximum degree of vertices in G.

The graph G is b-continuous if for every k between χ(G) and ϕ(G) there is a b-coloring

with k colors. A peculiar characteristic of b-coloring is that not all graphs are b-continuous.

For example, the 3-dimensional cube Q3 is not b-continuous: χ(Q3) = 2 and ϕ(Q3) = 4,

but Q3 has no b-coloring with three colors [4]. Only a few classes of graphs are known to

be b-continuous [1, 3].

Let S = {1, 2, . . . , n} and let V be the set of all k-subsets of S, where k ≤ n
2 . The

Kneser graph with parameters n and k, denoted by K(n, k), is the graph with vertex set

V such that two vertices are adjacent if and only if the corresponding subsets are disjoint.

It is known that χ(K(n, k)) = n− 2k+ 2 [8]. In this paper, we study b-coloring of Kneser

graphs. We determine ϕ(K(2k + 1, k)) for every k and ϕ(K(n, 2)) for every n. Also, we

prove that K(n, 2) is b-continuous for n ≥ 17.

2 Steiner triple systems

In this section we recall some necessary definitions and constructions of Steiner triple

systems which will be used in the proofs of our main theorems.

A quasigroup of order n is a pair (Q, ◦), where Q is a set of size n and “◦” is a binary

operation on Q such that for every pair of elements a, b ∈ Q, the equations a ◦ x = b and

y ◦ a = b have unique solutions. A quasigroup (Q, ◦) with Q = {1, 2, . . . , n} is said to be

idempotent if i ◦ i = i, for 1 ≤ i ≤ n and commutative if i ◦ j = j ◦ i, for all 1 ≤ i, j ≤ n.

A quasigroup (Q, ◦) with Q = {1, 2, . . . , 2n} is said to be half-idempotent if for 1 ≤ i ≤ n,

i ◦ i = (n ◦ i) ◦ (n ◦ i) = i. A quasigroup (Q′, ◦), where Q′ ⊆ Q, is called a sub-quasigroup

of quasigroup (Q, ◦).

Example 1. Let n = 2k + 1 and consider the additive group (Zn,+). Since n is odd, for

each i, j ∈ Zn where i 6= j, we have 2i 6= 2j. Therefore, there is a permutation σ on the set

{1, 2, . . . , n} such that for each i ∈ Zn, σ(2i) = i. Now we define the quasigroup (Q1, ◦)
where Q1 = Zn and i ◦ j = σ(i+ j) for every i, j ∈ Q1. This quasigroup is an idempotent

commutative quasigroup.

Let n = 2k and consider the additive group (Zn,+). In this case for each i, 1 ≤ i ≤ k,

i + i = (i + k) + (i + k) = 2i. We consider a permutation σ on the set {1, 2, . . . , n} such

that for each i, 1 ≤ i ≤ k, σ(2i) = i. Now we define the quasigroup (Q2, ◦) where Q2 = Zn
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and i ◦ j = σ(i+ j) for every i, j ∈ Q2. This quasigroup is a half-idempotent commutative

quasigroup.

A design with parameters t − (n, k, λ) is an ordered pair (S,B), where S is a set of

n points or symbols and B is a family of k-subsets of S called blocks, such that every t

elements of S occur together in exactly λ blocks of B. When λ = 1, it is called a Steiner

system, and when k = 3, it is called a triple system. A design with parameters t = 2,

k = 3 and λ = 1 with n points is called a Steiner triple system of order n, denoted by

STS(n).

It is known that a Steiner triple system of order n exists if and only if n ≡ 1, 3

(mod 6) [7].

The Bose Construction: n ≡ 3 (mod 6).

Let n = 6k + 3 and (Q, ◦) be an idempotent commutative quasigroup of order 2k + 1

and define S = Q×{1, 2, 3}. We denote an ordinary element of S by xi, where x ∈ Q and

i ∈ {1, 2, 3} and define B to contain the following two types of triples:

Type 1 : for 1 ≤ i ≤ 2k + 1, {i1, i2, i3} ∈ B,
Type 2 : for 1 ≤ i < j ≤ 2k + 1, {i1, j1, (i ◦ j)2},

{i2, j2, (i ◦ j)3}, {i3, j3, (i ◦ j)1} ∈ B.

Then (S,B) is a Steiner triple system of order 6k + 3 [7].

The Skolem Construction: n ≡ 1 (mod 6).

Let n = 6k + 1 and (Q, ◦) be a half-idempotent commutative quasigroup of order 2k

and define S = {∞} ∪ (Q× {1, 2, 3}). We denote an ordinary point in Q× {1, 2, 3} by xi,

where x ∈ Q and i ∈ {1, 2, 3} and define B as follows:

Type 1 : for 1 ≤ i ≤ k, {i1, i2, i3} ∈ B,
Type 2 : for 1 ≤ i ≤ k, {∞, (k + i)1, i2},

{∞, (k + i)2, i3}, {∞, (k + i)3, i1} ∈ B,
Type 3 : for 1 ≤ i < j ≤ 2k, {i1, j1, (i ◦ j)2},

{i2, j2, (i ◦ j)3}, {i3, j3, (i ◦ j)1} ∈ B.

Then (S,B) is a Steiner triple system of order 6k + 1 [7].

Above we have constructed Steiner triple systems of all orders n ≡ 1, 3 (mod 6).

Although no STS(6k + 5) exists, we can get very close.

A pairwise balanced design or simply PBD is an ordered pair (S,B), where S is a

finite set of points and B is a collection of subsets of S called blocks, such that each pair

of distinct elements of S occurs together in exactly one block of B. When |S| = n it is

denoted by PBD(n).
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For all n ≡ 5 (mod 6), we produce a PBD of order n with one block of size 5 and

others of size 3, called 3-blocks.

The n = 6k + 5 Construction

Let (Q, ◦) be an idempotent commutative quasiqroup of order 2k + 1 and α be the

permutation (1, 2)(3, 4) . . . (2k − 1, 2k)(2k + 1). Let S = {∞1,∞2} ∪ (Q × {1, 2, 3}), we

denote an ordinary point in Q×{1, 2, 3} by xi, where x ∈ Q and i ∈ {1, 2, 3}. Now define

B to contain the following blocks:

Type 1 : {∞1,∞2, (2k + 1)1, (2k + 1)2, (2k + 1)3} ∈ B,
Type 2 : for 1 ≤ i ≤ k, {∞1, (2i− 1)1, (2i− 1)2}, {∞1, (2i− 1)3, (2i)1},

{∞1, (2i)2, (2i)3}, {∞2, (2i− 1)2, (2i− 1)3},
{∞2, (2i)1, (2i)2}, {∞2, (2i− 1)1, (2i)3} ∈ B,

Type 3 : for 1 ≤ i < j ≤ 2k + 1, {i1, j1, (i ◦ j)2},
{i2, j2, (i ◦ j)3}, {i3, j3, (α(i ◦ j))1} ∈ B.

Then (S,B) is a PBD(6k + 5) with exactly one block of size 5 and all others of size

3 [7].

For results in later sections we need some steiner triple systems containing another

Steiner triple system, called subsystem.

Theorem A. [2] (i) For every two integers n,m ≡ 1, 3 (mod 6) such that n ≥ 2m+ 1,

there is an STS(n) containing a subsystem STS(m).

(ii) For every two integers n,m ≡ 5 (mod 6) such that n ≥ 2m+ 1, there is a PBD(n)

which contains a PBD(m).

A Steiner quasigroup (Q, ◦) is a commutative quasigroup, where i ◦ i = i and (i ◦ j) ◦
j = i, for every i, j ∈ Q [2].

Given a Steiner triple system, we can construct a steiner quasigroup by setting x◦y = z

when {x, y, z} is a block of the design or when x = y = z. Also given a PBD with one

block of size 5 and others of size 3 and an idempotent commutative quasigroup of order 5,

(Q′, ◦′), we can construct an idempotent commutative quasigroup by setting x ◦ y = z

when {x, y, z} is a 3-block of the PBD or when x = y = z; and x ◦ y = x ◦′ y when x, y

are both in the block of size 5. Thus we have the following proposition.

Proposition 1. For every odd integer n, n 6= 5, there exists an idempotent commutative

quasigroup of order n containing a sub-quasigroup of order 3.

3 b-chromatic number of the Kneser graph

In this section we determine ϕ(K(2k + 1, k)) for every k and ϕ(K(n, 2)) for every n.

4



Theorem 1. For every integer k ≥ 3,

ϕ(K(2k + 1, k)) = k + 2.

Proof. We know that ∆(K(2k + 1, k)) = k + 1, so by Inequality (1), ϕ(K(2k + 1, k)) ≤
k + 2. To prove the equality we describe a b-coloring of K(2k + 1, k) by k + 2 colors as

follows. For i, 1 ≤ i ≤ k, we define the color class i to contain the set of vertices

{{k + 1, k + 2, . . . , 2k + 1}\{k + i}} ∪ {{1, 2, . . . , k}\{i} ∪ {k + j} | 1 ≤ j ≤ k + 1, j 6= i},

the color class k + 1 contains the set of vertices

{{k + 1, k + 2, . . . , 2k} ∪ {{1, 2, . . . , k}\{j} ∪ {k + j} | 1 ≤ j ≤ k}

and the color class k + 2 contains the set {{1, 2, . . . , k}}.

Now we complete the coloring as follows. Let A ⊆ {1, 2, . . . , 2k + 1} be a vertex

distinct from the vertices in the color classes above. If 2k + 1 ∈ A then we choose an

integer i ∈ Ac ∩ {1, 2, . . . , k} and add A to the color class i. If 2k + 1 /∈ A and 2k ∈ A
then we choose an integer i ∈ Ac ∩ {1, 2, . . . , k}, i 6= k, and add A to the color class i.

If 2k, 2k + 1 /∈ A then we add A to the color class k + 2. It is not hard to see that the

vertices in each class have mutually nonempty intersections. Hence, such a coloring is a

proper coloring.

In this proper coloring the set of vertices {{k + 1, k + 2, . . . , 2k + 1}\{k + i} | 1 ≤ i ≤
k+ 1, {1, 2, . . . , k}} is a b-dominating system. Because, the vertex {1, 2, . . . , k} is adjacent

to all vertices {k + 1, k + 2, . . . , 2k + 1}\{k + i}, 1 ≤ i ≤ k + 1. Moreover, for a fixed

integer i0, 1 ≤ i0 ≤ k + 1, the vertex {k + 1, k + 2, . . . , 2k + 1}\{k + i0} is adjacent to the

vertices {1, 2, . . . , k} and {1, 2, . . . , k}\{i} ∪ {k+ i0}, 1 ≤ i ≤ k, i 6= i0 and for 1 ≤ i0 ≤ k,

this vertex is adjacent to the vertex {1, 2, . . . , k}\{i0} ∪ {k + i0}. 2

In the sequel, we are going to determine ϕ(K(n, 2)). First we mention some facts,

terminology and lemmas which will be used in the proof of the main theorem.

Fact 1. By the definition of STS(n), it is obvious that every Steiner triple system of

order n is in fact an edge decomposition of the complete graph Kn into triangles.

Fact 2. Each vertex in K(n, 2) which is a 2-subset of the set {1, 2, . . . , n} corresponds

to an edge in the complete graph Kn with vertex set {1, 2, . . . , n}. Hence, two vertices of

K(n, 2) are nonadjacent if and only if the corresponding edges in Kn are adjacent.

Fact 3. If A is an independent set of vertices in K(n, 2), then either all vertices in A have

a common element, say a, or A = {{a, b}, {a, c}, {b, c}}, for some a, b, c ∈ {1, 2, . . . , n}. In

other words an independent set of vertices in K(n, 2) corresponds to a star subgraph with

center a or a triangle subgraph in Kn. From now on we call the independent set (color
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class) in K(n, 2) of the first form starlike with center a and the second form triangular.

Moreover, for simplicity we denote the independent set {{a, b}, {a, c}, {b, c}} with {a, b, c}.
Since every proper coloring is a partition of vertices into independent sets of vertices, we

can consider every proper coloring of K(n, 2) as an edge decomposition of the complete

graph Kn into star and triangle subgraphs.

A set of vertices S is called a dominating set, whenever every vertex not in S has a

neighbor in S. A dominating set S in G is called an independent dominating set when

the vertices in S are mutually nonadjacent. The following proposition is a fact about

dominating sets in Kneser graphs.

Proposition 2. Let S = {1, 2, . . . , n}. If T is a subset of S of size 2k− 1, then the set of

all k-subsets of T is an independent dominating set in the K(n, k).

Proof. Let T ⊆ S = {1, 2, . . . , n}, |T | = 2k − 1 and A be a vertex in K(n, k) for which

A 6⊆ T . So |A ∩ T | ≤ k − 1 and there is a k-subset of T , say B, for which A ∩ B = ∅.
Therefore, the vertices A and B are adjacent in K(n, k). Obviously, every two k-subsets

of T intersect, so they are not adjacent in K(n, k). The statement follows. 2

By the proposition above, when a Steiner system with some special parameters exists,

we can find a lower bound for the b-chromatic number of K(n, k).

Theorem 2. If (S,B) is a k − (n, 2k − 1, 1) Steiner system, then ϕ(K(n, k)) ≥ |B|.

Proof. Let B = {B1, B2, . . . , B|B|}. For each i, 1 ≤ i ≤ |B|, we define the set of all

k-subsets of Bi as the color class i. Since |Bi| = 2k−1, by Proposition 2, each class i is an

independent set of vertices, so this partition is a proper coloring of K(n, k). Moreover, by

Proposition 2, each class i is a dominating set. Therefore, each element in a color class j

has neighbors in all the other color classes. Hence, this partition is a b-coloring of K(n, k)

by |B| colors. 2

Lemma 1. Assume that c is a proper coloring of K(n, 2) and A1, A2, . . . , At, |Ai| ≥ 3,

1 ≤ i ≤ t, are the starlike color classes in c, with centers a1, a2, . . . , at, respectively. Then

c is a b-coloring of K(n, 2) if and only if the following conditions hold.

(i) a1, a2, . . . , at are distinct,

(ii) every 2-subset of the set {a1, a2, . . . , at} is in ∪tk=1Ak, and

(iii) for each i, 1 ≤ i ≤ t, there exists an element xi /∈ {a1, a2, . . . , at}, where {ai, xi} ∈ Ai.

Proof. Assume that c is a b-coloring of K(n, 2). Suppose that ai = aj for some i 6= j.

Hence, Ai ∪ Aj is an independent set in K(n, 2). This means that no vertex in the color
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class Ai has a neighbor in the color class Aj , which contradicts that c is a b-coloring. So

ai 6= aj for all 1 ≤ i 6= j ≤ t.

Now consider an arbitrary 2-subset {ai, aj} of the set {a1, a2, . . . , at}. If {ai, aj} /∈
∪tk=1Ak, then this vertex is in a triangular color class, say {ai, aj , b}. In this color class,

the vertices {ai, aj} and {ai, b} are not b-dominating vertices because they have no neighbor

in the color class Ai. The vertex {aj , b} also is not a b-dominating vertex since it has no

neighbor in the color class Aj . This is a contradiction. Thus {ai, aj} ∈ ∪tk=1Ak, for all

i, j. Since in each starlike color class Ai we must have a b-dominating vertex, the property

(iii) is obviously concluded.

Now assume that c is a proper coloring of K(n, 2) that satisfies (i), (ii) and (iii). It

is enough to show that in each color class of c, there is a b-dominating vertex. In the

starlike color classes Ai, 1 ≤ i ≤ t, the vertex {ai, xi} is a b-dominating vertex, because

in each color class Aj , j 6= i, there exists a vertex {aj , y} such that y 6= ai, xi. Moreover,

by Proposition 2 each triangular color class is a dominating set. Therefore, the vertex

{ai, xi} has neighbors in all color classes. On the other hand for each triangular color

class {a, b, c}, by (ii), we have |{a, b, c} ∩ {a1, a2, . . . , at}| ≤ 1. Hence there exists at least

two elements, say a and b, with a, b /∈ {a1, a2, . . . , at}. Since |Ai| ≥ 3, the vertex {a, b}
has neighbors in all starlike color classes. Furthermore, by Proposition 2 each triangular

color class is a dominating set. So the vertex {a, b} is a b-dominating vertex. 2

Proposition 3. If n ≡ 5 (mod 6) then ϕ(K(n, 2)) ≥ n(n−1)
6 − 1

3 .

Proof. If n ≡ 5 (mod 6) then by the 6k + 5 construction given in Section 2, we have

a PBD(n) with one block of size 5, say {1, 2, 3, 4, 5}, and 3-blocks otherwise. In this

construction, number of 3-blocks is n(n−1)
6 − 10

3 . Now we provide a b-coloring of K(n, 2).

We consider each 3-block as a triangular color class and define the other color classes

as {{1, 2}, {1, 3}, {1, 4}, {1, 5}}, {{2, 3}, {2, 4}, {2, 5}}, and {{3, 4}, {3, 5}, {4, 5}}. This is

an edge decomposition of the complete graph Kn into stars and triangles, so by Fact 3

this is a proper coloring of K(n, 2). Furthermore, this coloring satisfies the conditions of

Lemma 1 and so is a b-coloring of K(n, 2). Hence

ϕ(K(n, 2)) ≥ n(n− 1)

6
− 10

3
+ 3 =

n(n− 1)

6
− 1

3
.

2

Theorem 3. For every positive integer n, n 6= 8, we have:

ϕ(K(n, 2)) =


⌊
n(n−1)

6

⌋
if n is odd,

⌊
(n−1)(n−2)

6

⌋
+ 3 if n is even.
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Proof. We prove the theorem for two cases n is even and n is odd.

Case 1. n is even.

First we find an upper bound for ϕ(K(n, 2)). Let c be a b-coloring of K(n, 2) by

ϕ colors and t starlike color classes with centers 1, . . . , t of sizes n1, . . . , nt, respectively.

Then,

|V (K(n, 2))| =
(
n

2

)
=

t∑
i=1

ni + 3(ϕ− t). (2)

By Fact 3, the coloring c corresponds to an edge decomposition of the complete graph

Kn into stars and triangles. For every vertex i ∈ V (Kn), the number of edges incident to

i in the triangles of the decomposition is even. Since n is even, there is an edge incident

to i in a star subgraph in the decomposition. Therefore, for each i satisfying t+ 1 ≤ i ≤ n
there is a vertex in K(n, 2) containing i in the starlike color classes 1 to t. Moreover, by

Lemma 1, every 2-subset of the set {1, 2, . . . , t} is in the starlike color classes. Therefore,

we have

t∑
i=1

ni ≥ (n− t) +
t(t− 1)

2
= n+

t(t− 3)

2
.

Hence,

(
n

2

)
≥ n+

t(t− 9)

2
+ 3ϕ.

So

ϕ ≤ n(n− 3)

6
− t(t− 9)

6
.

The minimum of t(t− 9) occurs in t = 4 and t = 5. Therefore,

ϕ ≤
⌊
n(n− 3)

6
+

10

3

⌋
=

⌊
(n− 1)(n− 2)

6

⌋
+ 3. (3)

Now we find a lower bound for ϕ(K(n, 2)).

Case 1.1. n = 6k.

We consider an STS(6k − 3) with the Bose construction. As shown in Section 2, in

this construction there are 2k − 1 disjoint blocks of Type 1. We denote these blocks by

{a1, b1, c1}, {a2, b2, c2}, . . . , {a2k−1, b2k−1, c2k−1}. By Fact 1, this STS is an edge decom-

position of the complete graph Kn−3 into triangles. Now we add three new points a, b, c

and then construct a proper coloring of K(n, 2) by ϕ0 = n(n−3)
6 + 3 colors or equivalently

an edge decomposition of the complete graph Kn into ϕ0 stars and triangles.
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We consider every block of Type 2 in the STS(6k − 3) as one triangular color class.

The other color classes are defined as follows. Color class A consists of

{a, c1}, {a, c2}, . . . , {a, c2k−1}, {a, b}.

Color class B consists of

{b, a1}, {b, a2}, . . . , {b, a2k−1}, {b, c}.

Color class C consists of

{c, b1}, {c, b2}, . . . , {c, b2k−1}, {c, a}.

Also for each i, 1 ≤ i ≤ 2k − 1, we define three triangular color classes

{a, ai, bi}, {b, bi, ci}, {c, ci, ai}.

In the STS(6k − 3) the number of blocks is (n−3)(n−4)
6 , of which 2k − 1 = n−3

3 blocks

are of Type 1. Therefore, the number of color classes in the given coloring above are
(n−3)(n−4)

6 − n−3
3 + 3 + 3 (n−3)

3 = n(n−3)
6 + 3 = ϕ0.

For n = 6, it is obvious that this coloring is a b-coloring of K(6, 2) by 6 colors. For

k ≥ 2, we have only three starlike color classes and this coloring satisfies the conditions of

Lemma 1. Hence, the given coloring is a b-coloring of K(n, 2). Therefore, ϕ ≥ n(n−3)
6 +3 =⌊

(n−1)(n−2)
6

⌋
+ 3.

Case 1.2. n = 6k + 2, k ≥ 2, or n = 6k + 4.

We consider an STS(n−1) with the Bose or the Skolem construction given in Section 2.

Moreover, in this construction we consider three disjoint blocks {a, b, c}, {a′, b′, c′}, and

{a′′, b′′, c′′} in which {a, a′, a′′} is a block. Now we add a new point d and construct a

b-coloring of K(n, 2) by ϕ0 = (n−1)(n−2)
6 + 3 colors as follows.

We consider every block in STS(n−1) except four blocks {a, b, c}, {a′, b′, c′}, {a′′, b′′, c′′},
and {a, a′, a′′} as a color class. Moreover, we add the following color classes. Color

class A consists of {a, b}, {a, c}, {a, a′}. Color class B consists of {a′, b′}, {a′, c′}, {a′, a′′}.
Color class C consists of {a′′, b′′}, {a′′, c′′}, {a′′, a}. Color class D consists of {d, x}, x 6∈
{b, b′, b′′, c, c′, c′′}. Finally, we add three triangular color classes {b, c, d}, {b′, c′, d} and

{b′′, c′′, d}. The number of these color classes is ϕ0 = (n−1)(n−2)
6 −4+4+3 = (n−1)(n−2)

6 +3.

We have only four starlike color classes and this coloring satisfies the conditions

of Lemma 1. Hence, the given coloring is a b-coloring of K(n, 2). Therefore, ϕ ≥⌊
(n−1)(n−2)

6

⌋
+ 3.

Case 2. n is odd.

First we find an upper bound for ϕ(K(n, 2)). Let c be a b-coloring of K(n, 2) by

ϕ = ϕ(K(n, 2)) colors and t starlike color classes with centers 1, . . . , t of sizes n1, . . . , nt,

respectively. Then,
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|V (K(n, 2))| =
(
n

2

)
=

t∑
i=1

ni + 3(ϕ− t). (4)

By Lemma 1, every 2-subset of the set {1, 2, . . . , t} is in the color classes 1 to t.

Moreover, in the color class i we must have a b-dominating vertex, say {i, x}, where

x ∈ {t+ 1, t+ 2, . . . , n}. Hence,

t∑
i=1

ni ≥
t(t− 1)

2
+ t =

t(t+ 1)

2
.

Therefore, (
n

2

)
≥ 3ϕ+

t(t+ 1)

2
− 3t = 3ϕ+

t(t− 5)

2
.

So

ϕ ≤ n(n− 1)

6
− t(t− 5)

6
.

The minimum of the expression t(t− 5) occurs in t = 2 and t = 3, so ϕ ≤ n(n−1)
6 + 1.

Now we prove that ϕ ≤ n(n−1)
6 . Suppose ϕ = n(n−1)

6 + 1, hence, t = 2 or t = 3.

For every vertex i ∈ V (Kn), the number of edges incident to i in the triangles of the

decomposition is even. Since n is odd, the number of edges incident to i in the stars of

the decomposition is also even. Equivalently, in the b-coloring of K(n, 2) the number of

vertices containing i in the starlike color classes are even numbers.

If t = 3 then by Lemma 1 (ii) and (iii), the vertices {1, 2}, {1, 3} and {2, 3} in K(n, 2)

are in the starlike color classes with centers 1, 2, or 3 and for every i, 1 ≤ i ≤ 3, there is

a vertex {i, x} in the starlike color classes which x 6= 1, 2, 3. So by the discussion above,

for every i, 1 ≤ i ≤ 3, at least two vertices {i, x} and {i, y}, where x, y 6= 1, 2, 3, are

in the starlike color classes. Therefore,
∑3

i=1 ni ≥ 3 + 2 × 3 = 9. So by Relation (4),(n
2

)
≥ 9 + 3(ϕ− 3) = 3ϕ. Hence, ϕ ≤ n(n−1)

6 , which contradicts our assumption.

Now let t = 2. By Lemma 1 (ii) and (iii), the starlike color class with center 1 contains

vertex {1, 2} and at least one more vertex, say {1, 3}. By the discussion above, if the

vertex {1, i} in K(n, 2) is in the starlike color class with center 1, then the vertex {2, i} is

in the starlike color class with center 2. If the vertices {1, 2}, {1, 3} and {2, 3} are the only

vertices in the starlike color classes, then there is no b-dominating vertex in these classes.

Therefore, the starlike color class with center 1 and consequently, the starlike color class

with center 2 each one contains at least more two vertices. Hence,
∑2

i=1 ni = 1+2×3 = 7.

Therefore, by Relation (4) (
n

2

)
≥ 7 + 3(ϕ− 2) = 3ϕ+ 1.

So ϕ ≤ n(n−1)
6 , which contradicts our assumption.
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Therefore, ϕ ≤
⌊
n(n−1)

6

⌋
. If n ≡ 1, 3 (mod 6) then an STS(n) exists. Therefore, by

Theorem 2, ϕ ≥ n(n−1)
6 . If n ≡ 5 (mod 6) then by Proposition 3, ϕ ≥ n(n−1)

6 − 1
3 . Hence,

ϕ =
⌊
n(n−1)

6

⌋
. 2

Since the Petersen graph is Kneser graph K(5, 2), we get the following result.

Corollary 1. If P is the Petersen graph, then ϕ(P ) = 3.

Kneser graph K(8, 2) is an exception.

Proposition 4. ϕ(K(8, 2)) = 9.

Proof. Consider the notations in the proof of Theorem 3 for Case 1. By Inequality (3),

we have ϕ(K(8, 2)) ≤ 10 and the equality holds if and only if t = 4 or t = 5. Assume that

a b-coloring of K(8, 2) exists with 10 colors and A1, A2, . . . , At are starlike color classes

with centers 1, 2, . . . , t, respectively.

If t = 4 then by Equality (2),
∑4

i=1 ni = 10. By Lemma 1 (ii) and (iii), every 2-subset

of the set {1, 2, 3, 4} is in ∪4i=1Ai and for each i, 1 ≤ i ≤ 4, there exists xi /∈ {1, 2, 3, 4},
where {i, xi} ∈ Ai. On the other hand n − t and the number of vertices containing i in

triangular color classes are even numbers. So there are at least two vertices {i, xi}, {i, yi} in

the starlike color classes, where xi, yi /∈ {1, 2, 3, 4}. Hence,
∑4

i=1 ni = 10 ≥ 6 + 4× 2 = 14,

which is contradiction.

If t = 5 then by Equality (2),
∑5

i=1 ni = 13. On the other hand, similar to the above

by Lemma 1 (ii) and (iii),
∑5

i=1 ni = 13 ≥ 10 + 5, a contradiction. So ϕ(K(8, 2)) ≤ 9.

Now we provide a b-coloring of K(8, 2) by 9 colors. First we consider an STS(7)

and delete one point of it. What remains is a decomposition of K6 into 4 triangles and

a 1-factor called F = {{a1, b1}, {a2, b2}, {a3, b3}}. Now we add two new points a and b

and define the color classes as all triangles in the decomposition above in addition to the

triangular color classes {a, a1, b1}, {a, a2, b2} and {b, a3, b3} and the starlike color classes

{{a, a3}, {a, b3}, {a, b}} and {{b, a1}, {b, b1}, {b, a2}, {b, b2}}. This is a proper coloring of

K(8, 2) satisfying the conditions of Lemma 1, so is a b-coloring by 9 colors as desired. 2

By Relation (1), ϕ(K(n, k)) ≤ ∆ + 1 =
(n−k

k

)
+ 1. Hence ϕ(K(n, k)) = O(nk).

Theorems 2 and 3 motivate us to propose the following conjecture.

Conjecture 1. For every integer k, we have ϕ(K(n, k)) = Θ(nk).

11



4 b-continuity of the Kneser graph K(n, 2)

In this section we prove that K(n, 2) is b-continuous when n ≥ 17.

Lemma 2. (a) Let n = 6k + 1 or n = 6k + 3 and (S,B) be an STS(n). Also let T be

a subset of S = {1, 2, . . . , n} and t be the number of blocks in B on the points of T , such

that:

(i) |T | = m ≥ 3,

(ii) for each i ∈ T , there exists j ∈ T such that the third point of the block containing both

i, j is not in T .

Then there exists a b-coloring of K(n, 2) by ϕ−(m(m−3)
2 −2t) colors, where ϕ = ϕ(K(n, 2)).

(b) Let n = 6k+5 and (S,B) be a PBD(n) with one block of size 5, say {1, 2, n, n−1, n−2}
and the others 3-blocks. Also let T be a subset of S = {1, 2, . . . , n} and t be the number of

3-blocks in B on the points of T , such that:

(i) |T | = m ≥ 3,

(ii) 1, 2 ∈ T and n− 2, n− 1, n /∈ T ,

(iii) for each i ∈ T , i 6= 1, 2, there exists j ∈ T such that the third point of the 3-block

containing both i, j is not in T .

Then there exists a b-coloring of K(n, 2) by ϕ − (m(m−3)
2 − 2t + 1) colors, where ϕ =

ϕ(K(n, 2)).

Proof. Let c be the b-coloring of K(n, 2) by ϕ colors corresponding to STS(n) or

PBD(n) (see Theorem 2 and Proposition 3). In the case n = 6k + 5, we take the centers

of starlike color classes as 1 and 2.

Assume T = {1, 2, . . . ,m}, consider the b-coloring c and delete all triangular color

classes containing a vertex {i, j} ⊆ T .

(a) Since each vertex {i, j} ⊆ T is contained in a triangular color class and there are

exactly t triangles on the points of T , the number of deleted color classes (triangles) is
m(m−1)

2 − 3t+ t. Now we define m new color classes as follows. New color class i, 3 ≤ i ≤
m−2, contains the set of vertices {{i, j} | i+1 ≤ j ≤ m}. Also new color classes 1, 2,m−1

and m contain respectively the sets {{1, j} | 2 ≤ j ≤ m − 2}, {{2, j} | 3 ≤ j ≤ m − 1},
{{m − 1,m}, {m − 1, 1}} and {{m, 1}, {m, 2}}. Moreover, if a vertex {i, x}, where i ∈ T
and x /∈ T is in a deleted color class, then we add this vertex to the color class i. These

m new color classes together with the old color classes give us a new proper coloring of

K(n, 2) by ϕ− (m(m−1)
2 − 2t) +m colors.

(b) Since each vertex {i, j} ⊆ T except {1, 2} is contained in a triangular color class

and there are exactly t triangular color classes on the points of T , the number of deleted

triangles is m(m−1)
2 − 1− 3t+ t. Now we define m− 2 new color classes as follows. Color

class i, 3 ≤ i ≤ m, contains the set of vertices {{i, j} | i + 1 ≤ j ≤ m} ∪ {{i, 1}, {i, 2}}.
Moreover, if a vertex {i, x}, where i ∈ T and x /∈ T is in a deleted color class, then we add

12



this vertex to the color class i. These m− 2 new color classes together with the old color

classes give us a new proper coloring by ϕ− (m(m−1)
2 − 1− 2t) +m− 2 colors.

The obtained colorings in (a) and (b) satisfy the conditions of Lemma 1, so they are

b-colorings. 2

Lemma 3. Let n ≥ 13 be an odd integer and let k = bn6 c. For every odd integer m,

5 ≤ m ≤ k+5 and for every integer t, 0 ≤ t ≤ 3m−11
2 , where (m, t) 6= (5, 2), (7, 5), (k+5, 0),

there exists an STS(n) or PBD(n) and a set T satisfying the conditions of Lemma 2.

Proof. Let l = bn3 c. Depending on n, using the Bose construction, the Skolem con-

struction or the 6k+ 5 construction given in Section 2 and the quasigroups of Example 1,

construct an STS(n) or a PBD(n).

If t = 0, then it is easy to find a set T with parameters (m, t). Assume 5 ≤ m ≤ k+ 5

and m is odd.

(a) If 1 ≤ t ≤ m−5
2 , then define

T = {l1, i1, (l − i)1 | 1 ≤ i ≤ t} ∪ {j1 | t+ 1 ≤ j ≤ m− 4− t}∪
{(σ(l))2, 13, (σ

−1(k + 2)− 1)3}.

(b) If m−5
2 < t < m− 5, then define

T = {l1, i1, (l − i)1 | 1 ≤ i ≤ m−5
2 }∪

{(σ(l))2, (σ(2(m− 5− t)))2, (σ(m− 5))2, (σ(2l −m+ 5))2}.

(c) If m− 5 ≤ t < 3(m−52 ), then define

T = {l1, i1, (l − i)1 | 1 ≤ i ≤ m−5
2 }∪

{(σ(l))2, (σ(1))2, (σ(3(m− 5)− 2t))2, (σ(2l −m+ 5))2}.

(d) If 3(m−52 ) ≤ t ≤ 2m− 11, then define

T = {l1, i1, (l − i)1 | 1 ≤ i ≤ m−5
2 }∪

{(σ(l))2, (σ(1))2, (σ(l − 1))2, (σ(4(m− 5)− 2t))2}.

The set T given above satisfies the conditions of Lemma 2 (with an appropriate re-

naming of elements of S). If m ≥ 11 then 2m − 11 ≥ 3m−11
2 , hence, for each 11 ≤

m ≤ k + 5 and 0 ≤ t ≤ 3m−11
2 , we are done. Moreover, by the construction above

there exists such a set T for (m, t) = (5, 0), (m = 7, 0 ≤ t ≤ 3), (m = 9, 0 ≤ t ≤ 7).

For (m, t) = (5, 1), let T = {11, (l − 1)1, (σ(l))2, 12, (l − 1)2}. For (m, t) = (7, 4), let

T = {11, (l − 1)1, 21, (l − 2)1, (σ(l))2, (σ(1))2, (σ(l − 1))2}.

Now we construct a set T with parameters (m, t) = (9, 8). Since m ≤ k + 5, we have

n ≥ 25. Now if n ≡ 1, 3 (mod 6), then by Theorem A there is an STS(n) containing
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an STS(9) on the set T0 = {1, 2, . . . , 9}. So the set T = T0 ∪ {10} − {9} is the desired

set with parameters (m, t) = (9, 8). If n ≡ 5 (mod 6), then we consider an idempo-

tent commutative quasigroup containing a sub-quasigroup of order 3 (see Proposition 1).

Without loss of generality we can assume that {1, 2, 3} is the sub-quasigroup of order 3.

Then by applying this quasigroup to the 6k+ 5 construction (see Section 2), we construct

a PBD(n) and define T = {∞1,∞2, 31, i1, i2, i3 | i = 1, 2}. The set T is the desired set

(with an appropirate renaming of elements of S). 2

Lemma 4. Let n ≥ 13 be an odd integer and k = bn6 c. For every even integer m,

4 ≤ m ≤ k + 5 and every integer t, 0 ≤ t ≤ m − 4, there exists an STS(n) or PBD(n)

and a set T satisfying the conditions of Lemma 2. Moreover, when n ≥ 19 and n 6= 6k+ 5

such an STS and a set T exist for (m, t) ∈ {(6, 4), (8, 8)},

Proof. Let l = bn3 c. Consider the STS(n) or PBD(n) as in the proof of Lemma 3.

If t = 0, then it is easy to find a set T with parameters (m, t). Assume 4 ≤ m ≤ k+ 5

and m is even.

(a) If 1 ≤ t ≤ m−4
2 , then define

T = {l1, i1, (l − i)1 | 1 ≤ i ≤ t} ∪ {j1 | t+ 1 ≤ j ≤ m− 4− t}∪
{(σ(l))2, 13, (σ

−1(k + 2)− 1)3}.

(b) If m−4
2 < t < m− 4, then define

T = {l1, i1, (l − i)1 | 1 ≤ i ≤ m−4
2 }∪

{(σ(l))2, (σ(2(m− 4− t)))2, (σ(m− 4))2}.

(c) If t = m− 4, then define

T = {l1, i1, (l − i)1 | 1 ≤ i ≤ m−4
2 }

{(σ(l))2, (σ(1))2, (σ(m− 4))2}.

The set T given above satisfies the conditions of Lemma 2 (with an appropirate re-

naming of elements of S). Now, assume n ≥ 19 and n 6= 6k + 5, we construct sets T

with parameters (m, t) = (6, 4), (8, 8). By Theorem A there is an STS(n) containing the

STS(7) on points {1, 2, . . . , 7}. Now let T = {1, 2, . . . , 6}, it is clear that T is a set satis-

fying the conditions of Lemma 2 with parameters (m, t) = (6, 4). Also there is an STS(n)

containing the STS(9) on points {1, 2, . . . , 9}. Now let T = {1, 2, . . . , 8}, it is clear that

T is a set satisfying the conditions of Lemma 2 with parameters (m, t) = (8, 8). 2

Theorem 4. For every integer n, n ≥ 17, Kneser graph K(n, 2) is b-continuous.
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Proof. We prove the theorem for two cases n odd and n even. Let X(n) be the set of

numbers x for which there is a b-coloring of K(n, 2) by x colors.

Case 1. n is odd.

In this case we prove the theorem by induction on n. Assume for an odd integer n,

n ≥ 19, that K(n− 2, 2) is b-continuous. Therefore, by the definition and Theorem 3, for

every integer x, n− 4 ≤ x ≤
⌊
(n−2)(n−3)

6

⌋
, we have x ∈ X(n− 2). We consider a b-coloring

of K(n− 2, 2) with x colors and provide a b-coloring of K(n, 2) by x+ 2 colors. For this

purpose, we add two new color classes {{n, i} | 1 ≤ i ≤ n−1}, {{n−1, i} | 1 ≤ i ≤ n−2}.
This coloring satisfies the conditions of Lemma 1, so it is a b-coloring. To prove the b-

continuity of K(n, 2) it is enough to prove x ∈ X(n) for every integer x, 3+
⌊
(n−2)(n−3)

6

⌋
≤

x ≤
⌊
n(n−1)

6

⌋
= ϕ. For this purpose, let ψ =

⌊
n(n−1)

6

⌋
−
⌊
(n−2)(n−3)

6

⌋
− 3.

Claim. For every integer x, 1 ≤ x ≤ ψ, we have ϕ− x ∈ X(n).

Proof of claim. Let A be the set of all positive integers x such that there exists a set

T ⊆ {1, 2, . . . , n} which satisfies the assumptions of Lemma 2 with parameters (m, t), and
m(m−3)

2 − 2t = x.

Case 1.1 n = 6k + 1 or n = 6k + 3, k ≥ 3.

By Lemma 2(a), it is enough to show that for every x, 1 ≤ x ≤ ψ, x ∈ A. By

Lemma 4 there exists a set T with parameters (m, t) = (6, 4), (m, t) = (8, 8). Therefore,

1, 4 ∈ A. Moreover, by Lemma 3, for every odd integer m, 5 ≤ m ≤ k + 5, we have
m(m−3)

2 , m(m−3)
2 − 2, . . . , m(m−3)

2 − (3m− 11) = (m−3)(m−6)
2 + 2 ∈ A. Also by Lemma 4, for

every even integer m, 4 ≤ m ≤ k+5, we have m(m−3)
2 , m(m−3)

2 −2, . . . , m(m−3)
2 −(m− 4) =

(m−1)(m−4)
2 +2 ∈ A. Therefore, 1, 2, 3, 4, . . . , (k+3)k

2 +1 ∈ A. Since (k+3)k
2 +1 ≥ 4k−2 ≥ ψ,

we are done.

Case 1.2. n = 6k + 5.

By Lemma 2(b), it is enough to show that for every integer x, 0 ≤ x ≤ ψ − 1,

x ∈ A. All things in Case 1.1 hold in this case as well, except the set T with parameters

(m, t) = (6, 4), (8, 8). So we have {1, 2, 3, . . . , ψ − 1} − {1, 4} ⊆ A. Also there exists a set

T with parameters (m, t) = (3, 0) satisfying Lemma 2(b). Thus 0 ∈ A.

To complete the proof, we show that ϕ − 2 and ϕ − 5 are in X(n). Consider the

quasigroup of Example 1 and construct a PBD(n) using the 6k+ 5 construction. Let c be

the b-coloring of K(n, 2) corresponding to this PBD by ϕ colors (see Proposition 3) where

∞1,∞2 are the centers of the starlike color classes. Now let T = {∞1,∞2, (2k+1)1, 21, 12},
delete all triangular color classes containing a vertex {i, j} ⊆ T and define 3 new starlike

color classes with centers (2k + 1)1, 21, 12. Deleted color classes are triangles {(2k +

1)1, 21, 12}, {∞1, 21, 13}, {∞2, 21, 22}, {∞1, 12, 11} and {∞2, 12, 13}. Thus new coloring is

a b-coloring by ϕ − 5 + 3 colors. Now let T = {∞1,∞2, 21, 22, 23, (2k + 1)2, (2k + 1)3},
delete all triangular color classes containing a vertex {i, j} ⊆ T and define 5 new starlike
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color classes with centers 21, 22, 23, (2k+1)2, (2k+1)3. Since we have deleted 10 triangular

color classes, we obtain a b-coloring of K(n, 2) by ϕ− 5 colors. So the claim is proved.

To complete the induction we need to show that K(17, 2) is b-continuous. By Lem-

mas 3 and 4, there is a set T satisfying the conditions of Lemma 2 with parameters

(m, t) shown in Table 1. The values in the table are x = m(m−3)
2 − 2t + 1. Therefore,

by Lemma 2(b) for the values x given in Table 1, ϕ(K(17, 2)) − x = 45 − x ∈ X(17).

Moreover, as it is proved in Cases 1.2, ϕ(K(17, 2))− 2 and ϕ(K(17, 2))− 5 are in X(17).

Hence, for every i, 34 ≤ i ≤ 45, i ∈ X(17).

Similarly, by Lemma 2(a) for the values x given in Table 1, ϕ(K(15, 2)) − x − 1 =

34 − x ∈ X(15). Therefore, for every i, 25 ≤ i ≤ 35 and i 6= 31, 34, i ∈ X(15). By a

similar discussion, for every i, 16 ≤ i ≤ 26 and i 6= 22, 25, i ∈ X(13). We have already

proved that x ∈ X(n − 2) implies x + 2 ∈ X(n). Therefore, for every i, 20 ≤ i ≤ 37 and

i 6= 26, 33, i ∈ X(17). By Lemma 3, for n = 13, 15, 17 there is a set T ⊆ {1, 2, . . . , n} with

parameters (m, t) = (9, 8). Thus, by Lemma 2, 33 ∈ X(17), 24 ∈ X(15) and 15 ∈ X(13),

so 26, 19 ∈ X(17). Finally, for n = 13 there is a set T with parameters (m, t) = (7, 1), (9, 7),

so 14, 13 ∈ X(13), thus 18, 17 ∈ X(17). We can easily see that 16 ∈ X(17) by constructing

a b-coloring with 16 starlike color classes. This assures b-continuity of K(17, 2).

t�m 3 4 5 6 7

0 1 3 6 10 –
1 4 8 13
2 6 11
3 9
4 7

Table 1: The values are m(m−3)
2
− 2t+ 1.

Case 2. n is even.

Let n ≥ 18 be an even integer. Then K(n−1, 2) is b-continuous and x ∈ X(n−1) holds

whenever n− 3 ≤ x ≤
⌊
(n−1)(n−2)

6

⌋
. Now we add a new color class {{n, i} | 1 ≤ i ≤ n− 1}

to this coloring. This is a b-coloring of K(n, 2) by x + 1 colors. Hence y ∈ X(n) for

every integer y with n − 2 ≤ y ≤
⌊
(n−1)(n−2)

6

⌋
+ 1 = ϕ − 2. It is enough to prove

ϕ− 1 =
⌊
(n−1)(n−2)

6

⌋
+ 2 ∈ X(n). For this purpose, consider the b-coloring of K(n, 2) by

ϕ colors in the proof of Theorem 3. Assume that {a, x, y} and {b, x, z} are two triangular

color classes, where a and b are the centers of some starlike color classes, A and B. We

delete them and add a new starlike color class {{x, y}, {x, z}, {x, a}, {x, b}}. Finally, we

add vertex {a, y} to the starlike color class A and the vertex {b, z} to the starlike color

class B. The obtained coloring satisfies the conditions of Lemma 1 therefore, is a b-coloring

of K(n, 2) by ϕ− 1 colors. 2
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