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ABSTRACT
We consider the problem of sum-rate maximization in mas-
sive MIMO two-way relay networks with multiple (commu-
nication) operators employing the amplify-and-forward (AF)
protocol. The aim is to design the relay amplification ma-
trix (i.e., therelay beamformer) to maximize the achievable
communication sum-rate through the relay. The design prob-
lem for the case of single-antenna users can be cast as a non-
convex optimization problem, which in general, belongs to a
class of NP-hard problems. We devise a method based on the
minorization-maximization technique to obtain quality solu-
tions to the problem. Each iteration of the proposed method
consists of solving a strictly convex unconstrained quadratic
program; this task can be done quite efficiently such that the
suggested algorithm can handle the beamformer design for
relays with up to∼ 70 antennas within a few minutes on an
ordinary PC. Such a performance lays the ground for the pro-
posed method to be employed in massive MIMO scenarios.

Index Terms— Beamforming, minorization-maximization,
massive MIMO, relay networks, sum-rate.

1. INTRODUCTION

Sum-rate maximization is a fundamental task arising in signal
design for communication, and particularly relay networks, in
which relays are often used to enhance the quality of commu-
nication between pairs of users within the network. In such
networks, two-way relaying is shown to achieve better spec-
tral efficiency as compared to one-way relaying [1]. Various
protocols including decode-and-forward (DF), and amplify-
and-forward (AF) have been proposed in the literature for
two-way relay networks [2, 3]. Contrary to the DF case, the
AF relaying does not perform any signal decoding at the relay,
and hence enjoys a lower hardware and software complexity,
as well as smaller transmission delay. As a result of such sim-
ple processing requirement, AF relaying is a more suitable
scheme for large-scale or massive MIMO systems.
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Note that the sum-rate of a MIMO relay system depends
on the amplification matrix, i.e. thebeamformerof the relay.
However, an optimal design of the beamformer leads to a non-
convex (in general NP-hard [1]) optimization problem. The
authors of [1] developed a polynomial-time iterative method
based on a semidefinite relaxation (referred to as POTDC) to
tackle the problem. POTDC guarantees a rank-one solution
only for the special case of single (communication) operator
and hence, its solution is generally associated with a synthesis
loss. Furthermore, each iteration of POTDC consists of solv-
ing a convex MAXDET optimization that has a large com-
putational burden. On the other hand, POTDC results outper-
form those obtained by the approximate (projection-based)al-
gorithm suggested in [4]. Additionally, [1] includes heuristic
algorithms based on one/two dimensional search for the case
with single operator.

In the case of an arbitrary number of operators, the liter-
ature does not offer efficient methods that can lead to (some
strong type of) optimality of the obtained solutions. Fur-
thermore, most of the proposed methods in the literature are
merely suitable for small scale problems (see e.g. [1, 5]). In
this paper, the problem is considered in a rather general form
enabling the user to freely choose the number of operatorsL
and the structure of the associated matrices (i.e., the channel
parameters). We devise an iterative method based on the
minorization-maximization technique to tackle the design
problem. Applying the proposed method increases the value
of the objective function at each iteration. Consequently,it
can be shown that the obtained solution is a stationary point
of the problem for arbitraryL. The proposed method is com-
putationally efficient and hence can be applied to large-scale
MIMO systems1 (with MR antennas). Indeed, each iteration
of the devised method consists of solving a convex uncon-
strained quadratic program (QP); which can be performed
efficiently for instance with anO(n2.3) complexity (where
n is the problem dimension,n = M2

R) [6]. As a result, the

1This paper can address the beamforer design problem in large-scale sce-
narios where the near optimality of zero-forcing does not hold, e.g., low-
middle regime massive MIMO systems.



method can handle problems withn ∼ 103 variables (i.e.,
MR ∼ 70) on an ordinary PC within a few minutes.

2. PROBLEM FORMULATION

We consider a MIMO AF two-way relay network consisting
of MR antennas,L operators and pairs of user terminals. We
assume single-antenna user terminals and flat fading channels
between thekth user of thelth operator and the relay, which
are denoted by{hk,l} [1]. The received signal at the relay can
be expressed as [1,4],

r =

L∑

l=1

2∑

k=1

hk,lxk,l + nR (1)

wherexk,l is the transmitted symbol by thekth user of the
lth operator with powerpk,l (given byE{|xk,l|

2}), andnR

denotes the circularly symmetric white Gaussian noise with
covariance matrixσ2

RI at the relay. By employing the AF pro-
tocol, the transmit signal of the relay is given byr̃ = Gr with
G ∈ CMR×MR being the relay amplification matrix, which is
to be designed. We assume reciprocal channels between the
relay and users [4]; thus, the received signalyk,l of the kth

user at thelth operator becomes

yk,l = hT
k,lr̃+ nk,l (2)

wherenk,l is the associated (white) noise component (with
varianceσ2

k,l) and(.)T stands for transpose. The sum-rate of
the system can be formulated as [4]

Rsum =
1

2

L∑

l=1

2∑

k=1

log2(1 + ηk,l). (3)

Hereinηk,l denotes the signal-to-interference-plus-noise ra-
tio (SINR) for thekth user of thelth operator and it has the
following expression [4]

ηk,l =
gHΦk,lg

gH(Υk,l +∆k,l)g + σ2
k,l

(4)

whereg = vec(G) that vec(.) operator stacks the columns of
a matrix into a vector,(.)H stands for Hermitian transpose,
and the matricesΦk,l,Υk,l,∆k,l are defined as

Φk,l = pk,l
(
hT
3−k,l ⊗ hT

k,l

)H (
hT
3−k,l ⊗ hT

k,l

)
(5)

Υk,l =
∑

k̃

∑

l̃ 6=l

p
k̃,l̃

(
hT

k̃,l̃
⊗ hT

k,l

)H (
hT

k̃,l̃
⊗ hT

k,l

)

∆k,l = σ2
R

(
IMR

⊗ (hk,lh
T
k,l)
)
.

The sum-rate maximization is constrained via the total
available powerPR at the relay, viz.

E{‖r̃‖22} = tr{E{GrrHGH}} (6)

=

L∑

l=1

2∑

k=1

pk,l‖Ghk,l‖
2
2 + σ2

R‖G‖2F ≤ PR

wherein‖.‖2 and‖.‖F denote the Euclidean norm of the vec-
tor and the Frobenius norm of the matrix arguments, respec-
tively. The latter equation can be expressed with respect to
(w.r.t.) g asgHCg ≤ PR where

C = σ2
RIM2

R

+

L∑

l=1

2∑

k=1

pk,l((hk,lh
H
k,l)

T ⊗ IMR
). (7)

Therefore, the design problem (i.e., sum-rate maximization)
in MIMO AF relay networks withL operators can be cast as

max
g

1

2

L∑

l=1

2∑

k=1

log2

(
1 +

gHΦk,lg

gH(Υk,l +∆k,l)g + σ2
k,l

)

s. t. gHCg ≤ PR. (8)

Note that the inequality constraint in the above problem is ac-
tive (i.e. satisfied with equality) at the optimal point. More
precisely, assume thatg is an optimal solution to (8) with
gHCg = P0 < PR. Then a scaled version ofg which sat-
isfies the constraint with equality, i.e.g1 =

√
PR/P0 g, will

lead to a larger objective value which is a contradiction.

3. SUM-RATE MAXIMIZATION

The aim is to design the AF amplification matrixG in order
to maximize the sum-rateRsum. Considering the fact that
the inequality constraint in (8) is satisfied with equality at the
optimal solution, the optimization in (8) can be recast as

max
g

L∑

l=1

2∑

k=1

[
log
(
gHAk,lg

)
− log

(
gHBk,lg

) ]
(9)

where we have used the following definitions:

Bk,l = Υk,l +∆k,l +
σ2
k,l

PR

C, Ak,l = Bk,l +Φk,l (10)

The above optimization problem is non-convex and belongs
to a class of NP-hard problems in general [1]. Note that the
objective function of (9) is invariant with respect to scal-
ing; therefore, we can deal with the unconstrained problem
and then scale the solutiong such that it satisfies the con-
straintgHCg = PR. In this paper, we use the minorization-
maximization technique to tackle the non-convex design
problem formulated in (9). Minorization-maximization
(MaMi) is an iterative technique that can be used for ob-
taining a solution to the general maximization problem [7,8]:

max
z

f̃(z) subject to c(z) ≤ 0. (11)

Each iteration of MaMi consists of two steps:

• Minorization Step: Finding̃p(κ)(z) such that its max-
imization is simpler than that of̃f(z) and p̃(κ)(z) mi-
norizesf̃(z), i.e.,

p̃(κ)(z) ≤ f̃(z), ∀z, p̃(κ)
(
z(κ−1)

)
= f̃

(
z(κ−1)

)



with z(κ−1) being the value ofz at the(κ − 1)th itera-
tion.

• Maximization Step: Solving the following optimization
problem to obtainz(κ):

max
z

p̃(κ)(z) subject to c(z) ≤ 0

Note that the following inequality holds due to the con-
cavity of log(x) for all x, x0 ∈ R+:

log(x) ≤ log(x0) +
1

x0
(x− x0). (12)

Settingx0 = gH
0 Bk,lg0 andx = gHBk,lg leads to a mi-

norizer for− log(gHBk,lg). By substituting the minorizer
into (9), we have the following maximization problem at the
(κ+ 1)th iteration:

max
g

L∑

l=1

2∑

k=1

[
log(gHAk,lg)−

1

(g(κ))HBk,lg(κ)
gHBk,lg

]
.

(13)
Inspired by the rich literature on semidefinite relaxation,

we note that by consideringX = ggH as the optimization
variable in (13) and dropping the rank-1 constraint, a convex
alternative of (13) can be obtained at each iteration. However,
there is no guarantee for a rank-1 solutionX, and hence, this
approach is associated with a synthesis loss. In addition, ap-
plying the relaxation leads to iteratively solving a MAXDET
problem possessing a high computational burden. Instead,
in the sequel, we devise a computationally efficient method
that increases the objective value at each iteration and guar-
antees the first-order optimality condition for the solution g .
To this end, we proceed by finding a minorizer for the term
log(gHAk,lg) as a function ofg using the following lemma
(whose proof is omitted for the sake of brevity).

Lemma 1. Let s(x) = − log(xHTx) and xHCx = P
for positive-definite matricesT,C in CN×N , andP ∈ R+.
Then, the following inequality holds∀ x,x0:

s(x) ≤ s(x0) + ℜ
(
bH(x− x0)

)
+ (x− x0)

HU(x − x0)

whereb =
(

−2
xH

0
Tx0

)
Tx0, U =

(
4P

wH

1
Cw1

+ ǫ
)
I, w1 is

the principal eigenvector ofT, andǫ > 0 being an arbitrary
scalar.

Assume thatgHCg = PR at each iteration (see Remark 1
below). Now by using Lemma 1 for minorizing the objective
of (13), the following unconstrained QP will be obtained:

min
g

gHQ(κ)g + ℜ

((
q(κ)

)H
g

)
(14)

where

Q(κ) =

L∑

l=1

2∑

k=1

[
Bk,l(

g(κ)
)H

Bk,lg(κ)
+Uk,l

]
, (15)

q(κ) =
L∑

l=1

2∑

k=1

[
bk,l − 2Uk,lg

(κ)
]
,

bk,l =

(
−2

(
g(κ)

)H
Ak,lg(κ)

)
Ak,lg

(κ), (16)

Uk,l =

(
4PR

w̃H
k,lCw̃k,l

+ ǫ

)
I

andw̃k,l denotes the principal eigenvector ofAk,l. Note that
Bk,l � 0, and also,Uk,l ≻ 0 as it is a scaled version of
identity matrixI with a positive scalar. Therefore, the matrix
Q(κ) is positive-definite at each iteration. Consequently, the
problem in (14) is strictly convex w.r.t.g. The unique solution
to this optimization is obtained by solving the system of linear
equations2Q(κ)g+ q(κ) = 0, viz.

g = −
1

2

(
Q(κ+1)

)−1

q(κ). (17)

Remark 1:Note that the above solutiong does not nec-
essarily satisfy the constraintgHCg = PR of the original
problem (9) at each iteration. As mentioned before, we can
scale the obtained solution at the convergence to deal with this
issue as the objective function in (9) is scale invariant. How-
ever, the derivation of the matrixUk,l in Lemma 1 requires
the satisfaction of the constraint at each iteration. Therefore,
we need to scale the obtainedg at each iteration such that
gHCg = PR. Note also that the scaling does not affect the
convergence of the sequence of the objective function values.

Table 1 summarizes the steps of the proposed method for
relay beamformer design to maximize the communication
sum-rate. The suggested method improves the value of the
sum-rate at each iteration. As a result, employing the pro-
posed method will lead to the convergence of the network
sum-rate value due to the upper boundedness of the sum-rate
metric (see [7–9] and references therein for details of the
convergence of MaMi technique).

4. SIMULATIONS

In this section, the performance of the proposed method is
evaluated via Monte-Carlo simulations. An AF based bidi-
rectional MIMO relay network withL operators andMR an-
tennas at the relay is considered. The variances of the Gaus-
sian noises for the relay and users are assumed to be equal,
i.e., σ2

R = σ2
k,l = σ2

n. We assume that the transmit powers
of the relay and users are identical, i.e.,PR = pk,l = p. The
SNR is defined asp/σ2

n. Moreover, the normalized distance



Table 1: Relay Beamformer Design Algorithm

Step 0: Initialize g with a random vector inCM
2

R (and scale it such that
gHCg = PR); setκ = 0.
Step 1: ComputeQ(κ) andq(κ) using (15).
Step 2: Solve the convex problem in (14) using either the closed-from
expression (17) or the direct methods to obtaing(κ+1).
Step 3: Scale the obtained solutiong(κ+1) such that
(g(κ+1))HCg(κ+1) = PR; setκ← κ+ 1.
Step 5: Repeat steps 1-3 until a pre-defined stop criterion is satisfied, e.g.
|f(κ+1) − f(κ)| ≤ ξ (wheref denotes the objective function of the prob-
lem (9)) for someξ > 0.
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Fig. 1: The sum-rate values associated with the proposed
method and POTDC [1] versus SNR forL = 2.

betweenkth user of thelth operator and the relay is repre-
sented bydk,l. For simplicity and without loss of generality,
we assume thatd1,l = d1 andd2,l = d2 (with d1 + d2 = 1).
Therefore, the near-far (N/F) ratio is defined asd1/d2. The
Rayleigh flat fading channel vectors{hk,l} are reciprocal and
spatially uncorrelated and the path loss exponent is assumed
to be3 in all simulations. All the results are presented consid-
ering100 realizations of the associated fading channels. We
begin by investigating the effect of the SNR on the sum-rate
in a symmetric scenario (i.e.,d1 = d2). The sum-rate values
associated with the proposed method as well as the POTDC
method of [1] (which is dealt with via CVX toolbox [10]) ver-
sus SNR are shown in Fig. 1 forMR = 4 andMR = 8 with
L = 2. As expected, the sum-rate is increasing with respect
to SNR. Furthermore, the results of the proposed method are
slightly better than those of the method in [1] because the pro-
posed method circumvents the synthesis loss associated with
POTDC. Next, we study the effect of the N/F ratio. Fig. 2
plots the sum-rate values versus different N/F ratios (L = 2).
The proposed method achieves better results in the whole in-
terval of the N/F ratio. Moreover, Fig. 1 and Fig. 2 show
that a larger number of antennasMR leads to a larger sum-
rate value of the network—as expected. The computational
times of both methods are investigated in Fig. 3, which plots
the average computational times by considering10 runs of the
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Fig. 2: The sum-rate values versus N/F ratio forL = 2 and
SNR=20dB.
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Fig. 3: The average run-time (s) versus the number of anten-
nasMR for the case ofL = 2.

methods with random initializations on an ordinary PC (with
8GB RAM and CPU CoRe i5). It can be observed that the
proposed method exhibits a low computational cost compared
to its rival (note that the values for POTDC correspond to10
iterations). The presented computational results illustrate the
applicability of the proposed method to currently available
prototypes of massive MIMO (e.g. Argos [11]).

5. CONCLUSION

The problem of relay beamformer design for sum-rate max-
imization in massive MIMO AF relay networks was con-
sidered. An iterative method based on the minorization-
maximization (MaMi) technique was devised to deal with
the design problem. The proposed method provides quality
solutions to the design problem for an arbitrary number of
operatorsL. Numerical examples confirmed the effectiveness
of the proposed method when compared to other methods in
terms of the solution quality and the computational efficiency.
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