CHAPTER 6

Metal Matrix Composites

Composite Materials, 2015, BN, IUT, Iran

Metal Matrix Composites

• High specific strength, high specific modulus, good toughness, higher temperature capabilities, ...

- 1960s: Boron fiber reinforced 6061 aluminum
- 1960s: Unidirectionbally solidified eutectics
- 1970s: Carbon fiber reinforced metallic composites
- Now a variety of reinforcements are availabile, e.g. Al₂O₃, SiC, ...

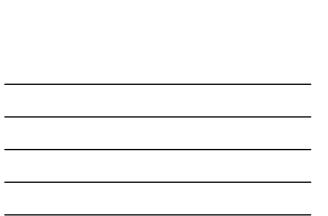
Composite Materials, 2015, BN, IUT, Iran

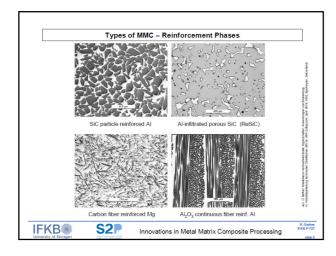
Metal Matrix Composites

- Main activities in MMCs:
 - Boron/Aluminum
 - Carbon/Aluminum
 Al/Al2O3, Mg/Al2O3

 - Al/SiC
 - Eutectic composites
 - Insitu composites

 - Nano composites
 Unconventional composites (a new proposed course)
- Three kinds of metal matrix composites (MMCs):
 - Particle reinforced MMCs
 - Short fiber or whisker reinforced MMCs
 - Continuous fiber or sheet reinforced MMCs

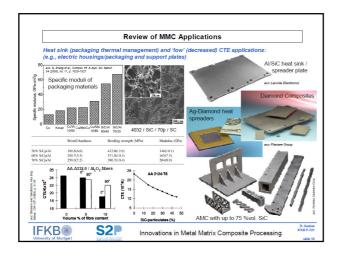

Types of Metal Matrix Composites

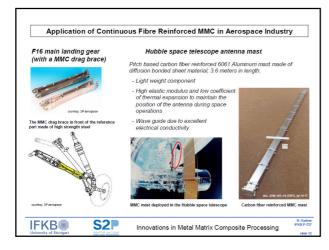

Туре	Aspect ratio	Diameter (µm)	Examples	
Particle	~1-4	1-25	SiC, Al ₂ O ₃ , WC, TiC, BN, B ₄ C	
Short fiber or whisker	~10–1,000	0.1–25	SiC, Al_2O_3 , Al_2O_3 + SiO ₂ , C	
Continuous fiber	>1,000	3-150	SiC, Al ₂ O ₃ , Al ₂ O ₃ + SiO ₂ , C, B, W, NbTi, Nb ₂ Sn	

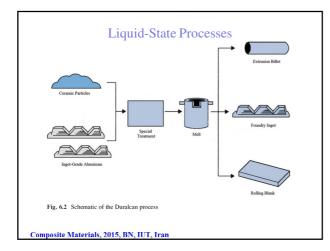
- Particle or discontinuously reinforced MMCs have become very important
- Compared to fiber reinforced composites:
 - Inexpensive
 - Relatively isotropic properties
- Composite Materials, 2015, BN, IUT, Iran

Stir-casting MMC (PRM):	5 – 25 €/kg (e.g., Duralcan)		
Sprayed MMC (PRM):	10 – 50 €/kg (e.g., Peak)		
PM (PRM):	15 – 150 €/kg (e.g., AMC, DWA); Dartal: 28 €/kg		
Particles:	1 – 10 €/kg (except B₄C: 40 €/kg)		
Short ceramic fibre preform:	200 €/kg (Saffil)		
Carbon multifilaments:	15 (HT) – 2000 (HM) €/kg		
Ceramic multifilaments:	> 350 €/kg		
Ceramic monofilaments:	> 5000 €/kg		
Consequence:			
Fibres are competitive only for	small components or as selective reinforcement		

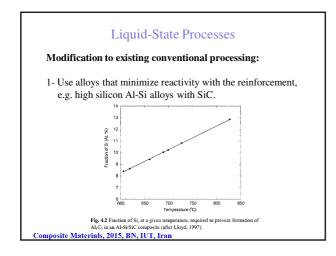
a 1001µm	
ь В	
Fig. 6.1 (a) Transverse cross-section of continuous alumina fiber/magnesium alloy composite. (b) Typical microstructure of a silicon carbide particle/aluminum alloy composite. Note the	
angular nature of SiC particles and alignment of particles along the long axis	
Composite Materials, 2015, BN, IUT, Iran	







Processing


- Liquid-State Processes
- Solid-State Processes
- Gaseous-Stare Processes
- Liquid-State Processes:
 - Near net shape
 - Faster processing time
 - Less expensive
- Most common liquid-state processes:
 - Casting, or liquid infiltration
 - Squeeze casting, or pressure infiltration
 - Spray co-diposition
 - In-situ processes

✓ Conventional casting

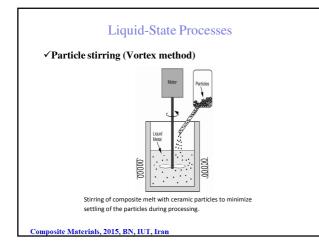
- Typically used with particulate reinforcements because of difficulties in casting fibrous preforms without pressure
- · The particles and molten matrix are mixed and cast
- Secondary mechanical processing may be applied, e.g. extrusion or rolling

- 2- Higher processing temperature due to higher viscosity of the slurry, e.g. ${\sim}745~{^\circ}{\rm C}$ for Al-Si-SiC
 - $\quad \ \ Viscosity of particulate composite, \eta_c,$

$$\eta_{\rm c} = \eta_{\rm m} \left(1 + 2.5 V_{\rm p} + 10.05 V_{\rm p}^2 \right)$$

 η_m : the viscosity of the unreinforced metal Vp: the volume fraction of particles

• For very small particles, e.g., 2–3 μm, the viscosity is even higher due to a very large interface region.


Composite Materials, 2015, BN, IUT, Iran

Liquid-State Processes

3- Protection by an inert gas to reduce oxidation of the melt

4- Stirring is often required to avoid sedimentation or flotation of the reinforcements.

- SiC density= 3.2 g/cm³, Al density= 2.2 g/cm³
- Stirring: Mechanical, induction, ultrasonic vibration, ...
- Stirring also improves wettability and permeability of the reinforcement in the molten matrix

- · Particles are stirred in the molten alloy
- Near net-shape (little further processing needed)
- Porosity should be minimized
- Particle surface treatments may be needed to improve wettability
- Prolonged contact between liquid metal and reinforcement \rightarrow significant chemical reaction
- Typical lower limit on particle size: 15 μm!
- Max V_p ~ 15-20 %

Composite Materials, 2015, BN, IUT, Iran

Liquid-State Processes

Sedimentation of particles

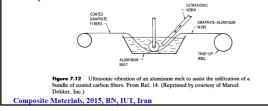
• $\rho_{\text{particle}} > \rho_{\text{Matrix}} \Rightarrow$ Settling down of particles according to the Stokes' law.

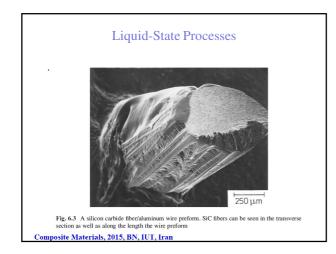
$$v_s = \frac{2}{9} \frac{(\rho_p - \rho_f)}{\mu} g R^2$$

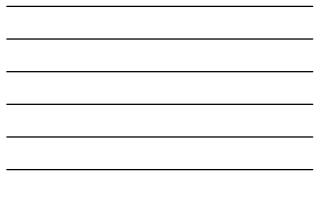
 $\begin{array}{ll} v_s = particle's \mbox{ settling velocity } (m/s) & g = gravitational acceleration (m/s^2) \\ \rho_p = mass \mbox{ density of the particles } (kg/m^3) & \rho_f = mass \mbox{ density of the fluid } (kg/m^3) \\ \mu = dynamic \mbox{ viscosity } (kg \mbox{ m.s}) & \end{array}$

✓ Compocasting (semisolid composite casting)

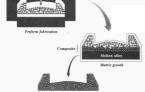
- · Processing within the semisolid temperature range
 - Higher viscosity of the slurry
 - Existence of already solidified particles
 - \rightarrow Better distribution and retainment of the reinforcement

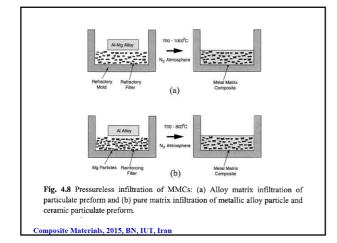

Composite Materials, 2015, BN, IUT, Iran


Liquid-State Processes

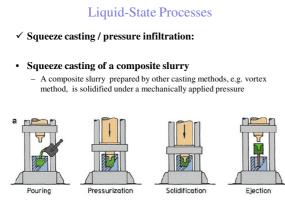

\checkmark Continuous fiber reinforced MMCs by vibration methods

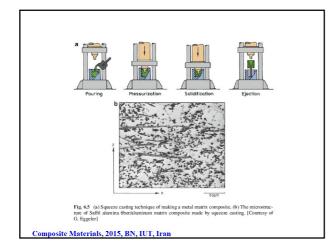
- •Tows of fibers are passed through a liquid metal bath •Individual fibers are wet by the molten metal
- •Excess metal is wiped off, and a composite wire is produced

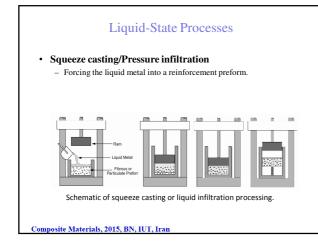

•A bundle of such wires can be consolidated by extrusion to make a composite.

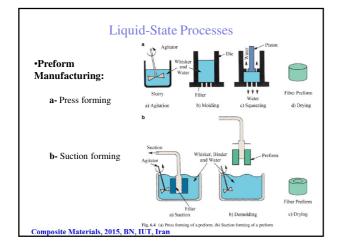


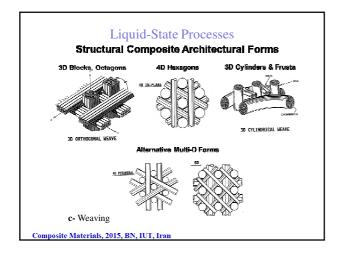
- ✓ Lanxide's Primex[™] process:
- A pressureless infiltration process
- Used with certain reactive metal alloys such Al–Mg to infiltrate ceramic preforms.
 - Processing temperature for an Al–Mg alloy: 750 -1000 °C in a nitrogen-rich atmosphere
 - Typical infiltration rates are
 - less than 25 cm/h.

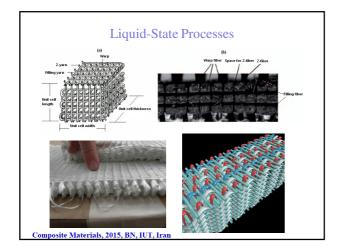










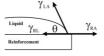


Liquid-State Processes d- Pyrolysis of a polymeric preform **e-** Ceramic coating of a polymeric preform followed by sintering **f**- Freeze-casting •(Left) Directional growth of Ice crystals in a slurry of water and high volume fraction of fine ceramic particles •The growting in a slurry of water and high volume fraction of fine ceramic particles •The growing ice crystals push the ceramic into the grain boundaries. •After drying and sintering, a porous ceramic preform is obtained.

•(Right) A freeze-cast Al-12Si-Al2O3 composite produced by squeeze casting Composite Materials, 2015, BN, IUT, Iran

Liquid-State Processes

Permeability of porous medium by a fluid


• Darcy's Law for single-phase fluid flow:

$$J = -\frac{k}{\eta}\nabla P$$

- J. Volume current density (i.e., volume/area×time) of the • fluid
- *k*: The permeability of a porous medium
- η : The fluid viscosity
- ∇P . The pressure gradient responsible for the fluid flow

•External pressure ↑ •Viscosity of the liquid ↓ •Permeability of the preform ↑ Volume current density **↑**

 During infiltration, a given reinforcement/atmosphere surface is replaced with a reinforcement/liquid metal surface.

- If $\sigma_{RA} > \sigma_{RL+} \sigma_{LA,COS\theta} \rightarrow Spontaneous infiltration of molten metal into the preform!$
- If $\sigma_{RA} < \sigma_{RL} + \sigma_{LA,COS\theta}$, the process cannot be spontaneous \rightarrow Some work is required to make the melt flow in the interstices of the preform.
- This work should be supplied by an external source such as vacuum in the preform or gas/piston pressure on the melt.
 mposite Materials, 2015, BN, IUT, Iran

Liquid-State Processes

• The minimum pressure required to infiltrate the melt into the preform can be written as

 $P \varpropto S_{\rm f} \left(\sigma_{RL \, *} \, \sigma_{LA.Cos\theta} {-} \, \sigma_{RA} \right)$

 $or \qquad P \varpropto \text{-}S_{f} \left(\sigma_{RA} - \sigma_{RL} - \sigma_{LA.Cos\theta}\right)$

- $S_{f.}$ The specific surface area of the preform (interface per unit volume of the matrix)

• If melt is to be forced through a channel of width r:

 $\Rightarrow P \propto -S_{\rm f} (\sigma_{\rm RA} - \sigma_{\rm RL} - \sigma_{\rm LA.Cos\theta})/r$

Composite Materials, 2015, BN, IUT, Iran

Liquid-State Processes P ∝ -S_f (σ_{RA} - σ_{RL} - σ_{LA,Cosθ})/r Infiltration is improved by increasing σ_{RA} and decreasing σ_{RL}. In wetting systems (θ < 90°), infiltration is improved by increasing S_f and decreasing r. In non-wetting systems (θ > 90°), infiltration is improved by reducing S_f and increasing r. In non-wetting systems (θ > 90°), infiltration is improved by reducing S_f and increasing r. S_f and r are dependent on volume fraction and size of the reinforcements.

- For most metal-ceramic systems (non-wetting systems), decreasing the size of reinforcement particles/fibers or increasing the volume fraction of the reinforcement deters infiltration.
- A preform with a higher specific area and smaller interstitial channels requires a higher pressure for infiltration.
- Main variables:
 - Reinforcements temperature
 - Melt temperature
 - Die temperature
 - Applied pressure
 - Rate of pressure application (Rate of infiltration)
 - Alloy compositionReinforcement composition

Composite Materials, 2015, BN, IUT, Iran

Liquid-State Processes

Squeeze cast/Pressure infiltrated composites

- A threshold (Min.) pressure is required for infiltration.
- Applied pressure should not exceed a Max. value!
 Applied pressures: ~70–100 MPa
 - Makes the molten metal to penetrate the fiber preform and bond the fibers
 - · Higher pressures may result in preform movement or failure!
- Short dwell time at high temperature
 - Minimal reaction between the reinforcement and molten metal
- Composite Materials, 2015, BN, IUT, Iran

Liquid-State Processes

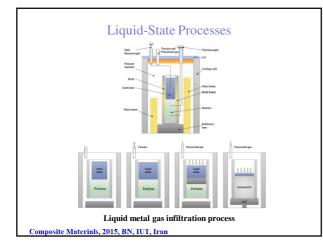
- Can be free from common casting defects such as porosity and shrinkage cavities
- Macrosegragation may occur!
- Selective reinforcement is possible
- · Casting of wrought alloys is possible
- · Near net-shape

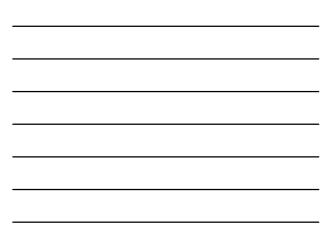
· Selective reinforcement

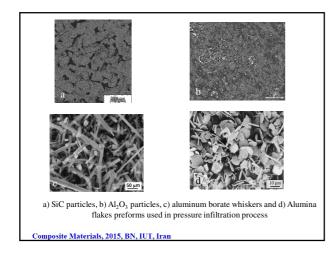
- Combustion bowl and ring grooves in diesel engine pistons
- Selective reinforcing with ceramic fibers instead of the Ni-resist cast iron inserts
- Much superior products and 10% weight reduction

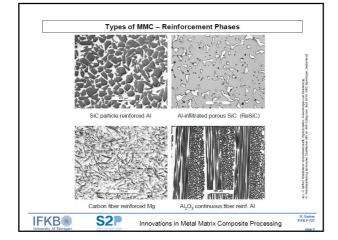
Composite Materials, 2015, BN, IUT, Iran

Diesel engine piston (Al/Alumina fiber composite) made by squeeze casting

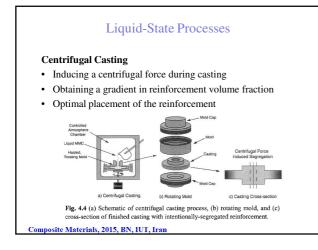

Liquid-State Processes

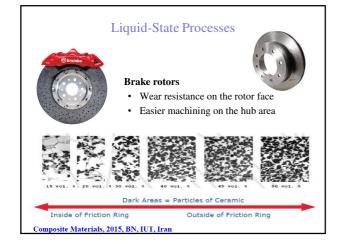

Pressure Gas Infiltration of a preform

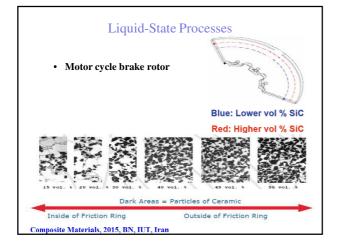

- · Controlled environment of a pressure vessel
- Rather high reinforcement volume fractions
- Reinforcement: particles, long or short fibers, whiskers, ...
- Complex-shaped structures

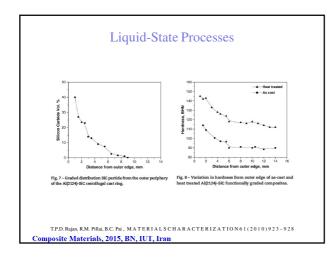

Process involves:

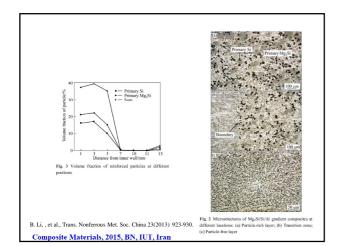
- Melting the matrix alloy in a crucible in vacuum
- Separately heating the preform
- Molten matrix material is poured onto the fibers
- · Argon gas pressure forces the melt to infiltrate the preform
- The melt generally contains additives to aid in wetting the

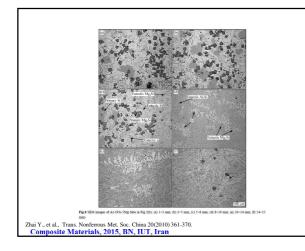


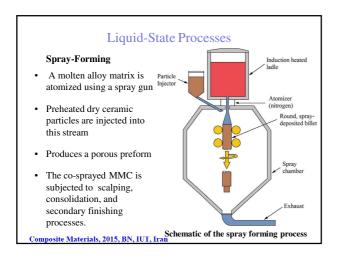


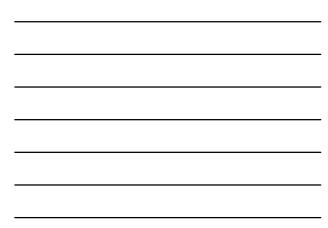


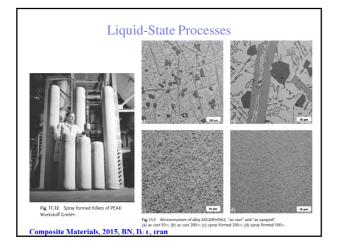


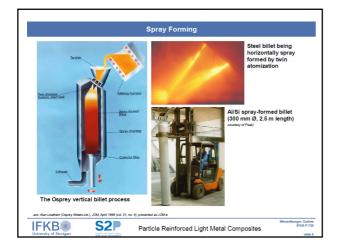


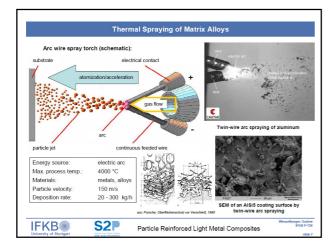


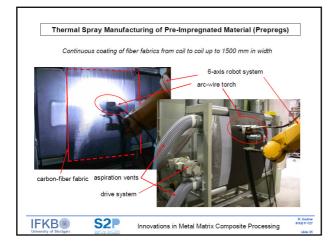



Processing of WC/Co Composites


- Cemented carbides = WC/Co MMC
- Liquid cobalt wets WC particles very easily (θ=0)
- ➤ Milling of WC particles with Co powder → spherical granules of WC/Co
- Compaction under pressure (50–150 MPa) to make green compacts having 65% of the theoretical density
- Pressureless liquid phase sintering
 Good infiltration of WC particles by liquid cobalt occurs because of capillary action



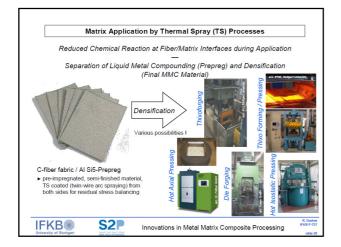

• Extremely short flight times →formation of deleterious reaction products avoided

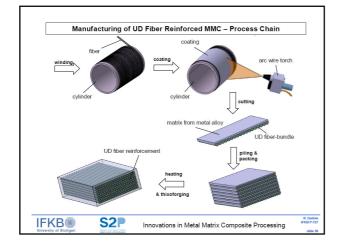


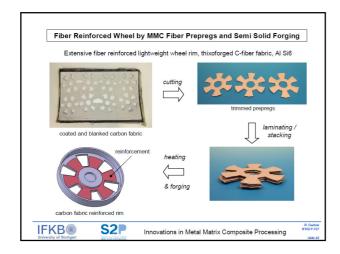
• High production rate: 6-10 kg/min

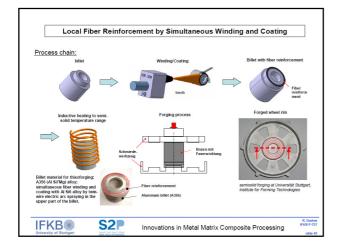
High pressure die cast crankcase with indirect extruded cylinder liners of the spray formed alloy AlSi25Cu4Mg.

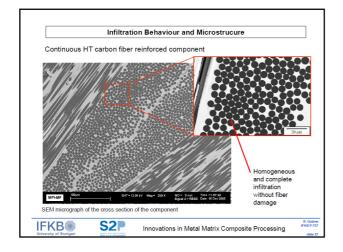
- Great flexibility in making different types of composites, e.g. – Making in situ laminates using two sprayers
 - Selective reinforcement
 - Functionally graded Materials (FMGs) are possible

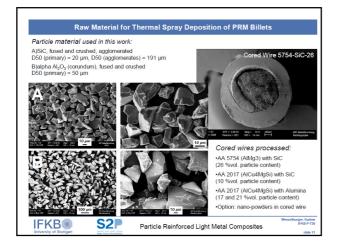


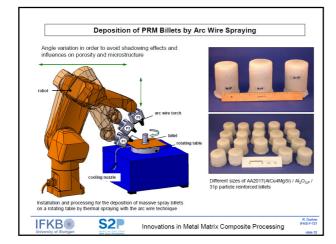


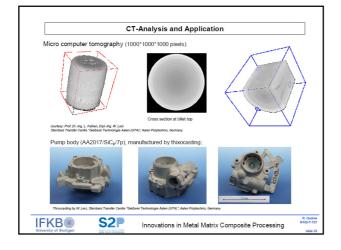


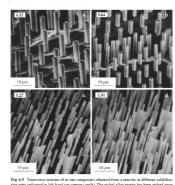












• In Situ composites

- Reinforcements are formed during the solidification of the molten metal within the matrix, e.g., controlled unidirectional solidification of eutectic alloys.
- Fineness of distribution of the reinforcement phase is controlled by the solidification rate.

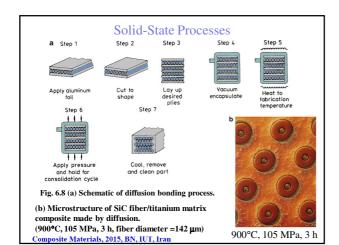
.

Composite Materials, 2015, BN, IUT, Iran

Liquid-State Processes

Table 6.2 Some important in situ composite systems						
System	Carbide	(vol. %)	$T_{\mathbf{E}}^{\mathbf{a}}$ (°C			
Co-NbC	12		1,365			
Co-TiC	16	Add more of	f1,360			
Co–TaC	10		1,402			
Ni–HfC	15 - 28	desplacive	1,260			
Ni–NbC	11	reactions.	1,330			
Ni-TiC	7.5	reactions.	1,307			

•XDTM/SHS (self-propagating high-temperature synthesis) process: An exothermic reaction between two components is used to produce a third component.


A master alloy with high vol% of reinforcement is produced which can be mixed and remelted with a base alloy to produce a desirable amount of particle reinforcement, for example SiC or TiB_2 in an aluminum, nickel, or intermetallic matrix.

Composite Materials, 2015, BN, IUT, Iran

Solid-State Processes

Diffusion bonding

- Used to join similar or dissimilar metals
- Stacking in a predetermined order of:
 - ✓ Matrix alloy foil and fiber arrays
 - ✓Composite wire
 - ✓Monolayer laminates
- Simultaneous application of pressure and high temperature
 - \rightarrow Inter-diffusion of atoms from clean metal surfaces in
 - contact at elevated temperature

Solid-State Processes

✓ The main advantages:

•The ability to process a wide variety of matrix metals •Control of fiber orientation and volume fraction

× The main disadvantages:

•Processing times of several hours

•High processing temperatures and pressures

•Quite expensive

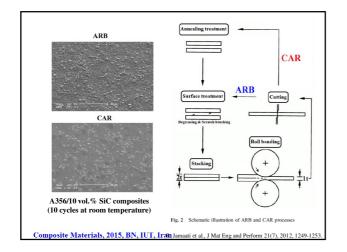
•Only objects of limited size can be produced

Composite Materials, 2015, BN, IUT, Iran

Solid-State Processes

Deformation processing of metal/metal composites

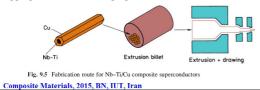
✓Less conventional: In-situ composite

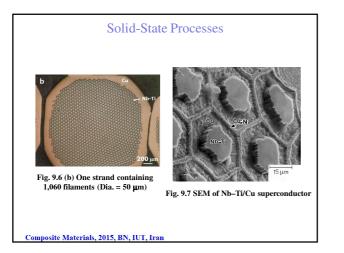

•Extrusion, drawing, rolling or ... of a ductile two-phase material.

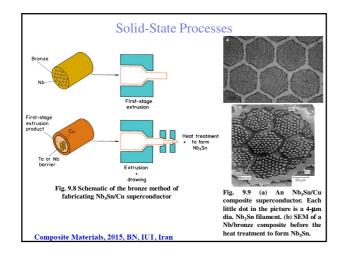
•The two phases co-deform \rightarrow the minor phase elongates and becomes fibrous within the matrix

•The starting material is usually a billet prepared casting or powder metallurgy methods.

✓ More conventional:


- Roll bonding to produce sheet laminated MMCs
- ARB (accumulative roll bonding)
- CAR (continual annealing and roll-bonding)





Solid-State Processes

- *Nb−Ti composite superconductors* ✓Extremely fine Nb−Ti superconducting filaments embedded in a copper matrix ✓Annealed Nb–Ti rods are inserted into hexagonal-shaped high
- purity copper tubes.
- ✓ These rods are loaded into a copper tube, evacuated, sealed, and extruded.
- \checkmark The extruded rod is cold drawn and annealed repeatedly to the appropriate final size and properties.

Deposition techniques for MMC fabrication

1- Coating individual fibers in a tow with the matrix material

2- Diffusion bonding to form a consolidated composite plate or structural shape

•Several deposition techniques are available:

- ✓Immersion plating
- ✓Electroplating
- ✓ Spray deposition
- ✓ Chemical vapor deposition (CVD)
- ✓ Physical vapor deposition (PVD)
 - (More information available in the text book.)