
Queries

What is a query?

 A query is actually the name for any
database manipulation operation.

 The most commonly used type is a
select query, which is a way of selecting
what fields in what records are to be
displayed.

Types of queries you can
create in Microsoft Access

 Select queries

 Crosstab queries (actually a special kind
of select query)

 Action queries

 Make-table queries

 Delete queries

 Update queries

 Append queries)

 In addition, any of these types can be
designed to prompt the user for
information, in which case it is called a
parameter query.

Creating a query

 You can create only very simple queries
by using the Query Wizard.

 We’ll create all our queries using the
Design View for queries.

 Once designed, the results of a query
can be displayed in Datasheet View.

Select queries
 A select query is the most common type of

query.

 It retrieves data from one or more tables
and displays the results in a datasheet
where you can update the records (with
some restrictions).

 You can also use a select query to group
records and calculate sums, counts,
averages, and other types of totals.

Computer store example

 Let’s consider the following database as
an example. (More precisely, this is a
database schema, or database layout,
independent of the actual data it
contains.)

 It consists of 4 related tables,
containing fields as indicated.

 Let’s suppose the Customers table
contains the following data:

 Let’s create a select query that shows only
those records for customers in Miami.

 We double-click “Create query in Design
view” in the Database Window.

 “Select Query” will be the default query
type when we start in Design View, but we
can go to the Query Type button to set it as
desired.

 We then click the Show Table button to
select the tables the query is to use. In this
case we use only the Customers table.

 The query design window has an upper
pane and a lower pane.

 The upper pane shows the tables we’ve
selected and their relationships, while the
lower pane shows the design grid.

Show Table buttonQuery Type button

Design grid

 Initially, the design grid is empty, but
we use it to specify the data we want
the query to retrieve.

 Each column of the design grid
represents something we want the
query to display (if its check box is so
marked).

 In this case we wanted all the fields of the
table to be displayed, so we copied the
field names from the upper pane to the
lower pane.

 There are several ways to do this.

 One is to use the drop-down lists that are
available at the top of each column in the
design grid. This is too slow when there
are more than 3 or 4 columns.

 Another way is to click and drag each
field name in the upper pane to a
column in the design grid, but this is
also too slow.

 Still another way is to double-click each
field name in the upper pane.

 But the fastest way when there are many
fields is to Ctrl+click each desired field from
the upper pane and then drag the entire set
of fields to the design grid.

 This was what was done in this example, but
note that we also changed the ordering,
putting Last Name before First Name. For
this, we just used the drop-down lists to
make these minor changes.

 In addition to using the design grid to
specify which fields to display, we have
also specified that:

 the records this query returns are to be
sorted in ascending order of Customer ID; and

 only those records whose City field matches
‘Miami’ are to be returned.

City must

match “Miami”

Sort in ascending

order of customer id

 If we switch to Datasheet View for this
query, we get this, the result of running
the query on our database:

 If we want the same data displayed in
alphabetical order according to last
name, then first name, we’d modify the
query’s design to look like this:

 The result of running this query is:

 Now let’s suppose the Orders table
contains the following data:

 Let’s create a query that displays all
orders whose date is prior to 4/20/99 or
on or after 5/1/99.

 Here’s the Design View of this query:

 And here’s what this query returns:

Criteria in the design grid

 The cells in the design grid labeled
Criteria: and or:, and all those below
them, are interpreted as follows:

 If the expressions are in different cells
in the same row, Microsoft Access uses
the And operator, which means only
the records that meet the criteria in all
the cells will be returned.

 If the expressions are in different rows
of the design grid, Microsoft Access
uses the Or operator, which means
records that meet criteria in any of the
cells will be returned.

Adding a calculated field

 Here is the Products table from our
database:

 Let’s create a query that computes for
every record in this table the total retail
value of our inventory of that product.

 That is, the query should compute
[UnitsInStock]*[UnitPrice] for each
product.

 Furthermore, let’s have the query
return only those records where this
total retail value is at least $10,000.

 Here’s our query design:

 And here’s what this query returns:

Multiple table queries--Joins

 If we run a query that uses data from
multiple related tables, it essentially
creates the join of those tables and
selects records from that.

 For example, here’s a query that just
returns the join of the Customers and
Orders tables:

 Since there is a many-to-one
relationship between orders and
customers, we can see that in this join
some customer data appears multiple
times (which is why a multiple-table
design is preferable):

 Now let’s create a query that returns for
each customer how many orders that
customer has in the Orders table.

 Conceptually, this involves grouping all
the records in the join of the two tables
by customer, then computing a count of
how many such records there are in
each group.

 We can accomplish this by counting just
the number of Order ID’s there are for
each customer.

 To do grouping, we need to have the
design grid include a Total: row.

 This is done by View => Totals

 We select Count from the drop-down
menu in the Total: row under the
OrderID column.

 To see the customers listed so the ones
with the largest number of orders are at
the top, we also specify a descending
sort order on this count field.

 Our design is:

 The result is:

Note the name Access
gave to this new field

 Queries like this that involve combining
data from several related records are
called total or aggregate queries.

 Here is another example.

 Suppose we want to find out how much
each customer has spent, and list the
results in descending order of how
much each has spent buying from us.

 Here’s the query design:

 And here’s the result:

More on criteria

 By adding criteria, you can limit the groups
for which you're performing a calculation,
limit the records included in the calculation,
or limit the results that are displayed after
the calculation is performed.

 In the query design grid, where you specify
criteria determines when the calculation is
performed.

Query grid

Result

 Following are some of the operators
that can appear in expressions within
design grid cells.

 First, the use of square brackets around
a field name, like [UnitPrice], in an
expression, means to use the field’s
value in that expression.

Numerical comparison
operators

 <

 <=

 >

 >=

 =

 <>

 Between

 Less than

 Less than or equal

 Greater than

 Greater than or
equal

 Equal

 Not equal

 Within the range
(inclusive)

Arithmetic operators
 ^ (exponentiation)

 * (multiplication)

 / (division)

 \ (division that returns an integer result)

 Mod (divide two numbers and return only the
remainder)

 + (addition)

 - (subtraction)

‘Like’ and ‘Is’ comparison
operators

 The Like operator is a pattern-matching
operator used to compare two strings.

 With Like, the single-character wild-card ‘?’
and the arbitrary-length wild-card ‘*’ can
be used, as in ‘Like A*’.

 The Is operator is most often used in the
context Is Null, to test whether a field is
blank. (Is Not Null is satisfied in just the
opposite case.)

Logical operators

 And

 Or

 Not

 Used to perform a
logical conjunction
on two expressions.

 Used to perform a
logical disjunction
on two expressions.

 Used to perform a
logical negation on
an expression.

The ‘In’ operator

 Determines whether the value of an
expression is equal to any of several
values in a specified list.

Parameter queries

 A parameter query prompts for criteria
each time it's run.

 A parameter query displays one or more
predefined dialog boxes that prompt
you for the parameter value (criteria).

 You can also create a custom dialog box
that prompts for the query's
parameters.

 For example, suppose we often want to see
certain data for all customers living in a
particular city, where that city may be
Miami, or Coral Gables, or any one of many
other cities.

 Rather than create a separate query with
the city built in, it may make more sense to
create a single parameter query that
prompts for the city before it runs.

Creating a parameter query

 In the Criteria cell for each field you
want to use as a parameter, type a
prompt enclosed in square brackets.
Microsoft Access will display this prompt
when the query is run. The text of the
prompt must be different from the field
name, although it can include the field
name.

 For example, a simple modification of
our earlier query to list all customer
data for Miami customers makes it a
parameter query that prompts for the
city:

 For a field that displays dates, you can
display the prompts "Type the
beginning date:" and "Type the ending
date:" to specify a range of values. In
the field's Criteria cell, type Between
[Type the beginning date:] And [Type
the ending date:].

Crosstab queries

 A crosstab query displays summarized
values (sums, counts, and averages)
from one field in a table and groups
them by one set of facts listed down
the left side of the datasheet and
another set of facts listed across the top
of the datasheet.

To create a crosstab query
using a wizard

 In the Database window, click the Queries
tab, and then click New.

 In the New Query dialog box, click
Crosstab Query Wizard.

 Click OK.

 Follow the directions in the wizard dialog
boxes. In the last dialog box, you can
choose to run the query or see the query's
structure in Design view.

Action queries

 An action query is a query that makes
changes to many records in just one
operation.

 There are four types of action queries:
 delete,

 update,

 append, and

 make-table.

Delete query

 A delete query deletes a group of records
from one or more tables.

 For example, you could use a delete query to
remove products that are discontinued or for
which there are no orders.

 With delete queries, you always delete entire
records/rows, not just selected fields within
records.

 You can use a single delete query to
delete records from a single table, from
multiple tables in a one-to-one
relationship, or from multiple tables in a
one-to-many relationship, if cascading
deletes are enabled (for example, all
customers from Miami and all their
orders).

Simplest case: Delete records
from one table or tables in a
one-to-one relationship

 1 Create a new query that contains the
tables from which you want to delete
records.

 2 In query Design view, click the arrow
next to Query Type on the toolbar, and
then click Delete Query.

 3 For the tables you want to delete
records from, drag the asterisk (*) from
the field list to the query design grid.

 From appears in the Delete cell under
these fields.

 4 To specify criteria for deleting
records, drag to the design grid the
fields on which you want to set criteria.

 Where appears in the Delete cell under
these fields.

 5 In the Criteria cell for the fields that
you have dragged to the grid, type the
criteria.

 6 To preview the records that will be
deleted, click View on the toolbar. To
return to query Design view, click View
on the toolbar again. Make any changes
you want in Design view.

 7 Click Run on the toolbar to delete the
records.

 Note: To stop a query after you start
it, press CTRL+BREAK.

Important considerations
when using a query that
deletes records

 Once you delete records using a
delete query, you can't undo the
operation. Therefore, you should
preview the data that the query
selected for deletion before you run the
query. You can do this by clicking View
on the toolbar, and viewing the query in
Datasheet view.

 You should maintain backup copies of
your data at all times.

 If you delete the wrong records, you
can retrieve them from your backup
copies.

 In some cases, running a delete query
might delete records in related tables,
even if they're not included in the
query. This can happen when your
query contains only the table that's on
the "one" side of a one-to-many
relationship, and you've enabled
cascading deletes for that relationship.

 In that case when you delete records
from the "one" table, you'll also delete
records from the "many" table.

Update query

 An update query makes global changes to a
group of records in one or more tables.

 For example, you can raise prices by 10
percent for all products, or you can raise
salaries by 5 percent for the people within a
certain job category. With an update query,
you can change data in existing tables.

Change records as a group
using an update query

 1 Create a query, selecting the tables
or queries that include the records you
want to update and the fields you want
to use for setting criteria.

 2 In query Design view, click the
arrow next to Query Type on the
toolbar, and then click Update Query.

 3 Drag from the field list to the query
design grid the fields you want to
update or you want to specify criteria
for.

 4 In the Criteria cell, specify the
criteria if necessary.

 5 In the Update To cell for the fields you
want to update, type the expression or value
you want to use to change the fields.

 6 To see a list of the records that will be
updated, click View on the toolbar. This list
won't show the new values. To return to
query Design view, click View on the toolbar
again. Make any changes you want in Design
view.

 7 Click Run on the toolbar to create
the new table.

 Note: As usual, to stop a query after
you start it, press CTRL+BREAK.

Append query

 An append query adds a group of records
from one or more tables to the end of one or
more tables.

 For example, suppose that you acquire some
new customers and a database containing a
table of information on those customers. To
avoid typing all this information in, you'd like
to append it to your Customers table.

 Append queries are also helpful for:

 Appending fields based on criteria. For
example, you might want to append
only the names and addresses of
customers with outstanding orders.

 Sometimes you want to append records when
some of the fields in one table don't exist in
the other table. For example, a Customers
table has 11 fields. Suppose that you want to
append records from another table that has
fields that match 9 of the 11 fields in the
Customers table. An append query will
append the data in the matching fields and
ignore the others.

Make-table query

 A make-table query creates a new table from
all or part of the data in one or more tables.

 Make-table queries are helpful for:

 Creating a table to export to other Microsoft
Access databases.

 For example, you might want to create a
table that contains several fields from your
Employees table, and then export that table
to a database used by your personnel
department.

 Make-table queries are also useful for making
a backup copy of a table and for

 Creating a history table that contains old
records.

 For example, you could create a table that
stores all your old orders before deleting
them from your current Orders table.

