Solid-State Processes

• Deposition techniques for MMC fabrication

1- Coating individual fibers in a tow with the matrix material

2- Diffusion bonding to form a consolidated composite plate or structural shape

•Several deposition techniques are available:

- ✓Immersion plating (dipping)
- ✓Electroplating
- $\checkmark Spray \ deposition$
- \checkmark Chemical vapor deposition (CVD)
- ✓ Physical vapor deposition (PVD)
 - (More information available in the text book.)

mposite Materials, 2015, BN, IUT, Iran

Main challenges for production of MMCs

- 1- Porosity (mostly in liquid state processes)
- 2- Uniform distribution of the reinforcement (agglomeration and segregation issues)
- 3- Reinforcement/matrix wettability
- 4- Undesirable reactions between reinforcement/matrix

Composite Materials, 2015, BN, IUT, Iran

1- Porosity content of MMCs

Affects mechanical properties, corrosion resistance, surface quality,...

Sources of porosity

- · Mechanical entrapment of air during processing, e.g. stirring
- · Precipitation of dissolved gases in the melt
- · Gas and moisture on the surfaces of the reinforcements
- · Moisture on the surfaces of the mould
- Solidification shrinkage
- Higher viscosity of composite slurry \rightarrow slower discharge of gas bubbles

– Moisture can be released by heat treatment at 200-600 $^{\circ}\mathrm{C}$

Methods for porosity reduction

- · Optimizing the process variables and set-up design
- · Increasing reinforcement/melt wettability
- Optimizing reinforcement addition method
- <u>Compocasting</u>
- Vacuum casting
- Squeeze casting
- Post casting deformation processes, e.g. rolling, extrusion, ...

Composite Materials, 2015, BN, IUT, Iran

2- Uniform distribution of the reinforcement

Common defect in vortex method:

- Agglomeration due to Van der Waals forces
- Gravity segregation due to density difference
- Reinforcement pushing to the grain boundarie

Particle distribution:

- During stirring: process parameters, wettability, ...
- After stirring and before casting: density difference, viscosity, wettability, ...
- During solidification: particles redistribution , e.g. engulfment, pushing, ...

Particle addition to the melt:

- On the melt surface
- Under the melt surface using a carrier gas
- Spray casting
- Ultrasonic treatment of the slurry
- Dilution of a high vol.% MMC in a melt

- ...

100nr

Fig. 17. TEM micrograph of A413-1.5% SiC composite after two 20 min periods of HIDUT.

M.R. Dehnavi, et al., Materials Science & Engineering A, 617(2014)73-83. Composite Materials, 2015, BN, IUT, Iran

- The complete melting times are small fractions of a second
- The estimated average melt velocity = ~ 40cm/sec.
- If the average radial separation between SiC particles = $10 \mu m$
- The required time for melting of a 10µm thick aluminum layer in the direction of the minor axis of the particle will be equal to about 7.6×10⁵, 4.4×10⁴ and 1.6×10⁴ sec, respectively.
- Each released SiC_p can move off about 30, 176 or $64\mu m$ before the next SiC_p is released.
- These distances are very large in comparison to the size of the SiC particles (~3µm)
- → Reduced possibility of agglomeration
- Composite Materials, 2015, BN, IUT, In

covered with the gas layer.

<figure><figure><figure><figure>

migron sized porti						
micron-sized parti	cles:					
Model	Critical Velocity for Engulfment	Dependence of Particle Radius				
Uhlman et. al. [7]	$V = \frac{(n+1)}{2} \left(\frac{La_o V_o D}{k_B T R^2} \right)$	R ⁻²				
Chernov et al. [8]	$V = \frac{0.14B_3}{\mu R} \left(\frac{\sigma_{sl}}{B_2 R}\right)^{1/3}; \frac{\lambda^2}{l} > R$	R ^{-1.33}				
	$V = \frac{0.15B_3}{\mu Rl}; \frac{\lambda^2}{l} > R$	R ^{-1.33}				
Bolling and Cisse [9]	$V = \left(\frac{4\psi(\alpha)k_B T \sigma_{sl} A_o}{9\pi \mu^2 R^3}\right)^2; R < R_b$	R ^{-1.5}				
Stefanescu et al. [10]	$V = \frac{\Delta \sigma a_o}{6(n-1)\mu R} \left(2 - \frac{k_p}{k_l} \right)$	R ⁻¹				
Shangguan et al. [11]	$V = \frac{\Delta \sigma a_o}{6(n-1)\mu \alpha R} \left(\frac{n-1}{n}\right)^n$	R ⁻¹				
Kim and Rohatgi [6]	$V = \frac{\Delta \sigma a_o(kR+1)}{18\mu R}$	R ⁻¹				
Kaptay [12]	$V = \frac{0.157}{n} \Delta \sigma_{cls}^{2/3} \cdot \sigma_{sl}^{1/3} \cdot \left(\frac{a}{p}\right)^{4/3}$	R ^{-1.33}				

14

Properties

> Strengthening mechanisms in metal matrix composites

> Direct strengthening:

- Considers only the contribution of the reinforcement and the matrix (load transfer from the matrix to high modulus reinforcements)

- Is critically dependant on the reinforcement-matrix interface

- Does not take into account any strength contribution from microstructural changes in the metal matrix

• For fiber reinforced MMCs:

- Rule of mixtures: $\sigma_{\rm c} = \sigma_{\rm f} V_{\rm f} + \sigma_{\rm m} V_{\rm m}$
 - $\sigma =$ the strength
 - V = the volume fraction · c, f, and m denote the composite, fiber, and matrix, respectively

omposite Materials, 2015, BN, IUT, Iran

>Strengthening mechanisms in metal matrix composites

• For particle reinforced MMCs:

$$\Delta \sigma_l = v_p \sigma_m \left[\frac{(l+t)A}{4l} \right]$$

- $\Delta \sigma_l =$ load-bearing contribution of reinforcement

- $Zo_{f} = load-beam g contribution of removement$ $<math>v_{p}$ = volume fraction of particles in the matrix σ_{m} = yield strength of the matrix t = size of the particulate parallel to the load direction t = thickness of the particulate, and
- A = l/t = particles aspect ratio

•For equiaxed (spherical) particles:

 $\Delta \sigma_l = 0.5 v_p \sigma_m$

A. Sanaty-Zadeh, P.K. Rohatgi, Materials Science and Eng neering A 531 (2012) 112- 118. Composite Materials, 2015, BN, IUT, Iran

>Strengthening mechanisms in metal matrix composites

Indirect strengthening:

- The reinforcement-induced changes in matrix microstructure and properties including:

- Orowan strengthening
- Grain and substructure strengthening
- Quench hardening
- Work hardening
- · Solid solution strengthening
- The indirect strengthening appears to be more important in particle reinforced composites.

Composite Materials, 2015, BN, IUT, Iran

•

- > Orowan strengthening
- · Hard and non-shearable particles may pin and block the dislocations.
- Orowan effect=Gb/l
 - G= shear modulus of the matrix
 - b = Burgers vector of the matrix
 - ⊨ particle spacing

• The degree of strengthening is believed to be insignificant for microsized reinforcements.

Nano MMCs seem to benefit more from this mechanism.

• Presence of reinforcements often affects the size and distribution of second phase precipitates.

Composite Materials, 2015, BN, IUT, Iran

>Strengthening mechanisms in metal matrix composites

- $\succ~$ Grain and substructure strengthening
- · Hall-Petch relationship:

$$\sigma_y = \sigma_0 + \frac{k_y}{\sqrt{d}}$$

- $\sigma_y =$ yield strength
- σ_0 = a materials constant (resistance of the lattice to dislocation motion)
- k_y = the strengthening constant
 d = grain or sub-grain size in the matrix.
- a = grain or sub-grain size in the matrix
- Grain boundary strengthening can be high in spray cast and powder metallurgy processed composites.

.

> Quench hardening

• Reinforcements normally have smaller coefficient of thermal expansions (CTEs) than the matrix

- When subjected to a temperature change, thermal stresses are generated in both of the components
- A metal matrix undergoes plastic deformation in response to the thermal stresses generated and thus alleviates them
- A high density of dislocations may be generated around the reinforcements

21

• Thermal strain in the matrix: $e_{\rm m} = \Delta \alpha \Delta T$

– The dislocation density resulting from CTE mismatch:
$$\rho_{\rm CTE} = (AeV_{\rm p})/b \big(1-V_{\rm p}\big) d$$

$$\rho_{\text{CTE}} = (Aev_p)/D(1 - A = a \text{ geometric constant})$$

- -e = the thermal misfit strain
- b = the Burgers vector
 V_p = the particle volume fraction
 d = the particle diameter

- The strength contribution is given by

$$\sigma_{\rm q} = \alpha G b (\rho_{\rm CTE})^{1/2}$$

 α = a constant

G= the shear modulus of the matrix

Composite Materials, 2015, BN, IUT, Iran

>Strengthening mechanisms in metal matrix composites

- · Accelerated aging processes due to heterogeneous nucleation at dislocations
- This contribution of quench hardening to strength can be significant.

> Work hardening

- Due to the modulus mismatch (strain misfit) between the elastic reinforcement and the plastic matrix
- · Reinforcements affect the matrix work hardening rate.
- ✓ Effect of modulus mismatch on the strength of a composite:

$$\sigma_d = \sqrt{3} \alpha G b \sqrt{\rho^{\text{EM}}}$$

- α = a constant (~0.5) - ρ^{EM} = the dislocation density caused by modulus mismatch
- G = the shear modulus of the matrix

- b = the Burger's vector

 $\rho^{\text{EM}} = \frac{6v_p}{\pi d_p^2} \epsilon \qquad -v_p = \text{volume fraction of particles} \\ -d_p = \text{the particle diameter}$

$$-\epsilon =$$
 the uniform deformation

A. Sanaty-Zadeh, P.K. Rohatgi, Materials Science and Engineering A 531 (2012) 112–118 Composite Materials, 2015, BN, IUT, Iran

>Strengthening mechanisms in metal matrix composites

Solid solution strengthening

• The reinforcements may affect the microsegregation as a result of solute segregation at the interfaces or chemical reaction with the matrix.

 \rightarrow The content and distribution of solute in the matrix is changed

Composite Materials, 2015, BN, IUT, Iran

>Strengthening mechanisms in metal matrix composites

- In MMCs reinforced with continuous fibers, direct strengthening is a major factor.
- For discontinuously reinforced metals, quench hardening and work hardening are likely to be the most active mechanisms.
- For nano-sized reinforcements, Orowan strengthening may become a key mechanism.
- Normal matrix strengthening due to solution and precipitation hardening and grain refinement will give additional strength to the composite.
- + The strength of MMCs is most strongly dependent on the volume fraction of reinforcement.

The overall strength of the composite:

•There are different models. Two examples:

1- Simply add up all the strengthening contributions:
 Neglects the effect of different mechanisms on each other
 Assumes that each mechanism behaves independently

 $\sigma = \sigma_0 + \Delta \sigma_1 + \Delta \sigma_2 + \Delta \sigma_3 + \Delta \sigma_4 + \cdots$

2- Clyne method (for micro composites):

 $\sigma_y = \sigma_0 + \Delta \sigma$

 $\Delta \sigma = \sqrt{\left(\Delta \sigma_{l}\right)^{2} + \left(\Delta \sigma_{\text{Orawan}}\right)^{2} + \left(\Delta \sigma_{\text{Hall-Petch}}\right)^{2} + \left(\Delta \sigma_{\text{EM}}\right)^{2} + \left(\Delta \sigma_{\text{CTE}}\right)^{2} + \left(\Delta \sigma_{\text{WH}}\right)^{2}}$

 σ_0 = Yield strength of the unreinforced matrix

A. Sanaty-Zadeh, P.K. Rohatgi, Materials Science and Engineering A 531 (2012) 112-118. Composite Materials, 2015, BN, IUT, Iran

>Strengthening mechanisms in metal matrix composites

For Mg matrix reinforced with nano-Al₂O₃ and Y₂O₃ particles

 ✓ There is a 75 nm particle size threshold

- ✓ Larger particle sizes do not significantly influence the strength of the nanocomposite.
- Theoretical calculation in Prof. Rohatgi's group:

✓ An ideal Al-15vol% Al_2O_3 (10 nm particles) ✓ → 1GPa yield strength!

strength at 300 °C.			
Sample	Ys at 25 °C (MPa)	Ys at 300 °C (MPa)	Retained yield strength
A-0-0	92	56	60
A-0-2	128	146	82
A-15-0	98	70	71
A-15-2	143	125	87
A-30-0	113	79	71
A-30-2	158	142	90
$0 \rightarrow Cast$ $15 \rightarrow Cast$ $30 \rightarrow Cast$ $0 \rightarrow 0\% C$ $2 \rightarrow 2\% C$	from fully liqu t from semi sol t from semi sol NT (Monolithic CNT (Composit	id state id state ($f_s = 0.1$: id state ($f_s = 0.36$ c) e)	5) 0)

Recycling of MMCs

- Recycling of MMCs as MMCs, i.e., without separating the reinforcement from the matrix
 - Very economical if possible!
 - Must avoid excessive thermal treatments because they can cause
 - adverse chemical interactions at the interface.
 - High Si content Al alloys can be recycled and reused (less chance of carbide formation)
 - Addition of virgin metal to the composite scrap may be required to obtain a new composite with the desired particle volume fraction.

Separation of the original components

- Mechanical or chemical techniques

Composite Materials, 2015, BN, IUT, Iran

Recycling of MMCs

Mechanical techniques

 Separating the metal and ceramic particles by mechanical means such as crushing, shredding, and gravity separation can be used.

Chemical techniques

- Special fluxing and degassing techniques
- Fluxes, based on NaCl, KCl, and NaF are used in foundries for removing impurities from molten nonferrous metals such as aluminum.
- Fluxing materials should have lower surface energies with the ceramic reinforcement than with the metal matrix
- Al can be reclaimed from scrap by melting at 700°C and adding fluxing salt and bubbling argon through the melt to form froth that concentrates alumina or SiC particles dewetted by the salt

