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Simple Summary

Displaced abomasum (DA) is one of the costliest health problems as well as a welfare
concern in dairy cows. Therefore, the predictive potential of DA-susceptible cases is of
great importance to reduce economic losses. Hence, this study aimed for early prediction
of DA by using five machine learning algorithms, namely Logistic Regression (LR), Naïve
Bayes (NB), Decision Tree, Random Forest (RF) and Gradient Boosting Machines (GBM),
to predict cases of DA. Model performance metrics indicated that among the algorithms
considered in this study, RF and GBM were significantly better in terms of F2 (0.32) and
TPR (0.75 and 0.70, respectively). Therefore, given the highly unbalanced data and that
DA is a complex feature, machine learning (ML) methods were shown to be promising
for predicting cases susceptible to DA at the herd level. This prediction tool can aid dairy
farmers in making preventative management decisions by identifying cows susceptible
to DA.

Abstract

Displaced abomasum (DA) is a digestive disorder that causes severe economic losses
through the reduction in milk yield and early culling of cows. The predictive potential of
DA-susceptible cases is of great importance to reduce economic losses. This study aimed for
early prediction of DA. However, identifying cows at risk of DA can be difficult because DA
is a complex trait and its incidence is low. For this purpose, in this study, the ability of five
machine learning algorithms, namely Logistic Regression (LR), Naïve Bayes (NB), Decision
Tree, Random Forest (RF) and Gradient Boosting Machines (GBM), to predict cases of DA
was investigated. For these predictions, 20 herd–cow-specific features and sire genetic
information from 7 Holstein dairy herds that calved between 2010 and 2020 were available.
Model performance metrics indicated that GBM and RF algorithms outperformed the
others in predicting DA with F2 measures of 0.32. The true positive rate in the RF was the
highest compared to other methods at 0.75, followed by GBM at 0.70. Given the highly
imbalanced data, this study showed the potential in forecasting cases susceptible to DA.
This prediction tool can aid dairy farmers in making preventative management decisions
by identifying cows susceptible to DA.
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1. Introduction
Displaced abomasum is defined as abomasum mislocated from its normal position to

either the left or right side [1] and is considered the most common surgical gastrointestinal
disorder in dairy cows [2]. Approximately 30–50% of dairy cows suffer metabolic and
infectious diseases after calving [3] and the annual incidence of DA has been reported to
range between 0.05% and 6% [4]. DA is an important digestive condition that leads to great
concern in terms of animal economics [5] and has a detrimental impact on animal welfare
due to disease occurrence, health outcomes and the experience of pain [6], which in turn
can influence the profitability in the herd [7]. The direct economic impact of DA includes
the costs of treatment, early culling, and the decrease in milk production [8], an increase
in the interval of calving to first service [9,10]. Although ketosis is a well-recognized risk
factor for left displacement abomasum (LDA), in some studies, the occurrence of some
disorders such as ketosis following DA has been reported [11–13]. In this regard, it should
be noted that sometimes DA may have occurred but had not yet been diagnosed. At this
time, the abomasum is periodically filled with gas and fluid, and then emptied. Therefore,
in cows with uncomplicated displacements, where the cow may go through periods of
apparent well-being, ketosis can develop due to the reduction in feed consumption [14].
Direct and indirect cost per case of DA in the United States have been reported to be more
than 700 USD [8]. Hence, the ability to predict cases susceptible to DA could allow for
earlier intervention strategies.

DA multifactorial disease occurs mostly in the early postpartum period [10] and
depends on the coordinated action of a set of predisposing factors [15,16]. According to
previous reports, more than 50% of DA cases occur in the first postpartum period [9,17].
Some earlier studies have reported factors that are associated with the likelihood of DA
occurrence [4,13,17,18]. The known non-genetic factors contributing to the incidence of
DA include herd, year and season of calving, parity, reproductive and other metabolic
disorders [17–20]. Also, DA is largely affected by nutrition management and concentration
of various metabolites [21,22]. In addition to cow- and herd-level factors, numerous studies
suggest that DA is a heritable trait [23,24], with an estimated heritability between 0.12 and
0.32 [23]. This means that up to 30% of the phenotypic variation in the DA at the population
level can be explained by additive genetic variations. Also, a positive genetic correlation
(0.45 ± 0.16) is reported for DA with other metabolic disorders such as ketosis [25].

To monitor the metabolic status of cows, measuring plasma metabolites and metabolic
hormones has been suggested [3], but these metabolites and hormones are difficult to
measure in the farm [26]. In recent years, animal studies have used machine learning
methods to predict traits such as assessing disease impact in dairy cattle [7], assessing the
impact of technology integration on cow health [27], the incidence of lameness [28], the
incidence of neosporosis in cattle [29], ketosis [30], the incidence of retained placenta [31],
and the metabolic status of dairy cows [26]. Machine learning algorithms can deal with
inter-correlations [32] and analyze large sets of data, regardless of complexity, quickly and
accurately [33]. Machine learning methods have previously been used to predict complex
traits [28]; hence, according to the fact that DA is a multifactor trait, the present study was
conducted with the aim to investigate machine learning method capabilities in predicting
whether a cow is at high risk of DA during the lactation period.

2. Material and Methods
2.1. Data

The data used in this study consisted of health, reproduction, and production records
extracted from backup files of Modiran (version 8.21.02.18), a Livestock Management Soft-
ware, from 7 Holstein dairy farms located at 3 provinces of Iran (Esfahan, Chahar Mahaal en
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Bakhtiari, and Khorasan). Herds were selected based on their use of an accurate recording
system (Livestock Management Software, Modiran 8.21.02.18), availability of data for DA,
and other features required for analysis. All herds had comparably similar management
routines in terms of veterinary services, vaccination and use of artificial insemination. The
feed was as a balanced total mixed ration (similar ratio of forage to concentrate) and the
free stall housing system. All herds on average contained ≥500 milking cows that were
milked three times per day. Data extracted from the farm databases for each individual
cow were: herd and cow identification, sire, lactation period, calving date, management
factors, information on health and metabolic disorders and records of milk and milk com-
positions. Data were edited using R (version 4.1.2; [34]). Records with parity > 6, pregnancy
period outside 240 to 298 days, age at first calving outside 578 to 1153 days and dry period
length > 160 days were excluded from the analysis. Also records exceeding three standard
deviations from the mean of milk yield, fat and protein and calf weight at birth were
excluded. The number of excluded records and reasons for excluding them are presented
in Table 1. After data cleaning from 93,273 available records, a total of 85,031 records were
available following editing for statistical analysis; this included 56,368 multiparous cows
and 28,663 primiparous cows.

Table 1. Number of excluded records and reasons for excluding them for each parity.

Service Sire PTAs 1 Parity > 6 AFC PL Milk Protein Fat DPL Calf Weight No Milk Record 2

1978 2055 244 117 124 1290 503 533 816 582
1 Removal due to lack of Service Sire PTAs; 2 primiparous cows with DA and without a monthly record of milk.

Cases of DA, which included “all cases of DA” (i.e., left cases and right cases, 90% and
10%, respectively), are usually recorded as a binary trait (1 if a cow was affected by DA
and 0 otherwise). Milk production traits including the monthly milk yield, fat and protein
percentage (i.e., recorded on one day per month) before occurrence of DA for affected
cows were considered (2841 cows). For cows with DA that had no prior milk record, the
last record of the previous lactation was used (1394 cows). For unaffected cows, the first
lactation record after calving was included in the dataset. Cows with DA and without a
monthly record of milk were excluded from the analysis (582 cows). Other features used for
predicting DA include parity (1, 2, . . ., 6), herd (h1, h2, . . ., h7), pregnancy length, calving
season (spring, summer, fall and winter), dystocia and twinning (0 was normal partus,
and 1 was abnormal partus), mastitis, ketosis, retained placenta and metritis during the
current lactation and before the occurrence of DA, (0 for healthy cows and 1 for affected
cows). It is necessary to explain that a positive test for the detection of the ketone bodies in
blood (measurement of beta-hydroxybutyric acid (BHBA) in serum or plasma in the lab or
using a ketone meter) combined with reduced feed intake was used to diagnose a cow with
ketosis. The BHBA threshold used to diagnose subclinical ketosis was 1.2–2.9 mmol/L and
for clinical ketosis was ≥3 mmol/L.

In addition to the herd–cow factors, sire EBVs (sire of the cow) obtained from the
Alta Genetics website (https://bullsearch.altagenetics.com/us/BS/List, accessed on 1
February 2023) were also included in the dataset. This information includes the daughter
pregnancy rate (PTA-DPR), productive life (PTA-PL), sire calving ease (PTA-SCE), sire
stillbirth (PTA-SSB), daughter calving ease (PTA-DCE), daughter stillbirth (PTA-DSB),
PTA of DA (PTA-DA), PTA of ketosis, PTA of somatic cell score (PTA-SCS), PTA of milk
protein percentage and PTA of milk fat percentage. Therefore, they were considered as
candidate predictor features for ML algorithms. A general description of predictor feature
set available for predicting DA is provided in Table 2. Also, the frequency of each level of
nominal features is shown the Table 3.

https://bullsearch.altagenetics.com/us/BS/List
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Table 2. Description of features (explanatory variables) used for predicting displaced abomasum in
dairy cows.

No. Features Type Level Minimum (%) 3 Maximum (%) 4 Mean SD

Herd and cow information 1

1 Herd Nominal 7 1 (15%) 7 (7%) - -
2 Calving years Nominal 11 2010 (3%) 2020 (16%) - -
3 Parity Nominal 6 1 (34%) 6 (5%) - -
4 month of the milk record Nominal 12 1 (8.6%) 12 (9.4%) - -
5 Calving season Nominal 4 1 (22%) 4 (24%) - -
6 Milk yield Numeric - 3.0 78.0 40.9 12.3
7 Milk fat yield Numeric - 0.29 7.2 3.7 1.1
8 Milk protein yield Numeric - 1.1 5.1 3.0 0.4
9 Age at first calving Numeric - 578 1153 720 55
10 Pregnancy Numeric - 240.0 298.0 275.0 5.1
11 Calf weight at birth Numeric - 20 53 40.0 6.2
12 Dry period length Numeric - 0 160 41.1 33.2
13 Ketosis Binary 2 0 (98%) 1 (2%) - -
14 Mastitis Binary 2 0 (83%) 1 (17%) - -
15 Metritis Binary 2 0 (86%) 1 (14%) - -
16 Retained placenta Binary 2 0 (92%) 1 (8%) - -
17 Milk fever Binary 2 0 (98%) 1 (2%) - -
18 Dystocia Binary 2 1 (96%) 2 (4%) - -
19 Twinning Binary 2 1 (97%) 2 (3%) - -
20 Calf sex Binary 2 1 (51%) 2 (49%) - -

Service Sire PTAs 2

21 PTA-DA Numeric - −2.9 1.4 −0.02 0.5
22 PTA-SSB Numeric - 3.8 10.2 6.1 0.8
23 PTA-DSB Numeric - 2.6 16.7 6.5 1.7
24 PTA-SCE Numeric - 1.0 6.6 2.2 0.5
25 PTA-DCE Numeric - 1.0 5.5 2.6 0.6
26 PTA-DPR Numeric - −7.5 6.9 −0.7 2.1
27 PTA-PL Numeric - −7.6 6.3 −0.2 0.2
28 PTA-Ket Numeric - −3.7 3.0 −0.1 2.4
29 PTA-fat% Numeric - −0.3 0.4 −0.07 0.1
30 PTA-SCS Numeric - 2.4 3.6 3.0 1.0
31 PTA-protein% Numeric - −0.2 0.2 −0.3 0.04

1 Parity consisted of 1 (34%), 2 (26%), 3 (18%), 4 (11%), 5 (6%) and 6 (5%). For all primiparous cows, the
length of the dry period was considered zero. For all records related to disease and reproduction, 0 was no
and 1 was yes. For calf gender, 1 was considered a female calf and 2 was considered a male calf. 2 PTA of
displaced abomasum, sire stillbirth, daughter stillbirth, sire calving ease, daughter calving ease, the daughter
pregnancy rate and productive life, somatic cell score, Ketosis, milk protein percentage and milk fat percentage.
3 and 4 Proportions and frequencies for each level of categorical and binary features were shown in parentheses.
Features selected during feature selection stage are shown in bold face.

Table 3. Frequency of different levels of nominal features used in the forecasting.

Features
Level

1 2 3 4 5 6 7 8 9 10 11 12

Herd 15% 20% 10% 15% 18% 15% 7% - - - - -
Calving year 3% 2% 3% 4% 5% 7% 12% 14% 15% 17% 16% -
month of the
milk record 8.6% 7.3% 7.7% 7.5% 7.5% 7.0% 8.0% 10.0% 9.0% 9.0% 8.0% 9.4%

Calving season 22% 27% 27% 24% - - - - - - - -
Parity 34% 26% 18% 11% 6% 5% - - - - - -

2.2. Machine Learning Methodology

In this study, five machine learning algorithms were used to predict the likelihood
of DA incidence: Logistic Regression, Naïve Bayes, Decision Tree, Random Forest, and
Gradient Boosting Machines. These models are described in detail in Shahinfar et al. [28,35].
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After quality control and cleaning, the dataset contained 85,031 records (each record is
a cow in a parity) of 47,686 Holstein cows calving between 2010 and 2020 and was divided
into two sets with an 80:20 ratio as the training set and the hold-out testing set, respectively.
Feature selection was performed to select the most informative features [36] only on the
training dataset. After balancing the training set, 80% of the total training set was selected
as the training set i, i∈{1:10}. Furthermore, 70% of the ith training set was randomly selected
to be used for hyperparameter tuning via a nested grid search while internally tested on the
remaining 30%. The best-performing hyperparameters in this step were used to train each
ML algorithm within their corresponding ith training sets and were tested on the hold-out
testing set at the end. The training algorithm is explained in detail in the next section.

2.2.1. Feature Selection

Feature selection was performed to discard uninformative features from the dataset [36].
Feature selection is extremely important in ML algorithms because it reduces computational
costs, avoids overfitting [30], leads to the reduction in the distractive effect of noisy fea-
tures [35], and by choosing the optimal subset of predictors, it promotes the efficiency of the
model [37]. In the current study, Random Forest was performed to select the most effective
set of features only on the training set. For this purpose, the mean reduction in the Gini
index and the mean decrease in accuracy were used. Random Forest was performed with
the number of trees to grow (500:1000) and the number of candidate variables randomly
sampled in each split (4:5) in each iteration. The top 15 features for the mean decrease
accuracy and the mean decrease in Gini index were selected and saved. Finally, the training
process was conducted with the union of two feature sets selected. According to the results
of trait importance and based on the intersection of both criteria considered in this study,
milk yield, PTA_DA, dry period length, parity, milk fat yield, herd, AFC and PTA_DPR
are the most important features in predicting DA (Figure 1). The selected features in the
feature selection stage were highlighted in Table 2.

Figure 1. Variable importance plot of the top 10 predictor variables, according to the mean reduction
in the Gini index and mean decrease in accuracy.

2.2.2. Hyperparameter Tuning

The prediction models were developed using 10 repetitions as described in the next
section. In each iteration, 80% of the training set was randomly selected and hyperparam-
eter tuning was performed via grid search. Tuned hyperparameters were the number of
trees to grow (100:500) and the number of candidate variables randomly sampled in each
split (4:10) for RF. The Laplace smoothing coefficient (1:10) and the smallest allowed node
size (10:100) were tuned for Naïve Bayes and Decision Tree, respectively. For GBM, the
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variable interaction levels (1:3) and the learning rate of 0.01, the number of trees (1000:1500),
the fraction of the training set observations for the next tree (0.80 and 1), and the minimum
number of observations in the terminal nodes of a tree (20 and 25) were tuned.

2.2.3. Analysis

The average incidence rate of DA was approximately 5.0% among the herds under
study, which indicates a highly class-imbalanced data (Figure 2). Classification algorithms
that aim to minimize the error rate do not perform well when dealing with imbalanced
data. One of the approaches to deal with this problem is the use of sampling techniques,
including down-sampling and up-sampling [38]. In the present study, down-sampling
techniques were used to produce a balanced training set. Machine learning algorithms were
tuned, trained and tested based on the algorithm explained below. First, the raw dataset
(after preprocessing and data wrangling) was divided into two sets. For this division, first
the raw dataset in each herd divided into two classes, sick (majority class) and healthy
(minority class), and then, each dataset was separately divided into two datasets with a
ratio of 80:20. Twenty percent of the data from each class were randomly selected and
merged together; this dataset was set aside as the holding test set. The remaining 80%
of each class after merging was considered as the training data. Then in the second step,
after feature selection by using the training set (described above), sampling techniques
were used to generate 10 balanced training data. Therefore, to keep the total number of
cows with DA constant, the aforementioned 80% training dataset split (to cows with DA
and healthy), and down-sampling was only performed in the majority class within each
herd to stratify the data within the herd structure and ensure that each herd contributes
to the training set equally. Hence, ten random samples were taken from unaffected cows
of the training set without replacing to match the total number of cows with DA. In the
next step, 80% of each training set was selected at random (these ten samples were used
for model training). Furthermore, 70% of each balanced training set was selected for
training (For hyperparameter tuning) and 30% for testing (to evaluate performance during
hyperparameter tuning) purposes of hyperparameter tuning through a nested grid search.
Finally, the prediction models were developed using the best-performing hyperparameters
on each of the 10 training sets, and was validated on the imbalanced holed-out testing set.
Figure 3 represents an overview of the whole process. Model performance metrics (MPMs)
were aggregated over the 10 iterations of training and testing. This approach was used to
control the prediction variance and enhance model generalizability [35]. All analysis and
models were implemented in R (version 4.1.2; [34]).

To evaluate the performance of the models, common MPMs were used. These MPMs
include overall accuracy (ACC = (TP + TN)/(TP + FP + TN + FN)), balanced accuracy
(BACC = (TPR + TNR)/2), the true positive rate (TPR = TP/(TP + FN)), the true negative
rate (TNR = TN/(TN + FP)), precision (PPV = TP/(TP + FP)), the false negative rate
(FNR = FN/(FN + TP)) and the false positive rate (FPR = FP/(FP + TN)), where TP is true
positive, TN is true negative, FP is false positive, and FN is false negative. In data with
highly imbalanced classes, the TPR is more appropriate for measuring the success of any
classifier, because the TPR focuses on performance measurement in the positive or minority
class, which provides more relevant and appropriate information [39]. The true positive
rate (recall) measures the percentage of the positive examples that the model predicted
correctly [40]. Because, the TPR only uses values of one column of the confusion matrix, it
cancels the changes in the data class distribution, which is the ratio between the positive
and negative samples [41]. Model performance metrics that are estimated based on both
columns of the confusion matrix will be sensitive to the imbalanced data [42] and they will
change as data distributions change [43].
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Figure 2. Distribution of displaced abomasum cases of dairy cattle across herds in the training set
(before and after under-sampling) and testing set.

A scalar metric alone might not be an appropriate parameter to measure the predictive
performance of a model, especially for nonparametric models [44]. Hence, to measure
and evaluate any classifier in this study, in addition to the TPR, the focus was also on F2-
measure. Due to the characteristics of imbalanced data, the F-measure was chosen because
its emphasis is on the TPR and PPV to calculate an integrated score (i.e., identification of
minority class). F2-measure is calculated as the harmonic mean of precision and recall
(TPR) and gives a weight to each one [45]:

F2-measure =

(
1 + β2

)
× TP(

1 + β2
)
× TP + β2 × FN + FP

(1)

where β, which indicates that recall is more important than precision, is a weight control
parameter and gives more weight to recall. In the F2-measure, a β of 2 is selected to
emphasize minority class learning by assigning more weight to the TPR in the performance
of the algorithms [39].
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Figure 3. Flowchart of the resampling of the original dataset to generate the balanced set and data
used for model tuning. Under-sampling performed via ten random samples from unaffected cows of
each herd to the total number of cows with DA without replacement.

3. Results
DA is a complex trait and many predisposing factors are involved in its occurrence.

This disease usually occurs early in the postpartum period. In the current study, 63% of
cases of DA occurred in the first month after calving. The incidence rate of DA is low and
leads to a severe imbalance in the data. Hence, it is difficult to achieve accurate prediction.
In the present study, down-sampling techniques were applied for the training dataset used
to train DA case prediction models.
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The performance of the different machine learning algorithms used to predict cases
of DA using a highly imbalanced dataset (hold-out testing dataset) is shown in Table 4
and Figure 4. Also, the calibration, which indicates the degree to which the predicted risk
matches the actual risk, was shown using calibration plots (Figure 5). The classification
accuracy of predictive models ranged from 62% to 69%. In terms of ACC, LR and GBM
outperformed other machine learning algorithms at 0.68 and 0.69, respectively. The greatest
value of F2-measure was achieved with GBM and RF, whereas NB had the lowest (0.33
vs. 0.27). In terms of the TPR, RF outperformed other machine learning algorithms at 0.75,
whereas LR was the lowest. Considering the PPV, it was GBM that outperformed other
methods at 0.10. PPVs were low for all algorithms and varied between 0.07 (NB) and 0.10
(GBM) across algorithms. The greatest value of AUPRC and AUROC was achieved with
GBM (0.17) and RF (0.76), respectively.

Table 4. Model performance metrics for algorithms used in prediction of the incidence of DA in dairy
cows for the testing set.

Algorithm 1 ACC 2 Balanced ACC PPV 3 TPR 4 TNR 5 F2 AUPRC AUROC

Testing dataset
LR 0.68 (±0.00) a 0.66 (±0.00) b 0.09 (±0.00) b 0.65 (±0.01) b 0.68 (±0.00) b 0.30 (±0.00) b 0.15 (±0.00) b 0.73 (±0.00) c

NB 0.62 (±0.02) b 0.64 (±0.00) c 0.07 (±0.00) c 0.66 (±0.01) b 0.62 (±0.02) b 0.27 (±0.00) c 0.10 (±0.00) c 0.69 (±0.00) d

DT 0.63 (±0.05) b 0.64 (±0.00) c 0.08 (±0.00) c 0.66 (±0.07) b 0.63 (±0.06) b 0.28 (±0.00) c 0.10 (±0.00) c 0.70 (±0.00) d

RF 0.64 (±0.01) b 0.69 (±0.00) a 0.09 (±0.00) b 0.75 (±0.01) a 0.63 (±0.01) a 0.32 (±0.00) a 0.17 (±0.00) a 0.76 (±0.00) a

GBM 0.69 (±0.01) a 0.68 (±0.00) b 0.10 (±0.00) a 0.70 (±0.00) b 0.67 (±0.01) a 0.32 (±0.00) a 0.17 (±0.00) a 0.75 (±0.00) b

Training dataset
LR 0.67 (±0.00) 0.67 (±0.00) 0.68 (±0.00) 0.67 (±0.00) 0.68 (±0.00) 0.67 (±0.00) 0.73 (±0.00) 0.74 (±0.00)
NB 0.64 (±0.00) 0.64 (±0.00) 0.63 (±0.01) 0.67 (±0.01) 0.61 (±0.02) 0.66 (±0.01) 0.67 (±0.00) 0.69 (±0.00)
DT 0.68 (±0.01) 0.68 (±0.01) 0.67 (±0.01) 0.70 (±0.06) 0.66 (±0.05) 0.69 (±0.05) 0.72 (±0.03) 0.74 (±0.01)
RF 0.68 (±0.00) 0.68 (±0.00) 0.66 (±0.00) 0.74 (±0.01) 0.62 (±0.01) 0.72 (±0.01) 0.73 (±0.00) 0.75 (±0.00)
GBM 0.72 (±0.01) 0.72 (±0.01) 0.72 (±0.00) 0.74 (±0.00) 0.71 (±0.01) 0.73 (±0.00) 0.80 (±0.00) 0.80 (±0.01)

1 LR: Logistic Regression, NB: Naïve Bayes, DT: Decision Tree, RF: Random Forest, GBM: Gradient Boosting
Machines; 2 accuracy; 3 precision or positive predictive value (PPV), 4 true positive rate (TPR); 5 true negative
rate (TNR). According to the Tukey-HSD multiple comparison test, the values in each column are significantly
different (p < 0.05), which are also shown with different superscript. The bold values in the table indicate the
best performance.

Figure 4. Boxplots of model performance metrics showing prediction variability in different al-
gorithms on the testing set in 10 iterations; DT = Decision Tree, GB = Gradient Boosting (Ma-
chines), LR = Logistic Regression, NB = Naïve Bayes, RF = Random Forest, ACC = overall accuracy,
BACC = balanced ACC, TPR = true positive rate, TNR = true negative rate, AUROC = Area Under
the ROC, PPV = precision, F2 = F2-measure and AUPRC = Area Under the Precision–Recall Curve.
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Figure 5. Calibration plots of different machine learning models: Decision Tree (DT), Gradient
Boosting (Machine) (GB), Logistic Regression (LR), Naïve Bayes (NB) and Random Forest (RF).

4. Discussion
The results of the present study demonstrate that considering the PPV, it was GBM

that outperformed other methods at 0.10. Implemented models’ low PPVs were expected,
because the PPV is a function of the trait incidence rate, and a lower incidence leads to a
lower PPV. When predicting a trait with a low incidence rate, a model with a good TPR and
TNR can have a low PPV. Although the PPV is calculated directly from TP and FP, it is a
function of the incidence rate of the trait under study [46]. In other studies, PPVs for mastitis
and lameness are 0.01 and 0.10, respectively [47,48], which is lower than the value reported
here. This represents a direct relationship between the PPV and the frequency of trait under
investigation [49]. Although GBM and LR (0.69 and 0.68, respectively) performed well in
terms of accuracy, accuracy is not a good measure to evaluate the performance of prediction
models when dealing with imbalanced data, because it assigns more weight for the class
with a high frequency than the rare classes [50]. For this reason, balanced accuracy was also
estimated, which weighs the two classes equally and is believed to be more plausible than
using accuracy alone in situations of using highly unbalanced data [51]. The difference
between the two criteria was very small that indicates that a classifier performs equally
well on either class [52]. Table 5 provides a sample of recent studies that attempted to
predict health traits in dairy cattle using ML.

In terms of AUROC, RF and GBM also outperformed other machine learning algo-
rithms at 0.76 and 0.75, respectively; AUROC is the appropriate measure of a classifier’s
ability and reflects the power of positive prediction probability ranking. Of course, in low
incidence rate cases, especially when the frequency of the minority class is lower than 5%,
the Area Under the Precision–Recall Curve (AUPRC) is preferred because it has a better
agreement with the PPV. In this respect, GBM and RF outperformed other machine learning
algorithms by 0.17.
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Table 5. The accuracy of recent studies in predicting health traits in dairy cattle.

Number of Cows Predicted Trait Accuracy Algorithm with Best Performance Country Year

2535 Lameness 0.83 Naïve Bayes Australia 2021 [28]
1000 Neosporosis 0.82 Neural Network Colombia 2025 [29]
882 Ketosis 0.72 Logistic Regression Poland 2021 [53]

363,945 Retained Placenta 0.78 XGBoost and Random Forest Iran 2025 [31]
14,755 Udder Health Status ≥0.75 Neural Network and Random Forest Italy 2021 [54]
1909 Health Status 0.95 Neural Network New Zealand 2021 [55]

297,004 Subclinical Mastitis ≥0.83 GBM and Deep Learning New Zealand 2019 [56]

According to the characteristics of the imbalanced data, F2-measure and TPR were
used as the main metrics to evaluate the predictive performance of models. In this regard,
the predictive performance of the ML algorithms used in the present study, based on
F2-measure, varied from 0.27 (NB) to 0.32 (RF and GBM). RF and GBM had the highest F2-
measure at 0.32 followed by LR (0.30). Considering the TPR, it was RF that outperformed
other methods (0.75). GBM had the highest TPR (0.70) after RF, whereas LR had the lowest
performance (0.65). A high TPR, especially when analyzing data related to a disease, is very
important for a classifier because in medical data, information is stored in the minority class
data and the TPR also measures the performance of a classifier on the minority class [39].

These findings showed the ability of ML algorithms to predict cases of DA. Consid-
ering all metrics, the results show that both GBM and RF can have success in predicting
DA cases. Other models considered in this study showed similar MPMs. The better perfor-
mance of GBM and RF can be attributed to the ability of the ensemble approach to form a
high-performance predictor based on the training set of collaborative predictors [57]. Previ-
ous studies have shown that correlation between predictors can be handled well by these
models [58,59]. Random selection of a subset of features to generate any of those classifiers
can eliminate the correlation between features. Of course, the method of construction and
internal evaluation of both of these algorithms are different, although both are tree-based
methods [60].

Although better performance metrics of RF and GBM were statistically significant,
results indicate a limited improvement. So that, a large proportion of cows are still misclas-
sified (i.e., low PPV). This will prove the fact that prediction of DA is extremely difficult
and even the best algorithm in the current study still provides modest accuracy. The low
performance of DA prediction models used in this study was expected because in addi-
tion to having a highly imbalanced dataset, information on the mechanism(s) of why DA
occurs [61,62] and the coordinated action of many predisposing factors involved in its occur-
rence [15,16] are unknown to us. Among these factors, weather [20,21], environment and
management factors such as nutrition and metabolism [63,64], body score condition [18],
energy metabolism markers such as β-hydroxybutyric [3,65] and minerals such as calcium
levels in serum [65] can be mentioned but were not available to us in the current study.
Having a complete set of factors affecting the occurrence of disease can lead to a better
performance of prediction models.

However, to the best of the authors’ knowledge, this is the first study that used
predictive models, phenotypic data, and sires’ EBVs to identify cows prone to DA and
proved the ability of machine learning models in predicting whether a cow is at high risk of
DA during its lactation period. Therefore, it can be considered as a decision support tool to
help farm managers in monitoring susceptible cows. Identifying cows prone to metabolic
disorders such as DA can lead to better cow health management, and provides farmers
with the opportunity to modify diet and farm management strategies to prevent disorders
a priori [66]. Susceptible cows usually have a poor metabolic status [12]; a metabolic status
can be improved by feeding diets with a higher energy content [67] or by reducing the
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dry period length. If a cow is prone to metabolic disorders (such as DA) but has a good
body condition score, limiting energy supply can lead to reduced body fat storage and
a reduced risk of metabolic disorders in the next lactation period [68]. So, utilizing the
approach introduced in the current study can aid farmers as an alerting system in order to
take preventative actions on cows susceptible to these abnormalities.

According to previous reports, displaced abomasum is a costly disease in all pari-
ties [69]. The cost per case of DA has been reported from 450 USD per case [70] to more than
700 USD [8]. As an example of how this model can work effectively in practice, suppose the
incidence of DA in a herd of 1000 cows is 5.5%, so 55 cows per year will be affected with
DA. Using the approach introduced in this study, it is possible to correctly identify 10% of
cows at high risk of DA a priori (PPV 10%, Table 4), which is equivalent to six cows in this
hypothetical scenario. As a result, assuming an effective preventive intervention practice is
available on time, using this algorithm, 2700 to 4200 USD of future financial losses can be
prevented, which translates to higher profits for farmers. This approach can be adapted for
other dairy cattle health and welfare issues as well to enhance profitability.

5. Conclusions
In the present study, machine learning algorithms were used for initial DA prediction.

Among the algorithms considered in this study, RF and GBM were significantly better in
terms of F2-measure (0.32) and TPR (0.75 and 0.70, respectively). Other models considered
in this study showed similar MPMs. Although, prediction of DA is quite challenging as DA
is a complex trait and its low occurrence rate causes severe data imbalance. The primary
strength of this study lies in demonstrating the effectiveness of our custom-designed
under-sampling and cross-validation algorithm in predicting highly imbalanced outcomes.
Suboptimal performance metrics could also be due to the fact that some important DA risk
factors were not available to us as predictors, which is expected to be improved with a
comprehensive set of DA risk factors as predictor features in the dataset and more advanced
predictive models. It is worth mentioning that this is the first study to use predictive models,
phenotypic data, and sires’ EBVs to identify cows prone to DA and proves the ability of
machine learning models in predicting whether a cow is at high risk of DA during its
lactation period.
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