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Abstract

Characterizations of automorphisms, or of mappings which are close to automorphisms L of
three special finite geometries are presented. These geometries are finite analogues of Lorentz—
Minkowski geometry, of de Sitter’s world, and of Einstein’s cylinder universe. (© 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Three finite geometries will play a rdle in this paper. The real counterparts of these
geometries are n-dimensional
Lorentz—Minkowski geometry LMG,
de Sitter’s world DSW,
Einstein’s cylinder universe ECU.
The real geometries LMG and DSW are solutions of

Ric=Ag, (1)

where Ric is the Ricci tensor, g the metric tensor and A a (constant) scalar. Manifolds
of Lorentz—Minkowski signature satisfying Eq. (1) are called Einstein spaces. Geometry
ECU is not an Einstein space, but a solution of Einstein’s law of gravitation

Ric = ig + «T, 2)

where T is the energy-impulse tensor and where x is a scalar.

The aim of this paper is to present results about the characterization of automor-
phisms of the three finite geometries in question. Several things are known in this
connection. But there are also, of course, open problems, as will be stated explicitely
later on.
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2. The real case LMG

Suppose that #>2 is an integer. n-dimensional Lorentz-Minkowski geometry is
then defined to be the geometry (R”,L") consisting of the set R” of points and the
group L of Lorentz transformations of R” as group of motions of R" (see our book
RG, i.e. Real Geometries, Benz, 1994). The Lorentz transformations of R” are the
mappings

(x1...xp)—xL+a

with real matrices a =(a,...a,),

I i
L=
lnl lnn
such that
1 0
IMLT =M := 3)
1
0 -1

holds true. LT denotes the transpose of the matrix L.
A 2-point-invariant of (R*, L") is given by

d(x,y) =1 = y1) + + a1 — Yao1)? — (tn — y)?
for n>2 and
x=(x,..., %) €ER" and y=(y,...,yn) €ER"

The following results are fundamental.

Theorem 1. Let f : R" — R"” (n=3) be a bijection satisfying

Vo yern d(x, y)=0 & d(f(x), f(¥))=0.

Then f has the form f(x)=k-A(x) for a real number k #0 and a Lorentz transfor-
mation A€

This theorem was proved by Alexandrov (1950, 1967, 1975) (see Lester, 1995).

Theorem 2. Let k£ 0 be a fixed real number and let

fiR*SR" (n3>2)



W. Benz/Journal of Statistical Planning and Inference 72 (1998) 67-77 69

be a mapping satisfying

Veyern d(x, y)=k = d(f(x), f(y))=k.
Then f €l

Theorem 2 was proved in the case n>2 and £>0 by Lester (1981), and in the
cases
1. n=2,
2. n>2 and k<0
by Benz (1992). Proofs for Theorems 1 and 2 are in our book GT, i.e. Geometrische
Transformationen (Benz (1992), Sections 6.6 and 6.13-6.15).

3. The finite case of LMG

Let R be a finite and associative ring with identity element 1 such that 1# 0. Define
R", n>1 an integer, as the set of all ordered n-tuples (xy,...,x,) with elements x; € R.
Define, moreover,

(xla'~'7xn)+(y15"~,yn)::(x1 +J/1,---,xn+yn),
A-(x1y..,x0) i =(Ax1,..., Ax,)

for x;, yi, 2 €R. Then (R",+) turns out to be an abelian group and the multiplication
A-x with A€ R and x € R" satisfies usual rules:

A-(x+ y)=ix+ Ay,
(A+p) x=2Ax+ ux,
(Ap) - x=24-(px),

l-x=x

for all L, u€R and all x,y € R".
The structure (R",R,d) with

d(x, )= = y1)* 4+ A Gt = Yae1 ) = (tn — yn)? 4)

for x, y € R" is a distance space (see RG 22). In order to define the notion of a distance
space, let M # @ and W be sets and let, moreover, § be a mapping from M X M in W.
Then (M, W, 8) is called a distance space and 6(x, y) the distance of x, y. We say that
f:M — M is an isometry in the case that

o(x, y) =08(f(x), f(»))

holds true for all x, y € M. An isometry needs not to be injective. However, the set of
all bijective isometries of (M, W, ) is a group (under the permutation product) which
we denote by I(M,W,3). For every group G there exists a distance space (M, W,4)
such that

G = I(M,W,0).
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If we denote the group of the function (4) by L, we get the geometry (R",L}) (com-
pare Section 1.2, Geometry of a notion or a function, of RG, 21 ff). If R is commu-
tative and if 141 is not a zero divisor of R, then L} (n>2) is given by the mappings

X150y Xn)—xL+a
with matrices a=(ay...a,),
hy .. i
=1 :

Ly oo I
over R such that Eq. (3) holds true (see GT, 55 ff).

Problem 1. Let R be a ring as described at the beginning of this section and let k
be a fixed element of R. Determine then all

f:R"—>R" (n=2)
such that

Viyernd(x,y)=k = d(f(x), f(¥))=k
holds true.

A solution of this problem is not known. But there are several partial results in
the direction of this problem, and there are even results about generalizations of the
problem with respect to the metric (4).

Suppose that R is commutative and that 2:=1+1 is a unit element of R. If, fur-
thermore, n=2 and k is a unit element as well, then Problem 1 can be replaced
equivalently by

Problem 2. Determine all f:R* — R? such that

Viyer D(x, y)=1 = D(f(x), f(y))=1 (5
holds true where D is defined by

D(x, y):=(x1 — y1)(x2 — y2) (6)
for x,y € R%.

Problem 2 makes sense also in the case that R is a ring as described at the beginning
of this section, so especially in the cases that R is not commutative or that 2 is not a
unit element of R.

The following theorem holds true.

Theorem 3. Let R be a Galois field GF(q) with g # 5,
2tq and 3tgq.
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Al mappings fR? — R® satisfving Eg. {S) are then bijective and they are all given
by

fx)= (a o(x1) + b, éa(xz) + c) for all xeR? (7)

or
fx)= (a o(x;) + b, %a(xl) + c) for all xePR?, (8)

where a,b,c are elements of R with a#0 and where o is an automorphism of R.

This theorem is part of results of Rado and Benz (see Schaeffer, 1986). Theorem 3
cannot be extended to the case GF(5) as was shown by Samaga (1982). The following
mapping:

f:[GF(5) — [GF(5)F

satisfies Eq. (5), but it has not one of the forms (7) or (8) since it is not bijective.

f(0,0)=f(1,2)=f(2,4)= f(3,1)= f(4,3):=(0,0),
JO,4)=f(1,1)=f(2,3)=f(3,0)= f(4,2):=(1,1),
f(0,3)=£(1,0)=f(2,2)=f(3,4) = f(4,1):=(2,2),
f0.2)=f(1,4)=f(2,1)=f(3,3)= f(4,0):=(3,3),
F0.1)=1(1,3)=f(2,0)= f(3,2) = f(4,4):=(4,4).

In order to verify that f is a mapping which preserves D-value 1, Samaga took an
arrangement of the set of points x of [GF(5)])? in rows and columns with

J Jj+1
i x x+(1,2)
i+1 x+(L,1)

implying that all points y with D(x, y)=1 for a given x are at the following positions:

j—1 j+1

i—1 y
i

i+1

RO~

y
Replacing (a,b) by ab and looking to the array, as described,

32 44 01 13 20 32 |44 —44
43 00 12 24 31 43 |00 —00
04 11 23 30 42 04 |11 —11
10 22 34 41 03 10 |22 —22
21 33 40 02 14 21 |33 —33
32 4 01 13 20 32 |44 —44
43 00 12 24 31 43 |00 —00

of the set of points, one realizes immediately that f preserves D-value 1.



72 W. Benz/!Journal of Statistical Planning and Inference 72 (1998) 67-77

There are also counterexamples in the cases g€ {2,3,4,8,9,16} (Benz, 1982,
Jirgensen, 1982 for ¢ = 16).

Concerning these counterexamples we would like to present a generalization to the
ring case of an idea which we published in Benz (1982) in connection with the field
case. However, we would like to go a step further, even in the field case. We will say
that the points x, y € R* are equivalent, x ~ y, if, and only if, there exist points

P,....Pu1 ER

with x=P, y=P,.1 and D(P,P)=1fori=1,...,m, where m is a positive integer.
This relation is symmetric and transitive, and it is also reflexive in view of the points

P=x, Bb=x+(1,1), B=x
A. Suppose that I is an equivalence class and that t is a fixed element of R®. Then
Lii={x+t|xel}

is also an equivalence class. Moreover, if I' and A are equivalence classes, then there
exists a t € R? such that A=T, holds true.

Proof. Obviously,
VeyteR X~y & X+t~ y+t

This proves the first statement. Suppose now that I’ and 4 are equivalence classes.
Take ac I and b€ A and put ¢:=b — a. Then

bern4
and hence I;=4. O
B. A consequence of statement A is that the equivalence classes of R* are all of the
same cardinality.

C. Suppose that T is a fixed equivalence class of R* and that ¢ is a fixed mapping
which associates to every equivalence class A of R* an element ¢ (A) of A. Then

Viere f(x) =x + o(I') — ([x]),

where [x] denotes the equivalence class containing x, satisfies Eq. (5). This mapping
f is not bijective in the case that there exist at least two equivalence classes.

Proof. Suppose that D(x, y)=1 holds true. Hence, y € [x] and thus

o([x])=o([y]).

This implies f(x)— f(y)=x—y, i.e. D(f(x), f(¥))=1. If there exists a class 4 #T,
then ANT =0, ie.

o(4)# o(I).
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That f is not bijective is now a consequence of

fe(A))=o(4)+ o(I') — p(4) = f(o(I)).

Examples. (a) R =GF(2).
The equivalence classes are

{(0,0),(1, )},
{(1,0),(0, )}
(b) R=GF(3).

The classes are
{(0,0),(1,1)(~1,-D)},
{(1,0),(=1,1),(0,~1)},
{(0,1),(1,-1),(=1,0)}.

(c) R=GF(4).

Put GF(4)={0,1,¢,?} with €2 + £ + 1 =0. The classes are then
{(0,0),(1,1),(e,€%), (%, )},
{(1,0),(0,1),(¢%,€%), (¢, €)},
{(2,0),(c% 1),(0,6%),(1,)},
{(0,€),(1,€%),(%,0), (s, 1}

(d) R=GF(q), g>4. There is exactly one equivalence class (Benz, 1982). Samaga
(1984) proves

Theorem 4. The statement of Theorem 3 remains true in the cases g € {32,128}. If,

in addition, f is assumed to be bijective, then the statement remains true also for
g€ {64,81}.

It would be nice to prove that Theorem 3 holds true for all Galois fields GF(q) with
q>16.
Let R be a Galois field GF(gq). Dilatations

f:R*—R?
of the plane R? are mappings such that
x—y and f(x)- f(¥)

are linearly dependent for all x, y € R?. This then implies easily that a dilatation f has
the form

f(x)=4x+a
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for all x € R? with fixed A€ R and a€R?. The following result is due to Schaeffer
(1984).

Theorem 5. Suppose that R=GF(q) is a Galois field such that char R #2,3,5. If then
f:R* = R? is a mapping satisfying

Veyer D(x,y)=1 = x — y, f(x) — f(y) are linearly dependent,

then f is already a dilatation of R.

Also, with respect to Theorem 5 it would be nice to know what happens in the cases
charR € {2,3,5}.

Concerning an analogous characterization of dilatations in normed spaces, see GT,
115 ff and Baker (1994), Laugwitz (1993).

Concerning higher-dimensional cases with respect to problem 1 compare
Radé (1986): let V' be a metric vector space over GF(p™), p>2 a prime and 3<n=
dim ¥V <oo; every distance | preserving mapping must then be semilinear (up to a
translation) provided that

n#0,—1,-2(mod p)

or that the discriminant of 7 satisfies a certain condition.

With respect to Problem 2 the case of a ring R which is not a field really occurs in
Schaeffer (1984).

The cases R = F[x]/ (x?) or R=F x F are for instance included in Schaeffer’s paper
(1984). Skew fields are considered by Samaga (1982).

4. The real case DSW and generalizations

Let R be a ring with identity element 1 which is supposed to be commutative and
associative. We shall assume that 141 is not a zero divisor of R. For an integer n>2
we denote by R” the R-module already introduced in Section 3. We are then interested
in the distance space

= (M, W,d)
with

M={(,..., %) ER X2+ .22 =22, =1},
W =R,
d(x,y)=xy

where the scalar product

x'y:(xl>---,xn+1)'()’l,---,yn+l)
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is defined by
Xy=x(y1+ - +Xp Yo — Xntl Vn+1-

We proved (RG 132 f)

Theorem 6. Every isometry of the distance space Sp, n>2, must be bijective, and
moreover of the form

J(x)=xL )

Sfor all x € S} with

IMLY=M =
1
-1
for
I N AW TE
L=
ln+1,1 ree ln+1,n+1
with ljj €R.

S» together with its group of isometries (also called rmotions) is said to be
n-dimensional de Sitter’s world over R. In the case R:=R we get DSW.

We now would like to mention a result of Schroder (to appear). Let Q be a regular
quadratic form on a vector space ¥V over the Galois field R =GF(g) such that

M:={xeV|0x)=1}

contains a line and such that
4< dim ¥V <co.

A l-isometry of M is a bijection f of M satisfying
Vo yem 0(x, y) =k & 8(f(x), f(y)) =k

for a fixed element k& of R, where we put

o(x, y):=Q(x = y)-

Theorem 7. Suppose that
[k=2 and |R|=3 and dimV =4 and |M|=24]

does not hold true. Then f is induced by a semilinear bijection.
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Schroder (1986) also offers counterexamples in the exceptional case as well as in
the case dim V' =3.

5. Einstein’s cylinder universe
Let R be a ring as described at the beginning of Section 4 and let #n>2 be an integer.
The distance space
Cr=(8",W,9)
is defined as follows:
S"={(x1,...,Xps)ER |XF 4 x
W =RXxR,

3 bt
il
—_
——
"

8(x, ¥) = (x3, (tns1 = Yur1)’).
The scalar product xy of
x=(x1,-->%041) and  y=(yi,..., Yynt1)
is given by
xy=xi)+ -+ X Yn
The following result holds true (RG 105 ff)

Theorem 8. Every distance preserving mapping of Cg must be bijective and they are
all given by the transformations

0
A :
Sx)y=0x1.. . Xp1) - 0 +(0... a),
0 ... Oc¢
where A is an n X n-matrix over R with
1 0
AATZE:: .
0 1

and where ¢ and a are elements of R with ¢* =1.
The case C}; is exactly the geometry ECU. We would like to pose the following

Problem 3. Let R be a Galois field and let k be a fixed element of R x R. Determine
then all

f:S2—>S2
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such that

Vi yes: 0%, y) =k = o(f(x), f(y))=k

holds true.
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