Digital Signal Processing (DSP)

Fall 2014
Mohammad Mahdi Naghsh
mm_naghsh@cc.iut.ac.ir

DIGITAL SIGNAL PROCESSING (DSP)

Lecture 7 Sampling Theorem

DT processing of CT signals

 We work on discrete-time signals not digital signals (more on this issue later!)

http://web.cecs.pdx.edu/~ece2xx/ECE223/Slides/Sampling.pdf

• The main step: sampling $x[n] = x(t)|_{t=nT_s}$

$$x[n] = x(t)|_{t=nT}$$

http://en.wikipedia.org/wiki/Sampling %28signal processing%29

- Sampling: conversion of CT signals to discretetime signals
- Quantization: conversion of the discrete-time signals to discrete-time discrete-values signals

- Quantization: quantization level
 - Non-linear
 - Associated with noise

http://en.wikipedia.org/wiki/Quantization_%28signal_processing%29

More on the effects of the quantization level

http://www.diracdelta.co.uk/science/source/q/u/quantization%20error/source.html#.VHROe8nzxtA

Example

http://www.diracdelta.co.uk/science/source/q/u/quantization%20error/source.html#.VHROe8nzxtA

Nyquest theorem (sampling theorem)

"A bandlimited signal can be reconstructed exactly if it is sampled at a rate atleast twice the maximum frequency component in it."

Illustration: band-limited signal

• Note that:

The maximum frequency component of g(t) is f_m . To recover the signal g(t) exactly from its samples it has to be sampled at a rate $f_s \geq 2f_m$.

- Nyquest rate: the minimum required sampling frequency (Hz)
- Sampling frequency (Hz)

- Example: speech signal with 4 KHz bandwidth
 - Nyquest raet: 8000Hz
 - Sampling frequency: more than 8000Hz
 - Usual quantization level: 256
- ADC: sampling & quantization
 - Sampling frequency
 - Quantization level
 - Challenge!

- Important proof:
 - Consider the band-limited signal x(t)
 - We use a modeling for the sampled signal
 - We calculate the FT to observe the proof

Impulse sampling

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_{\rm s})$$

We model the sampled signal by weighted impulses

http://web.cecs.pdx.edu/~ece2xx/ECE223/Slides/Sampling.pdf

Example

Define

$$x_{\delta}(t) = x(t) p(t) = \sum_{n=-\infty}^{\infty} x(nT_{\rm s})\delta(t - nT_{\rm s})$$

Next we compute the CTFT

$$x(t) p(t) \stackrel{\mathcal{F}T}{\iff} \frac{1}{2\pi} X(j\omega) * P(j\omega)$$

– Remember that (lecture 6):

$$P(j\omega) \stackrel{\mathcal{F}T}{\iff} \frac{2\pi}{T_{\rm s}} \sum_{k=-\infty}^{\infty} \delta\left(\omega - k\frac{2\pi}{T_{\rm s}}\right)$$

Therefore,

$$x(t) p(t) \stackrel{\mathcal{F}T}{\iff} \frac{1}{2\pi} X(j\omega) * \frac{2\pi}{T_s} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$$

- with
$$\omega_s \triangleq \frac{2\tau}{T_s}$$

– Finally:

$$x(t) p(t) \stackrel{\mathcal{F}T}{\iff} \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X \left(j(\omega - k\omega_s) \right)$$

 By sampling, we'll have copies of the spectrum at harmonics of the sampling frequency

- Observations from the diagram
 - Choosing a large sampling frequency
 - Gaps between the copies of the spectrum
 - Choosing a small sampling frequency
 - Overlapping of the copies of the spectrum
 - Spectra overlapping: aliasing
 - Important concept

Aliasing

- Reconstruction (sampling)
 - Clearly assume no aliasing via proper selection of the sampling frequency: above Nyquest rate
 - We employ an ideal LPF to select the spectrum of the CT signal
- Note: quantization is not reversible!!
 - Quantization noise

Reconstruction

